]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Don't emit semaphore wait if wrap happened
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
86a1ee26
CW
43 bool map_and_fenceable,
44 bool nonblocking);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
21dd3734
CW
89static int
90i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
91{
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
0a6759c6
DV
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
30dbf0c0 110 return ret;
0a6759c6 111 }
30dbf0c0 112
21dd3734
CW
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
30dbf0c0
CW
124}
125
54cf91dc 126int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 127{
76c1dec1
CW
128 int ret;
129
21dd3734 130 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
23bc5982 138 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
139 return 0;
140}
30dbf0c0 141
7d1c4804 142static inline bool
05394f39 143i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 144{
6c085a72 145 return obj->gtt_space && !obj->active;
7d1c4804
CW
146}
147
79e53945
JB
148int
149i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 150 struct drm_file *file)
79e53945
JB
151{
152 struct drm_i915_gem_init *args = data;
2021746e 153
7bb6fb8d
DV
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
2021746e
CW
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
79e53945 160
f534bc0b
DV
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
79e53945 165 mutex_lock(&dev->struct_mutex);
644ec02b
DV
166 i915_gem_init_global_gtt(dev, args->gtt_start,
167 args->gtt_end, args->gtt_end);
673a394b
EA
168 mutex_unlock(&dev->struct_mutex);
169
2021746e 170 return 0;
673a394b
EA
171}
172
5a125c3c
EA
173int
174i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 175 struct drm_file *file)
5a125c3c 176{
73aa808f 177 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 178 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
5a125c3c 181
6299f992 182 pinned = 0;
73aa808f 183 mutex_lock(&dev->struct_mutex);
6c085a72 184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
73aa808f 187 mutex_unlock(&dev->struct_mutex);
5a125c3c 188
6299f992 189 args->aper_size = dev_priv->mm.gtt_total;
0206e353 190 args->aper_available_size = args->aper_size - pinned;
6299f992 191
5a125c3c
EA
192 return 0;
193}
194
42dcedd4
CW
195void *i915_gem_object_alloc(struct drm_device *dev)
196{
197 struct drm_i915_private *dev_priv = dev->dev_private;
198 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
199}
200
201void i915_gem_object_free(struct drm_i915_gem_object *obj)
202{
203 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
204 kmem_cache_free(dev_priv->slab, obj);
205}
206
ff72145b
DA
207static int
208i915_gem_create(struct drm_file *file,
209 struct drm_device *dev,
210 uint64_t size,
211 uint32_t *handle_p)
673a394b 212{
05394f39 213 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
214 int ret;
215 u32 handle;
673a394b 216
ff72145b 217 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
218 if (size == 0)
219 return -EINVAL;
673a394b
EA
220
221 /* Allocate the new object */
ff72145b 222 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
223 if (obj == NULL)
224 return -ENOMEM;
225
05394f39 226 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 227 if (ret) {
05394f39
CW
228 drm_gem_object_release(&obj->base);
229 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
42dcedd4 230 i915_gem_object_free(obj);
673a394b 231 return ret;
1dfd9754 232 }
673a394b 233
202f2fef 234 /* drop reference from allocate - handle holds it now */
05394f39 235 drm_gem_object_unreference(&obj->base);
202f2fef
CW
236 trace_i915_gem_object_create(obj);
237
ff72145b 238 *handle_p = handle;
673a394b
EA
239 return 0;
240}
241
ff72145b
DA
242int
243i915_gem_dumb_create(struct drm_file *file,
244 struct drm_device *dev,
245 struct drm_mode_create_dumb *args)
246{
247 /* have to work out size/pitch and return them */
ed0291fd 248 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
249 args->size = args->pitch * args->height;
250 return i915_gem_create(file, dev,
251 args->size, &args->handle);
252}
253
254int i915_gem_dumb_destroy(struct drm_file *file,
255 struct drm_device *dev,
256 uint32_t handle)
257{
258 return drm_gem_handle_delete(file, handle);
259}
260
261/**
262 * Creates a new mm object and returns a handle to it.
263 */
264int
265i915_gem_create_ioctl(struct drm_device *dev, void *data,
266 struct drm_file *file)
267{
268 struct drm_i915_gem_create *args = data;
63ed2cb2 269
ff72145b
DA
270 return i915_gem_create(file, dev,
271 args->size, &args->handle);
272}
273
8461d226
DV
274static inline int
275__copy_to_user_swizzled(char __user *cpu_vaddr,
276 const char *gpu_vaddr, int gpu_offset,
277 int length)
278{
279 int ret, cpu_offset = 0;
280
281 while (length > 0) {
282 int cacheline_end = ALIGN(gpu_offset + 1, 64);
283 int this_length = min(cacheline_end - gpu_offset, length);
284 int swizzled_gpu_offset = gpu_offset ^ 64;
285
286 ret = __copy_to_user(cpu_vaddr + cpu_offset,
287 gpu_vaddr + swizzled_gpu_offset,
288 this_length);
289 if (ret)
290 return ret + length;
291
292 cpu_offset += this_length;
293 gpu_offset += this_length;
294 length -= this_length;
295 }
296
297 return 0;
298}
299
8c59967c 300static inline int
4f0c7cfb
BW
301__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
302 const char __user *cpu_vaddr,
8c59967c
DV
303 int length)
304{
305 int ret, cpu_offset = 0;
306
307 while (length > 0) {
308 int cacheline_end = ALIGN(gpu_offset + 1, 64);
309 int this_length = min(cacheline_end - gpu_offset, length);
310 int swizzled_gpu_offset = gpu_offset ^ 64;
311
312 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
313 cpu_vaddr + cpu_offset,
314 this_length);
315 if (ret)
316 return ret + length;
317
318 cpu_offset += this_length;
319 gpu_offset += this_length;
320 length -= this_length;
321 }
322
323 return 0;
324}
325
d174bd64
DV
326/* Per-page copy function for the shmem pread fastpath.
327 * Flushes invalid cachelines before reading the target if
328 * needs_clflush is set. */
eb01459f 329static int
d174bd64
DV
330shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
331 char __user *user_data,
332 bool page_do_bit17_swizzling, bool needs_clflush)
333{
334 char *vaddr;
335 int ret;
336
e7e58eb5 337 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
338 return -EINVAL;
339
340 vaddr = kmap_atomic(page);
341 if (needs_clflush)
342 drm_clflush_virt_range(vaddr + shmem_page_offset,
343 page_length);
344 ret = __copy_to_user_inatomic(user_data,
345 vaddr + shmem_page_offset,
346 page_length);
347 kunmap_atomic(vaddr);
348
f60d7f0c 349 return ret ? -EFAULT : 0;
d174bd64
DV
350}
351
23c18c71
DV
352static void
353shmem_clflush_swizzled_range(char *addr, unsigned long length,
354 bool swizzled)
355{
e7e58eb5 356 if (unlikely(swizzled)) {
23c18c71
DV
357 unsigned long start = (unsigned long) addr;
358 unsigned long end = (unsigned long) addr + length;
359
360 /* For swizzling simply ensure that we always flush both
361 * channels. Lame, but simple and it works. Swizzled
362 * pwrite/pread is far from a hotpath - current userspace
363 * doesn't use it at all. */
364 start = round_down(start, 128);
365 end = round_up(end, 128);
366
367 drm_clflush_virt_range((void *)start, end - start);
368 } else {
369 drm_clflush_virt_range(addr, length);
370 }
371
372}
373
d174bd64
DV
374/* Only difference to the fast-path function is that this can handle bit17
375 * and uses non-atomic copy and kmap functions. */
376static int
377shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
378 char __user *user_data,
379 bool page_do_bit17_swizzling, bool needs_clflush)
380{
381 char *vaddr;
382 int ret;
383
384 vaddr = kmap(page);
385 if (needs_clflush)
23c18c71
DV
386 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
387 page_length,
388 page_do_bit17_swizzling);
d174bd64
DV
389
390 if (page_do_bit17_swizzling)
391 ret = __copy_to_user_swizzled(user_data,
392 vaddr, shmem_page_offset,
393 page_length);
394 else
395 ret = __copy_to_user(user_data,
396 vaddr + shmem_page_offset,
397 page_length);
398 kunmap(page);
399
f60d7f0c 400 return ret ? - EFAULT : 0;
d174bd64
DV
401}
402
eb01459f 403static int
dbf7bff0
DV
404i915_gem_shmem_pread(struct drm_device *dev,
405 struct drm_i915_gem_object *obj,
406 struct drm_i915_gem_pread *args,
407 struct drm_file *file)
eb01459f 408{
8461d226 409 char __user *user_data;
eb01459f 410 ssize_t remain;
8461d226 411 loff_t offset;
eb2c0c81 412 int shmem_page_offset, page_length, ret = 0;
8461d226 413 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 414 int prefaulted = 0;
8489731c 415 int needs_clflush = 0;
9da3da66
CW
416 struct scatterlist *sg;
417 int i;
eb01459f 418
8461d226 419 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
420 remain = args->size;
421
8461d226 422 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 423
8489731c
DV
424 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
425 /* If we're not in the cpu read domain, set ourself into the gtt
426 * read domain and manually flush cachelines (if required). This
427 * optimizes for the case when the gpu will dirty the data
428 * anyway again before the next pread happens. */
429 if (obj->cache_level == I915_CACHE_NONE)
430 needs_clflush = 1;
6c085a72
CW
431 if (obj->gtt_space) {
432 ret = i915_gem_object_set_to_gtt_domain(obj, false);
433 if (ret)
434 return ret;
435 }
8489731c 436 }
eb01459f 437
f60d7f0c
CW
438 ret = i915_gem_object_get_pages(obj);
439 if (ret)
440 return ret;
441
442 i915_gem_object_pin_pages(obj);
443
8461d226 444 offset = args->offset;
eb01459f 445
9da3da66 446 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd
CW
447 struct page *page;
448
9da3da66
CW
449 if (i < offset >> PAGE_SHIFT)
450 continue;
451
452 if (remain <= 0)
453 break;
454
eb01459f
EA
455 /* Operation in this page
456 *
eb01459f 457 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
458 * page_length = bytes to copy for this page
459 */
c8cbbb8b 460 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
461 page_length = remain;
462 if ((shmem_page_offset + page_length) > PAGE_SIZE)
463 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 464
9da3da66 465 page = sg_page(sg);
8461d226
DV
466 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
467 (page_to_phys(page) & (1 << 17)) != 0;
468
d174bd64
DV
469 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
470 user_data, page_do_bit17_swizzling,
471 needs_clflush);
472 if (ret == 0)
473 goto next_page;
dbf7bff0 474
dbf7bff0
DV
475 mutex_unlock(&dev->struct_mutex);
476
96d79b52 477 if (!prefaulted) {
f56f821f 478 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
479 /* Userspace is tricking us, but we've already clobbered
480 * its pages with the prefault and promised to write the
481 * data up to the first fault. Hence ignore any errors
482 * and just continue. */
483 (void)ret;
484 prefaulted = 1;
485 }
eb01459f 486
d174bd64
DV
487 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
488 user_data, page_do_bit17_swizzling,
489 needs_clflush);
eb01459f 490
dbf7bff0 491 mutex_lock(&dev->struct_mutex);
f60d7f0c 492
dbf7bff0 493next_page:
e5281ccd 494 mark_page_accessed(page);
e5281ccd 495
f60d7f0c 496 if (ret)
8461d226 497 goto out;
8461d226 498
eb01459f 499 remain -= page_length;
8461d226 500 user_data += page_length;
eb01459f
EA
501 offset += page_length;
502 }
503
4f27b75d 504out:
f60d7f0c
CW
505 i915_gem_object_unpin_pages(obj);
506
eb01459f
EA
507 return ret;
508}
509
673a394b
EA
510/**
511 * Reads data from the object referenced by handle.
512 *
513 * On error, the contents of *data are undefined.
514 */
515int
516i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 517 struct drm_file *file)
673a394b
EA
518{
519 struct drm_i915_gem_pread *args = data;
05394f39 520 struct drm_i915_gem_object *obj;
35b62a89 521 int ret = 0;
673a394b 522
51311d0a
CW
523 if (args->size == 0)
524 return 0;
525
526 if (!access_ok(VERIFY_WRITE,
527 (char __user *)(uintptr_t)args->data_ptr,
528 args->size))
529 return -EFAULT;
530
4f27b75d 531 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 532 if (ret)
4f27b75d 533 return ret;
673a394b 534
05394f39 535 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 536 if (&obj->base == NULL) {
1d7cfea1
CW
537 ret = -ENOENT;
538 goto unlock;
4f27b75d 539 }
673a394b 540
7dcd2499 541 /* Bounds check source. */
05394f39
CW
542 if (args->offset > obj->base.size ||
543 args->size > obj->base.size - args->offset) {
ce9d419d 544 ret = -EINVAL;
35b62a89 545 goto out;
ce9d419d
CW
546 }
547
1286ff73
DV
548 /* prime objects have no backing filp to GEM pread/pwrite
549 * pages from.
550 */
551 if (!obj->base.filp) {
552 ret = -EINVAL;
553 goto out;
554 }
555
db53a302
CW
556 trace_i915_gem_object_pread(obj, args->offset, args->size);
557
dbf7bff0 558 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 559
35b62a89 560out:
05394f39 561 drm_gem_object_unreference(&obj->base);
1d7cfea1 562unlock:
4f27b75d 563 mutex_unlock(&dev->struct_mutex);
eb01459f 564 return ret;
673a394b
EA
565}
566
0839ccb8
KP
567/* This is the fast write path which cannot handle
568 * page faults in the source data
9b7530cc 569 */
0839ccb8
KP
570
571static inline int
572fast_user_write(struct io_mapping *mapping,
573 loff_t page_base, int page_offset,
574 char __user *user_data,
575 int length)
9b7530cc 576{
4f0c7cfb
BW
577 void __iomem *vaddr_atomic;
578 void *vaddr;
0839ccb8 579 unsigned long unwritten;
9b7530cc 580
3e4d3af5 581 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
582 /* We can use the cpu mem copy function because this is X86. */
583 vaddr = (void __force*)vaddr_atomic + page_offset;
584 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 585 user_data, length);
3e4d3af5 586 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 587 return unwritten;
0839ccb8
KP
588}
589
3de09aa3
EA
590/**
591 * This is the fast pwrite path, where we copy the data directly from the
592 * user into the GTT, uncached.
593 */
673a394b 594static int
05394f39
CW
595i915_gem_gtt_pwrite_fast(struct drm_device *dev,
596 struct drm_i915_gem_object *obj,
3de09aa3 597 struct drm_i915_gem_pwrite *args,
05394f39 598 struct drm_file *file)
673a394b 599{
0839ccb8 600 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 601 ssize_t remain;
0839ccb8 602 loff_t offset, page_base;
673a394b 603 char __user *user_data;
935aaa69
DV
604 int page_offset, page_length, ret;
605
86a1ee26 606 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
607 if (ret)
608 goto out;
609
610 ret = i915_gem_object_set_to_gtt_domain(obj, true);
611 if (ret)
612 goto out_unpin;
613
614 ret = i915_gem_object_put_fence(obj);
615 if (ret)
616 goto out_unpin;
673a394b
EA
617
618 user_data = (char __user *) (uintptr_t) args->data_ptr;
619 remain = args->size;
673a394b 620
05394f39 621 offset = obj->gtt_offset + args->offset;
673a394b
EA
622
623 while (remain > 0) {
624 /* Operation in this page
625 *
0839ccb8
KP
626 * page_base = page offset within aperture
627 * page_offset = offset within page
628 * page_length = bytes to copy for this page
673a394b 629 */
c8cbbb8b
CW
630 page_base = offset & PAGE_MASK;
631 page_offset = offset_in_page(offset);
0839ccb8
KP
632 page_length = remain;
633 if ((page_offset + remain) > PAGE_SIZE)
634 page_length = PAGE_SIZE - page_offset;
635
0839ccb8 636 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
637 * source page isn't available. Return the error and we'll
638 * retry in the slow path.
0839ccb8 639 */
fbd5a26d 640 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
641 page_offset, user_data, page_length)) {
642 ret = -EFAULT;
643 goto out_unpin;
644 }
673a394b 645
0839ccb8
KP
646 remain -= page_length;
647 user_data += page_length;
648 offset += page_length;
673a394b 649 }
673a394b 650
935aaa69
DV
651out_unpin:
652 i915_gem_object_unpin(obj);
653out:
3de09aa3 654 return ret;
673a394b
EA
655}
656
d174bd64
DV
657/* Per-page copy function for the shmem pwrite fastpath.
658 * Flushes invalid cachelines before writing to the target if
659 * needs_clflush_before is set and flushes out any written cachelines after
660 * writing if needs_clflush is set. */
3043c60c 661static int
d174bd64
DV
662shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
663 char __user *user_data,
664 bool page_do_bit17_swizzling,
665 bool needs_clflush_before,
666 bool needs_clflush_after)
673a394b 667{
d174bd64 668 char *vaddr;
673a394b 669 int ret;
3de09aa3 670
e7e58eb5 671 if (unlikely(page_do_bit17_swizzling))
d174bd64 672 return -EINVAL;
3de09aa3 673
d174bd64
DV
674 vaddr = kmap_atomic(page);
675 if (needs_clflush_before)
676 drm_clflush_virt_range(vaddr + shmem_page_offset,
677 page_length);
678 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
679 user_data,
680 page_length);
681 if (needs_clflush_after)
682 drm_clflush_virt_range(vaddr + shmem_page_offset,
683 page_length);
684 kunmap_atomic(vaddr);
3de09aa3 685
755d2218 686 return ret ? -EFAULT : 0;
3de09aa3
EA
687}
688
d174bd64
DV
689/* Only difference to the fast-path function is that this can handle bit17
690 * and uses non-atomic copy and kmap functions. */
3043c60c 691static int
d174bd64
DV
692shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
693 char __user *user_data,
694 bool page_do_bit17_swizzling,
695 bool needs_clflush_before,
696 bool needs_clflush_after)
673a394b 697{
d174bd64
DV
698 char *vaddr;
699 int ret;
e5281ccd 700
d174bd64 701 vaddr = kmap(page);
e7e58eb5 702 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
703 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
704 page_length,
705 page_do_bit17_swizzling);
d174bd64
DV
706 if (page_do_bit17_swizzling)
707 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
708 user_data,
709 page_length);
d174bd64
DV
710 else
711 ret = __copy_from_user(vaddr + shmem_page_offset,
712 user_data,
713 page_length);
714 if (needs_clflush_after)
23c18c71
DV
715 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
716 page_length,
717 page_do_bit17_swizzling);
d174bd64 718 kunmap(page);
40123c1f 719
755d2218 720 return ret ? -EFAULT : 0;
40123c1f
EA
721}
722
40123c1f 723static int
e244a443
DV
724i915_gem_shmem_pwrite(struct drm_device *dev,
725 struct drm_i915_gem_object *obj,
726 struct drm_i915_gem_pwrite *args,
727 struct drm_file *file)
40123c1f 728{
40123c1f 729 ssize_t remain;
8c59967c
DV
730 loff_t offset;
731 char __user *user_data;
eb2c0c81 732 int shmem_page_offset, page_length, ret = 0;
8c59967c 733 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 734 int hit_slowpath = 0;
58642885
DV
735 int needs_clflush_after = 0;
736 int needs_clflush_before = 0;
9da3da66
CW
737 int i;
738 struct scatterlist *sg;
40123c1f 739
8c59967c 740 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
741 remain = args->size;
742
8c59967c 743 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 744
58642885
DV
745 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
746 /* If we're not in the cpu write domain, set ourself into the gtt
747 * write domain and manually flush cachelines (if required). This
748 * optimizes for the case when the gpu will use the data
749 * right away and we therefore have to clflush anyway. */
750 if (obj->cache_level == I915_CACHE_NONE)
751 needs_clflush_after = 1;
6c085a72
CW
752 if (obj->gtt_space) {
753 ret = i915_gem_object_set_to_gtt_domain(obj, true);
754 if (ret)
755 return ret;
756 }
58642885
DV
757 }
758 /* Same trick applies for invalidate partially written cachelines before
759 * writing. */
760 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
761 && obj->cache_level == I915_CACHE_NONE)
762 needs_clflush_before = 1;
763
755d2218
CW
764 ret = i915_gem_object_get_pages(obj);
765 if (ret)
766 return ret;
767
768 i915_gem_object_pin_pages(obj);
769
673a394b 770 offset = args->offset;
05394f39 771 obj->dirty = 1;
673a394b 772
9da3da66 773 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd 774 struct page *page;
58642885 775 int partial_cacheline_write;
e5281ccd 776
9da3da66
CW
777 if (i < offset >> PAGE_SHIFT)
778 continue;
779
780 if (remain <= 0)
781 break;
782
40123c1f
EA
783 /* Operation in this page
784 *
40123c1f 785 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
786 * page_length = bytes to copy for this page
787 */
c8cbbb8b 788 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
789
790 page_length = remain;
791 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 793
58642885
DV
794 /* If we don't overwrite a cacheline completely we need to be
795 * careful to have up-to-date data by first clflushing. Don't
796 * overcomplicate things and flush the entire patch. */
797 partial_cacheline_write = needs_clflush_before &&
798 ((shmem_page_offset | page_length)
799 & (boot_cpu_data.x86_clflush_size - 1));
800
9da3da66 801 page = sg_page(sg);
8c59967c
DV
802 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803 (page_to_phys(page) & (1 << 17)) != 0;
804
d174bd64
DV
805 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806 user_data, page_do_bit17_swizzling,
807 partial_cacheline_write,
808 needs_clflush_after);
809 if (ret == 0)
810 goto next_page;
e244a443
DV
811
812 hit_slowpath = 1;
e244a443 813 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
814 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
815 user_data, page_do_bit17_swizzling,
816 partial_cacheline_write,
817 needs_clflush_after);
40123c1f 818
e244a443 819 mutex_lock(&dev->struct_mutex);
755d2218 820
e244a443 821next_page:
e5281ccd
CW
822 set_page_dirty(page);
823 mark_page_accessed(page);
e5281ccd 824
755d2218 825 if (ret)
8c59967c 826 goto out;
8c59967c 827
40123c1f 828 remain -= page_length;
8c59967c 829 user_data += page_length;
40123c1f 830 offset += page_length;
673a394b
EA
831 }
832
fbd5a26d 833out:
755d2218
CW
834 i915_gem_object_unpin_pages(obj);
835
e244a443 836 if (hit_slowpath) {
8dcf015e
DV
837 /*
838 * Fixup: Flush cpu caches in case we didn't flush the dirty
839 * cachelines in-line while writing and the object moved
840 * out of the cpu write domain while we've dropped the lock.
841 */
842 if (!needs_clflush_after &&
843 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
e244a443 844 i915_gem_clflush_object(obj);
e76e9aeb 845 i915_gem_chipset_flush(dev);
e244a443 846 }
8c59967c 847 }
673a394b 848
58642885 849 if (needs_clflush_after)
e76e9aeb 850 i915_gem_chipset_flush(dev);
58642885 851
40123c1f 852 return ret;
673a394b
EA
853}
854
855/**
856 * Writes data to the object referenced by handle.
857 *
858 * On error, the contents of the buffer that were to be modified are undefined.
859 */
860int
861i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 862 struct drm_file *file)
673a394b
EA
863{
864 struct drm_i915_gem_pwrite *args = data;
05394f39 865 struct drm_i915_gem_object *obj;
51311d0a
CW
866 int ret;
867
868 if (args->size == 0)
869 return 0;
870
871 if (!access_ok(VERIFY_READ,
872 (char __user *)(uintptr_t)args->data_ptr,
873 args->size))
874 return -EFAULT;
875
f56f821f
DV
876 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
877 args->size);
51311d0a
CW
878 if (ret)
879 return -EFAULT;
673a394b 880
fbd5a26d 881 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 882 if (ret)
fbd5a26d 883 return ret;
1d7cfea1 884
05394f39 885 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 886 if (&obj->base == NULL) {
1d7cfea1
CW
887 ret = -ENOENT;
888 goto unlock;
fbd5a26d 889 }
673a394b 890
7dcd2499 891 /* Bounds check destination. */
05394f39
CW
892 if (args->offset > obj->base.size ||
893 args->size > obj->base.size - args->offset) {
ce9d419d 894 ret = -EINVAL;
35b62a89 895 goto out;
ce9d419d
CW
896 }
897
1286ff73
DV
898 /* prime objects have no backing filp to GEM pread/pwrite
899 * pages from.
900 */
901 if (!obj->base.filp) {
902 ret = -EINVAL;
903 goto out;
904 }
905
db53a302
CW
906 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
907
935aaa69 908 ret = -EFAULT;
673a394b
EA
909 /* We can only do the GTT pwrite on untiled buffers, as otherwise
910 * it would end up going through the fenced access, and we'll get
911 * different detiling behavior between reading and writing.
912 * pread/pwrite currently are reading and writing from the CPU
913 * perspective, requiring manual detiling by the client.
914 */
5c0480f2 915 if (obj->phys_obj) {
fbd5a26d 916 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
917 goto out;
918 }
919
86a1ee26 920 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 921 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 922 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 923 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
924 /* Note that the gtt paths might fail with non-page-backed user
925 * pointers (e.g. gtt mappings when moving data between
926 * textures). Fallback to the shmem path in that case. */
fbd5a26d 927 }
673a394b 928
86a1ee26 929 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 930 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 931
35b62a89 932out:
05394f39 933 drm_gem_object_unreference(&obj->base);
1d7cfea1 934unlock:
fbd5a26d 935 mutex_unlock(&dev->struct_mutex);
673a394b
EA
936 return ret;
937}
938
b361237b
CW
939int
940i915_gem_check_wedge(struct drm_i915_private *dev_priv,
941 bool interruptible)
942{
943 if (atomic_read(&dev_priv->mm.wedged)) {
944 struct completion *x = &dev_priv->error_completion;
945 bool recovery_complete;
946 unsigned long flags;
947
948 /* Give the error handler a chance to run. */
949 spin_lock_irqsave(&x->wait.lock, flags);
950 recovery_complete = x->done > 0;
951 spin_unlock_irqrestore(&x->wait.lock, flags);
952
953 /* Non-interruptible callers can't handle -EAGAIN, hence return
954 * -EIO unconditionally for these. */
955 if (!interruptible)
956 return -EIO;
957
958 /* Recovery complete, but still wedged means reset failure. */
959 if (recovery_complete)
960 return -EIO;
961
962 return -EAGAIN;
963 }
964
965 return 0;
966}
967
968/*
969 * Compare seqno against outstanding lazy request. Emit a request if they are
970 * equal.
971 */
972static int
973i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
974{
975 int ret;
976
977 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
978
979 ret = 0;
980 if (seqno == ring->outstanding_lazy_request)
981 ret = i915_add_request(ring, NULL, NULL);
982
983 return ret;
984}
985
986/**
987 * __wait_seqno - wait until execution of seqno has finished
988 * @ring: the ring expected to report seqno
989 * @seqno: duh!
990 * @interruptible: do an interruptible wait (normally yes)
991 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
992 *
993 * Returns 0 if the seqno was found within the alloted time. Else returns the
994 * errno with remaining time filled in timeout argument.
995 */
996static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
997 bool interruptible, struct timespec *timeout)
998{
999 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1000 struct timespec before, now, wait_time={1,0};
1001 unsigned long timeout_jiffies;
1002 long end;
1003 bool wait_forever = true;
1004 int ret;
1005
1006 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1007 return 0;
1008
1009 trace_i915_gem_request_wait_begin(ring, seqno);
1010
1011 if (timeout != NULL) {
1012 wait_time = *timeout;
1013 wait_forever = false;
1014 }
1015
1016 timeout_jiffies = timespec_to_jiffies(&wait_time);
1017
1018 if (WARN_ON(!ring->irq_get(ring)))
1019 return -ENODEV;
1020
1021 /* Record current time in case interrupted by signal, or wedged * */
1022 getrawmonotonic(&before);
1023
1024#define EXIT_COND \
1025 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1026 atomic_read(&dev_priv->mm.wedged))
1027 do {
1028 if (interruptible)
1029 end = wait_event_interruptible_timeout(ring->irq_queue,
1030 EXIT_COND,
1031 timeout_jiffies);
1032 else
1033 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1034 timeout_jiffies);
1035
1036 ret = i915_gem_check_wedge(dev_priv, interruptible);
1037 if (ret)
1038 end = ret;
1039 } while (end == 0 && wait_forever);
1040
1041 getrawmonotonic(&now);
1042
1043 ring->irq_put(ring);
1044 trace_i915_gem_request_wait_end(ring, seqno);
1045#undef EXIT_COND
1046
1047 if (timeout) {
1048 struct timespec sleep_time = timespec_sub(now, before);
1049 *timeout = timespec_sub(*timeout, sleep_time);
1050 }
1051
1052 switch (end) {
1053 case -EIO:
1054 case -EAGAIN: /* Wedged */
1055 case -ERESTARTSYS: /* Signal */
1056 return (int)end;
1057 case 0: /* Timeout */
1058 if (timeout)
1059 set_normalized_timespec(timeout, 0, 0);
1060 return -ETIME;
1061 default: /* Completed */
1062 WARN_ON(end < 0); /* We're not aware of other errors */
1063 return 0;
1064 }
1065}
1066
1067/**
1068 * Waits for a sequence number to be signaled, and cleans up the
1069 * request and object lists appropriately for that event.
1070 */
1071int
1072i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1073{
1074 struct drm_device *dev = ring->dev;
1075 struct drm_i915_private *dev_priv = dev->dev_private;
1076 bool interruptible = dev_priv->mm.interruptible;
1077 int ret;
1078
1079 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1080 BUG_ON(seqno == 0);
1081
1082 ret = i915_gem_check_wedge(dev_priv, interruptible);
1083 if (ret)
1084 return ret;
1085
1086 ret = i915_gem_check_olr(ring, seqno);
1087 if (ret)
1088 return ret;
1089
1090 return __wait_seqno(ring, seqno, interruptible, NULL);
1091}
1092
1093/**
1094 * Ensures that all rendering to the object has completed and the object is
1095 * safe to unbind from the GTT or access from the CPU.
1096 */
1097static __must_check int
1098i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1099 bool readonly)
1100{
1101 struct intel_ring_buffer *ring = obj->ring;
1102 u32 seqno;
1103 int ret;
1104
1105 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1106 if (seqno == 0)
1107 return 0;
1108
1109 ret = i915_wait_seqno(ring, seqno);
1110 if (ret)
1111 return ret;
1112
1113 i915_gem_retire_requests_ring(ring);
1114
1115 /* Manually manage the write flush as we may have not yet
1116 * retired the buffer.
1117 */
1118 if (obj->last_write_seqno &&
1119 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1120 obj->last_write_seqno = 0;
1121 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1122 }
1123
1124 return 0;
1125}
1126
3236f57a
CW
1127/* A nonblocking variant of the above wait. This is a highly dangerous routine
1128 * as the object state may change during this call.
1129 */
1130static __must_check int
1131i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1132 bool readonly)
1133{
1134 struct drm_device *dev = obj->base.dev;
1135 struct drm_i915_private *dev_priv = dev->dev_private;
1136 struct intel_ring_buffer *ring = obj->ring;
1137 u32 seqno;
1138 int ret;
1139
1140 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1141 BUG_ON(!dev_priv->mm.interruptible);
1142
1143 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1144 if (seqno == 0)
1145 return 0;
1146
1147 ret = i915_gem_check_wedge(dev_priv, true);
1148 if (ret)
1149 return ret;
1150
1151 ret = i915_gem_check_olr(ring, seqno);
1152 if (ret)
1153 return ret;
1154
1155 mutex_unlock(&dev->struct_mutex);
1156 ret = __wait_seqno(ring, seqno, true, NULL);
1157 mutex_lock(&dev->struct_mutex);
1158
1159 i915_gem_retire_requests_ring(ring);
1160
1161 /* Manually manage the write flush as we may have not yet
1162 * retired the buffer.
1163 */
1164 if (obj->last_write_seqno &&
1165 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1166 obj->last_write_seqno = 0;
1167 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1168 }
1169
1170 return ret;
1171}
1172
673a394b 1173/**
2ef7eeaa
EA
1174 * Called when user space prepares to use an object with the CPU, either
1175 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1176 */
1177int
1178i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1179 struct drm_file *file)
673a394b
EA
1180{
1181 struct drm_i915_gem_set_domain *args = data;
05394f39 1182 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1183 uint32_t read_domains = args->read_domains;
1184 uint32_t write_domain = args->write_domain;
673a394b
EA
1185 int ret;
1186
2ef7eeaa 1187 /* Only handle setting domains to types used by the CPU. */
21d509e3 1188 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1189 return -EINVAL;
1190
21d509e3 1191 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1192 return -EINVAL;
1193
1194 /* Having something in the write domain implies it's in the read
1195 * domain, and only that read domain. Enforce that in the request.
1196 */
1197 if (write_domain != 0 && read_domains != write_domain)
1198 return -EINVAL;
1199
76c1dec1 1200 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1201 if (ret)
76c1dec1 1202 return ret;
1d7cfea1 1203
05394f39 1204 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1205 if (&obj->base == NULL) {
1d7cfea1
CW
1206 ret = -ENOENT;
1207 goto unlock;
76c1dec1 1208 }
673a394b 1209
3236f57a
CW
1210 /* Try to flush the object off the GPU without holding the lock.
1211 * We will repeat the flush holding the lock in the normal manner
1212 * to catch cases where we are gazumped.
1213 */
1214 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1215 if (ret)
1216 goto unref;
1217
2ef7eeaa
EA
1218 if (read_domains & I915_GEM_DOMAIN_GTT) {
1219 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1220
1221 /* Silently promote "you're not bound, there was nothing to do"
1222 * to success, since the client was just asking us to
1223 * make sure everything was done.
1224 */
1225 if (ret == -EINVAL)
1226 ret = 0;
2ef7eeaa 1227 } else {
e47c68e9 1228 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1229 }
1230
3236f57a 1231unref:
05394f39 1232 drm_gem_object_unreference(&obj->base);
1d7cfea1 1233unlock:
673a394b
EA
1234 mutex_unlock(&dev->struct_mutex);
1235 return ret;
1236}
1237
1238/**
1239 * Called when user space has done writes to this buffer
1240 */
1241int
1242i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1243 struct drm_file *file)
673a394b
EA
1244{
1245 struct drm_i915_gem_sw_finish *args = data;
05394f39 1246 struct drm_i915_gem_object *obj;
673a394b
EA
1247 int ret = 0;
1248
76c1dec1 1249 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1250 if (ret)
76c1dec1 1251 return ret;
1d7cfea1 1252
05394f39 1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1254 if (&obj->base == NULL) {
1d7cfea1
CW
1255 ret = -ENOENT;
1256 goto unlock;
673a394b
EA
1257 }
1258
673a394b 1259 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1260 if (obj->pin_count)
e47c68e9
EA
1261 i915_gem_object_flush_cpu_write_domain(obj);
1262
05394f39 1263 drm_gem_object_unreference(&obj->base);
1d7cfea1 1264unlock:
673a394b
EA
1265 mutex_unlock(&dev->struct_mutex);
1266 return ret;
1267}
1268
1269/**
1270 * Maps the contents of an object, returning the address it is mapped
1271 * into.
1272 *
1273 * While the mapping holds a reference on the contents of the object, it doesn't
1274 * imply a ref on the object itself.
1275 */
1276int
1277i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1278 struct drm_file *file)
673a394b
EA
1279{
1280 struct drm_i915_gem_mmap *args = data;
1281 struct drm_gem_object *obj;
673a394b
EA
1282 unsigned long addr;
1283
05394f39 1284 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1285 if (obj == NULL)
bf79cb91 1286 return -ENOENT;
673a394b 1287
1286ff73
DV
1288 /* prime objects have no backing filp to GEM mmap
1289 * pages from.
1290 */
1291 if (!obj->filp) {
1292 drm_gem_object_unreference_unlocked(obj);
1293 return -EINVAL;
1294 }
1295
6be5ceb0 1296 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1297 PROT_READ | PROT_WRITE, MAP_SHARED,
1298 args->offset);
bc9025bd 1299 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1300 if (IS_ERR((void *)addr))
1301 return addr;
1302
1303 args->addr_ptr = (uint64_t) addr;
1304
1305 return 0;
1306}
1307
de151cf6
JB
1308/**
1309 * i915_gem_fault - fault a page into the GTT
1310 * vma: VMA in question
1311 * vmf: fault info
1312 *
1313 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1314 * from userspace. The fault handler takes care of binding the object to
1315 * the GTT (if needed), allocating and programming a fence register (again,
1316 * only if needed based on whether the old reg is still valid or the object
1317 * is tiled) and inserting a new PTE into the faulting process.
1318 *
1319 * Note that the faulting process may involve evicting existing objects
1320 * from the GTT and/or fence registers to make room. So performance may
1321 * suffer if the GTT working set is large or there are few fence registers
1322 * left.
1323 */
1324int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1325{
05394f39
CW
1326 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1327 struct drm_device *dev = obj->base.dev;
7d1c4804 1328 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1329 pgoff_t page_offset;
1330 unsigned long pfn;
1331 int ret = 0;
0f973f27 1332 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1333
1334 /* We don't use vmf->pgoff since that has the fake offset */
1335 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1336 PAGE_SHIFT;
1337
d9bc7e9f
CW
1338 ret = i915_mutex_lock_interruptible(dev);
1339 if (ret)
1340 goto out;
a00b10c3 1341
db53a302
CW
1342 trace_i915_gem_object_fault(obj, page_offset, true, write);
1343
d9bc7e9f 1344 /* Now bind it into the GTT if needed */
c9839303
CW
1345 ret = i915_gem_object_pin(obj, 0, true, false);
1346 if (ret)
1347 goto unlock;
4a684a41 1348
c9839303
CW
1349 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1350 if (ret)
1351 goto unpin;
74898d7e 1352
06d98131 1353 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1354 if (ret)
c9839303 1355 goto unpin;
7d1c4804 1356
6299f992
CW
1357 obj->fault_mappable = true;
1358
dd2757f8 1359 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1360 page_offset;
1361
1362 /* Finally, remap it using the new GTT offset */
1363 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1364unpin:
1365 i915_gem_object_unpin(obj);
c715089f 1366unlock:
de151cf6 1367 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1368out:
de151cf6 1369 switch (ret) {
d9bc7e9f 1370 case -EIO:
a9340cca
DV
1371 /* If this -EIO is due to a gpu hang, give the reset code a
1372 * chance to clean up the mess. Otherwise return the proper
1373 * SIGBUS. */
1374 if (!atomic_read(&dev_priv->mm.wedged))
1375 return VM_FAULT_SIGBUS;
045e769a 1376 case -EAGAIN:
d9bc7e9f
CW
1377 /* Give the error handler a chance to run and move the
1378 * objects off the GPU active list. Next time we service the
1379 * fault, we should be able to transition the page into the
1380 * GTT without touching the GPU (and so avoid further
1381 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1382 * with coherency, just lost writes.
1383 */
045e769a 1384 set_need_resched();
c715089f
CW
1385 case 0:
1386 case -ERESTARTSYS:
bed636ab 1387 case -EINTR:
e79e0fe3
DR
1388 case -EBUSY:
1389 /*
1390 * EBUSY is ok: this just means that another thread
1391 * already did the job.
1392 */
c715089f 1393 return VM_FAULT_NOPAGE;
de151cf6 1394 case -ENOMEM:
de151cf6 1395 return VM_FAULT_OOM;
a7c2e1aa
DV
1396 case -ENOSPC:
1397 return VM_FAULT_SIGBUS;
de151cf6 1398 default:
a7c2e1aa 1399 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1400 return VM_FAULT_SIGBUS;
de151cf6
JB
1401 }
1402}
1403
901782b2
CW
1404/**
1405 * i915_gem_release_mmap - remove physical page mappings
1406 * @obj: obj in question
1407 *
af901ca1 1408 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1409 * relinquish ownership of the pages back to the system.
1410 *
1411 * It is vital that we remove the page mapping if we have mapped a tiled
1412 * object through the GTT and then lose the fence register due to
1413 * resource pressure. Similarly if the object has been moved out of the
1414 * aperture, than pages mapped into userspace must be revoked. Removing the
1415 * mapping will then trigger a page fault on the next user access, allowing
1416 * fixup by i915_gem_fault().
1417 */
d05ca301 1418void
05394f39 1419i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1420{
6299f992
CW
1421 if (!obj->fault_mappable)
1422 return;
901782b2 1423
f6e47884
CW
1424 if (obj->base.dev->dev_mapping)
1425 unmap_mapping_range(obj->base.dev->dev_mapping,
1426 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1427 obj->base.size, 1);
fb7d516a 1428
6299f992 1429 obj->fault_mappable = false;
901782b2
CW
1430}
1431
92b88aeb 1432static uint32_t
e28f8711 1433i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1434{
e28f8711 1435 uint32_t gtt_size;
92b88aeb
CW
1436
1437 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1438 tiling_mode == I915_TILING_NONE)
1439 return size;
92b88aeb
CW
1440
1441 /* Previous chips need a power-of-two fence region when tiling */
1442 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1443 gtt_size = 1024*1024;
92b88aeb 1444 else
e28f8711 1445 gtt_size = 512*1024;
92b88aeb 1446
e28f8711
CW
1447 while (gtt_size < size)
1448 gtt_size <<= 1;
92b88aeb 1449
e28f8711 1450 return gtt_size;
92b88aeb
CW
1451}
1452
de151cf6
JB
1453/**
1454 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1455 * @obj: object to check
1456 *
1457 * Return the required GTT alignment for an object, taking into account
5e783301 1458 * potential fence register mapping.
de151cf6
JB
1459 */
1460static uint32_t
e28f8711
CW
1461i915_gem_get_gtt_alignment(struct drm_device *dev,
1462 uint32_t size,
1463 int tiling_mode)
de151cf6 1464{
de151cf6
JB
1465 /*
1466 * Minimum alignment is 4k (GTT page size), but might be greater
1467 * if a fence register is needed for the object.
1468 */
a00b10c3 1469 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1470 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1471 return 4096;
1472
a00b10c3
CW
1473 /*
1474 * Previous chips need to be aligned to the size of the smallest
1475 * fence register that can contain the object.
1476 */
e28f8711 1477 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1478}
1479
5e783301
DV
1480/**
1481 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1482 * unfenced object
e28f8711
CW
1483 * @dev: the device
1484 * @size: size of the object
1485 * @tiling_mode: tiling mode of the object
5e783301
DV
1486 *
1487 * Return the required GTT alignment for an object, only taking into account
1488 * unfenced tiled surface requirements.
1489 */
467cffba 1490uint32_t
e28f8711
CW
1491i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1492 uint32_t size,
1493 int tiling_mode)
5e783301 1494{
5e783301
DV
1495 /*
1496 * Minimum alignment is 4k (GTT page size) for sane hw.
1497 */
1498 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1499 tiling_mode == I915_TILING_NONE)
5e783301
DV
1500 return 4096;
1501
e28f8711
CW
1502 /* Previous hardware however needs to be aligned to a power-of-two
1503 * tile height. The simplest method for determining this is to reuse
1504 * the power-of-tile object size.
5e783301 1505 */
e28f8711 1506 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1507}
1508
d8cb5086
CW
1509static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1510{
1511 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1512 int ret;
1513
1514 if (obj->base.map_list.map)
1515 return 0;
1516
1517 ret = drm_gem_create_mmap_offset(&obj->base);
1518 if (ret != -ENOSPC)
1519 return ret;
1520
1521 /* Badly fragmented mmap space? The only way we can recover
1522 * space is by destroying unwanted objects. We can't randomly release
1523 * mmap_offsets as userspace expects them to be persistent for the
1524 * lifetime of the objects. The closest we can is to release the
1525 * offsets on purgeable objects by truncating it and marking it purged,
1526 * which prevents userspace from ever using that object again.
1527 */
1528 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1529 ret = drm_gem_create_mmap_offset(&obj->base);
1530 if (ret != -ENOSPC)
1531 return ret;
1532
1533 i915_gem_shrink_all(dev_priv);
1534 return drm_gem_create_mmap_offset(&obj->base);
1535}
1536
1537static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1538{
1539 if (!obj->base.map_list.map)
1540 return;
1541
1542 drm_gem_free_mmap_offset(&obj->base);
1543}
1544
de151cf6 1545int
ff72145b
DA
1546i915_gem_mmap_gtt(struct drm_file *file,
1547 struct drm_device *dev,
1548 uint32_t handle,
1549 uint64_t *offset)
de151cf6 1550{
da761a6e 1551 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1552 struct drm_i915_gem_object *obj;
de151cf6
JB
1553 int ret;
1554
76c1dec1 1555 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1556 if (ret)
76c1dec1 1557 return ret;
de151cf6 1558
ff72145b 1559 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1560 if (&obj->base == NULL) {
1d7cfea1
CW
1561 ret = -ENOENT;
1562 goto unlock;
1563 }
de151cf6 1564
05394f39 1565 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1566 ret = -E2BIG;
ff56b0bc 1567 goto out;
da761a6e
CW
1568 }
1569
05394f39 1570 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1571 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1572 ret = -EINVAL;
1573 goto out;
ab18282d
CW
1574 }
1575
d8cb5086
CW
1576 ret = i915_gem_object_create_mmap_offset(obj);
1577 if (ret)
1578 goto out;
de151cf6 1579
ff72145b 1580 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1581
1d7cfea1 1582out:
05394f39 1583 drm_gem_object_unreference(&obj->base);
1d7cfea1 1584unlock:
de151cf6 1585 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1586 return ret;
de151cf6
JB
1587}
1588
ff72145b
DA
1589/**
1590 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1591 * @dev: DRM device
1592 * @data: GTT mapping ioctl data
1593 * @file: GEM object info
1594 *
1595 * Simply returns the fake offset to userspace so it can mmap it.
1596 * The mmap call will end up in drm_gem_mmap(), which will set things
1597 * up so we can get faults in the handler above.
1598 *
1599 * The fault handler will take care of binding the object into the GTT
1600 * (since it may have been evicted to make room for something), allocating
1601 * a fence register, and mapping the appropriate aperture address into
1602 * userspace.
1603 */
1604int
1605i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1606 struct drm_file *file)
1607{
1608 struct drm_i915_gem_mmap_gtt *args = data;
1609
ff72145b
DA
1610 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1611}
1612
225067ee
DV
1613/* Immediately discard the backing storage */
1614static void
1615i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1616{
e5281ccd 1617 struct inode *inode;
e5281ccd 1618
4d6294bf 1619 i915_gem_object_free_mmap_offset(obj);
1286ff73 1620
4d6294bf
CW
1621 if (obj->base.filp == NULL)
1622 return;
e5281ccd 1623
225067ee
DV
1624 /* Our goal here is to return as much of the memory as
1625 * is possible back to the system as we are called from OOM.
1626 * To do this we must instruct the shmfs to drop all of its
1627 * backing pages, *now*.
1628 */
05394f39 1629 inode = obj->base.filp->f_path.dentry->d_inode;
225067ee 1630 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1631
225067ee
DV
1632 obj->madv = __I915_MADV_PURGED;
1633}
e5281ccd 1634
225067ee
DV
1635static inline int
1636i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1637{
1638 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1639}
1640
5cdf5881 1641static void
05394f39 1642i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1643{
05394f39 1644 int page_count = obj->base.size / PAGE_SIZE;
9da3da66 1645 struct scatterlist *sg;
6c085a72 1646 int ret, i;
1286ff73 1647
05394f39 1648 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1649
6c085a72
CW
1650 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1651 if (ret) {
1652 /* In the event of a disaster, abandon all caches and
1653 * hope for the best.
1654 */
1655 WARN_ON(ret != -EIO);
1656 i915_gem_clflush_object(obj);
1657 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1658 }
1659
6dacfd2f 1660 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1661 i915_gem_object_save_bit_17_swizzle(obj);
1662
05394f39
CW
1663 if (obj->madv == I915_MADV_DONTNEED)
1664 obj->dirty = 0;
3ef94daa 1665
9da3da66
CW
1666 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1667 struct page *page = sg_page(sg);
1668
05394f39 1669 if (obj->dirty)
9da3da66 1670 set_page_dirty(page);
3ef94daa 1671
05394f39 1672 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1673 mark_page_accessed(page);
3ef94daa 1674
9da3da66 1675 page_cache_release(page);
3ef94daa 1676 }
05394f39 1677 obj->dirty = 0;
673a394b 1678
9da3da66
CW
1679 sg_free_table(obj->pages);
1680 kfree(obj->pages);
37e680a1 1681}
6c085a72 1682
37e680a1
CW
1683static int
1684i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1685{
1686 const struct drm_i915_gem_object_ops *ops = obj->ops;
1687
2f745ad3 1688 if (obj->pages == NULL)
37e680a1
CW
1689 return 0;
1690
1691 BUG_ON(obj->gtt_space);
6c085a72 1692
a5570178
CW
1693 if (obj->pages_pin_count)
1694 return -EBUSY;
1695
37e680a1 1696 ops->put_pages(obj);
05394f39 1697 obj->pages = NULL;
37e680a1
CW
1698
1699 list_del(&obj->gtt_list);
6c085a72
CW
1700 if (i915_gem_object_is_purgeable(obj))
1701 i915_gem_object_truncate(obj);
1702
1703 return 0;
1704}
1705
1706static long
1707i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1708{
1709 struct drm_i915_gem_object *obj, *next;
1710 long count = 0;
1711
1712 list_for_each_entry_safe(obj, next,
1713 &dev_priv->mm.unbound_list,
1714 gtt_list) {
1715 if (i915_gem_object_is_purgeable(obj) &&
37e680a1 1716 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1717 count += obj->base.size >> PAGE_SHIFT;
1718 if (count >= target)
1719 return count;
1720 }
1721 }
1722
1723 list_for_each_entry_safe(obj, next,
1724 &dev_priv->mm.inactive_list,
1725 mm_list) {
1726 if (i915_gem_object_is_purgeable(obj) &&
1727 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1728 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1729 count += obj->base.size >> PAGE_SHIFT;
1730 if (count >= target)
1731 return count;
1732 }
1733 }
1734
1735 return count;
1736}
1737
1738static void
1739i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1740{
1741 struct drm_i915_gem_object *obj, *next;
1742
1743 i915_gem_evict_everything(dev_priv->dev);
1744
1745 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
37e680a1 1746 i915_gem_object_put_pages(obj);
225067ee
DV
1747}
1748
37e680a1 1749static int
6c085a72 1750i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1751{
6c085a72 1752 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1753 int page_count, i;
1754 struct address_space *mapping;
9da3da66
CW
1755 struct sg_table *st;
1756 struct scatterlist *sg;
e5281ccd 1757 struct page *page;
6c085a72 1758 gfp_t gfp;
e5281ccd 1759
6c085a72
CW
1760 /* Assert that the object is not currently in any GPU domain. As it
1761 * wasn't in the GTT, there shouldn't be any way it could have been in
1762 * a GPU cache
1763 */
1764 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1765 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1766
9da3da66
CW
1767 st = kmalloc(sizeof(*st), GFP_KERNEL);
1768 if (st == NULL)
1769 return -ENOMEM;
1770
05394f39 1771 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1772 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1773 sg_free_table(st);
1774 kfree(st);
e5281ccd 1775 return -ENOMEM;
9da3da66 1776 }
e5281ccd 1777
9da3da66
CW
1778 /* Get the list of pages out of our struct file. They'll be pinned
1779 * at this point until we release them.
1780 *
1781 * Fail silently without starting the shrinker
1782 */
6c085a72
CW
1783 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1784 gfp = mapping_gfp_mask(mapping);
d7c3b937 1785 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72 1786 gfp &= ~(__GFP_IO | __GFP_WAIT);
9da3da66 1787 for_each_sg(st->sgl, sg, page_count, i) {
6c085a72
CW
1788 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1789 if (IS_ERR(page)) {
1790 i915_gem_purge(dev_priv, page_count);
1791 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1792 }
1793 if (IS_ERR(page)) {
1794 /* We've tried hard to allocate the memory by reaping
1795 * our own buffer, now let the real VM do its job and
1796 * go down in flames if truly OOM.
1797 */
d7c3b937 1798 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
6c085a72
CW
1799 gfp |= __GFP_IO | __GFP_WAIT;
1800
1801 i915_gem_shrink_all(dev_priv);
1802 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1803 if (IS_ERR(page))
1804 goto err_pages;
1805
d7c3b937 1806 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72
CW
1807 gfp &= ~(__GFP_IO | __GFP_WAIT);
1808 }
e5281ccd 1809
9da3da66 1810 sg_set_page(sg, page, PAGE_SIZE, 0);
e5281ccd
CW
1811 }
1812
74ce6b6c
CW
1813 obj->pages = st;
1814
6dacfd2f 1815 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1816 i915_gem_object_do_bit_17_swizzle(obj);
1817
1818 return 0;
1819
1820err_pages:
9da3da66
CW
1821 for_each_sg(st->sgl, sg, i, page_count)
1822 page_cache_release(sg_page(sg));
1823 sg_free_table(st);
1824 kfree(st);
e5281ccd 1825 return PTR_ERR(page);
673a394b
EA
1826}
1827
37e680a1
CW
1828/* Ensure that the associated pages are gathered from the backing storage
1829 * and pinned into our object. i915_gem_object_get_pages() may be called
1830 * multiple times before they are released by a single call to
1831 * i915_gem_object_put_pages() - once the pages are no longer referenced
1832 * either as a result of memory pressure (reaping pages under the shrinker)
1833 * or as the object is itself released.
1834 */
1835int
1836i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1837{
1838 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1839 const struct drm_i915_gem_object_ops *ops = obj->ops;
1840 int ret;
1841
2f745ad3 1842 if (obj->pages)
37e680a1
CW
1843 return 0;
1844
a5570178
CW
1845 BUG_ON(obj->pages_pin_count);
1846
37e680a1
CW
1847 ret = ops->get_pages(obj);
1848 if (ret)
1849 return ret;
1850
1851 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1852 return 0;
673a394b
EA
1853}
1854
54cf91dc 1855void
05394f39 1856i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1857 struct intel_ring_buffer *ring)
673a394b 1858{
05394f39 1859 struct drm_device *dev = obj->base.dev;
69dc4987 1860 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1861 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1862
852835f3 1863 BUG_ON(ring == NULL);
05394f39 1864 obj->ring = ring;
673a394b
EA
1865
1866 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1867 if (!obj->active) {
1868 drm_gem_object_reference(&obj->base);
1869 obj->active = 1;
673a394b 1870 }
e35a41de 1871
673a394b 1872 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1873 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1874 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1875
0201f1ec 1876 obj->last_read_seqno = seqno;
caea7476 1877
7dd49065 1878 if (obj->fenced_gpu_access) {
caea7476 1879 obj->last_fenced_seqno = seqno;
caea7476 1880
7dd49065
CW
1881 /* Bump MRU to take account of the delayed flush */
1882 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1883 struct drm_i915_fence_reg *reg;
1884
1885 reg = &dev_priv->fence_regs[obj->fence_reg];
1886 list_move_tail(&reg->lru_list,
1887 &dev_priv->mm.fence_list);
1888 }
caea7476
CW
1889 }
1890}
1891
1892static void
caea7476 1893i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1894{
05394f39 1895 struct drm_device *dev = obj->base.dev;
caea7476 1896 struct drm_i915_private *dev_priv = dev->dev_private;
ce44b0ea 1897
65ce3027 1898 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1899 BUG_ON(!obj->active);
caea7476 1900
f047e395
CW
1901 if (obj->pin_count) /* are we a framebuffer? */
1902 intel_mark_fb_idle(obj);
caea7476 1903
1b50247a 1904 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476 1905
65ce3027 1906 list_del_init(&obj->ring_list);
caea7476
CW
1907 obj->ring = NULL;
1908
65ce3027
CW
1909 obj->last_read_seqno = 0;
1910 obj->last_write_seqno = 0;
1911 obj->base.write_domain = 0;
1912
1913 obj->last_fenced_seqno = 0;
caea7476 1914 obj->fenced_gpu_access = false;
caea7476
CW
1915
1916 obj->active = 0;
1917 drm_gem_object_unreference(&obj->base);
1918
1919 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1920}
673a394b 1921
9d773091
CW
1922static int
1923i915_gem_handle_seqno_wrap(struct drm_device *dev)
53d227f2 1924{
9d773091
CW
1925 struct drm_i915_private *dev_priv = dev->dev_private;
1926 struct intel_ring_buffer *ring;
1927 int ret, i, j;
53d227f2 1928
9d773091
CW
1929 /* The hardware uses various monotonic 32-bit counters, if we
1930 * detect that they will wraparound we need to idle the GPU
1931 * and reset those counters.
1932 */
1933 ret = 0;
1934 for_each_ring(ring, dev_priv, i) {
1935 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1936 ret |= ring->sync_seqno[j] != 0;
1937 }
1938 if (ret == 0)
1939 return ret;
1940
1941 ret = i915_gpu_idle(dev);
1942 if (ret)
1943 return ret;
1944
1945 i915_gem_retire_requests(dev);
1946 for_each_ring(ring, dev_priv, i) {
498d2ac1
MK
1947 ret = intel_ring_handle_seqno_wrap(ring);
1948 if (ret)
1949 return ret;
1950
9d773091
CW
1951 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1952 ring->sync_seqno[j] = 0;
1953 }
53d227f2 1954
9d773091 1955 return 0;
53d227f2
DV
1956}
1957
9d773091
CW
1958int
1959i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 1960{
9d773091
CW
1961 struct drm_i915_private *dev_priv = dev->dev_private;
1962
1963 /* reserve 0 for non-seqno */
1964 if (dev_priv->next_seqno == 0) {
1965 int ret = i915_gem_handle_seqno_wrap(dev);
1966 if (ret)
1967 return ret;
1968
1969 dev_priv->next_seqno = 1;
1970 }
53d227f2 1971
f72b3435 1972 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 1973 return 0;
53d227f2
DV
1974}
1975
3cce469c 1976int
db53a302 1977i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1978 struct drm_file *file,
acb868d3 1979 u32 *out_seqno)
673a394b 1980{
db53a302 1981 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 1982 struct drm_i915_gem_request *request;
a71d8d94 1983 u32 request_ring_position;
673a394b 1984 int was_empty;
3cce469c
CW
1985 int ret;
1986
cc889e0f
DV
1987 /*
1988 * Emit any outstanding flushes - execbuf can fail to emit the flush
1989 * after having emitted the batchbuffer command. Hence we need to fix
1990 * things up similar to emitting the lazy request. The difference here
1991 * is that the flush _must_ happen before the next request, no matter
1992 * what.
1993 */
a7b9761d
CW
1994 ret = intel_ring_flush_all_caches(ring);
1995 if (ret)
1996 return ret;
cc889e0f 1997
acb868d3
CW
1998 request = kmalloc(sizeof(*request), GFP_KERNEL);
1999 if (request == NULL)
2000 return -ENOMEM;
cc889e0f 2001
673a394b 2002
a71d8d94
CW
2003 /* Record the position of the start of the request so that
2004 * should we detect the updated seqno part-way through the
2005 * GPU processing the request, we never over-estimate the
2006 * position of the head.
2007 */
2008 request_ring_position = intel_ring_get_tail(ring);
2009
9d773091 2010 ret = ring->add_request(ring);
3bb73aba
CW
2011 if (ret) {
2012 kfree(request);
2013 return ret;
2014 }
673a394b 2015
9d773091 2016 request->seqno = intel_ring_get_seqno(ring);
852835f3 2017 request->ring = ring;
a71d8d94 2018 request->tail = request_ring_position;
673a394b 2019 request->emitted_jiffies = jiffies;
852835f3
ZN
2020 was_empty = list_empty(&ring->request_list);
2021 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2022 request->file_priv = NULL;
852835f3 2023
db53a302
CW
2024 if (file) {
2025 struct drm_i915_file_private *file_priv = file->driver_priv;
2026
1c25595f 2027 spin_lock(&file_priv->mm.lock);
f787a5f5 2028 request->file_priv = file_priv;
b962442e 2029 list_add_tail(&request->client_list,
f787a5f5 2030 &file_priv->mm.request_list);
1c25595f 2031 spin_unlock(&file_priv->mm.lock);
b962442e 2032 }
673a394b 2033
9d773091 2034 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2035 ring->outstanding_lazy_request = 0;
db53a302 2036
f65d9421 2037 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
2038 if (i915_enable_hangcheck) {
2039 mod_timer(&dev_priv->hangcheck_timer,
cecc21fe 2040 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3e0dc6b0 2041 }
f047e395 2042 if (was_empty) {
b3b079db 2043 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2044 &dev_priv->mm.retire_work,
2045 round_jiffies_up_relative(HZ));
f047e395
CW
2046 intel_mark_busy(dev_priv->dev);
2047 }
f65d9421 2048 }
cc889e0f 2049
acb868d3 2050 if (out_seqno)
9d773091 2051 *out_seqno = request->seqno;
3cce469c 2052 return 0;
673a394b
EA
2053}
2054
f787a5f5
CW
2055static inline void
2056i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2057{
1c25595f 2058 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2059
1c25595f
CW
2060 if (!file_priv)
2061 return;
1c5d22f7 2062
1c25595f 2063 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2064 if (request->file_priv) {
2065 list_del(&request->client_list);
2066 request->file_priv = NULL;
2067 }
1c25595f 2068 spin_unlock(&file_priv->mm.lock);
673a394b 2069}
673a394b 2070
dfaae392
CW
2071static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2072 struct intel_ring_buffer *ring)
9375e446 2073{
dfaae392
CW
2074 while (!list_empty(&ring->request_list)) {
2075 struct drm_i915_gem_request *request;
673a394b 2076
dfaae392
CW
2077 request = list_first_entry(&ring->request_list,
2078 struct drm_i915_gem_request,
2079 list);
de151cf6 2080
dfaae392 2081 list_del(&request->list);
f787a5f5 2082 i915_gem_request_remove_from_client(request);
dfaae392
CW
2083 kfree(request);
2084 }
673a394b 2085
dfaae392 2086 while (!list_empty(&ring->active_list)) {
05394f39 2087 struct drm_i915_gem_object *obj;
9375e446 2088
05394f39
CW
2089 obj = list_first_entry(&ring->active_list,
2090 struct drm_i915_gem_object,
2091 ring_list);
9375e446 2092
05394f39 2093 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2094 }
2095}
2096
312817a3
CW
2097static void i915_gem_reset_fences(struct drm_device *dev)
2098{
2099 struct drm_i915_private *dev_priv = dev->dev_private;
2100 int i;
2101
4b9de737 2102 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2103 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2104
ada726c7 2105 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 2106
ada726c7
CW
2107 if (reg->obj)
2108 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2109
ada726c7
CW
2110 reg->pin_count = 0;
2111 reg->obj = NULL;
2112 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2113 }
ada726c7
CW
2114
2115 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2116}
2117
069efc1d 2118void i915_gem_reset(struct drm_device *dev)
673a394b 2119{
77f01230 2120 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2121 struct drm_i915_gem_object *obj;
b4519513 2122 struct intel_ring_buffer *ring;
1ec14ad3 2123 int i;
673a394b 2124
b4519513
CW
2125 for_each_ring(ring, dev_priv, i)
2126 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2127
dfaae392
CW
2128 /* Move everything out of the GPU domains to ensure we do any
2129 * necessary invalidation upon reuse.
2130 */
05394f39 2131 list_for_each_entry(obj,
77f01230 2132 &dev_priv->mm.inactive_list,
69dc4987 2133 mm_list)
77f01230 2134 {
05394f39 2135 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2136 }
069efc1d
CW
2137
2138 /* The fence registers are invalidated so clear them out */
312817a3 2139 i915_gem_reset_fences(dev);
673a394b
EA
2140}
2141
2142/**
2143 * This function clears the request list as sequence numbers are passed.
2144 */
a71d8d94 2145void
db53a302 2146i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2147{
673a394b
EA
2148 uint32_t seqno;
2149
db53a302 2150 if (list_empty(&ring->request_list))
6c0594a3
KW
2151 return;
2152
db53a302 2153 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2154
b2eadbc8 2155 seqno = ring->get_seqno(ring, true);
1ec14ad3 2156
852835f3 2157 while (!list_empty(&ring->request_list)) {
673a394b 2158 struct drm_i915_gem_request *request;
673a394b 2159
852835f3 2160 request = list_first_entry(&ring->request_list,
673a394b
EA
2161 struct drm_i915_gem_request,
2162 list);
673a394b 2163
dfaae392 2164 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2165 break;
2166
db53a302 2167 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2168 /* We know the GPU must have read the request to have
2169 * sent us the seqno + interrupt, so use the position
2170 * of tail of the request to update the last known position
2171 * of the GPU head.
2172 */
2173 ring->last_retired_head = request->tail;
b84d5f0c
CW
2174
2175 list_del(&request->list);
f787a5f5 2176 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
2177 kfree(request);
2178 }
673a394b 2179
b84d5f0c
CW
2180 /* Move any buffers on the active list that are no longer referenced
2181 * by the ringbuffer to the flushing/inactive lists as appropriate.
2182 */
2183 while (!list_empty(&ring->active_list)) {
05394f39 2184 struct drm_i915_gem_object *obj;
b84d5f0c 2185
0206e353 2186 obj = list_first_entry(&ring->active_list,
05394f39
CW
2187 struct drm_i915_gem_object,
2188 ring_list);
673a394b 2189
0201f1ec 2190 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2191 break;
b84d5f0c 2192
65ce3027 2193 i915_gem_object_move_to_inactive(obj);
673a394b 2194 }
9d34e5db 2195
db53a302
CW
2196 if (unlikely(ring->trace_irq_seqno &&
2197 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2198 ring->irq_put(ring);
db53a302 2199 ring->trace_irq_seqno = 0;
9d34e5db 2200 }
23bc5982 2201
db53a302 2202 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2203}
2204
b09a1fec
CW
2205void
2206i915_gem_retire_requests(struct drm_device *dev)
2207{
2208 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2209 struct intel_ring_buffer *ring;
1ec14ad3 2210 int i;
b09a1fec 2211
b4519513
CW
2212 for_each_ring(ring, dev_priv, i)
2213 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2214}
2215
75ef9da2 2216static void
673a394b
EA
2217i915_gem_retire_work_handler(struct work_struct *work)
2218{
2219 drm_i915_private_t *dev_priv;
2220 struct drm_device *dev;
b4519513 2221 struct intel_ring_buffer *ring;
0a58705b
CW
2222 bool idle;
2223 int i;
673a394b
EA
2224
2225 dev_priv = container_of(work, drm_i915_private_t,
2226 mm.retire_work.work);
2227 dev = dev_priv->dev;
2228
891b48cf
CW
2229 /* Come back later if the device is busy... */
2230 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2231 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2232 round_jiffies_up_relative(HZ));
891b48cf
CW
2233 return;
2234 }
673a394b 2235
b09a1fec 2236 i915_gem_retire_requests(dev);
673a394b 2237
0a58705b
CW
2238 /* Send a periodic flush down the ring so we don't hold onto GEM
2239 * objects indefinitely.
673a394b 2240 */
0a58705b 2241 idle = true;
b4519513 2242 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
2243 if (ring->gpu_caches_dirty)
2244 i915_add_request(ring, NULL, NULL);
0a58705b
CW
2245
2246 idle &= list_empty(&ring->request_list);
673a394b
EA
2247 }
2248
0a58705b 2249 if (!dev_priv->mm.suspended && !idle)
bcb45086
CW
2250 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2251 round_jiffies_up_relative(HZ));
f047e395
CW
2252 if (idle)
2253 intel_mark_idle(dev);
0a58705b 2254
673a394b 2255 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2256}
2257
30dfebf3
DV
2258/**
2259 * Ensures that an object will eventually get non-busy by flushing any required
2260 * write domains, emitting any outstanding lazy request and retiring and
2261 * completed requests.
2262 */
2263static int
2264i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2265{
2266 int ret;
2267
2268 if (obj->active) {
0201f1ec 2269 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2270 if (ret)
2271 return ret;
2272
30dfebf3
DV
2273 i915_gem_retire_requests_ring(obj->ring);
2274 }
2275
2276 return 0;
2277}
2278
23ba4fd0
BW
2279/**
2280 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2281 * @DRM_IOCTL_ARGS: standard ioctl arguments
2282 *
2283 * Returns 0 if successful, else an error is returned with the remaining time in
2284 * the timeout parameter.
2285 * -ETIME: object is still busy after timeout
2286 * -ERESTARTSYS: signal interrupted the wait
2287 * -ENONENT: object doesn't exist
2288 * Also possible, but rare:
2289 * -EAGAIN: GPU wedged
2290 * -ENOMEM: damn
2291 * -ENODEV: Internal IRQ fail
2292 * -E?: The add request failed
2293 *
2294 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2295 * non-zero timeout parameter the wait ioctl will wait for the given number of
2296 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2297 * without holding struct_mutex the object may become re-busied before this
2298 * function completes. A similar but shorter * race condition exists in the busy
2299 * ioctl
2300 */
2301int
2302i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2303{
2304 struct drm_i915_gem_wait *args = data;
2305 struct drm_i915_gem_object *obj;
2306 struct intel_ring_buffer *ring = NULL;
eac1f14f 2307 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2308 u32 seqno = 0;
2309 int ret = 0;
2310
eac1f14f
BW
2311 if (args->timeout_ns >= 0) {
2312 timeout_stack = ns_to_timespec(args->timeout_ns);
2313 timeout = &timeout_stack;
2314 }
23ba4fd0
BW
2315
2316 ret = i915_mutex_lock_interruptible(dev);
2317 if (ret)
2318 return ret;
2319
2320 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2321 if (&obj->base == NULL) {
2322 mutex_unlock(&dev->struct_mutex);
2323 return -ENOENT;
2324 }
2325
30dfebf3
DV
2326 /* Need to make sure the object gets inactive eventually. */
2327 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2328 if (ret)
2329 goto out;
2330
2331 if (obj->active) {
0201f1ec 2332 seqno = obj->last_read_seqno;
23ba4fd0
BW
2333 ring = obj->ring;
2334 }
2335
2336 if (seqno == 0)
2337 goto out;
2338
23ba4fd0
BW
2339 /* Do this after OLR check to make sure we make forward progress polling
2340 * on this IOCTL with a 0 timeout (like busy ioctl)
2341 */
2342 if (!args->timeout_ns) {
2343 ret = -ETIME;
2344 goto out;
2345 }
2346
2347 drm_gem_object_unreference(&obj->base);
2348 mutex_unlock(&dev->struct_mutex);
2349
eac1f14f
BW
2350 ret = __wait_seqno(ring, seqno, true, timeout);
2351 if (timeout) {
2352 WARN_ON(!timespec_valid(timeout));
2353 args->timeout_ns = timespec_to_ns(timeout);
2354 }
23ba4fd0
BW
2355 return ret;
2356
2357out:
2358 drm_gem_object_unreference(&obj->base);
2359 mutex_unlock(&dev->struct_mutex);
2360 return ret;
2361}
2362
5816d648
BW
2363/**
2364 * i915_gem_object_sync - sync an object to a ring.
2365 *
2366 * @obj: object which may be in use on another ring.
2367 * @to: ring we wish to use the object on. May be NULL.
2368 *
2369 * This code is meant to abstract object synchronization with the GPU.
2370 * Calling with NULL implies synchronizing the object with the CPU
2371 * rather than a particular GPU ring.
2372 *
2373 * Returns 0 if successful, else propagates up the lower layer error.
2374 */
2911a35b
BW
2375int
2376i915_gem_object_sync(struct drm_i915_gem_object *obj,
2377 struct intel_ring_buffer *to)
2378{
2379 struct intel_ring_buffer *from = obj->ring;
2380 u32 seqno;
2381 int ret, idx;
2382
2383 if (from == NULL || to == from)
2384 return 0;
2385
5816d648 2386 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2387 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2388
2389 idx = intel_ring_sync_index(from, to);
2390
0201f1ec 2391 seqno = obj->last_read_seqno;
2911a35b
BW
2392 if (seqno <= from->sync_seqno[idx])
2393 return 0;
2394
b4aca010
BW
2395 ret = i915_gem_check_olr(obj->ring, seqno);
2396 if (ret)
2397 return ret;
2911a35b 2398
1500f7ea 2399 ret = to->sync_to(to, from, seqno);
e3a5a225 2400 if (!ret)
7b01e260
MK
2401 /* We use last_read_seqno because sync_to()
2402 * might have just caused seqno wrap under
2403 * the radar.
2404 */
2405 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2406
e3a5a225 2407 return ret;
2911a35b
BW
2408}
2409
b5ffc9bc
CW
2410static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2411{
2412 u32 old_write_domain, old_read_domains;
2413
b5ffc9bc
CW
2414 /* Act a barrier for all accesses through the GTT */
2415 mb();
2416
2417 /* Force a pagefault for domain tracking on next user access */
2418 i915_gem_release_mmap(obj);
2419
b97c3d9c
KP
2420 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2421 return;
2422
b5ffc9bc
CW
2423 old_read_domains = obj->base.read_domains;
2424 old_write_domain = obj->base.write_domain;
2425
2426 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2427 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2428
2429 trace_i915_gem_object_change_domain(obj,
2430 old_read_domains,
2431 old_write_domain);
2432}
2433
673a394b
EA
2434/**
2435 * Unbinds an object from the GTT aperture.
2436 */
0f973f27 2437int
05394f39 2438i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2439{
7bddb01f 2440 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2441 int ret = 0;
2442
05394f39 2443 if (obj->gtt_space == NULL)
673a394b
EA
2444 return 0;
2445
31d8d651
CW
2446 if (obj->pin_count)
2447 return -EBUSY;
673a394b 2448
c4670ad0
CW
2449 BUG_ON(obj->pages == NULL);
2450
a8198eea 2451 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2452 if (ret)
a8198eea
CW
2453 return ret;
2454 /* Continue on if we fail due to EIO, the GPU is hung so we
2455 * should be safe and we need to cleanup or else we might
2456 * cause memory corruption through use-after-free.
2457 */
2458
b5ffc9bc 2459 i915_gem_object_finish_gtt(obj);
5323fd04 2460
96b47b65 2461 /* release the fence reg _after_ flushing */
d9e86c0e 2462 ret = i915_gem_object_put_fence(obj);
1488fc08 2463 if (ret)
d9e86c0e 2464 return ret;
96b47b65 2465
db53a302
CW
2466 trace_i915_gem_object_unbind(obj);
2467
74898d7e
DV
2468 if (obj->has_global_gtt_mapping)
2469 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2470 if (obj->has_aliasing_ppgtt_mapping) {
2471 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2472 obj->has_aliasing_ppgtt_mapping = 0;
2473 }
74163907 2474 i915_gem_gtt_finish_object(obj);
7bddb01f 2475
6c085a72
CW
2476 list_del(&obj->mm_list);
2477 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2478 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2479 obj->map_and_fenceable = true;
673a394b 2480
05394f39
CW
2481 drm_mm_put_block(obj->gtt_space);
2482 obj->gtt_space = NULL;
2483 obj->gtt_offset = 0;
673a394b 2484
88241785 2485 return 0;
54cf91dc
CW
2486}
2487
b2da9fe5 2488int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2489{
2490 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2491 struct intel_ring_buffer *ring;
1ec14ad3 2492 int ret, i;
4df2faf4 2493
4df2faf4 2494 /* Flush everything onto the inactive list. */
b4519513 2495 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2496 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2497 if (ret)
2498 return ret;
2499
3e960501 2500 ret = intel_ring_idle(ring);
1ec14ad3
CW
2501 if (ret)
2502 return ret;
2503 }
4df2faf4 2504
8a1a49f9 2505 return 0;
4df2faf4
DV
2506}
2507
9ce079e4
CW
2508static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2509 struct drm_i915_gem_object *obj)
4e901fdc 2510{
4e901fdc 2511 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2512 uint64_t val;
2513
9ce079e4
CW
2514 if (obj) {
2515 u32 size = obj->gtt_space->size;
4e901fdc 2516
9ce079e4
CW
2517 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2518 0xfffff000) << 32;
2519 val |= obj->gtt_offset & 0xfffff000;
2520 val |= (uint64_t)((obj->stride / 128) - 1) <<
2521 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2522
9ce079e4
CW
2523 if (obj->tiling_mode == I915_TILING_Y)
2524 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2525 val |= I965_FENCE_REG_VALID;
2526 } else
2527 val = 0;
c6642782 2528
9ce079e4
CW
2529 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2530 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2531}
2532
9ce079e4
CW
2533static void i965_write_fence_reg(struct drm_device *dev, int reg,
2534 struct drm_i915_gem_object *obj)
de151cf6 2535{
de151cf6 2536 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2537 uint64_t val;
2538
9ce079e4
CW
2539 if (obj) {
2540 u32 size = obj->gtt_space->size;
de151cf6 2541
9ce079e4
CW
2542 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2543 0xfffff000) << 32;
2544 val |= obj->gtt_offset & 0xfffff000;
2545 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2546 if (obj->tiling_mode == I915_TILING_Y)
2547 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2548 val |= I965_FENCE_REG_VALID;
2549 } else
2550 val = 0;
c6642782 2551
9ce079e4
CW
2552 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2553 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2554}
2555
9ce079e4
CW
2556static void i915_write_fence_reg(struct drm_device *dev, int reg,
2557 struct drm_i915_gem_object *obj)
de151cf6 2558{
de151cf6 2559 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2560 u32 val;
de151cf6 2561
9ce079e4
CW
2562 if (obj) {
2563 u32 size = obj->gtt_space->size;
2564 int pitch_val;
2565 int tile_width;
c6642782 2566
9ce079e4
CW
2567 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2568 (size & -size) != size ||
2569 (obj->gtt_offset & (size - 1)),
2570 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2571 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2572
9ce079e4
CW
2573 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2574 tile_width = 128;
2575 else
2576 tile_width = 512;
2577
2578 /* Note: pitch better be a power of two tile widths */
2579 pitch_val = obj->stride / tile_width;
2580 pitch_val = ffs(pitch_val) - 1;
2581
2582 val = obj->gtt_offset;
2583 if (obj->tiling_mode == I915_TILING_Y)
2584 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2585 val |= I915_FENCE_SIZE_BITS(size);
2586 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2587 val |= I830_FENCE_REG_VALID;
2588 } else
2589 val = 0;
2590
2591 if (reg < 8)
2592 reg = FENCE_REG_830_0 + reg * 4;
2593 else
2594 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2595
2596 I915_WRITE(reg, val);
2597 POSTING_READ(reg);
de151cf6
JB
2598}
2599
9ce079e4
CW
2600static void i830_write_fence_reg(struct drm_device *dev, int reg,
2601 struct drm_i915_gem_object *obj)
de151cf6 2602{
de151cf6 2603 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2604 uint32_t val;
de151cf6 2605
9ce079e4
CW
2606 if (obj) {
2607 u32 size = obj->gtt_space->size;
2608 uint32_t pitch_val;
de151cf6 2609
9ce079e4
CW
2610 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2611 (size & -size) != size ||
2612 (obj->gtt_offset & (size - 1)),
2613 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2614 obj->gtt_offset, size);
e76a16de 2615
9ce079e4
CW
2616 pitch_val = obj->stride / 128;
2617 pitch_val = ffs(pitch_val) - 1;
de151cf6 2618
9ce079e4
CW
2619 val = obj->gtt_offset;
2620 if (obj->tiling_mode == I915_TILING_Y)
2621 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2622 val |= I830_FENCE_SIZE_BITS(size);
2623 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2624 val |= I830_FENCE_REG_VALID;
2625 } else
2626 val = 0;
c6642782 2627
9ce079e4
CW
2628 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2629 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2630}
2631
2632static void i915_gem_write_fence(struct drm_device *dev, int reg,
2633 struct drm_i915_gem_object *obj)
2634{
2635 switch (INTEL_INFO(dev)->gen) {
2636 case 7:
2637 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2638 case 5:
2639 case 4: i965_write_fence_reg(dev, reg, obj); break;
2640 case 3: i915_write_fence_reg(dev, reg, obj); break;
2641 case 2: i830_write_fence_reg(dev, reg, obj); break;
2642 default: break;
2643 }
de151cf6
JB
2644}
2645
61050808
CW
2646static inline int fence_number(struct drm_i915_private *dev_priv,
2647 struct drm_i915_fence_reg *fence)
2648{
2649 return fence - dev_priv->fence_regs;
2650}
2651
2652static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2653 struct drm_i915_fence_reg *fence,
2654 bool enable)
2655{
2656 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2657 int reg = fence_number(dev_priv, fence);
2658
2659 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2660
2661 if (enable) {
2662 obj->fence_reg = reg;
2663 fence->obj = obj;
2664 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2665 } else {
2666 obj->fence_reg = I915_FENCE_REG_NONE;
2667 fence->obj = NULL;
2668 list_del_init(&fence->lru_list);
2669 }
2670}
2671
d9e86c0e 2672static int
a360bb1a 2673i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2674{
1c293ea3 2675 if (obj->last_fenced_seqno) {
86d5bc37 2676 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2677 if (ret)
2678 return ret;
d9e86c0e
CW
2679
2680 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2681 }
2682
63256ec5
CW
2683 /* Ensure that all CPU reads are completed before installing a fence
2684 * and all writes before removing the fence.
2685 */
2686 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2687 mb();
2688
86d5bc37 2689 obj->fenced_gpu_access = false;
d9e86c0e
CW
2690 return 0;
2691}
2692
2693int
2694i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2695{
61050808 2696 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2697 int ret;
2698
a360bb1a 2699 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2700 if (ret)
2701 return ret;
2702
61050808
CW
2703 if (obj->fence_reg == I915_FENCE_REG_NONE)
2704 return 0;
d9e86c0e 2705
61050808
CW
2706 i915_gem_object_update_fence(obj,
2707 &dev_priv->fence_regs[obj->fence_reg],
2708 false);
2709 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2710
2711 return 0;
2712}
2713
2714static struct drm_i915_fence_reg *
a360bb1a 2715i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2716{
ae3db24a 2717 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2718 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2719 int i;
ae3db24a
DV
2720
2721 /* First try to find a free reg */
d9e86c0e 2722 avail = NULL;
ae3db24a
DV
2723 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2724 reg = &dev_priv->fence_regs[i];
2725 if (!reg->obj)
d9e86c0e 2726 return reg;
ae3db24a 2727
1690e1eb 2728 if (!reg->pin_count)
d9e86c0e 2729 avail = reg;
ae3db24a
DV
2730 }
2731
d9e86c0e
CW
2732 if (avail == NULL)
2733 return NULL;
ae3db24a
DV
2734
2735 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2736 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2737 if (reg->pin_count)
ae3db24a
DV
2738 continue;
2739
8fe301ad 2740 return reg;
ae3db24a
DV
2741 }
2742
8fe301ad 2743 return NULL;
ae3db24a
DV
2744}
2745
de151cf6 2746/**
9a5a53b3 2747 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2748 * @obj: object to map through a fence reg
2749 *
2750 * When mapping objects through the GTT, userspace wants to be able to write
2751 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2752 * This function walks the fence regs looking for a free one for @obj,
2753 * stealing one if it can't find any.
2754 *
2755 * It then sets up the reg based on the object's properties: address, pitch
2756 * and tiling format.
9a5a53b3
CW
2757 *
2758 * For an untiled surface, this removes any existing fence.
de151cf6 2759 */
8c4b8c3f 2760int
06d98131 2761i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2762{
05394f39 2763 struct drm_device *dev = obj->base.dev;
79e53945 2764 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2765 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2766 struct drm_i915_fence_reg *reg;
ae3db24a 2767 int ret;
de151cf6 2768
14415745
CW
2769 /* Have we updated the tiling parameters upon the object and so
2770 * will need to serialise the write to the associated fence register?
2771 */
5d82e3e6 2772 if (obj->fence_dirty) {
14415745
CW
2773 ret = i915_gem_object_flush_fence(obj);
2774 if (ret)
2775 return ret;
2776 }
9a5a53b3 2777
d9e86c0e 2778 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2779 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2780 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2781 if (!obj->fence_dirty) {
14415745
CW
2782 list_move_tail(&reg->lru_list,
2783 &dev_priv->mm.fence_list);
2784 return 0;
2785 }
2786 } else if (enable) {
2787 reg = i915_find_fence_reg(dev);
2788 if (reg == NULL)
2789 return -EDEADLK;
d9e86c0e 2790
14415745
CW
2791 if (reg->obj) {
2792 struct drm_i915_gem_object *old = reg->obj;
2793
2794 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2795 if (ret)
2796 return ret;
2797
14415745 2798 i915_gem_object_fence_lost(old);
29c5a587 2799 }
14415745 2800 } else
a09ba7fa 2801 return 0;
a09ba7fa 2802
14415745 2803 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2804 obj->fence_dirty = false;
14415745 2805
9ce079e4 2806 return 0;
de151cf6
JB
2807}
2808
42d6ab48
CW
2809static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2810 struct drm_mm_node *gtt_space,
2811 unsigned long cache_level)
2812{
2813 struct drm_mm_node *other;
2814
2815 /* On non-LLC machines we have to be careful when putting differing
2816 * types of snoopable memory together to avoid the prefetcher
4239ca77 2817 * crossing memory domains and dying.
42d6ab48
CW
2818 */
2819 if (HAS_LLC(dev))
2820 return true;
2821
2822 if (gtt_space == NULL)
2823 return true;
2824
2825 if (list_empty(&gtt_space->node_list))
2826 return true;
2827
2828 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2829 if (other->allocated && !other->hole_follows && other->color != cache_level)
2830 return false;
2831
2832 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2833 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2834 return false;
2835
2836 return true;
2837}
2838
2839static void i915_gem_verify_gtt(struct drm_device *dev)
2840{
2841#if WATCH_GTT
2842 struct drm_i915_private *dev_priv = dev->dev_private;
2843 struct drm_i915_gem_object *obj;
2844 int err = 0;
2845
2846 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2847 if (obj->gtt_space == NULL) {
2848 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2849 err++;
2850 continue;
2851 }
2852
2853 if (obj->cache_level != obj->gtt_space->color) {
2854 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2855 obj->gtt_space->start,
2856 obj->gtt_space->start + obj->gtt_space->size,
2857 obj->cache_level,
2858 obj->gtt_space->color);
2859 err++;
2860 continue;
2861 }
2862
2863 if (!i915_gem_valid_gtt_space(dev,
2864 obj->gtt_space,
2865 obj->cache_level)) {
2866 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2867 obj->gtt_space->start,
2868 obj->gtt_space->start + obj->gtt_space->size,
2869 obj->cache_level);
2870 err++;
2871 continue;
2872 }
2873 }
2874
2875 WARN_ON(err);
2876#endif
2877}
2878
673a394b
EA
2879/**
2880 * Finds free space in the GTT aperture and binds the object there.
2881 */
2882static int
05394f39 2883i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2884 unsigned alignment,
86a1ee26
CW
2885 bool map_and_fenceable,
2886 bool nonblocking)
673a394b 2887{
05394f39 2888 struct drm_device *dev = obj->base.dev;
673a394b 2889 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2890 struct drm_mm_node *free_space;
5e783301 2891 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2892 bool mappable, fenceable;
07f73f69 2893 int ret;
673a394b 2894
05394f39 2895 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2896 DRM_ERROR("Attempting to bind a purgeable object\n");
2897 return -EINVAL;
2898 }
2899
e28f8711
CW
2900 fence_size = i915_gem_get_gtt_size(dev,
2901 obj->base.size,
2902 obj->tiling_mode);
2903 fence_alignment = i915_gem_get_gtt_alignment(dev,
2904 obj->base.size,
2905 obj->tiling_mode);
2906 unfenced_alignment =
2907 i915_gem_get_unfenced_gtt_alignment(dev,
2908 obj->base.size,
2909 obj->tiling_mode);
a00b10c3 2910
673a394b 2911 if (alignment == 0)
5e783301
DV
2912 alignment = map_and_fenceable ? fence_alignment :
2913 unfenced_alignment;
75e9e915 2914 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2915 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2916 return -EINVAL;
2917 }
2918
05394f39 2919 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2920
654fc607
CW
2921 /* If the object is bigger than the entire aperture, reject it early
2922 * before evicting everything in a vain attempt to find space.
2923 */
05394f39 2924 if (obj->base.size >
75e9e915 2925 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2926 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2927 return -E2BIG;
2928 }
2929
37e680a1 2930 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
2931 if (ret)
2932 return ret;
2933
fbdda6fb
CW
2934 i915_gem_object_pin_pages(obj);
2935
673a394b 2936 search_free:
75e9e915 2937 if (map_and_fenceable)
8742267a
CW
2938 free_space = drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2939 size, alignment, obj->cache_level,
2940 0, dev_priv->mm.gtt_mappable_end,
2941 false);
920afa77 2942 else
42d6ab48
CW
2943 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2944 size, alignment, obj->cache_level,
2945 false);
920afa77
DV
2946
2947 if (free_space != NULL) {
75e9e915 2948 if (map_and_fenceable)
8742267a 2949 free_space =
920afa77 2950 drm_mm_get_block_range_generic(free_space,
42d6ab48 2951 size, alignment, obj->cache_level,
6b9d89b4 2952 0, dev_priv->mm.gtt_mappable_end,
42d6ab48 2953 false);
920afa77 2954 else
8742267a 2955 free_space =
42d6ab48
CW
2956 drm_mm_get_block_generic(free_space,
2957 size, alignment, obj->cache_level,
2958 false);
920afa77 2959 }
8742267a 2960 if (free_space == NULL) {
75e9e915 2961 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 2962 obj->cache_level,
86a1ee26
CW
2963 map_and_fenceable,
2964 nonblocking);
fbdda6fb
CW
2965 if (ret) {
2966 i915_gem_object_unpin_pages(obj);
673a394b 2967 return ret;
fbdda6fb 2968 }
9731129c 2969
673a394b
EA
2970 goto search_free;
2971 }
42d6ab48 2972 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
8742267a 2973 free_space,
42d6ab48 2974 obj->cache_level))) {
fbdda6fb 2975 i915_gem_object_unpin_pages(obj);
8742267a 2976 drm_mm_put_block(free_space);
42d6ab48 2977 return -EINVAL;
673a394b
EA
2978 }
2979
74163907 2980 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2981 if (ret) {
fbdda6fb 2982 i915_gem_object_unpin_pages(obj);
8742267a 2983 drm_mm_put_block(free_space);
6c085a72 2984 return ret;
673a394b 2985 }
673a394b 2986
6c085a72 2987 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 2988 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2989
8742267a
CW
2990 obj->gtt_space = free_space;
2991 obj->gtt_offset = free_space->start;
1c5d22f7 2992
75e9e915 2993 fenceable =
8742267a
CW
2994 free_space->size == fence_size &&
2995 (free_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2996
75e9e915 2997 mappable =
05394f39 2998 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2999
05394f39 3000 obj->map_and_fenceable = mappable && fenceable;
75e9e915 3001
fbdda6fb 3002 i915_gem_object_unpin_pages(obj);
db53a302 3003 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 3004 i915_gem_verify_gtt(dev);
673a394b
EA
3005 return 0;
3006}
3007
3008void
05394f39 3009i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3010{
673a394b
EA
3011 /* If we don't have a page list set up, then we're not pinned
3012 * to GPU, and we can ignore the cache flush because it'll happen
3013 * again at bind time.
3014 */
05394f39 3015 if (obj->pages == NULL)
673a394b
EA
3016 return;
3017
9c23f7fc
CW
3018 /* If the GPU is snooping the contents of the CPU cache,
3019 * we do not need to manually clear the CPU cache lines. However,
3020 * the caches are only snooped when the render cache is
3021 * flushed/invalidated. As we always have to emit invalidations
3022 * and flushes when moving into and out of the RENDER domain, correct
3023 * snooping behaviour occurs naturally as the result of our domain
3024 * tracking.
3025 */
3026 if (obj->cache_level != I915_CACHE_NONE)
3027 return;
3028
1c5d22f7 3029 trace_i915_gem_object_clflush(obj);
cfa16a0d 3030
9da3da66 3031 drm_clflush_sg(obj->pages);
e47c68e9
EA
3032}
3033
3034/** Flushes the GTT write domain for the object if it's dirty. */
3035static void
05394f39 3036i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3037{
1c5d22f7
CW
3038 uint32_t old_write_domain;
3039
05394f39 3040 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3041 return;
3042
63256ec5 3043 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3044 * to it immediately go to main memory as far as we know, so there's
3045 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3046 *
3047 * However, we do have to enforce the order so that all writes through
3048 * the GTT land before any writes to the device, such as updates to
3049 * the GATT itself.
e47c68e9 3050 */
63256ec5
CW
3051 wmb();
3052
05394f39
CW
3053 old_write_domain = obj->base.write_domain;
3054 obj->base.write_domain = 0;
1c5d22f7
CW
3055
3056 trace_i915_gem_object_change_domain(obj,
05394f39 3057 obj->base.read_domains,
1c5d22f7 3058 old_write_domain);
e47c68e9
EA
3059}
3060
3061/** Flushes the CPU write domain for the object if it's dirty. */
3062static void
05394f39 3063i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3064{
1c5d22f7 3065 uint32_t old_write_domain;
e47c68e9 3066
05394f39 3067 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3068 return;
3069
3070 i915_gem_clflush_object(obj);
e76e9aeb 3071 i915_gem_chipset_flush(obj->base.dev);
05394f39
CW
3072 old_write_domain = obj->base.write_domain;
3073 obj->base.write_domain = 0;
1c5d22f7
CW
3074
3075 trace_i915_gem_object_change_domain(obj,
05394f39 3076 obj->base.read_domains,
1c5d22f7 3077 old_write_domain);
e47c68e9
EA
3078}
3079
2ef7eeaa
EA
3080/**
3081 * Moves a single object to the GTT read, and possibly write domain.
3082 *
3083 * This function returns when the move is complete, including waiting on
3084 * flushes to occur.
3085 */
79e53945 3086int
2021746e 3087i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3088{
8325a09d 3089 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3090 uint32_t old_write_domain, old_read_domains;
e47c68e9 3091 int ret;
2ef7eeaa 3092
02354392 3093 /* Not valid to be called on unbound objects. */
05394f39 3094 if (obj->gtt_space == NULL)
02354392
EA
3095 return -EINVAL;
3096
8d7e3de1
CW
3097 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3098 return 0;
3099
0201f1ec 3100 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3101 if (ret)
3102 return ret;
3103
7213342d 3104 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3105
05394f39
CW
3106 old_write_domain = obj->base.write_domain;
3107 old_read_domains = obj->base.read_domains;
1c5d22f7 3108
e47c68e9
EA
3109 /* It should now be out of any other write domains, and we can update
3110 * the domain values for our changes.
3111 */
05394f39
CW
3112 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3113 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3114 if (write) {
05394f39
CW
3115 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3116 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3117 obj->dirty = 1;
2ef7eeaa
EA
3118 }
3119
1c5d22f7
CW
3120 trace_i915_gem_object_change_domain(obj,
3121 old_read_domains,
3122 old_write_domain);
3123
8325a09d
CW
3124 /* And bump the LRU for this access */
3125 if (i915_gem_object_is_inactive(obj))
3126 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3127
e47c68e9
EA
3128 return 0;
3129}
3130
e4ffd173
CW
3131int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3132 enum i915_cache_level cache_level)
3133{
7bddb01f
DV
3134 struct drm_device *dev = obj->base.dev;
3135 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3136 int ret;
3137
3138 if (obj->cache_level == cache_level)
3139 return 0;
3140
3141 if (obj->pin_count) {
3142 DRM_DEBUG("can not change the cache level of pinned objects\n");
3143 return -EBUSY;
3144 }
3145
42d6ab48
CW
3146 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3147 ret = i915_gem_object_unbind(obj);
3148 if (ret)
3149 return ret;
3150 }
3151
e4ffd173
CW
3152 if (obj->gtt_space) {
3153 ret = i915_gem_object_finish_gpu(obj);
3154 if (ret)
3155 return ret;
3156
3157 i915_gem_object_finish_gtt(obj);
3158
3159 /* Before SandyBridge, you could not use tiling or fence
3160 * registers with snooped memory, so relinquish any fences
3161 * currently pointing to our region in the aperture.
3162 */
42d6ab48 3163 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3164 ret = i915_gem_object_put_fence(obj);
3165 if (ret)
3166 return ret;
3167 }
3168
74898d7e
DV
3169 if (obj->has_global_gtt_mapping)
3170 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3171 if (obj->has_aliasing_ppgtt_mapping)
3172 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3173 obj, cache_level);
42d6ab48
CW
3174
3175 obj->gtt_space->color = cache_level;
e4ffd173
CW
3176 }
3177
3178 if (cache_level == I915_CACHE_NONE) {
3179 u32 old_read_domains, old_write_domain;
3180
3181 /* If we're coming from LLC cached, then we haven't
3182 * actually been tracking whether the data is in the
3183 * CPU cache or not, since we only allow one bit set
3184 * in obj->write_domain and have been skipping the clflushes.
3185 * Just set it to the CPU cache for now.
3186 */
3187 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3188 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3189
3190 old_read_domains = obj->base.read_domains;
3191 old_write_domain = obj->base.write_domain;
3192
3193 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3194 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3195
3196 trace_i915_gem_object_change_domain(obj,
3197 old_read_domains,
3198 old_write_domain);
3199 }
3200
3201 obj->cache_level = cache_level;
42d6ab48 3202 i915_gem_verify_gtt(dev);
e4ffd173
CW
3203 return 0;
3204}
3205
199adf40
BW
3206int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3207 struct drm_file *file)
e6994aee 3208{
199adf40 3209 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3210 struct drm_i915_gem_object *obj;
3211 int ret;
3212
3213 ret = i915_mutex_lock_interruptible(dev);
3214 if (ret)
3215 return ret;
3216
3217 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3218 if (&obj->base == NULL) {
3219 ret = -ENOENT;
3220 goto unlock;
3221 }
3222
199adf40 3223 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3224
3225 drm_gem_object_unreference(&obj->base);
3226unlock:
3227 mutex_unlock(&dev->struct_mutex);
3228 return ret;
3229}
3230
199adf40
BW
3231int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3232 struct drm_file *file)
e6994aee 3233{
199adf40 3234 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3235 struct drm_i915_gem_object *obj;
3236 enum i915_cache_level level;
3237 int ret;
3238
199adf40
BW
3239 switch (args->caching) {
3240 case I915_CACHING_NONE:
e6994aee
CW
3241 level = I915_CACHE_NONE;
3242 break;
199adf40 3243 case I915_CACHING_CACHED:
e6994aee
CW
3244 level = I915_CACHE_LLC;
3245 break;
3246 default:
3247 return -EINVAL;
3248 }
3249
3bc2913e
BW
3250 ret = i915_mutex_lock_interruptible(dev);
3251 if (ret)
3252 return ret;
3253
e6994aee
CW
3254 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3255 if (&obj->base == NULL) {
3256 ret = -ENOENT;
3257 goto unlock;
3258 }
3259
3260 ret = i915_gem_object_set_cache_level(obj, level);
3261
3262 drm_gem_object_unreference(&obj->base);
3263unlock:
3264 mutex_unlock(&dev->struct_mutex);
3265 return ret;
3266}
3267
b9241ea3 3268/*
2da3b9b9
CW
3269 * Prepare buffer for display plane (scanout, cursors, etc).
3270 * Can be called from an uninterruptible phase (modesetting) and allows
3271 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3272 */
3273int
2da3b9b9
CW
3274i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3275 u32 alignment,
919926ae 3276 struct intel_ring_buffer *pipelined)
b9241ea3 3277{
2da3b9b9 3278 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3279 int ret;
3280
0be73284 3281 if (pipelined != obj->ring) {
2911a35b
BW
3282 ret = i915_gem_object_sync(obj, pipelined);
3283 if (ret)
b9241ea3
ZW
3284 return ret;
3285 }
3286
a7ef0640
EA
3287 /* The display engine is not coherent with the LLC cache on gen6. As
3288 * a result, we make sure that the pinning that is about to occur is
3289 * done with uncached PTEs. This is lowest common denominator for all
3290 * chipsets.
3291 *
3292 * However for gen6+, we could do better by using the GFDT bit instead
3293 * of uncaching, which would allow us to flush all the LLC-cached data
3294 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3295 */
3296 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3297 if (ret)
3298 return ret;
3299
2da3b9b9
CW
3300 /* As the user may map the buffer once pinned in the display plane
3301 * (e.g. libkms for the bootup splash), we have to ensure that we
3302 * always use map_and_fenceable for all scanout buffers.
3303 */
86a1ee26 3304 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3305 if (ret)
3306 return ret;
3307
b118c1e3
CW
3308 i915_gem_object_flush_cpu_write_domain(obj);
3309
2da3b9b9 3310 old_write_domain = obj->base.write_domain;
05394f39 3311 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3312
3313 /* It should now be out of any other write domains, and we can update
3314 * the domain values for our changes.
3315 */
e5f1d962 3316 obj->base.write_domain = 0;
05394f39 3317 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3318
3319 trace_i915_gem_object_change_domain(obj,
3320 old_read_domains,
2da3b9b9 3321 old_write_domain);
b9241ea3
ZW
3322
3323 return 0;
3324}
3325
85345517 3326int
a8198eea 3327i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3328{
88241785
CW
3329 int ret;
3330
a8198eea 3331 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3332 return 0;
3333
0201f1ec 3334 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3335 if (ret)
3336 return ret;
3337
a8198eea
CW
3338 /* Ensure that we invalidate the GPU's caches and TLBs. */
3339 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3340 return 0;
85345517
CW
3341}
3342
e47c68e9
EA
3343/**
3344 * Moves a single object to the CPU read, and possibly write domain.
3345 *
3346 * This function returns when the move is complete, including waiting on
3347 * flushes to occur.
3348 */
dabdfe02 3349int
919926ae 3350i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3351{
1c5d22f7 3352 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3353 int ret;
3354
8d7e3de1
CW
3355 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3356 return 0;
3357
0201f1ec 3358 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3359 if (ret)
3360 return ret;
3361
e47c68e9 3362 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3363
05394f39
CW
3364 old_write_domain = obj->base.write_domain;
3365 old_read_domains = obj->base.read_domains;
1c5d22f7 3366
e47c68e9 3367 /* Flush the CPU cache if it's still invalid. */
05394f39 3368 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3369 i915_gem_clflush_object(obj);
2ef7eeaa 3370
05394f39 3371 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3372 }
3373
3374 /* It should now be out of any other write domains, and we can update
3375 * the domain values for our changes.
3376 */
05394f39 3377 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3378
3379 /* If we're writing through the CPU, then the GPU read domains will
3380 * need to be invalidated at next use.
3381 */
3382 if (write) {
05394f39
CW
3383 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3384 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3385 }
2ef7eeaa 3386
1c5d22f7
CW
3387 trace_i915_gem_object_change_domain(obj,
3388 old_read_domains,
3389 old_write_domain);
3390
2ef7eeaa
EA
3391 return 0;
3392}
3393
673a394b
EA
3394/* Throttle our rendering by waiting until the ring has completed our requests
3395 * emitted over 20 msec ago.
3396 *
b962442e
EA
3397 * Note that if we were to use the current jiffies each time around the loop,
3398 * we wouldn't escape the function with any frames outstanding if the time to
3399 * render a frame was over 20ms.
3400 *
673a394b
EA
3401 * This should get us reasonable parallelism between CPU and GPU but also
3402 * relatively low latency when blocking on a particular request to finish.
3403 */
40a5f0de 3404static int
f787a5f5 3405i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3406{
f787a5f5
CW
3407 struct drm_i915_private *dev_priv = dev->dev_private;
3408 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3409 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3410 struct drm_i915_gem_request *request;
3411 struct intel_ring_buffer *ring = NULL;
3412 u32 seqno = 0;
3413 int ret;
93533c29 3414
e110e8d6
CW
3415 if (atomic_read(&dev_priv->mm.wedged))
3416 return -EIO;
3417
1c25595f 3418 spin_lock(&file_priv->mm.lock);
f787a5f5 3419 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3420 if (time_after_eq(request->emitted_jiffies, recent_enough))
3421 break;
40a5f0de 3422
f787a5f5
CW
3423 ring = request->ring;
3424 seqno = request->seqno;
b962442e 3425 }
1c25595f 3426 spin_unlock(&file_priv->mm.lock);
40a5f0de 3427
f787a5f5
CW
3428 if (seqno == 0)
3429 return 0;
2bc43b5c 3430
5c81fe85 3431 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3432 if (ret == 0)
3433 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3434
3435 return ret;
3436}
3437
673a394b 3438int
05394f39
CW
3439i915_gem_object_pin(struct drm_i915_gem_object *obj,
3440 uint32_t alignment,
86a1ee26
CW
3441 bool map_and_fenceable,
3442 bool nonblocking)
673a394b 3443{
673a394b
EA
3444 int ret;
3445
7e81a42e
CW
3446 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3447 return -EBUSY;
ac0c6b5a 3448
05394f39
CW
3449 if (obj->gtt_space != NULL) {
3450 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3451 (map_and_fenceable && !obj->map_and_fenceable)) {
3452 WARN(obj->pin_count,
ae7d49d8 3453 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3454 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3455 " obj->map_and_fenceable=%d\n",
05394f39 3456 obj->gtt_offset, alignment,
75e9e915 3457 map_and_fenceable,
05394f39 3458 obj->map_and_fenceable);
ac0c6b5a
CW
3459 ret = i915_gem_object_unbind(obj);
3460 if (ret)
3461 return ret;
3462 }
3463 }
3464
05394f39 3465 if (obj->gtt_space == NULL) {
8742267a
CW
3466 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3467
a00b10c3 3468 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3469 map_and_fenceable,
3470 nonblocking);
9731129c 3471 if (ret)
673a394b 3472 return ret;
8742267a
CW
3473
3474 if (!dev_priv->mm.aliasing_ppgtt)
3475 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3476 }
76446cac 3477
74898d7e
DV
3478 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3479 i915_gem_gtt_bind_object(obj, obj->cache_level);
3480
1b50247a 3481 obj->pin_count++;
6299f992 3482 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3483
3484 return 0;
3485}
3486
3487void
05394f39 3488i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3489{
05394f39
CW
3490 BUG_ON(obj->pin_count == 0);
3491 BUG_ON(obj->gtt_space == NULL);
673a394b 3492
1b50247a 3493 if (--obj->pin_count == 0)
6299f992 3494 obj->pin_mappable = false;
673a394b
EA
3495}
3496
3497int
3498i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3499 struct drm_file *file)
673a394b
EA
3500{
3501 struct drm_i915_gem_pin *args = data;
05394f39 3502 struct drm_i915_gem_object *obj;
673a394b
EA
3503 int ret;
3504
1d7cfea1
CW
3505 ret = i915_mutex_lock_interruptible(dev);
3506 if (ret)
3507 return ret;
673a394b 3508
05394f39 3509 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3510 if (&obj->base == NULL) {
1d7cfea1
CW
3511 ret = -ENOENT;
3512 goto unlock;
673a394b 3513 }
673a394b 3514
05394f39 3515 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3516 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3517 ret = -EINVAL;
3518 goto out;
3ef94daa
CW
3519 }
3520
05394f39 3521 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3522 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3523 args->handle);
1d7cfea1
CW
3524 ret = -EINVAL;
3525 goto out;
79e53945
JB
3526 }
3527
05394f39
CW
3528 obj->user_pin_count++;
3529 obj->pin_filp = file;
3530 if (obj->user_pin_count == 1) {
86a1ee26 3531 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3532 if (ret)
3533 goto out;
673a394b
EA
3534 }
3535
3536 /* XXX - flush the CPU caches for pinned objects
3537 * as the X server doesn't manage domains yet
3538 */
e47c68e9 3539 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3540 args->offset = obj->gtt_offset;
1d7cfea1 3541out:
05394f39 3542 drm_gem_object_unreference(&obj->base);
1d7cfea1 3543unlock:
673a394b 3544 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3545 return ret;
673a394b
EA
3546}
3547
3548int
3549i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3550 struct drm_file *file)
673a394b
EA
3551{
3552 struct drm_i915_gem_pin *args = data;
05394f39 3553 struct drm_i915_gem_object *obj;
76c1dec1 3554 int ret;
673a394b 3555
1d7cfea1
CW
3556 ret = i915_mutex_lock_interruptible(dev);
3557 if (ret)
3558 return ret;
673a394b 3559
05394f39 3560 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3561 if (&obj->base == NULL) {
1d7cfea1
CW
3562 ret = -ENOENT;
3563 goto unlock;
673a394b 3564 }
76c1dec1 3565
05394f39 3566 if (obj->pin_filp != file) {
79e53945
JB
3567 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3568 args->handle);
1d7cfea1
CW
3569 ret = -EINVAL;
3570 goto out;
79e53945 3571 }
05394f39
CW
3572 obj->user_pin_count--;
3573 if (obj->user_pin_count == 0) {
3574 obj->pin_filp = NULL;
79e53945
JB
3575 i915_gem_object_unpin(obj);
3576 }
673a394b 3577
1d7cfea1 3578out:
05394f39 3579 drm_gem_object_unreference(&obj->base);
1d7cfea1 3580unlock:
673a394b 3581 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3582 return ret;
673a394b
EA
3583}
3584
3585int
3586i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3587 struct drm_file *file)
673a394b
EA
3588{
3589 struct drm_i915_gem_busy *args = data;
05394f39 3590 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3591 int ret;
3592
76c1dec1 3593 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3594 if (ret)
76c1dec1 3595 return ret;
673a394b 3596
05394f39 3597 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3598 if (&obj->base == NULL) {
1d7cfea1
CW
3599 ret = -ENOENT;
3600 goto unlock;
673a394b 3601 }
d1b851fc 3602
0be555b6
CW
3603 /* Count all active objects as busy, even if they are currently not used
3604 * by the gpu. Users of this interface expect objects to eventually
3605 * become non-busy without any further actions, therefore emit any
3606 * necessary flushes here.
c4de0a5d 3607 */
30dfebf3 3608 ret = i915_gem_object_flush_active(obj);
0be555b6 3609
30dfebf3 3610 args->busy = obj->active;
e9808edd
CW
3611 if (obj->ring) {
3612 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3613 args->busy |= intel_ring_flag(obj->ring) << 16;
3614 }
673a394b 3615
05394f39 3616 drm_gem_object_unreference(&obj->base);
1d7cfea1 3617unlock:
673a394b 3618 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3619 return ret;
673a394b
EA
3620}
3621
3622int
3623i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3624 struct drm_file *file_priv)
3625{
0206e353 3626 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3627}
3628
3ef94daa
CW
3629int
3630i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3631 struct drm_file *file_priv)
3632{
3633 struct drm_i915_gem_madvise *args = data;
05394f39 3634 struct drm_i915_gem_object *obj;
76c1dec1 3635 int ret;
3ef94daa
CW
3636
3637 switch (args->madv) {
3638 case I915_MADV_DONTNEED:
3639 case I915_MADV_WILLNEED:
3640 break;
3641 default:
3642 return -EINVAL;
3643 }
3644
1d7cfea1
CW
3645 ret = i915_mutex_lock_interruptible(dev);
3646 if (ret)
3647 return ret;
3648
05394f39 3649 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3650 if (&obj->base == NULL) {
1d7cfea1
CW
3651 ret = -ENOENT;
3652 goto unlock;
3ef94daa 3653 }
3ef94daa 3654
05394f39 3655 if (obj->pin_count) {
1d7cfea1
CW
3656 ret = -EINVAL;
3657 goto out;
3ef94daa
CW
3658 }
3659
05394f39
CW
3660 if (obj->madv != __I915_MADV_PURGED)
3661 obj->madv = args->madv;
3ef94daa 3662
6c085a72
CW
3663 /* if the object is no longer attached, discard its backing storage */
3664 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3665 i915_gem_object_truncate(obj);
3666
05394f39 3667 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3668
1d7cfea1 3669out:
05394f39 3670 drm_gem_object_unreference(&obj->base);
1d7cfea1 3671unlock:
3ef94daa 3672 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3673 return ret;
3ef94daa
CW
3674}
3675
37e680a1
CW
3676void i915_gem_object_init(struct drm_i915_gem_object *obj,
3677 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3678{
0327d6ba
CW
3679 INIT_LIST_HEAD(&obj->mm_list);
3680 INIT_LIST_HEAD(&obj->gtt_list);
3681 INIT_LIST_HEAD(&obj->ring_list);
3682 INIT_LIST_HEAD(&obj->exec_list);
3683
37e680a1
CW
3684 obj->ops = ops;
3685
0327d6ba
CW
3686 obj->fence_reg = I915_FENCE_REG_NONE;
3687 obj->madv = I915_MADV_WILLNEED;
3688 /* Avoid an unnecessary call to unbind on the first bind. */
3689 obj->map_and_fenceable = true;
3690
3691 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3692}
3693
37e680a1
CW
3694static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3695 .get_pages = i915_gem_object_get_pages_gtt,
3696 .put_pages = i915_gem_object_put_pages_gtt,
3697};
3698
05394f39
CW
3699struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3700 size_t size)
ac52bc56 3701{
c397b908 3702 struct drm_i915_gem_object *obj;
5949eac4 3703 struct address_space *mapping;
1a240d4d 3704 gfp_t mask;
ac52bc56 3705
42dcedd4 3706 obj = i915_gem_object_alloc(dev);
c397b908
DV
3707 if (obj == NULL)
3708 return NULL;
673a394b 3709
c397b908 3710 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 3711 i915_gem_object_free(obj);
c397b908
DV
3712 return NULL;
3713 }
673a394b 3714
bed1ea95
CW
3715 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3716 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3717 /* 965gm cannot relocate objects above 4GiB. */
3718 mask &= ~__GFP_HIGHMEM;
3719 mask |= __GFP_DMA32;
3720 }
3721
5949eac4 3722 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3723 mapping_set_gfp_mask(mapping, mask);
5949eac4 3724
37e680a1 3725 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3726
c397b908
DV
3727 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3728 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3729
3d29b842
ED
3730 if (HAS_LLC(dev)) {
3731 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3732 * cache) for about a 10% performance improvement
3733 * compared to uncached. Graphics requests other than
3734 * display scanout are coherent with the CPU in
3735 * accessing this cache. This means in this mode we
3736 * don't need to clflush on the CPU side, and on the
3737 * GPU side we only need to flush internal caches to
3738 * get data visible to the CPU.
3739 *
3740 * However, we maintain the display planes as UC, and so
3741 * need to rebind when first used as such.
3742 */
3743 obj->cache_level = I915_CACHE_LLC;
3744 } else
3745 obj->cache_level = I915_CACHE_NONE;
3746
05394f39 3747 return obj;
c397b908
DV
3748}
3749
3750int i915_gem_init_object(struct drm_gem_object *obj)
3751{
3752 BUG();
de151cf6 3753
673a394b
EA
3754 return 0;
3755}
3756
1488fc08 3757void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3758{
1488fc08 3759 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3760 struct drm_device *dev = obj->base.dev;
be72615b 3761 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3762
26e12f89
CW
3763 trace_i915_gem_object_destroy(obj);
3764
1488fc08
CW
3765 if (obj->phys_obj)
3766 i915_gem_detach_phys_object(dev, obj);
3767
3768 obj->pin_count = 0;
3769 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3770 bool was_interruptible;
3771
3772 was_interruptible = dev_priv->mm.interruptible;
3773 dev_priv->mm.interruptible = false;
3774
3775 WARN_ON(i915_gem_object_unbind(obj));
3776
3777 dev_priv->mm.interruptible = was_interruptible;
3778 }
3779
a5570178 3780 obj->pages_pin_count = 0;
37e680a1 3781 i915_gem_object_put_pages(obj);
d8cb5086 3782 i915_gem_object_free_mmap_offset(obj);
0104fdbb 3783 i915_gem_object_release_stolen(obj);
de151cf6 3784
9da3da66
CW
3785 BUG_ON(obj->pages);
3786
2f745ad3
CW
3787 if (obj->base.import_attach)
3788 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 3789
05394f39
CW
3790 drm_gem_object_release(&obj->base);
3791 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3792
05394f39 3793 kfree(obj->bit_17);
42dcedd4 3794 i915_gem_object_free(obj);
673a394b
EA
3795}
3796
29105ccc
CW
3797int
3798i915_gem_idle(struct drm_device *dev)
3799{
3800 drm_i915_private_t *dev_priv = dev->dev_private;
3801 int ret;
28dfe52a 3802
29105ccc 3803 mutex_lock(&dev->struct_mutex);
1c5d22f7 3804
87acb0a5 3805 if (dev_priv->mm.suspended) {
29105ccc
CW
3806 mutex_unlock(&dev->struct_mutex);
3807 return 0;
28dfe52a
EA
3808 }
3809
b2da9fe5 3810 ret = i915_gpu_idle(dev);
6dbe2772
KP
3811 if (ret) {
3812 mutex_unlock(&dev->struct_mutex);
673a394b 3813 return ret;
6dbe2772 3814 }
b2da9fe5 3815 i915_gem_retire_requests(dev);
673a394b 3816
29105ccc 3817 /* Under UMS, be paranoid and evict. */
a39d7efc 3818 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3819 i915_gem_evict_everything(dev);
29105ccc 3820
312817a3
CW
3821 i915_gem_reset_fences(dev);
3822
29105ccc
CW
3823 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3824 * We need to replace this with a semaphore, or something.
3825 * And not confound mm.suspended!
3826 */
3827 dev_priv->mm.suspended = 1;
bc0c7f14 3828 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3829
3830 i915_kernel_lost_context(dev);
6dbe2772 3831 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3832
6dbe2772
KP
3833 mutex_unlock(&dev->struct_mutex);
3834
29105ccc
CW
3835 /* Cancel the retire work handler, which should be idle now. */
3836 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3837
673a394b
EA
3838 return 0;
3839}
3840
b9524a1e
BW
3841void i915_gem_l3_remap(struct drm_device *dev)
3842{
3843 drm_i915_private_t *dev_priv = dev->dev_private;
3844 u32 misccpctl;
3845 int i;
3846
3847 if (!IS_IVYBRIDGE(dev))
3848 return;
3849
a4da4fa4 3850 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
3851 return;
3852
3853 misccpctl = I915_READ(GEN7_MISCCPCTL);
3854 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3855 POSTING_READ(GEN7_MISCCPCTL);
3856
3857 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3858 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 3859 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
3860 DRM_DEBUG("0x%x was already programmed to %x\n",
3861 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 3862 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 3863 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 3864 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
3865 }
3866
3867 /* Make sure all the writes land before disabling dop clock gating */
3868 POSTING_READ(GEN7_L3LOG_BASE);
3869
3870 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3871}
3872
f691e2f4
DV
3873void i915_gem_init_swizzling(struct drm_device *dev)
3874{
3875 drm_i915_private_t *dev_priv = dev->dev_private;
3876
11782b02 3877 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3878 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3879 return;
3880
3881 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3882 DISP_TILE_SURFACE_SWIZZLING);
3883
11782b02
DV
3884 if (IS_GEN5(dev))
3885 return;
3886
f691e2f4
DV
3887 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3888 if (IS_GEN6(dev))
6b26c86d 3889 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3890 else
6b26c86d 3891 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3892}
e21af88d 3893
67b1b571
CW
3894static bool
3895intel_enable_blt(struct drm_device *dev)
3896{
3897 if (!HAS_BLT(dev))
3898 return false;
3899
3900 /* The blitter was dysfunctional on early prototypes */
3901 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3902 DRM_INFO("BLT not supported on this pre-production hardware;"
3903 " graphics performance will be degraded.\n");
3904 return false;
3905 }
3906
3907 return true;
3908}
3909
8187a2b7 3910int
f691e2f4 3911i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3912{
3913 drm_i915_private_t *dev_priv = dev->dev_private;
3914 int ret;
68f95ba9 3915
e76e9aeb 3916 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
8ecd1a66
DV
3917 return -EIO;
3918
eda2d7f5
RV
3919 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3920 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3921
b9524a1e
BW
3922 i915_gem_l3_remap(dev);
3923
f691e2f4
DV
3924 i915_gem_init_swizzling(dev);
3925
5c1143bb 3926 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3927 if (ret)
b6913e4b 3928 return ret;
68f95ba9
CW
3929
3930 if (HAS_BSD(dev)) {
5c1143bb 3931 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3932 if (ret)
3933 goto cleanup_render_ring;
d1b851fc 3934 }
68f95ba9 3935
67b1b571 3936 if (intel_enable_blt(dev)) {
549f7365
CW
3937 ret = intel_init_blt_ring_buffer(dev);
3938 if (ret)
3939 goto cleanup_bsd_ring;
3940 }
3941
6f392d54
CW
3942 dev_priv->next_seqno = 1;
3943
254f965c
BW
3944 /*
3945 * XXX: There was some w/a described somewhere suggesting loading
3946 * contexts before PPGTT.
3947 */
3948 i915_gem_context_init(dev);
e21af88d
DV
3949 i915_gem_init_ppgtt(dev);
3950
68f95ba9
CW
3951 return 0;
3952
549f7365 3953cleanup_bsd_ring:
1ec14ad3 3954 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3955cleanup_render_ring:
1ec14ad3 3956 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3957 return ret;
3958}
3959
1070a42b
CW
3960static bool
3961intel_enable_ppgtt(struct drm_device *dev)
3962{
3963 if (i915_enable_ppgtt >= 0)
3964 return i915_enable_ppgtt;
3965
3966#ifdef CONFIG_INTEL_IOMMU
3967 /* Disable ppgtt on SNB if VT-d is on. */
3968 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3969 return false;
3970#endif
3971
3972 return true;
3973}
3974
3975int i915_gem_init(struct drm_device *dev)
3976{
3977 struct drm_i915_private *dev_priv = dev->dev_private;
3978 unsigned long gtt_size, mappable_size;
3979 int ret;
3980
3981 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3982 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3983
3984 mutex_lock(&dev->struct_mutex);
3985 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3986 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3987 * aperture accordingly when using aliasing ppgtt. */
3988 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3989
3990 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3991
3992 ret = i915_gem_init_aliasing_ppgtt(dev);
3993 if (ret) {
3994 mutex_unlock(&dev->struct_mutex);
3995 return ret;
3996 }
3997 } else {
3998 /* Let GEM Manage all of the aperture.
3999 *
4000 * However, leave one page at the end still bound to the scratch
4001 * page. There are a number of places where the hardware
4002 * apparently prefetches past the end of the object, and we've
4003 * seen multiple hangs with the GPU head pointer stuck in a
4004 * batchbuffer bound at the last page of the aperture. One page
4005 * should be enough to keep any prefetching inside of the
4006 * aperture.
4007 */
4008 i915_gem_init_global_gtt(dev, 0, mappable_size,
4009 gtt_size);
4010 }
4011
4012 ret = i915_gem_init_hw(dev);
4013 mutex_unlock(&dev->struct_mutex);
4014 if (ret) {
4015 i915_gem_cleanup_aliasing_ppgtt(dev);
4016 return ret;
4017 }
4018
53ca26ca
DV
4019 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4020 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4021 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4022 return 0;
4023}
4024
8187a2b7
ZN
4025void
4026i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4027{
4028 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4029 struct intel_ring_buffer *ring;
1ec14ad3 4030 int i;
8187a2b7 4031
b4519513
CW
4032 for_each_ring(ring, dev_priv, i)
4033 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4034}
4035
673a394b
EA
4036int
4037i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4038 struct drm_file *file_priv)
4039{
4040 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4041 int ret;
673a394b 4042
79e53945
JB
4043 if (drm_core_check_feature(dev, DRIVER_MODESET))
4044 return 0;
4045
ba1234d1 4046 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4047 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4048 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4049 }
4050
673a394b 4051 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4052 dev_priv->mm.suspended = 0;
4053
f691e2f4 4054 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4055 if (ret != 0) {
4056 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4057 return ret;
d816f6ac 4058 }
9bb2d6f9 4059
69dc4987 4060 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4061 mutex_unlock(&dev->struct_mutex);
dbb19d30 4062
5f35308b
CW
4063 ret = drm_irq_install(dev);
4064 if (ret)
4065 goto cleanup_ringbuffer;
dbb19d30 4066
673a394b 4067 return 0;
5f35308b
CW
4068
4069cleanup_ringbuffer:
4070 mutex_lock(&dev->struct_mutex);
4071 i915_gem_cleanup_ringbuffer(dev);
4072 dev_priv->mm.suspended = 1;
4073 mutex_unlock(&dev->struct_mutex);
4074
4075 return ret;
673a394b
EA
4076}
4077
4078int
4079i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4080 struct drm_file *file_priv)
4081{
79e53945
JB
4082 if (drm_core_check_feature(dev, DRIVER_MODESET))
4083 return 0;
4084
dbb19d30 4085 drm_irq_uninstall(dev);
e6890f6f 4086 return i915_gem_idle(dev);
673a394b
EA
4087}
4088
4089void
4090i915_gem_lastclose(struct drm_device *dev)
4091{
4092 int ret;
673a394b 4093
e806b495
EA
4094 if (drm_core_check_feature(dev, DRIVER_MODESET))
4095 return;
4096
6dbe2772
KP
4097 ret = i915_gem_idle(dev);
4098 if (ret)
4099 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4100}
4101
64193406
CW
4102static void
4103init_ring_lists(struct intel_ring_buffer *ring)
4104{
4105 INIT_LIST_HEAD(&ring->active_list);
4106 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4107}
4108
673a394b
EA
4109void
4110i915_gem_load(struct drm_device *dev)
4111{
4112 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4113 int i;
4114
4115 dev_priv->slab =
4116 kmem_cache_create("i915_gem_object",
4117 sizeof(struct drm_i915_gem_object), 0,
4118 SLAB_HWCACHE_ALIGN,
4119 NULL);
673a394b 4120
69dc4987 4121 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4122 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4123 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4124 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4125 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4126 for (i = 0; i < I915_NUM_RINGS; i++)
4127 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4128 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4129 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4130 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4131 i915_gem_retire_work_handler);
30dbf0c0 4132 init_completion(&dev_priv->error_completion);
31169714 4133
94400120
DA
4134 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4135 if (IS_GEN3(dev)) {
50743298
DV
4136 I915_WRITE(MI_ARB_STATE,
4137 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4138 }
4139
72bfa19c
CW
4140 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4141
de151cf6 4142 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4143 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4144 dev_priv->fence_reg_start = 3;
de151cf6 4145
a6c45cf0 4146 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4147 dev_priv->num_fence_regs = 16;
4148 else
4149 dev_priv->num_fence_regs = 8;
4150
b5aa8a0f 4151 /* Initialize fence registers to zero */
ada726c7 4152 i915_gem_reset_fences(dev);
10ed13e4 4153
673a394b 4154 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4155 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4156
ce453d81
CW
4157 dev_priv->mm.interruptible = true;
4158
17250b71
CW
4159 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4160 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4161 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4162}
71acb5eb
DA
4163
4164/*
4165 * Create a physically contiguous memory object for this object
4166 * e.g. for cursor + overlay regs
4167 */
995b6762
CW
4168static int i915_gem_init_phys_object(struct drm_device *dev,
4169 int id, int size, int align)
71acb5eb
DA
4170{
4171 drm_i915_private_t *dev_priv = dev->dev_private;
4172 struct drm_i915_gem_phys_object *phys_obj;
4173 int ret;
4174
4175 if (dev_priv->mm.phys_objs[id - 1] || !size)
4176 return 0;
4177
9a298b2a 4178 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4179 if (!phys_obj)
4180 return -ENOMEM;
4181
4182 phys_obj->id = id;
4183
6eeefaf3 4184 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4185 if (!phys_obj->handle) {
4186 ret = -ENOMEM;
4187 goto kfree_obj;
4188 }
4189#ifdef CONFIG_X86
4190 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4191#endif
4192
4193 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4194
4195 return 0;
4196kfree_obj:
9a298b2a 4197 kfree(phys_obj);
71acb5eb
DA
4198 return ret;
4199}
4200
995b6762 4201static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4202{
4203 drm_i915_private_t *dev_priv = dev->dev_private;
4204 struct drm_i915_gem_phys_object *phys_obj;
4205
4206 if (!dev_priv->mm.phys_objs[id - 1])
4207 return;
4208
4209 phys_obj = dev_priv->mm.phys_objs[id - 1];
4210 if (phys_obj->cur_obj) {
4211 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4212 }
4213
4214#ifdef CONFIG_X86
4215 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4216#endif
4217 drm_pci_free(dev, phys_obj->handle);
4218 kfree(phys_obj);
4219 dev_priv->mm.phys_objs[id - 1] = NULL;
4220}
4221
4222void i915_gem_free_all_phys_object(struct drm_device *dev)
4223{
4224 int i;
4225
260883c8 4226 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4227 i915_gem_free_phys_object(dev, i);
4228}
4229
4230void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4231 struct drm_i915_gem_object *obj)
71acb5eb 4232{
05394f39 4233 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4234 char *vaddr;
71acb5eb 4235 int i;
71acb5eb
DA
4236 int page_count;
4237
05394f39 4238 if (!obj->phys_obj)
71acb5eb 4239 return;
05394f39 4240 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4241
05394f39 4242 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4243 for (i = 0; i < page_count; i++) {
5949eac4 4244 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4245 if (!IS_ERR(page)) {
4246 char *dst = kmap_atomic(page);
4247 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4248 kunmap_atomic(dst);
4249
4250 drm_clflush_pages(&page, 1);
4251
4252 set_page_dirty(page);
4253 mark_page_accessed(page);
4254 page_cache_release(page);
4255 }
71acb5eb 4256 }
e76e9aeb 4257 i915_gem_chipset_flush(dev);
d78b47b9 4258
05394f39
CW
4259 obj->phys_obj->cur_obj = NULL;
4260 obj->phys_obj = NULL;
71acb5eb
DA
4261}
4262
4263int
4264i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4265 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4266 int id,
4267 int align)
71acb5eb 4268{
05394f39 4269 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4270 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4271 int ret = 0;
4272 int page_count;
4273 int i;
4274
4275 if (id > I915_MAX_PHYS_OBJECT)
4276 return -EINVAL;
4277
05394f39
CW
4278 if (obj->phys_obj) {
4279 if (obj->phys_obj->id == id)
71acb5eb
DA
4280 return 0;
4281 i915_gem_detach_phys_object(dev, obj);
4282 }
4283
71acb5eb
DA
4284 /* create a new object */
4285 if (!dev_priv->mm.phys_objs[id - 1]) {
4286 ret = i915_gem_init_phys_object(dev, id,
05394f39 4287 obj->base.size, align);
71acb5eb 4288 if (ret) {
05394f39
CW
4289 DRM_ERROR("failed to init phys object %d size: %zu\n",
4290 id, obj->base.size);
e5281ccd 4291 return ret;
71acb5eb
DA
4292 }
4293 }
4294
4295 /* bind to the object */
05394f39
CW
4296 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4297 obj->phys_obj->cur_obj = obj;
71acb5eb 4298
05394f39 4299 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4300
4301 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4302 struct page *page;
4303 char *dst, *src;
4304
5949eac4 4305 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4306 if (IS_ERR(page))
4307 return PTR_ERR(page);
71acb5eb 4308
ff75b9bc 4309 src = kmap_atomic(page);
05394f39 4310 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4311 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4312 kunmap_atomic(src);
71acb5eb 4313
e5281ccd
CW
4314 mark_page_accessed(page);
4315 page_cache_release(page);
4316 }
d78b47b9 4317
71acb5eb 4318 return 0;
71acb5eb
DA
4319}
4320
4321static int
05394f39
CW
4322i915_gem_phys_pwrite(struct drm_device *dev,
4323 struct drm_i915_gem_object *obj,
71acb5eb
DA
4324 struct drm_i915_gem_pwrite *args,
4325 struct drm_file *file_priv)
4326{
05394f39 4327 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4328 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4329
b47b30cc
CW
4330 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4331 unsigned long unwritten;
4332
4333 /* The physical object once assigned is fixed for the lifetime
4334 * of the obj, so we can safely drop the lock and continue
4335 * to access vaddr.
4336 */
4337 mutex_unlock(&dev->struct_mutex);
4338 unwritten = copy_from_user(vaddr, user_data, args->size);
4339 mutex_lock(&dev->struct_mutex);
4340 if (unwritten)
4341 return -EFAULT;
4342 }
71acb5eb 4343
e76e9aeb 4344 i915_gem_chipset_flush(dev);
71acb5eb
DA
4345 return 0;
4346}
b962442e 4347
f787a5f5 4348void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4349{
f787a5f5 4350 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4351
4352 /* Clean up our request list when the client is going away, so that
4353 * later retire_requests won't dereference our soon-to-be-gone
4354 * file_priv.
4355 */
1c25595f 4356 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4357 while (!list_empty(&file_priv->mm.request_list)) {
4358 struct drm_i915_gem_request *request;
4359
4360 request = list_first_entry(&file_priv->mm.request_list,
4361 struct drm_i915_gem_request,
4362 client_list);
4363 list_del(&request->client_list);
4364 request->file_priv = NULL;
4365 }
1c25595f 4366 spin_unlock(&file_priv->mm.lock);
b962442e 4367}
31169714 4368
5774506f
CW
4369static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4370{
4371 if (!mutex_is_locked(mutex))
4372 return false;
4373
4374#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4375 return mutex->owner == task;
4376#else
4377 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4378 return false;
4379#endif
4380}
4381
31169714 4382static int
1495f230 4383i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4384{
17250b71
CW
4385 struct drm_i915_private *dev_priv =
4386 container_of(shrinker,
4387 struct drm_i915_private,
4388 mm.inactive_shrinker);
4389 struct drm_device *dev = dev_priv->dev;
6c085a72 4390 struct drm_i915_gem_object *obj;
1495f230 4391 int nr_to_scan = sc->nr_to_scan;
5774506f 4392 bool unlock = true;
17250b71
CW
4393 int cnt;
4394
5774506f
CW
4395 if (!mutex_trylock(&dev->struct_mutex)) {
4396 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4397 return 0;
4398
4399 unlock = false;
4400 }
31169714 4401
6c085a72
CW
4402 if (nr_to_scan) {
4403 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4404 if (nr_to_scan > 0)
4405 i915_gem_shrink_all(dev_priv);
31169714
CW
4406 }
4407
17250b71 4408 cnt = 0;
6c085a72 4409 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
a5570178
CW
4410 if (obj->pages_pin_count == 0)
4411 cnt += obj->base.size >> PAGE_SHIFT;
6c085a72 4412 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
a5570178 4413 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4414 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4415
5774506f
CW
4416 if (unlock)
4417 mutex_unlock(&dev->struct_mutex);
6c085a72 4418 return cnt;
31169714 4419}