]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: add accounting for mappable objects in gtt v2
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6 53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
920afa77 54 unsigned alignment, bool mappable);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
5cdf5881
CW
61static int
62i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
64
65static void
66i915_gem_object_put_pages(struct drm_gem_object *obj);
67
31169714
CW
68static LIST_HEAD(shrink_list);
69static DEFINE_SPINLOCK(shrink_list_lock);
70
73aa808f
CW
71/* some bookkeeping */
72static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
74{
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
77}
78
79static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
81{
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
84}
85
86static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
fb7d516a 87 struct drm_gem_object *obj)
73aa808f 88{
fb7d516a 89 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
73aa808f 90 dev_priv->mm.gtt_count++;
fb7d516a
DV
91 dev_priv->mm.gtt_memory += obj->size;
92 if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
93 dev_priv->mm.mappable_gtt_used +=
94 min_t(size_t, obj->size,
95 dev_priv->mm.gtt_mappable_end
96 - obj_priv->gtt_offset);
97 }
73aa808f
CW
98}
99
100static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
fb7d516a 101 struct drm_gem_object *obj)
73aa808f 102{
fb7d516a 103 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
73aa808f 104 dev_priv->mm.gtt_count--;
fb7d516a
DV
105 dev_priv->mm.gtt_memory -= obj->size;
106 if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
107 dev_priv->mm.mappable_gtt_used -=
108 min_t(size_t, obj->size,
109 dev_priv->mm.gtt_mappable_end
110 - obj_priv->gtt_offset);
111 }
112}
113
114/**
115 * Update the mappable working set counters. Call _only_ when there is a change
116 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
117 * @mappable: new state the changed mappable flag (either pin_ or fault_).
118 */
119static void
120i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
121 struct drm_gem_object *obj,
122 bool mappable)
123{
124 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
125
126 if (mappable) {
127 if (obj_priv->pin_mappable && obj_priv->fault_mappable)
128 /* Combined state was already mappable. */
129 return;
130 dev_priv->mm.gtt_mappable_count++;
131 dev_priv->mm.gtt_mappable_memory += obj->size;
132 } else {
133 if (obj_priv->pin_mappable || obj_priv->fault_mappable)
134 /* Combined state still mappable. */
135 return;
136 dev_priv->mm.gtt_mappable_count--;
137 dev_priv->mm.gtt_mappable_memory -= obj->size;
138 }
73aa808f
CW
139}
140
141static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
fb7d516a
DV
142 struct drm_gem_object *obj,
143 bool mappable)
73aa808f 144{
fb7d516a 145 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
73aa808f 146 dev_priv->mm.pin_count++;
fb7d516a
DV
147 dev_priv->mm.pin_memory += obj->size;
148 if (mappable) {
149 obj_priv->pin_mappable = true;
150 i915_gem_info_update_mappable(dev_priv, obj, true);
151 }
73aa808f
CW
152}
153
154static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
fb7d516a 155 struct drm_gem_object *obj)
73aa808f 156{
fb7d516a 157 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
73aa808f 158 dev_priv->mm.pin_count--;
fb7d516a
DV
159 dev_priv->mm.pin_memory -= obj->size;
160 if (obj_priv->pin_mappable) {
161 obj_priv->pin_mappable = false;
162 i915_gem_info_update_mappable(dev_priv, obj, false);
163 }
73aa808f
CW
164}
165
30dbf0c0
CW
166int
167i915_gem_check_is_wedged(struct drm_device *dev)
168{
169 struct drm_i915_private *dev_priv = dev->dev_private;
170 struct completion *x = &dev_priv->error_completion;
171 unsigned long flags;
172 int ret;
173
174 if (!atomic_read(&dev_priv->mm.wedged))
175 return 0;
176
177 ret = wait_for_completion_interruptible(x);
178 if (ret)
179 return ret;
180
181 /* Success, we reset the GPU! */
182 if (!atomic_read(&dev_priv->mm.wedged))
183 return 0;
184
185 /* GPU is hung, bump the completion count to account for
186 * the token we just consumed so that we never hit zero and
187 * end up waiting upon a subsequent completion event that
188 * will never happen.
189 */
190 spin_lock_irqsave(&x->wait.lock, flags);
191 x->done++;
192 spin_unlock_irqrestore(&x->wait.lock, flags);
193 return -EIO;
194}
195
76c1dec1
CW
196static int i915_mutex_lock_interruptible(struct drm_device *dev)
197{
198 struct drm_i915_private *dev_priv = dev->dev_private;
199 int ret;
200
201 ret = i915_gem_check_is_wedged(dev);
202 if (ret)
203 return ret;
204
205 ret = mutex_lock_interruptible(&dev->struct_mutex);
206 if (ret)
207 return ret;
208
209 if (atomic_read(&dev_priv->mm.wedged)) {
210 mutex_unlock(&dev->struct_mutex);
211 return -EAGAIN;
212 }
213
23bc5982 214 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
215 return 0;
216}
30dbf0c0 217
7d1c4804
CW
218static inline bool
219i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
220{
221 return obj_priv->gtt_space &&
222 !obj_priv->active &&
223 obj_priv->pin_count == 0;
224}
225
73aa808f
CW
226int i915_gem_do_init(struct drm_device *dev,
227 unsigned long start,
53984635 228 unsigned long mappable_end,
79e53945 229 unsigned long end)
673a394b
EA
230{
231 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 232
79e53945
JB
233 if (start >= end ||
234 (start & (PAGE_SIZE - 1)) != 0 ||
235 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
236 return -EINVAL;
237 }
238
79e53945
JB
239 drm_mm_init(&dev_priv->mm.gtt_space, start,
240 end - start);
673a394b 241
73aa808f 242 dev_priv->mm.gtt_total = end - start;
fb7d516a 243 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
53984635 244 dev_priv->mm.gtt_mappable_end = mappable_end;
79e53945
JB
245
246 return 0;
247}
673a394b 248
79e53945
JB
249int
250i915_gem_init_ioctl(struct drm_device *dev, void *data,
251 struct drm_file *file_priv)
252{
253 struct drm_i915_gem_init *args = data;
254 int ret;
255
256 mutex_lock(&dev->struct_mutex);
53984635 257 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
258 mutex_unlock(&dev->struct_mutex);
259
79e53945 260 return ret;
673a394b
EA
261}
262
5a125c3c
EA
263int
264i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
265 struct drm_file *file_priv)
266{
73aa808f 267 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 268 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
269
270 if (!(dev->driver->driver_features & DRIVER_GEM))
271 return -ENODEV;
272
73aa808f
CW
273 mutex_lock(&dev->struct_mutex);
274 args->aper_size = dev_priv->mm.gtt_total;
275 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
276 mutex_unlock(&dev->struct_mutex);
5a125c3c
EA
277
278 return 0;
279}
280
673a394b
EA
281
282/**
283 * Creates a new mm object and returns a handle to it.
284 */
285int
286i915_gem_create_ioctl(struct drm_device *dev, void *data,
287 struct drm_file *file_priv)
288{
289 struct drm_i915_gem_create *args = data;
290 struct drm_gem_object *obj;
a1a2d1d3
PP
291 int ret;
292 u32 handle;
673a394b
EA
293
294 args->size = roundup(args->size, PAGE_SIZE);
295
296 /* Allocate the new object */
ac52bc56 297 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
298 if (obj == NULL)
299 return -ENOMEM;
300
301 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754 302 if (ret) {
202f2fef
CW
303 drm_gem_object_release(obj);
304 i915_gem_info_remove_obj(dev->dev_private, obj->size);
305 kfree(obj);
673a394b 306 return ret;
1dfd9754 307 }
673a394b 308
202f2fef
CW
309 /* drop reference from allocate - handle holds it now */
310 drm_gem_object_unreference(obj);
311 trace_i915_gem_object_create(obj);
312
1dfd9754 313 args->handle = handle;
673a394b
EA
314 return 0;
315}
316
16e809ac
DV
317static bool
318i915_gem_object_cpu_accessible(struct drm_i915_gem_object *obj)
319{
320 struct drm_device *dev = obj->base.dev;
321 drm_i915_private_t *dev_priv = dev->dev_private;
322
323 return obj->gtt_space == NULL ||
324 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
325}
326
eb01459f
EA
327static inline int
328fast_shmem_read(struct page **pages,
329 loff_t page_base, int page_offset,
330 char __user *data,
331 int length)
332{
b5e4feb6 333 char *vaddr;
4f27b75d 334 int ret;
eb01459f 335
3e4d3af5 336 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
4f27b75d 337 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
3e4d3af5 338 kunmap_atomic(vaddr);
eb01459f 339
4f27b75d 340 return ret;
eb01459f
EA
341}
342
280b713b
EA
343static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
344{
345 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 346 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
347
348 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
349 obj_priv->tiling_mode != I915_TILING_NONE;
350}
351
99a03df5 352static inline void
40123c1f
EA
353slow_shmem_copy(struct page *dst_page,
354 int dst_offset,
355 struct page *src_page,
356 int src_offset,
357 int length)
358{
359 char *dst_vaddr, *src_vaddr;
360
99a03df5
CW
361 dst_vaddr = kmap(dst_page);
362 src_vaddr = kmap(src_page);
40123c1f
EA
363
364 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
365
99a03df5
CW
366 kunmap(src_page);
367 kunmap(dst_page);
40123c1f
EA
368}
369
99a03df5 370static inline void
280b713b
EA
371slow_shmem_bit17_copy(struct page *gpu_page,
372 int gpu_offset,
373 struct page *cpu_page,
374 int cpu_offset,
375 int length,
376 int is_read)
377{
378 char *gpu_vaddr, *cpu_vaddr;
379
380 /* Use the unswizzled path if this page isn't affected. */
381 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
382 if (is_read)
383 return slow_shmem_copy(cpu_page, cpu_offset,
384 gpu_page, gpu_offset, length);
385 else
386 return slow_shmem_copy(gpu_page, gpu_offset,
387 cpu_page, cpu_offset, length);
388 }
389
99a03df5
CW
390 gpu_vaddr = kmap(gpu_page);
391 cpu_vaddr = kmap(cpu_page);
280b713b
EA
392
393 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
394 * XORing with the other bits (A9 for Y, A9 and A10 for X)
395 */
396 while (length > 0) {
397 int cacheline_end = ALIGN(gpu_offset + 1, 64);
398 int this_length = min(cacheline_end - gpu_offset, length);
399 int swizzled_gpu_offset = gpu_offset ^ 64;
400
401 if (is_read) {
402 memcpy(cpu_vaddr + cpu_offset,
403 gpu_vaddr + swizzled_gpu_offset,
404 this_length);
405 } else {
406 memcpy(gpu_vaddr + swizzled_gpu_offset,
407 cpu_vaddr + cpu_offset,
408 this_length);
409 }
410 cpu_offset += this_length;
411 gpu_offset += this_length;
412 length -= this_length;
413 }
414
99a03df5
CW
415 kunmap(cpu_page);
416 kunmap(gpu_page);
280b713b
EA
417}
418
eb01459f
EA
419/**
420 * This is the fast shmem pread path, which attempts to copy_from_user directly
421 * from the backing pages of the object to the user's address space. On a
422 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
423 */
424static int
425i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
426 struct drm_i915_gem_pread *args,
427 struct drm_file *file_priv)
428{
23010e43 429 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
430 ssize_t remain;
431 loff_t offset, page_base;
432 char __user *user_data;
433 int page_offset, page_length;
eb01459f
EA
434
435 user_data = (char __user *) (uintptr_t) args->data_ptr;
436 remain = args->size;
437
23010e43 438 obj_priv = to_intel_bo(obj);
eb01459f
EA
439 offset = args->offset;
440
441 while (remain > 0) {
442 /* Operation in this page
443 *
444 * page_base = page offset within aperture
445 * page_offset = offset within page
446 * page_length = bytes to copy for this page
447 */
448 page_base = (offset & ~(PAGE_SIZE-1));
449 page_offset = offset & (PAGE_SIZE-1);
450 page_length = remain;
451 if ((page_offset + remain) > PAGE_SIZE)
452 page_length = PAGE_SIZE - page_offset;
453
4f27b75d
CW
454 if (fast_shmem_read(obj_priv->pages,
455 page_base, page_offset,
456 user_data, page_length))
457 return -EFAULT;
eb01459f
EA
458
459 remain -= page_length;
460 user_data += page_length;
461 offset += page_length;
462 }
463
4f27b75d 464 return 0;
eb01459f
EA
465}
466
07f73f69
CW
467static int
468i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
469{
470 int ret;
471
4bdadb97 472 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
473
474 /* If we've insufficient memory to map in the pages, attempt
475 * to make some space by throwing out some old buffers.
476 */
477 if (ret == -ENOMEM) {
478 struct drm_device *dev = obj->dev;
07f73f69 479
0108a3ed 480 ret = i915_gem_evict_something(dev, obj->size,
a6e0aa42
DV
481 i915_gem_get_gtt_alignment(obj),
482 false);
07f73f69
CW
483 if (ret)
484 return ret;
485
4bdadb97 486 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
487 }
488
489 return ret;
490}
491
eb01459f
EA
492/**
493 * This is the fallback shmem pread path, which allocates temporary storage
494 * in kernel space to copy_to_user into outside of the struct_mutex, so we
495 * can copy out of the object's backing pages while holding the struct mutex
496 * and not take page faults.
497 */
498static int
499i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
500 struct drm_i915_gem_pread *args,
501 struct drm_file *file_priv)
502{
23010e43 503 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
504 struct mm_struct *mm = current->mm;
505 struct page **user_pages;
506 ssize_t remain;
507 loff_t offset, pinned_pages, i;
508 loff_t first_data_page, last_data_page, num_pages;
509 int shmem_page_index, shmem_page_offset;
510 int data_page_index, data_page_offset;
511 int page_length;
512 int ret;
513 uint64_t data_ptr = args->data_ptr;
280b713b 514 int do_bit17_swizzling;
eb01459f
EA
515
516 remain = args->size;
517
518 /* Pin the user pages containing the data. We can't fault while
519 * holding the struct mutex, yet we want to hold it while
520 * dereferencing the user data.
521 */
522 first_data_page = data_ptr / PAGE_SIZE;
523 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
524 num_pages = last_data_page - first_data_page + 1;
525
4f27b75d 526 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
527 if (user_pages == NULL)
528 return -ENOMEM;
529
4f27b75d 530 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
531 down_read(&mm->mmap_sem);
532 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 533 num_pages, 1, 0, user_pages, NULL);
eb01459f 534 up_read(&mm->mmap_sem);
4f27b75d 535 mutex_lock(&dev->struct_mutex);
eb01459f
EA
536 if (pinned_pages < num_pages) {
537 ret = -EFAULT;
4f27b75d 538 goto out;
eb01459f
EA
539 }
540
4f27b75d
CW
541 ret = i915_gem_object_set_cpu_read_domain_range(obj,
542 args->offset,
543 args->size);
07f73f69 544 if (ret)
4f27b75d 545 goto out;
eb01459f 546
4f27b75d 547 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 548
23010e43 549 obj_priv = to_intel_bo(obj);
eb01459f
EA
550 offset = args->offset;
551
552 while (remain > 0) {
553 /* Operation in this page
554 *
555 * shmem_page_index = page number within shmem file
556 * shmem_page_offset = offset within page in shmem file
557 * data_page_index = page number in get_user_pages return
558 * data_page_offset = offset with data_page_index page.
559 * page_length = bytes to copy for this page
560 */
561 shmem_page_index = offset / PAGE_SIZE;
562 shmem_page_offset = offset & ~PAGE_MASK;
563 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
564 data_page_offset = data_ptr & ~PAGE_MASK;
565
566 page_length = remain;
567 if ((shmem_page_offset + page_length) > PAGE_SIZE)
568 page_length = PAGE_SIZE - shmem_page_offset;
569 if ((data_page_offset + page_length) > PAGE_SIZE)
570 page_length = PAGE_SIZE - data_page_offset;
571
280b713b 572 if (do_bit17_swizzling) {
99a03df5 573 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 574 shmem_page_offset,
99a03df5
CW
575 user_pages[data_page_index],
576 data_page_offset,
577 page_length,
578 1);
579 } else {
580 slow_shmem_copy(user_pages[data_page_index],
581 data_page_offset,
582 obj_priv->pages[shmem_page_index],
583 shmem_page_offset,
584 page_length);
280b713b 585 }
eb01459f
EA
586
587 remain -= page_length;
588 data_ptr += page_length;
589 offset += page_length;
590 }
591
4f27b75d 592out:
eb01459f
EA
593 for (i = 0; i < pinned_pages; i++) {
594 SetPageDirty(user_pages[i]);
595 page_cache_release(user_pages[i]);
596 }
8e7d2b2c 597 drm_free_large(user_pages);
eb01459f
EA
598
599 return ret;
600}
601
673a394b
EA
602/**
603 * Reads data from the object referenced by handle.
604 *
605 * On error, the contents of *data are undefined.
606 */
607int
608i915_gem_pread_ioctl(struct drm_device *dev, void *data,
609 struct drm_file *file_priv)
610{
611 struct drm_i915_gem_pread *args = data;
612 struct drm_gem_object *obj;
613 struct drm_i915_gem_object *obj_priv;
35b62a89 614 int ret = 0;
673a394b 615
4f27b75d 616 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 617 if (ret)
4f27b75d 618 return ret;
673a394b
EA
619
620 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
621 if (obj == NULL) {
622 ret = -ENOENT;
623 goto unlock;
4f27b75d 624 }
23010e43 625 obj_priv = to_intel_bo(obj);
673a394b 626
7dcd2499
CW
627 /* Bounds check source. */
628 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 629 ret = -EINVAL;
35b62a89 630 goto out;
ce9d419d
CW
631 }
632
35b62a89
CW
633 if (args->size == 0)
634 goto out;
635
ce9d419d
CW
636 if (!access_ok(VERIFY_WRITE,
637 (char __user *)(uintptr_t)args->data_ptr,
638 args->size)) {
639 ret = -EFAULT;
35b62a89 640 goto out;
673a394b
EA
641 }
642
b5e4feb6
CW
643 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
644 args->size);
645 if (ret) {
646 ret = -EFAULT;
647 goto out;
280b713b 648 }
673a394b 649
4f27b75d
CW
650 ret = i915_gem_object_get_pages_or_evict(obj);
651 if (ret)
652 goto out;
653
654 ret = i915_gem_object_set_cpu_read_domain_range(obj,
655 args->offset,
656 args->size);
657 if (ret)
658 goto out_put;
659
660 ret = -EFAULT;
661 if (!i915_gem_object_needs_bit17_swizzle(obj))
280b713b 662 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
4f27b75d
CW
663 if (ret == -EFAULT)
664 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
673a394b 665
4f27b75d
CW
666out_put:
667 i915_gem_object_put_pages(obj);
35b62a89 668out:
4f27b75d 669 drm_gem_object_unreference(obj);
1d7cfea1 670unlock:
4f27b75d 671 mutex_unlock(&dev->struct_mutex);
eb01459f 672 return ret;
673a394b
EA
673}
674
0839ccb8
KP
675/* This is the fast write path which cannot handle
676 * page faults in the source data
9b7530cc 677 */
0839ccb8
KP
678
679static inline int
680fast_user_write(struct io_mapping *mapping,
681 loff_t page_base, int page_offset,
682 char __user *user_data,
683 int length)
9b7530cc 684{
9b7530cc 685 char *vaddr_atomic;
0839ccb8 686 unsigned long unwritten;
9b7530cc 687
3e4d3af5 688 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
689 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
690 user_data, length);
3e4d3af5 691 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 692 return unwritten;
0839ccb8
KP
693}
694
695/* Here's the write path which can sleep for
696 * page faults
697 */
698
ab34c226 699static inline void
3de09aa3
EA
700slow_kernel_write(struct io_mapping *mapping,
701 loff_t gtt_base, int gtt_offset,
702 struct page *user_page, int user_offset,
703 int length)
0839ccb8 704{
ab34c226
CW
705 char __iomem *dst_vaddr;
706 char *src_vaddr;
0839ccb8 707
ab34c226
CW
708 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
709 src_vaddr = kmap(user_page);
710
711 memcpy_toio(dst_vaddr + gtt_offset,
712 src_vaddr + user_offset,
713 length);
714
715 kunmap(user_page);
716 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
717}
718
40123c1f
EA
719static inline int
720fast_shmem_write(struct page **pages,
721 loff_t page_base, int page_offset,
722 char __user *data,
723 int length)
724{
b5e4feb6 725 char *vaddr;
fbd5a26d 726 int ret;
40123c1f 727
3e4d3af5 728 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
fbd5a26d 729 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
3e4d3af5 730 kunmap_atomic(vaddr);
40123c1f 731
fbd5a26d 732 return ret;
40123c1f
EA
733}
734
3de09aa3
EA
735/**
736 * This is the fast pwrite path, where we copy the data directly from the
737 * user into the GTT, uncached.
738 */
673a394b 739static int
3de09aa3
EA
740i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
741 struct drm_i915_gem_pwrite *args,
742 struct drm_file *file_priv)
673a394b 743{
23010e43 744 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 745 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 746 ssize_t remain;
0839ccb8 747 loff_t offset, page_base;
673a394b 748 char __user *user_data;
0839ccb8 749 int page_offset, page_length;
673a394b
EA
750
751 user_data = (char __user *) (uintptr_t) args->data_ptr;
752 remain = args->size;
673a394b 753
23010e43 754 obj_priv = to_intel_bo(obj);
673a394b 755 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
756
757 while (remain > 0) {
758 /* Operation in this page
759 *
0839ccb8
KP
760 * page_base = page offset within aperture
761 * page_offset = offset within page
762 * page_length = bytes to copy for this page
673a394b 763 */
0839ccb8
KP
764 page_base = (offset & ~(PAGE_SIZE-1));
765 page_offset = offset & (PAGE_SIZE-1);
766 page_length = remain;
767 if ((page_offset + remain) > PAGE_SIZE)
768 page_length = PAGE_SIZE - page_offset;
769
0839ccb8 770 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
771 * source page isn't available. Return the error and we'll
772 * retry in the slow path.
0839ccb8 773 */
fbd5a26d
CW
774 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
775 page_offset, user_data, page_length))
776
777 return -EFAULT;
673a394b 778
0839ccb8
KP
779 remain -= page_length;
780 user_data += page_length;
781 offset += page_length;
673a394b 782 }
673a394b 783
fbd5a26d 784 return 0;
673a394b
EA
785}
786
3de09aa3
EA
787/**
788 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
789 * the memory and maps it using kmap_atomic for copying.
790 *
791 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
792 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
793 */
3043c60c 794static int
3de09aa3
EA
795i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
796 struct drm_i915_gem_pwrite *args,
797 struct drm_file *file_priv)
673a394b 798{
23010e43 799 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
800 drm_i915_private_t *dev_priv = dev->dev_private;
801 ssize_t remain;
802 loff_t gtt_page_base, offset;
803 loff_t first_data_page, last_data_page, num_pages;
804 loff_t pinned_pages, i;
805 struct page **user_pages;
806 struct mm_struct *mm = current->mm;
807 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 808 int ret;
3de09aa3
EA
809 uint64_t data_ptr = args->data_ptr;
810
811 remain = args->size;
812
813 /* Pin the user pages containing the data. We can't fault while
814 * holding the struct mutex, and all of the pwrite implementations
815 * want to hold it while dereferencing the user data.
816 */
817 first_data_page = data_ptr / PAGE_SIZE;
818 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
819 num_pages = last_data_page - first_data_page + 1;
820
fbd5a26d 821 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
822 if (user_pages == NULL)
823 return -ENOMEM;
824
fbd5a26d 825 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
826 down_read(&mm->mmap_sem);
827 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
828 num_pages, 0, 0, user_pages, NULL);
829 up_read(&mm->mmap_sem);
fbd5a26d 830 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
831 if (pinned_pages < num_pages) {
832 ret = -EFAULT;
833 goto out_unpin_pages;
834 }
673a394b 835
3de09aa3
EA
836 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
837 if (ret)
fbd5a26d 838 goto out_unpin_pages;
3de09aa3 839
23010e43 840 obj_priv = to_intel_bo(obj);
3de09aa3
EA
841 offset = obj_priv->gtt_offset + args->offset;
842
843 while (remain > 0) {
844 /* Operation in this page
845 *
846 * gtt_page_base = page offset within aperture
847 * gtt_page_offset = offset within page in aperture
848 * data_page_index = page number in get_user_pages return
849 * data_page_offset = offset with data_page_index page.
850 * page_length = bytes to copy for this page
851 */
852 gtt_page_base = offset & PAGE_MASK;
853 gtt_page_offset = offset & ~PAGE_MASK;
854 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
855 data_page_offset = data_ptr & ~PAGE_MASK;
856
857 page_length = remain;
858 if ((gtt_page_offset + page_length) > PAGE_SIZE)
859 page_length = PAGE_SIZE - gtt_page_offset;
860 if ((data_page_offset + page_length) > PAGE_SIZE)
861 page_length = PAGE_SIZE - data_page_offset;
862
ab34c226
CW
863 slow_kernel_write(dev_priv->mm.gtt_mapping,
864 gtt_page_base, gtt_page_offset,
865 user_pages[data_page_index],
866 data_page_offset,
867 page_length);
3de09aa3
EA
868
869 remain -= page_length;
870 offset += page_length;
871 data_ptr += page_length;
872 }
873
3de09aa3
EA
874out_unpin_pages:
875 for (i = 0; i < pinned_pages; i++)
876 page_cache_release(user_pages[i]);
8e7d2b2c 877 drm_free_large(user_pages);
3de09aa3
EA
878
879 return ret;
880}
881
40123c1f
EA
882/**
883 * This is the fast shmem pwrite path, which attempts to directly
884 * copy_from_user into the kmapped pages backing the object.
885 */
3043c60c 886static int
40123c1f
EA
887i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
888 struct drm_i915_gem_pwrite *args,
889 struct drm_file *file_priv)
673a394b 890{
23010e43 891 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
892 ssize_t remain;
893 loff_t offset, page_base;
894 char __user *user_data;
895 int page_offset, page_length;
40123c1f
EA
896
897 user_data = (char __user *) (uintptr_t) args->data_ptr;
898 remain = args->size;
673a394b 899
23010e43 900 obj_priv = to_intel_bo(obj);
40123c1f
EA
901 offset = args->offset;
902 obj_priv->dirty = 1;
903
904 while (remain > 0) {
905 /* Operation in this page
906 *
907 * page_base = page offset within aperture
908 * page_offset = offset within page
909 * page_length = bytes to copy for this page
910 */
911 page_base = (offset & ~(PAGE_SIZE-1));
912 page_offset = offset & (PAGE_SIZE-1);
913 page_length = remain;
914 if ((page_offset + remain) > PAGE_SIZE)
915 page_length = PAGE_SIZE - page_offset;
916
fbd5a26d 917 if (fast_shmem_write(obj_priv->pages,
40123c1f 918 page_base, page_offset,
fbd5a26d
CW
919 user_data, page_length))
920 return -EFAULT;
40123c1f
EA
921
922 remain -= page_length;
923 user_data += page_length;
924 offset += page_length;
925 }
926
fbd5a26d 927 return 0;
40123c1f
EA
928}
929
930/**
931 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
932 * the memory and maps it using kmap_atomic for copying.
933 *
934 * This avoids taking mmap_sem for faulting on the user's address while the
935 * struct_mutex is held.
936 */
937static int
938i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
939 struct drm_i915_gem_pwrite *args,
940 struct drm_file *file_priv)
941{
23010e43 942 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
943 struct mm_struct *mm = current->mm;
944 struct page **user_pages;
945 ssize_t remain;
946 loff_t offset, pinned_pages, i;
947 loff_t first_data_page, last_data_page, num_pages;
948 int shmem_page_index, shmem_page_offset;
949 int data_page_index, data_page_offset;
950 int page_length;
951 int ret;
952 uint64_t data_ptr = args->data_ptr;
280b713b 953 int do_bit17_swizzling;
40123c1f
EA
954
955 remain = args->size;
956
957 /* Pin the user pages containing the data. We can't fault while
958 * holding the struct mutex, and all of the pwrite implementations
959 * want to hold it while dereferencing the user data.
960 */
961 first_data_page = data_ptr / PAGE_SIZE;
962 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
963 num_pages = last_data_page - first_data_page + 1;
964
4f27b75d 965 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
966 if (user_pages == NULL)
967 return -ENOMEM;
968
fbd5a26d 969 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
970 down_read(&mm->mmap_sem);
971 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
972 num_pages, 0, 0, user_pages, NULL);
973 up_read(&mm->mmap_sem);
fbd5a26d 974 mutex_lock(&dev->struct_mutex);
40123c1f
EA
975 if (pinned_pages < num_pages) {
976 ret = -EFAULT;
fbd5a26d 977 goto out;
673a394b
EA
978 }
979
fbd5a26d 980 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 981 if (ret)
fbd5a26d 982 goto out;
40123c1f 983
fbd5a26d 984 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 985
23010e43 986 obj_priv = to_intel_bo(obj);
673a394b 987 offset = args->offset;
40123c1f 988 obj_priv->dirty = 1;
673a394b 989
40123c1f
EA
990 while (remain > 0) {
991 /* Operation in this page
992 *
993 * shmem_page_index = page number within shmem file
994 * shmem_page_offset = offset within page in shmem file
995 * data_page_index = page number in get_user_pages return
996 * data_page_offset = offset with data_page_index page.
997 * page_length = bytes to copy for this page
998 */
999 shmem_page_index = offset / PAGE_SIZE;
1000 shmem_page_offset = offset & ~PAGE_MASK;
1001 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
1002 data_page_offset = data_ptr & ~PAGE_MASK;
1003
1004 page_length = remain;
1005 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1006 page_length = PAGE_SIZE - shmem_page_offset;
1007 if ((data_page_offset + page_length) > PAGE_SIZE)
1008 page_length = PAGE_SIZE - data_page_offset;
1009
280b713b 1010 if (do_bit17_swizzling) {
99a03df5 1011 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
1012 shmem_page_offset,
1013 user_pages[data_page_index],
1014 data_page_offset,
99a03df5
CW
1015 page_length,
1016 0);
1017 } else {
1018 slow_shmem_copy(obj_priv->pages[shmem_page_index],
1019 shmem_page_offset,
1020 user_pages[data_page_index],
1021 data_page_offset,
1022 page_length);
280b713b 1023 }
40123c1f
EA
1024
1025 remain -= page_length;
1026 data_ptr += page_length;
1027 offset += page_length;
673a394b
EA
1028 }
1029
fbd5a26d 1030out:
40123c1f
EA
1031 for (i = 0; i < pinned_pages; i++)
1032 page_cache_release(user_pages[i]);
8e7d2b2c 1033 drm_free_large(user_pages);
673a394b 1034
40123c1f 1035 return ret;
673a394b
EA
1036}
1037
1038/**
1039 * Writes data to the object referenced by handle.
1040 *
1041 * On error, the contents of the buffer that were to be modified are undefined.
1042 */
1043int
1044i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1045 struct drm_file *file)
673a394b
EA
1046{
1047 struct drm_i915_gem_pwrite *args = data;
1048 struct drm_gem_object *obj;
1049 struct drm_i915_gem_object *obj_priv;
1050 int ret = 0;
1051
fbd5a26d 1052 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1053 if (ret)
fbd5a26d 1054 return ret;
1d7cfea1
CW
1055
1056 obj = drm_gem_object_lookup(dev, file, args->handle);
1057 if (obj == NULL) {
1058 ret = -ENOENT;
1059 goto unlock;
fbd5a26d 1060 }
23010e43 1061 obj_priv = to_intel_bo(obj);
673a394b 1062
fbd5a26d 1063
7dcd2499
CW
1064 /* Bounds check destination. */
1065 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 1066 ret = -EINVAL;
35b62a89 1067 goto out;
ce9d419d
CW
1068 }
1069
35b62a89
CW
1070 if (args->size == 0)
1071 goto out;
1072
ce9d419d
CW
1073 if (!access_ok(VERIFY_READ,
1074 (char __user *)(uintptr_t)args->data_ptr,
1075 args->size)) {
1076 ret = -EFAULT;
35b62a89 1077 goto out;
673a394b
EA
1078 }
1079
b5e4feb6
CW
1080 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1081 args->size);
1082 if (ret) {
1083 ret = -EFAULT;
1084 goto out;
673a394b
EA
1085 }
1086
1087 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1088 * it would end up going through the fenced access, and we'll get
1089 * different detiling behavior between reading and writing.
1090 * pread/pwrite currently are reading and writing from the CPU
1091 * perspective, requiring manual detiling by the client.
1092 */
71acb5eb 1093 if (obj_priv->phys_obj)
fbd5a26d 1094 ret = i915_gem_phys_pwrite(dev, obj, args, file);
71acb5eb 1095 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
5cdf5881 1096 obj_priv->gtt_space &&
9b8c4a0b 1097 obj->write_domain != I915_GEM_DOMAIN_CPU) {
920afa77 1098 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1099 if (ret)
1100 goto out;
1101
1102 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1103 if (ret)
1104 goto out_unpin;
1105
1106 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1107 if (ret == -EFAULT)
1108 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1109
1110out_unpin:
1111 i915_gem_object_unpin(obj);
40123c1f 1112 } else {
fbd5a26d
CW
1113 ret = i915_gem_object_get_pages_or_evict(obj);
1114 if (ret)
1115 goto out;
673a394b 1116
fbd5a26d
CW
1117 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1118 if (ret)
1119 goto out_put;
673a394b 1120
fbd5a26d
CW
1121 ret = -EFAULT;
1122 if (!i915_gem_object_needs_bit17_swizzle(obj))
1123 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1124 if (ret == -EFAULT)
1125 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1126
1127out_put:
1128 i915_gem_object_put_pages(obj);
1129 }
673a394b 1130
35b62a89 1131out:
fbd5a26d 1132 drm_gem_object_unreference(obj);
1d7cfea1 1133unlock:
fbd5a26d 1134 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1135 return ret;
1136}
1137
1138/**
2ef7eeaa
EA
1139 * Called when user space prepares to use an object with the CPU, either
1140 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1141 */
1142int
1143i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1144 struct drm_file *file_priv)
1145{
a09ba7fa 1146 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1147 struct drm_i915_gem_set_domain *args = data;
1148 struct drm_gem_object *obj;
652c393a 1149 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1150 uint32_t read_domains = args->read_domains;
1151 uint32_t write_domain = args->write_domain;
673a394b
EA
1152 int ret;
1153
1154 if (!(dev->driver->driver_features & DRIVER_GEM))
1155 return -ENODEV;
1156
2ef7eeaa 1157 /* Only handle setting domains to types used by the CPU. */
21d509e3 1158 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1159 return -EINVAL;
1160
21d509e3 1161 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1162 return -EINVAL;
1163
1164 /* Having something in the write domain implies it's in the read
1165 * domain, and only that read domain. Enforce that in the request.
1166 */
1167 if (write_domain != 0 && read_domains != write_domain)
1168 return -EINVAL;
1169
76c1dec1 1170 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1171 if (ret)
76c1dec1 1172 return ret;
1d7cfea1 1173
673a394b 1174 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
1175 if (obj == NULL) {
1176 ret = -ENOENT;
1177 goto unlock;
76c1dec1 1178 }
23010e43 1179 obj_priv = to_intel_bo(obj);
673a394b 1180
652c393a
JB
1181 intel_mark_busy(dev, obj);
1182
2ef7eeaa
EA
1183 if (read_domains & I915_GEM_DOMAIN_GTT) {
1184 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1185
a09ba7fa
EA
1186 /* Update the LRU on the fence for the CPU access that's
1187 * about to occur.
1188 */
1189 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1190 struct drm_i915_fence_reg *reg =
1191 &dev_priv->fence_regs[obj_priv->fence_reg];
1192 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1193 &dev_priv->mm.fence_list);
1194 }
1195
02354392
EA
1196 /* Silently promote "you're not bound, there was nothing to do"
1197 * to success, since the client was just asking us to
1198 * make sure everything was done.
1199 */
1200 if (ret == -EINVAL)
1201 ret = 0;
2ef7eeaa 1202 } else {
e47c68e9 1203 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1204 }
1205
7d1c4804
CW
1206 /* Maintain LRU order of "inactive" objects */
1207 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
69dc4987 1208 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1209
673a394b 1210 drm_gem_object_unreference(obj);
1d7cfea1 1211unlock:
673a394b
EA
1212 mutex_unlock(&dev->struct_mutex);
1213 return ret;
1214}
1215
1216/**
1217 * Called when user space has done writes to this buffer
1218 */
1219int
1220i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1221 struct drm_file *file_priv)
1222{
1223 struct drm_i915_gem_sw_finish *args = data;
1224 struct drm_gem_object *obj;
673a394b
EA
1225 int ret = 0;
1226
1227 if (!(dev->driver->driver_features & DRIVER_GEM))
1228 return -ENODEV;
1229
76c1dec1 1230 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1231 if (ret)
76c1dec1 1232 return ret;
1d7cfea1 1233
673a394b
EA
1234 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1235 if (obj == NULL) {
1d7cfea1
CW
1236 ret = -ENOENT;
1237 goto unlock;
673a394b
EA
1238 }
1239
673a394b 1240 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1241 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1242 i915_gem_object_flush_cpu_write_domain(obj);
1243
673a394b 1244 drm_gem_object_unreference(obj);
1d7cfea1 1245unlock:
673a394b
EA
1246 mutex_unlock(&dev->struct_mutex);
1247 return ret;
1248}
1249
1250/**
1251 * Maps the contents of an object, returning the address it is mapped
1252 * into.
1253 *
1254 * While the mapping holds a reference on the contents of the object, it doesn't
1255 * imply a ref on the object itself.
1256 */
1257int
1258i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1259 struct drm_file *file_priv)
1260{
1261 struct drm_i915_gem_mmap *args = data;
1262 struct drm_gem_object *obj;
1263 loff_t offset;
1264 unsigned long addr;
1265
1266 if (!(dev->driver->driver_features & DRIVER_GEM))
1267 return -ENODEV;
1268
1269 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1270 if (obj == NULL)
bf79cb91 1271 return -ENOENT;
673a394b
EA
1272
1273 offset = args->offset;
1274
1275 down_write(&current->mm->mmap_sem);
1276 addr = do_mmap(obj->filp, 0, args->size,
1277 PROT_READ | PROT_WRITE, MAP_SHARED,
1278 args->offset);
1279 up_write(&current->mm->mmap_sem);
bc9025bd 1280 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1281 if (IS_ERR((void *)addr))
1282 return addr;
1283
1284 args->addr_ptr = (uint64_t) addr;
1285
1286 return 0;
1287}
1288
de151cf6
JB
1289/**
1290 * i915_gem_fault - fault a page into the GTT
1291 * vma: VMA in question
1292 * vmf: fault info
1293 *
1294 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1295 * from userspace. The fault handler takes care of binding the object to
1296 * the GTT (if needed), allocating and programming a fence register (again,
1297 * only if needed based on whether the old reg is still valid or the object
1298 * is tiled) and inserting a new PTE into the faulting process.
1299 *
1300 * Note that the faulting process may involve evicting existing objects
1301 * from the GTT and/or fence registers to make room. So performance may
1302 * suffer if the GTT working set is large or there are few fence registers
1303 * left.
1304 */
1305int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1306{
1307 struct drm_gem_object *obj = vma->vm_private_data;
1308 struct drm_device *dev = obj->dev;
7d1c4804 1309 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1310 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1311 pgoff_t page_offset;
1312 unsigned long pfn;
1313 int ret = 0;
0f973f27 1314 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1315
1316 /* We don't use vmf->pgoff since that has the fake offset */
1317 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1318 PAGE_SHIFT;
1319
1320 /* Now bind it into the GTT if needed */
1321 mutex_lock(&dev->struct_mutex);
fb7d516a 1322 BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
16e809ac
DV
1323 if (!i915_gem_object_cpu_accessible(obj_priv))
1324 i915_gem_object_unbind(obj);
1325
de151cf6 1326 if (!obj_priv->gtt_space) {
920afa77 1327 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1328 if (ret)
1329 goto unlock;
07f4f3e8 1330
07f4f3e8 1331 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1332 if (ret)
1333 goto unlock;
de151cf6
JB
1334 }
1335
fb7d516a
DV
1336 if (!obj_priv->fault_mappable) {
1337 obj_priv->fault_mappable = true;
1338 i915_gem_info_update_mappable(dev_priv, obj, true);
1339 }
1340
de151cf6 1341 /* Need a new fence register? */
a09ba7fa 1342 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1343 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1344 if (ret)
1345 goto unlock;
d9ddcb96 1346 }
de151cf6 1347
7d1c4804 1348 if (i915_gem_object_is_inactive(obj_priv))
69dc4987 1349 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1350
de151cf6
JB
1351 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1352 page_offset;
1353
1354 /* Finally, remap it using the new GTT offset */
1355 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1356unlock:
de151cf6
JB
1357 mutex_unlock(&dev->struct_mutex);
1358
1359 switch (ret) {
c715089f
CW
1360 case 0:
1361 case -ERESTARTSYS:
1362 return VM_FAULT_NOPAGE;
de151cf6
JB
1363 case -ENOMEM:
1364 case -EAGAIN:
1365 return VM_FAULT_OOM;
de151cf6 1366 default:
c715089f 1367 return VM_FAULT_SIGBUS;
de151cf6
JB
1368 }
1369}
1370
1371/**
1372 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1373 * @obj: obj in question
1374 *
1375 * GEM memory mapping works by handing back to userspace a fake mmap offset
1376 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1377 * up the object based on the offset and sets up the various memory mapping
1378 * structures.
1379 *
1380 * This routine allocates and attaches a fake offset for @obj.
1381 */
1382static int
1383i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1384{
1385 struct drm_device *dev = obj->dev;
1386 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1387 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1388 struct drm_map_list *list;
f77d390c 1389 struct drm_local_map *map;
de151cf6
JB
1390 int ret = 0;
1391
1392 /* Set the object up for mmap'ing */
1393 list = &obj->map_list;
9a298b2a 1394 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1395 if (!list->map)
1396 return -ENOMEM;
1397
1398 map = list->map;
1399 map->type = _DRM_GEM;
1400 map->size = obj->size;
1401 map->handle = obj;
1402
1403 /* Get a DRM GEM mmap offset allocated... */
1404 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1405 obj->size / PAGE_SIZE, 0, 0);
1406 if (!list->file_offset_node) {
1407 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1408 ret = -ENOSPC;
de151cf6
JB
1409 goto out_free_list;
1410 }
1411
1412 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1413 obj->size / PAGE_SIZE, 0);
1414 if (!list->file_offset_node) {
1415 ret = -ENOMEM;
1416 goto out_free_list;
1417 }
1418
1419 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1420 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1421 if (ret) {
de151cf6
JB
1422 DRM_ERROR("failed to add to map hash\n");
1423 goto out_free_mm;
1424 }
1425
1426 /* By now we should be all set, any drm_mmap request on the offset
1427 * below will get to our mmap & fault handler */
1428 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1429
1430 return 0;
1431
1432out_free_mm:
1433 drm_mm_put_block(list->file_offset_node);
1434out_free_list:
9a298b2a 1435 kfree(list->map);
de151cf6
JB
1436
1437 return ret;
1438}
1439
901782b2
CW
1440/**
1441 * i915_gem_release_mmap - remove physical page mappings
1442 * @obj: obj in question
1443 *
af901ca1 1444 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1445 * relinquish ownership of the pages back to the system.
1446 *
1447 * It is vital that we remove the page mapping if we have mapped a tiled
1448 * object through the GTT and then lose the fence register due to
1449 * resource pressure. Similarly if the object has been moved out of the
1450 * aperture, than pages mapped into userspace must be revoked. Removing the
1451 * mapping will then trigger a page fault on the next user access, allowing
1452 * fixup by i915_gem_fault().
1453 */
d05ca301 1454void
901782b2
CW
1455i915_gem_release_mmap(struct drm_gem_object *obj)
1456{
1457 struct drm_device *dev = obj->dev;
fb7d516a 1458 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1459 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1460
1461 if (dev->dev_mapping)
1462 unmap_mapping_range(dev->dev_mapping,
1463 obj_priv->mmap_offset, obj->size, 1);
fb7d516a
DV
1464
1465 if (obj_priv->fault_mappable) {
1466 obj_priv->fault_mappable = false;
1467 i915_gem_info_update_mappable(dev_priv, obj, false);
1468 }
901782b2
CW
1469}
1470
ab00b3e5
JB
1471static void
1472i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1473{
1474 struct drm_device *dev = obj->dev;
23010e43 1475 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1476 struct drm_gem_mm *mm = dev->mm_private;
1477 struct drm_map_list *list;
1478
1479 list = &obj->map_list;
1480 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1481
1482 if (list->file_offset_node) {
1483 drm_mm_put_block(list->file_offset_node);
1484 list->file_offset_node = NULL;
1485 }
1486
1487 if (list->map) {
9a298b2a 1488 kfree(list->map);
ab00b3e5
JB
1489 list->map = NULL;
1490 }
1491
1492 obj_priv->mmap_offset = 0;
1493}
1494
de151cf6
JB
1495/**
1496 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1497 * @obj: object to check
1498 *
1499 * Return the required GTT alignment for an object, taking into account
1500 * potential fence register mapping if needed.
1501 */
1502static uint32_t
1503i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1504{
1505 struct drm_device *dev = obj->dev;
23010e43 1506 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1507 int start, i;
1508
1509 /*
1510 * Minimum alignment is 4k (GTT page size), but might be greater
1511 * if a fence register is needed for the object.
1512 */
a6c45cf0 1513 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1514 return 4096;
1515
1516 /*
1517 * Previous chips need to be aligned to the size of the smallest
1518 * fence register that can contain the object.
1519 */
a6c45cf0 1520 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1521 start = 1024*1024;
1522 else
1523 start = 512*1024;
1524
1525 for (i = start; i < obj->size; i <<= 1)
1526 ;
1527
1528 return i;
1529}
1530
1531/**
1532 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1533 * @dev: DRM device
1534 * @data: GTT mapping ioctl data
1535 * @file_priv: GEM object info
1536 *
1537 * Simply returns the fake offset to userspace so it can mmap it.
1538 * The mmap call will end up in drm_gem_mmap(), which will set things
1539 * up so we can get faults in the handler above.
1540 *
1541 * The fault handler will take care of binding the object into the GTT
1542 * (since it may have been evicted to make room for something), allocating
1543 * a fence register, and mapping the appropriate aperture address into
1544 * userspace.
1545 */
1546int
1547i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1548 struct drm_file *file_priv)
1549{
1550 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1551 struct drm_gem_object *obj;
1552 struct drm_i915_gem_object *obj_priv;
1553 int ret;
1554
1555 if (!(dev->driver->driver_features & DRIVER_GEM))
1556 return -ENODEV;
1557
76c1dec1 1558 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1559 if (ret)
76c1dec1 1560 return ret;
de151cf6 1561
1d7cfea1
CW
1562 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1563 if (obj == NULL) {
1564 ret = -ENOENT;
1565 goto unlock;
1566 }
23010e43 1567 obj_priv = to_intel_bo(obj);
de151cf6 1568
ab18282d
CW
1569 if (obj_priv->madv != I915_MADV_WILLNEED) {
1570 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1571 ret = -EINVAL;
1572 goto out;
ab18282d
CW
1573 }
1574
de151cf6
JB
1575 if (!obj_priv->mmap_offset) {
1576 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1577 if (ret)
1578 goto out;
de151cf6
JB
1579 }
1580
1581 args->offset = obj_priv->mmap_offset;
1582
de151cf6
JB
1583 /*
1584 * Pull it into the GTT so that we have a page list (makes the
1585 * initial fault faster and any subsequent flushing possible).
1586 */
1587 if (!obj_priv->agp_mem) {
920afa77 1588 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1d7cfea1
CW
1589 if (ret)
1590 goto out;
de151cf6
JB
1591 }
1592
1d7cfea1 1593out:
de151cf6 1594 drm_gem_object_unreference(obj);
1d7cfea1 1595unlock:
de151cf6 1596 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1597 return ret;
de151cf6
JB
1598}
1599
5cdf5881 1600static void
856fa198 1601i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1602{
23010e43 1603 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1604 int page_count = obj->size / PAGE_SIZE;
1605 int i;
1606
856fa198 1607 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1608 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1609
856fa198
EA
1610 if (--obj_priv->pages_refcount != 0)
1611 return;
673a394b 1612
280b713b
EA
1613 if (obj_priv->tiling_mode != I915_TILING_NONE)
1614 i915_gem_object_save_bit_17_swizzle(obj);
1615
3ef94daa 1616 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1617 obj_priv->dirty = 0;
3ef94daa
CW
1618
1619 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1620 if (obj_priv->dirty)
1621 set_page_dirty(obj_priv->pages[i]);
1622
1623 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1624 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1625
1626 page_cache_release(obj_priv->pages[i]);
1627 }
673a394b
EA
1628 obj_priv->dirty = 0;
1629
8e7d2b2c 1630 drm_free_large(obj_priv->pages);
856fa198 1631 obj_priv->pages = NULL;
673a394b
EA
1632}
1633
a56ba56c
CW
1634static uint32_t
1635i915_gem_next_request_seqno(struct drm_device *dev,
1636 struct intel_ring_buffer *ring)
1637{
1638 drm_i915_private_t *dev_priv = dev->dev_private;
1639
1640 ring->outstanding_lazy_request = true;
1641 return dev_priv->next_seqno;
1642}
1643
673a394b 1644static void
617dbe27 1645i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1646 struct intel_ring_buffer *ring)
673a394b
EA
1647{
1648 struct drm_device *dev = obj->dev;
69dc4987 1649 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1650 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1651 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1652
852835f3
ZN
1653 BUG_ON(ring == NULL);
1654 obj_priv->ring = ring;
673a394b
EA
1655
1656 /* Add a reference if we're newly entering the active list. */
1657 if (!obj_priv->active) {
1658 drm_gem_object_reference(obj);
1659 obj_priv->active = 1;
1660 }
e35a41de 1661
673a394b 1662 /* Move from whatever list we were on to the tail of execution. */
69dc4987
CW
1663 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1664 list_move_tail(&obj_priv->ring_list, &ring->active_list);
ce44b0ea 1665 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1666}
1667
ce44b0ea
EA
1668static void
1669i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1670{
1671 struct drm_device *dev = obj->dev;
1672 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1673 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1674
1675 BUG_ON(!obj_priv->active);
69dc4987
CW
1676 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1677 list_del_init(&obj_priv->ring_list);
ce44b0ea
EA
1678 obj_priv->last_rendering_seqno = 0;
1679}
673a394b 1680
963b4836
CW
1681/* Immediately discard the backing storage */
1682static void
1683i915_gem_object_truncate(struct drm_gem_object *obj)
1684{
23010e43 1685 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1686 struct inode *inode;
963b4836 1687
ae9fed6b
CW
1688 /* Our goal here is to return as much of the memory as
1689 * is possible back to the system as we are called from OOM.
1690 * To do this we must instruct the shmfs to drop all of its
1691 * backing pages, *now*. Here we mirror the actions taken
1692 * when by shmem_delete_inode() to release the backing store.
1693 */
bb6baf76 1694 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1695 truncate_inode_pages(inode->i_mapping, 0);
1696 if (inode->i_op->truncate_range)
1697 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1698
1699 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1700}
1701
1702static inline int
1703i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1704{
1705 return obj_priv->madv == I915_MADV_DONTNEED;
1706}
1707
673a394b
EA
1708static void
1709i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1710{
1711 struct drm_device *dev = obj->dev;
1712 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1713 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 1714
673a394b 1715 if (obj_priv->pin_count != 0)
69dc4987 1716 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
673a394b 1717 else
69dc4987
CW
1718 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1719 list_del_init(&obj_priv->ring_list);
673a394b 1720
99fcb766
DV
1721 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1722
ce44b0ea 1723 obj_priv->last_rendering_seqno = 0;
852835f3 1724 obj_priv->ring = NULL;
673a394b
EA
1725 if (obj_priv->active) {
1726 obj_priv->active = 0;
1727 drm_gem_object_unreference(obj);
1728 }
23bc5982 1729 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1730}
1731
63560396
DV
1732static void
1733i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1734 uint32_t flush_domains,
852835f3 1735 struct intel_ring_buffer *ring)
63560396
DV
1736{
1737 drm_i915_private_t *dev_priv = dev->dev_private;
1738 struct drm_i915_gem_object *obj_priv, *next;
1739
1740 list_for_each_entry_safe(obj_priv, next,
64193406 1741 &ring->gpu_write_list,
63560396 1742 gpu_write_list) {
a8089e84 1743 struct drm_gem_object *obj = &obj_priv->base;
63560396 1744
64193406 1745 if (obj->write_domain & flush_domains) {
63560396
DV
1746 uint32_t old_write_domain = obj->write_domain;
1747
1748 obj->write_domain = 0;
1749 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1750 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1751
1752 /* update the fence lru list */
007cc8ac
DV
1753 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1754 struct drm_i915_fence_reg *reg =
1755 &dev_priv->fence_regs[obj_priv->fence_reg];
1756 list_move_tail(&reg->lru_list,
63560396 1757 &dev_priv->mm.fence_list);
007cc8ac 1758 }
63560396
DV
1759
1760 trace_i915_gem_object_change_domain(obj,
1761 obj->read_domains,
1762 old_write_domain);
1763 }
1764 }
1765}
8187a2b7 1766
3cce469c 1767int
8a1a49f9 1768i915_add_request(struct drm_device *dev,
f787a5f5 1769 struct drm_file *file,
8dc5d147 1770 struct drm_i915_gem_request *request,
8a1a49f9 1771 struct intel_ring_buffer *ring)
673a394b
EA
1772{
1773 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1774 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1775 uint32_t seqno;
1776 int was_empty;
3cce469c
CW
1777 int ret;
1778
1779 BUG_ON(request == NULL);
673a394b 1780
f787a5f5
CW
1781 if (file != NULL)
1782 file_priv = file->driver_priv;
b962442e 1783
3cce469c
CW
1784 ret = ring->add_request(ring, &seqno);
1785 if (ret)
1786 return ret;
673a394b 1787
a56ba56c 1788 ring->outstanding_lazy_request = false;
673a394b
EA
1789
1790 request->seqno = seqno;
852835f3 1791 request->ring = ring;
673a394b 1792 request->emitted_jiffies = jiffies;
852835f3
ZN
1793 was_empty = list_empty(&ring->request_list);
1794 list_add_tail(&request->list, &ring->request_list);
1795
f787a5f5 1796 if (file_priv) {
1c25595f 1797 spin_lock(&file_priv->mm.lock);
f787a5f5 1798 request->file_priv = file_priv;
b962442e 1799 list_add_tail(&request->client_list,
f787a5f5 1800 &file_priv->mm.request_list);
1c25595f 1801 spin_unlock(&file_priv->mm.lock);
b962442e 1802 }
673a394b 1803
f65d9421 1804 if (!dev_priv->mm.suspended) {
b3b079db
CW
1805 mod_timer(&dev_priv->hangcheck_timer,
1806 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1807 if (was_empty)
b3b079db
CW
1808 queue_delayed_work(dev_priv->wq,
1809 &dev_priv->mm.retire_work, HZ);
f65d9421 1810 }
3cce469c 1811 return 0;
673a394b
EA
1812}
1813
1814/**
1815 * Command execution barrier
1816 *
1817 * Ensures that all commands in the ring are finished
1818 * before signalling the CPU
1819 */
8a1a49f9 1820static void
852835f3 1821i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1822{
673a394b 1823 uint32_t flush_domains = 0;
673a394b
EA
1824
1825 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1826 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1827 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3 1828
78501eac 1829 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1830}
1831
f787a5f5
CW
1832static inline void
1833i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1834{
1c25595f 1835 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1836
1c25595f
CW
1837 if (!file_priv)
1838 return;
1c5d22f7 1839
1c25595f
CW
1840 spin_lock(&file_priv->mm.lock);
1841 list_del(&request->client_list);
1842 request->file_priv = NULL;
1843 spin_unlock(&file_priv->mm.lock);
673a394b 1844}
673a394b 1845
dfaae392
CW
1846static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1847 struct intel_ring_buffer *ring)
9375e446 1848{
dfaae392
CW
1849 while (!list_empty(&ring->request_list)) {
1850 struct drm_i915_gem_request *request;
673a394b 1851
dfaae392
CW
1852 request = list_first_entry(&ring->request_list,
1853 struct drm_i915_gem_request,
1854 list);
de151cf6 1855
dfaae392 1856 list_del(&request->list);
f787a5f5 1857 i915_gem_request_remove_from_client(request);
dfaae392
CW
1858 kfree(request);
1859 }
673a394b 1860
dfaae392 1861 while (!list_empty(&ring->active_list)) {
9375e446
CW
1862 struct drm_i915_gem_object *obj_priv;
1863
dfaae392 1864 obj_priv = list_first_entry(&ring->active_list,
9375e446 1865 struct drm_i915_gem_object,
69dc4987 1866 ring_list);
9375e446
CW
1867
1868 obj_priv->base.write_domain = 0;
dfaae392 1869 list_del_init(&obj_priv->gpu_write_list);
9375e446 1870 i915_gem_object_move_to_inactive(&obj_priv->base);
673a394b
EA
1871 }
1872}
1873
069efc1d 1874void i915_gem_reset(struct drm_device *dev)
673a394b 1875{
77f01230
CW
1876 struct drm_i915_private *dev_priv = dev->dev_private;
1877 struct drm_i915_gem_object *obj_priv;
069efc1d 1878 int i;
673a394b 1879
dfaae392 1880 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1881 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
549f7365 1882 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
dfaae392
CW
1883
1884 /* Remove anything from the flushing lists. The GPU cache is likely
1885 * to be lost on reset along with the data, so simply move the
1886 * lost bo to the inactive list.
1887 */
1888 while (!list_empty(&dev_priv->mm.flushing_list)) {
1889 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1890 struct drm_i915_gem_object,
69dc4987 1891 mm_list);
dfaae392
CW
1892
1893 obj_priv->base.write_domain = 0;
1894 list_del_init(&obj_priv->gpu_write_list);
1895 i915_gem_object_move_to_inactive(&obj_priv->base);
1896 }
1897
1898 /* Move everything out of the GPU domains to ensure we do any
1899 * necessary invalidation upon reuse.
1900 */
77f01230
CW
1901 list_for_each_entry(obj_priv,
1902 &dev_priv->mm.inactive_list,
69dc4987 1903 mm_list)
77f01230
CW
1904 {
1905 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1906 }
069efc1d
CW
1907
1908 /* The fence registers are invalidated so clear them out */
1909 for (i = 0; i < 16; i++) {
1910 struct drm_i915_fence_reg *reg;
1911
1912 reg = &dev_priv->fence_regs[i];
1913 if (!reg->obj)
1914 continue;
1915
1916 i915_gem_clear_fence_reg(reg->obj);
1917 }
673a394b
EA
1918}
1919
1920/**
1921 * This function clears the request list as sequence numbers are passed.
1922 */
b09a1fec
CW
1923static void
1924i915_gem_retire_requests_ring(struct drm_device *dev,
1925 struct intel_ring_buffer *ring)
673a394b
EA
1926{
1927 drm_i915_private_t *dev_priv = dev->dev_private;
1928 uint32_t seqno;
1929
b84d5f0c
CW
1930 if (!ring->status_page.page_addr ||
1931 list_empty(&ring->request_list))
6c0594a3
KW
1932 return;
1933
23bc5982 1934 WARN_ON(i915_verify_lists(dev));
673a394b 1935
78501eac 1936 seqno = ring->get_seqno(ring);
852835f3 1937 while (!list_empty(&ring->request_list)) {
673a394b 1938 struct drm_i915_gem_request *request;
673a394b 1939
852835f3 1940 request = list_first_entry(&ring->request_list,
673a394b
EA
1941 struct drm_i915_gem_request,
1942 list);
673a394b 1943
dfaae392 1944 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1945 break;
1946
1947 trace_i915_gem_request_retire(dev, request->seqno);
1948
1949 list_del(&request->list);
f787a5f5 1950 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1951 kfree(request);
1952 }
673a394b 1953
b84d5f0c
CW
1954 /* Move any buffers on the active list that are no longer referenced
1955 * by the ringbuffer to the flushing/inactive lists as appropriate.
1956 */
1957 while (!list_empty(&ring->active_list)) {
1958 struct drm_gem_object *obj;
1959 struct drm_i915_gem_object *obj_priv;
1960
1961 obj_priv = list_first_entry(&ring->active_list,
1962 struct drm_i915_gem_object,
69dc4987 1963 ring_list);
673a394b 1964
dfaae392 1965 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1966 break;
b84d5f0c
CW
1967
1968 obj = &obj_priv->base;
b84d5f0c
CW
1969 if (obj->write_domain != 0)
1970 i915_gem_object_move_to_flushing(obj);
1971 else
1972 i915_gem_object_move_to_inactive(obj);
673a394b 1973 }
9d34e5db
CW
1974
1975 if (unlikely (dev_priv->trace_irq_seqno &&
1976 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
78501eac 1977 ring->user_irq_put(ring);
9d34e5db
CW
1978 dev_priv->trace_irq_seqno = 0;
1979 }
23bc5982
CW
1980
1981 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1982}
1983
b09a1fec
CW
1984void
1985i915_gem_retire_requests(struct drm_device *dev)
1986{
1987 drm_i915_private_t *dev_priv = dev->dev_private;
1988
be72615b
CW
1989 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1990 struct drm_i915_gem_object *obj_priv, *tmp;
1991
1992 /* We must be careful that during unbind() we do not
1993 * accidentally infinitely recurse into retire requests.
1994 * Currently:
1995 * retire -> free -> unbind -> wait -> retire_ring
1996 */
1997 list_for_each_entry_safe(obj_priv, tmp,
1998 &dev_priv->mm.deferred_free_list,
69dc4987 1999 mm_list)
be72615b
CW
2000 i915_gem_free_object_tail(&obj_priv->base);
2001 }
2002
b09a1fec 2003 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 2004 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
549f7365 2005 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
b09a1fec
CW
2006}
2007
75ef9da2 2008static void
673a394b
EA
2009i915_gem_retire_work_handler(struct work_struct *work)
2010{
2011 drm_i915_private_t *dev_priv;
2012 struct drm_device *dev;
2013
2014 dev_priv = container_of(work, drm_i915_private_t,
2015 mm.retire_work.work);
2016 dev = dev_priv->dev;
2017
891b48cf
CW
2018 /* Come back later if the device is busy... */
2019 if (!mutex_trylock(&dev->struct_mutex)) {
2020 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2021 return;
2022 }
2023
b09a1fec 2024 i915_gem_retire_requests(dev);
d1b851fc 2025
6dbe2772 2026 if (!dev_priv->mm.suspended &&
d1b851fc 2027 (!list_empty(&dev_priv->render_ring.request_list) ||
549f7365
CW
2028 !list_empty(&dev_priv->bsd_ring.request_list) ||
2029 !list_empty(&dev_priv->blt_ring.request_list)))
9c9fe1f8 2030 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
2031 mutex_unlock(&dev->struct_mutex);
2032}
2033
5a5a0c64 2034int
852835f3 2035i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 2036 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
2037{
2038 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 2039 u32 ier;
673a394b
EA
2040 int ret = 0;
2041
2042 BUG_ON(seqno == 0);
2043
ba1234d1 2044 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
2045 return -EAGAIN;
2046
a56ba56c 2047 if (ring->outstanding_lazy_request) {
3cce469c
CW
2048 struct drm_i915_gem_request *request;
2049
2050 request = kzalloc(sizeof(*request), GFP_KERNEL);
2051 if (request == NULL)
e35a41de 2052 return -ENOMEM;
3cce469c
CW
2053
2054 ret = i915_add_request(dev, NULL, request, ring);
2055 if (ret) {
2056 kfree(request);
2057 return ret;
2058 }
2059
2060 seqno = request->seqno;
e35a41de 2061 }
a56ba56c 2062 BUG_ON(seqno == dev_priv->next_seqno);
ffed1d09 2063
78501eac 2064 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
bad720ff 2065 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
2066 ier = I915_READ(DEIER) | I915_READ(GTIER);
2067 else
2068 ier = I915_READ(IER);
802c7eb6
JB
2069 if (!ier) {
2070 DRM_ERROR("something (likely vbetool) disabled "
2071 "interrupts, re-enabling\n");
2072 i915_driver_irq_preinstall(dev);
2073 i915_driver_irq_postinstall(dev);
2074 }
2075
1c5d22f7
CW
2076 trace_i915_gem_request_wait_begin(dev, seqno);
2077
b2223497 2078 ring->waiting_seqno = seqno;
78501eac 2079 ring->user_irq_get(ring);
48764bf4 2080 if (interruptible)
852835f3 2081 ret = wait_event_interruptible(ring->irq_queue,
78501eac 2082 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2083 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2084 else
852835f3 2085 wait_event(ring->irq_queue,
78501eac 2086 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2087 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2088
78501eac 2089 ring->user_irq_put(ring);
b2223497 2090 ring->waiting_seqno = 0;
1c5d22f7
CW
2091
2092 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2093 }
ba1234d1 2094 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2095 ret = -EAGAIN;
673a394b
EA
2096
2097 if (ret && ret != -ERESTARTSYS)
8bff917c 2098 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2099 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2100 dev_priv->next_seqno);
673a394b
EA
2101
2102 /* Directly dispatch request retiring. While we have the work queue
2103 * to handle this, the waiter on a request often wants an associated
2104 * buffer to have made it to the inactive list, and we would need
2105 * a separate wait queue to handle that.
2106 */
2107 if (ret == 0)
b09a1fec 2108 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2109
2110 return ret;
2111}
2112
48764bf4
DV
2113/**
2114 * Waits for a sequence number to be signaled, and cleans up the
2115 * request and object lists appropriately for that event.
2116 */
2117static int
852835f3 2118i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2119 struct intel_ring_buffer *ring)
48764bf4 2120{
852835f3 2121 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2122}
2123
20f0cd55 2124static void
9220434a 2125i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2126 struct drm_file *file_priv,
9220434a
CW
2127 struct intel_ring_buffer *ring,
2128 uint32_t invalidate_domains,
2129 uint32_t flush_domains)
2130{
78501eac 2131 ring->flush(ring, invalidate_domains, flush_domains);
9220434a
CW
2132 i915_gem_process_flushing_list(dev, flush_domains, ring);
2133}
2134
8187a2b7
ZN
2135static void
2136i915_gem_flush(struct drm_device *dev,
c78ec30b 2137 struct drm_file *file_priv,
8187a2b7 2138 uint32_t invalidate_domains,
9220434a
CW
2139 uint32_t flush_domains,
2140 uint32_t flush_rings)
8187a2b7
ZN
2141{
2142 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2143
8187a2b7
ZN
2144 if (flush_domains & I915_GEM_DOMAIN_CPU)
2145 drm_agp_chipset_flush(dev);
8bff917c 2146
9220434a
CW
2147 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2148 if (flush_rings & RING_RENDER)
c78ec30b 2149 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2150 &dev_priv->render_ring,
2151 invalidate_domains, flush_domains);
2152 if (flush_rings & RING_BSD)
c78ec30b 2153 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2154 &dev_priv->bsd_ring,
2155 invalidate_domains, flush_domains);
549f7365
CW
2156 if (flush_rings & RING_BLT)
2157 i915_gem_flush_ring(dev, file_priv,
2158 &dev_priv->blt_ring,
2159 invalidate_domains, flush_domains);
9220434a 2160 }
8187a2b7
ZN
2161}
2162
673a394b
EA
2163/**
2164 * Ensures that all rendering to the object has completed and the object is
2165 * safe to unbind from the GTT or access from the CPU.
2166 */
2167static int
2cf34d7b
CW
2168i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2169 bool interruptible)
673a394b
EA
2170{
2171 struct drm_device *dev = obj->dev;
23010e43 2172 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2173 int ret;
2174
e47c68e9
EA
2175 /* This function only exists to support waiting for existing rendering,
2176 * not for emitting required flushes.
673a394b 2177 */
e47c68e9 2178 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2179
2180 /* If there is rendering queued on the buffer being evicted, wait for
2181 * it.
2182 */
2183 if (obj_priv->active) {
2cf34d7b
CW
2184 ret = i915_do_wait_request(dev,
2185 obj_priv->last_rendering_seqno,
2186 interruptible,
2187 obj_priv->ring);
2188 if (ret)
673a394b
EA
2189 return ret;
2190 }
2191
2192 return 0;
2193}
2194
2195/**
2196 * Unbinds an object from the GTT aperture.
2197 */
0f973f27 2198int
673a394b
EA
2199i915_gem_object_unbind(struct drm_gem_object *obj)
2200{
2201 struct drm_device *dev = obj->dev;
73aa808f 2202 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2203 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2204 int ret = 0;
2205
673a394b
EA
2206 if (obj_priv->gtt_space == NULL)
2207 return 0;
2208
2209 if (obj_priv->pin_count != 0) {
2210 DRM_ERROR("Attempting to unbind pinned buffer\n");
2211 return -EINVAL;
2212 }
2213
5323fd04
EA
2214 /* blow away mappings if mapped through GTT */
2215 i915_gem_release_mmap(obj);
2216
673a394b
EA
2217 /* Move the object to the CPU domain to ensure that
2218 * any possible CPU writes while it's not in the GTT
2219 * are flushed when we go to remap it. This will
2220 * also ensure that all pending GPU writes are finished
2221 * before we unbind.
2222 */
e47c68e9 2223 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2224 if (ret == -ERESTARTSYS)
673a394b 2225 return ret;
8dc1775d
CW
2226 /* Continue on if we fail due to EIO, the GPU is hung so we
2227 * should be safe and we need to cleanup or else we might
2228 * cause memory corruption through use-after-free.
2229 */
812ed492
CW
2230 if (ret) {
2231 i915_gem_clflush_object(obj);
2232 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2233 }
673a394b 2234
96b47b65
DV
2235 /* release the fence reg _after_ flushing */
2236 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2237 i915_gem_clear_fence_reg(obj);
2238
73aa808f
CW
2239 drm_unbind_agp(obj_priv->agp_mem);
2240 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
673a394b 2241
856fa198 2242 i915_gem_object_put_pages(obj);
a32808c0 2243 BUG_ON(obj_priv->pages_refcount);
673a394b 2244
fb7d516a 2245 i915_gem_info_remove_gtt(dev_priv, obj);
69dc4987 2246 list_del_init(&obj_priv->mm_list);
673a394b 2247
73aa808f
CW
2248 drm_mm_put_block(obj_priv->gtt_space);
2249 obj_priv->gtt_space = NULL;
9af90d19 2250 obj_priv->gtt_offset = 0;
673a394b 2251
963b4836
CW
2252 if (i915_gem_object_is_purgeable(obj_priv))
2253 i915_gem_object_truncate(obj);
2254
1c5d22f7
CW
2255 trace_i915_gem_object_unbind(obj);
2256
8dc1775d 2257 return ret;
673a394b
EA
2258}
2259
a56ba56c
CW
2260static int i915_ring_idle(struct drm_device *dev,
2261 struct intel_ring_buffer *ring)
2262{
64193406
CW
2263 if (list_empty(&ring->gpu_write_list))
2264 return 0;
2265
a56ba56c
CW
2266 i915_gem_flush_ring(dev, NULL, ring,
2267 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2268 return i915_wait_request(dev,
2269 i915_gem_next_request_seqno(dev, ring),
2270 ring);
2271}
2272
b47eb4a2 2273int
4df2faf4
DV
2274i915_gpu_idle(struct drm_device *dev)
2275{
2276 drm_i915_private_t *dev_priv = dev->dev_private;
2277 bool lists_empty;
852835f3 2278 int ret;
4df2faf4 2279
d1b851fc
ZN
2280 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2281 list_empty(&dev_priv->render_ring.active_list) &&
549f7365
CW
2282 list_empty(&dev_priv->bsd_ring.active_list) &&
2283 list_empty(&dev_priv->blt_ring.active_list));
4df2faf4
DV
2284 if (lists_empty)
2285 return 0;
2286
2287 /* Flush everything onto the inactive list. */
a56ba56c 2288 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2289 if (ret)
2290 return ret;
d1b851fc 2291
87acb0a5
CW
2292 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2293 if (ret)
2294 return ret;
d1b851fc 2295
549f7365
CW
2296 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2297 if (ret)
2298 return ret;
4df2faf4 2299
8a1a49f9 2300 return 0;
4df2faf4
DV
2301}
2302
5cdf5881 2303static int
4bdadb97
CW
2304i915_gem_object_get_pages(struct drm_gem_object *obj,
2305 gfp_t gfpmask)
673a394b 2306{
23010e43 2307 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2308 int page_count, i;
2309 struct address_space *mapping;
2310 struct inode *inode;
2311 struct page *page;
673a394b 2312
778c3544
DV
2313 BUG_ON(obj_priv->pages_refcount
2314 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2315
856fa198 2316 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2317 return 0;
2318
2319 /* Get the list of pages out of our struct file. They'll be pinned
2320 * at this point until we release them.
2321 */
2322 page_count = obj->size / PAGE_SIZE;
856fa198 2323 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2324 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2325 if (obj_priv->pages == NULL) {
856fa198 2326 obj_priv->pages_refcount--;
673a394b
EA
2327 return -ENOMEM;
2328 }
2329
2330 inode = obj->filp->f_path.dentry->d_inode;
2331 mapping = inode->i_mapping;
2332 for (i = 0; i < page_count; i++) {
4bdadb97 2333 page = read_cache_page_gfp(mapping, i,
985b823b 2334 GFP_HIGHUSER |
4bdadb97 2335 __GFP_COLD |
cd9f040d 2336 __GFP_RECLAIMABLE |
4bdadb97 2337 gfpmask);
1f2b1013
CW
2338 if (IS_ERR(page))
2339 goto err_pages;
2340
856fa198 2341 obj_priv->pages[i] = page;
673a394b 2342 }
280b713b
EA
2343
2344 if (obj_priv->tiling_mode != I915_TILING_NONE)
2345 i915_gem_object_do_bit_17_swizzle(obj);
2346
673a394b 2347 return 0;
1f2b1013
CW
2348
2349err_pages:
2350 while (i--)
2351 page_cache_release(obj_priv->pages[i]);
2352
2353 drm_free_large(obj_priv->pages);
2354 obj_priv->pages = NULL;
2355 obj_priv->pages_refcount--;
2356 return PTR_ERR(page);
673a394b
EA
2357}
2358
4e901fdc
EA
2359static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2360{
2361 struct drm_gem_object *obj = reg->obj;
2362 struct drm_device *dev = obj->dev;
2363 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2365 int regnum = obj_priv->fence_reg;
2366 uint64_t val;
2367
2368 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2369 0xfffff000) << 32;
2370 val |= obj_priv->gtt_offset & 0xfffff000;
2371 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2372 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2373
2374 if (obj_priv->tiling_mode == I915_TILING_Y)
2375 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2376 val |= I965_FENCE_REG_VALID;
2377
2378 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2379}
2380
de151cf6
JB
2381static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2382{
2383 struct drm_gem_object *obj = reg->obj;
2384 struct drm_device *dev = obj->dev;
2385 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2386 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2387 int regnum = obj_priv->fence_reg;
2388 uint64_t val;
2389
2390 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2391 0xfffff000) << 32;
2392 val |= obj_priv->gtt_offset & 0xfffff000;
2393 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2394 if (obj_priv->tiling_mode == I915_TILING_Y)
2395 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2396 val |= I965_FENCE_REG_VALID;
2397
2398 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2399}
2400
2401static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2402{
2403 struct drm_gem_object *obj = reg->obj;
2404 struct drm_device *dev = obj->dev;
2405 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2406 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2407 int regnum = obj_priv->fence_reg;
0f973f27 2408 int tile_width;
dc529a4f 2409 uint32_t fence_reg, val;
de151cf6
JB
2410 uint32_t pitch_val;
2411
2412 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2413 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2414 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2415 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2416 return;
2417 }
2418
0f973f27
JB
2419 if (obj_priv->tiling_mode == I915_TILING_Y &&
2420 HAS_128_BYTE_Y_TILING(dev))
2421 tile_width = 128;
de151cf6 2422 else
0f973f27
JB
2423 tile_width = 512;
2424
2425 /* Note: pitch better be a power of two tile widths */
2426 pitch_val = obj_priv->stride / tile_width;
2427 pitch_val = ffs(pitch_val) - 1;
de151cf6 2428
c36a2a6d
DV
2429 if (obj_priv->tiling_mode == I915_TILING_Y &&
2430 HAS_128_BYTE_Y_TILING(dev))
2431 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2432 else
2433 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2434
de151cf6
JB
2435 val = obj_priv->gtt_offset;
2436 if (obj_priv->tiling_mode == I915_TILING_Y)
2437 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2438 val |= I915_FENCE_SIZE_BITS(obj->size);
2439 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2440 val |= I830_FENCE_REG_VALID;
2441
dc529a4f
EA
2442 if (regnum < 8)
2443 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2444 else
2445 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2446 I915_WRITE(fence_reg, val);
de151cf6
JB
2447}
2448
2449static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2450{
2451 struct drm_gem_object *obj = reg->obj;
2452 struct drm_device *dev = obj->dev;
2453 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2454 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2455 int regnum = obj_priv->fence_reg;
2456 uint32_t val;
2457 uint32_t pitch_val;
8d7773a3 2458 uint32_t fence_size_bits;
de151cf6 2459
8d7773a3 2460 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2461 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2462 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2463 __func__, obj_priv->gtt_offset);
de151cf6
JB
2464 return;
2465 }
2466
e76a16de
EA
2467 pitch_val = obj_priv->stride / 128;
2468 pitch_val = ffs(pitch_val) - 1;
2469 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2470
de151cf6
JB
2471 val = obj_priv->gtt_offset;
2472 if (obj_priv->tiling_mode == I915_TILING_Y)
2473 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2474 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2475 WARN_ON(fence_size_bits & ~0x00000f00);
2476 val |= fence_size_bits;
de151cf6
JB
2477 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2478 val |= I830_FENCE_REG_VALID;
2479
2480 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2481}
2482
2cf34d7b
CW
2483static int i915_find_fence_reg(struct drm_device *dev,
2484 bool interruptible)
ae3db24a
DV
2485{
2486 struct drm_i915_fence_reg *reg = NULL;
2487 struct drm_i915_gem_object *obj_priv = NULL;
2488 struct drm_i915_private *dev_priv = dev->dev_private;
2489 struct drm_gem_object *obj = NULL;
2490 int i, avail, ret;
2491
2492 /* First try to find a free reg */
2493 avail = 0;
2494 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2495 reg = &dev_priv->fence_regs[i];
2496 if (!reg->obj)
2497 return i;
2498
23010e43 2499 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2500 if (!obj_priv->pin_count)
2501 avail++;
2502 }
2503
2504 if (avail == 0)
2505 return -ENOSPC;
2506
2507 /* None available, try to steal one or wait for a user to finish */
2508 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2509 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2510 lru_list) {
2511 obj = reg->obj;
2512 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2513
2514 if (obj_priv->pin_count)
2515 continue;
2516
2517 /* found one! */
2518 i = obj_priv->fence_reg;
2519 break;
2520 }
2521
2522 BUG_ON(i == I915_FENCE_REG_NONE);
2523
2524 /* We only have a reference on obj from the active list. put_fence_reg
2525 * might drop that one, causing a use-after-free in it. So hold a
2526 * private reference to obj like the other callers of put_fence_reg
2527 * (set_tiling ioctl) do. */
2528 drm_gem_object_reference(obj);
2cf34d7b 2529 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2530 drm_gem_object_unreference(obj);
2531 if (ret != 0)
2532 return ret;
2533
2534 return i;
2535}
2536
de151cf6
JB
2537/**
2538 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2539 * @obj: object to map through a fence reg
2540 *
2541 * When mapping objects through the GTT, userspace wants to be able to write
2542 * to them without having to worry about swizzling if the object is tiled.
2543 *
2544 * This function walks the fence regs looking for a free one for @obj,
2545 * stealing one if it can't find any.
2546 *
2547 * It then sets up the reg based on the object's properties: address, pitch
2548 * and tiling format.
2549 */
8c4b8c3f 2550int
2cf34d7b
CW
2551i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2552 bool interruptible)
de151cf6
JB
2553{
2554 struct drm_device *dev = obj->dev;
79e53945 2555 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2556 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2557 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2558 int ret;
de151cf6 2559
a09ba7fa
EA
2560 /* Just update our place in the LRU if our fence is getting used. */
2561 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2562 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2563 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2564 return 0;
2565 }
2566
de151cf6
JB
2567 switch (obj_priv->tiling_mode) {
2568 case I915_TILING_NONE:
2569 WARN(1, "allocating a fence for non-tiled object?\n");
2570 break;
2571 case I915_TILING_X:
0f973f27
JB
2572 if (!obj_priv->stride)
2573 return -EINVAL;
2574 WARN((obj_priv->stride & (512 - 1)),
2575 "object 0x%08x is X tiled but has non-512B pitch\n",
2576 obj_priv->gtt_offset);
de151cf6
JB
2577 break;
2578 case I915_TILING_Y:
0f973f27
JB
2579 if (!obj_priv->stride)
2580 return -EINVAL;
2581 WARN((obj_priv->stride & (128 - 1)),
2582 "object 0x%08x is Y tiled but has non-128B pitch\n",
2583 obj_priv->gtt_offset);
de151cf6
JB
2584 break;
2585 }
2586
2cf34d7b 2587 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2588 if (ret < 0)
2589 return ret;
de151cf6 2590
ae3db24a
DV
2591 obj_priv->fence_reg = ret;
2592 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2593 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2594
de151cf6
JB
2595 reg->obj = obj;
2596
e259befd
CW
2597 switch (INTEL_INFO(dev)->gen) {
2598 case 6:
4e901fdc 2599 sandybridge_write_fence_reg(reg);
e259befd
CW
2600 break;
2601 case 5:
2602 case 4:
de151cf6 2603 i965_write_fence_reg(reg);
e259befd
CW
2604 break;
2605 case 3:
de151cf6 2606 i915_write_fence_reg(reg);
e259befd
CW
2607 break;
2608 case 2:
de151cf6 2609 i830_write_fence_reg(reg);
e259befd
CW
2610 break;
2611 }
d9ddcb96 2612
ae3db24a
DV
2613 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2614 obj_priv->tiling_mode);
1c5d22f7 2615
d9ddcb96 2616 return 0;
de151cf6
JB
2617}
2618
2619/**
2620 * i915_gem_clear_fence_reg - clear out fence register info
2621 * @obj: object to clear
2622 *
2623 * Zeroes out the fence register itself and clears out the associated
2624 * data structures in dev_priv and obj_priv.
2625 */
2626static void
2627i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2628{
2629 struct drm_device *dev = obj->dev;
79e53945 2630 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2631 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2632 struct drm_i915_fence_reg *reg =
2633 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2634 uint32_t fence_reg;
de151cf6 2635
e259befd
CW
2636 switch (INTEL_INFO(dev)->gen) {
2637 case 6:
4e901fdc
EA
2638 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2639 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2640 break;
2641 case 5:
2642 case 4:
de151cf6 2643 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2644 break;
2645 case 3:
9b74f734 2646 if (obj_priv->fence_reg >= 8)
e259befd 2647 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2648 else
e259befd
CW
2649 case 2:
2650 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2651
2652 I915_WRITE(fence_reg, 0);
e259befd 2653 break;
dc529a4f 2654 }
de151cf6 2655
007cc8ac 2656 reg->obj = NULL;
de151cf6 2657 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2658 list_del_init(&reg->lru_list);
de151cf6
JB
2659}
2660
52dc7d32
CW
2661/**
2662 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2663 * to the buffer to finish, and then resets the fence register.
2664 * @obj: tiled object holding a fence register.
2cf34d7b 2665 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2666 *
2667 * Zeroes out the fence register itself and clears out the associated
2668 * data structures in dev_priv and obj_priv.
2669 */
2670int
2cf34d7b
CW
2671i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2672 bool interruptible)
52dc7d32
CW
2673{
2674 struct drm_device *dev = obj->dev;
53640e1d 2675 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2676 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2677 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2678
2679 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2680 return 0;
2681
10ae9bd2
DV
2682 /* If we've changed tiling, GTT-mappings of the object
2683 * need to re-fault to ensure that the correct fence register
2684 * setup is in place.
2685 */
2686 i915_gem_release_mmap(obj);
2687
52dc7d32
CW
2688 /* On the i915, GPU access to tiled buffers is via a fence,
2689 * therefore we must wait for any outstanding access to complete
2690 * before clearing the fence.
2691 */
53640e1d
CW
2692 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2693 if (reg->gpu) {
52dc7d32
CW
2694 int ret;
2695
2cf34d7b 2696 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad 2697 if (ret)
2dafb1e0
CW
2698 return ret;
2699
2cf34d7b 2700 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2701 if (ret)
52dc7d32 2702 return ret;
53640e1d
CW
2703
2704 reg->gpu = false;
52dc7d32
CW
2705 }
2706
4a726612 2707 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2708 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2709
2710 return 0;
2711}
2712
673a394b
EA
2713/**
2714 * Finds free space in the GTT aperture and binds the object there.
2715 */
2716static int
920afa77
DV
2717i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2718 unsigned alignment,
2719 bool mappable)
673a394b
EA
2720{
2721 struct drm_device *dev = obj->dev;
2722 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2723 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2724 struct drm_mm_node *free_space;
4bdadb97 2725 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2726 int ret;
673a394b 2727
bb6baf76 2728 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2729 DRM_ERROR("Attempting to bind a purgeable object\n");
2730 return -EINVAL;
2731 }
2732
673a394b 2733 if (alignment == 0)
0f973f27 2734 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2735 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2736 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2737 return -EINVAL;
2738 }
2739
654fc607
CW
2740 /* If the object is bigger than the entire aperture, reject it early
2741 * before evicting everything in a vain attempt to find space.
2742 */
920afa77
DV
2743 if (obj->size >
2744 (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2745 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2746 return -E2BIG;
2747 }
2748
673a394b 2749 search_free:
920afa77
DV
2750 if (mappable)
2751 free_space =
2752 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2753 obj->size, alignment, 0,
2754 dev_priv->mm.gtt_mappable_end,
2755 0);
2756 else
2757 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2758 obj->size, alignment, 0);
2759
2760 if (free_space != NULL) {
2761 if (mappable)
2762 obj_priv->gtt_space =
2763 drm_mm_get_block_range_generic(free_space,
2764 obj->size,
2765 alignment, 0,
2766 dev_priv->mm.gtt_mappable_end,
2767 0);
2768 else
2769 obj_priv->gtt_space =
2770 drm_mm_get_block(free_space, obj->size,
2771 alignment);
2772 }
673a394b
EA
2773 if (obj_priv->gtt_space == NULL) {
2774 /* If the gtt is empty and we're still having trouble
2775 * fitting our object in, we're out of memory.
2776 */
920afa77
DV
2777 ret = i915_gem_evict_something(dev, obj->size, alignment,
2778 mappable);
9731129c 2779 if (ret)
673a394b 2780 return ret;
9731129c 2781
673a394b
EA
2782 goto search_free;
2783 }
2784
4bdadb97 2785 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2786 if (ret) {
2787 drm_mm_put_block(obj_priv->gtt_space);
2788 obj_priv->gtt_space = NULL;
07f73f69
CW
2789
2790 if (ret == -ENOMEM) {
2791 /* first try to clear up some space from the GTT */
0108a3ed 2792 ret = i915_gem_evict_something(dev, obj->size,
920afa77 2793 alignment, mappable);
07f73f69 2794 if (ret) {
07f73f69 2795 /* now try to shrink everyone else */
4bdadb97
CW
2796 if (gfpmask) {
2797 gfpmask = 0;
2798 goto search_free;
07f73f69
CW
2799 }
2800
2801 return ret;
2802 }
2803
2804 goto search_free;
2805 }
2806
673a394b
EA
2807 return ret;
2808 }
2809
673a394b
EA
2810 /* Create an AGP memory structure pointing at our pages, and bind it
2811 * into the GTT.
2812 */
2813 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2814 obj_priv->pages,
07f73f69 2815 obj->size >> PAGE_SHIFT,
9af90d19 2816 obj_priv->gtt_space->start,
ba1eb1d8 2817 obj_priv->agp_type);
673a394b 2818 if (obj_priv->agp_mem == NULL) {
856fa198 2819 i915_gem_object_put_pages(obj);
673a394b
EA
2820 drm_mm_put_block(obj_priv->gtt_space);
2821 obj_priv->gtt_space = NULL;
07f73f69 2822
920afa77
DV
2823 ret = i915_gem_evict_something(dev, obj->size, alignment,
2824 mappable);
9731129c 2825 if (ret)
07f73f69 2826 return ret;
07f73f69
CW
2827
2828 goto search_free;
673a394b 2829 }
673a394b 2830
fb7d516a
DV
2831 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2832
bf1a1092 2833 /* keep track of bounds object by adding it to the inactive list */
69dc4987 2834 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
fb7d516a 2835 i915_gem_info_add_gtt(dev_priv, obj);
bf1a1092 2836
673a394b
EA
2837 /* Assert that the object is not currently in any GPU domain. As it
2838 * wasn't in the GTT, there shouldn't be any way it could have been in
2839 * a GPU cache
2840 */
21d509e3
CW
2841 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2842 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2843
ec57d260 2844 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
1c5d22f7 2845
673a394b
EA
2846 return 0;
2847}
2848
2849void
2850i915_gem_clflush_object(struct drm_gem_object *obj)
2851{
23010e43 2852 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2853
2854 /* If we don't have a page list set up, then we're not pinned
2855 * to GPU, and we can ignore the cache flush because it'll happen
2856 * again at bind time.
2857 */
856fa198 2858 if (obj_priv->pages == NULL)
673a394b
EA
2859 return;
2860
1c5d22f7 2861 trace_i915_gem_object_clflush(obj);
cfa16a0d 2862
856fa198 2863 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2864}
2865
e47c68e9 2866/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2867static int
ba3d8d74
DV
2868i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2869 bool pipelined)
e47c68e9
EA
2870{
2871 struct drm_device *dev = obj->dev;
1c5d22f7 2872 uint32_t old_write_domain;
e47c68e9
EA
2873
2874 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2875 return 0;
e47c68e9
EA
2876
2877 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2878 old_write_domain = obj->write_domain;
c78ec30b 2879 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2880 to_intel_bo(obj)->ring,
2881 0, obj->write_domain);
48b956c5 2882 BUG_ON(obj->write_domain);
1c5d22f7
CW
2883
2884 trace_i915_gem_object_change_domain(obj,
2885 obj->read_domains,
2886 old_write_domain);
ba3d8d74
DV
2887
2888 if (pipelined)
2889 return 0;
2890
2cf34d7b 2891 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2892}
2893
2894/** Flushes the GTT write domain for the object if it's dirty. */
2895static void
2896i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2897{
1c5d22f7
CW
2898 uint32_t old_write_domain;
2899
e47c68e9
EA
2900 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2901 return;
2902
2903 /* No actual flushing is required for the GTT write domain. Writes
2904 * to it immediately go to main memory as far as we know, so there's
2905 * no chipset flush. It also doesn't land in render cache.
2906 */
1c5d22f7 2907 old_write_domain = obj->write_domain;
e47c68e9 2908 obj->write_domain = 0;
1c5d22f7
CW
2909
2910 trace_i915_gem_object_change_domain(obj,
2911 obj->read_domains,
2912 old_write_domain);
e47c68e9
EA
2913}
2914
2915/** Flushes the CPU write domain for the object if it's dirty. */
2916static void
2917i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2918{
2919 struct drm_device *dev = obj->dev;
1c5d22f7 2920 uint32_t old_write_domain;
e47c68e9
EA
2921
2922 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2923 return;
2924
2925 i915_gem_clflush_object(obj);
2926 drm_agp_chipset_flush(dev);
1c5d22f7 2927 old_write_domain = obj->write_domain;
e47c68e9 2928 obj->write_domain = 0;
1c5d22f7
CW
2929
2930 trace_i915_gem_object_change_domain(obj,
2931 obj->read_domains,
2932 old_write_domain);
e47c68e9
EA
2933}
2934
2ef7eeaa
EA
2935/**
2936 * Moves a single object to the GTT read, and possibly write domain.
2937 *
2938 * This function returns when the move is complete, including waiting on
2939 * flushes to occur.
2940 */
79e53945 2941int
2ef7eeaa
EA
2942i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2943{
23010e43 2944 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2945 uint32_t old_write_domain, old_read_domains;
e47c68e9 2946 int ret;
2ef7eeaa 2947
02354392
EA
2948 /* Not valid to be called on unbound objects. */
2949 if (obj_priv->gtt_space == NULL)
2950 return -EINVAL;
2951
ba3d8d74 2952 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2dafb1e0
CW
2953 if (ret != 0)
2954 return ret;
2955
7213342d 2956 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2957
ba3d8d74 2958 if (write) {
2cf34d7b 2959 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2960 if (ret)
2961 return ret;
ba3d8d74 2962 }
e47c68e9 2963
1c5d22f7
CW
2964 old_write_domain = obj->write_domain;
2965 old_read_domains = obj->read_domains;
2966
e47c68e9
EA
2967 /* It should now be out of any other write domains, and we can update
2968 * the domain values for our changes.
2969 */
2970 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2971 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2972 if (write) {
7213342d 2973 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2974 obj->write_domain = I915_GEM_DOMAIN_GTT;
2975 obj_priv->dirty = 1;
2ef7eeaa
EA
2976 }
2977
1c5d22f7
CW
2978 trace_i915_gem_object_change_domain(obj,
2979 old_read_domains,
2980 old_write_domain);
2981
e47c68e9
EA
2982 return 0;
2983}
2984
b9241ea3
ZW
2985/*
2986 * Prepare buffer for display plane. Use uninterruptible for possible flush
2987 * wait, as in modesetting process we're not supposed to be interrupted.
2988 */
2989int
48b956c5
CW
2990i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2991 bool pipelined)
b9241ea3 2992{
23010e43 2993 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2994 uint32_t old_read_domains;
b9241ea3
ZW
2995 int ret;
2996
2997 /* Not valid to be called on unbound objects. */
2998 if (obj_priv->gtt_space == NULL)
2999 return -EINVAL;
3000
ced270fa 3001 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2dafb1e0
CW
3002 if (ret)
3003 return ret;
b9241ea3 3004
ced270fa
CW
3005 /* Currently, we are always called from an non-interruptible context. */
3006 if (!pipelined) {
3007 ret = i915_gem_object_wait_rendering(obj, false);
3008 if (ret)
b9241ea3
ZW
3009 return ret;
3010 }
3011
b118c1e3
CW
3012 i915_gem_object_flush_cpu_write_domain(obj);
3013
b9241ea3 3014 old_read_domains = obj->read_domains;
c78ec30b 3015 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3016
3017 trace_i915_gem_object_change_domain(obj,
3018 old_read_domains,
ba3d8d74 3019 obj->write_domain);
b9241ea3
ZW
3020
3021 return 0;
3022}
3023
e47c68e9
EA
3024/**
3025 * Moves a single object to the CPU read, and possibly write domain.
3026 *
3027 * This function returns when the move is complete, including waiting on
3028 * flushes to occur.
3029 */
3030static int
3031i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
3032{
1c5d22f7 3033 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3034 int ret;
3035
ba3d8d74 3036 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
3037 if (ret != 0)
3038 return ret;
2ef7eeaa 3039
e47c68e9 3040 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3041
e47c68e9
EA
3042 /* If we have a partially-valid cache of the object in the CPU,
3043 * finish invalidating it and free the per-page flags.
2ef7eeaa 3044 */
e47c68e9 3045 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3046
7213342d 3047 if (write) {
2cf34d7b 3048 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
3049 if (ret)
3050 return ret;
3051 }
3052
1c5d22f7
CW
3053 old_write_domain = obj->write_domain;
3054 old_read_domains = obj->read_domains;
3055
e47c68e9
EA
3056 /* Flush the CPU cache if it's still invalid. */
3057 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3058 i915_gem_clflush_object(obj);
2ef7eeaa 3059
e47c68e9 3060 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3061 }
3062
3063 /* It should now be out of any other write domains, and we can update
3064 * the domain values for our changes.
3065 */
e47c68e9
EA
3066 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3067
3068 /* If we're writing through the CPU, then the GPU read domains will
3069 * need to be invalidated at next use.
3070 */
3071 if (write) {
c78ec30b 3072 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
3073 obj->write_domain = I915_GEM_DOMAIN_CPU;
3074 }
2ef7eeaa 3075
1c5d22f7
CW
3076 trace_i915_gem_object_change_domain(obj,
3077 old_read_domains,
3078 old_write_domain);
3079
2ef7eeaa
EA
3080 return 0;
3081}
3082
673a394b
EA
3083/*
3084 * Set the next domain for the specified object. This
3085 * may not actually perform the necessary flushing/invaliding though,
3086 * as that may want to be batched with other set_domain operations
3087 *
3088 * This is (we hope) the only really tricky part of gem. The goal
3089 * is fairly simple -- track which caches hold bits of the object
3090 * and make sure they remain coherent. A few concrete examples may
3091 * help to explain how it works. For shorthand, we use the notation
3092 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3093 * a pair of read and write domain masks.
3094 *
3095 * Case 1: the batch buffer
3096 *
3097 * 1. Allocated
3098 * 2. Written by CPU
3099 * 3. Mapped to GTT
3100 * 4. Read by GPU
3101 * 5. Unmapped from GTT
3102 * 6. Freed
3103 *
3104 * Let's take these a step at a time
3105 *
3106 * 1. Allocated
3107 * Pages allocated from the kernel may still have
3108 * cache contents, so we set them to (CPU, CPU) always.
3109 * 2. Written by CPU (using pwrite)
3110 * The pwrite function calls set_domain (CPU, CPU) and
3111 * this function does nothing (as nothing changes)
3112 * 3. Mapped by GTT
3113 * This function asserts that the object is not
3114 * currently in any GPU-based read or write domains
3115 * 4. Read by GPU
3116 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3117 * As write_domain is zero, this function adds in the
3118 * current read domains (CPU+COMMAND, 0).
3119 * flush_domains is set to CPU.
3120 * invalidate_domains is set to COMMAND
3121 * clflush is run to get data out of the CPU caches
3122 * then i915_dev_set_domain calls i915_gem_flush to
3123 * emit an MI_FLUSH and drm_agp_chipset_flush
3124 * 5. Unmapped from GTT
3125 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3126 * flush_domains and invalidate_domains end up both zero
3127 * so no flushing/invalidating happens
3128 * 6. Freed
3129 * yay, done
3130 *
3131 * Case 2: The shared render buffer
3132 *
3133 * 1. Allocated
3134 * 2. Mapped to GTT
3135 * 3. Read/written by GPU
3136 * 4. set_domain to (CPU,CPU)
3137 * 5. Read/written by CPU
3138 * 6. Read/written by GPU
3139 *
3140 * 1. Allocated
3141 * Same as last example, (CPU, CPU)
3142 * 2. Mapped to GTT
3143 * Nothing changes (assertions find that it is not in the GPU)
3144 * 3. Read/written by GPU
3145 * execbuffer calls set_domain (RENDER, RENDER)
3146 * flush_domains gets CPU
3147 * invalidate_domains gets GPU
3148 * clflush (obj)
3149 * MI_FLUSH and drm_agp_chipset_flush
3150 * 4. set_domain (CPU, CPU)
3151 * flush_domains gets GPU
3152 * invalidate_domains gets CPU
3153 * wait_rendering (obj) to make sure all drawing is complete.
3154 * This will include an MI_FLUSH to get the data from GPU
3155 * to memory
3156 * clflush (obj) to invalidate the CPU cache
3157 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3158 * 5. Read/written by CPU
3159 * cache lines are loaded and dirtied
3160 * 6. Read written by GPU
3161 * Same as last GPU access
3162 *
3163 * Case 3: The constant buffer
3164 *
3165 * 1. Allocated
3166 * 2. Written by CPU
3167 * 3. Read by GPU
3168 * 4. Updated (written) by CPU again
3169 * 5. Read by GPU
3170 *
3171 * 1. Allocated
3172 * (CPU, CPU)
3173 * 2. Written by CPU
3174 * (CPU, CPU)
3175 * 3. Read by GPU
3176 * (CPU+RENDER, 0)
3177 * flush_domains = CPU
3178 * invalidate_domains = RENDER
3179 * clflush (obj)
3180 * MI_FLUSH
3181 * drm_agp_chipset_flush
3182 * 4. Updated (written) by CPU again
3183 * (CPU, CPU)
3184 * flush_domains = 0 (no previous write domain)
3185 * invalidate_domains = 0 (no new read domains)
3186 * 5. Read by GPU
3187 * (CPU+RENDER, 0)
3188 * flush_domains = CPU
3189 * invalidate_domains = RENDER
3190 * clflush (obj)
3191 * MI_FLUSH
3192 * drm_agp_chipset_flush
3193 */
c0d90829 3194static void
b6651458
CW
3195i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3196 struct intel_ring_buffer *ring)
673a394b
EA
3197{
3198 struct drm_device *dev = obj->dev;
9220434a 3199 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 3200 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3201 uint32_t invalidate_domains = 0;
3202 uint32_t flush_domains = 0;
652c393a 3203
673a394b
EA
3204 /*
3205 * If the object isn't moving to a new write domain,
3206 * let the object stay in multiple read domains
3207 */
8b0e378a
EA
3208 if (obj->pending_write_domain == 0)
3209 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3210
3211 /*
3212 * Flush the current write domain if
3213 * the new read domains don't match. Invalidate
3214 * any read domains which differ from the old
3215 * write domain
3216 */
8b0e378a
EA
3217 if (obj->write_domain &&
3218 obj->write_domain != obj->pending_read_domains) {
673a394b 3219 flush_domains |= obj->write_domain;
8b0e378a
EA
3220 invalidate_domains |=
3221 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3222 }
3223 /*
3224 * Invalidate any read caches which may have
3225 * stale data. That is, any new read domains.
3226 */
8b0e378a 3227 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3228 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3229 i915_gem_clflush_object(obj);
673a394b 3230
efbeed96
EA
3231 /* The actual obj->write_domain will be updated with
3232 * pending_write_domain after we emit the accumulated flush for all
3233 * of our domain changes in execbuffers (which clears objects'
3234 * write_domains). So if we have a current write domain that we
3235 * aren't changing, set pending_write_domain to that.
3236 */
3237 if (flush_domains == 0 && obj->pending_write_domain == 0)
3238 obj->pending_write_domain = obj->write_domain;
673a394b
EA
3239
3240 dev->invalidate_domains |= invalidate_domains;
3241 dev->flush_domains |= flush_domains;
b6651458 3242 if (flush_domains & I915_GEM_GPU_DOMAINS)
9220434a 3243 dev_priv->mm.flush_rings |= obj_priv->ring->id;
b6651458
CW
3244 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3245 dev_priv->mm.flush_rings |= ring->id;
673a394b
EA
3246}
3247
3248/**
e47c68e9 3249 * Moves the object from a partially CPU read to a full one.
673a394b 3250 *
e47c68e9
EA
3251 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3252 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3253 */
e47c68e9
EA
3254static void
3255i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3256{
23010e43 3257 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3258
e47c68e9
EA
3259 if (!obj_priv->page_cpu_valid)
3260 return;
3261
3262 /* If we're partially in the CPU read domain, finish moving it in.
3263 */
3264 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3265 int i;
3266
3267 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3268 if (obj_priv->page_cpu_valid[i])
3269 continue;
856fa198 3270 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3271 }
e47c68e9
EA
3272 }
3273
3274 /* Free the page_cpu_valid mappings which are now stale, whether
3275 * or not we've got I915_GEM_DOMAIN_CPU.
3276 */
9a298b2a 3277 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3278 obj_priv->page_cpu_valid = NULL;
3279}
3280
3281/**
3282 * Set the CPU read domain on a range of the object.
3283 *
3284 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3285 * not entirely valid. The page_cpu_valid member of the object flags which
3286 * pages have been flushed, and will be respected by
3287 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3288 * of the whole object.
3289 *
3290 * This function returns when the move is complete, including waiting on
3291 * flushes to occur.
3292 */
3293static int
3294i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3295 uint64_t offset, uint64_t size)
3296{
23010e43 3297 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3298 uint32_t old_read_domains;
e47c68e9 3299 int i, ret;
673a394b 3300
e47c68e9
EA
3301 if (offset == 0 && size == obj->size)
3302 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3303
ba3d8d74 3304 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3305 if (ret != 0)
6a47baa6 3306 return ret;
e47c68e9
EA
3307 i915_gem_object_flush_gtt_write_domain(obj);
3308
3309 /* If we're already fully in the CPU read domain, we're done. */
3310 if (obj_priv->page_cpu_valid == NULL &&
3311 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3312 return 0;
673a394b 3313
e47c68e9
EA
3314 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3315 * newly adding I915_GEM_DOMAIN_CPU
3316 */
673a394b 3317 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3318 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3319 GFP_KERNEL);
e47c68e9
EA
3320 if (obj_priv->page_cpu_valid == NULL)
3321 return -ENOMEM;
3322 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3323 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3324
3325 /* Flush the cache on any pages that are still invalid from the CPU's
3326 * perspective.
3327 */
e47c68e9
EA
3328 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3329 i++) {
673a394b
EA
3330 if (obj_priv->page_cpu_valid[i])
3331 continue;
3332
856fa198 3333 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3334
3335 obj_priv->page_cpu_valid[i] = 1;
3336 }
3337
e47c68e9
EA
3338 /* It should now be out of any other write domains, and we can update
3339 * the domain values for our changes.
3340 */
3341 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3342
1c5d22f7 3343 old_read_domains = obj->read_domains;
e47c68e9
EA
3344 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3345
1c5d22f7
CW
3346 trace_i915_gem_object_change_domain(obj,
3347 old_read_domains,
3348 obj->write_domain);
3349
673a394b
EA
3350 return 0;
3351}
3352
673a394b
EA
3353/**
3354 * Pin an object to the GTT and evaluate the relocations landing in it.
3355 */
3356static int
9af90d19
CW
3357i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3358 struct drm_file *file_priv,
3359 struct drm_i915_gem_exec_object2 *entry)
673a394b 3360{
9af90d19 3361 struct drm_device *dev = obj->base.dev;
0839ccb8 3362 drm_i915_private_t *dev_priv = dev->dev_private;
2549d6c2 3363 struct drm_i915_gem_relocation_entry __user *user_relocs;
9af90d19
CW
3364 struct drm_gem_object *target_obj = NULL;
3365 uint32_t target_handle = 0;
3366 int i, ret = 0;
673a394b 3367
2549d6c2 3368 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
673a394b 3369 for (i = 0; i < entry->relocation_count; i++) {
2549d6c2 3370 struct drm_i915_gem_relocation_entry reloc;
9af90d19 3371 uint32_t target_offset;
673a394b 3372
9af90d19
CW
3373 if (__copy_from_user_inatomic(&reloc,
3374 user_relocs+i,
3375 sizeof(reloc))) {
3376 ret = -EFAULT;
3377 break;
76446cac 3378 }
76446cac 3379
9af90d19
CW
3380 if (reloc.target_handle != target_handle) {
3381 drm_gem_object_unreference(target_obj);
673a394b 3382
9af90d19
CW
3383 target_obj = drm_gem_object_lookup(dev, file_priv,
3384 reloc.target_handle);
3385 if (target_obj == NULL) {
3386 ret = -ENOENT;
3387 break;
3388 }
3389
3390 target_handle = reloc.target_handle;
673a394b 3391 }
9af90d19 3392 target_offset = to_intel_bo(target_obj)->gtt_offset;
673a394b 3393
8542a0bb
CW
3394#if WATCH_RELOC
3395 DRM_INFO("%s: obj %p offset %08x target %d "
3396 "read %08x write %08x gtt %08x "
3397 "presumed %08x delta %08x\n",
3398 __func__,
3399 obj,
2549d6c2
CW
3400 (int) reloc.offset,
3401 (int) reloc.target_handle,
3402 (int) reloc.read_domains,
3403 (int) reloc.write_domain,
9af90d19 3404 (int) target_offset,
2549d6c2
CW
3405 (int) reloc.presumed_offset,
3406 reloc.delta);
8542a0bb
CW
3407#endif
3408
673a394b
EA
3409 /* The target buffer should have appeared before us in the
3410 * exec_object list, so it should have a GTT space bound by now.
3411 */
9af90d19 3412 if (target_offset == 0) {
673a394b 3413 DRM_ERROR("No GTT space found for object %d\n",
2549d6c2 3414 reloc.target_handle);
9af90d19
CW
3415 ret = -EINVAL;
3416 break;
673a394b
EA
3417 }
3418
8542a0bb 3419 /* Validate that the target is in a valid r/w GPU domain */
2549d6c2 3420 if (reloc.write_domain & (reloc.write_domain - 1)) {
16edd550
DV
3421 DRM_ERROR("reloc with multiple write domains: "
3422 "obj %p target %d offset %d "
3423 "read %08x write %08x",
2549d6c2
CW
3424 obj, reloc.target_handle,
3425 (int) reloc.offset,
3426 reloc.read_domains,
3427 reloc.write_domain);
9af90d19
CW
3428 ret = -EINVAL;
3429 break;
16edd550 3430 }
2549d6c2
CW
3431 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3432 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3433 DRM_ERROR("reloc with read/write CPU domains: "
3434 "obj %p target %d offset %d "
3435 "read %08x write %08x",
2549d6c2
CW
3436 obj, reloc.target_handle,
3437 (int) reloc.offset,
3438 reloc.read_domains,
3439 reloc.write_domain);
9af90d19
CW
3440 ret = -EINVAL;
3441 break;
e47c68e9 3442 }
2549d6c2
CW
3443 if (reloc.write_domain && target_obj->pending_write_domain &&
3444 reloc.write_domain != target_obj->pending_write_domain) {
673a394b
EA
3445 DRM_ERROR("Write domain conflict: "
3446 "obj %p target %d offset %d "
3447 "new %08x old %08x\n",
2549d6c2
CW
3448 obj, reloc.target_handle,
3449 (int) reloc.offset,
3450 reloc.write_domain,
673a394b 3451 target_obj->pending_write_domain);
9af90d19
CW
3452 ret = -EINVAL;
3453 break;
673a394b
EA
3454 }
3455
2549d6c2 3456 target_obj->pending_read_domains |= reloc.read_domains;
878a3c37 3457 target_obj->pending_write_domain |= reloc.write_domain;
673a394b
EA
3458
3459 /* If the relocation already has the right value in it, no
3460 * more work needs to be done.
3461 */
9af90d19 3462 if (target_offset == reloc.presumed_offset)
673a394b 3463 continue;
673a394b 3464
8542a0bb 3465 /* Check that the relocation address is valid... */
9af90d19 3466 if (reloc.offset > obj->base.size - 4) {
8542a0bb
CW
3467 DRM_ERROR("Relocation beyond object bounds: "
3468 "obj %p target %d offset %d size %d.\n",
2549d6c2 3469 obj, reloc.target_handle,
9af90d19
CW
3470 (int) reloc.offset, (int) obj->base.size);
3471 ret = -EINVAL;
3472 break;
8542a0bb 3473 }
2549d6c2 3474 if (reloc.offset & 3) {
8542a0bb
CW
3475 DRM_ERROR("Relocation not 4-byte aligned: "
3476 "obj %p target %d offset %d.\n",
2549d6c2
CW
3477 obj, reloc.target_handle,
3478 (int) reloc.offset);
9af90d19
CW
3479 ret = -EINVAL;
3480 break;
8542a0bb
CW
3481 }
3482
3483 /* and points to somewhere within the target object. */
2549d6c2 3484 if (reloc.delta >= target_obj->size) {
8542a0bb
CW
3485 DRM_ERROR("Relocation beyond target object bounds: "
3486 "obj %p target %d delta %d size %d.\n",
2549d6c2
CW
3487 obj, reloc.target_handle,
3488 (int) reloc.delta, (int) target_obj->size);
9af90d19
CW
3489 ret = -EINVAL;
3490 break;
673a394b
EA
3491 }
3492
9af90d19
CW
3493 reloc.delta += target_offset;
3494 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
f0c43d9b
CW
3495 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3496 char *vaddr;
673a394b 3497
c48c43e4 3498 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
f0c43d9b 3499 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
c48c43e4 3500 kunmap_atomic(vaddr);
f0c43d9b
CW
3501 } else {
3502 uint32_t __iomem *reloc_entry;
3503 void __iomem *reloc_page;
b962442e 3504
9af90d19
CW
3505 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3506 if (ret)
3507 break;
b962442e 3508
f0c43d9b 3509 /* Map the page containing the relocation we're going to perform. */
9af90d19 3510 reloc.offset += obj->gtt_offset;
f0c43d9b 3511 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
c48c43e4 3512 reloc.offset & PAGE_MASK);
f0c43d9b
CW
3513 reloc_entry = (uint32_t __iomem *)
3514 (reloc_page + (reloc.offset & ~PAGE_MASK));
3515 iowrite32(reloc.delta, reloc_entry);
c48c43e4 3516 io_mapping_unmap_atomic(reloc_page);
f0c43d9b 3517 }
b962442e 3518
b5dc608c
CW
3519 /* and update the user's relocation entry */
3520 reloc.presumed_offset = target_offset;
3521 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3522 &reloc.presumed_offset,
3523 sizeof(reloc.presumed_offset))) {
3524 ret = -EFAULT;
3525 break;
3526 }
b962442e 3527 }
b962442e 3528
9af90d19 3529 drm_gem_object_unreference(target_obj);
673a394b
EA
3530 return ret;
3531}
3532
40a5f0de 3533static int
9af90d19
CW
3534i915_gem_execbuffer_pin(struct drm_device *dev,
3535 struct drm_file *file,
3536 struct drm_gem_object **object_list,
3537 struct drm_i915_gem_exec_object2 *exec_list,
3538 int count)
40a5f0de 3539{
9af90d19
CW
3540 struct drm_i915_private *dev_priv = dev->dev_private;
3541 int ret, i, retry;
40a5f0de 3542
9af90d19
CW
3543 /* attempt to pin all of the buffers into the GTT */
3544 for (retry = 0; retry < 2; retry++) {
3545 ret = 0;
3546 for (i = 0; i < count; i++) {
3547 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
16e809ac 3548 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
9af90d19
CW
3549 bool need_fence =
3550 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3551 obj->tiling_mode != I915_TILING_NONE;
3552
16e809ac
DV
3553 /* g33/pnv can't fence buffers in the unmappable part */
3554 bool need_mappable =
3555 entry->relocation_count ? true : need_fence;
3556
9af90d19
CW
3557 /* Check fence reg constraints and rebind if necessary */
3558 if (need_fence &&
3559 !i915_gem_object_fence_offset_ok(&obj->base,
3560 obj->tiling_mode)) {
3561 ret = i915_gem_object_unbind(&obj->base);
3562 if (ret)
3563 break;
3564 }
40a5f0de 3565
920afa77 3566 ret = i915_gem_object_pin(&obj->base,
16e809ac
DV
3567 entry->alignment,
3568 need_mappable);
9af90d19
CW
3569 if (ret)
3570 break;
40a5f0de 3571
9af90d19
CW
3572 /*
3573 * Pre-965 chips need a fence register set up in order
3574 * to properly handle blits to/from tiled surfaces.
3575 */
3576 if (need_fence) {
3577 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3578 if (ret) {
3579 i915_gem_object_unpin(&obj->base);
3580 break;
3581 }
40a5f0de 3582
9af90d19
CW
3583 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3584 }
40a5f0de 3585
9af90d19 3586 entry->offset = obj->gtt_offset;
40a5f0de
EA
3587 }
3588
9af90d19
CW
3589 while (i--)
3590 i915_gem_object_unpin(object_list[i]);
3591
3592 if (ret == 0)
3593 break;
673a394b 3594
9af90d19
CW
3595 if (ret != -ENOSPC || retry)
3596 return ret;
3597
3598 ret = i915_gem_evict_everything(dev);
3599 if (ret)
3600 return ret;
40a5f0de
EA
3601 }
3602
2bc43b5c 3603 return 0;
40a5f0de
EA
3604}
3605
673a394b
EA
3606/* Throttle our rendering by waiting until the ring has completed our requests
3607 * emitted over 20 msec ago.
3608 *
b962442e
EA
3609 * Note that if we were to use the current jiffies each time around the loop,
3610 * we wouldn't escape the function with any frames outstanding if the time to
3611 * render a frame was over 20ms.
3612 *
673a394b
EA
3613 * This should get us reasonable parallelism between CPU and GPU but also
3614 * relatively low latency when blocking on a particular request to finish.
3615 */
40a5f0de 3616static int
f787a5f5 3617i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3618{
f787a5f5
CW
3619 struct drm_i915_private *dev_priv = dev->dev_private;
3620 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3621 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3622 struct drm_i915_gem_request *request;
3623 struct intel_ring_buffer *ring = NULL;
3624 u32 seqno = 0;
3625 int ret;
93533c29 3626
1c25595f 3627 spin_lock(&file_priv->mm.lock);
f787a5f5 3628 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3629 if (time_after_eq(request->emitted_jiffies, recent_enough))
3630 break;
40a5f0de 3631
f787a5f5
CW
3632 ring = request->ring;
3633 seqno = request->seqno;
b962442e 3634 }
1c25595f 3635 spin_unlock(&file_priv->mm.lock);
40a5f0de 3636
f787a5f5
CW
3637 if (seqno == 0)
3638 return 0;
2bc43b5c 3639
f787a5f5 3640 ret = 0;
78501eac 3641 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3642 /* And wait for the seqno passing without holding any locks and
3643 * causing extra latency for others. This is safe as the irq
3644 * generation is designed to be run atomically and so is
3645 * lockless.
3646 */
78501eac 3647 ring->user_irq_get(ring);
f787a5f5 3648 ret = wait_event_interruptible(ring->irq_queue,
78501eac 3649 i915_seqno_passed(ring->get_seqno(ring), seqno)
f787a5f5 3650 || atomic_read(&dev_priv->mm.wedged));
78501eac 3651 ring->user_irq_put(ring);
40a5f0de 3652
f787a5f5
CW
3653 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3654 ret = -EIO;
40a5f0de
EA
3655 }
3656
f787a5f5
CW
3657 if (ret == 0)
3658 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3659
3660 return ret;
3661}
3662
83d60795 3663static int
2549d6c2
CW
3664i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3665 uint64_t exec_offset)
83d60795
CW
3666{
3667 uint32_t exec_start, exec_len;
3668
3669 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3670 exec_len = (uint32_t) exec->batch_len;
3671
3672 if ((exec_start | exec_len) & 0x7)
3673 return -EINVAL;
3674
3675 if (!exec_start)
3676 return -EINVAL;
3677
3678 return 0;
3679}
3680
6b95a207 3681static int
2549d6c2
CW
3682validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3683 int count)
6b95a207 3684{
2549d6c2 3685 int i;
6b95a207 3686
2549d6c2
CW
3687 for (i = 0; i < count; i++) {
3688 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3689 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
6b95a207 3690
2549d6c2
CW
3691 if (!access_ok(VERIFY_READ, ptr, length))
3692 return -EFAULT;
40a5f0de 3693
b5dc608c
CW
3694 /* we may also need to update the presumed offsets */
3695 if (!access_ok(VERIFY_WRITE, ptr, length))
3696 return -EFAULT;
3697
2549d6c2
CW
3698 if (fault_in_pages_readable(ptr, length))
3699 return -EFAULT;
6b95a207 3700 }
6b95a207 3701
83d60795 3702 return 0;
6b95a207
KH
3703}
3704
8dc5d147 3705static int
76446cac 3706i915_gem_do_execbuffer(struct drm_device *dev, void *data,
9af90d19 3707 struct drm_file *file,
76446cac
JB
3708 struct drm_i915_gem_execbuffer2 *args,
3709 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3710{
3711 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3712 struct drm_gem_object **object_list = NULL;
3713 struct drm_gem_object *batch_obj;
201361a5 3714 struct drm_clip_rect *cliprects = NULL;
8dc5d147 3715 struct drm_i915_gem_request *request = NULL;
9af90d19 3716 int ret, i, flips;
673a394b 3717 uint64_t exec_offset;
673a394b 3718
852835f3
ZN
3719 struct intel_ring_buffer *ring = NULL;
3720
30dbf0c0
CW
3721 ret = i915_gem_check_is_wedged(dev);
3722 if (ret)
3723 return ret;
3724
2549d6c2
CW
3725 ret = validate_exec_list(exec_list, args->buffer_count);
3726 if (ret)
3727 return ret;
3728
673a394b
EA
3729#if WATCH_EXEC
3730 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3731 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3732#endif
549f7365
CW
3733 switch (args->flags & I915_EXEC_RING_MASK) {
3734 case I915_EXEC_DEFAULT:
3735 case I915_EXEC_RENDER:
3736 ring = &dev_priv->render_ring;
3737 break;
3738 case I915_EXEC_BSD:
d1b851fc 3739 if (!HAS_BSD(dev)) {
549f7365 3740 DRM_ERROR("execbuf with invalid ring (BSD)\n");
d1b851fc
ZN
3741 return -EINVAL;
3742 }
3743 ring = &dev_priv->bsd_ring;
549f7365
CW
3744 break;
3745 case I915_EXEC_BLT:
3746 if (!HAS_BLT(dev)) {
3747 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3748 return -EINVAL;
3749 }
3750 ring = &dev_priv->blt_ring;
3751 break;
3752 default:
3753 DRM_ERROR("execbuf with unknown ring: %d\n",
3754 (int)(args->flags & I915_EXEC_RING_MASK));
3755 return -EINVAL;
d1b851fc
ZN
3756 }
3757
4f481ed2
EA
3758 if (args->buffer_count < 1) {
3759 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3760 return -EINVAL;
3761 }
c8e0f93a 3762 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3763 if (object_list == NULL) {
3764 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3765 args->buffer_count);
3766 ret = -ENOMEM;
3767 goto pre_mutex_err;
3768 }
673a394b 3769
201361a5 3770 if (args->num_cliprects != 0) {
9a298b2a
EA
3771 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3772 GFP_KERNEL);
a40e8d31
OA
3773 if (cliprects == NULL) {
3774 ret = -ENOMEM;
201361a5 3775 goto pre_mutex_err;
a40e8d31 3776 }
201361a5
EA
3777
3778 ret = copy_from_user(cliprects,
3779 (struct drm_clip_rect __user *)
3780 (uintptr_t) args->cliprects_ptr,
3781 sizeof(*cliprects) * args->num_cliprects);
3782 if (ret != 0) {
3783 DRM_ERROR("copy %d cliprects failed: %d\n",
3784 args->num_cliprects, ret);
c877cdce 3785 ret = -EFAULT;
201361a5
EA
3786 goto pre_mutex_err;
3787 }
3788 }
3789
8dc5d147
CW
3790 request = kzalloc(sizeof(*request), GFP_KERNEL);
3791 if (request == NULL) {
3792 ret = -ENOMEM;
40a5f0de 3793 goto pre_mutex_err;
8dc5d147 3794 }
40a5f0de 3795
76c1dec1
CW
3796 ret = i915_mutex_lock_interruptible(dev);
3797 if (ret)
a198bc80 3798 goto pre_mutex_err;
673a394b
EA
3799
3800 if (dev_priv->mm.suspended) {
673a394b 3801 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3802 ret = -EBUSY;
3803 goto pre_mutex_err;
673a394b
EA
3804 }
3805
ac94a962 3806 /* Look up object handles */
673a394b 3807 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3808 struct drm_i915_gem_object *obj_priv;
3809
9af90d19 3810 object_list[i] = drm_gem_object_lookup(dev, file,
673a394b
EA
3811 exec_list[i].handle);
3812 if (object_list[i] == NULL) {
3813 DRM_ERROR("Invalid object handle %d at index %d\n",
3814 exec_list[i].handle, i);
0ce907f8
CW
3815 /* prevent error path from reading uninitialized data */
3816 args->buffer_count = i + 1;
bf79cb91 3817 ret = -ENOENT;
673a394b
EA
3818 goto err;
3819 }
b70d11da 3820
23010e43 3821 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3822 if (obj_priv->in_execbuffer) {
3823 DRM_ERROR("Object %p appears more than once in object list\n",
3824 object_list[i]);
0ce907f8
CW
3825 /* prevent error path from reading uninitialized data */
3826 args->buffer_count = i + 1;
bf79cb91 3827 ret = -EINVAL;
b70d11da
KH
3828 goto err;
3829 }
3830 obj_priv->in_execbuffer = true;
ac94a962 3831 }
673a394b 3832
9af90d19
CW
3833 /* Move the objects en-masse into the GTT, evicting if necessary. */
3834 ret = i915_gem_execbuffer_pin(dev, file,
3835 object_list, exec_list,
3836 args->buffer_count);
3837 if (ret)
3838 goto err;
ac94a962 3839
9af90d19
CW
3840 /* The objects are in their final locations, apply the relocations. */
3841 for (i = 0; i < args->buffer_count; i++) {
3842 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3843 obj->base.pending_read_domains = 0;
3844 obj->base.pending_write_domain = 0;
3845 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3846 if (ret)
ac94a962 3847 goto err;
673a394b
EA
3848 }
3849
3850 /* Set the pending read domains for the batch buffer to COMMAND */
3851 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3852 if (batch_obj->pending_write_domain) {
3853 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3854 ret = -EINVAL;
3855 goto err;
3856 }
3857 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3858
9af90d19
CW
3859 /* Sanity check the batch buffer */
3860 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3861 ret = i915_gem_check_execbuffer(args, exec_offset);
83d60795
CW
3862 if (ret != 0) {
3863 DRM_ERROR("execbuf with invalid offset/length\n");
3864 goto err;
3865 }
3866
646f0f6e
KP
3867 /* Zero the global flush/invalidate flags. These
3868 * will be modified as new domains are computed
3869 * for each object
3870 */
3871 dev->invalidate_domains = 0;
3872 dev->flush_domains = 0;
9220434a 3873 dev_priv->mm.flush_rings = 0;
7e318e18
CW
3874 for (i = 0; i < args->buffer_count; i++)
3875 i915_gem_object_set_to_gpu_domain(object_list[i], ring);
673a394b 3876
646f0f6e
KP
3877 if (dev->invalidate_domains | dev->flush_domains) {
3878#if WATCH_EXEC
3879 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3880 __func__,
3881 dev->invalidate_domains,
3882 dev->flush_domains);
3883#endif
9af90d19 3884 i915_gem_flush(dev, file,
646f0f6e 3885 dev->invalidate_domains,
9220434a
CW
3886 dev->flush_domains,
3887 dev_priv->mm.flush_rings);
646f0f6e 3888 }
673a394b 3889
673a394b
EA
3890#if WATCH_COHERENCY
3891 for (i = 0; i < args->buffer_count; i++) {
3892 i915_gem_object_check_coherency(object_list[i],
3893 exec_list[i].handle);
3894 }
3895#endif
3896
673a394b 3897#if WATCH_EXEC
6911a9b8 3898 i915_gem_dump_object(batch_obj,
673a394b
EA
3899 args->batch_len,
3900 __func__,
3901 ~0);
3902#endif
3903
e59f2bac
CW
3904 /* Check for any pending flips. As we only maintain a flip queue depth
3905 * of 1, we can simply insert a WAIT for the next display flip prior
3906 * to executing the batch and avoid stalling the CPU.
3907 */
3908 flips = 0;
3909 for (i = 0; i < args->buffer_count; i++) {
3910 if (object_list[i]->write_domain)
3911 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3912 }
3913 if (flips) {
3914 int plane, flip_mask;
3915
3916 for (plane = 0; flips >> plane; plane++) {
3917 if (((flips >> plane) & 1) == 0)
3918 continue;
3919
3920 if (plane)
3921 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3922 else
3923 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3924
e1f99ce6
CW
3925 ret = intel_ring_begin(ring, 2);
3926 if (ret)
3927 goto err;
3928
78501eac
CW
3929 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3930 intel_ring_emit(ring, MI_NOOP);
3931 intel_ring_advance(ring);
e59f2bac
CW
3932 }
3933 }
3934
673a394b 3935 /* Exec the batchbuffer */
78501eac 3936 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
673a394b
EA
3937 if (ret) {
3938 DRM_ERROR("dispatch failed %d\n", ret);
3939 goto err;
3940 }
3941
673a394b
EA
3942 for (i = 0; i < args->buffer_count; i++) {
3943 struct drm_gem_object *obj = object_list[i];
673a394b 3944
7e318e18
CW
3945 obj->read_domains = obj->pending_read_domains;
3946 obj->write_domain = obj->pending_write_domain;
3947
617dbe27 3948 i915_gem_object_move_to_active(obj, ring);
7e318e18
CW
3949 if (obj->write_domain) {
3950 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3951 obj_priv->dirty = 1;
3952 list_move_tail(&obj_priv->gpu_write_list,
64193406 3953 &ring->gpu_write_list);
7e318e18
CW
3954 intel_mark_busy(dev, obj);
3955 }
3956
3957 trace_i915_gem_object_change_domain(obj,
3958 obj->read_domains,
3959 obj->write_domain);
673a394b 3960 }
673a394b 3961
7e318e18
CW
3962 /*
3963 * Ensure that the commands in the batch buffer are
3964 * finished before the interrupt fires
3965 */
3966 i915_retire_commands(dev, ring);
3967
3cce469c
CW
3968 if (i915_add_request(dev, file, request, ring))
3969 ring->outstanding_lazy_request = true;
3970 else
3971 request = NULL;
673a394b 3972
673a394b 3973err:
b70d11da 3974 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3975 if (object_list[i] == NULL)
3976 break;
3977
3978 to_intel_bo(object_list[i])->in_execbuffer = false;
aad87dff 3979 drm_gem_object_unreference(object_list[i]);
b70d11da 3980 }
673a394b 3981
673a394b
EA
3982 mutex_unlock(&dev->struct_mutex);
3983
93533c29 3984pre_mutex_err:
8e7d2b2c 3985 drm_free_large(object_list);
9a298b2a 3986 kfree(cliprects);
8dc5d147 3987 kfree(request);
673a394b
EA
3988
3989 return ret;
3990}
3991
76446cac
JB
3992/*
3993 * Legacy execbuffer just creates an exec2 list from the original exec object
3994 * list array and passes it to the real function.
3995 */
3996int
3997i915_gem_execbuffer(struct drm_device *dev, void *data,
3998 struct drm_file *file_priv)
3999{
4000 struct drm_i915_gem_execbuffer *args = data;
4001 struct drm_i915_gem_execbuffer2 exec2;
4002 struct drm_i915_gem_exec_object *exec_list = NULL;
4003 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4004 int ret, i;
4005
4006#if WATCH_EXEC
4007 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4008 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4009#endif
4010
4011 if (args->buffer_count < 1) {
4012 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4013 return -EINVAL;
4014 }
4015
4016 /* Copy in the exec list from userland */
4017 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4018 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4019 if (exec_list == NULL || exec2_list == NULL) {
4020 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4021 args->buffer_count);
4022 drm_free_large(exec_list);
4023 drm_free_large(exec2_list);
4024 return -ENOMEM;
4025 }
4026 ret = copy_from_user(exec_list,
4027 (struct drm_i915_relocation_entry __user *)
4028 (uintptr_t) args->buffers_ptr,
4029 sizeof(*exec_list) * args->buffer_count);
4030 if (ret != 0) {
4031 DRM_ERROR("copy %d exec entries failed %d\n",
4032 args->buffer_count, ret);
4033 drm_free_large(exec_list);
4034 drm_free_large(exec2_list);
4035 return -EFAULT;
4036 }
4037
4038 for (i = 0; i < args->buffer_count; i++) {
4039 exec2_list[i].handle = exec_list[i].handle;
4040 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4041 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4042 exec2_list[i].alignment = exec_list[i].alignment;
4043 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 4044 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
4045 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4046 else
4047 exec2_list[i].flags = 0;
4048 }
4049
4050 exec2.buffers_ptr = args->buffers_ptr;
4051 exec2.buffer_count = args->buffer_count;
4052 exec2.batch_start_offset = args->batch_start_offset;
4053 exec2.batch_len = args->batch_len;
4054 exec2.DR1 = args->DR1;
4055 exec2.DR4 = args->DR4;
4056 exec2.num_cliprects = args->num_cliprects;
4057 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 4058 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
4059
4060 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4061 if (!ret) {
4062 /* Copy the new buffer offsets back to the user's exec list. */
4063 for (i = 0; i < args->buffer_count; i++)
4064 exec_list[i].offset = exec2_list[i].offset;
4065 /* ... and back out to userspace */
4066 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4067 (uintptr_t) args->buffers_ptr,
4068 exec_list,
4069 sizeof(*exec_list) * args->buffer_count);
4070 if (ret) {
4071 ret = -EFAULT;
4072 DRM_ERROR("failed to copy %d exec entries "
4073 "back to user (%d)\n",
4074 args->buffer_count, ret);
4075 }
76446cac
JB
4076 }
4077
4078 drm_free_large(exec_list);
4079 drm_free_large(exec2_list);
4080 return ret;
4081}
4082
4083int
4084i915_gem_execbuffer2(struct drm_device *dev, void *data,
4085 struct drm_file *file_priv)
4086{
4087 struct drm_i915_gem_execbuffer2 *args = data;
4088 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4089 int ret;
4090
4091#if WATCH_EXEC
4092 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4093 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4094#endif
4095
4096 if (args->buffer_count < 1) {
4097 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4098 return -EINVAL;
4099 }
4100
4101 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4102 if (exec2_list == NULL) {
4103 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4104 args->buffer_count);
4105 return -ENOMEM;
4106 }
4107 ret = copy_from_user(exec2_list,
4108 (struct drm_i915_relocation_entry __user *)
4109 (uintptr_t) args->buffers_ptr,
4110 sizeof(*exec2_list) * args->buffer_count);
4111 if (ret != 0) {
4112 DRM_ERROR("copy %d exec entries failed %d\n",
4113 args->buffer_count, ret);
4114 drm_free_large(exec2_list);
4115 return -EFAULT;
4116 }
4117
4118 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4119 if (!ret) {
4120 /* Copy the new buffer offsets back to the user's exec list. */
4121 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4122 (uintptr_t) args->buffers_ptr,
4123 exec2_list,
4124 sizeof(*exec2_list) * args->buffer_count);
4125 if (ret) {
4126 ret = -EFAULT;
4127 DRM_ERROR("failed to copy %d exec entries "
4128 "back to user (%d)\n",
4129 args->buffer_count, ret);
4130 }
4131 }
4132
4133 drm_free_large(exec2_list);
4134 return ret;
4135}
4136
673a394b 4137int
920afa77
DV
4138i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4139 bool mappable)
673a394b
EA
4140{
4141 struct drm_device *dev = obj->dev;
f13d3f73 4142 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4143 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4144 int ret;
4145
778c3544 4146 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 4147 WARN_ON(i915_verify_lists(dev));
ac0c6b5a
CW
4148
4149 if (obj_priv->gtt_space != NULL) {
4150 if (alignment == 0)
4151 alignment = i915_gem_get_gtt_alignment(obj);
16e809ac
DV
4152 if (obj_priv->gtt_offset & (alignment - 1) ||
4153 (mappable && !i915_gem_object_cpu_accessible(obj_priv))) {
ae7d49d8
CW
4154 WARN(obj_priv->pin_count,
4155 "bo is already pinned with incorrect alignment:"
4156 " offset=%x, req.alignment=%x\n",
4157 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4158 ret = i915_gem_object_unbind(obj);
4159 if (ret)
4160 return ret;
4161 }
4162 }
4163
673a394b 4164 if (obj_priv->gtt_space == NULL) {
920afa77 4165 ret = i915_gem_object_bind_to_gtt(obj, alignment, mappable);
9731129c 4166 if (ret)
673a394b 4167 return ret;
22c344e9 4168 }
76446cac 4169
673a394b
EA
4170 obj_priv->pin_count++;
4171
4172 /* If the object is not active and not pending a flush,
4173 * remove it from the inactive list
4174 */
4175 if (obj_priv->pin_count == 1) {
fb7d516a 4176 i915_gem_info_add_pin(dev_priv, obj, mappable);
f13d3f73 4177 if (!obj_priv->active)
69dc4987 4178 list_move_tail(&obj_priv->mm_list,
f13d3f73 4179 &dev_priv->mm.pinned_list);
673a394b 4180 }
fb7d516a 4181 BUG_ON(!obj_priv->pin_mappable && mappable);
673a394b 4182
23bc5982 4183 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4184 return 0;
4185}
4186
4187void
4188i915_gem_object_unpin(struct drm_gem_object *obj)
4189{
4190 struct drm_device *dev = obj->dev;
4191 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4192 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4193
23bc5982 4194 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4195 obj_priv->pin_count--;
4196 BUG_ON(obj_priv->pin_count < 0);
4197 BUG_ON(obj_priv->gtt_space == NULL);
4198
4199 /* If the object is no longer pinned, and is
4200 * neither active nor being flushed, then stick it on
4201 * the inactive list
4202 */
4203 if (obj_priv->pin_count == 0) {
f13d3f73 4204 if (!obj_priv->active)
69dc4987 4205 list_move_tail(&obj_priv->mm_list,
673a394b 4206 &dev_priv->mm.inactive_list);
fb7d516a 4207 i915_gem_info_remove_pin(dev_priv, obj);
673a394b 4208 }
23bc5982 4209 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4210}
4211
4212int
4213i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4214 struct drm_file *file_priv)
4215{
4216 struct drm_i915_gem_pin *args = data;
4217 struct drm_gem_object *obj;
4218 struct drm_i915_gem_object *obj_priv;
4219 int ret;
4220
1d7cfea1
CW
4221 ret = i915_mutex_lock_interruptible(dev);
4222 if (ret)
4223 return ret;
673a394b
EA
4224
4225 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4226 if (obj == NULL) {
1d7cfea1
CW
4227 ret = -ENOENT;
4228 goto unlock;
673a394b 4229 }
23010e43 4230 obj_priv = to_intel_bo(obj);
673a394b 4231
bb6baf76
CW
4232 if (obj_priv->madv != I915_MADV_WILLNEED) {
4233 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
4234 ret = -EINVAL;
4235 goto out;
3ef94daa
CW
4236 }
4237
79e53945
JB
4238 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4239 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4240 args->handle);
1d7cfea1
CW
4241 ret = -EINVAL;
4242 goto out;
79e53945
JB
4243 }
4244
4245 obj_priv->user_pin_count++;
4246 obj_priv->pin_filp = file_priv;
4247 if (obj_priv->user_pin_count == 1) {
920afa77 4248 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
4249 if (ret)
4250 goto out;
673a394b
EA
4251 }
4252
4253 /* XXX - flush the CPU caches for pinned objects
4254 * as the X server doesn't manage domains yet
4255 */
e47c68e9 4256 i915_gem_object_flush_cpu_write_domain(obj);
673a394b 4257 args->offset = obj_priv->gtt_offset;
1d7cfea1 4258out:
673a394b 4259 drm_gem_object_unreference(obj);
1d7cfea1 4260unlock:
673a394b 4261 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4262 return ret;
673a394b
EA
4263}
4264
4265int
4266i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4267 struct drm_file *file_priv)
4268{
4269 struct drm_i915_gem_pin *args = data;
4270 struct drm_gem_object *obj;
79e53945 4271 struct drm_i915_gem_object *obj_priv;
76c1dec1 4272 int ret;
673a394b 4273
1d7cfea1
CW
4274 ret = i915_mutex_lock_interruptible(dev);
4275 if (ret)
4276 return ret;
673a394b
EA
4277
4278 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4279 if (obj == NULL) {
1d7cfea1
CW
4280 ret = -ENOENT;
4281 goto unlock;
673a394b 4282 }
23010e43 4283 obj_priv = to_intel_bo(obj);
76c1dec1 4284
79e53945
JB
4285 if (obj_priv->pin_filp != file_priv) {
4286 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4287 args->handle);
1d7cfea1
CW
4288 ret = -EINVAL;
4289 goto out;
79e53945
JB
4290 }
4291 obj_priv->user_pin_count--;
4292 if (obj_priv->user_pin_count == 0) {
4293 obj_priv->pin_filp = NULL;
4294 i915_gem_object_unpin(obj);
4295 }
673a394b 4296
1d7cfea1 4297out:
673a394b 4298 drm_gem_object_unreference(obj);
1d7cfea1 4299unlock:
673a394b 4300 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4301 return ret;
673a394b
EA
4302}
4303
4304int
4305i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4306 struct drm_file *file_priv)
4307{
4308 struct drm_i915_gem_busy *args = data;
4309 struct drm_gem_object *obj;
4310 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4311 int ret;
4312
76c1dec1 4313 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4314 if (ret)
76c1dec1 4315 return ret;
673a394b 4316
673a394b
EA
4317 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4318 if (obj == NULL) {
1d7cfea1
CW
4319 ret = -ENOENT;
4320 goto unlock;
673a394b 4321 }
1d7cfea1 4322 obj_priv = to_intel_bo(obj);
d1b851fc 4323
0be555b6
CW
4324 /* Count all active objects as busy, even if they are currently not used
4325 * by the gpu. Users of this interface expect objects to eventually
4326 * become non-busy without any further actions, therefore emit any
4327 * necessary flushes here.
c4de0a5d 4328 */
0be555b6
CW
4329 args->busy = obj_priv->active;
4330 if (args->busy) {
4331 /* Unconditionally flush objects, even when the gpu still uses this
4332 * object. Userspace calling this function indicates that it wants to
4333 * use this buffer rather sooner than later, so issuing the required
4334 * flush earlier is beneficial.
4335 */
c78ec30b
CW
4336 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4337 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4338 obj_priv->ring,
4339 0, obj->write_domain);
0be555b6
CW
4340
4341 /* Update the active list for the hardware's current position.
4342 * Otherwise this only updates on a delayed timer or when irqs
4343 * are actually unmasked, and our working set ends up being
4344 * larger than required.
4345 */
4346 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4347
4348 args->busy = obj_priv->active;
4349 }
673a394b
EA
4350
4351 drm_gem_object_unreference(obj);
1d7cfea1 4352unlock:
673a394b 4353 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4354 return ret;
673a394b
EA
4355}
4356
4357int
4358i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4359 struct drm_file *file_priv)
4360{
4361 return i915_gem_ring_throttle(dev, file_priv);
4362}
4363
3ef94daa
CW
4364int
4365i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4366 struct drm_file *file_priv)
4367{
4368 struct drm_i915_gem_madvise *args = data;
4369 struct drm_gem_object *obj;
4370 struct drm_i915_gem_object *obj_priv;
76c1dec1 4371 int ret;
3ef94daa
CW
4372
4373 switch (args->madv) {
4374 case I915_MADV_DONTNEED:
4375 case I915_MADV_WILLNEED:
4376 break;
4377 default:
4378 return -EINVAL;
4379 }
4380
1d7cfea1
CW
4381 ret = i915_mutex_lock_interruptible(dev);
4382 if (ret)
4383 return ret;
4384
3ef94daa
CW
4385 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4386 if (obj == NULL) {
1d7cfea1
CW
4387 ret = -ENOENT;
4388 goto unlock;
3ef94daa 4389 }
23010e43 4390 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4391
4392 if (obj_priv->pin_count) {
1d7cfea1
CW
4393 ret = -EINVAL;
4394 goto out;
3ef94daa
CW
4395 }
4396
bb6baf76
CW
4397 if (obj_priv->madv != __I915_MADV_PURGED)
4398 obj_priv->madv = args->madv;
3ef94daa 4399
2d7ef395
CW
4400 /* if the object is no longer bound, discard its backing storage */
4401 if (i915_gem_object_is_purgeable(obj_priv) &&
4402 obj_priv->gtt_space == NULL)
4403 i915_gem_object_truncate(obj);
4404
bb6baf76
CW
4405 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4406
1d7cfea1 4407out:
3ef94daa 4408 drm_gem_object_unreference(obj);
1d7cfea1 4409unlock:
3ef94daa 4410 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4411 return ret;
3ef94daa
CW
4412}
4413
ac52bc56
DV
4414struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4415 size_t size)
4416{
73aa808f 4417 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 4418 struct drm_i915_gem_object *obj;
ac52bc56 4419
c397b908
DV
4420 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4421 if (obj == NULL)
4422 return NULL;
673a394b 4423
c397b908
DV
4424 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4425 kfree(obj);
4426 return NULL;
4427 }
673a394b 4428
73aa808f
CW
4429 i915_gem_info_add_obj(dev_priv, size);
4430
c397b908
DV
4431 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4432 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4433
c397b908 4434 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4435 obj->base.driver_private = NULL;
c397b908 4436 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987
CW
4437 INIT_LIST_HEAD(&obj->mm_list);
4438 INIT_LIST_HEAD(&obj->ring_list);
c397b908 4439 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4440 obj->madv = I915_MADV_WILLNEED;
de151cf6 4441
c397b908
DV
4442 return &obj->base;
4443}
4444
4445int i915_gem_init_object(struct drm_gem_object *obj)
4446{
4447 BUG();
de151cf6 4448
673a394b
EA
4449 return 0;
4450}
4451
be72615b 4452static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4453{
de151cf6 4454 struct drm_device *dev = obj->dev;
be72615b 4455 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4456 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4457 int ret;
673a394b 4458
be72615b
CW
4459 ret = i915_gem_object_unbind(obj);
4460 if (ret == -ERESTARTSYS) {
69dc4987 4461 list_move(&obj_priv->mm_list,
be72615b
CW
4462 &dev_priv->mm.deferred_free_list);
4463 return;
4464 }
673a394b 4465
7e616158
CW
4466 if (obj_priv->mmap_offset)
4467 i915_gem_free_mmap_offset(obj);
de151cf6 4468
c397b908 4469 drm_gem_object_release(obj);
73aa808f 4470 i915_gem_info_remove_obj(dev_priv, obj->size);
c397b908 4471
9a298b2a 4472 kfree(obj_priv->page_cpu_valid);
280b713b 4473 kfree(obj_priv->bit_17);
c397b908 4474 kfree(obj_priv);
673a394b
EA
4475}
4476
be72615b
CW
4477void i915_gem_free_object(struct drm_gem_object *obj)
4478{
4479 struct drm_device *dev = obj->dev;
4480 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4481
4482 trace_i915_gem_object_destroy(obj);
4483
4484 while (obj_priv->pin_count > 0)
4485 i915_gem_object_unpin(obj);
4486
4487 if (obj_priv->phys_obj)
4488 i915_gem_detach_phys_object(dev, obj);
4489
4490 i915_gem_free_object_tail(obj);
4491}
4492
29105ccc
CW
4493int
4494i915_gem_idle(struct drm_device *dev)
4495{
4496 drm_i915_private_t *dev_priv = dev->dev_private;
4497 int ret;
28dfe52a 4498
29105ccc 4499 mutex_lock(&dev->struct_mutex);
1c5d22f7 4500
87acb0a5 4501 if (dev_priv->mm.suspended) {
29105ccc
CW
4502 mutex_unlock(&dev->struct_mutex);
4503 return 0;
28dfe52a
EA
4504 }
4505
29105ccc 4506 ret = i915_gpu_idle(dev);
6dbe2772
KP
4507 if (ret) {
4508 mutex_unlock(&dev->struct_mutex);
673a394b 4509 return ret;
6dbe2772 4510 }
673a394b 4511
29105ccc
CW
4512 /* Under UMS, be paranoid and evict. */
4513 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4514 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4515 if (ret) {
4516 mutex_unlock(&dev->struct_mutex);
4517 return ret;
4518 }
4519 }
4520
4521 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4522 * We need to replace this with a semaphore, or something.
4523 * And not confound mm.suspended!
4524 */
4525 dev_priv->mm.suspended = 1;
bc0c7f14 4526 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4527
4528 i915_kernel_lost_context(dev);
6dbe2772 4529 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4530
6dbe2772
KP
4531 mutex_unlock(&dev->struct_mutex);
4532
29105ccc
CW
4533 /* Cancel the retire work handler, which should be idle now. */
4534 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4535
673a394b
EA
4536 return 0;
4537}
4538
e552eb70
JB
4539/*
4540 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4541 * over cache flushing.
4542 */
8187a2b7 4543static int
e552eb70
JB
4544i915_gem_init_pipe_control(struct drm_device *dev)
4545{
4546 drm_i915_private_t *dev_priv = dev->dev_private;
4547 struct drm_gem_object *obj;
4548 struct drm_i915_gem_object *obj_priv;
4549 int ret;
4550
34dc4d44 4551 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4552 if (obj == NULL) {
4553 DRM_ERROR("Failed to allocate seqno page\n");
4554 ret = -ENOMEM;
4555 goto err;
4556 }
4557 obj_priv = to_intel_bo(obj);
4558 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4559
920afa77 4560 ret = i915_gem_object_pin(obj, 4096, true);
e552eb70
JB
4561 if (ret)
4562 goto err_unref;
4563
4564 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4565 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4566 if (dev_priv->seqno_page == NULL)
4567 goto err_unpin;
4568
4569 dev_priv->seqno_obj = obj;
4570 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4571
4572 return 0;
4573
4574err_unpin:
4575 i915_gem_object_unpin(obj);
4576err_unref:
4577 drm_gem_object_unreference(obj);
4578err:
4579 return ret;
4580}
4581
8187a2b7
ZN
4582
4583static void
e552eb70
JB
4584i915_gem_cleanup_pipe_control(struct drm_device *dev)
4585{
4586 drm_i915_private_t *dev_priv = dev->dev_private;
4587 struct drm_gem_object *obj;
4588 struct drm_i915_gem_object *obj_priv;
4589
4590 obj = dev_priv->seqno_obj;
4591 obj_priv = to_intel_bo(obj);
4592 kunmap(obj_priv->pages[0]);
4593 i915_gem_object_unpin(obj);
4594 drm_gem_object_unreference(obj);
4595 dev_priv->seqno_obj = NULL;
4596
4597 dev_priv->seqno_page = NULL;
673a394b
EA
4598}
4599
8187a2b7
ZN
4600int
4601i915_gem_init_ringbuffer(struct drm_device *dev)
4602{
4603 drm_i915_private_t *dev_priv = dev->dev_private;
4604 int ret;
68f95ba9 4605
8187a2b7
ZN
4606 if (HAS_PIPE_CONTROL(dev)) {
4607 ret = i915_gem_init_pipe_control(dev);
4608 if (ret)
4609 return ret;
4610 }
68f95ba9 4611
5c1143bb 4612 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4613 if (ret)
4614 goto cleanup_pipe_control;
4615
4616 if (HAS_BSD(dev)) {
5c1143bb 4617 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4618 if (ret)
4619 goto cleanup_render_ring;
d1b851fc 4620 }
68f95ba9 4621
549f7365
CW
4622 if (HAS_BLT(dev)) {
4623 ret = intel_init_blt_ring_buffer(dev);
4624 if (ret)
4625 goto cleanup_bsd_ring;
4626 }
4627
6f392d54
CW
4628 dev_priv->next_seqno = 1;
4629
68f95ba9
CW
4630 return 0;
4631
549f7365 4632cleanup_bsd_ring:
78501eac 4633 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
68f95ba9 4634cleanup_render_ring:
78501eac 4635 intel_cleanup_ring_buffer(&dev_priv->render_ring);
68f95ba9
CW
4636cleanup_pipe_control:
4637 if (HAS_PIPE_CONTROL(dev))
4638 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4639 return ret;
4640}
4641
4642void
4643i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4644{
4645 drm_i915_private_t *dev_priv = dev->dev_private;
4646
78501eac
CW
4647 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4648 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4649 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
8187a2b7
ZN
4650 if (HAS_PIPE_CONTROL(dev))
4651 i915_gem_cleanup_pipe_control(dev);
4652}
4653
673a394b
EA
4654int
4655i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4656 struct drm_file *file_priv)
4657{
4658 drm_i915_private_t *dev_priv = dev->dev_private;
4659 int ret;
4660
79e53945
JB
4661 if (drm_core_check_feature(dev, DRIVER_MODESET))
4662 return 0;
4663
ba1234d1 4664 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4665 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4666 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4667 }
4668
673a394b 4669 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4670 dev_priv->mm.suspended = 0;
4671
4672 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4673 if (ret != 0) {
4674 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4675 return ret;
d816f6ac 4676 }
9bb2d6f9 4677
69dc4987 4678 BUG_ON(!list_empty(&dev_priv->mm.active_list));
852835f3 4679 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 4680 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
549f7365 4681 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
673a394b
EA
4682 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4683 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4684 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 4685 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
549f7365 4686 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
673a394b 4687 mutex_unlock(&dev->struct_mutex);
dbb19d30 4688
5f35308b
CW
4689 ret = drm_irq_install(dev);
4690 if (ret)
4691 goto cleanup_ringbuffer;
dbb19d30 4692
673a394b 4693 return 0;
5f35308b
CW
4694
4695cleanup_ringbuffer:
4696 mutex_lock(&dev->struct_mutex);
4697 i915_gem_cleanup_ringbuffer(dev);
4698 dev_priv->mm.suspended = 1;
4699 mutex_unlock(&dev->struct_mutex);
4700
4701 return ret;
673a394b
EA
4702}
4703
4704int
4705i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4706 struct drm_file *file_priv)
4707{
79e53945
JB
4708 if (drm_core_check_feature(dev, DRIVER_MODESET))
4709 return 0;
4710
dbb19d30 4711 drm_irq_uninstall(dev);
e6890f6f 4712 return i915_gem_idle(dev);
673a394b
EA
4713}
4714
4715void
4716i915_gem_lastclose(struct drm_device *dev)
4717{
4718 int ret;
673a394b 4719
e806b495
EA
4720 if (drm_core_check_feature(dev, DRIVER_MODESET))
4721 return;
4722
6dbe2772
KP
4723 ret = i915_gem_idle(dev);
4724 if (ret)
4725 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4726}
4727
64193406
CW
4728static void
4729init_ring_lists(struct intel_ring_buffer *ring)
4730{
4731 INIT_LIST_HEAD(&ring->active_list);
4732 INIT_LIST_HEAD(&ring->request_list);
4733 INIT_LIST_HEAD(&ring->gpu_write_list);
4734}
4735
673a394b
EA
4736void
4737i915_gem_load(struct drm_device *dev)
4738{
b5aa8a0f 4739 int i;
673a394b
EA
4740 drm_i915_private_t *dev_priv = dev->dev_private;
4741
69dc4987 4742 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
4743 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4744 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4745 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4746 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4747 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
64193406
CW
4748 init_ring_lists(&dev_priv->render_ring);
4749 init_ring_lists(&dev_priv->bsd_ring);
4750 init_ring_lists(&dev_priv->blt_ring);
007cc8ac
DV
4751 for (i = 0; i < 16; i++)
4752 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4753 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4754 i915_gem_retire_work_handler);
30dbf0c0 4755 init_completion(&dev_priv->error_completion);
31169714
CW
4756 spin_lock(&shrink_list_lock);
4757 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4758 spin_unlock(&shrink_list_lock);
4759
94400120
DA
4760 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4761 if (IS_GEN3(dev)) {
4762 u32 tmp = I915_READ(MI_ARB_STATE);
4763 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4764 /* arb state is a masked write, so set bit + bit in mask */
4765 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4766 I915_WRITE(MI_ARB_STATE, tmp);
4767 }
4768 }
4769
de151cf6 4770 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4771 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4772 dev_priv->fence_reg_start = 3;
de151cf6 4773
a6c45cf0 4774 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4775 dev_priv->num_fence_regs = 16;
4776 else
4777 dev_priv->num_fence_regs = 8;
4778
b5aa8a0f 4779 /* Initialize fence registers to zero */
a6c45cf0
CW
4780 switch (INTEL_INFO(dev)->gen) {
4781 case 6:
4782 for (i = 0; i < 16; i++)
4783 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4784 break;
4785 case 5:
4786 case 4:
b5aa8a0f
GH
4787 for (i = 0; i < 16; i++)
4788 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4789 break;
4790 case 3:
b5aa8a0f
GH
4791 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4792 for (i = 0; i < 8; i++)
4793 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4794 case 2:
4795 for (i = 0; i < 8; i++)
4796 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4797 break;
b5aa8a0f 4798 }
673a394b 4799 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4800 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4801}
71acb5eb
DA
4802
4803/*
4804 * Create a physically contiguous memory object for this object
4805 * e.g. for cursor + overlay regs
4806 */
995b6762
CW
4807static int i915_gem_init_phys_object(struct drm_device *dev,
4808 int id, int size, int align)
71acb5eb
DA
4809{
4810 drm_i915_private_t *dev_priv = dev->dev_private;
4811 struct drm_i915_gem_phys_object *phys_obj;
4812 int ret;
4813
4814 if (dev_priv->mm.phys_objs[id - 1] || !size)
4815 return 0;
4816
9a298b2a 4817 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4818 if (!phys_obj)
4819 return -ENOMEM;
4820
4821 phys_obj->id = id;
4822
6eeefaf3 4823 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4824 if (!phys_obj->handle) {
4825 ret = -ENOMEM;
4826 goto kfree_obj;
4827 }
4828#ifdef CONFIG_X86
4829 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4830#endif
4831
4832 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4833
4834 return 0;
4835kfree_obj:
9a298b2a 4836 kfree(phys_obj);
71acb5eb
DA
4837 return ret;
4838}
4839
995b6762 4840static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4841{
4842 drm_i915_private_t *dev_priv = dev->dev_private;
4843 struct drm_i915_gem_phys_object *phys_obj;
4844
4845 if (!dev_priv->mm.phys_objs[id - 1])
4846 return;
4847
4848 phys_obj = dev_priv->mm.phys_objs[id - 1];
4849 if (phys_obj->cur_obj) {
4850 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4851 }
4852
4853#ifdef CONFIG_X86
4854 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4855#endif
4856 drm_pci_free(dev, phys_obj->handle);
4857 kfree(phys_obj);
4858 dev_priv->mm.phys_objs[id - 1] = NULL;
4859}
4860
4861void i915_gem_free_all_phys_object(struct drm_device *dev)
4862{
4863 int i;
4864
260883c8 4865 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4866 i915_gem_free_phys_object(dev, i);
4867}
4868
4869void i915_gem_detach_phys_object(struct drm_device *dev,
4870 struct drm_gem_object *obj)
4871{
4872 struct drm_i915_gem_object *obj_priv;
4873 int i;
4874 int ret;
4875 int page_count;
4876
23010e43 4877 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4878 if (!obj_priv->phys_obj)
4879 return;
4880
4bdadb97 4881 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4882 if (ret)
4883 goto out;
4884
4885 page_count = obj->size / PAGE_SIZE;
4886
4887 for (i = 0; i < page_count; i++) {
3e4d3af5 4888 char *dst = kmap_atomic(obj_priv->pages[i]);
71acb5eb
DA
4889 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4890
4891 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4892 kunmap_atomic(dst);
71acb5eb 4893 }
856fa198 4894 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4895 drm_agp_chipset_flush(dev);
d78b47b9
CW
4896
4897 i915_gem_object_put_pages(obj);
71acb5eb
DA
4898out:
4899 obj_priv->phys_obj->cur_obj = NULL;
4900 obj_priv->phys_obj = NULL;
4901}
4902
4903int
4904i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4905 struct drm_gem_object *obj,
4906 int id,
4907 int align)
71acb5eb
DA
4908{
4909 drm_i915_private_t *dev_priv = dev->dev_private;
4910 struct drm_i915_gem_object *obj_priv;
4911 int ret = 0;
4912 int page_count;
4913 int i;
4914
4915 if (id > I915_MAX_PHYS_OBJECT)
4916 return -EINVAL;
4917
23010e43 4918 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4919
4920 if (obj_priv->phys_obj) {
4921 if (obj_priv->phys_obj->id == id)
4922 return 0;
4923 i915_gem_detach_phys_object(dev, obj);
4924 }
4925
71acb5eb
DA
4926 /* create a new object */
4927 if (!dev_priv->mm.phys_objs[id - 1]) {
4928 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4929 obj->size, align);
71acb5eb 4930 if (ret) {
aeb565df 4931 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4932 goto out;
4933 }
4934 }
4935
4936 /* bind to the object */
4937 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4938 obj_priv->phys_obj->cur_obj = obj;
4939
4bdadb97 4940 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4941 if (ret) {
4942 DRM_ERROR("failed to get page list\n");
4943 goto out;
4944 }
4945
4946 page_count = obj->size / PAGE_SIZE;
4947
4948 for (i = 0; i < page_count; i++) {
3e4d3af5 4949 char *src = kmap_atomic(obj_priv->pages[i]);
71acb5eb
DA
4950 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4951
4952 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4953 kunmap_atomic(src);
71acb5eb
DA
4954 }
4955
d78b47b9
CW
4956 i915_gem_object_put_pages(obj);
4957
71acb5eb
DA
4958 return 0;
4959out:
4960 return ret;
4961}
4962
4963static int
4964i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4965 struct drm_i915_gem_pwrite *args,
4966 struct drm_file *file_priv)
4967{
23010e43 4968 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4969 void *obj_addr;
4970 int ret;
4971 char __user *user_data;
4972
4973 user_data = (char __user *) (uintptr_t) args->data_ptr;
4974 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4975
44d98a61 4976 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4977 ret = copy_from_user(obj_addr, user_data, args->size);
4978 if (ret)
4979 return -EFAULT;
4980
4981 drm_agp_chipset_flush(dev);
4982 return 0;
4983}
b962442e 4984
f787a5f5 4985void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4986{
f787a5f5 4987 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4988
4989 /* Clean up our request list when the client is going away, so that
4990 * later retire_requests won't dereference our soon-to-be-gone
4991 * file_priv.
4992 */
1c25595f 4993 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4994 while (!list_empty(&file_priv->mm.request_list)) {
4995 struct drm_i915_gem_request *request;
4996
4997 request = list_first_entry(&file_priv->mm.request_list,
4998 struct drm_i915_gem_request,
4999 client_list);
5000 list_del(&request->client_list);
5001 request->file_priv = NULL;
5002 }
1c25595f 5003 spin_unlock(&file_priv->mm.lock);
b962442e 5004}
31169714 5005
1637ef41
CW
5006static int
5007i915_gpu_is_active(struct drm_device *dev)
5008{
5009 drm_i915_private_t *dev_priv = dev->dev_private;
5010 int lists_empty;
5011
1637ef41 5012 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
87acb0a5 5013 list_empty(&dev_priv->render_ring.active_list) &&
549f7365
CW
5014 list_empty(&dev_priv->bsd_ring.active_list) &&
5015 list_empty(&dev_priv->blt_ring.active_list);
1637ef41
CW
5016
5017 return !lists_empty;
5018}
5019
31169714 5020static int
7f8275d0 5021i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
5022{
5023 drm_i915_private_t *dev_priv, *next_dev;
5024 struct drm_i915_gem_object *obj_priv, *next_obj;
5025 int cnt = 0;
5026 int would_deadlock = 1;
5027
5028 /* "fast-path" to count number of available objects */
5029 if (nr_to_scan == 0) {
5030 spin_lock(&shrink_list_lock);
5031 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5032 struct drm_device *dev = dev_priv->dev;
5033
5034 if (mutex_trylock(&dev->struct_mutex)) {
5035 list_for_each_entry(obj_priv,
5036 &dev_priv->mm.inactive_list,
69dc4987 5037 mm_list)
31169714
CW
5038 cnt++;
5039 mutex_unlock(&dev->struct_mutex);
5040 }
5041 }
5042 spin_unlock(&shrink_list_lock);
5043
5044 return (cnt / 100) * sysctl_vfs_cache_pressure;
5045 }
5046
5047 spin_lock(&shrink_list_lock);
5048
1637ef41 5049rescan:
31169714
CW
5050 /* first scan for clean buffers */
5051 list_for_each_entry_safe(dev_priv, next_dev,
5052 &shrink_list, mm.shrink_list) {
5053 struct drm_device *dev = dev_priv->dev;
5054
5055 if (! mutex_trylock(&dev->struct_mutex))
5056 continue;
5057
5058 spin_unlock(&shrink_list_lock);
b09a1fec 5059 i915_gem_retire_requests(dev);
31169714
CW
5060
5061 list_for_each_entry_safe(obj_priv, next_obj,
5062 &dev_priv->mm.inactive_list,
69dc4987 5063 mm_list) {
31169714 5064 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 5065 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
5066 if (--nr_to_scan <= 0)
5067 break;
5068 }
5069 }
5070
5071 spin_lock(&shrink_list_lock);
5072 mutex_unlock(&dev->struct_mutex);
5073
963b4836
CW
5074 would_deadlock = 0;
5075
31169714
CW
5076 if (nr_to_scan <= 0)
5077 break;
5078 }
5079
5080 /* second pass, evict/count anything still on the inactive list */
5081 list_for_each_entry_safe(dev_priv, next_dev,
5082 &shrink_list, mm.shrink_list) {
5083 struct drm_device *dev = dev_priv->dev;
5084
5085 if (! mutex_trylock(&dev->struct_mutex))
5086 continue;
5087
5088 spin_unlock(&shrink_list_lock);
5089
5090 list_for_each_entry_safe(obj_priv, next_obj,
5091 &dev_priv->mm.inactive_list,
69dc4987 5092 mm_list) {
31169714 5093 if (nr_to_scan > 0) {
a8089e84 5094 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
5095 nr_to_scan--;
5096 } else
5097 cnt++;
5098 }
5099
5100 spin_lock(&shrink_list_lock);
5101 mutex_unlock(&dev->struct_mutex);
5102
5103 would_deadlock = 0;
5104 }
5105
1637ef41
CW
5106 if (nr_to_scan) {
5107 int active = 0;
5108
5109 /*
5110 * We are desperate for pages, so as a last resort, wait
5111 * for the GPU to finish and discard whatever we can.
5112 * This has a dramatic impact to reduce the number of
5113 * OOM-killer events whilst running the GPU aggressively.
5114 */
5115 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5116 struct drm_device *dev = dev_priv->dev;
5117
5118 if (!mutex_trylock(&dev->struct_mutex))
5119 continue;
5120
5121 spin_unlock(&shrink_list_lock);
5122
5123 if (i915_gpu_is_active(dev)) {
5124 i915_gpu_idle(dev);
5125 active++;
5126 }
5127
5128 spin_lock(&shrink_list_lock);
5129 mutex_unlock(&dev->struct_mutex);
5130 }
5131
5132 if (active)
5133 goto rescan;
5134 }
5135
31169714
CW
5136 spin_unlock(&shrink_list_lock);
5137
5138 if (would_deadlock)
5139 return -1;
5140 else if (cnt > 0)
5141 return (cnt / 100) * sysctl_vfs_cache_pressure;
5142 else
5143 return 0;
5144}
5145
5146static struct shrinker shrinker = {
5147 .shrink = i915_gem_shrink,
5148 .seeks = DEFAULT_SEEKS,
5149};
5150
5151__init void
5152i915_gem_shrinker_init(void)
5153{
5154 register_shrinker(&shrinker);
5155}
5156
5157__exit void
5158i915_gem_shrinker_exit(void)
5159{
5160 unregister_shrinker(&shrinker);
5161}