]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Guard pages being reaped by OOM whilst binding-to-GTT
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
86a1ee26
CW
43 bool map_and_fenceable,
44 bool nonblocking);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
21dd3734
CW
89static int
90i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
91{
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
0a6759c6
DV
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
30dbf0c0 110 return ret;
0a6759c6 111 }
30dbf0c0 112
21dd3734
CW
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
30dbf0c0
CW
124}
125
54cf91dc 126int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 127{
76c1dec1
CW
128 int ret;
129
21dd3734 130 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
23bc5982 138 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
139 return 0;
140}
30dbf0c0 141
7d1c4804 142static inline bool
05394f39 143i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 144{
6c085a72 145 return obj->gtt_space && !obj->active;
7d1c4804
CW
146}
147
79e53945
JB
148int
149i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 150 struct drm_file *file)
79e53945
JB
151{
152 struct drm_i915_gem_init *args = data;
2021746e 153
7bb6fb8d
DV
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
2021746e
CW
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
79e53945 160
f534bc0b
DV
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
79e53945 165 mutex_lock(&dev->struct_mutex);
644ec02b
DV
166 i915_gem_init_global_gtt(dev, args->gtt_start,
167 args->gtt_end, args->gtt_end);
673a394b
EA
168 mutex_unlock(&dev->struct_mutex);
169
2021746e 170 return 0;
673a394b
EA
171}
172
5a125c3c
EA
173int
174i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 175 struct drm_file *file)
5a125c3c 176{
73aa808f 177 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 178 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
5a125c3c 181
6299f992 182 pinned = 0;
73aa808f 183 mutex_lock(&dev->struct_mutex);
6c085a72 184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
73aa808f 187 mutex_unlock(&dev->struct_mutex);
5a125c3c 188
6299f992 189 args->aper_size = dev_priv->mm.gtt_total;
0206e353 190 args->aper_available_size = args->aper_size - pinned;
6299f992 191
5a125c3c
EA
192 return 0;
193}
194
ff72145b
DA
195static int
196i915_gem_create(struct drm_file *file,
197 struct drm_device *dev,
198 uint64_t size,
199 uint32_t *handle_p)
673a394b 200{
05394f39 201 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
202 int ret;
203 u32 handle;
673a394b 204
ff72145b 205 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
206 if (size == 0)
207 return -EINVAL;
673a394b
EA
208
209 /* Allocate the new object */
ff72145b 210 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
211 if (obj == NULL)
212 return -ENOMEM;
213
05394f39 214 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 215 if (ret) {
05394f39
CW
216 drm_gem_object_release(&obj->base);
217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 218 kfree(obj);
673a394b 219 return ret;
1dfd9754 220 }
673a394b 221
202f2fef 222 /* drop reference from allocate - handle holds it now */
05394f39 223 drm_gem_object_unreference(&obj->base);
202f2fef
CW
224 trace_i915_gem_object_create(obj);
225
ff72145b 226 *handle_p = handle;
673a394b
EA
227 return 0;
228}
229
ff72145b
DA
230int
231i915_gem_dumb_create(struct drm_file *file,
232 struct drm_device *dev,
233 struct drm_mode_create_dumb *args)
234{
235 /* have to work out size/pitch and return them */
ed0291fd 236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
237 args->size = args->pitch * args->height;
238 return i915_gem_create(file, dev,
239 args->size, &args->handle);
240}
241
242int i915_gem_dumb_destroy(struct drm_file *file,
243 struct drm_device *dev,
244 uint32_t handle)
245{
246 return drm_gem_handle_delete(file, handle);
247}
248
249/**
250 * Creates a new mm object and returns a handle to it.
251 */
252int
253i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 struct drm_file *file)
255{
256 struct drm_i915_gem_create *args = data;
63ed2cb2 257
ff72145b
DA
258 return i915_gem_create(file, dev,
259 args->size, &args->handle);
260}
261
05394f39 262static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 263{
05394f39 264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
265
266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 267 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
268}
269
8461d226
DV
270static inline int
271__copy_to_user_swizzled(char __user *cpu_vaddr,
272 const char *gpu_vaddr, int gpu_offset,
273 int length)
274{
275 int ret, cpu_offset = 0;
276
277 while (length > 0) {
278 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 int this_length = min(cacheline_end - gpu_offset, length);
280 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 gpu_vaddr + swizzled_gpu_offset,
284 this_length);
285 if (ret)
286 return ret + length;
287
288 cpu_offset += this_length;
289 gpu_offset += this_length;
290 length -= this_length;
291 }
292
293 return 0;
294}
295
8c59967c 296static inline int
4f0c7cfb
BW
297__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 const char __user *cpu_vaddr,
8c59967c
DV
299 int length)
300{
301 int ret, cpu_offset = 0;
302
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 cpu_vaddr + cpu_offset,
310 this_length);
311 if (ret)
312 return ret + length;
313
314 cpu_offset += this_length;
315 gpu_offset += this_length;
316 length -= this_length;
317 }
318
319 return 0;
320}
321
d174bd64
DV
322/* Per-page copy function for the shmem pread fastpath.
323 * Flushes invalid cachelines before reading the target if
324 * needs_clflush is set. */
eb01459f 325static int
d174bd64
DV
326shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 char __user *user_data,
328 bool page_do_bit17_swizzling, bool needs_clflush)
329{
330 char *vaddr;
331 int ret;
332
e7e58eb5 333 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
334 return -EINVAL;
335
336 vaddr = kmap_atomic(page);
337 if (needs_clflush)
338 drm_clflush_virt_range(vaddr + shmem_page_offset,
339 page_length);
340 ret = __copy_to_user_inatomic(user_data,
341 vaddr + shmem_page_offset,
342 page_length);
343 kunmap_atomic(vaddr);
344
f60d7f0c 345 return ret ? -EFAULT : 0;
d174bd64
DV
346}
347
23c18c71
DV
348static void
349shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 bool swizzled)
351{
e7e58eb5 352 if (unlikely(swizzled)) {
23c18c71
DV
353 unsigned long start = (unsigned long) addr;
354 unsigned long end = (unsigned long) addr + length;
355
356 /* For swizzling simply ensure that we always flush both
357 * channels. Lame, but simple and it works. Swizzled
358 * pwrite/pread is far from a hotpath - current userspace
359 * doesn't use it at all. */
360 start = round_down(start, 128);
361 end = round_up(end, 128);
362
363 drm_clflush_virt_range((void *)start, end - start);
364 } else {
365 drm_clflush_virt_range(addr, length);
366 }
367
368}
369
d174bd64
DV
370/* Only difference to the fast-path function is that this can handle bit17
371 * and uses non-atomic copy and kmap functions. */
372static int
373shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 char __user *user_data,
375 bool page_do_bit17_swizzling, bool needs_clflush)
376{
377 char *vaddr;
378 int ret;
379
380 vaddr = kmap(page);
381 if (needs_clflush)
23c18c71
DV
382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 page_length,
384 page_do_bit17_swizzling);
d174bd64
DV
385
386 if (page_do_bit17_swizzling)
387 ret = __copy_to_user_swizzled(user_data,
388 vaddr, shmem_page_offset,
389 page_length);
390 else
391 ret = __copy_to_user(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap(page);
395
f60d7f0c 396 return ret ? - EFAULT : 0;
d174bd64
DV
397}
398
eb01459f 399static int
dbf7bff0
DV
400i915_gem_shmem_pread(struct drm_device *dev,
401 struct drm_i915_gem_object *obj,
402 struct drm_i915_gem_pread *args,
403 struct drm_file *file)
eb01459f 404{
8461d226 405 char __user *user_data;
eb01459f 406 ssize_t remain;
8461d226 407 loff_t offset;
eb2c0c81 408 int shmem_page_offset, page_length, ret = 0;
8461d226 409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 410 int hit_slowpath = 0;
96d79b52 411 int prefaulted = 0;
8489731c 412 int needs_clflush = 0;
9da3da66
CW
413 struct scatterlist *sg;
414 int i;
eb01459f 415
8461d226 416 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
417 remain = args->size;
418
8461d226 419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 420
8489731c
DV
421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 /* If we're not in the cpu read domain, set ourself into the gtt
423 * read domain and manually flush cachelines (if required). This
424 * optimizes for the case when the gpu will dirty the data
425 * anyway again before the next pread happens. */
426 if (obj->cache_level == I915_CACHE_NONE)
427 needs_clflush = 1;
6c085a72
CW
428 if (obj->gtt_space) {
429 ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 if (ret)
431 return ret;
432 }
8489731c 433 }
eb01459f 434
f60d7f0c
CW
435 ret = i915_gem_object_get_pages(obj);
436 if (ret)
437 return ret;
438
439 i915_gem_object_pin_pages(obj);
440
8461d226 441 offset = args->offset;
eb01459f 442
9da3da66 443 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd
CW
444 struct page *page;
445
9da3da66
CW
446 if (i < offset >> PAGE_SHIFT)
447 continue;
448
449 if (remain <= 0)
450 break;
451
eb01459f
EA
452 /* Operation in this page
453 *
eb01459f 454 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
455 * page_length = bytes to copy for this page
456 */
c8cbbb8b 457 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
458 page_length = remain;
459 if ((shmem_page_offset + page_length) > PAGE_SIZE)
460 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 461
9da3da66 462 page = sg_page(sg);
8461d226
DV
463 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 (page_to_phys(page) & (1 << 17)) != 0;
465
d174bd64
DV
466 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 user_data, page_do_bit17_swizzling,
468 needs_clflush);
469 if (ret == 0)
470 goto next_page;
dbf7bff0
DV
471
472 hit_slowpath = 1;
dbf7bff0
DV
473 mutex_unlock(&dev->struct_mutex);
474
96d79b52 475 if (!prefaulted) {
f56f821f 476 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
477 /* Userspace is tricking us, but we've already clobbered
478 * its pages with the prefault and promised to write the
479 * data up to the first fault. Hence ignore any errors
480 * and just continue. */
481 (void)ret;
482 prefaulted = 1;
483 }
eb01459f 484
d174bd64
DV
485 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 user_data, page_do_bit17_swizzling,
487 needs_clflush);
eb01459f 488
dbf7bff0 489 mutex_lock(&dev->struct_mutex);
f60d7f0c 490
dbf7bff0 491next_page:
e5281ccd 492 mark_page_accessed(page);
e5281ccd 493
f60d7f0c 494 if (ret)
8461d226 495 goto out;
8461d226 496
eb01459f 497 remain -= page_length;
8461d226 498 user_data += page_length;
eb01459f
EA
499 offset += page_length;
500 }
501
4f27b75d 502out:
f60d7f0c
CW
503 i915_gem_object_unpin_pages(obj);
504
dbf7bff0
DV
505 if (hit_slowpath) {
506 /* Fixup: Kill any reinstated backing storage pages */
507 if (obj->madv == __I915_MADV_PURGED)
508 i915_gem_object_truncate(obj);
509 }
eb01459f
EA
510
511 return ret;
512}
513
673a394b
EA
514/**
515 * Reads data from the object referenced by handle.
516 *
517 * On error, the contents of *data are undefined.
518 */
519int
520i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 521 struct drm_file *file)
673a394b
EA
522{
523 struct drm_i915_gem_pread *args = data;
05394f39 524 struct drm_i915_gem_object *obj;
35b62a89 525 int ret = 0;
673a394b 526
51311d0a
CW
527 if (args->size == 0)
528 return 0;
529
530 if (!access_ok(VERIFY_WRITE,
531 (char __user *)(uintptr_t)args->data_ptr,
532 args->size))
533 return -EFAULT;
534
4f27b75d 535 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 536 if (ret)
4f27b75d 537 return ret;
673a394b 538
05394f39 539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 540 if (&obj->base == NULL) {
1d7cfea1
CW
541 ret = -ENOENT;
542 goto unlock;
4f27b75d 543 }
673a394b 544
7dcd2499 545 /* Bounds check source. */
05394f39
CW
546 if (args->offset > obj->base.size ||
547 args->size > obj->base.size - args->offset) {
ce9d419d 548 ret = -EINVAL;
35b62a89 549 goto out;
ce9d419d
CW
550 }
551
1286ff73
DV
552 /* prime objects have no backing filp to GEM pread/pwrite
553 * pages from.
554 */
555 if (!obj->base.filp) {
556 ret = -EINVAL;
557 goto out;
558 }
559
db53a302
CW
560 trace_i915_gem_object_pread(obj, args->offset, args->size);
561
dbf7bff0 562 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 563
35b62a89 564out:
05394f39 565 drm_gem_object_unreference(&obj->base);
1d7cfea1 566unlock:
4f27b75d 567 mutex_unlock(&dev->struct_mutex);
eb01459f 568 return ret;
673a394b
EA
569}
570
0839ccb8
KP
571/* This is the fast write path which cannot handle
572 * page faults in the source data
9b7530cc 573 */
0839ccb8
KP
574
575static inline int
576fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
9b7530cc 580{
4f0c7cfb
BW
581 void __iomem *vaddr_atomic;
582 void *vaddr;
0839ccb8 583 unsigned long unwritten;
9b7530cc 584
3e4d3af5 585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
586 /* We can use the cpu mem copy function because this is X86. */
587 vaddr = (void __force*)vaddr_atomic + page_offset;
588 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 589 user_data, length);
3e4d3af5 590 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 591 return unwritten;
0839ccb8
KP
592}
593
3de09aa3
EA
594/**
595 * This is the fast pwrite path, where we copy the data directly from the
596 * user into the GTT, uncached.
597 */
673a394b 598static int
05394f39
CW
599i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600 struct drm_i915_gem_object *obj,
3de09aa3 601 struct drm_i915_gem_pwrite *args,
05394f39 602 struct drm_file *file)
673a394b 603{
0839ccb8 604 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 605 ssize_t remain;
0839ccb8 606 loff_t offset, page_base;
673a394b 607 char __user *user_data;
935aaa69
DV
608 int page_offset, page_length, ret;
609
86a1ee26 610 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
611 if (ret)
612 goto out;
613
614 ret = i915_gem_object_set_to_gtt_domain(obj, true);
615 if (ret)
616 goto out_unpin;
617
618 ret = i915_gem_object_put_fence(obj);
619 if (ret)
620 goto out_unpin;
673a394b
EA
621
622 user_data = (char __user *) (uintptr_t) args->data_ptr;
623 remain = args->size;
673a394b 624
05394f39 625 offset = obj->gtt_offset + args->offset;
673a394b
EA
626
627 while (remain > 0) {
628 /* Operation in this page
629 *
0839ccb8
KP
630 * page_base = page offset within aperture
631 * page_offset = offset within page
632 * page_length = bytes to copy for this page
673a394b 633 */
c8cbbb8b
CW
634 page_base = offset & PAGE_MASK;
635 page_offset = offset_in_page(offset);
0839ccb8
KP
636 page_length = remain;
637 if ((page_offset + remain) > PAGE_SIZE)
638 page_length = PAGE_SIZE - page_offset;
639
0839ccb8 640 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
641 * source page isn't available. Return the error and we'll
642 * retry in the slow path.
0839ccb8 643 */
fbd5a26d 644 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
645 page_offset, user_data, page_length)) {
646 ret = -EFAULT;
647 goto out_unpin;
648 }
673a394b 649
0839ccb8
KP
650 remain -= page_length;
651 user_data += page_length;
652 offset += page_length;
673a394b 653 }
673a394b 654
935aaa69
DV
655out_unpin:
656 i915_gem_object_unpin(obj);
657out:
3de09aa3 658 return ret;
673a394b
EA
659}
660
d174bd64
DV
661/* Per-page copy function for the shmem pwrite fastpath.
662 * Flushes invalid cachelines before writing to the target if
663 * needs_clflush_before is set and flushes out any written cachelines after
664 * writing if needs_clflush is set. */
3043c60c 665static int
d174bd64
DV
666shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667 char __user *user_data,
668 bool page_do_bit17_swizzling,
669 bool needs_clflush_before,
670 bool needs_clflush_after)
673a394b 671{
d174bd64 672 char *vaddr;
673a394b 673 int ret;
3de09aa3 674
e7e58eb5 675 if (unlikely(page_do_bit17_swizzling))
d174bd64 676 return -EINVAL;
3de09aa3 677
d174bd64
DV
678 vaddr = kmap_atomic(page);
679 if (needs_clflush_before)
680 drm_clflush_virt_range(vaddr + shmem_page_offset,
681 page_length);
682 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683 user_data,
684 page_length);
685 if (needs_clflush_after)
686 drm_clflush_virt_range(vaddr + shmem_page_offset,
687 page_length);
688 kunmap_atomic(vaddr);
3de09aa3 689
755d2218 690 return ret ? -EFAULT : 0;
3de09aa3
EA
691}
692
d174bd64
DV
693/* Only difference to the fast-path function is that this can handle bit17
694 * and uses non-atomic copy and kmap functions. */
3043c60c 695static int
d174bd64
DV
696shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697 char __user *user_data,
698 bool page_do_bit17_swizzling,
699 bool needs_clflush_before,
700 bool needs_clflush_after)
673a394b 701{
d174bd64
DV
702 char *vaddr;
703 int ret;
e5281ccd 704
d174bd64 705 vaddr = kmap(page);
e7e58eb5 706 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
707 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708 page_length,
709 page_do_bit17_swizzling);
d174bd64
DV
710 if (page_do_bit17_swizzling)
711 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
712 user_data,
713 page_length);
d174bd64
DV
714 else
715 ret = __copy_from_user(vaddr + shmem_page_offset,
716 user_data,
717 page_length);
718 if (needs_clflush_after)
23c18c71
DV
719 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720 page_length,
721 page_do_bit17_swizzling);
d174bd64 722 kunmap(page);
40123c1f 723
755d2218 724 return ret ? -EFAULT : 0;
40123c1f
EA
725}
726
40123c1f 727static int
e244a443
DV
728i915_gem_shmem_pwrite(struct drm_device *dev,
729 struct drm_i915_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file)
40123c1f 732{
40123c1f 733 ssize_t remain;
8c59967c
DV
734 loff_t offset;
735 char __user *user_data;
eb2c0c81 736 int shmem_page_offset, page_length, ret = 0;
8c59967c 737 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 738 int hit_slowpath = 0;
58642885
DV
739 int needs_clflush_after = 0;
740 int needs_clflush_before = 0;
9da3da66
CW
741 int i;
742 struct scatterlist *sg;
40123c1f 743
8c59967c 744 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
745 remain = args->size;
746
8c59967c 747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 748
58642885
DV
749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 /* If we're not in the cpu write domain, set ourself into the gtt
751 * write domain and manually flush cachelines (if required). This
752 * optimizes for the case when the gpu will use the data
753 * right away and we therefore have to clflush anyway. */
754 if (obj->cache_level == I915_CACHE_NONE)
755 needs_clflush_after = 1;
6c085a72
CW
756 if (obj->gtt_space) {
757 ret = i915_gem_object_set_to_gtt_domain(obj, true);
758 if (ret)
759 return ret;
760 }
58642885
DV
761 }
762 /* Same trick applies for invalidate partially written cachelines before
763 * writing. */
764 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765 && obj->cache_level == I915_CACHE_NONE)
766 needs_clflush_before = 1;
767
755d2218
CW
768 ret = i915_gem_object_get_pages(obj);
769 if (ret)
770 return ret;
771
772 i915_gem_object_pin_pages(obj);
773
673a394b 774 offset = args->offset;
05394f39 775 obj->dirty = 1;
673a394b 776
9da3da66 777 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd 778 struct page *page;
58642885 779 int partial_cacheline_write;
e5281ccd 780
9da3da66
CW
781 if (i < offset >> PAGE_SHIFT)
782 continue;
783
784 if (remain <= 0)
785 break;
786
40123c1f
EA
787 /* Operation in this page
788 *
40123c1f 789 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
790 * page_length = bytes to copy for this page
791 */
c8cbbb8b 792 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
793
794 page_length = remain;
795 if ((shmem_page_offset + page_length) > PAGE_SIZE)
796 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 797
58642885
DV
798 /* If we don't overwrite a cacheline completely we need to be
799 * careful to have up-to-date data by first clflushing. Don't
800 * overcomplicate things and flush the entire patch. */
801 partial_cacheline_write = needs_clflush_before &&
802 ((shmem_page_offset | page_length)
803 & (boot_cpu_data.x86_clflush_size - 1));
804
9da3da66 805 page = sg_page(sg);
8c59967c
DV
806 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807 (page_to_phys(page) & (1 << 17)) != 0;
808
d174bd64
DV
809 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813 if (ret == 0)
814 goto next_page;
e244a443
DV
815
816 hit_slowpath = 1;
e244a443 817 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
818 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819 user_data, page_do_bit17_swizzling,
820 partial_cacheline_write,
821 needs_clflush_after);
40123c1f 822
e244a443 823 mutex_lock(&dev->struct_mutex);
755d2218 824
e244a443 825next_page:
e5281ccd
CW
826 set_page_dirty(page);
827 mark_page_accessed(page);
e5281ccd 828
755d2218 829 if (ret)
8c59967c 830 goto out;
8c59967c 831
40123c1f 832 remain -= page_length;
8c59967c 833 user_data += page_length;
40123c1f 834 offset += page_length;
673a394b
EA
835 }
836
fbd5a26d 837out:
755d2218
CW
838 i915_gem_object_unpin_pages(obj);
839
e244a443
DV
840 if (hit_slowpath) {
841 /* Fixup: Kill any reinstated backing storage pages */
842 if (obj->madv == __I915_MADV_PURGED)
843 i915_gem_object_truncate(obj);
844 /* and flush dirty cachelines in case the object isn't in the cpu write
845 * domain anymore. */
846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 i915_gem_clflush_object(obj);
e76e9aeb 848 i915_gem_chipset_flush(dev);
e244a443 849 }
8c59967c 850 }
673a394b 851
58642885 852 if (needs_clflush_after)
e76e9aeb 853 i915_gem_chipset_flush(dev);
58642885 854
40123c1f 855 return ret;
673a394b
EA
856}
857
858/**
859 * Writes data to the object referenced by handle.
860 *
861 * On error, the contents of the buffer that were to be modified are undefined.
862 */
863int
864i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 865 struct drm_file *file)
673a394b
EA
866{
867 struct drm_i915_gem_pwrite *args = data;
05394f39 868 struct drm_i915_gem_object *obj;
51311d0a
CW
869 int ret;
870
871 if (args->size == 0)
872 return 0;
873
874 if (!access_ok(VERIFY_READ,
875 (char __user *)(uintptr_t)args->data_ptr,
876 args->size))
877 return -EFAULT;
878
f56f821f
DV
879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 args->size);
51311d0a
CW
881 if (ret)
882 return -EFAULT;
673a394b 883
fbd5a26d 884 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 885 if (ret)
fbd5a26d 886 return ret;
1d7cfea1 887
05394f39 888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 889 if (&obj->base == NULL) {
1d7cfea1
CW
890 ret = -ENOENT;
891 goto unlock;
fbd5a26d 892 }
673a394b 893
7dcd2499 894 /* Bounds check destination. */
05394f39
CW
895 if (args->offset > obj->base.size ||
896 args->size > obj->base.size - args->offset) {
ce9d419d 897 ret = -EINVAL;
35b62a89 898 goto out;
ce9d419d
CW
899 }
900
1286ff73
DV
901 /* prime objects have no backing filp to GEM pread/pwrite
902 * pages from.
903 */
904 if (!obj->base.filp) {
905 ret = -EINVAL;
906 goto out;
907 }
908
db53a302
CW
909 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
935aaa69 911 ret = -EFAULT;
673a394b
EA
912 /* We can only do the GTT pwrite on untiled buffers, as otherwise
913 * it would end up going through the fenced access, and we'll get
914 * different detiling behavior between reading and writing.
915 * pread/pwrite currently are reading and writing from the CPU
916 * perspective, requiring manual detiling by the client.
917 */
5c0480f2 918 if (obj->phys_obj) {
fbd5a26d 919 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
920 goto out;
921 }
922
86a1ee26 923 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 924 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 925 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 926 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
927 /* Note that the gtt paths might fail with non-page-backed user
928 * pointers (e.g. gtt mappings when moving data between
929 * textures). Fallback to the shmem path in that case. */
fbd5a26d 930 }
673a394b 931
86a1ee26 932 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 933 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 934
35b62a89 935out:
05394f39 936 drm_gem_object_unreference(&obj->base);
1d7cfea1 937unlock:
fbd5a26d 938 mutex_unlock(&dev->struct_mutex);
673a394b
EA
939 return ret;
940}
941
b361237b
CW
942int
943i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944 bool interruptible)
945{
946 if (atomic_read(&dev_priv->mm.wedged)) {
947 struct completion *x = &dev_priv->error_completion;
948 bool recovery_complete;
949 unsigned long flags;
950
951 /* Give the error handler a chance to run. */
952 spin_lock_irqsave(&x->wait.lock, flags);
953 recovery_complete = x->done > 0;
954 spin_unlock_irqrestore(&x->wait.lock, flags);
955
956 /* Non-interruptible callers can't handle -EAGAIN, hence return
957 * -EIO unconditionally for these. */
958 if (!interruptible)
959 return -EIO;
960
961 /* Recovery complete, but still wedged means reset failure. */
962 if (recovery_complete)
963 return -EIO;
964
965 return -EAGAIN;
966 }
967
968 return 0;
969}
970
971/*
972 * Compare seqno against outstanding lazy request. Emit a request if they are
973 * equal.
974 */
975static int
976i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977{
978 int ret;
979
980 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981
982 ret = 0;
983 if (seqno == ring->outstanding_lazy_request)
984 ret = i915_add_request(ring, NULL, NULL);
985
986 return ret;
987}
988
989/**
990 * __wait_seqno - wait until execution of seqno has finished
991 * @ring: the ring expected to report seqno
992 * @seqno: duh!
993 * @interruptible: do an interruptible wait (normally yes)
994 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995 *
996 * Returns 0 if the seqno was found within the alloted time. Else returns the
997 * errno with remaining time filled in timeout argument.
998 */
999static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000 bool interruptible, struct timespec *timeout)
1001{
1002 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003 struct timespec before, now, wait_time={1,0};
1004 unsigned long timeout_jiffies;
1005 long end;
1006 bool wait_forever = true;
1007 int ret;
1008
1009 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010 return 0;
1011
1012 trace_i915_gem_request_wait_begin(ring, seqno);
1013
1014 if (timeout != NULL) {
1015 wait_time = *timeout;
1016 wait_forever = false;
1017 }
1018
1019 timeout_jiffies = timespec_to_jiffies(&wait_time);
1020
1021 if (WARN_ON(!ring->irq_get(ring)))
1022 return -ENODEV;
1023
1024 /* Record current time in case interrupted by signal, or wedged * */
1025 getrawmonotonic(&before);
1026
1027#define EXIT_COND \
1028 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029 atomic_read(&dev_priv->mm.wedged))
1030 do {
1031 if (interruptible)
1032 end = wait_event_interruptible_timeout(ring->irq_queue,
1033 EXIT_COND,
1034 timeout_jiffies);
1035 else
1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 timeout_jiffies);
1038
1039 ret = i915_gem_check_wedge(dev_priv, interruptible);
1040 if (ret)
1041 end = ret;
1042 } while (end == 0 && wait_forever);
1043
1044 getrawmonotonic(&now);
1045
1046 ring->irq_put(ring);
1047 trace_i915_gem_request_wait_end(ring, seqno);
1048#undef EXIT_COND
1049
1050 if (timeout) {
1051 struct timespec sleep_time = timespec_sub(now, before);
1052 *timeout = timespec_sub(*timeout, sleep_time);
1053 }
1054
1055 switch (end) {
1056 case -EIO:
1057 case -EAGAIN: /* Wedged */
1058 case -ERESTARTSYS: /* Signal */
1059 return (int)end;
1060 case 0: /* Timeout */
1061 if (timeout)
1062 set_normalized_timespec(timeout, 0, 0);
1063 return -ETIME;
1064 default: /* Completed */
1065 WARN_ON(end < 0); /* We're not aware of other errors */
1066 return 0;
1067 }
1068}
1069
1070/**
1071 * Waits for a sequence number to be signaled, and cleans up the
1072 * request and object lists appropriately for that event.
1073 */
1074int
1075i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076{
1077 struct drm_device *dev = ring->dev;
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 bool interruptible = dev_priv->mm.interruptible;
1080 int ret;
1081
1082 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083 BUG_ON(seqno == 0);
1084
1085 ret = i915_gem_check_wedge(dev_priv, interruptible);
1086 if (ret)
1087 return ret;
1088
1089 ret = i915_gem_check_olr(ring, seqno);
1090 if (ret)
1091 return ret;
1092
1093 return __wait_seqno(ring, seqno, interruptible, NULL);
1094}
1095
1096/**
1097 * Ensures that all rendering to the object has completed and the object is
1098 * safe to unbind from the GTT or access from the CPU.
1099 */
1100static __must_check int
1101i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102 bool readonly)
1103{
1104 struct intel_ring_buffer *ring = obj->ring;
1105 u32 seqno;
1106 int ret;
1107
1108 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109 if (seqno == 0)
1110 return 0;
1111
1112 ret = i915_wait_seqno(ring, seqno);
1113 if (ret)
1114 return ret;
1115
1116 i915_gem_retire_requests_ring(ring);
1117
1118 /* Manually manage the write flush as we may have not yet
1119 * retired the buffer.
1120 */
1121 if (obj->last_write_seqno &&
1122 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123 obj->last_write_seqno = 0;
1124 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125 }
1126
1127 return 0;
1128}
1129
3236f57a
CW
1130/* A nonblocking variant of the above wait. This is a highly dangerous routine
1131 * as the object state may change during this call.
1132 */
1133static __must_check int
1134i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135 bool readonly)
1136{
1137 struct drm_device *dev = obj->base.dev;
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 struct intel_ring_buffer *ring = obj->ring;
1140 u32 seqno;
1141 int ret;
1142
1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 BUG_ON(!dev_priv->mm.interruptible);
1145
1146 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147 if (seqno == 0)
1148 return 0;
1149
1150 ret = i915_gem_check_wedge(dev_priv, true);
1151 if (ret)
1152 return ret;
1153
1154 ret = i915_gem_check_olr(ring, seqno);
1155 if (ret)
1156 return ret;
1157
1158 mutex_unlock(&dev->struct_mutex);
1159 ret = __wait_seqno(ring, seqno, true, NULL);
1160 mutex_lock(&dev->struct_mutex);
1161
1162 i915_gem_retire_requests_ring(ring);
1163
1164 /* Manually manage the write flush as we may have not yet
1165 * retired the buffer.
1166 */
1167 if (obj->last_write_seqno &&
1168 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169 obj->last_write_seqno = 0;
1170 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171 }
1172
1173 return ret;
1174}
1175
673a394b 1176/**
2ef7eeaa
EA
1177 * Called when user space prepares to use an object with the CPU, either
1178 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1179 */
1180int
1181i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1182 struct drm_file *file)
673a394b
EA
1183{
1184 struct drm_i915_gem_set_domain *args = data;
05394f39 1185 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1186 uint32_t read_domains = args->read_domains;
1187 uint32_t write_domain = args->write_domain;
673a394b
EA
1188 int ret;
1189
2ef7eeaa 1190 /* Only handle setting domains to types used by the CPU. */
21d509e3 1191 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1192 return -EINVAL;
1193
21d509e3 1194 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1195 return -EINVAL;
1196
1197 /* Having something in the write domain implies it's in the read
1198 * domain, and only that read domain. Enforce that in the request.
1199 */
1200 if (write_domain != 0 && read_domains != write_domain)
1201 return -EINVAL;
1202
76c1dec1 1203 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1204 if (ret)
76c1dec1 1205 return ret;
1d7cfea1 1206
05394f39 1207 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1208 if (&obj->base == NULL) {
1d7cfea1
CW
1209 ret = -ENOENT;
1210 goto unlock;
76c1dec1 1211 }
673a394b 1212
3236f57a
CW
1213 /* Try to flush the object off the GPU without holding the lock.
1214 * We will repeat the flush holding the lock in the normal manner
1215 * to catch cases where we are gazumped.
1216 */
1217 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218 if (ret)
1219 goto unref;
1220
2ef7eeaa
EA
1221 if (read_domains & I915_GEM_DOMAIN_GTT) {
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1223
1224 /* Silently promote "you're not bound, there was nothing to do"
1225 * to success, since the client was just asking us to
1226 * make sure everything was done.
1227 */
1228 if (ret == -EINVAL)
1229 ret = 0;
2ef7eeaa 1230 } else {
e47c68e9 1231 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1232 }
1233
3236f57a 1234unref:
05394f39 1235 drm_gem_object_unreference(&obj->base);
1d7cfea1 1236unlock:
673a394b
EA
1237 mutex_unlock(&dev->struct_mutex);
1238 return ret;
1239}
1240
1241/**
1242 * Called when user space has done writes to this buffer
1243 */
1244int
1245i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1246 struct drm_file *file)
673a394b
EA
1247{
1248 struct drm_i915_gem_sw_finish *args = data;
05394f39 1249 struct drm_i915_gem_object *obj;
673a394b
EA
1250 int ret = 0;
1251
76c1dec1 1252 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1253 if (ret)
76c1dec1 1254 return ret;
1d7cfea1 1255
05394f39 1256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1257 if (&obj->base == NULL) {
1d7cfea1
CW
1258 ret = -ENOENT;
1259 goto unlock;
673a394b
EA
1260 }
1261
673a394b 1262 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1263 if (obj->pin_count)
e47c68e9
EA
1264 i915_gem_object_flush_cpu_write_domain(obj);
1265
05394f39 1266 drm_gem_object_unreference(&obj->base);
1d7cfea1 1267unlock:
673a394b
EA
1268 mutex_unlock(&dev->struct_mutex);
1269 return ret;
1270}
1271
1272/**
1273 * Maps the contents of an object, returning the address it is mapped
1274 * into.
1275 *
1276 * While the mapping holds a reference on the contents of the object, it doesn't
1277 * imply a ref on the object itself.
1278 */
1279int
1280i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1281 struct drm_file *file)
673a394b
EA
1282{
1283 struct drm_i915_gem_mmap *args = data;
1284 struct drm_gem_object *obj;
673a394b
EA
1285 unsigned long addr;
1286
05394f39 1287 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1288 if (obj == NULL)
bf79cb91 1289 return -ENOENT;
673a394b 1290
1286ff73
DV
1291 /* prime objects have no backing filp to GEM mmap
1292 * pages from.
1293 */
1294 if (!obj->filp) {
1295 drm_gem_object_unreference_unlocked(obj);
1296 return -EINVAL;
1297 }
1298
6be5ceb0 1299 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1300 PROT_READ | PROT_WRITE, MAP_SHARED,
1301 args->offset);
bc9025bd 1302 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1303 if (IS_ERR((void *)addr))
1304 return addr;
1305
1306 args->addr_ptr = (uint64_t) addr;
1307
1308 return 0;
1309}
1310
de151cf6
JB
1311/**
1312 * i915_gem_fault - fault a page into the GTT
1313 * vma: VMA in question
1314 * vmf: fault info
1315 *
1316 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317 * from userspace. The fault handler takes care of binding the object to
1318 * the GTT (if needed), allocating and programming a fence register (again,
1319 * only if needed based on whether the old reg is still valid or the object
1320 * is tiled) and inserting a new PTE into the faulting process.
1321 *
1322 * Note that the faulting process may involve evicting existing objects
1323 * from the GTT and/or fence registers to make room. So performance may
1324 * suffer if the GTT working set is large or there are few fence registers
1325 * left.
1326 */
1327int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328{
05394f39
CW
1329 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330 struct drm_device *dev = obj->base.dev;
7d1c4804 1331 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1332 pgoff_t page_offset;
1333 unsigned long pfn;
1334 int ret = 0;
0f973f27 1335 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1336
1337 /* We don't use vmf->pgoff since that has the fake offset */
1338 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339 PAGE_SHIFT;
1340
d9bc7e9f
CW
1341 ret = i915_mutex_lock_interruptible(dev);
1342 if (ret)
1343 goto out;
a00b10c3 1344
db53a302
CW
1345 trace_i915_gem_object_fault(obj, page_offset, true, write);
1346
d9bc7e9f 1347 /* Now bind it into the GTT if needed */
919926ae
CW
1348 if (!obj->map_and_fenceable) {
1349 ret = i915_gem_object_unbind(obj);
1350 if (ret)
1351 goto unlock;
a00b10c3 1352 }
05394f39 1353 if (!obj->gtt_space) {
86a1ee26 1354 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
c715089f
CW
1355 if (ret)
1356 goto unlock;
de151cf6 1357
e92d03bf
EA
1358 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1359 if (ret)
1360 goto unlock;
1361 }
4a684a41 1362
74898d7e
DV
1363 if (!obj->has_global_gtt_mapping)
1364 i915_gem_gtt_bind_object(obj, obj->cache_level);
1365
06d98131 1366 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1367 if (ret)
1368 goto unlock;
de151cf6 1369
05394f39
CW
1370 if (i915_gem_object_is_inactive(obj))
1371 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1372
6299f992
CW
1373 obj->fault_mappable = true;
1374
dd2757f8 1375 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1376 page_offset;
1377
1378 /* Finally, remap it using the new GTT offset */
1379 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1380unlock:
de151cf6 1381 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1382out:
de151cf6 1383 switch (ret) {
d9bc7e9f 1384 case -EIO:
a9340cca
DV
1385 /* If this -EIO is due to a gpu hang, give the reset code a
1386 * chance to clean up the mess. Otherwise return the proper
1387 * SIGBUS. */
1388 if (!atomic_read(&dev_priv->mm.wedged))
1389 return VM_FAULT_SIGBUS;
045e769a 1390 case -EAGAIN:
d9bc7e9f
CW
1391 /* Give the error handler a chance to run and move the
1392 * objects off the GPU active list. Next time we service the
1393 * fault, we should be able to transition the page into the
1394 * GTT without touching the GPU (and so avoid further
1395 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1396 * with coherency, just lost writes.
1397 */
045e769a 1398 set_need_resched();
c715089f
CW
1399 case 0:
1400 case -ERESTARTSYS:
bed636ab 1401 case -EINTR:
e79e0fe3
DR
1402 case -EBUSY:
1403 /*
1404 * EBUSY is ok: this just means that another thread
1405 * already did the job.
1406 */
c715089f 1407 return VM_FAULT_NOPAGE;
de151cf6 1408 case -ENOMEM:
de151cf6 1409 return VM_FAULT_OOM;
a7c2e1aa
DV
1410 case -ENOSPC:
1411 return VM_FAULT_SIGBUS;
de151cf6 1412 default:
a7c2e1aa 1413 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1414 return VM_FAULT_SIGBUS;
de151cf6
JB
1415 }
1416}
1417
901782b2
CW
1418/**
1419 * i915_gem_release_mmap - remove physical page mappings
1420 * @obj: obj in question
1421 *
af901ca1 1422 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1423 * relinquish ownership of the pages back to the system.
1424 *
1425 * It is vital that we remove the page mapping if we have mapped a tiled
1426 * object through the GTT and then lose the fence register due to
1427 * resource pressure. Similarly if the object has been moved out of the
1428 * aperture, than pages mapped into userspace must be revoked. Removing the
1429 * mapping will then trigger a page fault on the next user access, allowing
1430 * fixup by i915_gem_fault().
1431 */
d05ca301 1432void
05394f39 1433i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1434{
6299f992
CW
1435 if (!obj->fault_mappable)
1436 return;
901782b2 1437
f6e47884
CW
1438 if (obj->base.dev->dev_mapping)
1439 unmap_mapping_range(obj->base.dev->dev_mapping,
1440 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1441 obj->base.size, 1);
fb7d516a 1442
6299f992 1443 obj->fault_mappable = false;
901782b2
CW
1444}
1445
92b88aeb 1446static uint32_t
e28f8711 1447i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1448{
e28f8711 1449 uint32_t gtt_size;
92b88aeb
CW
1450
1451 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1452 tiling_mode == I915_TILING_NONE)
1453 return size;
92b88aeb
CW
1454
1455 /* Previous chips need a power-of-two fence region when tiling */
1456 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1457 gtt_size = 1024*1024;
92b88aeb 1458 else
e28f8711 1459 gtt_size = 512*1024;
92b88aeb 1460
e28f8711
CW
1461 while (gtt_size < size)
1462 gtt_size <<= 1;
92b88aeb 1463
e28f8711 1464 return gtt_size;
92b88aeb
CW
1465}
1466
de151cf6
JB
1467/**
1468 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1469 * @obj: object to check
1470 *
1471 * Return the required GTT alignment for an object, taking into account
5e783301 1472 * potential fence register mapping.
de151cf6
JB
1473 */
1474static uint32_t
e28f8711
CW
1475i915_gem_get_gtt_alignment(struct drm_device *dev,
1476 uint32_t size,
1477 int tiling_mode)
de151cf6 1478{
de151cf6
JB
1479 /*
1480 * Minimum alignment is 4k (GTT page size), but might be greater
1481 * if a fence register is needed for the object.
1482 */
a00b10c3 1483 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1484 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1485 return 4096;
1486
a00b10c3
CW
1487 /*
1488 * Previous chips need to be aligned to the size of the smallest
1489 * fence register that can contain the object.
1490 */
e28f8711 1491 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1492}
1493
5e783301
DV
1494/**
1495 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1496 * unfenced object
e28f8711
CW
1497 * @dev: the device
1498 * @size: size of the object
1499 * @tiling_mode: tiling mode of the object
5e783301
DV
1500 *
1501 * Return the required GTT alignment for an object, only taking into account
1502 * unfenced tiled surface requirements.
1503 */
467cffba 1504uint32_t
e28f8711
CW
1505i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1506 uint32_t size,
1507 int tiling_mode)
5e783301 1508{
5e783301
DV
1509 /*
1510 * Minimum alignment is 4k (GTT page size) for sane hw.
1511 */
1512 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1513 tiling_mode == I915_TILING_NONE)
5e783301
DV
1514 return 4096;
1515
e28f8711
CW
1516 /* Previous hardware however needs to be aligned to a power-of-two
1517 * tile height. The simplest method for determining this is to reuse
1518 * the power-of-tile object size.
5e783301 1519 */
e28f8711 1520 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1521}
1522
d8cb5086
CW
1523static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1524{
1525 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1526 int ret;
1527
1528 if (obj->base.map_list.map)
1529 return 0;
1530
1531 ret = drm_gem_create_mmap_offset(&obj->base);
1532 if (ret != -ENOSPC)
1533 return ret;
1534
1535 /* Badly fragmented mmap space? The only way we can recover
1536 * space is by destroying unwanted objects. We can't randomly release
1537 * mmap_offsets as userspace expects them to be persistent for the
1538 * lifetime of the objects. The closest we can is to release the
1539 * offsets on purgeable objects by truncating it and marking it purged,
1540 * which prevents userspace from ever using that object again.
1541 */
1542 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1543 ret = drm_gem_create_mmap_offset(&obj->base);
1544 if (ret != -ENOSPC)
1545 return ret;
1546
1547 i915_gem_shrink_all(dev_priv);
1548 return drm_gem_create_mmap_offset(&obj->base);
1549}
1550
1551static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1552{
1553 if (!obj->base.map_list.map)
1554 return;
1555
1556 drm_gem_free_mmap_offset(&obj->base);
1557}
1558
de151cf6 1559int
ff72145b
DA
1560i915_gem_mmap_gtt(struct drm_file *file,
1561 struct drm_device *dev,
1562 uint32_t handle,
1563 uint64_t *offset)
de151cf6 1564{
da761a6e 1565 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1566 struct drm_i915_gem_object *obj;
de151cf6
JB
1567 int ret;
1568
76c1dec1 1569 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1570 if (ret)
76c1dec1 1571 return ret;
de151cf6 1572
ff72145b 1573 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1574 if (&obj->base == NULL) {
1d7cfea1
CW
1575 ret = -ENOENT;
1576 goto unlock;
1577 }
de151cf6 1578
05394f39 1579 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1580 ret = -E2BIG;
ff56b0bc 1581 goto out;
da761a6e
CW
1582 }
1583
05394f39 1584 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1585 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1586 ret = -EINVAL;
1587 goto out;
ab18282d
CW
1588 }
1589
d8cb5086
CW
1590 ret = i915_gem_object_create_mmap_offset(obj);
1591 if (ret)
1592 goto out;
de151cf6 1593
ff72145b 1594 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1595
1d7cfea1 1596out:
05394f39 1597 drm_gem_object_unreference(&obj->base);
1d7cfea1 1598unlock:
de151cf6 1599 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1600 return ret;
de151cf6
JB
1601}
1602
ff72145b
DA
1603/**
1604 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1605 * @dev: DRM device
1606 * @data: GTT mapping ioctl data
1607 * @file: GEM object info
1608 *
1609 * Simply returns the fake offset to userspace so it can mmap it.
1610 * The mmap call will end up in drm_gem_mmap(), which will set things
1611 * up so we can get faults in the handler above.
1612 *
1613 * The fault handler will take care of binding the object into the GTT
1614 * (since it may have been evicted to make room for something), allocating
1615 * a fence register, and mapping the appropriate aperture address into
1616 * userspace.
1617 */
1618int
1619i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1620 struct drm_file *file)
1621{
1622 struct drm_i915_gem_mmap_gtt *args = data;
1623
ff72145b
DA
1624 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1625}
1626
225067ee
DV
1627/* Immediately discard the backing storage */
1628static void
1629i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1630{
e5281ccd 1631 struct inode *inode;
e5281ccd 1632
4d6294bf 1633 i915_gem_object_free_mmap_offset(obj);
1286ff73 1634
4d6294bf
CW
1635 if (obj->base.filp == NULL)
1636 return;
e5281ccd 1637
225067ee
DV
1638 /* Our goal here is to return as much of the memory as
1639 * is possible back to the system as we are called from OOM.
1640 * To do this we must instruct the shmfs to drop all of its
1641 * backing pages, *now*.
1642 */
05394f39 1643 inode = obj->base.filp->f_path.dentry->d_inode;
225067ee 1644 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1645
225067ee
DV
1646 obj->madv = __I915_MADV_PURGED;
1647}
e5281ccd 1648
225067ee
DV
1649static inline int
1650i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1651{
1652 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1653}
1654
5cdf5881 1655static void
05394f39 1656i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1657{
05394f39 1658 int page_count = obj->base.size / PAGE_SIZE;
9da3da66 1659 struct scatterlist *sg;
6c085a72 1660 int ret, i;
1286ff73 1661
05394f39 1662 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1663
6c085a72
CW
1664 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1665 if (ret) {
1666 /* In the event of a disaster, abandon all caches and
1667 * hope for the best.
1668 */
1669 WARN_ON(ret != -EIO);
1670 i915_gem_clflush_object(obj);
1671 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1672 }
1673
6dacfd2f 1674 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1675 i915_gem_object_save_bit_17_swizzle(obj);
1676
05394f39
CW
1677 if (obj->madv == I915_MADV_DONTNEED)
1678 obj->dirty = 0;
3ef94daa 1679
9da3da66
CW
1680 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1681 struct page *page = sg_page(sg);
1682
05394f39 1683 if (obj->dirty)
9da3da66 1684 set_page_dirty(page);
3ef94daa 1685
05394f39 1686 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1687 mark_page_accessed(page);
3ef94daa 1688
9da3da66 1689 page_cache_release(page);
3ef94daa 1690 }
05394f39 1691 obj->dirty = 0;
673a394b 1692
9da3da66
CW
1693 sg_free_table(obj->pages);
1694 kfree(obj->pages);
37e680a1 1695}
6c085a72 1696
37e680a1
CW
1697static int
1698i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1699{
1700 const struct drm_i915_gem_object_ops *ops = obj->ops;
1701
2f745ad3 1702 if (obj->pages == NULL)
37e680a1
CW
1703 return 0;
1704
1705 BUG_ON(obj->gtt_space);
6c085a72 1706
a5570178
CW
1707 if (obj->pages_pin_count)
1708 return -EBUSY;
1709
37e680a1 1710 ops->put_pages(obj);
05394f39 1711 obj->pages = NULL;
37e680a1
CW
1712
1713 list_del(&obj->gtt_list);
6c085a72
CW
1714 if (i915_gem_object_is_purgeable(obj))
1715 i915_gem_object_truncate(obj);
1716
1717 return 0;
1718}
1719
1720static long
1721i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1722{
1723 struct drm_i915_gem_object *obj, *next;
1724 long count = 0;
1725
1726 list_for_each_entry_safe(obj, next,
1727 &dev_priv->mm.unbound_list,
1728 gtt_list) {
1729 if (i915_gem_object_is_purgeable(obj) &&
37e680a1 1730 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1731 count += obj->base.size >> PAGE_SHIFT;
1732 if (count >= target)
1733 return count;
1734 }
1735 }
1736
1737 list_for_each_entry_safe(obj, next,
1738 &dev_priv->mm.inactive_list,
1739 mm_list) {
1740 if (i915_gem_object_is_purgeable(obj) &&
1741 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1742 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1743 count += obj->base.size >> PAGE_SHIFT;
1744 if (count >= target)
1745 return count;
1746 }
1747 }
1748
1749 return count;
1750}
1751
1752static void
1753i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1754{
1755 struct drm_i915_gem_object *obj, *next;
1756
1757 i915_gem_evict_everything(dev_priv->dev);
1758
1759 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
37e680a1 1760 i915_gem_object_put_pages(obj);
225067ee
DV
1761}
1762
37e680a1 1763static int
6c085a72 1764i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1765{
6c085a72 1766 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1767 int page_count, i;
1768 struct address_space *mapping;
9da3da66
CW
1769 struct sg_table *st;
1770 struct scatterlist *sg;
e5281ccd 1771 struct page *page;
6c085a72 1772 gfp_t gfp;
e5281ccd 1773
6c085a72
CW
1774 /* Assert that the object is not currently in any GPU domain. As it
1775 * wasn't in the GTT, there shouldn't be any way it could have been in
1776 * a GPU cache
1777 */
1778 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1779 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1780
9da3da66
CW
1781 st = kmalloc(sizeof(*st), GFP_KERNEL);
1782 if (st == NULL)
1783 return -ENOMEM;
1784
05394f39 1785 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1786 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1787 sg_free_table(st);
1788 kfree(st);
e5281ccd 1789 return -ENOMEM;
9da3da66 1790 }
e5281ccd 1791
9da3da66
CW
1792 /* Get the list of pages out of our struct file. They'll be pinned
1793 * at this point until we release them.
1794 *
1795 * Fail silently without starting the shrinker
1796 */
6c085a72
CW
1797 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1798 gfp = mapping_gfp_mask(mapping);
d7c3b937 1799 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72 1800 gfp &= ~(__GFP_IO | __GFP_WAIT);
9da3da66 1801 for_each_sg(st->sgl, sg, page_count, i) {
6c085a72
CW
1802 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1803 if (IS_ERR(page)) {
1804 i915_gem_purge(dev_priv, page_count);
1805 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1806 }
1807 if (IS_ERR(page)) {
1808 /* We've tried hard to allocate the memory by reaping
1809 * our own buffer, now let the real VM do its job and
1810 * go down in flames if truly OOM.
1811 */
d7c3b937 1812 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
6c085a72
CW
1813 gfp |= __GFP_IO | __GFP_WAIT;
1814
1815 i915_gem_shrink_all(dev_priv);
1816 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1817 if (IS_ERR(page))
1818 goto err_pages;
1819
d7c3b937 1820 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72
CW
1821 gfp &= ~(__GFP_IO | __GFP_WAIT);
1822 }
e5281ccd 1823
9da3da66 1824 sg_set_page(sg, page, PAGE_SIZE, 0);
e5281ccd
CW
1825 }
1826
74ce6b6c
CW
1827 obj->pages = st;
1828
6dacfd2f 1829 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1830 i915_gem_object_do_bit_17_swizzle(obj);
1831
1832 return 0;
1833
1834err_pages:
9da3da66
CW
1835 for_each_sg(st->sgl, sg, i, page_count)
1836 page_cache_release(sg_page(sg));
1837 sg_free_table(st);
1838 kfree(st);
e5281ccd 1839 return PTR_ERR(page);
673a394b
EA
1840}
1841
37e680a1
CW
1842/* Ensure that the associated pages are gathered from the backing storage
1843 * and pinned into our object. i915_gem_object_get_pages() may be called
1844 * multiple times before they are released by a single call to
1845 * i915_gem_object_put_pages() - once the pages are no longer referenced
1846 * either as a result of memory pressure (reaping pages under the shrinker)
1847 * or as the object is itself released.
1848 */
1849int
1850i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851{
1852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853 const struct drm_i915_gem_object_ops *ops = obj->ops;
1854 int ret;
1855
2f745ad3 1856 if (obj->pages)
37e680a1
CW
1857 return 0;
1858
a5570178
CW
1859 BUG_ON(obj->pages_pin_count);
1860
37e680a1
CW
1861 ret = ops->get_pages(obj);
1862 if (ret)
1863 return ret;
1864
1865 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1866 return 0;
673a394b
EA
1867}
1868
54cf91dc 1869void
05394f39 1870i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1871 struct intel_ring_buffer *ring,
1872 u32 seqno)
673a394b 1873{
05394f39 1874 struct drm_device *dev = obj->base.dev;
69dc4987 1875 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1876
852835f3 1877 BUG_ON(ring == NULL);
05394f39 1878 obj->ring = ring;
673a394b
EA
1879
1880 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1881 if (!obj->active) {
1882 drm_gem_object_reference(&obj->base);
1883 obj->active = 1;
673a394b 1884 }
e35a41de 1885
673a394b 1886 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1887 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1888 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1889
0201f1ec 1890 obj->last_read_seqno = seqno;
caea7476 1891
7dd49065 1892 if (obj->fenced_gpu_access) {
caea7476 1893 obj->last_fenced_seqno = seqno;
caea7476 1894
7dd49065
CW
1895 /* Bump MRU to take account of the delayed flush */
1896 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1897 struct drm_i915_fence_reg *reg;
1898
1899 reg = &dev_priv->fence_regs[obj->fence_reg];
1900 list_move_tail(&reg->lru_list,
1901 &dev_priv->mm.fence_list);
1902 }
caea7476
CW
1903 }
1904}
1905
1906static void
caea7476 1907i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1908{
05394f39 1909 struct drm_device *dev = obj->base.dev;
caea7476 1910 struct drm_i915_private *dev_priv = dev->dev_private;
ce44b0ea 1911
65ce3027 1912 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1913 BUG_ON(!obj->active);
caea7476 1914
f047e395
CW
1915 if (obj->pin_count) /* are we a framebuffer? */
1916 intel_mark_fb_idle(obj);
caea7476 1917
1b50247a 1918 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476 1919
65ce3027 1920 list_del_init(&obj->ring_list);
caea7476
CW
1921 obj->ring = NULL;
1922
65ce3027
CW
1923 obj->last_read_seqno = 0;
1924 obj->last_write_seqno = 0;
1925 obj->base.write_domain = 0;
1926
1927 obj->last_fenced_seqno = 0;
caea7476 1928 obj->fenced_gpu_access = false;
caea7476
CW
1929
1930 obj->active = 0;
1931 drm_gem_object_unreference(&obj->base);
1932
1933 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1934}
673a394b 1935
53d227f2
DV
1936static u32
1937i915_gem_get_seqno(struct drm_device *dev)
1938{
1939 drm_i915_private_t *dev_priv = dev->dev_private;
1940 u32 seqno = dev_priv->next_seqno;
1941
1942 /* reserve 0 for non-seqno */
1943 if (++dev_priv->next_seqno == 0)
1944 dev_priv->next_seqno = 1;
1945
1946 return seqno;
1947}
1948
1949u32
1950i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1951{
1952 if (ring->outstanding_lazy_request == 0)
1953 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1954
1955 return ring->outstanding_lazy_request;
1956}
1957
3cce469c 1958int
db53a302 1959i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1960 struct drm_file *file,
acb868d3 1961 u32 *out_seqno)
673a394b 1962{
db53a302 1963 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 1964 struct drm_i915_gem_request *request;
a71d8d94 1965 u32 request_ring_position;
acb868d3 1966 u32 seqno;
673a394b 1967 int was_empty;
3cce469c
CW
1968 int ret;
1969
cc889e0f
DV
1970 /*
1971 * Emit any outstanding flushes - execbuf can fail to emit the flush
1972 * after having emitted the batchbuffer command. Hence we need to fix
1973 * things up similar to emitting the lazy request. The difference here
1974 * is that the flush _must_ happen before the next request, no matter
1975 * what.
1976 */
a7b9761d
CW
1977 ret = intel_ring_flush_all_caches(ring);
1978 if (ret)
1979 return ret;
cc889e0f 1980
acb868d3
CW
1981 request = kmalloc(sizeof(*request), GFP_KERNEL);
1982 if (request == NULL)
1983 return -ENOMEM;
cc889e0f 1984
53d227f2 1985 seqno = i915_gem_next_request_seqno(ring);
673a394b 1986
a71d8d94
CW
1987 /* Record the position of the start of the request so that
1988 * should we detect the updated seqno part-way through the
1989 * GPU processing the request, we never over-estimate the
1990 * position of the head.
1991 */
1992 request_ring_position = intel_ring_get_tail(ring);
1993
3cce469c 1994 ret = ring->add_request(ring, &seqno);
3bb73aba
CW
1995 if (ret) {
1996 kfree(request);
1997 return ret;
1998 }
673a394b 1999
db53a302 2000 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
2001
2002 request->seqno = seqno;
852835f3 2003 request->ring = ring;
a71d8d94 2004 request->tail = request_ring_position;
673a394b 2005 request->emitted_jiffies = jiffies;
852835f3
ZN
2006 was_empty = list_empty(&ring->request_list);
2007 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2008 request->file_priv = NULL;
852835f3 2009
db53a302
CW
2010 if (file) {
2011 struct drm_i915_file_private *file_priv = file->driver_priv;
2012
1c25595f 2013 spin_lock(&file_priv->mm.lock);
f787a5f5 2014 request->file_priv = file_priv;
b962442e 2015 list_add_tail(&request->client_list,
f787a5f5 2016 &file_priv->mm.request_list);
1c25595f 2017 spin_unlock(&file_priv->mm.lock);
b962442e 2018 }
673a394b 2019
5391d0cf 2020 ring->outstanding_lazy_request = 0;
db53a302 2021
f65d9421 2022 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
2023 if (i915_enable_hangcheck) {
2024 mod_timer(&dev_priv->hangcheck_timer,
cecc21fe 2025 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3e0dc6b0 2026 }
f047e395 2027 if (was_empty) {
b3b079db 2028 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2029 &dev_priv->mm.retire_work,
2030 round_jiffies_up_relative(HZ));
f047e395
CW
2031 intel_mark_busy(dev_priv->dev);
2032 }
f65d9421 2033 }
cc889e0f 2034
acb868d3
CW
2035 if (out_seqno)
2036 *out_seqno = seqno;
3cce469c 2037 return 0;
673a394b
EA
2038}
2039
f787a5f5
CW
2040static inline void
2041i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2042{
1c25595f 2043 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2044
1c25595f
CW
2045 if (!file_priv)
2046 return;
1c5d22f7 2047
1c25595f 2048 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2049 if (request->file_priv) {
2050 list_del(&request->client_list);
2051 request->file_priv = NULL;
2052 }
1c25595f 2053 spin_unlock(&file_priv->mm.lock);
673a394b 2054}
673a394b 2055
dfaae392
CW
2056static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2057 struct intel_ring_buffer *ring)
9375e446 2058{
dfaae392
CW
2059 while (!list_empty(&ring->request_list)) {
2060 struct drm_i915_gem_request *request;
673a394b 2061
dfaae392
CW
2062 request = list_first_entry(&ring->request_list,
2063 struct drm_i915_gem_request,
2064 list);
de151cf6 2065
dfaae392 2066 list_del(&request->list);
f787a5f5 2067 i915_gem_request_remove_from_client(request);
dfaae392
CW
2068 kfree(request);
2069 }
673a394b 2070
dfaae392 2071 while (!list_empty(&ring->active_list)) {
05394f39 2072 struct drm_i915_gem_object *obj;
9375e446 2073
05394f39
CW
2074 obj = list_first_entry(&ring->active_list,
2075 struct drm_i915_gem_object,
2076 ring_list);
9375e446 2077
05394f39 2078 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2079 }
2080}
2081
312817a3
CW
2082static void i915_gem_reset_fences(struct drm_device *dev)
2083{
2084 struct drm_i915_private *dev_priv = dev->dev_private;
2085 int i;
2086
4b9de737 2087 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2088 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2089
ada726c7 2090 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 2091
ada726c7
CW
2092 if (reg->obj)
2093 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2094
ada726c7
CW
2095 reg->pin_count = 0;
2096 reg->obj = NULL;
2097 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2098 }
ada726c7
CW
2099
2100 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2101}
2102
069efc1d 2103void i915_gem_reset(struct drm_device *dev)
673a394b 2104{
77f01230 2105 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2106 struct drm_i915_gem_object *obj;
b4519513 2107 struct intel_ring_buffer *ring;
1ec14ad3 2108 int i;
673a394b 2109
b4519513
CW
2110 for_each_ring(ring, dev_priv, i)
2111 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2112
dfaae392
CW
2113 /* Move everything out of the GPU domains to ensure we do any
2114 * necessary invalidation upon reuse.
2115 */
05394f39 2116 list_for_each_entry(obj,
77f01230 2117 &dev_priv->mm.inactive_list,
69dc4987 2118 mm_list)
77f01230 2119 {
05394f39 2120 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2121 }
069efc1d
CW
2122
2123 /* The fence registers are invalidated so clear them out */
312817a3 2124 i915_gem_reset_fences(dev);
673a394b
EA
2125}
2126
2127/**
2128 * This function clears the request list as sequence numbers are passed.
2129 */
a71d8d94 2130void
db53a302 2131i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2132{
673a394b 2133 uint32_t seqno;
1ec14ad3 2134 int i;
673a394b 2135
db53a302 2136 if (list_empty(&ring->request_list))
6c0594a3
KW
2137 return;
2138
db53a302 2139 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2140
b2eadbc8 2141 seqno = ring->get_seqno(ring, true);
1ec14ad3 2142
076e2c0e 2143 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
2144 if (seqno >= ring->sync_seqno[i])
2145 ring->sync_seqno[i] = 0;
2146
852835f3 2147 while (!list_empty(&ring->request_list)) {
673a394b 2148 struct drm_i915_gem_request *request;
673a394b 2149
852835f3 2150 request = list_first_entry(&ring->request_list,
673a394b
EA
2151 struct drm_i915_gem_request,
2152 list);
673a394b 2153
dfaae392 2154 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2155 break;
2156
db53a302 2157 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2158 /* We know the GPU must have read the request to have
2159 * sent us the seqno + interrupt, so use the position
2160 * of tail of the request to update the last known position
2161 * of the GPU head.
2162 */
2163 ring->last_retired_head = request->tail;
b84d5f0c
CW
2164
2165 list_del(&request->list);
f787a5f5 2166 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
2167 kfree(request);
2168 }
673a394b 2169
b84d5f0c
CW
2170 /* Move any buffers on the active list that are no longer referenced
2171 * by the ringbuffer to the flushing/inactive lists as appropriate.
2172 */
2173 while (!list_empty(&ring->active_list)) {
05394f39 2174 struct drm_i915_gem_object *obj;
b84d5f0c 2175
0206e353 2176 obj = list_first_entry(&ring->active_list,
05394f39
CW
2177 struct drm_i915_gem_object,
2178 ring_list);
673a394b 2179
0201f1ec 2180 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2181 break;
b84d5f0c 2182
65ce3027 2183 i915_gem_object_move_to_inactive(obj);
673a394b 2184 }
9d34e5db 2185
db53a302
CW
2186 if (unlikely(ring->trace_irq_seqno &&
2187 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2188 ring->irq_put(ring);
db53a302 2189 ring->trace_irq_seqno = 0;
9d34e5db 2190 }
23bc5982 2191
db53a302 2192 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2193}
2194
b09a1fec
CW
2195void
2196i915_gem_retire_requests(struct drm_device *dev)
2197{
2198 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2199 struct intel_ring_buffer *ring;
1ec14ad3 2200 int i;
b09a1fec 2201
b4519513
CW
2202 for_each_ring(ring, dev_priv, i)
2203 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2204}
2205
75ef9da2 2206static void
673a394b
EA
2207i915_gem_retire_work_handler(struct work_struct *work)
2208{
2209 drm_i915_private_t *dev_priv;
2210 struct drm_device *dev;
b4519513 2211 struct intel_ring_buffer *ring;
0a58705b
CW
2212 bool idle;
2213 int i;
673a394b
EA
2214
2215 dev_priv = container_of(work, drm_i915_private_t,
2216 mm.retire_work.work);
2217 dev = dev_priv->dev;
2218
891b48cf
CW
2219 /* Come back later if the device is busy... */
2220 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2221 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2222 round_jiffies_up_relative(HZ));
891b48cf
CW
2223 return;
2224 }
673a394b 2225
b09a1fec 2226 i915_gem_retire_requests(dev);
673a394b 2227
0a58705b
CW
2228 /* Send a periodic flush down the ring so we don't hold onto GEM
2229 * objects indefinitely.
673a394b 2230 */
0a58705b 2231 idle = true;
b4519513 2232 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
2233 if (ring->gpu_caches_dirty)
2234 i915_add_request(ring, NULL, NULL);
0a58705b
CW
2235
2236 idle &= list_empty(&ring->request_list);
673a394b
EA
2237 }
2238
0a58705b 2239 if (!dev_priv->mm.suspended && !idle)
bcb45086
CW
2240 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2241 round_jiffies_up_relative(HZ));
f047e395
CW
2242 if (idle)
2243 intel_mark_idle(dev);
0a58705b 2244
673a394b 2245 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2246}
2247
30dfebf3
DV
2248/**
2249 * Ensures that an object will eventually get non-busy by flushing any required
2250 * write domains, emitting any outstanding lazy request and retiring and
2251 * completed requests.
2252 */
2253static int
2254i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2255{
2256 int ret;
2257
2258 if (obj->active) {
0201f1ec 2259 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2260 if (ret)
2261 return ret;
2262
30dfebf3
DV
2263 i915_gem_retire_requests_ring(obj->ring);
2264 }
2265
2266 return 0;
2267}
2268
23ba4fd0
BW
2269/**
2270 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2271 * @DRM_IOCTL_ARGS: standard ioctl arguments
2272 *
2273 * Returns 0 if successful, else an error is returned with the remaining time in
2274 * the timeout parameter.
2275 * -ETIME: object is still busy after timeout
2276 * -ERESTARTSYS: signal interrupted the wait
2277 * -ENONENT: object doesn't exist
2278 * Also possible, but rare:
2279 * -EAGAIN: GPU wedged
2280 * -ENOMEM: damn
2281 * -ENODEV: Internal IRQ fail
2282 * -E?: The add request failed
2283 *
2284 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2285 * non-zero timeout parameter the wait ioctl will wait for the given number of
2286 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2287 * without holding struct_mutex the object may become re-busied before this
2288 * function completes. A similar but shorter * race condition exists in the busy
2289 * ioctl
2290 */
2291int
2292i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2293{
2294 struct drm_i915_gem_wait *args = data;
2295 struct drm_i915_gem_object *obj;
2296 struct intel_ring_buffer *ring = NULL;
eac1f14f 2297 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2298 u32 seqno = 0;
2299 int ret = 0;
2300
eac1f14f
BW
2301 if (args->timeout_ns >= 0) {
2302 timeout_stack = ns_to_timespec(args->timeout_ns);
2303 timeout = &timeout_stack;
2304 }
23ba4fd0
BW
2305
2306 ret = i915_mutex_lock_interruptible(dev);
2307 if (ret)
2308 return ret;
2309
2310 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2311 if (&obj->base == NULL) {
2312 mutex_unlock(&dev->struct_mutex);
2313 return -ENOENT;
2314 }
2315
30dfebf3
DV
2316 /* Need to make sure the object gets inactive eventually. */
2317 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2318 if (ret)
2319 goto out;
2320
2321 if (obj->active) {
0201f1ec 2322 seqno = obj->last_read_seqno;
23ba4fd0
BW
2323 ring = obj->ring;
2324 }
2325
2326 if (seqno == 0)
2327 goto out;
2328
23ba4fd0
BW
2329 /* Do this after OLR check to make sure we make forward progress polling
2330 * on this IOCTL with a 0 timeout (like busy ioctl)
2331 */
2332 if (!args->timeout_ns) {
2333 ret = -ETIME;
2334 goto out;
2335 }
2336
2337 drm_gem_object_unreference(&obj->base);
2338 mutex_unlock(&dev->struct_mutex);
2339
eac1f14f
BW
2340 ret = __wait_seqno(ring, seqno, true, timeout);
2341 if (timeout) {
2342 WARN_ON(!timespec_valid(timeout));
2343 args->timeout_ns = timespec_to_ns(timeout);
2344 }
23ba4fd0
BW
2345 return ret;
2346
2347out:
2348 drm_gem_object_unreference(&obj->base);
2349 mutex_unlock(&dev->struct_mutex);
2350 return ret;
2351}
2352
5816d648
BW
2353/**
2354 * i915_gem_object_sync - sync an object to a ring.
2355 *
2356 * @obj: object which may be in use on another ring.
2357 * @to: ring we wish to use the object on. May be NULL.
2358 *
2359 * This code is meant to abstract object synchronization with the GPU.
2360 * Calling with NULL implies synchronizing the object with the CPU
2361 * rather than a particular GPU ring.
2362 *
2363 * Returns 0 if successful, else propagates up the lower layer error.
2364 */
2911a35b
BW
2365int
2366i915_gem_object_sync(struct drm_i915_gem_object *obj,
2367 struct intel_ring_buffer *to)
2368{
2369 struct intel_ring_buffer *from = obj->ring;
2370 u32 seqno;
2371 int ret, idx;
2372
2373 if (from == NULL || to == from)
2374 return 0;
2375
5816d648 2376 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2377 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2378
2379 idx = intel_ring_sync_index(from, to);
2380
0201f1ec 2381 seqno = obj->last_read_seqno;
2911a35b
BW
2382 if (seqno <= from->sync_seqno[idx])
2383 return 0;
2384
b4aca010
BW
2385 ret = i915_gem_check_olr(obj->ring, seqno);
2386 if (ret)
2387 return ret;
2911a35b 2388
1500f7ea 2389 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2390 if (!ret)
2391 from->sync_seqno[idx] = seqno;
2911a35b 2392
e3a5a225 2393 return ret;
2911a35b
BW
2394}
2395
b5ffc9bc
CW
2396static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2397{
2398 u32 old_write_domain, old_read_domains;
2399
b5ffc9bc
CW
2400 /* Act a barrier for all accesses through the GTT */
2401 mb();
2402
2403 /* Force a pagefault for domain tracking on next user access */
2404 i915_gem_release_mmap(obj);
2405
b97c3d9c
KP
2406 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2407 return;
2408
b5ffc9bc
CW
2409 old_read_domains = obj->base.read_domains;
2410 old_write_domain = obj->base.write_domain;
2411
2412 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2413 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2414
2415 trace_i915_gem_object_change_domain(obj,
2416 old_read_domains,
2417 old_write_domain);
2418}
2419
673a394b
EA
2420/**
2421 * Unbinds an object from the GTT aperture.
2422 */
0f973f27 2423int
05394f39 2424i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2425{
7bddb01f 2426 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2427 int ret = 0;
2428
05394f39 2429 if (obj->gtt_space == NULL)
673a394b
EA
2430 return 0;
2431
31d8d651
CW
2432 if (obj->pin_count)
2433 return -EBUSY;
673a394b 2434
c4670ad0
CW
2435 BUG_ON(obj->pages == NULL);
2436
a8198eea 2437 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2438 if (ret)
a8198eea
CW
2439 return ret;
2440 /* Continue on if we fail due to EIO, the GPU is hung so we
2441 * should be safe and we need to cleanup or else we might
2442 * cause memory corruption through use-after-free.
2443 */
2444
b5ffc9bc 2445 i915_gem_object_finish_gtt(obj);
5323fd04 2446
96b47b65 2447 /* release the fence reg _after_ flushing */
d9e86c0e 2448 ret = i915_gem_object_put_fence(obj);
1488fc08 2449 if (ret)
d9e86c0e 2450 return ret;
96b47b65 2451
db53a302
CW
2452 trace_i915_gem_object_unbind(obj);
2453
74898d7e
DV
2454 if (obj->has_global_gtt_mapping)
2455 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2456 if (obj->has_aliasing_ppgtt_mapping) {
2457 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2458 obj->has_aliasing_ppgtt_mapping = 0;
2459 }
74163907 2460 i915_gem_gtt_finish_object(obj);
7bddb01f 2461
6c085a72
CW
2462 list_del(&obj->mm_list);
2463 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2464 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2465 obj->map_and_fenceable = true;
673a394b 2466
05394f39
CW
2467 drm_mm_put_block(obj->gtt_space);
2468 obj->gtt_space = NULL;
2469 obj->gtt_offset = 0;
673a394b 2470
88241785 2471 return 0;
54cf91dc
CW
2472}
2473
b2da9fe5 2474static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2475{
69c2fc89 2476 if (list_empty(&ring->active_list))
64193406
CW
2477 return 0;
2478
199b2bc2 2479 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2480}
2481
b2da9fe5 2482int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2483{
2484 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2485 struct intel_ring_buffer *ring;
1ec14ad3 2486 int ret, i;
4df2faf4 2487
4df2faf4 2488 /* Flush everything onto the inactive list. */
b4519513 2489 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2490 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2491 if (ret)
2492 return ret;
2493
b4519513 2494 ret = i915_ring_idle(ring);
1ec14ad3
CW
2495 if (ret)
2496 return ret;
2497 }
4df2faf4 2498
8a1a49f9 2499 return 0;
4df2faf4
DV
2500}
2501
9ce079e4
CW
2502static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2503 struct drm_i915_gem_object *obj)
4e901fdc 2504{
4e901fdc 2505 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2506 uint64_t val;
2507
9ce079e4
CW
2508 if (obj) {
2509 u32 size = obj->gtt_space->size;
4e901fdc 2510
9ce079e4
CW
2511 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2512 0xfffff000) << 32;
2513 val |= obj->gtt_offset & 0xfffff000;
2514 val |= (uint64_t)((obj->stride / 128) - 1) <<
2515 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2516
9ce079e4
CW
2517 if (obj->tiling_mode == I915_TILING_Y)
2518 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2519 val |= I965_FENCE_REG_VALID;
2520 } else
2521 val = 0;
c6642782 2522
9ce079e4
CW
2523 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2524 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2525}
2526
9ce079e4
CW
2527static void i965_write_fence_reg(struct drm_device *dev, int reg,
2528 struct drm_i915_gem_object *obj)
de151cf6 2529{
de151cf6 2530 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2531 uint64_t val;
2532
9ce079e4
CW
2533 if (obj) {
2534 u32 size = obj->gtt_space->size;
de151cf6 2535
9ce079e4
CW
2536 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2537 0xfffff000) << 32;
2538 val |= obj->gtt_offset & 0xfffff000;
2539 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2540 if (obj->tiling_mode == I915_TILING_Y)
2541 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2542 val |= I965_FENCE_REG_VALID;
2543 } else
2544 val = 0;
c6642782 2545
9ce079e4
CW
2546 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2547 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2548}
2549
9ce079e4
CW
2550static void i915_write_fence_reg(struct drm_device *dev, int reg,
2551 struct drm_i915_gem_object *obj)
de151cf6 2552{
de151cf6 2553 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2554 u32 val;
de151cf6 2555
9ce079e4
CW
2556 if (obj) {
2557 u32 size = obj->gtt_space->size;
2558 int pitch_val;
2559 int tile_width;
c6642782 2560
9ce079e4
CW
2561 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2562 (size & -size) != size ||
2563 (obj->gtt_offset & (size - 1)),
2564 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2565 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2566
9ce079e4
CW
2567 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2568 tile_width = 128;
2569 else
2570 tile_width = 512;
2571
2572 /* Note: pitch better be a power of two tile widths */
2573 pitch_val = obj->stride / tile_width;
2574 pitch_val = ffs(pitch_val) - 1;
2575
2576 val = obj->gtt_offset;
2577 if (obj->tiling_mode == I915_TILING_Y)
2578 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2579 val |= I915_FENCE_SIZE_BITS(size);
2580 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2581 val |= I830_FENCE_REG_VALID;
2582 } else
2583 val = 0;
2584
2585 if (reg < 8)
2586 reg = FENCE_REG_830_0 + reg * 4;
2587 else
2588 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2589
2590 I915_WRITE(reg, val);
2591 POSTING_READ(reg);
de151cf6
JB
2592}
2593
9ce079e4
CW
2594static void i830_write_fence_reg(struct drm_device *dev, int reg,
2595 struct drm_i915_gem_object *obj)
de151cf6 2596{
de151cf6 2597 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2598 uint32_t val;
de151cf6 2599
9ce079e4
CW
2600 if (obj) {
2601 u32 size = obj->gtt_space->size;
2602 uint32_t pitch_val;
de151cf6 2603
9ce079e4
CW
2604 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2605 (size & -size) != size ||
2606 (obj->gtt_offset & (size - 1)),
2607 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2608 obj->gtt_offset, size);
e76a16de 2609
9ce079e4
CW
2610 pitch_val = obj->stride / 128;
2611 pitch_val = ffs(pitch_val) - 1;
de151cf6 2612
9ce079e4
CW
2613 val = obj->gtt_offset;
2614 if (obj->tiling_mode == I915_TILING_Y)
2615 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2616 val |= I830_FENCE_SIZE_BITS(size);
2617 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2618 val |= I830_FENCE_REG_VALID;
2619 } else
2620 val = 0;
c6642782 2621
9ce079e4
CW
2622 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2623 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2624}
2625
2626static void i915_gem_write_fence(struct drm_device *dev, int reg,
2627 struct drm_i915_gem_object *obj)
2628{
2629 switch (INTEL_INFO(dev)->gen) {
2630 case 7:
2631 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2632 case 5:
2633 case 4: i965_write_fence_reg(dev, reg, obj); break;
2634 case 3: i915_write_fence_reg(dev, reg, obj); break;
2635 case 2: i830_write_fence_reg(dev, reg, obj); break;
2636 default: break;
2637 }
de151cf6
JB
2638}
2639
61050808
CW
2640static inline int fence_number(struct drm_i915_private *dev_priv,
2641 struct drm_i915_fence_reg *fence)
2642{
2643 return fence - dev_priv->fence_regs;
2644}
2645
2646static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2647 struct drm_i915_fence_reg *fence,
2648 bool enable)
2649{
2650 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2651 int reg = fence_number(dev_priv, fence);
2652
2653 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2654
2655 if (enable) {
2656 obj->fence_reg = reg;
2657 fence->obj = obj;
2658 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2659 } else {
2660 obj->fence_reg = I915_FENCE_REG_NONE;
2661 fence->obj = NULL;
2662 list_del_init(&fence->lru_list);
2663 }
2664}
2665
d9e86c0e 2666static int
a360bb1a 2667i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2668{
1c293ea3 2669 if (obj->last_fenced_seqno) {
86d5bc37 2670 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2671 if (ret)
2672 return ret;
d9e86c0e
CW
2673
2674 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2675 }
2676
63256ec5
CW
2677 /* Ensure that all CPU reads are completed before installing a fence
2678 * and all writes before removing the fence.
2679 */
2680 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2681 mb();
2682
86d5bc37 2683 obj->fenced_gpu_access = false;
d9e86c0e
CW
2684 return 0;
2685}
2686
2687int
2688i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2689{
61050808 2690 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2691 int ret;
2692
a360bb1a 2693 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2694 if (ret)
2695 return ret;
2696
61050808
CW
2697 if (obj->fence_reg == I915_FENCE_REG_NONE)
2698 return 0;
d9e86c0e 2699
61050808
CW
2700 i915_gem_object_update_fence(obj,
2701 &dev_priv->fence_regs[obj->fence_reg],
2702 false);
2703 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2704
2705 return 0;
2706}
2707
2708static struct drm_i915_fence_reg *
a360bb1a 2709i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2710{
ae3db24a 2711 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2712 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2713 int i;
ae3db24a
DV
2714
2715 /* First try to find a free reg */
d9e86c0e 2716 avail = NULL;
ae3db24a
DV
2717 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2718 reg = &dev_priv->fence_regs[i];
2719 if (!reg->obj)
d9e86c0e 2720 return reg;
ae3db24a 2721
1690e1eb 2722 if (!reg->pin_count)
d9e86c0e 2723 avail = reg;
ae3db24a
DV
2724 }
2725
d9e86c0e
CW
2726 if (avail == NULL)
2727 return NULL;
ae3db24a
DV
2728
2729 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2730 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2731 if (reg->pin_count)
ae3db24a
DV
2732 continue;
2733
8fe301ad 2734 return reg;
ae3db24a
DV
2735 }
2736
8fe301ad 2737 return NULL;
ae3db24a
DV
2738}
2739
de151cf6 2740/**
9a5a53b3 2741 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2742 * @obj: object to map through a fence reg
2743 *
2744 * When mapping objects through the GTT, userspace wants to be able to write
2745 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2746 * This function walks the fence regs looking for a free one for @obj,
2747 * stealing one if it can't find any.
2748 *
2749 * It then sets up the reg based on the object's properties: address, pitch
2750 * and tiling format.
9a5a53b3
CW
2751 *
2752 * For an untiled surface, this removes any existing fence.
de151cf6 2753 */
8c4b8c3f 2754int
06d98131 2755i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2756{
05394f39 2757 struct drm_device *dev = obj->base.dev;
79e53945 2758 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2759 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2760 struct drm_i915_fence_reg *reg;
ae3db24a 2761 int ret;
de151cf6 2762
14415745
CW
2763 /* Have we updated the tiling parameters upon the object and so
2764 * will need to serialise the write to the associated fence register?
2765 */
5d82e3e6 2766 if (obj->fence_dirty) {
14415745
CW
2767 ret = i915_gem_object_flush_fence(obj);
2768 if (ret)
2769 return ret;
2770 }
9a5a53b3 2771
d9e86c0e 2772 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2773 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2774 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2775 if (!obj->fence_dirty) {
14415745
CW
2776 list_move_tail(&reg->lru_list,
2777 &dev_priv->mm.fence_list);
2778 return 0;
2779 }
2780 } else if (enable) {
2781 reg = i915_find_fence_reg(dev);
2782 if (reg == NULL)
2783 return -EDEADLK;
d9e86c0e 2784
14415745
CW
2785 if (reg->obj) {
2786 struct drm_i915_gem_object *old = reg->obj;
2787
2788 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2789 if (ret)
2790 return ret;
2791
14415745 2792 i915_gem_object_fence_lost(old);
29c5a587 2793 }
14415745 2794 } else
a09ba7fa 2795 return 0;
a09ba7fa 2796
14415745 2797 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2798 obj->fence_dirty = false;
14415745 2799
9ce079e4 2800 return 0;
de151cf6
JB
2801}
2802
42d6ab48
CW
2803static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2804 struct drm_mm_node *gtt_space,
2805 unsigned long cache_level)
2806{
2807 struct drm_mm_node *other;
2808
2809 /* On non-LLC machines we have to be careful when putting differing
2810 * types of snoopable memory together to avoid the prefetcher
2811 * crossing memory domains and dieing.
2812 */
2813 if (HAS_LLC(dev))
2814 return true;
2815
2816 if (gtt_space == NULL)
2817 return true;
2818
2819 if (list_empty(&gtt_space->node_list))
2820 return true;
2821
2822 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2823 if (other->allocated && !other->hole_follows && other->color != cache_level)
2824 return false;
2825
2826 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2827 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2828 return false;
2829
2830 return true;
2831}
2832
2833static void i915_gem_verify_gtt(struct drm_device *dev)
2834{
2835#if WATCH_GTT
2836 struct drm_i915_private *dev_priv = dev->dev_private;
2837 struct drm_i915_gem_object *obj;
2838 int err = 0;
2839
2840 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2841 if (obj->gtt_space == NULL) {
2842 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2843 err++;
2844 continue;
2845 }
2846
2847 if (obj->cache_level != obj->gtt_space->color) {
2848 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2849 obj->gtt_space->start,
2850 obj->gtt_space->start + obj->gtt_space->size,
2851 obj->cache_level,
2852 obj->gtt_space->color);
2853 err++;
2854 continue;
2855 }
2856
2857 if (!i915_gem_valid_gtt_space(dev,
2858 obj->gtt_space,
2859 obj->cache_level)) {
2860 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2861 obj->gtt_space->start,
2862 obj->gtt_space->start + obj->gtt_space->size,
2863 obj->cache_level);
2864 err++;
2865 continue;
2866 }
2867 }
2868
2869 WARN_ON(err);
2870#endif
2871}
2872
673a394b
EA
2873/**
2874 * Finds free space in the GTT aperture and binds the object there.
2875 */
2876static int
05394f39 2877i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2878 unsigned alignment,
86a1ee26
CW
2879 bool map_and_fenceable,
2880 bool nonblocking)
673a394b 2881{
05394f39 2882 struct drm_device *dev = obj->base.dev;
673a394b 2883 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2884 struct drm_mm_node *free_space;
5e783301 2885 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2886 bool mappable, fenceable;
07f73f69 2887 int ret;
673a394b 2888
05394f39 2889 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2890 DRM_ERROR("Attempting to bind a purgeable object\n");
2891 return -EINVAL;
2892 }
2893
e28f8711
CW
2894 fence_size = i915_gem_get_gtt_size(dev,
2895 obj->base.size,
2896 obj->tiling_mode);
2897 fence_alignment = i915_gem_get_gtt_alignment(dev,
2898 obj->base.size,
2899 obj->tiling_mode);
2900 unfenced_alignment =
2901 i915_gem_get_unfenced_gtt_alignment(dev,
2902 obj->base.size,
2903 obj->tiling_mode);
a00b10c3 2904
673a394b 2905 if (alignment == 0)
5e783301
DV
2906 alignment = map_and_fenceable ? fence_alignment :
2907 unfenced_alignment;
75e9e915 2908 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2909 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2910 return -EINVAL;
2911 }
2912
05394f39 2913 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2914
654fc607
CW
2915 /* If the object is bigger than the entire aperture, reject it early
2916 * before evicting everything in a vain attempt to find space.
2917 */
05394f39 2918 if (obj->base.size >
75e9e915 2919 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2920 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2921 return -E2BIG;
2922 }
2923
37e680a1 2924 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
2925 if (ret)
2926 return ret;
2927
fbdda6fb
CW
2928 i915_gem_object_pin_pages(obj);
2929
673a394b 2930 search_free:
75e9e915 2931 if (map_and_fenceable)
920afa77 2932 free_space =
42d6ab48
CW
2933 drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2934 size, alignment, obj->cache_level,
2935 0, dev_priv->mm.gtt_mappable_end,
2936 false);
920afa77 2937 else
42d6ab48
CW
2938 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2939 size, alignment, obj->cache_level,
2940 false);
920afa77
DV
2941
2942 if (free_space != NULL) {
75e9e915 2943 if (map_and_fenceable)
05394f39 2944 obj->gtt_space =
920afa77 2945 drm_mm_get_block_range_generic(free_space,
42d6ab48 2946 size, alignment, obj->cache_level,
6b9d89b4 2947 0, dev_priv->mm.gtt_mappable_end,
42d6ab48 2948 false);
920afa77 2949 else
05394f39 2950 obj->gtt_space =
42d6ab48
CW
2951 drm_mm_get_block_generic(free_space,
2952 size, alignment, obj->cache_level,
2953 false);
920afa77 2954 }
05394f39 2955 if (obj->gtt_space == NULL) {
75e9e915 2956 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 2957 obj->cache_level,
86a1ee26
CW
2958 map_and_fenceable,
2959 nonblocking);
fbdda6fb
CW
2960 if (ret) {
2961 i915_gem_object_unpin_pages(obj);
673a394b 2962 return ret;
fbdda6fb 2963 }
9731129c 2964
673a394b
EA
2965 goto search_free;
2966 }
42d6ab48
CW
2967 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2968 obj->gtt_space,
2969 obj->cache_level))) {
fbdda6fb 2970 i915_gem_object_unpin_pages(obj);
05394f39
CW
2971 drm_mm_put_block(obj->gtt_space);
2972 obj->gtt_space = NULL;
42d6ab48 2973 return -EINVAL;
673a394b
EA
2974 }
2975
673a394b 2976
74163907 2977 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2978 if (ret) {
fbdda6fb 2979 i915_gem_object_unpin_pages(obj);
05394f39
CW
2980 drm_mm_put_block(obj->gtt_space);
2981 obj->gtt_space = NULL;
6c085a72 2982 return ret;
673a394b 2983 }
673a394b 2984
0ebb9829
DV
2985 if (!dev_priv->mm.aliasing_ppgtt)
2986 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2987
6c085a72 2988 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 2989 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2990
6299f992 2991 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2992
75e9e915 2993 fenceable =
05394f39 2994 obj->gtt_space->size == fence_size &&
0206e353 2995 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2996
75e9e915 2997 mappable =
05394f39 2998 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2999
05394f39 3000 obj->map_and_fenceable = mappable && fenceable;
75e9e915 3001
fbdda6fb 3002 i915_gem_object_unpin_pages(obj);
db53a302 3003 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 3004 i915_gem_verify_gtt(dev);
673a394b
EA
3005 return 0;
3006}
3007
3008void
05394f39 3009i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3010{
673a394b
EA
3011 /* If we don't have a page list set up, then we're not pinned
3012 * to GPU, and we can ignore the cache flush because it'll happen
3013 * again at bind time.
3014 */
05394f39 3015 if (obj->pages == NULL)
673a394b
EA
3016 return;
3017
9c23f7fc
CW
3018 /* If the GPU is snooping the contents of the CPU cache,
3019 * we do not need to manually clear the CPU cache lines. However,
3020 * the caches are only snooped when the render cache is
3021 * flushed/invalidated. As we always have to emit invalidations
3022 * and flushes when moving into and out of the RENDER domain, correct
3023 * snooping behaviour occurs naturally as the result of our domain
3024 * tracking.
3025 */
3026 if (obj->cache_level != I915_CACHE_NONE)
3027 return;
3028
1c5d22f7 3029 trace_i915_gem_object_clflush(obj);
cfa16a0d 3030
9da3da66 3031 drm_clflush_sg(obj->pages);
e47c68e9
EA
3032}
3033
3034/** Flushes the GTT write domain for the object if it's dirty. */
3035static void
05394f39 3036i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3037{
1c5d22f7
CW
3038 uint32_t old_write_domain;
3039
05394f39 3040 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3041 return;
3042
63256ec5 3043 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3044 * to it immediately go to main memory as far as we know, so there's
3045 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3046 *
3047 * However, we do have to enforce the order so that all writes through
3048 * the GTT land before any writes to the device, such as updates to
3049 * the GATT itself.
e47c68e9 3050 */
63256ec5
CW
3051 wmb();
3052
05394f39
CW
3053 old_write_domain = obj->base.write_domain;
3054 obj->base.write_domain = 0;
1c5d22f7
CW
3055
3056 trace_i915_gem_object_change_domain(obj,
05394f39 3057 obj->base.read_domains,
1c5d22f7 3058 old_write_domain);
e47c68e9
EA
3059}
3060
3061/** Flushes the CPU write domain for the object if it's dirty. */
3062static void
05394f39 3063i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3064{
1c5d22f7 3065 uint32_t old_write_domain;
e47c68e9 3066
05394f39 3067 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3068 return;
3069
3070 i915_gem_clflush_object(obj);
e76e9aeb 3071 i915_gem_chipset_flush(obj->base.dev);
05394f39
CW
3072 old_write_domain = obj->base.write_domain;
3073 obj->base.write_domain = 0;
1c5d22f7
CW
3074
3075 trace_i915_gem_object_change_domain(obj,
05394f39 3076 obj->base.read_domains,
1c5d22f7 3077 old_write_domain);
e47c68e9
EA
3078}
3079
2ef7eeaa
EA
3080/**
3081 * Moves a single object to the GTT read, and possibly write domain.
3082 *
3083 * This function returns when the move is complete, including waiting on
3084 * flushes to occur.
3085 */
79e53945 3086int
2021746e 3087i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3088{
8325a09d 3089 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3090 uint32_t old_write_domain, old_read_domains;
e47c68e9 3091 int ret;
2ef7eeaa 3092
02354392 3093 /* Not valid to be called on unbound objects. */
05394f39 3094 if (obj->gtt_space == NULL)
02354392
EA
3095 return -EINVAL;
3096
8d7e3de1
CW
3097 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3098 return 0;
3099
0201f1ec 3100 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3101 if (ret)
3102 return ret;
3103
7213342d 3104 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3105
05394f39
CW
3106 old_write_domain = obj->base.write_domain;
3107 old_read_domains = obj->base.read_domains;
1c5d22f7 3108
e47c68e9
EA
3109 /* It should now be out of any other write domains, and we can update
3110 * the domain values for our changes.
3111 */
05394f39
CW
3112 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3113 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3114 if (write) {
05394f39
CW
3115 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3116 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3117 obj->dirty = 1;
2ef7eeaa
EA
3118 }
3119
1c5d22f7
CW
3120 trace_i915_gem_object_change_domain(obj,
3121 old_read_domains,
3122 old_write_domain);
3123
8325a09d
CW
3124 /* And bump the LRU for this access */
3125 if (i915_gem_object_is_inactive(obj))
3126 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3127
e47c68e9
EA
3128 return 0;
3129}
3130
e4ffd173
CW
3131int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3132 enum i915_cache_level cache_level)
3133{
7bddb01f
DV
3134 struct drm_device *dev = obj->base.dev;
3135 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3136 int ret;
3137
3138 if (obj->cache_level == cache_level)
3139 return 0;
3140
3141 if (obj->pin_count) {
3142 DRM_DEBUG("can not change the cache level of pinned objects\n");
3143 return -EBUSY;
3144 }
3145
42d6ab48
CW
3146 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3147 ret = i915_gem_object_unbind(obj);
3148 if (ret)
3149 return ret;
3150 }
3151
e4ffd173
CW
3152 if (obj->gtt_space) {
3153 ret = i915_gem_object_finish_gpu(obj);
3154 if (ret)
3155 return ret;
3156
3157 i915_gem_object_finish_gtt(obj);
3158
3159 /* Before SandyBridge, you could not use tiling or fence
3160 * registers with snooped memory, so relinquish any fences
3161 * currently pointing to our region in the aperture.
3162 */
42d6ab48 3163 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3164 ret = i915_gem_object_put_fence(obj);
3165 if (ret)
3166 return ret;
3167 }
3168
74898d7e
DV
3169 if (obj->has_global_gtt_mapping)
3170 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3171 if (obj->has_aliasing_ppgtt_mapping)
3172 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3173 obj, cache_level);
42d6ab48
CW
3174
3175 obj->gtt_space->color = cache_level;
e4ffd173
CW
3176 }
3177
3178 if (cache_level == I915_CACHE_NONE) {
3179 u32 old_read_domains, old_write_domain;
3180
3181 /* If we're coming from LLC cached, then we haven't
3182 * actually been tracking whether the data is in the
3183 * CPU cache or not, since we only allow one bit set
3184 * in obj->write_domain and have been skipping the clflushes.
3185 * Just set it to the CPU cache for now.
3186 */
3187 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3188 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3189
3190 old_read_domains = obj->base.read_domains;
3191 old_write_domain = obj->base.write_domain;
3192
3193 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3194 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3195
3196 trace_i915_gem_object_change_domain(obj,
3197 old_read_domains,
3198 old_write_domain);
3199 }
3200
3201 obj->cache_level = cache_level;
42d6ab48 3202 i915_gem_verify_gtt(dev);
e4ffd173
CW
3203 return 0;
3204}
3205
199adf40
BW
3206int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3207 struct drm_file *file)
e6994aee 3208{
199adf40 3209 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3210 struct drm_i915_gem_object *obj;
3211 int ret;
3212
3213 ret = i915_mutex_lock_interruptible(dev);
3214 if (ret)
3215 return ret;
3216
3217 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3218 if (&obj->base == NULL) {
3219 ret = -ENOENT;
3220 goto unlock;
3221 }
3222
199adf40 3223 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3224
3225 drm_gem_object_unreference(&obj->base);
3226unlock:
3227 mutex_unlock(&dev->struct_mutex);
3228 return ret;
3229}
3230
199adf40
BW
3231int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3232 struct drm_file *file)
e6994aee 3233{
199adf40 3234 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3235 struct drm_i915_gem_object *obj;
3236 enum i915_cache_level level;
3237 int ret;
3238
199adf40
BW
3239 switch (args->caching) {
3240 case I915_CACHING_NONE:
e6994aee
CW
3241 level = I915_CACHE_NONE;
3242 break;
199adf40 3243 case I915_CACHING_CACHED:
e6994aee
CW
3244 level = I915_CACHE_LLC;
3245 break;
3246 default:
3247 return -EINVAL;
3248 }
3249
3bc2913e
BW
3250 ret = i915_mutex_lock_interruptible(dev);
3251 if (ret)
3252 return ret;
3253
e6994aee
CW
3254 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3255 if (&obj->base == NULL) {
3256 ret = -ENOENT;
3257 goto unlock;
3258 }
3259
3260 ret = i915_gem_object_set_cache_level(obj, level);
3261
3262 drm_gem_object_unreference(&obj->base);
3263unlock:
3264 mutex_unlock(&dev->struct_mutex);
3265 return ret;
3266}
3267
b9241ea3 3268/*
2da3b9b9
CW
3269 * Prepare buffer for display plane (scanout, cursors, etc).
3270 * Can be called from an uninterruptible phase (modesetting) and allows
3271 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3272 */
3273int
2da3b9b9
CW
3274i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3275 u32 alignment,
919926ae 3276 struct intel_ring_buffer *pipelined)
b9241ea3 3277{
2da3b9b9 3278 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3279 int ret;
3280
0be73284 3281 if (pipelined != obj->ring) {
2911a35b
BW
3282 ret = i915_gem_object_sync(obj, pipelined);
3283 if (ret)
b9241ea3
ZW
3284 return ret;
3285 }
3286
a7ef0640
EA
3287 /* The display engine is not coherent with the LLC cache on gen6. As
3288 * a result, we make sure that the pinning that is about to occur is
3289 * done with uncached PTEs. This is lowest common denominator for all
3290 * chipsets.
3291 *
3292 * However for gen6+, we could do better by using the GFDT bit instead
3293 * of uncaching, which would allow us to flush all the LLC-cached data
3294 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3295 */
3296 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3297 if (ret)
3298 return ret;
3299
2da3b9b9
CW
3300 /* As the user may map the buffer once pinned in the display plane
3301 * (e.g. libkms for the bootup splash), we have to ensure that we
3302 * always use map_and_fenceable for all scanout buffers.
3303 */
86a1ee26 3304 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3305 if (ret)
3306 return ret;
3307
b118c1e3
CW
3308 i915_gem_object_flush_cpu_write_domain(obj);
3309
2da3b9b9 3310 old_write_domain = obj->base.write_domain;
05394f39 3311 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3312
3313 /* It should now be out of any other write domains, and we can update
3314 * the domain values for our changes.
3315 */
e5f1d962 3316 obj->base.write_domain = 0;
05394f39 3317 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3318
3319 trace_i915_gem_object_change_domain(obj,
3320 old_read_domains,
2da3b9b9 3321 old_write_domain);
b9241ea3
ZW
3322
3323 return 0;
3324}
3325
85345517 3326int
a8198eea 3327i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3328{
88241785
CW
3329 int ret;
3330
a8198eea 3331 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3332 return 0;
3333
0201f1ec 3334 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3335 if (ret)
3336 return ret;
3337
a8198eea
CW
3338 /* Ensure that we invalidate the GPU's caches and TLBs. */
3339 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3340 return 0;
85345517
CW
3341}
3342
e47c68e9
EA
3343/**
3344 * Moves a single object to the CPU read, and possibly write domain.
3345 *
3346 * This function returns when the move is complete, including waiting on
3347 * flushes to occur.
3348 */
dabdfe02 3349int
919926ae 3350i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3351{
1c5d22f7 3352 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3353 int ret;
3354
8d7e3de1
CW
3355 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3356 return 0;
3357
0201f1ec 3358 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3359 if (ret)
3360 return ret;
3361
e47c68e9 3362 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3363
05394f39
CW
3364 old_write_domain = obj->base.write_domain;
3365 old_read_domains = obj->base.read_domains;
1c5d22f7 3366
e47c68e9 3367 /* Flush the CPU cache if it's still invalid. */
05394f39 3368 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3369 i915_gem_clflush_object(obj);
2ef7eeaa 3370
05394f39 3371 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3372 }
3373
3374 /* It should now be out of any other write domains, and we can update
3375 * the domain values for our changes.
3376 */
05394f39 3377 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3378
3379 /* If we're writing through the CPU, then the GPU read domains will
3380 * need to be invalidated at next use.
3381 */
3382 if (write) {
05394f39
CW
3383 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3384 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3385 }
2ef7eeaa 3386
1c5d22f7
CW
3387 trace_i915_gem_object_change_domain(obj,
3388 old_read_domains,
3389 old_write_domain);
3390
2ef7eeaa
EA
3391 return 0;
3392}
3393
673a394b
EA
3394/* Throttle our rendering by waiting until the ring has completed our requests
3395 * emitted over 20 msec ago.
3396 *
b962442e
EA
3397 * Note that if we were to use the current jiffies each time around the loop,
3398 * we wouldn't escape the function with any frames outstanding if the time to
3399 * render a frame was over 20ms.
3400 *
673a394b
EA
3401 * This should get us reasonable parallelism between CPU and GPU but also
3402 * relatively low latency when blocking on a particular request to finish.
3403 */
40a5f0de 3404static int
f787a5f5 3405i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3406{
f787a5f5
CW
3407 struct drm_i915_private *dev_priv = dev->dev_private;
3408 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3409 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3410 struct drm_i915_gem_request *request;
3411 struct intel_ring_buffer *ring = NULL;
3412 u32 seqno = 0;
3413 int ret;
93533c29 3414
e110e8d6
CW
3415 if (atomic_read(&dev_priv->mm.wedged))
3416 return -EIO;
3417
1c25595f 3418 spin_lock(&file_priv->mm.lock);
f787a5f5 3419 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3420 if (time_after_eq(request->emitted_jiffies, recent_enough))
3421 break;
40a5f0de 3422
f787a5f5
CW
3423 ring = request->ring;
3424 seqno = request->seqno;
b962442e 3425 }
1c25595f 3426 spin_unlock(&file_priv->mm.lock);
40a5f0de 3427
f787a5f5
CW
3428 if (seqno == 0)
3429 return 0;
2bc43b5c 3430
5c81fe85 3431 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3432 if (ret == 0)
3433 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3434
3435 return ret;
3436}
3437
673a394b 3438int
05394f39
CW
3439i915_gem_object_pin(struct drm_i915_gem_object *obj,
3440 uint32_t alignment,
86a1ee26
CW
3441 bool map_and_fenceable,
3442 bool nonblocking)
673a394b 3443{
673a394b
EA
3444 int ret;
3445
7e81a42e
CW
3446 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3447 return -EBUSY;
ac0c6b5a 3448
05394f39
CW
3449 if (obj->gtt_space != NULL) {
3450 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3451 (map_and_fenceable && !obj->map_and_fenceable)) {
3452 WARN(obj->pin_count,
ae7d49d8 3453 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3454 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3455 " obj->map_and_fenceable=%d\n",
05394f39 3456 obj->gtt_offset, alignment,
75e9e915 3457 map_and_fenceable,
05394f39 3458 obj->map_and_fenceable);
ac0c6b5a
CW
3459 ret = i915_gem_object_unbind(obj);
3460 if (ret)
3461 return ret;
3462 }
3463 }
3464
05394f39 3465 if (obj->gtt_space == NULL) {
a00b10c3 3466 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3467 map_and_fenceable,
3468 nonblocking);
9731129c 3469 if (ret)
673a394b 3470 return ret;
22c344e9 3471 }
76446cac 3472
74898d7e
DV
3473 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3474 i915_gem_gtt_bind_object(obj, obj->cache_level);
3475
1b50247a 3476 obj->pin_count++;
6299f992 3477 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3478
3479 return 0;
3480}
3481
3482void
05394f39 3483i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3484{
05394f39
CW
3485 BUG_ON(obj->pin_count == 0);
3486 BUG_ON(obj->gtt_space == NULL);
673a394b 3487
1b50247a 3488 if (--obj->pin_count == 0)
6299f992 3489 obj->pin_mappable = false;
673a394b
EA
3490}
3491
3492int
3493i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3494 struct drm_file *file)
673a394b
EA
3495{
3496 struct drm_i915_gem_pin *args = data;
05394f39 3497 struct drm_i915_gem_object *obj;
673a394b
EA
3498 int ret;
3499
1d7cfea1
CW
3500 ret = i915_mutex_lock_interruptible(dev);
3501 if (ret)
3502 return ret;
673a394b 3503
05394f39 3504 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3505 if (&obj->base == NULL) {
1d7cfea1
CW
3506 ret = -ENOENT;
3507 goto unlock;
673a394b 3508 }
673a394b 3509
05394f39 3510 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3511 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3512 ret = -EINVAL;
3513 goto out;
3ef94daa
CW
3514 }
3515
05394f39 3516 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3517 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3518 args->handle);
1d7cfea1
CW
3519 ret = -EINVAL;
3520 goto out;
79e53945
JB
3521 }
3522
05394f39
CW
3523 obj->user_pin_count++;
3524 obj->pin_filp = file;
3525 if (obj->user_pin_count == 1) {
86a1ee26 3526 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3527 if (ret)
3528 goto out;
673a394b
EA
3529 }
3530
3531 /* XXX - flush the CPU caches for pinned objects
3532 * as the X server doesn't manage domains yet
3533 */
e47c68e9 3534 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3535 args->offset = obj->gtt_offset;
1d7cfea1 3536out:
05394f39 3537 drm_gem_object_unreference(&obj->base);
1d7cfea1 3538unlock:
673a394b 3539 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3540 return ret;
673a394b
EA
3541}
3542
3543int
3544i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3545 struct drm_file *file)
673a394b
EA
3546{
3547 struct drm_i915_gem_pin *args = data;
05394f39 3548 struct drm_i915_gem_object *obj;
76c1dec1 3549 int ret;
673a394b 3550
1d7cfea1
CW
3551 ret = i915_mutex_lock_interruptible(dev);
3552 if (ret)
3553 return ret;
673a394b 3554
05394f39 3555 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3556 if (&obj->base == NULL) {
1d7cfea1
CW
3557 ret = -ENOENT;
3558 goto unlock;
673a394b 3559 }
76c1dec1 3560
05394f39 3561 if (obj->pin_filp != file) {
79e53945
JB
3562 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3563 args->handle);
1d7cfea1
CW
3564 ret = -EINVAL;
3565 goto out;
79e53945 3566 }
05394f39
CW
3567 obj->user_pin_count--;
3568 if (obj->user_pin_count == 0) {
3569 obj->pin_filp = NULL;
79e53945
JB
3570 i915_gem_object_unpin(obj);
3571 }
673a394b 3572
1d7cfea1 3573out:
05394f39 3574 drm_gem_object_unreference(&obj->base);
1d7cfea1 3575unlock:
673a394b 3576 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3577 return ret;
673a394b
EA
3578}
3579
3580int
3581i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3582 struct drm_file *file)
673a394b
EA
3583{
3584 struct drm_i915_gem_busy *args = data;
05394f39 3585 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3586 int ret;
3587
76c1dec1 3588 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3589 if (ret)
76c1dec1 3590 return ret;
673a394b 3591
05394f39 3592 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3593 if (&obj->base == NULL) {
1d7cfea1
CW
3594 ret = -ENOENT;
3595 goto unlock;
673a394b 3596 }
d1b851fc 3597
0be555b6
CW
3598 /* Count all active objects as busy, even if they are currently not used
3599 * by the gpu. Users of this interface expect objects to eventually
3600 * become non-busy without any further actions, therefore emit any
3601 * necessary flushes here.
c4de0a5d 3602 */
30dfebf3 3603 ret = i915_gem_object_flush_active(obj);
0be555b6 3604
30dfebf3 3605 args->busy = obj->active;
e9808edd
CW
3606 if (obj->ring) {
3607 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3608 args->busy |= intel_ring_flag(obj->ring) << 16;
3609 }
673a394b 3610
05394f39 3611 drm_gem_object_unreference(&obj->base);
1d7cfea1 3612unlock:
673a394b 3613 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3614 return ret;
673a394b
EA
3615}
3616
3617int
3618i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3619 struct drm_file *file_priv)
3620{
0206e353 3621 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3622}
3623
3ef94daa
CW
3624int
3625i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3626 struct drm_file *file_priv)
3627{
3628 struct drm_i915_gem_madvise *args = data;
05394f39 3629 struct drm_i915_gem_object *obj;
76c1dec1 3630 int ret;
3ef94daa
CW
3631
3632 switch (args->madv) {
3633 case I915_MADV_DONTNEED:
3634 case I915_MADV_WILLNEED:
3635 break;
3636 default:
3637 return -EINVAL;
3638 }
3639
1d7cfea1
CW
3640 ret = i915_mutex_lock_interruptible(dev);
3641 if (ret)
3642 return ret;
3643
05394f39 3644 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3645 if (&obj->base == NULL) {
1d7cfea1
CW
3646 ret = -ENOENT;
3647 goto unlock;
3ef94daa 3648 }
3ef94daa 3649
05394f39 3650 if (obj->pin_count) {
1d7cfea1
CW
3651 ret = -EINVAL;
3652 goto out;
3ef94daa
CW
3653 }
3654
05394f39
CW
3655 if (obj->madv != __I915_MADV_PURGED)
3656 obj->madv = args->madv;
3ef94daa 3657
6c085a72
CW
3658 /* if the object is no longer attached, discard its backing storage */
3659 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3660 i915_gem_object_truncate(obj);
3661
05394f39 3662 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3663
1d7cfea1 3664out:
05394f39 3665 drm_gem_object_unreference(&obj->base);
1d7cfea1 3666unlock:
3ef94daa 3667 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3668 return ret;
3ef94daa
CW
3669}
3670
37e680a1
CW
3671void i915_gem_object_init(struct drm_i915_gem_object *obj,
3672 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3673{
0327d6ba
CW
3674 INIT_LIST_HEAD(&obj->mm_list);
3675 INIT_LIST_HEAD(&obj->gtt_list);
3676 INIT_LIST_HEAD(&obj->ring_list);
3677 INIT_LIST_HEAD(&obj->exec_list);
3678
37e680a1
CW
3679 obj->ops = ops;
3680
0327d6ba
CW
3681 obj->fence_reg = I915_FENCE_REG_NONE;
3682 obj->madv = I915_MADV_WILLNEED;
3683 /* Avoid an unnecessary call to unbind on the first bind. */
3684 obj->map_and_fenceable = true;
3685
3686 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3687}
3688
37e680a1
CW
3689static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3690 .get_pages = i915_gem_object_get_pages_gtt,
3691 .put_pages = i915_gem_object_put_pages_gtt,
3692};
3693
05394f39
CW
3694struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3695 size_t size)
ac52bc56 3696{
c397b908 3697 struct drm_i915_gem_object *obj;
5949eac4 3698 struct address_space *mapping;
bed1ea95 3699 u32 mask;
ac52bc56 3700
c397b908
DV
3701 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3702 if (obj == NULL)
3703 return NULL;
673a394b 3704
c397b908
DV
3705 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3706 kfree(obj);
3707 return NULL;
3708 }
673a394b 3709
bed1ea95
CW
3710 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3711 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3712 /* 965gm cannot relocate objects above 4GiB. */
3713 mask &= ~__GFP_HIGHMEM;
3714 mask |= __GFP_DMA32;
3715 }
3716
5949eac4 3717 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3718 mapping_set_gfp_mask(mapping, mask);
5949eac4 3719
37e680a1 3720 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3721
c397b908
DV
3722 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3723 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3724
3d29b842
ED
3725 if (HAS_LLC(dev)) {
3726 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3727 * cache) for about a 10% performance improvement
3728 * compared to uncached. Graphics requests other than
3729 * display scanout are coherent with the CPU in
3730 * accessing this cache. This means in this mode we
3731 * don't need to clflush on the CPU side, and on the
3732 * GPU side we only need to flush internal caches to
3733 * get data visible to the CPU.
3734 *
3735 * However, we maintain the display planes as UC, and so
3736 * need to rebind when first used as such.
3737 */
3738 obj->cache_level = I915_CACHE_LLC;
3739 } else
3740 obj->cache_level = I915_CACHE_NONE;
3741
05394f39 3742 return obj;
c397b908
DV
3743}
3744
3745int i915_gem_init_object(struct drm_gem_object *obj)
3746{
3747 BUG();
de151cf6 3748
673a394b
EA
3749 return 0;
3750}
3751
1488fc08 3752void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3753{
1488fc08 3754 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3755 struct drm_device *dev = obj->base.dev;
be72615b 3756 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3757
26e12f89
CW
3758 trace_i915_gem_object_destroy(obj);
3759
1488fc08
CW
3760 if (obj->phys_obj)
3761 i915_gem_detach_phys_object(dev, obj);
3762
3763 obj->pin_count = 0;
3764 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3765 bool was_interruptible;
3766
3767 was_interruptible = dev_priv->mm.interruptible;
3768 dev_priv->mm.interruptible = false;
3769
3770 WARN_ON(i915_gem_object_unbind(obj));
3771
3772 dev_priv->mm.interruptible = was_interruptible;
3773 }
3774
a5570178 3775 obj->pages_pin_count = 0;
37e680a1 3776 i915_gem_object_put_pages(obj);
d8cb5086 3777 i915_gem_object_free_mmap_offset(obj);
de151cf6 3778
9da3da66
CW
3779 BUG_ON(obj->pages);
3780
2f745ad3
CW
3781 if (obj->base.import_attach)
3782 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 3783
05394f39
CW
3784 drm_gem_object_release(&obj->base);
3785 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3786
05394f39
CW
3787 kfree(obj->bit_17);
3788 kfree(obj);
673a394b
EA
3789}
3790
29105ccc
CW
3791int
3792i915_gem_idle(struct drm_device *dev)
3793{
3794 drm_i915_private_t *dev_priv = dev->dev_private;
3795 int ret;
28dfe52a 3796
29105ccc 3797 mutex_lock(&dev->struct_mutex);
1c5d22f7 3798
87acb0a5 3799 if (dev_priv->mm.suspended) {
29105ccc
CW
3800 mutex_unlock(&dev->struct_mutex);
3801 return 0;
28dfe52a
EA
3802 }
3803
b2da9fe5 3804 ret = i915_gpu_idle(dev);
6dbe2772
KP
3805 if (ret) {
3806 mutex_unlock(&dev->struct_mutex);
673a394b 3807 return ret;
6dbe2772 3808 }
b2da9fe5 3809 i915_gem_retire_requests(dev);
673a394b 3810
29105ccc 3811 /* Under UMS, be paranoid and evict. */
a39d7efc 3812 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3813 i915_gem_evict_everything(dev);
29105ccc 3814
312817a3
CW
3815 i915_gem_reset_fences(dev);
3816
29105ccc
CW
3817 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3818 * We need to replace this with a semaphore, or something.
3819 * And not confound mm.suspended!
3820 */
3821 dev_priv->mm.suspended = 1;
bc0c7f14 3822 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3823
3824 i915_kernel_lost_context(dev);
6dbe2772 3825 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3826
6dbe2772
KP
3827 mutex_unlock(&dev->struct_mutex);
3828
29105ccc
CW
3829 /* Cancel the retire work handler, which should be idle now. */
3830 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3831
673a394b
EA
3832 return 0;
3833}
3834
b9524a1e
BW
3835void i915_gem_l3_remap(struct drm_device *dev)
3836{
3837 drm_i915_private_t *dev_priv = dev->dev_private;
3838 u32 misccpctl;
3839 int i;
3840
3841 if (!IS_IVYBRIDGE(dev))
3842 return;
3843
a4da4fa4 3844 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
3845 return;
3846
3847 misccpctl = I915_READ(GEN7_MISCCPCTL);
3848 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3849 POSTING_READ(GEN7_MISCCPCTL);
3850
3851 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3852 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 3853 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
3854 DRM_DEBUG("0x%x was already programmed to %x\n",
3855 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 3856 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 3857 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 3858 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
3859 }
3860
3861 /* Make sure all the writes land before disabling dop clock gating */
3862 POSTING_READ(GEN7_L3LOG_BASE);
3863
3864 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3865}
3866
f691e2f4
DV
3867void i915_gem_init_swizzling(struct drm_device *dev)
3868{
3869 drm_i915_private_t *dev_priv = dev->dev_private;
3870
11782b02 3871 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3872 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3873 return;
3874
3875 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3876 DISP_TILE_SURFACE_SWIZZLING);
3877
11782b02
DV
3878 if (IS_GEN5(dev))
3879 return;
3880
f691e2f4
DV
3881 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3882 if (IS_GEN6(dev))
6b26c86d 3883 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3884 else
6b26c86d 3885 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3886}
e21af88d 3887
67b1b571
CW
3888static bool
3889intel_enable_blt(struct drm_device *dev)
3890{
3891 if (!HAS_BLT(dev))
3892 return false;
3893
3894 /* The blitter was dysfunctional on early prototypes */
3895 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3896 DRM_INFO("BLT not supported on this pre-production hardware;"
3897 " graphics performance will be degraded.\n");
3898 return false;
3899 }
3900
3901 return true;
3902}
3903
8187a2b7 3904int
f691e2f4 3905i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3906{
3907 drm_i915_private_t *dev_priv = dev->dev_private;
3908 int ret;
68f95ba9 3909
e76e9aeb 3910 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
8ecd1a66
DV
3911 return -EIO;
3912
eda2d7f5
RV
3913 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3914 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3915
b9524a1e
BW
3916 i915_gem_l3_remap(dev);
3917
f691e2f4
DV
3918 i915_gem_init_swizzling(dev);
3919
5c1143bb 3920 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3921 if (ret)
b6913e4b 3922 return ret;
68f95ba9
CW
3923
3924 if (HAS_BSD(dev)) {
5c1143bb 3925 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3926 if (ret)
3927 goto cleanup_render_ring;
d1b851fc 3928 }
68f95ba9 3929
67b1b571 3930 if (intel_enable_blt(dev)) {
549f7365
CW
3931 ret = intel_init_blt_ring_buffer(dev);
3932 if (ret)
3933 goto cleanup_bsd_ring;
3934 }
3935
6f392d54
CW
3936 dev_priv->next_seqno = 1;
3937
254f965c
BW
3938 /*
3939 * XXX: There was some w/a described somewhere suggesting loading
3940 * contexts before PPGTT.
3941 */
3942 i915_gem_context_init(dev);
e21af88d
DV
3943 i915_gem_init_ppgtt(dev);
3944
68f95ba9
CW
3945 return 0;
3946
549f7365 3947cleanup_bsd_ring:
1ec14ad3 3948 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3949cleanup_render_ring:
1ec14ad3 3950 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3951 return ret;
3952}
3953
1070a42b
CW
3954static bool
3955intel_enable_ppgtt(struct drm_device *dev)
3956{
3957 if (i915_enable_ppgtt >= 0)
3958 return i915_enable_ppgtt;
3959
3960#ifdef CONFIG_INTEL_IOMMU
3961 /* Disable ppgtt on SNB if VT-d is on. */
3962 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3963 return false;
3964#endif
3965
3966 return true;
3967}
3968
3969int i915_gem_init(struct drm_device *dev)
3970{
3971 struct drm_i915_private *dev_priv = dev->dev_private;
3972 unsigned long gtt_size, mappable_size;
3973 int ret;
3974
3975 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3976 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3977
3978 mutex_lock(&dev->struct_mutex);
3979 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3980 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3981 * aperture accordingly when using aliasing ppgtt. */
3982 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3983
3984 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3985
3986 ret = i915_gem_init_aliasing_ppgtt(dev);
3987 if (ret) {
3988 mutex_unlock(&dev->struct_mutex);
3989 return ret;
3990 }
3991 } else {
3992 /* Let GEM Manage all of the aperture.
3993 *
3994 * However, leave one page at the end still bound to the scratch
3995 * page. There are a number of places where the hardware
3996 * apparently prefetches past the end of the object, and we've
3997 * seen multiple hangs with the GPU head pointer stuck in a
3998 * batchbuffer bound at the last page of the aperture. One page
3999 * should be enough to keep any prefetching inside of the
4000 * aperture.
4001 */
4002 i915_gem_init_global_gtt(dev, 0, mappable_size,
4003 gtt_size);
4004 }
4005
4006 ret = i915_gem_init_hw(dev);
4007 mutex_unlock(&dev->struct_mutex);
4008 if (ret) {
4009 i915_gem_cleanup_aliasing_ppgtt(dev);
4010 return ret;
4011 }
4012
53ca26ca
DV
4013 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4014 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4015 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4016 return 0;
4017}
4018
8187a2b7
ZN
4019void
4020i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4021{
4022 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4023 struct intel_ring_buffer *ring;
1ec14ad3 4024 int i;
8187a2b7 4025
b4519513
CW
4026 for_each_ring(ring, dev_priv, i)
4027 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4028}
4029
673a394b
EA
4030int
4031i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4032 struct drm_file *file_priv)
4033{
4034 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4035 int ret;
673a394b 4036
79e53945
JB
4037 if (drm_core_check_feature(dev, DRIVER_MODESET))
4038 return 0;
4039
ba1234d1 4040 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4041 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4042 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4043 }
4044
673a394b 4045 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4046 dev_priv->mm.suspended = 0;
4047
f691e2f4 4048 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4049 if (ret != 0) {
4050 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4051 return ret;
d816f6ac 4052 }
9bb2d6f9 4053
69dc4987 4054 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4055 mutex_unlock(&dev->struct_mutex);
dbb19d30 4056
5f35308b
CW
4057 ret = drm_irq_install(dev);
4058 if (ret)
4059 goto cleanup_ringbuffer;
dbb19d30 4060
673a394b 4061 return 0;
5f35308b
CW
4062
4063cleanup_ringbuffer:
4064 mutex_lock(&dev->struct_mutex);
4065 i915_gem_cleanup_ringbuffer(dev);
4066 dev_priv->mm.suspended = 1;
4067 mutex_unlock(&dev->struct_mutex);
4068
4069 return ret;
673a394b
EA
4070}
4071
4072int
4073i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4074 struct drm_file *file_priv)
4075{
79e53945
JB
4076 if (drm_core_check_feature(dev, DRIVER_MODESET))
4077 return 0;
4078
dbb19d30 4079 drm_irq_uninstall(dev);
e6890f6f 4080 return i915_gem_idle(dev);
673a394b
EA
4081}
4082
4083void
4084i915_gem_lastclose(struct drm_device *dev)
4085{
4086 int ret;
673a394b 4087
e806b495
EA
4088 if (drm_core_check_feature(dev, DRIVER_MODESET))
4089 return;
4090
6dbe2772
KP
4091 ret = i915_gem_idle(dev);
4092 if (ret)
4093 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4094}
4095
64193406
CW
4096static void
4097init_ring_lists(struct intel_ring_buffer *ring)
4098{
4099 INIT_LIST_HEAD(&ring->active_list);
4100 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4101}
4102
673a394b
EA
4103void
4104i915_gem_load(struct drm_device *dev)
4105{
b5aa8a0f 4106 int i;
673a394b
EA
4107 drm_i915_private_t *dev_priv = dev->dev_private;
4108
69dc4987 4109 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4110 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4111 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4112 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4113 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4114 for (i = 0; i < I915_NUM_RINGS; i++)
4115 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4116 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4117 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4118 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4119 i915_gem_retire_work_handler);
30dbf0c0 4120 init_completion(&dev_priv->error_completion);
31169714 4121
94400120
DA
4122 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4123 if (IS_GEN3(dev)) {
50743298
DV
4124 I915_WRITE(MI_ARB_STATE,
4125 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4126 }
4127
72bfa19c
CW
4128 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4129
de151cf6 4130 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4131 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4132 dev_priv->fence_reg_start = 3;
de151cf6 4133
a6c45cf0 4134 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4135 dev_priv->num_fence_regs = 16;
4136 else
4137 dev_priv->num_fence_regs = 8;
4138
b5aa8a0f 4139 /* Initialize fence registers to zero */
ada726c7 4140 i915_gem_reset_fences(dev);
10ed13e4 4141
673a394b 4142 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4143 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4144
ce453d81
CW
4145 dev_priv->mm.interruptible = true;
4146
17250b71
CW
4147 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4148 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4149 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4150}
71acb5eb
DA
4151
4152/*
4153 * Create a physically contiguous memory object for this object
4154 * e.g. for cursor + overlay regs
4155 */
995b6762
CW
4156static int i915_gem_init_phys_object(struct drm_device *dev,
4157 int id, int size, int align)
71acb5eb
DA
4158{
4159 drm_i915_private_t *dev_priv = dev->dev_private;
4160 struct drm_i915_gem_phys_object *phys_obj;
4161 int ret;
4162
4163 if (dev_priv->mm.phys_objs[id - 1] || !size)
4164 return 0;
4165
9a298b2a 4166 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4167 if (!phys_obj)
4168 return -ENOMEM;
4169
4170 phys_obj->id = id;
4171
6eeefaf3 4172 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4173 if (!phys_obj->handle) {
4174 ret = -ENOMEM;
4175 goto kfree_obj;
4176 }
4177#ifdef CONFIG_X86
4178 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4179#endif
4180
4181 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4182
4183 return 0;
4184kfree_obj:
9a298b2a 4185 kfree(phys_obj);
71acb5eb
DA
4186 return ret;
4187}
4188
995b6762 4189static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4190{
4191 drm_i915_private_t *dev_priv = dev->dev_private;
4192 struct drm_i915_gem_phys_object *phys_obj;
4193
4194 if (!dev_priv->mm.phys_objs[id - 1])
4195 return;
4196
4197 phys_obj = dev_priv->mm.phys_objs[id - 1];
4198 if (phys_obj->cur_obj) {
4199 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4200 }
4201
4202#ifdef CONFIG_X86
4203 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4204#endif
4205 drm_pci_free(dev, phys_obj->handle);
4206 kfree(phys_obj);
4207 dev_priv->mm.phys_objs[id - 1] = NULL;
4208}
4209
4210void i915_gem_free_all_phys_object(struct drm_device *dev)
4211{
4212 int i;
4213
260883c8 4214 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4215 i915_gem_free_phys_object(dev, i);
4216}
4217
4218void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4219 struct drm_i915_gem_object *obj)
71acb5eb 4220{
05394f39 4221 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4222 char *vaddr;
71acb5eb 4223 int i;
71acb5eb
DA
4224 int page_count;
4225
05394f39 4226 if (!obj->phys_obj)
71acb5eb 4227 return;
05394f39 4228 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4229
05394f39 4230 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4231 for (i = 0; i < page_count; i++) {
5949eac4 4232 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4233 if (!IS_ERR(page)) {
4234 char *dst = kmap_atomic(page);
4235 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4236 kunmap_atomic(dst);
4237
4238 drm_clflush_pages(&page, 1);
4239
4240 set_page_dirty(page);
4241 mark_page_accessed(page);
4242 page_cache_release(page);
4243 }
71acb5eb 4244 }
e76e9aeb 4245 i915_gem_chipset_flush(dev);
d78b47b9 4246
05394f39
CW
4247 obj->phys_obj->cur_obj = NULL;
4248 obj->phys_obj = NULL;
71acb5eb
DA
4249}
4250
4251int
4252i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4253 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4254 int id,
4255 int align)
71acb5eb 4256{
05394f39 4257 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4258 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4259 int ret = 0;
4260 int page_count;
4261 int i;
4262
4263 if (id > I915_MAX_PHYS_OBJECT)
4264 return -EINVAL;
4265
05394f39
CW
4266 if (obj->phys_obj) {
4267 if (obj->phys_obj->id == id)
71acb5eb
DA
4268 return 0;
4269 i915_gem_detach_phys_object(dev, obj);
4270 }
4271
71acb5eb
DA
4272 /* create a new object */
4273 if (!dev_priv->mm.phys_objs[id - 1]) {
4274 ret = i915_gem_init_phys_object(dev, id,
05394f39 4275 obj->base.size, align);
71acb5eb 4276 if (ret) {
05394f39
CW
4277 DRM_ERROR("failed to init phys object %d size: %zu\n",
4278 id, obj->base.size);
e5281ccd 4279 return ret;
71acb5eb
DA
4280 }
4281 }
4282
4283 /* bind to the object */
05394f39
CW
4284 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4285 obj->phys_obj->cur_obj = obj;
71acb5eb 4286
05394f39 4287 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4288
4289 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4290 struct page *page;
4291 char *dst, *src;
4292
5949eac4 4293 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4294 if (IS_ERR(page))
4295 return PTR_ERR(page);
71acb5eb 4296
ff75b9bc 4297 src = kmap_atomic(page);
05394f39 4298 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4299 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4300 kunmap_atomic(src);
71acb5eb 4301
e5281ccd
CW
4302 mark_page_accessed(page);
4303 page_cache_release(page);
4304 }
d78b47b9 4305
71acb5eb 4306 return 0;
71acb5eb
DA
4307}
4308
4309static int
05394f39
CW
4310i915_gem_phys_pwrite(struct drm_device *dev,
4311 struct drm_i915_gem_object *obj,
71acb5eb
DA
4312 struct drm_i915_gem_pwrite *args,
4313 struct drm_file *file_priv)
4314{
05394f39 4315 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4316 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4317
b47b30cc
CW
4318 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4319 unsigned long unwritten;
4320
4321 /* The physical object once assigned is fixed for the lifetime
4322 * of the obj, so we can safely drop the lock and continue
4323 * to access vaddr.
4324 */
4325 mutex_unlock(&dev->struct_mutex);
4326 unwritten = copy_from_user(vaddr, user_data, args->size);
4327 mutex_lock(&dev->struct_mutex);
4328 if (unwritten)
4329 return -EFAULT;
4330 }
71acb5eb 4331
e76e9aeb 4332 i915_gem_chipset_flush(dev);
71acb5eb
DA
4333 return 0;
4334}
b962442e 4335
f787a5f5 4336void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4337{
f787a5f5 4338 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4339
4340 /* Clean up our request list when the client is going away, so that
4341 * later retire_requests won't dereference our soon-to-be-gone
4342 * file_priv.
4343 */
1c25595f 4344 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4345 while (!list_empty(&file_priv->mm.request_list)) {
4346 struct drm_i915_gem_request *request;
4347
4348 request = list_first_entry(&file_priv->mm.request_list,
4349 struct drm_i915_gem_request,
4350 client_list);
4351 list_del(&request->client_list);
4352 request->file_priv = NULL;
4353 }
1c25595f 4354 spin_unlock(&file_priv->mm.lock);
b962442e 4355}
31169714 4356
31169714 4357static int
1495f230 4358i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4359{
17250b71
CW
4360 struct drm_i915_private *dev_priv =
4361 container_of(shrinker,
4362 struct drm_i915_private,
4363 mm.inactive_shrinker);
4364 struct drm_device *dev = dev_priv->dev;
6c085a72 4365 struct drm_i915_gem_object *obj;
1495f230 4366 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4367 int cnt;
4368
4369 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4370 return 0;
31169714 4371
6c085a72
CW
4372 if (nr_to_scan) {
4373 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4374 if (nr_to_scan > 0)
4375 i915_gem_shrink_all(dev_priv);
31169714
CW
4376 }
4377
17250b71 4378 cnt = 0;
6c085a72 4379 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
a5570178
CW
4380 if (obj->pages_pin_count == 0)
4381 cnt += obj->base.size >> PAGE_SHIFT;
6c085a72 4382 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
a5570178 4383 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4384 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4385
17250b71 4386 mutex_unlock(&dev->struct_mutex);
6c085a72 4387 return cnt;
31169714 4388}