]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Implement pwrite without struct-mutex
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
c13d87ea 32#include "i915_gem_dmabuf.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
c13d87ea 38#include <linux/reservation.h>
5949eac4 39#include <linux/shmem_fs.h>
5a0e3ad6 40#include <linux/slab.h>
673a394b 41#include <linux/swap.h>
79e53945 42#include <linux/pci.h>
1286ff73 43#include <linux/dma-buf.h>
673a394b 44
05394f39 45static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 46static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 47
c76ce038
CW
48static bool cpu_cache_is_coherent(struct drm_device *dev,
49 enum i915_cache_level level)
50{
51 return HAS_LLC(dev) || level != I915_CACHE_NONE;
52}
53
2c22569b
CW
54static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55{
b50a5371
AS
56 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57 return false;
58
2c22569b
CW
59 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60 return true;
61
62 return obj->pin_display;
63}
64
4f1959ee 65static int
bb6dc8d9 66insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
67 struct drm_mm_node *node, u32 size)
68{
69 memset(node, 0, sizeof(*node));
bb6dc8d9
CW
70 return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
71 size, 0, -1,
72 0, ggtt->mappable_end,
4f1959ee
AS
73 DRM_MM_SEARCH_DEFAULT,
74 DRM_MM_CREATE_DEFAULT);
75}
76
77static void
78remove_mappable_node(struct drm_mm_node *node)
79{
80 drm_mm_remove_node(node);
81}
82
73aa808f
CW
83/* some bookkeeping */
84static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 85 u64 size)
73aa808f 86{
c20e8355 87 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
88 dev_priv->mm.object_count++;
89 dev_priv->mm.object_memory += size;
c20e8355 90 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
91}
92
93static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 94 u64 size)
73aa808f 95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count--;
98 dev_priv->mm.object_memory -= size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
21dd3734 102static int
33196ded 103i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 104{
30dbf0c0
CW
105 int ret;
106
4c7d62c6
CW
107 might_sleep();
108
d98c52cf 109 if (!i915_reset_in_progress(error))
30dbf0c0
CW
110 return 0;
111
0a6759c6
DV
112 /*
113 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
114 * userspace. If it takes that long something really bad is going on and
115 * we should simply try to bail out and fail as gracefully as possible.
116 */
1f83fee0 117 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 118 !i915_reset_in_progress(error),
b52992c0 119 I915_RESET_TIMEOUT);
0a6759c6
DV
120 if (ret == 0) {
121 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
122 return -EIO;
123 } else if (ret < 0) {
30dbf0c0 124 return ret;
d98c52cf
CW
125 } else {
126 return 0;
0a6759c6 127 }
30dbf0c0
CW
128}
129
54cf91dc 130int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 131{
fac5e23e 132 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
133 int ret;
134
33196ded 135 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
136 if (ret)
137 return ret;
138
139 ret = mutex_lock_interruptible(&dev->struct_mutex);
140 if (ret)
141 return ret;
142
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
72e96d64 150 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 151 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 152 struct drm_i915_gem_get_aperture *args = data;
ca1543be 153 struct i915_vma *vma;
6299f992 154 size_t pinned;
5a125c3c 155
6299f992 156 pinned = 0;
73aa808f 157 mutex_lock(&dev->struct_mutex);
1c7f4bca 158 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 159 if (i915_vma_is_pinned(vma))
ca1543be 160 pinned += vma->node.size;
1c7f4bca 161 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 162 if (i915_vma_is_pinned(vma))
ca1543be 163 pinned += vma->node.size;
73aa808f 164 mutex_unlock(&dev->struct_mutex);
5a125c3c 165
72e96d64 166 args->aper_size = ggtt->base.total;
0206e353 167 args->aper_available_size = args->aper_size - pinned;
6299f992 168
5a125c3c
EA
169 return 0;
170}
171
03ac84f1 172static struct sg_table *
6a2c4232 173i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 174{
93c76a3d 175 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232
CW
176 char *vaddr = obj->phys_handle->vaddr;
177 struct sg_table *st;
178 struct scatterlist *sg;
179 int i;
00731155 180
6a2c4232 181 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
03ac84f1 182 return ERR_PTR(-EINVAL);
6a2c4232
CW
183
184 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 struct page *page;
186 char *src;
187
188 page = shmem_read_mapping_page(mapping, i);
189 if (IS_ERR(page))
03ac84f1 190 return ERR_CAST(page);
6a2c4232
CW
191
192 src = kmap_atomic(page);
193 memcpy(vaddr, src, PAGE_SIZE);
194 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 kunmap_atomic(src);
196
09cbfeaf 197 put_page(page);
6a2c4232
CW
198 vaddr += PAGE_SIZE;
199 }
200
c033666a 201 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
202
203 st = kmalloc(sizeof(*st), GFP_KERNEL);
204 if (st == NULL)
03ac84f1 205 return ERR_PTR(-ENOMEM);
6a2c4232
CW
206
207 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 kfree(st);
03ac84f1 209 return ERR_PTR(-ENOMEM);
6a2c4232
CW
210 }
211
212 sg = st->sgl;
213 sg->offset = 0;
214 sg->length = obj->base.size;
00731155 215
6a2c4232
CW
216 sg_dma_address(sg) = obj->phys_handle->busaddr;
217 sg_dma_len(sg) = obj->base.size;
218
03ac84f1 219 return st;
6a2c4232
CW
220}
221
222static void
03ac84f1 223__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj)
6a2c4232 224{
a4f5ea64 225 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 226
a4f5ea64
CW
227 if (obj->mm.madv == I915_MADV_DONTNEED)
228 obj->mm.dirty = false;
6a2c4232 229
03ac84f1
CW
230 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
231 i915_gem_clflush_object(obj, false);
232
233 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
234 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
235}
236
237static void
238i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
239 struct sg_table *pages)
240{
241 __i915_gem_object_release_shmem(obj);
242
a4f5ea64 243 if (obj->mm.dirty) {
93c76a3d 244 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 245 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
246 int i;
247
248 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
249 struct page *page;
250 char *dst;
251
252 page = shmem_read_mapping_page(mapping, i);
253 if (IS_ERR(page))
254 continue;
255
256 dst = kmap_atomic(page);
257 drm_clflush_virt_range(vaddr, PAGE_SIZE);
258 memcpy(dst, vaddr, PAGE_SIZE);
259 kunmap_atomic(dst);
260
261 set_page_dirty(page);
a4f5ea64 262 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 263 mark_page_accessed(page);
09cbfeaf 264 put_page(page);
00731155
CW
265 vaddr += PAGE_SIZE;
266 }
a4f5ea64 267 obj->mm.dirty = false;
00731155
CW
268 }
269
03ac84f1
CW
270 sg_free_table(pages);
271 kfree(pages);
6a2c4232
CW
272}
273
274static void
275i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
276{
277 drm_pci_free(obj->base.dev, obj->phys_handle);
a4f5ea64 278 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
279}
280
281static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
282 .get_pages = i915_gem_object_get_pages_phys,
283 .put_pages = i915_gem_object_put_pages_phys,
284 .release = i915_gem_object_release_phys,
285};
286
35a9611c 287int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
288{
289 struct i915_vma *vma;
290 LIST_HEAD(still_in_list);
02bef8f9
CW
291 int ret;
292
293 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 294
02bef8f9
CW
295 /* Closed vma are removed from the obj->vma_list - but they may
296 * still have an active binding on the object. To remove those we
297 * must wait for all rendering to complete to the object (as unbinding
298 * must anyway), and retire the requests.
aa653a68 299 */
e95433c7
CW
300 ret = i915_gem_object_wait(obj,
301 I915_WAIT_INTERRUPTIBLE |
302 I915_WAIT_LOCKED |
303 I915_WAIT_ALL,
304 MAX_SCHEDULE_TIMEOUT,
305 NULL);
02bef8f9
CW
306 if (ret)
307 return ret;
308
309 i915_gem_retire_requests(to_i915(obj->base.dev));
310
aa653a68
CW
311 while ((vma = list_first_entry_or_null(&obj->vma_list,
312 struct i915_vma,
313 obj_link))) {
314 list_move_tail(&vma->obj_link, &still_in_list);
315 ret = i915_vma_unbind(vma);
316 if (ret)
317 break;
318 }
319 list_splice(&still_in_list, &obj->vma_list);
320
321 return ret;
322}
323
e95433c7
CW
324static long
325i915_gem_object_wait_fence(struct dma_fence *fence,
326 unsigned int flags,
327 long timeout,
328 struct intel_rps_client *rps)
00e60f26 329{
e95433c7 330 struct drm_i915_gem_request *rq;
00e60f26 331
e95433c7 332 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 333
e95433c7
CW
334 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
335 return timeout;
336
337 if (!dma_fence_is_i915(fence))
338 return dma_fence_wait_timeout(fence,
339 flags & I915_WAIT_INTERRUPTIBLE,
340 timeout);
341
342 rq = to_request(fence);
343 if (i915_gem_request_completed(rq))
344 goto out;
345
346 /* This client is about to stall waiting for the GPU. In many cases
347 * this is undesirable and limits the throughput of the system, as
348 * many clients cannot continue processing user input/output whilst
349 * blocked. RPS autotuning may take tens of milliseconds to respond
350 * to the GPU load and thus incurs additional latency for the client.
351 * We can circumvent that by promoting the GPU frequency to maximum
352 * before we wait. This makes the GPU throttle up much more quickly
353 * (good for benchmarks and user experience, e.g. window animations),
354 * but at a cost of spending more power processing the workload
355 * (bad for battery). Not all clients even want their results
356 * immediately and for them we should just let the GPU select its own
357 * frequency to maximise efficiency. To prevent a single client from
358 * forcing the clocks too high for the whole system, we only allow
359 * each client to waitboost once in a busy period.
360 */
361 if (rps) {
362 if (INTEL_GEN(rq->i915) >= 6)
363 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
364 else
365 rps = NULL;
00e60f26
CW
366 }
367
e95433c7
CW
368 timeout = i915_wait_request(rq, flags, timeout);
369
370out:
371 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
372 i915_gem_request_retire_upto(rq);
373
374 if (rps && rq->fence.seqno == rq->engine->last_submitted_seqno) {
375 /* The GPU is now idle and this client has stalled.
376 * Since no other client has submitted a request in the
377 * meantime, assume that this client is the only one
378 * supplying work to the GPU but is unable to keep that
379 * work supplied because it is waiting. Since the GPU is
380 * then never kept fully busy, RPS autoclocking will
381 * keep the clocks relatively low, causing further delays.
382 * Compensate by giving the synchronous client credit for
383 * a waitboost next time.
384 */
385 spin_lock(&rq->i915->rps.client_lock);
386 list_del_init(&rps->link);
387 spin_unlock(&rq->i915->rps.client_lock);
388 }
389
390 return timeout;
391}
392
393static long
394i915_gem_object_wait_reservation(struct reservation_object *resv,
395 unsigned int flags,
396 long timeout,
397 struct intel_rps_client *rps)
398{
399 struct dma_fence *excl;
400
401 if (flags & I915_WAIT_ALL) {
402 struct dma_fence **shared;
403 unsigned int count, i;
00e60f26
CW
404 int ret;
405
e95433c7
CW
406 ret = reservation_object_get_fences_rcu(resv,
407 &excl, &count, &shared);
00e60f26
CW
408 if (ret)
409 return ret;
00e60f26 410
e95433c7
CW
411 for (i = 0; i < count; i++) {
412 timeout = i915_gem_object_wait_fence(shared[i],
413 flags, timeout,
414 rps);
415 if (timeout <= 0)
416 break;
00e60f26 417
e95433c7
CW
418 dma_fence_put(shared[i]);
419 }
420
421 for (; i < count; i++)
422 dma_fence_put(shared[i]);
423 kfree(shared);
424 } else {
425 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
426 }
427
e95433c7
CW
428 if (excl && timeout > 0)
429 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
430
431 dma_fence_put(excl);
432
433 return timeout;
00e60f26
CW
434}
435
e95433c7
CW
436/**
437 * Waits for rendering to the object to be completed
438 * @obj: i915 gem object
439 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
440 * @timeout: how long to wait
441 * @rps: client (user process) to charge for any waitboosting
00e60f26 442 */
e95433c7
CW
443int
444i915_gem_object_wait(struct drm_i915_gem_object *obj,
445 unsigned int flags,
446 long timeout,
447 struct intel_rps_client *rps)
00e60f26 448{
e95433c7 449 struct reservation_object *resv;
00e60f26
CW
450 struct i915_gem_active *active;
451 unsigned long active_mask;
b8f9096d 452 int idx;
00e60f26 453
e95433c7
CW
454 might_sleep();
455#if IS_ENABLED(CONFIG_LOCKDEP)
456 GEM_BUG_ON(debug_locks &&
457 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
458 !!(flags & I915_WAIT_LOCKED));
459#endif
460 GEM_BUG_ON(timeout < 0);
00e60f26 461
e95433c7 462 if (flags & I915_WAIT_ALL) {
00e60f26 463 active = obj->last_read;
e95433c7 464 active_mask = i915_gem_object_get_active(obj);
00e60f26
CW
465 } else {
466 active_mask = 1;
467 active = &obj->last_write;
468 }
469
b8f9096d 470 for_each_active(active_mask, idx) {
e95433c7
CW
471 struct drm_i915_gem_request *request;
472
473 request = i915_gem_active_get_unlocked(&active[idx]);
474 if (request) {
475 timeout = i915_gem_object_wait_fence(&request->fence,
476 flags, timeout,
477 rps);
478 i915_gem_request_put(request);
479 }
480 if (timeout < 0)
481 return timeout;
00e60f26
CW
482 }
483
e95433c7
CW
484 resv = i915_gem_object_get_dmabuf_resv(obj);
485 if (resv)
486 timeout = i915_gem_object_wait_reservation(resv,
487 flags, timeout,
488 rps);
489 return timeout < 0 ? timeout : 0;
00e60f26
CW
490}
491
492static struct intel_rps_client *to_rps_client(struct drm_file *file)
493{
494 struct drm_i915_file_private *fpriv = file->driver_priv;
495
496 return &fpriv->rps;
497}
498
00731155
CW
499int
500i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
501 int align)
502{
503 drm_dma_handle_t *phys;
6a2c4232 504 int ret;
00731155
CW
505
506 if (obj->phys_handle) {
507 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
508 return -EBUSY;
509
510 return 0;
511 }
512
a4f5ea64 513 if (obj->mm.madv != I915_MADV_WILLNEED)
00731155
CW
514 return -EFAULT;
515
516 if (obj->base.filp == NULL)
517 return -EINVAL;
518
4717ca9e
CW
519 ret = i915_gem_object_unbind(obj);
520 if (ret)
521 return ret;
522
03ac84f1
CW
523 __i915_gem_object_put_pages(obj);
524 if (obj->mm.pages)
525 return -EBUSY;
6a2c4232 526
00731155
CW
527 /* create a new object */
528 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
529 if (!phys)
530 return -ENOMEM;
531
00731155 532 obj->phys_handle = phys;
6a2c4232
CW
533 obj->ops = &i915_gem_phys_ops;
534
a4f5ea64 535 return i915_gem_object_pin_pages(obj);
00731155
CW
536}
537
538static int
539i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
540 struct drm_i915_gem_pwrite *args,
03ac84f1 541 struct drm_file *file)
00731155
CW
542{
543 struct drm_device *dev = obj->base.dev;
544 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 545 char __user *user_data = u64_to_user_ptr(args->data_ptr);
e95433c7 546 int ret;
6a2c4232
CW
547
548 /* We manually control the domain here and pretend that it
549 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
550 */
e95433c7
CW
551 lockdep_assert_held(&obj->base.dev->struct_mutex);
552 ret = i915_gem_object_wait(obj,
553 I915_WAIT_INTERRUPTIBLE |
554 I915_WAIT_LOCKED |
555 I915_WAIT_ALL,
556 MAX_SCHEDULE_TIMEOUT,
03ac84f1 557 to_rps_client(file));
6a2c4232
CW
558 if (ret)
559 return ret;
00731155 560
77a0d1ca 561 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
562 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
563 unsigned long unwritten;
564
565 /* The physical object once assigned is fixed for the lifetime
566 * of the obj, so we can safely drop the lock and continue
567 * to access vaddr.
568 */
569 mutex_unlock(&dev->struct_mutex);
570 unwritten = copy_from_user(vaddr, user_data, args->size);
571 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
572 if (unwritten) {
573 ret = -EFAULT;
574 goto out;
575 }
00731155
CW
576 }
577
6a2c4232 578 drm_clflush_virt_range(vaddr, args->size);
c033666a 579 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
580
581out:
de152b62 582 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 583 return ret;
00731155
CW
584}
585
42dcedd4
CW
586void *i915_gem_object_alloc(struct drm_device *dev)
587{
fac5e23e 588 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 589 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
590}
591
592void i915_gem_object_free(struct drm_i915_gem_object *obj)
593{
fac5e23e 594 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 595 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
596}
597
ff72145b
DA
598static int
599i915_gem_create(struct drm_file *file,
600 struct drm_device *dev,
601 uint64_t size,
602 uint32_t *handle_p)
673a394b 603{
05394f39 604 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
605 int ret;
606 u32 handle;
673a394b 607
ff72145b 608 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
609 if (size == 0)
610 return -EINVAL;
673a394b
EA
611
612 /* Allocate the new object */
d37cd8a8 613 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
614 if (IS_ERR(obj))
615 return PTR_ERR(obj);
673a394b 616
05394f39 617 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 618 /* drop reference from allocate - handle holds it now */
34911fd3 619 i915_gem_object_put_unlocked(obj);
d861e338
DV
620 if (ret)
621 return ret;
202f2fef 622
ff72145b 623 *handle_p = handle;
673a394b
EA
624 return 0;
625}
626
ff72145b
DA
627int
628i915_gem_dumb_create(struct drm_file *file,
629 struct drm_device *dev,
630 struct drm_mode_create_dumb *args)
631{
632 /* have to work out size/pitch and return them */
de45eaf7 633 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
634 args->size = args->pitch * args->height;
635 return i915_gem_create(file, dev,
da6b51d0 636 args->size, &args->handle);
ff72145b
DA
637}
638
ff72145b
DA
639/**
640 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
641 * @dev: drm device pointer
642 * @data: ioctl data blob
643 * @file: drm file pointer
ff72145b
DA
644 */
645int
646i915_gem_create_ioctl(struct drm_device *dev, void *data,
647 struct drm_file *file)
648{
649 struct drm_i915_gem_create *args = data;
63ed2cb2 650
ff72145b 651 return i915_gem_create(file, dev,
da6b51d0 652 args->size, &args->handle);
ff72145b
DA
653}
654
8461d226
DV
655static inline int
656__copy_to_user_swizzled(char __user *cpu_vaddr,
657 const char *gpu_vaddr, int gpu_offset,
658 int length)
659{
660 int ret, cpu_offset = 0;
661
662 while (length > 0) {
663 int cacheline_end = ALIGN(gpu_offset + 1, 64);
664 int this_length = min(cacheline_end - gpu_offset, length);
665 int swizzled_gpu_offset = gpu_offset ^ 64;
666
667 ret = __copy_to_user(cpu_vaddr + cpu_offset,
668 gpu_vaddr + swizzled_gpu_offset,
669 this_length);
670 if (ret)
671 return ret + length;
672
673 cpu_offset += this_length;
674 gpu_offset += this_length;
675 length -= this_length;
676 }
677
678 return 0;
679}
680
8c59967c 681static inline int
4f0c7cfb
BW
682__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
683 const char __user *cpu_vaddr,
8c59967c
DV
684 int length)
685{
686 int ret, cpu_offset = 0;
687
688 while (length > 0) {
689 int cacheline_end = ALIGN(gpu_offset + 1, 64);
690 int this_length = min(cacheline_end - gpu_offset, length);
691 int swizzled_gpu_offset = gpu_offset ^ 64;
692
693 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
694 cpu_vaddr + cpu_offset,
695 this_length);
696 if (ret)
697 return ret + length;
698
699 cpu_offset += this_length;
700 gpu_offset += this_length;
701 length -= this_length;
702 }
703
704 return 0;
705}
706
4c914c0c
BV
707/*
708 * Pins the specified object's pages and synchronizes the object with
709 * GPU accesses. Sets needs_clflush to non-zero if the caller should
710 * flush the object from the CPU cache.
711 */
712int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 713 unsigned int *needs_clflush)
4c914c0c
BV
714{
715 int ret;
716
e95433c7 717 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 718
e95433c7 719 *needs_clflush = 0;
43394c7d
CW
720 if (!i915_gem_object_has_struct_page(obj))
721 return -ENODEV;
4c914c0c 722
e95433c7
CW
723 ret = i915_gem_object_wait(obj,
724 I915_WAIT_INTERRUPTIBLE |
725 I915_WAIT_LOCKED,
726 MAX_SCHEDULE_TIMEOUT,
727 NULL);
c13d87ea
CW
728 if (ret)
729 return ret;
730
a4f5ea64 731 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
732 if (ret)
733 return ret;
734
a314d5cb
CW
735 i915_gem_object_flush_gtt_write_domain(obj);
736
43394c7d
CW
737 /* If we're not in the cpu read domain, set ourself into the gtt
738 * read domain and manually flush cachelines (if required). This
739 * optimizes for the case when the gpu will dirty the data
740 * anyway again before the next pread happens.
741 */
742 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
4c914c0c
BV
743 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
744 obj->cache_level);
43394c7d 745
43394c7d
CW
746 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
747 ret = i915_gem_object_set_to_cpu_domain(obj, false);
9764951e
CW
748 if (ret)
749 goto err_unpin;
750
43394c7d 751 *needs_clflush = 0;
4c914c0c
BV
752 }
753
9764951e 754 /* return with the pages pinned */
43394c7d 755 return 0;
9764951e
CW
756
757err_unpin:
758 i915_gem_object_unpin_pages(obj);
759 return ret;
43394c7d
CW
760}
761
762int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
763 unsigned int *needs_clflush)
764{
765 int ret;
766
e95433c7
CW
767 lockdep_assert_held(&obj->base.dev->struct_mutex);
768
43394c7d
CW
769 *needs_clflush = 0;
770 if (!i915_gem_object_has_struct_page(obj))
771 return -ENODEV;
772
e95433c7
CW
773 ret = i915_gem_object_wait(obj,
774 I915_WAIT_INTERRUPTIBLE |
775 I915_WAIT_LOCKED |
776 I915_WAIT_ALL,
777 MAX_SCHEDULE_TIMEOUT,
778 NULL);
43394c7d
CW
779 if (ret)
780 return ret;
781
a4f5ea64 782 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
783 if (ret)
784 return ret;
785
a314d5cb
CW
786 i915_gem_object_flush_gtt_write_domain(obj);
787
43394c7d
CW
788 /* If we're not in the cpu write domain, set ourself into the
789 * gtt write domain and manually flush cachelines (as required).
790 * This optimizes for the case when the gpu will use the data
791 * right away and we therefore have to clflush anyway.
792 */
793 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
794 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
795
796 /* Same trick applies to invalidate partially written cachelines read
797 * before writing.
798 */
799 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
800 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
801 obj->cache_level);
802
43394c7d
CW
803 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804 ret = i915_gem_object_set_to_cpu_domain(obj, true);
9764951e
CW
805 if (ret)
806 goto err_unpin;
807
43394c7d
CW
808 *needs_clflush = 0;
809 }
810
811 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
812 obj->cache_dirty = true;
813
814 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 815 obj->mm.dirty = true;
9764951e 816 /* return with the pages pinned */
43394c7d 817 return 0;
9764951e
CW
818
819err_unpin:
820 i915_gem_object_unpin_pages(obj);
821 return ret;
4c914c0c
BV
822}
823
23c18c71
DV
824static void
825shmem_clflush_swizzled_range(char *addr, unsigned long length,
826 bool swizzled)
827{
e7e58eb5 828 if (unlikely(swizzled)) {
23c18c71
DV
829 unsigned long start = (unsigned long) addr;
830 unsigned long end = (unsigned long) addr + length;
831
832 /* For swizzling simply ensure that we always flush both
833 * channels. Lame, but simple and it works. Swizzled
834 * pwrite/pread is far from a hotpath - current userspace
835 * doesn't use it at all. */
836 start = round_down(start, 128);
837 end = round_up(end, 128);
838
839 drm_clflush_virt_range((void *)start, end - start);
840 } else {
841 drm_clflush_virt_range(addr, length);
842 }
843
844}
845
d174bd64
DV
846/* Only difference to the fast-path function is that this can handle bit17
847 * and uses non-atomic copy and kmap functions. */
848static int
bb6dc8d9 849shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
850 char __user *user_data,
851 bool page_do_bit17_swizzling, bool needs_clflush)
852{
853 char *vaddr;
854 int ret;
855
856 vaddr = kmap(page);
857 if (needs_clflush)
bb6dc8d9 858 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 859 page_do_bit17_swizzling);
d174bd64
DV
860
861 if (page_do_bit17_swizzling)
bb6dc8d9 862 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 863 else
bb6dc8d9 864 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
865 kunmap(page);
866
f60d7f0c 867 return ret ? - EFAULT : 0;
d174bd64
DV
868}
869
bb6dc8d9
CW
870static int
871shmem_pread(struct page *page, int offset, int length, char __user *user_data,
872 bool page_do_bit17_swizzling, bool needs_clflush)
873{
874 int ret;
875
876 ret = -ENODEV;
877 if (!page_do_bit17_swizzling) {
878 char *vaddr = kmap_atomic(page);
879
880 if (needs_clflush)
881 drm_clflush_virt_range(vaddr + offset, length);
882 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
883 kunmap_atomic(vaddr);
884 }
885 if (ret == 0)
886 return 0;
887
888 return shmem_pread_slow(page, offset, length, user_data,
889 page_do_bit17_swizzling, needs_clflush);
890}
891
892static int
893i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
894 struct drm_i915_gem_pread *args)
895{
896 char __user *user_data;
897 u64 remain;
898 unsigned int obj_do_bit17_swizzling;
899 unsigned int needs_clflush;
900 unsigned int idx, offset;
901 int ret;
902
903 obj_do_bit17_swizzling = 0;
904 if (i915_gem_object_needs_bit17_swizzle(obj))
905 obj_do_bit17_swizzling = BIT(17);
906
907 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
908 if (ret)
909 return ret;
910
911 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
912 mutex_unlock(&obj->base.dev->struct_mutex);
913 if (ret)
914 return ret;
915
916 remain = args->size;
917 user_data = u64_to_user_ptr(args->data_ptr);
918 offset = offset_in_page(args->offset);
919 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
920 struct page *page = i915_gem_object_get_page(obj, idx);
921 int length;
922
923 length = remain;
924 if (offset + length > PAGE_SIZE)
925 length = PAGE_SIZE - offset;
926
927 ret = shmem_pread(page, offset, length, user_data,
928 page_to_phys(page) & obj_do_bit17_swizzling,
929 needs_clflush);
930 if (ret)
931 break;
932
933 remain -= length;
934 user_data += length;
935 offset = 0;
936 }
937
938 i915_gem_obj_finish_shmem_access(obj);
939 return ret;
940}
941
942static inline bool
943gtt_user_read(struct io_mapping *mapping,
944 loff_t base, int offset,
945 char __user *user_data, int length)
b50a5371 946{
b50a5371 947 void *vaddr;
bb6dc8d9 948 unsigned long unwritten;
b50a5371 949
b50a5371 950 /* We can use the cpu mem copy function because this is X86. */
bb6dc8d9
CW
951 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
952 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
953 io_mapping_unmap_atomic(vaddr);
954 if (unwritten) {
955 vaddr = (void __force *)
956 io_mapping_map_wc(mapping, base, PAGE_SIZE);
957 unwritten = copy_to_user(user_data, vaddr + offset, length);
958 io_mapping_unmap(vaddr);
959 }
b50a5371
AS
960 return unwritten;
961}
962
963static int
bb6dc8d9
CW
964i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
965 const struct drm_i915_gem_pread *args)
b50a5371 966{
bb6dc8d9
CW
967 struct drm_i915_private *i915 = to_i915(obj->base.dev);
968 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 969 struct drm_mm_node node;
bb6dc8d9
CW
970 struct i915_vma *vma;
971 void __user *user_data;
972 u64 remain, offset;
b50a5371
AS
973 int ret;
974
bb6dc8d9
CW
975 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
976 if (ret)
977 return ret;
978
979 intel_runtime_pm_get(i915);
980 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
981 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
982 if (!IS_ERR(vma)) {
983 node.start = i915_ggtt_offset(vma);
984 node.allocated = false;
49ef5294 985 ret = i915_vma_put_fence(vma);
18034584
CW
986 if (ret) {
987 i915_vma_unpin(vma);
988 vma = ERR_PTR(ret);
989 }
990 }
058d88c4 991 if (IS_ERR(vma)) {
bb6dc8d9 992 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 993 if (ret)
bb6dc8d9
CW
994 goto out_unlock;
995 GEM_BUG_ON(!node.allocated);
b50a5371
AS
996 }
997
998 ret = i915_gem_object_set_to_gtt_domain(obj, false);
999 if (ret)
1000 goto out_unpin;
1001
bb6dc8d9 1002 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1003
bb6dc8d9
CW
1004 user_data = u64_to_user_ptr(args->data_ptr);
1005 remain = args->size;
1006 offset = args->offset;
b50a5371
AS
1007
1008 while (remain > 0) {
1009 /* Operation in this page
1010 *
1011 * page_base = page offset within aperture
1012 * page_offset = offset within page
1013 * page_length = bytes to copy for this page
1014 */
1015 u32 page_base = node.start;
1016 unsigned page_offset = offset_in_page(offset);
1017 unsigned page_length = PAGE_SIZE - page_offset;
1018 page_length = remain < page_length ? remain : page_length;
1019 if (node.allocated) {
1020 wmb();
1021 ggtt->base.insert_page(&ggtt->base,
1022 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 1023 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1024 wmb();
1025 } else {
1026 page_base += offset & PAGE_MASK;
1027 }
bb6dc8d9
CW
1028
1029 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1030 user_data, page_length)) {
b50a5371
AS
1031 ret = -EFAULT;
1032 break;
1033 }
1034
1035 remain -= page_length;
1036 user_data += page_length;
1037 offset += page_length;
1038 }
1039
bb6dc8d9 1040 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1041out_unpin:
1042 if (node.allocated) {
1043 wmb();
1044 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1045 node.start, node.size);
b50a5371
AS
1046 remove_mappable_node(&node);
1047 } else {
058d88c4 1048 i915_vma_unpin(vma);
b50a5371 1049 }
bb6dc8d9
CW
1050out_unlock:
1051 intel_runtime_pm_put(i915);
1052 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1053
eb01459f
EA
1054 return ret;
1055}
1056
673a394b
EA
1057/**
1058 * Reads data from the object referenced by handle.
14bb2c11
TU
1059 * @dev: drm device pointer
1060 * @data: ioctl data blob
1061 * @file: drm file pointer
673a394b
EA
1062 *
1063 * On error, the contents of *data are undefined.
1064 */
1065int
1066i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1067 struct drm_file *file)
673a394b
EA
1068{
1069 struct drm_i915_gem_pread *args = data;
05394f39 1070 struct drm_i915_gem_object *obj;
bb6dc8d9 1071 int ret;
673a394b 1072
51311d0a
CW
1073 if (args->size == 0)
1074 return 0;
1075
1076 if (!access_ok(VERIFY_WRITE,
3ed605bc 1077 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1078 args->size))
1079 return -EFAULT;
1080
03ac0642 1081 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1082 if (!obj)
1083 return -ENOENT;
673a394b 1084
7dcd2499 1085 /* Bounds check source. */
05394f39
CW
1086 if (args->offset > obj->base.size ||
1087 args->size > obj->base.size - args->offset) {
ce9d419d 1088 ret = -EINVAL;
bb6dc8d9 1089 goto out;
ce9d419d
CW
1090 }
1091
db53a302
CW
1092 trace_i915_gem_object_pread(obj, args->offset, args->size);
1093
e95433c7
CW
1094 ret = i915_gem_object_wait(obj,
1095 I915_WAIT_INTERRUPTIBLE,
1096 MAX_SCHEDULE_TIMEOUT,
1097 to_rps_client(file));
258a5ede 1098 if (ret)
bb6dc8d9 1099 goto out;
258a5ede 1100
bb6dc8d9 1101 ret = i915_gem_object_pin_pages(obj);
258a5ede 1102 if (ret)
bb6dc8d9 1103 goto out;
673a394b 1104
bb6dc8d9 1105 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1106 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1107 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1108
bb6dc8d9
CW
1109 i915_gem_object_unpin_pages(obj);
1110out:
258a5ede 1111 i915_gem_object_put_unlocked(obj);
eb01459f 1112 return ret;
673a394b
EA
1113}
1114
0839ccb8
KP
1115/* This is the fast write path which cannot handle
1116 * page faults in the source data
9b7530cc 1117 */
0839ccb8 1118
fe115628
CW
1119static inline bool
1120ggtt_write(struct io_mapping *mapping,
1121 loff_t base, int offset,
1122 char __user *user_data, int length)
9b7530cc 1123{
4f0c7cfb 1124 void *vaddr;
0839ccb8 1125 unsigned long unwritten;
9b7530cc 1126
4f0c7cfb 1127 /* We can use the cpu mem copy function because this is X86. */
fe115628
CW
1128 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1129 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
0839ccb8 1130 user_data, length);
fe115628
CW
1131 io_mapping_unmap_atomic(vaddr);
1132 if (unwritten) {
1133 vaddr = (void __force *)
1134 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1135 unwritten = copy_from_user(vaddr + offset, user_data, length);
1136 io_mapping_unmap(vaddr);
1137 }
bb6dc8d9 1138
bb6dc8d9
CW
1139 return unwritten;
1140}
1141
3de09aa3
EA
1142/**
1143 * This is the fast pwrite path, where we copy the data directly from the
1144 * user into the GTT, uncached.
fe115628 1145 * @obj: i915 GEM object
14bb2c11 1146 * @args: pwrite arguments structure
3de09aa3 1147 */
673a394b 1148static int
fe115628
CW
1149i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1150 const struct drm_i915_gem_pwrite *args)
673a394b 1151{
fe115628 1152 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1153 struct i915_ggtt *ggtt = &i915->ggtt;
1154 struct drm_mm_node node;
fe115628
CW
1155 struct i915_vma *vma;
1156 u64 remain, offset;
1157 void __user *user_data;
4f1959ee 1158 int ret;
b50a5371 1159
fe115628
CW
1160 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1161 if (ret)
1162 return ret;
935aaa69 1163
9c870d03 1164 intel_runtime_pm_get(i915);
058d88c4 1165 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1166 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1167 if (!IS_ERR(vma)) {
1168 node.start = i915_ggtt_offset(vma);
1169 node.allocated = false;
49ef5294 1170 ret = i915_vma_put_fence(vma);
18034584
CW
1171 if (ret) {
1172 i915_vma_unpin(vma);
1173 vma = ERR_PTR(ret);
1174 }
1175 }
058d88c4 1176 if (IS_ERR(vma)) {
bb6dc8d9 1177 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1178 if (ret)
fe115628
CW
1179 goto out_unlock;
1180 GEM_BUG_ON(!node.allocated);
4f1959ee 1181 }
935aaa69
DV
1182
1183 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1184 if (ret)
1185 goto out_unpin;
1186
fe115628
CW
1187 mutex_unlock(&i915->drm.struct_mutex);
1188
b19482d7 1189 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1190
4f1959ee
AS
1191 user_data = u64_to_user_ptr(args->data_ptr);
1192 offset = args->offset;
1193 remain = args->size;
1194 while (remain) {
673a394b
EA
1195 /* Operation in this page
1196 *
0839ccb8
KP
1197 * page_base = page offset within aperture
1198 * page_offset = offset within page
1199 * page_length = bytes to copy for this page
673a394b 1200 */
4f1959ee 1201 u32 page_base = node.start;
bb6dc8d9
CW
1202 unsigned int page_offset = offset_in_page(offset);
1203 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1204 page_length = remain < page_length ? remain : page_length;
1205 if (node.allocated) {
1206 wmb(); /* flush the write before we modify the GGTT */
1207 ggtt->base.insert_page(&ggtt->base,
1208 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1209 node.start, I915_CACHE_NONE, 0);
1210 wmb(); /* flush modifications to the GGTT (insert_page) */
1211 } else {
1212 page_base += offset & PAGE_MASK;
1213 }
0839ccb8 1214 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1215 * source page isn't available. Return the error and we'll
1216 * retry in the slow path.
b50a5371
AS
1217 * If the object is non-shmem backed, we retry again with the
1218 * path that handles page fault.
0839ccb8 1219 */
fe115628
CW
1220 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1221 user_data, page_length)) {
1222 ret = -EFAULT;
1223 break;
935aaa69 1224 }
673a394b 1225
0839ccb8
KP
1226 remain -= page_length;
1227 user_data += page_length;
1228 offset += page_length;
673a394b 1229 }
b19482d7 1230 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628
CW
1231
1232 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1233out_unpin:
4f1959ee
AS
1234 if (node.allocated) {
1235 wmb();
1236 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1237 node.start, node.size);
4f1959ee
AS
1238 remove_mappable_node(&node);
1239 } else {
058d88c4 1240 i915_vma_unpin(vma);
4f1959ee 1241 }
fe115628 1242out_unlock:
9c870d03 1243 intel_runtime_pm_put(i915);
fe115628 1244 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1245 return ret;
673a394b
EA
1246}
1247
3043c60c 1248static int
fe115628 1249shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1250 char __user *user_data,
1251 bool page_do_bit17_swizzling,
1252 bool needs_clflush_before,
1253 bool needs_clflush_after)
673a394b 1254{
d174bd64
DV
1255 char *vaddr;
1256 int ret;
e5281ccd 1257
d174bd64 1258 vaddr = kmap(page);
e7e58eb5 1259 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1260 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1261 page_do_bit17_swizzling);
d174bd64 1262 if (page_do_bit17_swizzling)
fe115628
CW
1263 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1264 length);
d174bd64 1265 else
fe115628 1266 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1267 if (needs_clflush_after)
fe115628 1268 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1269 page_do_bit17_swizzling);
d174bd64 1270 kunmap(page);
40123c1f 1271
755d2218 1272 return ret ? -EFAULT : 0;
40123c1f
EA
1273}
1274
fe115628
CW
1275/* Per-page copy function for the shmem pwrite fastpath.
1276 * Flushes invalid cachelines before writing to the target if
1277 * needs_clflush_before is set and flushes out any written cachelines after
1278 * writing if needs_clflush is set.
1279 */
40123c1f 1280static int
fe115628
CW
1281shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1282 bool page_do_bit17_swizzling,
1283 bool needs_clflush_before,
1284 bool needs_clflush_after)
40123c1f 1285{
fe115628
CW
1286 int ret;
1287
1288 ret = -ENODEV;
1289 if (!page_do_bit17_swizzling) {
1290 char *vaddr = kmap_atomic(page);
1291
1292 if (needs_clflush_before)
1293 drm_clflush_virt_range(vaddr + offset, len);
1294 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1295 if (needs_clflush_after)
1296 drm_clflush_virt_range(vaddr + offset, len);
1297
1298 kunmap_atomic(vaddr);
1299 }
1300 if (ret == 0)
1301 return ret;
1302
1303 return shmem_pwrite_slow(page, offset, len, user_data,
1304 page_do_bit17_swizzling,
1305 needs_clflush_before,
1306 needs_clflush_after);
1307}
1308
1309static int
1310i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1311 const struct drm_i915_gem_pwrite *args)
1312{
1313 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1314 void __user *user_data;
1315 u64 remain;
1316 unsigned int obj_do_bit17_swizzling;
1317 unsigned int partial_cacheline_write;
43394c7d 1318 unsigned int needs_clflush;
fe115628
CW
1319 unsigned int offset, idx;
1320 int ret;
40123c1f 1321
fe115628 1322 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1323 if (ret)
1324 return ret;
1325
fe115628
CW
1326 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1327 mutex_unlock(&i915->drm.struct_mutex);
1328 if (ret)
1329 return ret;
673a394b 1330
fe115628
CW
1331 obj_do_bit17_swizzling = 0;
1332 if (i915_gem_object_needs_bit17_swizzle(obj))
1333 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1334
fe115628
CW
1335 /* If we don't overwrite a cacheline completely we need to be
1336 * careful to have up-to-date data by first clflushing. Don't
1337 * overcomplicate things and flush the entire patch.
1338 */
1339 partial_cacheline_write = 0;
1340 if (needs_clflush & CLFLUSH_BEFORE)
1341 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1342
fe115628
CW
1343 user_data = u64_to_user_ptr(args->data_ptr);
1344 remain = args->size;
1345 offset = offset_in_page(args->offset);
1346 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1347 struct page *page = i915_gem_object_get_page(obj, idx);
1348 int length;
40123c1f 1349
fe115628
CW
1350 length = remain;
1351 if (offset + length > PAGE_SIZE)
1352 length = PAGE_SIZE - offset;
755d2218 1353
fe115628
CW
1354 ret = shmem_pwrite(page, offset, length, user_data,
1355 page_to_phys(page) & obj_do_bit17_swizzling,
1356 (offset | length) & partial_cacheline_write,
1357 needs_clflush & CLFLUSH_AFTER);
755d2218 1358 if (ret)
fe115628 1359 break;
755d2218 1360
fe115628
CW
1361 remain -= length;
1362 user_data += length;
1363 offset = 0;
8c59967c 1364 }
673a394b 1365
de152b62 1366 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628 1367 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1368 return ret;
673a394b
EA
1369}
1370
1371/**
1372 * Writes data to the object referenced by handle.
14bb2c11
TU
1373 * @dev: drm device
1374 * @data: ioctl data blob
1375 * @file: drm file
673a394b
EA
1376 *
1377 * On error, the contents of the buffer that were to be modified are undefined.
1378 */
1379int
1380i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1381 struct drm_file *file)
673a394b
EA
1382{
1383 struct drm_i915_gem_pwrite *args = data;
05394f39 1384 struct drm_i915_gem_object *obj;
51311d0a
CW
1385 int ret;
1386
1387 if (args->size == 0)
1388 return 0;
1389
1390 if (!access_ok(VERIFY_READ,
3ed605bc 1391 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1392 args->size))
1393 return -EFAULT;
1394
03ac0642 1395 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1396 if (!obj)
1397 return -ENOENT;
673a394b 1398
7dcd2499 1399 /* Bounds check destination. */
05394f39
CW
1400 if (args->offset > obj->base.size ||
1401 args->size > obj->base.size - args->offset) {
ce9d419d 1402 ret = -EINVAL;
258a5ede 1403 goto err;
ce9d419d
CW
1404 }
1405
db53a302
CW
1406 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1407
e95433c7
CW
1408 ret = i915_gem_object_wait(obj,
1409 I915_WAIT_INTERRUPTIBLE |
1410 I915_WAIT_ALL,
1411 MAX_SCHEDULE_TIMEOUT,
1412 to_rps_client(file));
258a5ede
CW
1413 if (ret)
1414 goto err;
1415
fe115628 1416 ret = i915_gem_object_pin_pages(obj);
258a5ede 1417 if (ret)
fe115628 1418 goto err;
258a5ede 1419
935aaa69 1420 ret = -EFAULT;
673a394b
EA
1421 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1422 * it would end up going through the fenced access, and we'll get
1423 * different detiling behavior between reading and writing.
1424 * pread/pwrite currently are reading and writing from the CPU
1425 * perspective, requiring manual detiling by the client.
1426 */
6eae0059 1427 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1428 cpu_write_needs_clflush(obj))
935aaa69
DV
1429 /* Note that the gtt paths might fail with non-page-backed user
1430 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1431 * textures). Fallback to the shmem path in that case.
1432 */
fe115628 1433 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1434
d1054ee4 1435 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1436 if (obj->phys_handle)
1437 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1438 else
fe115628 1439 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1440 }
5c0480f2 1441
fe115628 1442 i915_gem_object_unpin_pages(obj);
258a5ede
CW
1443err:
1444 i915_gem_object_put_unlocked(obj);
1445 return ret;
673a394b
EA
1446}
1447
d243ad82 1448static inline enum fb_op_origin
aeecc969
CW
1449write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1450{
50349247
CW
1451 return (domain == I915_GEM_DOMAIN_GTT ?
1452 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
aeecc969
CW
1453}
1454
673a394b 1455/**
2ef7eeaa
EA
1456 * Called when user space prepares to use an object with the CPU, either
1457 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1458 * @dev: drm device
1459 * @data: ioctl data blob
1460 * @file: drm file
673a394b
EA
1461 */
1462int
1463i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1464 struct drm_file *file)
673a394b
EA
1465{
1466 struct drm_i915_gem_set_domain *args = data;
05394f39 1467 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1468 uint32_t read_domains = args->read_domains;
1469 uint32_t write_domain = args->write_domain;
673a394b
EA
1470 int ret;
1471
2ef7eeaa 1472 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1473 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1474 return -EINVAL;
1475
1476 /* Having something in the write domain implies it's in the read
1477 * domain, and only that read domain. Enforce that in the request.
1478 */
1479 if (write_domain != 0 && read_domains != write_domain)
1480 return -EINVAL;
1481
03ac0642 1482 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1483 if (!obj)
1484 return -ENOENT;
673a394b 1485
3236f57a
CW
1486 /* Try to flush the object off the GPU without holding the lock.
1487 * We will repeat the flush holding the lock in the normal manner
1488 * to catch cases where we are gazumped.
1489 */
e95433c7
CW
1490 ret = i915_gem_object_wait(obj,
1491 I915_WAIT_INTERRUPTIBLE |
1492 (write_domain ? I915_WAIT_ALL : 0),
1493 MAX_SCHEDULE_TIMEOUT,
1494 to_rps_client(file));
b8f9096d
CW
1495 if (ret)
1496 goto err;
1497
1498 ret = i915_mutex_lock_interruptible(dev);
3236f57a 1499 if (ret)
b8f9096d 1500 goto err;
3236f57a 1501
43566ded 1502 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1503 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1504 else
e47c68e9 1505 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1506
031b698a 1507 if (write_domain != 0)
aeecc969 1508 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
031b698a 1509
f8c417cd 1510 i915_gem_object_put(obj);
673a394b
EA
1511 mutex_unlock(&dev->struct_mutex);
1512 return ret;
b8f9096d
CW
1513
1514err:
1515 i915_gem_object_put_unlocked(obj);
1516 return ret;
673a394b
EA
1517}
1518
1519/**
1520 * Called when user space has done writes to this buffer
14bb2c11
TU
1521 * @dev: drm device
1522 * @data: ioctl data blob
1523 * @file: drm file
673a394b
EA
1524 */
1525int
1526i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1527 struct drm_file *file)
673a394b
EA
1528{
1529 struct drm_i915_gem_sw_finish *args = data;
05394f39 1530 struct drm_i915_gem_object *obj;
c21724cc 1531 int err = 0;
1d7cfea1 1532
03ac0642 1533 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1534 if (!obj)
1535 return -ENOENT;
673a394b 1536
673a394b 1537 /* Pinned buffers may be scanout, so flush the cache */
c21724cc
CW
1538 if (READ_ONCE(obj->pin_display)) {
1539 err = i915_mutex_lock_interruptible(dev);
1540 if (!err) {
1541 i915_gem_object_flush_cpu_write_domain(obj);
1542 mutex_unlock(&dev->struct_mutex);
1543 }
1544 }
e47c68e9 1545
c21724cc
CW
1546 i915_gem_object_put_unlocked(obj);
1547 return err;
673a394b
EA
1548}
1549
1550/**
14bb2c11
TU
1551 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1552 * it is mapped to.
1553 * @dev: drm device
1554 * @data: ioctl data blob
1555 * @file: drm file
673a394b
EA
1556 *
1557 * While the mapping holds a reference on the contents of the object, it doesn't
1558 * imply a ref on the object itself.
34367381
DV
1559 *
1560 * IMPORTANT:
1561 *
1562 * DRM driver writers who look a this function as an example for how to do GEM
1563 * mmap support, please don't implement mmap support like here. The modern way
1564 * to implement DRM mmap support is with an mmap offset ioctl (like
1565 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1566 * That way debug tooling like valgrind will understand what's going on, hiding
1567 * the mmap call in a driver private ioctl will break that. The i915 driver only
1568 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1569 */
1570int
1571i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1572 struct drm_file *file)
673a394b
EA
1573{
1574 struct drm_i915_gem_mmap *args = data;
03ac0642 1575 struct drm_i915_gem_object *obj;
673a394b
EA
1576 unsigned long addr;
1577
1816f923
AG
1578 if (args->flags & ~(I915_MMAP_WC))
1579 return -EINVAL;
1580
568a58e5 1581 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1582 return -ENODEV;
1583
03ac0642
CW
1584 obj = i915_gem_object_lookup(file, args->handle);
1585 if (!obj)
bf79cb91 1586 return -ENOENT;
673a394b 1587
1286ff73
DV
1588 /* prime objects have no backing filp to GEM mmap
1589 * pages from.
1590 */
03ac0642 1591 if (!obj->base.filp) {
34911fd3 1592 i915_gem_object_put_unlocked(obj);
1286ff73
DV
1593 return -EINVAL;
1594 }
1595
03ac0642 1596 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1597 PROT_READ | PROT_WRITE, MAP_SHARED,
1598 args->offset);
1816f923
AG
1599 if (args->flags & I915_MMAP_WC) {
1600 struct mm_struct *mm = current->mm;
1601 struct vm_area_struct *vma;
1602
80a89a5e 1603 if (down_write_killable(&mm->mmap_sem)) {
34911fd3 1604 i915_gem_object_put_unlocked(obj);
80a89a5e
MH
1605 return -EINTR;
1606 }
1816f923
AG
1607 vma = find_vma(mm, addr);
1608 if (vma)
1609 vma->vm_page_prot =
1610 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1611 else
1612 addr = -ENOMEM;
1613 up_write(&mm->mmap_sem);
aeecc969
CW
1614
1615 /* This may race, but that's ok, it only gets set */
50349247 1616 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1617 }
34911fd3 1618 i915_gem_object_put_unlocked(obj);
673a394b
EA
1619 if (IS_ERR((void *)addr))
1620 return addr;
1621
1622 args->addr_ptr = (uint64_t) addr;
1623
1624 return 0;
1625}
1626
03af84fe
CW
1627static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1628{
1629 u64 size;
1630
1631 size = i915_gem_object_get_stride(obj);
1632 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1633
1634 return size >> PAGE_SHIFT;
1635}
1636
4cc69075
CW
1637/**
1638 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1639 *
1640 * A history of the GTT mmap interface:
1641 *
1642 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1643 * aligned and suitable for fencing, and still fit into the available
1644 * mappable space left by the pinned display objects. A classic problem
1645 * we called the page-fault-of-doom where we would ping-pong between
1646 * two objects that could not fit inside the GTT and so the memcpy
1647 * would page one object in at the expense of the other between every
1648 * single byte.
1649 *
1650 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1651 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1652 * object is too large for the available space (or simply too large
1653 * for the mappable aperture!), a view is created instead and faulted
1654 * into userspace. (This view is aligned and sized appropriately for
1655 * fenced access.)
1656 *
1657 * Restrictions:
1658 *
1659 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1660 * hangs on some architectures, corruption on others. An attempt to service
1661 * a GTT page fault from a snoopable object will generate a SIGBUS.
1662 *
1663 * * the object must be able to fit into RAM (physical memory, though no
1664 * limited to the mappable aperture).
1665 *
1666 *
1667 * Caveats:
1668 *
1669 * * a new GTT page fault will synchronize rendering from the GPU and flush
1670 * all data to system memory. Subsequent access will not be synchronized.
1671 *
1672 * * all mappings are revoked on runtime device suspend.
1673 *
1674 * * there are only 8, 16 or 32 fence registers to share between all users
1675 * (older machines require fence register for display and blitter access
1676 * as well). Contention of the fence registers will cause the previous users
1677 * to be unmapped and any new access will generate new page faults.
1678 *
1679 * * running out of memory while servicing a fault may generate a SIGBUS,
1680 * rather than the expected SIGSEGV.
1681 */
1682int i915_gem_mmap_gtt_version(void)
1683{
1684 return 1;
1685}
1686
de151cf6
JB
1687/**
1688 * i915_gem_fault - fault a page into the GTT
058d88c4 1689 * @area: CPU VMA in question
d9072a3e 1690 * @vmf: fault info
de151cf6
JB
1691 *
1692 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1693 * from userspace. The fault handler takes care of binding the object to
1694 * the GTT (if needed), allocating and programming a fence register (again,
1695 * only if needed based on whether the old reg is still valid or the object
1696 * is tiled) and inserting a new PTE into the faulting process.
1697 *
1698 * Note that the faulting process may involve evicting existing objects
1699 * from the GTT and/or fence registers to make room. So performance may
1700 * suffer if the GTT working set is large or there are few fence registers
1701 * left.
4cc69075
CW
1702 *
1703 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1704 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1705 */
058d88c4 1706int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
de151cf6 1707{
03af84fe 1708#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
058d88c4 1709 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1710 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1711 struct drm_i915_private *dev_priv = to_i915(dev);
1712 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1713 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1714 struct i915_vma *vma;
de151cf6 1715 pgoff_t page_offset;
82118877 1716 unsigned int flags;
b8f9096d 1717 int ret;
f65c9168 1718
de151cf6 1719 /* We don't use vmf->pgoff since that has the fake offset */
058d88c4 1720 page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
de151cf6
JB
1721 PAGE_SHIFT;
1722
db53a302
CW
1723 trace_i915_gem_object_fault(obj, page_offset, true, write);
1724
6e4930f6 1725 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1726 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1727 * repeat the flush holding the lock in the normal manner to catch cases
1728 * where we are gazumped.
1729 */
e95433c7
CW
1730 ret = i915_gem_object_wait(obj,
1731 I915_WAIT_INTERRUPTIBLE,
1732 MAX_SCHEDULE_TIMEOUT,
1733 NULL);
6e4930f6 1734 if (ret)
b8f9096d
CW
1735 goto err;
1736
1737 intel_runtime_pm_get(dev_priv);
1738
1739 ret = i915_mutex_lock_interruptible(dev);
1740 if (ret)
1741 goto err_rpm;
6e4930f6 1742
eb119bd6
CW
1743 /* Access to snoopable pages through the GTT is incoherent. */
1744 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1745 ret = -EFAULT;
b8f9096d 1746 goto err_unlock;
eb119bd6
CW
1747 }
1748
82118877
CW
1749 /* If the object is smaller than a couple of partial vma, it is
1750 * not worth only creating a single partial vma - we may as well
1751 * clear enough space for the full object.
1752 */
1753 flags = PIN_MAPPABLE;
1754 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1755 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1756
a61007a8 1757 /* Now pin it into the GTT as needed */
82118877 1758 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8
CW
1759 if (IS_ERR(vma)) {
1760 struct i915_ggtt_view view;
03af84fe
CW
1761 unsigned int chunk_size;
1762
a61007a8 1763 /* Use a partial view if it is bigger than available space */
03af84fe
CW
1764 chunk_size = MIN_CHUNK_PAGES;
1765 if (i915_gem_object_is_tiled(obj))
1766 chunk_size = max(chunk_size, tile_row_pages(obj));
e7ded2d7 1767
c5ad54cf
JL
1768 memset(&view, 0, sizeof(view));
1769 view.type = I915_GGTT_VIEW_PARTIAL;
1770 view.params.partial.offset = rounddown(page_offset, chunk_size);
1771 view.params.partial.size =
a61007a8 1772 min_t(unsigned int, chunk_size,
908b1232 1773 vma_pages(area) - view.params.partial.offset);
c5ad54cf 1774
aa136d9d
CW
1775 /* If the partial covers the entire object, just create a
1776 * normal VMA.
1777 */
1778 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1779 view.type = I915_GGTT_VIEW_NORMAL;
1780
50349247
CW
1781 /* Userspace is now writing through an untracked VMA, abandon
1782 * all hope that the hardware is able to track future writes.
1783 */
1784 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1785
a61007a8
CW
1786 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1787 }
058d88c4
CW
1788 if (IS_ERR(vma)) {
1789 ret = PTR_ERR(vma);
b8f9096d 1790 goto err_unlock;
058d88c4 1791 }
4a684a41 1792
c9839303
CW
1793 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1794 if (ret)
b8f9096d 1795 goto err_unpin;
74898d7e 1796
49ef5294 1797 ret = i915_vma_get_fence(vma);
d9e86c0e 1798 if (ret)
b8f9096d 1799 goto err_unpin;
7d1c4804 1800
275f039d 1801 /* Mark as being mmapped into userspace for later revocation */
9c870d03 1802 assert_rpm_wakelock_held(dev_priv);
275f039d
CW
1803 if (list_empty(&obj->userfault_link))
1804 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
275f039d 1805
b90b91d8 1806 /* Finally, remap it using the new GTT offset */
c58305af
CW
1807 ret = remap_io_mapping(area,
1808 area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1809 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1810 min_t(u64, vma->size, area->vm_end - area->vm_start),
1811 &ggtt->mappable);
a61007a8 1812
b8f9096d 1813err_unpin:
058d88c4 1814 __i915_vma_unpin(vma);
b8f9096d 1815err_unlock:
de151cf6 1816 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1817err_rpm:
1818 intel_runtime_pm_put(dev_priv);
1819err:
de151cf6 1820 switch (ret) {
d9bc7e9f 1821 case -EIO:
2232f031
DV
1822 /*
1823 * We eat errors when the gpu is terminally wedged to avoid
1824 * userspace unduly crashing (gl has no provisions for mmaps to
1825 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1826 * and so needs to be reported.
1827 */
1828 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1829 ret = VM_FAULT_SIGBUS;
1830 break;
1831 }
045e769a 1832 case -EAGAIN:
571c608d
DV
1833 /*
1834 * EAGAIN means the gpu is hung and we'll wait for the error
1835 * handler to reset everything when re-faulting in
1836 * i915_mutex_lock_interruptible.
d9bc7e9f 1837 */
c715089f
CW
1838 case 0:
1839 case -ERESTARTSYS:
bed636ab 1840 case -EINTR:
e79e0fe3
DR
1841 case -EBUSY:
1842 /*
1843 * EBUSY is ok: this just means that another thread
1844 * already did the job.
1845 */
f65c9168
PZ
1846 ret = VM_FAULT_NOPAGE;
1847 break;
de151cf6 1848 case -ENOMEM:
f65c9168
PZ
1849 ret = VM_FAULT_OOM;
1850 break;
a7c2e1aa 1851 case -ENOSPC:
45d67817 1852 case -EFAULT:
f65c9168
PZ
1853 ret = VM_FAULT_SIGBUS;
1854 break;
de151cf6 1855 default:
a7c2e1aa 1856 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1857 ret = VM_FAULT_SIGBUS;
1858 break;
de151cf6 1859 }
f65c9168 1860 return ret;
de151cf6
JB
1861}
1862
901782b2
CW
1863/**
1864 * i915_gem_release_mmap - remove physical page mappings
1865 * @obj: obj in question
1866 *
af901ca1 1867 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1868 * relinquish ownership of the pages back to the system.
1869 *
1870 * It is vital that we remove the page mapping if we have mapped a tiled
1871 * object through the GTT and then lose the fence register due to
1872 * resource pressure. Similarly if the object has been moved out of the
1873 * aperture, than pages mapped into userspace must be revoked. Removing the
1874 * mapping will then trigger a page fault on the next user access, allowing
1875 * fixup by i915_gem_fault().
1876 */
d05ca301 1877void
05394f39 1878i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1879{
275f039d 1880 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 1881
349f2ccf
CW
1882 /* Serialisation between user GTT access and our code depends upon
1883 * revoking the CPU's PTE whilst the mutex is held. The next user
1884 * pagefault then has to wait until we release the mutex.
9c870d03
CW
1885 *
1886 * Note that RPM complicates somewhat by adding an additional
1887 * requirement that operations to the GGTT be made holding the RPM
1888 * wakeref.
349f2ccf 1889 */
275f039d 1890 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 1891 intel_runtime_pm_get(i915);
349f2ccf 1892
3594a3e2 1893 if (list_empty(&obj->userfault_link))
9c870d03 1894 goto out;
901782b2 1895
3594a3e2 1896 list_del_init(&obj->userfault_link);
6796cb16
DH
1897 drm_vma_node_unmap(&obj->base.vma_node,
1898 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1899
1900 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1901 * memory transactions from userspace before we return. The TLB
1902 * flushing implied above by changing the PTE above *should* be
1903 * sufficient, an extra barrier here just provides us with a bit
1904 * of paranoid documentation about our requirement to serialise
1905 * memory writes before touching registers / GSM.
1906 */
1907 wmb();
9c870d03
CW
1908
1909out:
1910 intel_runtime_pm_put(i915);
901782b2
CW
1911}
1912
7c108fd8 1913void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 1914{
3594a3e2 1915 struct drm_i915_gem_object *obj, *on;
7c108fd8 1916 int i;
eedd10f4 1917
3594a3e2
CW
1918 /*
1919 * Only called during RPM suspend. All users of the userfault_list
1920 * must be holding an RPM wakeref to ensure that this can not
1921 * run concurrently with themselves (and use the struct_mutex for
1922 * protection between themselves).
1923 */
275f039d 1924
3594a3e2
CW
1925 list_for_each_entry_safe(obj, on,
1926 &dev_priv->mm.userfault_list, userfault_link) {
1927 list_del_init(&obj->userfault_link);
275f039d
CW
1928 drm_vma_node_unmap(&obj->base.vma_node,
1929 obj->base.dev->anon_inode->i_mapping);
275f039d 1930 }
7c108fd8
CW
1931
1932 /* The fence will be lost when the device powers down. If any were
1933 * in use by hardware (i.e. they are pinned), we should not be powering
1934 * down! All other fences will be reacquired by the user upon waking.
1935 */
1936 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1937 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1938
1939 if (WARN_ON(reg->pin_count))
1940 continue;
1941
1942 if (!reg->vma)
1943 continue;
1944
1945 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
1946 reg->dirty = true;
1947 }
eedd10f4
CW
1948}
1949
ad1a7d20
CW
1950/**
1951 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 1952 * @dev_priv: i915 device
ad1a7d20
CW
1953 * @size: object size
1954 * @tiling_mode: tiling mode
1955 *
1956 * Return the required global GTT size for an object, taking into account
1957 * potential fence register mapping.
1958 */
a9f1481f
CW
1959u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1960 u64 size, int tiling_mode)
92b88aeb 1961{
ad1a7d20 1962 u64 ggtt_size;
92b88aeb 1963
ad1a7d20
CW
1964 GEM_BUG_ON(size == 0);
1965
a9f1481f 1966 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
1967 tiling_mode == I915_TILING_NONE)
1968 return size;
92b88aeb
CW
1969
1970 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 1971 if (IS_GEN3(dev_priv))
ad1a7d20 1972 ggtt_size = 1024*1024;
92b88aeb 1973 else
ad1a7d20 1974 ggtt_size = 512*1024;
92b88aeb 1975
ad1a7d20
CW
1976 while (ggtt_size < size)
1977 ggtt_size <<= 1;
92b88aeb 1978
ad1a7d20 1979 return ggtt_size;
92b88aeb
CW
1980}
1981
de151cf6 1982/**
ad1a7d20 1983 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 1984 * @dev_priv: i915 device
14bb2c11
TU
1985 * @size: object size
1986 * @tiling_mode: tiling mode
ad1a7d20 1987 * @fenced: is fenced alignment required or not
de151cf6 1988 *
ad1a7d20 1989 * Return the required global GTT alignment for an object, taking into account
5e783301 1990 * potential fence register mapping.
de151cf6 1991 */
a9f1481f 1992u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 1993 int tiling_mode, bool fenced)
de151cf6 1994{
ad1a7d20
CW
1995 GEM_BUG_ON(size == 0);
1996
de151cf6
JB
1997 /*
1998 * Minimum alignment is 4k (GTT page size), but might be greater
1999 * if a fence register is needed for the object.
2000 */
a9f1481f 2001 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
e28f8711 2002 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2003 return 4096;
2004
a00b10c3
CW
2005 /*
2006 * Previous chips need to be aligned to the size of the smallest
2007 * fence register that can contain the object.
2008 */
a9f1481f 2009 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
2010}
2011
d8cb5086
CW
2012static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2013{
fac5e23e 2014 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2015 int err;
da494d7c 2016
f3f6184c
CW
2017 err = drm_gem_create_mmap_offset(&obj->base);
2018 if (!err)
2019 return 0;
d8cb5086 2020
f3f6184c
CW
2021 /* We can idle the GPU locklessly to flush stale objects, but in order
2022 * to claim that space for ourselves, we need to take the big
2023 * struct_mutex to free the requests+objects and allocate our slot.
d8cb5086 2024 */
ea746f36 2025 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
f3f6184c
CW
2026 if (err)
2027 return err;
2028
2029 err = i915_mutex_lock_interruptible(&dev_priv->drm);
2030 if (!err) {
2031 i915_gem_retire_requests(dev_priv);
2032 err = drm_gem_create_mmap_offset(&obj->base);
2033 mutex_unlock(&dev_priv->drm.struct_mutex);
2034 }
da494d7c 2035
f3f6184c 2036 return err;
d8cb5086
CW
2037}
2038
2039static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2040{
d8cb5086
CW
2041 drm_gem_free_mmap_offset(&obj->base);
2042}
2043
da6b51d0 2044int
ff72145b
DA
2045i915_gem_mmap_gtt(struct drm_file *file,
2046 struct drm_device *dev,
da6b51d0 2047 uint32_t handle,
ff72145b 2048 uint64_t *offset)
de151cf6 2049{
05394f39 2050 struct drm_i915_gem_object *obj;
de151cf6
JB
2051 int ret;
2052
03ac0642 2053 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2054 if (!obj)
2055 return -ENOENT;
ab18282d 2056
d8cb5086 2057 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2058 if (ret == 0)
2059 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2060
f3f6184c 2061 i915_gem_object_put_unlocked(obj);
1d7cfea1 2062 return ret;
de151cf6
JB
2063}
2064
ff72145b
DA
2065/**
2066 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2067 * @dev: DRM device
2068 * @data: GTT mapping ioctl data
2069 * @file: GEM object info
2070 *
2071 * Simply returns the fake offset to userspace so it can mmap it.
2072 * The mmap call will end up in drm_gem_mmap(), which will set things
2073 * up so we can get faults in the handler above.
2074 *
2075 * The fault handler will take care of binding the object into the GTT
2076 * (since it may have been evicted to make room for something), allocating
2077 * a fence register, and mapping the appropriate aperture address into
2078 * userspace.
2079 */
2080int
2081i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2082 struct drm_file *file)
2083{
2084 struct drm_i915_gem_mmap_gtt *args = data;
2085
da6b51d0 2086 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2087}
2088
225067ee
DV
2089/* Immediately discard the backing storage */
2090static void
2091i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2092{
4d6294bf 2093 i915_gem_object_free_mmap_offset(obj);
1286ff73 2094
4d6294bf
CW
2095 if (obj->base.filp == NULL)
2096 return;
e5281ccd 2097
225067ee
DV
2098 /* Our goal here is to return as much of the memory as
2099 * is possible back to the system as we are called from OOM.
2100 * To do this we must instruct the shmfs to drop all of its
2101 * backing pages, *now*.
2102 */
5537252b 2103 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2104 obj->mm.madv = __I915_MADV_PURGED;
225067ee 2105}
e5281ccd 2106
5537252b 2107/* Try to discard unwanted pages */
03ac84f1 2108void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2109{
5537252b
CW
2110 struct address_space *mapping;
2111
1233e2db
CW
2112 lockdep_assert_held(&obj->mm.lock);
2113 GEM_BUG_ON(obj->mm.pages);
2114
a4f5ea64 2115 switch (obj->mm.madv) {
5537252b
CW
2116 case I915_MADV_DONTNEED:
2117 i915_gem_object_truncate(obj);
2118 case __I915_MADV_PURGED:
2119 return;
2120 }
2121
2122 if (obj->base.filp == NULL)
2123 return;
2124
93c76a3d 2125 mapping = obj->base.filp->f_mapping,
5537252b 2126 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2127}
2128
5cdf5881 2129static void
03ac84f1
CW
2130i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2131 struct sg_table *pages)
673a394b 2132{
85d1225e
DG
2133 struct sgt_iter sgt_iter;
2134 struct page *page;
1286ff73 2135
03ac84f1 2136 __i915_gem_object_release_shmem(obj);
673a394b 2137
03ac84f1 2138 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2139
6dacfd2f 2140 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2141 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2142
03ac84f1 2143 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2144 if (obj->mm.dirty)
9da3da66 2145 set_page_dirty(page);
3ef94daa 2146
a4f5ea64 2147 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2148 mark_page_accessed(page);
3ef94daa 2149
09cbfeaf 2150 put_page(page);
3ef94daa 2151 }
a4f5ea64 2152 obj->mm.dirty = false;
673a394b 2153
03ac84f1
CW
2154 sg_free_table(pages);
2155 kfree(pages);
37e680a1 2156}
6c085a72 2157
96d77634
CW
2158static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2159{
2160 struct radix_tree_iter iter;
2161 void **slot;
2162
a4f5ea64
CW
2163 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2164 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2165}
2166
03ac84f1 2167void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
37e680a1 2168{
03ac84f1 2169 struct sg_table *pages;
37e680a1 2170
a4f5ea64 2171 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2172 return;
a5570178 2173
15717de2 2174 GEM_BUG_ON(obj->bind_count);
1233e2db
CW
2175 if (!READ_ONCE(obj->mm.pages))
2176 return;
2177
2178 /* May be called by shrinker from within get_pages() (on another bo) */
2179 mutex_lock_nested(&obj->mm.lock, SINGLE_DEPTH_NESTING);
2180 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2181 goto unlock;
3e123027 2182
a2165e31
CW
2183 /* ->put_pages might need to allocate memory for the bit17 swizzle
2184 * array, hence protect them from being reaped by removing them from gtt
2185 * lists early. */
03ac84f1
CW
2186 pages = fetch_and_zero(&obj->mm.pages);
2187 GEM_BUG_ON(!pages);
a2165e31 2188
a4f5ea64 2189 if (obj->mm.mapping) {
4b30cb23
CW
2190 void *ptr;
2191
a4f5ea64 2192 ptr = ptr_mask_bits(obj->mm.mapping);
4b30cb23
CW
2193 if (is_vmalloc_addr(ptr))
2194 vunmap(ptr);
fb8621d3 2195 else
4b30cb23
CW
2196 kunmap(kmap_to_page(ptr));
2197
a4f5ea64 2198 obj->mm.mapping = NULL;
0a798eb9
CW
2199 }
2200
96d77634
CW
2201 __i915_gem_object_reset_page_iter(obj);
2202
03ac84f1 2203 obj->ops->put_pages(obj, pages);
1233e2db
CW
2204unlock:
2205 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2206}
2207
4ff340f0 2208static unsigned int swiotlb_max_size(void)
871dfbd6
CW
2209{
2210#if IS_ENABLED(CONFIG_SWIOTLB)
2211 return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2212#else
2213 return 0;
2214#endif
2215}
2216
03ac84f1 2217static struct sg_table *
6c085a72 2218i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2219{
fac5e23e 2220 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2221 int page_count, i;
2222 struct address_space *mapping;
9da3da66
CW
2223 struct sg_table *st;
2224 struct scatterlist *sg;
85d1225e 2225 struct sgt_iter sgt_iter;
e5281ccd 2226 struct page *page;
90797e6d 2227 unsigned long last_pfn = 0; /* suppress gcc warning */
4ff340f0 2228 unsigned int max_segment;
e2273302 2229 int ret;
6c085a72 2230 gfp_t gfp;
e5281ccd 2231
6c085a72
CW
2232 /* Assert that the object is not currently in any GPU domain. As it
2233 * wasn't in the GTT, there shouldn't be any way it could have been in
2234 * a GPU cache
2235 */
03ac84f1
CW
2236 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2237 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2238
871dfbd6
CW
2239 max_segment = swiotlb_max_size();
2240 if (!max_segment)
4ff340f0 2241 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
871dfbd6 2242
9da3da66
CW
2243 st = kmalloc(sizeof(*st), GFP_KERNEL);
2244 if (st == NULL)
03ac84f1 2245 return ERR_PTR(-ENOMEM);
9da3da66 2246
05394f39 2247 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2248 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2249 kfree(st);
03ac84f1 2250 return ERR_PTR(-ENOMEM);
9da3da66 2251 }
e5281ccd 2252
9da3da66
CW
2253 /* Get the list of pages out of our struct file. They'll be pinned
2254 * at this point until we release them.
2255 *
2256 * Fail silently without starting the shrinker
2257 */
93c76a3d 2258 mapping = obj->base.filp->f_mapping;
c62d2555 2259 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2260 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2261 sg = st->sgl;
2262 st->nents = 0;
2263 for (i = 0; i < page_count; i++) {
6c085a72
CW
2264 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2265 if (IS_ERR(page)) {
21ab4e74
CW
2266 i915_gem_shrink(dev_priv,
2267 page_count,
2268 I915_SHRINK_BOUND |
2269 I915_SHRINK_UNBOUND |
2270 I915_SHRINK_PURGEABLE);
6c085a72
CW
2271 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2272 }
2273 if (IS_ERR(page)) {
2274 /* We've tried hard to allocate the memory by reaping
2275 * our own buffer, now let the real VM do its job and
2276 * go down in flames if truly OOM.
2277 */
f461d1be 2278 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2279 if (IS_ERR(page)) {
2280 ret = PTR_ERR(page);
6c085a72 2281 goto err_pages;
e2273302 2282 }
6c085a72 2283 }
871dfbd6
CW
2284 if (!i ||
2285 sg->length >= max_segment ||
2286 page_to_pfn(page) != last_pfn + 1) {
90797e6d
ID
2287 if (i)
2288 sg = sg_next(sg);
2289 st->nents++;
2290 sg_set_page(sg, page, PAGE_SIZE, 0);
2291 } else {
2292 sg->length += PAGE_SIZE;
2293 }
2294 last_pfn = page_to_pfn(page);
3bbbe706
DV
2295
2296 /* Check that the i965g/gm workaround works. */
2297 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2298 }
871dfbd6 2299 if (sg) /* loop terminated early; short sg table */
426729dc 2300 sg_mark_end(sg);
74ce6b6c 2301
03ac84f1 2302 ret = i915_gem_gtt_prepare_pages(obj, st);
e2273302
ID
2303 if (ret)
2304 goto err_pages;
2305
6dacfd2f 2306 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2307 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2308
3e510a8e 2309 if (i915_gem_object_is_tiled(obj) &&
656bfa3a 2310 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
a4f5ea64 2311 __i915_gem_object_pin_pages(obj);
656bfa3a 2312
03ac84f1 2313 return st;
e5281ccd
CW
2314
2315err_pages:
90797e6d 2316 sg_mark_end(sg);
85d1225e
DG
2317 for_each_sgt_page(page, sgt_iter, st)
2318 put_page(page);
9da3da66
CW
2319 sg_free_table(st);
2320 kfree(st);
0820baf3
CW
2321
2322 /* shmemfs first checks if there is enough memory to allocate the page
2323 * and reports ENOSPC should there be insufficient, along with the usual
2324 * ENOMEM for a genuine allocation failure.
2325 *
2326 * We use ENOSPC in our driver to mean that we have run out of aperture
2327 * space and so want to translate the error from shmemfs back to our
2328 * usual understanding of ENOMEM.
2329 */
e2273302
ID
2330 if (ret == -ENOSPC)
2331 ret = -ENOMEM;
2332
03ac84f1
CW
2333 return ERR_PTR(ret);
2334}
2335
2336void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2337 struct sg_table *pages)
2338{
1233e2db 2339 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2340
2341 obj->mm.get_page.sg_pos = pages->sgl;
2342 obj->mm.get_page.sg_idx = 0;
2343
2344 obj->mm.pages = pages;
2345}
2346
2347static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2348{
2349 struct sg_table *pages;
2350
2351 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2352 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2353 return -EFAULT;
2354 }
2355
2356 pages = obj->ops->get_pages(obj);
2357 if (unlikely(IS_ERR(pages)))
2358 return PTR_ERR(pages);
2359
2360 __i915_gem_object_set_pages(obj, pages);
2361 return 0;
673a394b
EA
2362}
2363
37e680a1 2364/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2365 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2366 * multiple times before they are released by a single call to
1233e2db 2367 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2368 * either as a result of memory pressure (reaping pages under the shrinker)
2369 * or as the object is itself released.
2370 */
a4f5ea64 2371int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2372{
03ac84f1 2373 int err;
37e680a1 2374
1233e2db
CW
2375 err = mutex_lock_interruptible(&obj->mm.lock);
2376 if (err)
2377 return err;
4c7d62c6 2378
1233e2db
CW
2379 if (likely(obj->mm.pages)) {
2380 __i915_gem_object_pin_pages(obj);
2381 goto unlock;
2382 }
2383
2384 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
37e680a1 2385
03ac84f1 2386 err = ____i915_gem_object_get_pages(obj);
1233e2db
CW
2387 if (!err)
2388 atomic_set_release(&obj->mm.pages_pin_count, 1);
ee286370 2389
1233e2db
CW
2390unlock:
2391 mutex_unlock(&obj->mm.lock);
03ac84f1 2392 return err;
673a394b
EA
2393}
2394
dd6034c6 2395/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2396static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2397 enum i915_map_type type)
dd6034c6
DG
2398{
2399 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2400 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2401 struct sgt_iter sgt_iter;
2402 struct page *page;
b338fa47
DG
2403 struct page *stack_pages[32];
2404 struct page **pages = stack_pages;
dd6034c6 2405 unsigned long i = 0;
d31d7cb1 2406 pgprot_t pgprot;
dd6034c6
DG
2407 void *addr;
2408
2409 /* A single page can always be kmapped */
d31d7cb1 2410 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2411 return kmap(sg_page(sgt->sgl));
2412
b338fa47
DG
2413 if (n_pages > ARRAY_SIZE(stack_pages)) {
2414 /* Too big for stack -- allocate temporary array instead */
2415 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2416 if (!pages)
2417 return NULL;
2418 }
dd6034c6 2419
85d1225e
DG
2420 for_each_sgt_page(page, sgt_iter, sgt)
2421 pages[i++] = page;
dd6034c6
DG
2422
2423 /* Check that we have the expected number of pages */
2424 GEM_BUG_ON(i != n_pages);
2425
d31d7cb1
CW
2426 switch (type) {
2427 case I915_MAP_WB:
2428 pgprot = PAGE_KERNEL;
2429 break;
2430 case I915_MAP_WC:
2431 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2432 break;
2433 }
2434 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2435
b338fa47
DG
2436 if (pages != stack_pages)
2437 drm_free_large(pages);
dd6034c6
DG
2438
2439 return addr;
2440}
2441
2442/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2443void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2444 enum i915_map_type type)
0a798eb9 2445{
d31d7cb1
CW
2446 enum i915_map_type has_type;
2447 bool pinned;
2448 void *ptr;
0a798eb9
CW
2449 int ret;
2450
d31d7cb1 2451 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2452
1233e2db 2453 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2454 if (ret)
2455 return ERR_PTR(ret);
2456
1233e2db
CW
2457 pinned = true;
2458 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2459 ret = ____i915_gem_object_get_pages(obj);
2460 if (ret)
2461 goto err_unlock;
2462
2463 GEM_BUG_ON(atomic_read(&obj->mm.pages_pin_count));
2464 atomic_set_release(&obj->mm.pages_pin_count, 1);
2465 pinned = false;
2466 }
2467 GEM_BUG_ON(!obj->mm.pages);
0a798eb9 2468
a4f5ea64 2469 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
d31d7cb1
CW
2470 if (ptr && has_type != type) {
2471 if (pinned) {
2472 ret = -EBUSY;
1233e2db 2473 goto err_unpin;
0a798eb9 2474 }
d31d7cb1
CW
2475
2476 if (is_vmalloc_addr(ptr))
2477 vunmap(ptr);
2478 else
2479 kunmap(kmap_to_page(ptr));
2480
a4f5ea64 2481 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2482 }
2483
d31d7cb1
CW
2484 if (!ptr) {
2485 ptr = i915_gem_object_map(obj, type);
2486 if (!ptr) {
2487 ret = -ENOMEM;
1233e2db 2488 goto err_unpin;
d31d7cb1
CW
2489 }
2490
a4f5ea64 2491 obj->mm.mapping = ptr_pack_bits(ptr, type);
d31d7cb1
CW
2492 }
2493
1233e2db
CW
2494out_unlock:
2495 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2496 return ptr;
2497
1233e2db
CW
2498err_unpin:
2499 atomic_dec(&obj->mm.pages_pin_count);
2500err_unlock:
2501 ptr = ERR_PTR(ret);
2502 goto out_unlock;
0a798eb9
CW
2503}
2504
b4716185 2505static void
fa545cbf
CW
2506i915_gem_object_retire__write(struct i915_gem_active *active,
2507 struct drm_i915_gem_request *request)
e2d05a8b 2508{
fa545cbf
CW
2509 struct drm_i915_gem_object *obj =
2510 container_of(active, struct drm_i915_gem_object, last_write);
b4716185 2511
de152b62 2512 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2513}
2514
caea7476 2515static void
fa545cbf
CW
2516i915_gem_object_retire__read(struct i915_gem_active *active,
2517 struct drm_i915_gem_request *request)
ce44b0ea 2518{
fa545cbf
CW
2519 int idx = request->engine->id;
2520 struct drm_i915_gem_object *obj =
2521 container_of(active, struct drm_i915_gem_object, last_read[idx]);
ce44b0ea 2522
573adb39 2523 GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
b4716185 2524
573adb39
CW
2525 i915_gem_object_clear_active(obj, idx);
2526 if (i915_gem_object_is_active(obj))
b4716185 2527 return;
caea7476 2528
6c246959
CW
2529 /* Bump our place on the bound list to keep it roughly in LRU order
2530 * so that we don't steal from recently used but inactive objects
2531 * (unless we are forced to ofc!)
2532 */
b0decaf7
CW
2533 if (obj->bind_count)
2534 list_move_tail(&obj->global_list,
2535 &request->i915->mm.bound_list);
caea7476 2536
f8a7fde4
CW
2537 if (i915_gem_object_has_active_reference(obj)) {
2538 i915_gem_object_clear_active_reference(obj);
2539 i915_gem_object_put(obj);
2540 }
c8725f3d
CW
2541}
2542
7b4d3a16 2543static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2544{
44e2c070 2545 unsigned long elapsed;
be62acb4 2546
44e2c070 2547 if (ctx->hang_stats.banned)
be62acb4
MK
2548 return true;
2549
7b4d3a16 2550 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2551 if (ctx->hang_stats.ban_period_seconds &&
2552 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2553 DRM_DEBUG("context hanging too fast, banning!\n");
2554 return true;
be62acb4
MK
2555 }
2556
2557 return false;
2558}
2559
7b4d3a16 2560static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2561 const bool guilty)
aa60c664 2562{
7b4d3a16 2563 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2564
2565 if (guilty) {
7b4d3a16 2566 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2567 hs->batch_active++;
2568 hs->guilty_ts = get_seconds();
2569 } else {
2570 hs->batch_pending++;
aa60c664
MK
2571 }
2572}
2573
8d9fc7fd 2574struct drm_i915_gem_request *
0bc40be8 2575i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2576{
4db080f9
CW
2577 struct drm_i915_gem_request *request;
2578
f69a02c9
CW
2579 /* We are called by the error capture and reset at a random
2580 * point in time. In particular, note that neither is crucially
2581 * ordered with an interrupt. After a hang, the GPU is dead and we
2582 * assume that no more writes can happen (we waited long enough for
2583 * all writes that were in transaction to be flushed) - adding an
2584 * extra delay for a recent interrupt is pointless. Hence, we do
2585 * not need an engine->irq_seqno_barrier() before the seqno reads.
2586 */
efdf7c06 2587 list_for_each_entry(request, &engine->request_list, link) {
f69a02c9 2588 if (i915_gem_request_completed(request))
4db080f9 2589 continue;
aa60c664 2590
5590af3e
CW
2591 if (!i915_sw_fence_done(&request->submit))
2592 break;
2593
b6b0fac0 2594 return request;
4db080f9 2595 }
b6b0fac0
MK
2596
2597 return NULL;
2598}
2599
821ed7df
CW
2600static void reset_request(struct drm_i915_gem_request *request)
2601{
2602 void *vaddr = request->ring->vaddr;
2603 u32 head;
2604
2605 /* As this request likely depends on state from the lost
2606 * context, clear out all the user operations leaving the
2607 * breadcrumb at the end (so we get the fence notifications).
2608 */
2609 head = request->head;
2610 if (request->postfix < head) {
2611 memset(vaddr + head, 0, request->ring->size - head);
2612 head = 0;
2613 }
2614 memset(vaddr + head, 0, request->postfix - head);
2615}
2616
2617static void i915_gem_reset_engine(struct intel_engine_cs *engine)
b6b0fac0
MK
2618{
2619 struct drm_i915_gem_request *request;
821ed7df 2620 struct i915_gem_context *incomplete_ctx;
b6b0fac0
MK
2621 bool ring_hung;
2622
821ed7df
CW
2623 if (engine->irq_seqno_barrier)
2624 engine->irq_seqno_barrier(engine);
2625
0bc40be8 2626 request = i915_gem_find_active_request(engine);
821ed7df 2627 if (!request)
b6b0fac0
MK
2628 return;
2629
0bc40be8 2630 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
77c60701
CW
2631 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2632 ring_hung = false;
2633
7b4d3a16 2634 i915_set_reset_status(request->ctx, ring_hung);
821ed7df
CW
2635 if (!ring_hung)
2636 return;
2637
2638 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2639 engine->name, request->fence.seqno);
2640
2641 /* Setup the CS to resume from the breadcrumb of the hung request */
2642 engine->reset_hw(engine, request);
2643
2644 /* Users of the default context do not rely on logical state
2645 * preserved between batches. They have to emit full state on
2646 * every batch and so it is safe to execute queued requests following
2647 * the hang.
2648 *
2649 * Other contexts preserve state, now corrupt. We want to skip all
2650 * queued requests that reference the corrupt context.
2651 */
2652 incomplete_ctx = request->ctx;
2653 if (i915_gem_context_is_default(incomplete_ctx))
2654 return;
2655
efdf7c06 2656 list_for_each_entry_continue(request, &engine->request_list, link)
821ed7df
CW
2657 if (request->ctx == incomplete_ctx)
2658 reset_request(request);
4db080f9 2659}
aa60c664 2660
821ed7df 2661void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 2662{
821ed7df 2663 struct intel_engine_cs *engine;
3b3f1650 2664 enum intel_engine_id id;
608c1a52 2665
4c7d62c6
CW
2666 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2667
821ed7df
CW
2668 i915_gem_retire_requests(dev_priv);
2669
3b3f1650 2670 for_each_engine(engine, dev_priv, id)
821ed7df
CW
2671 i915_gem_reset_engine(engine);
2672
2673 i915_gem_restore_fences(&dev_priv->drm);
f2a91d1a
CW
2674
2675 if (dev_priv->gt.awake) {
2676 intel_sanitize_gt_powersave(dev_priv);
2677 intel_enable_gt_powersave(dev_priv);
2678 if (INTEL_GEN(dev_priv) >= 6)
2679 gen6_rps_busy(dev_priv);
2680 }
821ed7df
CW
2681}
2682
2683static void nop_submit_request(struct drm_i915_gem_request *request)
2684{
2685}
2686
2687static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2688{
2689 engine->submit_request = nop_submit_request;
70c2a24d 2690
c4b0930b
CW
2691 /* Mark all pending requests as complete so that any concurrent
2692 * (lockless) lookup doesn't try and wait upon the request as we
2693 * reset it.
2694 */
87b723a1 2695 intel_engine_init_seqno(engine, engine->last_submitted_seqno);
c4b0930b 2696
dcb4c12a
OM
2697 /*
2698 * Clear the execlists queue up before freeing the requests, as those
2699 * are the ones that keep the context and ringbuffer backing objects
2700 * pinned in place.
2701 */
dcb4c12a 2702
7de1691a 2703 if (i915.enable_execlists) {
70c2a24d
CW
2704 spin_lock(&engine->execlist_lock);
2705 INIT_LIST_HEAD(&engine->execlist_queue);
2706 i915_gem_request_put(engine->execlist_port[0].request);
2707 i915_gem_request_put(engine->execlist_port[1].request);
2708 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2709 spin_unlock(&engine->execlist_lock);
dcb4c12a
OM
2710 }
2711
b913b33c 2712 engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
673a394b
EA
2713}
2714
821ed7df 2715void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
673a394b 2716{
e2f80391 2717 struct intel_engine_cs *engine;
3b3f1650 2718 enum intel_engine_id id;
673a394b 2719
821ed7df
CW
2720 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2721 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
4db080f9 2722
821ed7df 2723 i915_gem_context_lost(dev_priv);
3b3f1650 2724 for_each_engine(engine, dev_priv, id)
821ed7df 2725 i915_gem_cleanup_engine(engine);
b913b33c 2726 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2727
821ed7df 2728 i915_gem_retire_requests(dev_priv);
673a394b
EA
2729}
2730
75ef9da2 2731static void
673a394b
EA
2732i915_gem_retire_work_handler(struct work_struct *work)
2733{
b29c19b6 2734 struct drm_i915_private *dev_priv =
67d97da3 2735 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2736 struct drm_device *dev = &dev_priv->drm;
673a394b 2737
891b48cf 2738 /* Come back later if the device is busy... */
b29c19b6 2739 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2740 i915_gem_retire_requests(dev_priv);
b29c19b6 2741 mutex_unlock(&dev->struct_mutex);
673a394b 2742 }
67d97da3
CW
2743
2744 /* Keep the retire handler running until we are finally idle.
2745 * We do not need to do this test under locking as in the worst-case
2746 * we queue the retire worker once too often.
2747 */
c9615613
CW
2748 if (READ_ONCE(dev_priv->gt.awake)) {
2749 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2750 queue_delayed_work(dev_priv->wq,
2751 &dev_priv->gt.retire_work,
bcb45086 2752 round_jiffies_up_relative(HZ));
c9615613 2753 }
b29c19b6 2754}
0a58705b 2755
b29c19b6
CW
2756static void
2757i915_gem_idle_work_handler(struct work_struct *work)
2758{
2759 struct drm_i915_private *dev_priv =
67d97da3 2760 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2761 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2762 struct intel_engine_cs *engine;
3b3f1650 2763 enum intel_engine_id id;
67d97da3
CW
2764 bool rearm_hangcheck;
2765
2766 if (!READ_ONCE(dev_priv->gt.awake))
2767 return;
2768
2769 if (READ_ONCE(dev_priv->gt.active_engines))
2770 return;
2771
2772 rearm_hangcheck =
2773 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2774
2775 if (!mutex_trylock(&dev->struct_mutex)) {
2776 /* Currently busy, come back later */
2777 mod_delayed_work(dev_priv->wq,
2778 &dev_priv->gt.idle_work,
2779 msecs_to_jiffies(50));
2780 goto out_rearm;
2781 }
2782
2783 if (dev_priv->gt.active_engines)
2784 goto out_unlock;
b29c19b6 2785
3b3f1650 2786 for_each_engine(engine, dev_priv, id)
67d97da3 2787 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2788
67d97da3
CW
2789 GEM_BUG_ON(!dev_priv->gt.awake);
2790 dev_priv->gt.awake = false;
2791 rearm_hangcheck = false;
30ecad77 2792
67d97da3
CW
2793 if (INTEL_GEN(dev_priv) >= 6)
2794 gen6_rps_idle(dev_priv);
2795 intel_runtime_pm_put(dev_priv);
2796out_unlock:
2797 mutex_unlock(&dev->struct_mutex);
b29c19b6 2798
67d97da3
CW
2799out_rearm:
2800 if (rearm_hangcheck) {
2801 GEM_BUG_ON(!dev_priv->gt.awake);
2802 i915_queue_hangcheck(dev_priv);
35c94185 2803 }
673a394b
EA
2804}
2805
b1f788c6
CW
2806void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2807{
2808 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2809 struct drm_i915_file_private *fpriv = file->driver_priv;
2810 struct i915_vma *vma, *vn;
2811
2812 mutex_lock(&obj->base.dev->struct_mutex);
2813 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2814 if (vma->vm->file == fpriv)
2815 i915_vma_close(vma);
f8a7fde4
CW
2816
2817 if (i915_gem_object_is_active(obj) &&
2818 !i915_gem_object_has_active_reference(obj)) {
2819 i915_gem_object_set_active_reference(obj);
2820 i915_gem_object_get(obj);
2821 }
b1f788c6
CW
2822 mutex_unlock(&obj->base.dev->struct_mutex);
2823}
2824
e95433c7
CW
2825static unsigned long to_wait_timeout(s64 timeout_ns)
2826{
2827 if (timeout_ns < 0)
2828 return MAX_SCHEDULE_TIMEOUT;
2829
2830 if (timeout_ns == 0)
2831 return 0;
2832
2833 return nsecs_to_jiffies_timeout(timeout_ns);
2834}
2835
23ba4fd0
BW
2836/**
2837 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2838 * @dev: drm device pointer
2839 * @data: ioctl data blob
2840 * @file: drm file pointer
23ba4fd0
BW
2841 *
2842 * Returns 0 if successful, else an error is returned with the remaining time in
2843 * the timeout parameter.
2844 * -ETIME: object is still busy after timeout
2845 * -ERESTARTSYS: signal interrupted the wait
2846 * -ENONENT: object doesn't exist
2847 * Also possible, but rare:
2848 * -EAGAIN: GPU wedged
2849 * -ENOMEM: damn
2850 * -ENODEV: Internal IRQ fail
2851 * -E?: The add request failed
2852 *
2853 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2854 * non-zero timeout parameter the wait ioctl will wait for the given number of
2855 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2856 * without holding struct_mutex the object may become re-busied before this
2857 * function completes. A similar but shorter * race condition exists in the busy
2858 * ioctl
2859 */
2860int
2861i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2862{
2863 struct drm_i915_gem_wait *args = data;
2864 struct drm_i915_gem_object *obj;
e95433c7
CW
2865 ktime_t start;
2866 long ret;
23ba4fd0 2867
11b5d511
DV
2868 if (args->flags != 0)
2869 return -EINVAL;
2870
03ac0642 2871 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 2872 if (!obj)
23ba4fd0 2873 return -ENOENT;
23ba4fd0 2874
e95433c7
CW
2875 start = ktime_get();
2876
2877 ret = i915_gem_object_wait(obj,
2878 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
2879 to_wait_timeout(args->timeout_ns),
2880 to_rps_client(file));
2881
2882 if (args->timeout_ns > 0) {
2883 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
2884 if (args->timeout_ns < 0)
2885 args->timeout_ns = 0;
b4716185
CW
2886 }
2887
033d549b 2888 i915_gem_object_put_unlocked(obj);
ff865885 2889 return ret;
23ba4fd0
BW
2890}
2891
8ef8561f
CW
2892static void __i915_vma_iounmap(struct i915_vma *vma)
2893{
20dfbde4 2894 GEM_BUG_ON(i915_vma_is_pinned(vma));
8ef8561f
CW
2895
2896 if (vma->iomap == NULL)
2897 return;
2898
2899 io_mapping_unmap(vma->iomap);
2900 vma->iomap = NULL;
2901}
2902
df0e9a28 2903int i915_vma_unbind(struct i915_vma *vma)
673a394b 2904{
07fe0b12 2905 struct drm_i915_gem_object *obj = vma->obj;
b0decaf7 2906 unsigned long active;
43e28f09 2907 int ret;
673a394b 2908
4c7d62c6
CW
2909 lockdep_assert_held(&obj->base.dev->struct_mutex);
2910
b0decaf7
CW
2911 /* First wait upon any activity as retiring the request may
2912 * have side-effects such as unpinning or even unbinding this vma.
2913 */
2914 active = i915_vma_get_active(vma);
df0e9a28 2915 if (active) {
b0decaf7
CW
2916 int idx;
2917
b1f788c6
CW
2918 /* When a closed VMA is retired, it is unbound - eek.
2919 * In order to prevent it from being recursively closed,
2920 * take a pin on the vma so that the second unbind is
2921 * aborted.
2922 */
20dfbde4 2923 __i915_vma_pin(vma);
b1f788c6 2924
b0decaf7
CW
2925 for_each_active(active, idx) {
2926 ret = i915_gem_active_retire(&vma->last_read[idx],
2927 &vma->vm->dev->struct_mutex);
2928 if (ret)
b1f788c6 2929 break;
b0decaf7
CW
2930 }
2931
20dfbde4 2932 __i915_vma_unpin(vma);
b1f788c6
CW
2933 if (ret)
2934 return ret;
2935
b0decaf7
CW
2936 GEM_BUG_ON(i915_vma_is_active(vma));
2937 }
2938
20dfbde4 2939 if (i915_vma_is_pinned(vma))
b0decaf7
CW
2940 return -EBUSY;
2941
b1f788c6
CW
2942 if (!drm_mm_node_allocated(&vma->node))
2943 goto destroy;
433544bd 2944
15717de2 2945 GEM_BUG_ON(obj->bind_count == 0);
a4f5ea64 2946 GEM_BUG_ON(!obj->mm.pages);
c4670ad0 2947
05a20d09 2948 if (i915_vma_is_map_and_fenceable(vma)) {
8b1bc9b4 2949 /* release the fence reg _after_ flushing */
49ef5294 2950 ret = i915_vma_put_fence(vma);
8b1bc9b4
DV
2951 if (ret)
2952 return ret;
8ef8561f 2953
cd3127d6
CW
2954 /* Force a pagefault for domain tracking on next user access */
2955 i915_gem_release_mmap(obj);
2956
8ef8561f 2957 __i915_vma_iounmap(vma);
05a20d09 2958 vma->flags &= ~I915_VMA_CAN_FENCE;
8b1bc9b4 2959 }
96b47b65 2960
50e046b6
CW
2961 if (likely(!vma->vm->closed)) {
2962 trace_i915_vma_unbind(vma);
2963 vma->vm->unbind_vma(vma);
2964 }
3272db53 2965 vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
6f65e29a 2966
50e046b6
CW
2967 drm_mm_remove_node(&vma->node);
2968 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2969
a4f5ea64 2970 if (vma->pages != obj->mm.pages) {
05a20d09
CW
2971 GEM_BUG_ON(!vma->pages);
2972 sg_free_table(vma->pages);
2973 kfree(vma->pages);
fe14d5f4 2974 }
247177dd 2975 vma->pages = NULL;
673a394b 2976
2f633156 2977 /* Since the unbound list is global, only move to that list if
b93dab6e 2978 * no more VMAs exist. */
15717de2
CW
2979 if (--obj->bind_count == 0)
2980 list_move_tail(&obj->global_list,
2981 &to_i915(obj->base.dev)->mm.unbound_list);
673a394b 2982
70903c3b
CW
2983 /* And finally now the object is completely decoupled from this vma,
2984 * we can drop its hold on the backing storage and allow it to be
2985 * reaped by the shrinker.
2986 */
2987 i915_gem_object_unpin_pages(obj);
2988
b1f788c6 2989destroy:
3272db53 2990 if (unlikely(i915_vma_is_closed(vma)))
b1f788c6
CW
2991 i915_vma_destroy(vma);
2992
88241785 2993 return 0;
54cf91dc
CW
2994}
2995
dcff85c8 2996int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
ea746f36 2997 unsigned int flags)
4df2faf4 2998{
e2f80391 2999 struct intel_engine_cs *engine;
3b3f1650 3000 enum intel_engine_id id;
b4ac5afc 3001 int ret;
4df2faf4 3002
3b3f1650 3003 for_each_engine(engine, dev_priv, id) {
62e63007
CW
3004 if (engine->last_context == NULL)
3005 continue;
3006
ea746f36 3007 ret = intel_engine_idle(engine, flags);
1ec14ad3
CW
3008 if (ret)
3009 return ret;
3010 }
4df2faf4 3011
8a1a49f9 3012 return 0;
4df2faf4
DV
3013}
3014
4144f9b5 3015static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3016 unsigned long cache_level)
3017{
4144f9b5 3018 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3019 struct drm_mm_node *other;
3020
4144f9b5
CW
3021 /*
3022 * On some machines we have to be careful when putting differing types
3023 * of snoopable memory together to avoid the prefetcher crossing memory
3024 * domains and dying. During vm initialisation, we decide whether or not
3025 * these constraints apply and set the drm_mm.color_adjust
3026 * appropriately.
42d6ab48 3027 */
4144f9b5 3028 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3029 return true;
3030
c6cfb325 3031 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3032 return true;
3033
3034 if (list_empty(&gtt_space->node_list))
3035 return true;
3036
3037 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3038 if (other->allocated && !other->hole_follows && other->color != cache_level)
3039 return false;
3040
3041 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3042 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3043 return false;
3044
3045 return true;
3046}
3047
673a394b 3048/**
59bfa124
CW
3049 * i915_vma_insert - finds a slot for the vma in its address space
3050 * @vma: the vma
91b2db6f 3051 * @size: requested size in bytes (can be larger than the VMA)
59bfa124 3052 * @alignment: required alignment
14bb2c11 3053 * @flags: mask of PIN_* flags to use
59bfa124
CW
3054 *
3055 * First we try to allocate some free space that meets the requirements for
3056 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
3057 * preferrably the oldest idle entry to make room for the new VMA.
3058 *
3059 * Returns:
3060 * 0 on success, negative error code otherwise.
673a394b 3061 */
59bfa124
CW
3062static int
3063i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
673a394b 3064{
59bfa124
CW
3065 struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
3066 struct drm_i915_gem_object *obj = vma->obj;
de180033 3067 u64 start, end;
07f73f69 3068 int ret;
673a394b 3069
3272db53 3070 GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
59bfa124 3071 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
de180033
CW
3072
3073 size = max(size, vma->size);
3074 if (flags & PIN_MAPPABLE)
3e510a8e
CW
3075 size = i915_gem_get_ggtt_size(dev_priv, size,
3076 i915_gem_object_get_tiling(obj));
de180033 3077
d8923dcf
CW
3078 alignment = max(max(alignment, vma->display_alignment),
3079 i915_gem_get_ggtt_alignment(dev_priv, size,
3080 i915_gem_object_get_tiling(obj),
3081 flags & PIN_MAPPABLE));
a00b10c3 3082
101b506a 3083 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
de180033
CW
3084
3085 end = vma->vm->total;
101b506a 3086 if (flags & PIN_MAPPABLE)
91b2db6f 3087 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
101b506a 3088 if (flags & PIN_ZONE_4G)
48ea1e32 3089 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3090
91e6711e
JL
3091 /* If binding the object/GGTT view requires more space than the entire
3092 * aperture has, reject it early before evicting everything in a vain
3093 * attempt to find space.
654fc607 3094 */
91e6711e 3095 if (size > end) {
de180033 3096 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
91b2db6f 3097 size, obj->base.size,
1ec9e26d 3098 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3099 end);
59bfa124 3100 return -E2BIG;
654fc607
CW
3101 }
3102
a4f5ea64 3103 ret = i915_gem_object_pin_pages(obj);
6c085a72 3104 if (ret)
59bfa124 3105 return ret;
6c085a72 3106
506a8e87 3107 if (flags & PIN_OFFSET_FIXED) {
59bfa124 3108 u64 offset = flags & PIN_OFFSET_MASK;
de180033 3109 if (offset & (alignment - 1) || offset > end - size) {
506a8e87 3110 ret = -EINVAL;
de180033 3111 goto err_unpin;
506a8e87 3112 }
de180033 3113
506a8e87
CW
3114 vma->node.start = offset;
3115 vma->node.size = size;
3116 vma->node.color = obj->cache_level;
de180033 3117 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
506a8e87
CW
3118 if (ret) {
3119 ret = i915_gem_evict_for_vma(vma);
3120 if (ret == 0)
de180033
CW
3121 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3122 if (ret)
3123 goto err_unpin;
506a8e87 3124 }
101b506a 3125 } else {
de180033
CW
3126 u32 search_flag, alloc_flag;
3127
506a8e87
CW
3128 if (flags & PIN_HIGH) {
3129 search_flag = DRM_MM_SEARCH_BELOW;
3130 alloc_flag = DRM_MM_CREATE_TOP;
3131 } else {
3132 search_flag = DRM_MM_SEARCH_DEFAULT;
3133 alloc_flag = DRM_MM_CREATE_DEFAULT;
3134 }
101b506a 3135
954c4691
CW
3136 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3137 * so we know that we always have a minimum alignment of 4096.
3138 * The drm_mm range manager is optimised to return results
3139 * with zero alignment, so where possible use the optimal
3140 * path.
3141 */
3142 if (alignment <= 4096)
3143 alignment = 0;
3144
0a9ae0d7 3145search_free:
de180033
CW
3146 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3147 &vma->node,
506a8e87
CW
3148 size, alignment,
3149 obj->cache_level,
3150 start, end,
3151 search_flag,
3152 alloc_flag);
3153 if (ret) {
de180033 3154 ret = i915_gem_evict_something(vma->vm, size, alignment,
506a8e87
CW
3155 obj->cache_level,
3156 start, end,
3157 flags);
3158 if (ret == 0)
3159 goto search_free;
9731129c 3160
de180033 3161 goto err_unpin;
506a8e87 3162 }
ad16d2ed
CW
3163
3164 GEM_BUG_ON(vma->node.start < start);
3165 GEM_BUG_ON(vma->node.start + vma->node.size > end);
673a394b 3166 }
37508589 3167 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
673a394b 3168
35c20a60 3169 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
de180033 3170 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
15717de2 3171 obj->bind_count++;
bf1a1092 3172
59bfa124 3173 return 0;
2f633156 3174
bc6bc15b 3175err_unpin:
2f633156 3176 i915_gem_object_unpin_pages(obj);
59bfa124 3177 return ret;
673a394b
EA
3178}
3179
000433b6 3180bool
2c22569b
CW
3181i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3182 bool force)
673a394b 3183{
673a394b
EA
3184 /* If we don't have a page list set up, then we're not pinned
3185 * to GPU, and we can ignore the cache flush because it'll happen
3186 * again at bind time.
3187 */
a4f5ea64 3188 if (!obj->mm.pages)
000433b6 3189 return false;
673a394b 3190
769ce464
ID
3191 /*
3192 * Stolen memory is always coherent with the GPU as it is explicitly
3193 * marked as wc by the system, or the system is cache-coherent.
3194 */
6a2c4232 3195 if (obj->stolen || obj->phys_handle)
000433b6 3196 return false;
769ce464 3197
9c23f7fc
CW
3198 /* If the GPU is snooping the contents of the CPU cache,
3199 * we do not need to manually clear the CPU cache lines. However,
3200 * the caches are only snooped when the render cache is
3201 * flushed/invalidated. As we always have to emit invalidations
3202 * and flushes when moving into and out of the RENDER domain, correct
3203 * snooping behaviour occurs naturally as the result of our domain
3204 * tracking.
3205 */
0f71979a
CW
3206 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3207 obj->cache_dirty = true;
000433b6 3208 return false;
0f71979a 3209 }
9c23f7fc 3210
1c5d22f7 3211 trace_i915_gem_object_clflush(obj);
a4f5ea64 3212 drm_clflush_sg(obj->mm.pages);
0f71979a 3213 obj->cache_dirty = false;
000433b6
CW
3214
3215 return true;
e47c68e9
EA
3216}
3217
3218/** Flushes the GTT write domain for the object if it's dirty. */
3219static void
05394f39 3220i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3221{
3b5724d7 3222 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1c5d22f7 3223
05394f39 3224 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3225 return;
3226
63256ec5 3227 /* No actual flushing is required for the GTT write domain. Writes
3b5724d7 3228 * to it "immediately" go to main memory as far as we know, so there's
e47c68e9 3229 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3230 *
3231 * However, we do have to enforce the order so that all writes through
3232 * the GTT land before any writes to the device, such as updates to
3233 * the GATT itself.
3b5724d7
CW
3234 *
3235 * We also have to wait a bit for the writes to land from the GTT.
3236 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3237 * timing. This issue has only been observed when switching quickly
3238 * between GTT writes and CPU reads from inside the kernel on recent hw,
3239 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3240 * system agents we cannot reproduce this behaviour).
e47c68e9 3241 */
63256ec5 3242 wmb();
3b5724d7 3243 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3b3f1650 3244 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
63256ec5 3245
d243ad82 3246 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
f99d7069 3247
b0dc465f 3248 obj->base.write_domain = 0;
1c5d22f7 3249 trace_i915_gem_object_change_domain(obj,
05394f39 3250 obj->base.read_domains,
b0dc465f 3251 I915_GEM_DOMAIN_GTT);
e47c68e9
EA
3252}
3253
3254/** Flushes the CPU write domain for the object if it's dirty. */
3255static void
e62b59e4 3256i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3257{
05394f39 3258 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3259 return;
3260
e62b59e4 3261 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3262 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3263
de152b62 3264 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3265
b0dc465f 3266 obj->base.write_domain = 0;
1c5d22f7 3267 trace_i915_gem_object_change_domain(obj,
05394f39 3268 obj->base.read_domains,
b0dc465f 3269 I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3270}
3271
383d5823
CW
3272static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
3273{
3274 struct i915_vma *vma;
3275
3276 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3277 if (!i915_vma_is_ggtt(vma))
3278 continue;
3279
3280 if (i915_vma_is_active(vma))
3281 continue;
3282
3283 if (!drm_mm_node_allocated(&vma->node))
3284 continue;
3285
3286 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3287 }
3288}
3289
2ef7eeaa
EA
3290/**
3291 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3292 * @obj: object to act on
3293 * @write: ask for write access or read only
2ef7eeaa
EA
3294 *
3295 * This function returns when the move is complete, including waiting on
3296 * flushes to occur.
3297 */
79e53945 3298int
2021746e 3299i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3300{
1c5d22f7 3301 uint32_t old_write_domain, old_read_domains;
e47c68e9 3302 int ret;
2ef7eeaa 3303
e95433c7 3304 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3305
e95433c7
CW
3306 ret = i915_gem_object_wait(obj,
3307 I915_WAIT_INTERRUPTIBLE |
3308 I915_WAIT_LOCKED |
3309 (write ? I915_WAIT_ALL : 0),
3310 MAX_SCHEDULE_TIMEOUT,
3311 NULL);
88241785
CW
3312 if (ret)
3313 return ret;
3314
c13d87ea
CW
3315 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3316 return 0;
3317
43566ded
CW
3318 /* Flush and acquire obj->pages so that we are coherent through
3319 * direct access in memory with previous cached writes through
3320 * shmemfs and that our cache domain tracking remains valid.
3321 * For example, if the obj->filp was moved to swap without us
3322 * being notified and releasing the pages, we would mistakenly
3323 * continue to assume that the obj remained out of the CPU cached
3324 * domain.
3325 */
a4f5ea64 3326 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3327 if (ret)
3328 return ret;
3329
e62b59e4 3330 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3331
d0a57789
CW
3332 /* Serialise direct access to this object with the barriers for
3333 * coherent writes from the GPU, by effectively invalidating the
3334 * GTT domain upon first access.
3335 */
3336 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3337 mb();
3338
05394f39
CW
3339 old_write_domain = obj->base.write_domain;
3340 old_read_domains = obj->base.read_domains;
1c5d22f7 3341
e47c68e9
EA
3342 /* It should now be out of any other write domains, and we can update
3343 * the domain values for our changes.
3344 */
05394f39
CW
3345 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3346 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3347 if (write) {
05394f39
CW
3348 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3349 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3350 obj->mm.dirty = true;
2ef7eeaa
EA
3351 }
3352
1c5d22f7
CW
3353 trace_i915_gem_object_change_domain(obj,
3354 old_read_domains,
3355 old_write_domain);
3356
8325a09d 3357 /* And bump the LRU for this access */
383d5823 3358 i915_gem_object_bump_inactive_ggtt(obj);
a4f5ea64 3359 i915_gem_object_unpin_pages(obj);
8325a09d 3360
e47c68e9
EA
3361 return 0;
3362}
3363
ef55f92a
CW
3364/**
3365 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3366 * @obj: object to act on
3367 * @cache_level: new cache level to set for the object
ef55f92a
CW
3368 *
3369 * After this function returns, the object will be in the new cache-level
3370 * across all GTT and the contents of the backing storage will be coherent,
3371 * with respect to the new cache-level. In order to keep the backing storage
3372 * coherent for all users, we only allow a single cache level to be set
3373 * globally on the object and prevent it from being changed whilst the
3374 * hardware is reading from the object. That is if the object is currently
3375 * on the scanout it will be set to uncached (or equivalent display
3376 * cache coherency) and all non-MOCS GPU access will also be uncached so
3377 * that all direct access to the scanout remains coherent.
3378 */
e4ffd173
CW
3379int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3380 enum i915_cache_level cache_level)
3381{
aa653a68 3382 struct i915_vma *vma;
ed75a55b 3383 int ret = 0;
e4ffd173 3384
4c7d62c6
CW
3385 lockdep_assert_held(&obj->base.dev->struct_mutex);
3386
e4ffd173 3387 if (obj->cache_level == cache_level)
ed75a55b 3388 goto out;
e4ffd173 3389
ef55f92a
CW
3390 /* Inspect the list of currently bound VMA and unbind any that would
3391 * be invalid given the new cache-level. This is principally to
3392 * catch the issue of the CS prefetch crossing page boundaries and
3393 * reading an invalid PTE on older architectures.
3394 */
aa653a68
CW
3395restart:
3396 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3397 if (!drm_mm_node_allocated(&vma->node))
3398 continue;
3399
20dfbde4 3400 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3401 DRM_DEBUG("can not change the cache level of pinned objects\n");
3402 return -EBUSY;
3403 }
3404
aa653a68
CW
3405 if (i915_gem_valid_gtt_space(vma, cache_level))
3406 continue;
3407
3408 ret = i915_vma_unbind(vma);
3409 if (ret)
3410 return ret;
3411
3412 /* As unbinding may affect other elements in the
3413 * obj->vma_list (due to side-effects from retiring
3414 * an active vma), play safe and restart the iterator.
3415 */
3416 goto restart;
42d6ab48
CW
3417 }
3418
ef55f92a
CW
3419 /* We can reuse the existing drm_mm nodes but need to change the
3420 * cache-level on the PTE. We could simply unbind them all and
3421 * rebind with the correct cache-level on next use. However since
3422 * we already have a valid slot, dma mapping, pages etc, we may as
3423 * rewrite the PTE in the belief that doing so tramples upon less
3424 * state and so involves less work.
3425 */
15717de2 3426 if (obj->bind_count) {
ef55f92a
CW
3427 /* Before we change the PTE, the GPU must not be accessing it.
3428 * If we wait upon the object, we know that all the bound
3429 * VMA are no longer active.
3430 */
e95433c7
CW
3431 ret = i915_gem_object_wait(obj,
3432 I915_WAIT_INTERRUPTIBLE |
3433 I915_WAIT_LOCKED |
3434 I915_WAIT_ALL,
3435 MAX_SCHEDULE_TIMEOUT,
3436 NULL);
e4ffd173
CW
3437 if (ret)
3438 return ret;
3439
aa653a68 3440 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3441 /* Access to snoopable pages through the GTT is
3442 * incoherent and on some machines causes a hard
3443 * lockup. Relinquish the CPU mmaping to force
3444 * userspace to refault in the pages and we can
3445 * then double check if the GTT mapping is still
3446 * valid for that pointer access.
3447 */
3448 i915_gem_release_mmap(obj);
3449
3450 /* As we no longer need a fence for GTT access,
3451 * we can relinquish it now (and so prevent having
3452 * to steal a fence from someone else on the next
3453 * fence request). Note GPU activity would have
3454 * dropped the fence as all snoopable access is
3455 * supposed to be linear.
3456 */
49ef5294
CW
3457 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3458 ret = i915_vma_put_fence(vma);
3459 if (ret)
3460 return ret;
3461 }
ef55f92a
CW
3462 } else {
3463 /* We either have incoherent backing store and
3464 * so no GTT access or the architecture is fully
3465 * coherent. In such cases, existing GTT mmaps
3466 * ignore the cache bit in the PTE and we can
3467 * rewrite it without confusing the GPU or having
3468 * to force userspace to fault back in its mmaps.
3469 */
e4ffd173
CW
3470 }
3471
1c7f4bca 3472 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3473 if (!drm_mm_node_allocated(&vma->node))
3474 continue;
3475
3476 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3477 if (ret)
3478 return ret;
3479 }
e4ffd173
CW
3480 }
3481
1c7f4bca 3482 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3483 vma->node.color = cache_level;
3484 obj->cache_level = cache_level;
3485
ed75a55b 3486out:
ef55f92a
CW
3487 /* Flush the dirty CPU caches to the backing storage so that the
3488 * object is now coherent at its new cache level (with respect
3489 * to the access domain).
3490 */
b50a5371 3491 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 3492 if (i915_gem_clflush_object(obj, true))
c033666a 3493 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3494 }
3495
e4ffd173
CW
3496 return 0;
3497}
3498
199adf40
BW
3499int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3500 struct drm_file *file)
e6994aee 3501{
199adf40 3502 struct drm_i915_gem_caching *args = data;
e6994aee 3503 struct drm_i915_gem_object *obj;
e6994aee 3504
03ac0642
CW
3505 obj = i915_gem_object_lookup(file, args->handle);
3506 if (!obj)
432be69d 3507 return -ENOENT;
e6994aee 3508
651d794f
CW
3509 switch (obj->cache_level) {
3510 case I915_CACHE_LLC:
3511 case I915_CACHE_L3_LLC:
3512 args->caching = I915_CACHING_CACHED;
3513 break;
3514
4257d3ba
CW
3515 case I915_CACHE_WT:
3516 args->caching = I915_CACHING_DISPLAY;
3517 break;
3518
651d794f
CW
3519 default:
3520 args->caching = I915_CACHING_NONE;
3521 break;
3522 }
e6994aee 3523
34911fd3 3524 i915_gem_object_put_unlocked(obj);
432be69d 3525 return 0;
e6994aee
CW
3526}
3527
199adf40
BW
3528int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3529 struct drm_file *file)
e6994aee 3530{
9c870d03 3531 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3532 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3533 struct drm_i915_gem_object *obj;
3534 enum i915_cache_level level;
3535 int ret;
3536
199adf40
BW
3537 switch (args->caching) {
3538 case I915_CACHING_NONE:
e6994aee
CW
3539 level = I915_CACHE_NONE;
3540 break;
199adf40 3541 case I915_CACHING_CACHED:
e5756c10
ID
3542 /*
3543 * Due to a HW issue on BXT A stepping, GPU stores via a
3544 * snooped mapping may leave stale data in a corresponding CPU
3545 * cacheline, whereas normally such cachelines would get
3546 * invalidated.
3547 */
9c870d03 3548 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3549 return -ENODEV;
3550
e6994aee
CW
3551 level = I915_CACHE_LLC;
3552 break;
4257d3ba 3553 case I915_CACHING_DISPLAY:
9c870d03 3554 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3555 break;
e6994aee
CW
3556 default:
3557 return -EINVAL;
3558 }
3559
3bc2913e
BW
3560 ret = i915_mutex_lock_interruptible(dev);
3561 if (ret)
9c870d03 3562 return ret;
3bc2913e 3563
03ac0642
CW
3564 obj = i915_gem_object_lookup(file, args->handle);
3565 if (!obj) {
e6994aee
CW
3566 ret = -ENOENT;
3567 goto unlock;
3568 }
3569
3570 ret = i915_gem_object_set_cache_level(obj, level);
f8c417cd 3571 i915_gem_object_put(obj);
e6994aee
CW
3572unlock:
3573 mutex_unlock(&dev->struct_mutex);
3574 return ret;
3575}
3576
b9241ea3 3577/*
2da3b9b9
CW
3578 * Prepare buffer for display plane (scanout, cursors, etc).
3579 * Can be called from an uninterruptible phase (modesetting) and allows
3580 * any flushes to be pipelined (for pageflips).
b9241ea3 3581 */
058d88c4 3582struct i915_vma *
2da3b9b9
CW
3583i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3584 u32 alignment,
e6617330 3585 const struct i915_ggtt_view *view)
b9241ea3 3586{
058d88c4 3587 struct i915_vma *vma;
2da3b9b9 3588 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3589 int ret;
3590
4c7d62c6
CW
3591 lockdep_assert_held(&obj->base.dev->struct_mutex);
3592
cc98b413
CW
3593 /* Mark the pin_display early so that we account for the
3594 * display coherency whilst setting up the cache domains.
3595 */
8a0c39b1 3596 obj->pin_display++;
cc98b413 3597
a7ef0640
EA
3598 /* The display engine is not coherent with the LLC cache on gen6. As
3599 * a result, we make sure that the pinning that is about to occur is
3600 * done with uncached PTEs. This is lowest common denominator for all
3601 * chipsets.
3602 *
3603 * However for gen6+, we could do better by using the GFDT bit instead
3604 * of uncaching, which would allow us to flush all the LLC-cached data
3605 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3606 */
651d794f 3607 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3608 HAS_WT(to_i915(obj->base.dev)) ?
3609 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3610 if (ret) {
3611 vma = ERR_PTR(ret);
cc98b413 3612 goto err_unpin_display;
058d88c4 3613 }
a7ef0640 3614
2da3b9b9
CW
3615 /* As the user may map the buffer once pinned in the display plane
3616 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3617 * always use map_and_fenceable for all scanout buffers. However,
3618 * it may simply be too big to fit into mappable, in which case
3619 * put it anyway and hope that userspace can cope (but always first
3620 * try to preserve the existing ABI).
2da3b9b9 3621 */
2efb813d
CW
3622 vma = ERR_PTR(-ENOSPC);
3623 if (view->type == I915_GGTT_VIEW_NORMAL)
3624 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3625 PIN_MAPPABLE | PIN_NONBLOCK);
3626 if (IS_ERR(vma))
3627 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
058d88c4 3628 if (IS_ERR(vma))
cc98b413 3629 goto err_unpin_display;
2da3b9b9 3630
d8923dcf
CW
3631 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3632
e62b59e4 3633 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3634
2da3b9b9 3635 old_write_domain = obj->base.write_domain;
05394f39 3636 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3637
3638 /* It should now be out of any other write domains, and we can update
3639 * the domain values for our changes.
3640 */
e5f1d962 3641 obj->base.write_domain = 0;
05394f39 3642 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3643
3644 trace_i915_gem_object_change_domain(obj,
3645 old_read_domains,
2da3b9b9 3646 old_write_domain);
b9241ea3 3647
058d88c4 3648 return vma;
cc98b413
CW
3649
3650err_unpin_display:
8a0c39b1 3651 obj->pin_display--;
058d88c4 3652 return vma;
cc98b413
CW
3653}
3654
3655void
058d88c4 3656i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3657{
4c7d62c6
CW
3658 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3659
058d88c4 3660 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3661 return;
3662
d8923dcf
CW
3663 if (--vma->obj->pin_display == 0)
3664 vma->display_alignment = 0;
e6617330 3665
383d5823
CW
3666 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3667 if (!i915_vma_is_active(vma))
3668 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3669
058d88c4 3670 i915_vma_unpin(vma);
b9241ea3
ZW
3671}
3672
e47c68e9
EA
3673/**
3674 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3675 * @obj: object to act on
3676 * @write: requesting write or read-only access
e47c68e9
EA
3677 *
3678 * This function returns when the move is complete, including waiting on
3679 * flushes to occur.
3680 */
dabdfe02 3681int
919926ae 3682i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3683{
1c5d22f7 3684 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3685 int ret;
3686
e95433c7 3687 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3688
e95433c7
CW
3689 ret = i915_gem_object_wait(obj,
3690 I915_WAIT_INTERRUPTIBLE |
3691 I915_WAIT_LOCKED |
3692 (write ? I915_WAIT_ALL : 0),
3693 MAX_SCHEDULE_TIMEOUT,
3694 NULL);
88241785
CW
3695 if (ret)
3696 return ret;
3697
c13d87ea
CW
3698 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3699 return 0;
3700
e47c68e9 3701 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3702
05394f39
CW
3703 old_write_domain = obj->base.write_domain;
3704 old_read_domains = obj->base.read_domains;
1c5d22f7 3705
e47c68e9 3706 /* Flush the CPU cache if it's still invalid. */
05394f39 3707 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3708 i915_gem_clflush_object(obj, false);
2ef7eeaa 3709
05394f39 3710 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3711 }
3712
3713 /* It should now be out of any other write domains, and we can update
3714 * the domain values for our changes.
3715 */
05394f39 3716 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3717
3718 /* If we're writing through the CPU, then the GPU read domains will
3719 * need to be invalidated at next use.
3720 */
3721 if (write) {
05394f39
CW
3722 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3723 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3724 }
2ef7eeaa 3725
1c5d22f7
CW
3726 trace_i915_gem_object_change_domain(obj,
3727 old_read_domains,
3728 old_write_domain);
3729
2ef7eeaa
EA
3730 return 0;
3731}
3732
673a394b
EA
3733/* Throttle our rendering by waiting until the ring has completed our requests
3734 * emitted over 20 msec ago.
3735 *
b962442e
EA
3736 * Note that if we were to use the current jiffies each time around the loop,
3737 * we wouldn't escape the function with any frames outstanding if the time to
3738 * render a frame was over 20ms.
3739 *
673a394b
EA
3740 * This should get us reasonable parallelism between CPU and GPU but also
3741 * relatively low latency when blocking on a particular request to finish.
3742 */
40a5f0de 3743static int
f787a5f5 3744i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3745{
fac5e23e 3746 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3747 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3748 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3749 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 3750 long ret;
93533c29 3751
f4457ae7
CW
3752 /* ABI: return -EIO if already wedged */
3753 if (i915_terminally_wedged(&dev_priv->gpu_error))
3754 return -EIO;
e110e8d6 3755
1c25595f 3756 spin_lock(&file_priv->mm.lock);
f787a5f5 3757 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3758 if (time_after_eq(request->emitted_jiffies, recent_enough))
3759 break;
40a5f0de 3760
fcfa423c
JH
3761 /*
3762 * Note that the request might not have been submitted yet.
3763 * In which case emitted_jiffies will be zero.
3764 */
3765 if (!request->emitted_jiffies)
3766 continue;
3767
54fb2411 3768 target = request;
b962442e 3769 }
ff865885 3770 if (target)
e8a261ea 3771 i915_gem_request_get(target);
1c25595f 3772 spin_unlock(&file_priv->mm.lock);
40a5f0de 3773
54fb2411 3774 if (target == NULL)
f787a5f5 3775 return 0;
2bc43b5c 3776
e95433c7
CW
3777 ret = i915_wait_request(target,
3778 I915_WAIT_INTERRUPTIBLE,
3779 MAX_SCHEDULE_TIMEOUT);
e8a261ea 3780 i915_gem_request_put(target);
ff865885 3781
e95433c7 3782 return ret < 0 ? ret : 0;
40a5f0de
EA
3783}
3784
d23db88c 3785static bool
91b2db6f 3786i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
d23db88c 3787{
59bfa124
CW
3788 if (!drm_mm_node_allocated(&vma->node))
3789 return false;
3790
91b2db6f
CW
3791 if (vma->node.size < size)
3792 return true;
3793
3794 if (alignment && vma->node.start & (alignment - 1))
d23db88c
CW
3795 return true;
3796
05a20d09 3797 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
d23db88c
CW
3798 return true;
3799
3800 if (flags & PIN_OFFSET_BIAS &&
3801 vma->node.start < (flags & PIN_OFFSET_MASK))
3802 return true;
3803
506a8e87
CW
3804 if (flags & PIN_OFFSET_FIXED &&
3805 vma->node.start != (flags & PIN_OFFSET_MASK))
3806 return true;
3807
d23db88c
CW
3808 return false;
3809}
3810
d0710abb
CW
3811void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3812{
3813 struct drm_i915_gem_object *obj = vma->obj;
a9f1481f 3814 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d0710abb
CW
3815 bool mappable, fenceable;
3816 u32 fence_size, fence_alignment;
3817
a9f1481f 3818 fence_size = i915_gem_get_ggtt_size(dev_priv,
05a20d09 3819 vma->size,
3e510a8e 3820 i915_gem_object_get_tiling(obj));
a9f1481f 3821 fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
05a20d09 3822 vma->size,
3e510a8e 3823 i915_gem_object_get_tiling(obj),
ad1a7d20 3824 true);
d0710abb
CW
3825
3826 fenceable = (vma->node.size == fence_size &&
3827 (vma->node.start & (fence_alignment - 1)) == 0);
3828
3829 mappable = (vma->node.start + fence_size <=
a9f1481f 3830 dev_priv->ggtt.mappable_end);
d0710abb 3831
07ee2bce
TU
3832 /*
3833 * Explicitly disable for rotated VMA since the display does not
3834 * need the fence and the VMA is not accessible to other users.
3835 */
3836 if (mappable && fenceable &&
3837 vma->ggtt_view.type != I915_GGTT_VIEW_ROTATED)
05a20d09
CW
3838 vma->flags |= I915_VMA_CAN_FENCE;
3839 else
3840 vma->flags &= ~I915_VMA_CAN_FENCE;
d0710abb
CW
3841}
3842
305bc234
CW
3843int __i915_vma_do_pin(struct i915_vma *vma,
3844 u64 size, u64 alignment, u64 flags)
673a394b 3845{
305bc234 3846 unsigned int bound = vma->flags;
673a394b
EA
3847 int ret;
3848
4c7d62c6 3849 lockdep_assert_held(&vma->vm->dev->struct_mutex);
59bfa124 3850 GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3272db53 3851 GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
d7f46fc4 3852
305bc234
CW
3853 if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3854 ret = -EBUSY;
3855 goto err;
3856 }
ac0c6b5a 3857
de895082 3858 if ((bound & I915_VMA_BIND_MASK) == 0) {
59bfa124
CW
3859 ret = i915_vma_insert(vma, size, alignment, flags);
3860 if (ret)
3861 goto err;
fe14d5f4 3862 }
74898d7e 3863
59bfa124 3864 ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3b16525c 3865 if (ret)
59bfa124 3866 goto err;
3b16525c 3867
3272db53 3868 if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
d0710abb 3869 __i915_vma_set_map_and_fenceable(vma);
ef79e17c 3870
3b16525c 3871 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
673a394b 3872 return 0;
673a394b 3873
59bfa124
CW
3874err:
3875 __i915_vma_unpin(vma);
3876 return ret;
ec7adb6e
JL
3877}
3878
058d88c4 3879struct i915_vma *
ec7adb6e
JL
3880i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3881 const struct i915_ggtt_view *view,
91b2db6f 3882 u64 size,
2ffffd0f
CW
3883 u64 alignment,
3884 u64 flags)
ec7adb6e 3885{
ad16d2ed
CW
3886 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3887 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
3888 struct i915_vma *vma;
3889 int ret;
72e96d64 3890
4c7d62c6
CW
3891 lockdep_assert_held(&obj->base.dev->struct_mutex);
3892
058d88c4 3893 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
59bfa124 3894 if (IS_ERR(vma))
058d88c4 3895 return vma;
59bfa124
CW
3896
3897 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3898 if (flags & PIN_NONBLOCK &&
3899 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 3900 return ERR_PTR(-ENOSPC);
59bfa124 3901
ad16d2ed
CW
3902 if (flags & PIN_MAPPABLE) {
3903 u32 fence_size;
3904
3905 fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3906 i915_gem_object_get_tiling(obj));
3907 /* If the required space is larger than the available
3908 * aperture, we will not able to find a slot for the
3909 * object and unbinding the object now will be in
3910 * vain. Worse, doing so may cause us to ping-pong
3911 * the object in and out of the Global GTT and
3912 * waste a lot of cycles under the mutex.
3913 */
3914 if (fence_size > dev_priv->ggtt.mappable_end)
3915 return ERR_PTR(-E2BIG);
3916
3917 /* If NONBLOCK is set the caller is optimistically
3918 * trying to cache the full object within the mappable
3919 * aperture, and *must* have a fallback in place for
3920 * situations where we cannot bind the object. We
3921 * can be a little more lax here and use the fallback
3922 * more often to avoid costly migrations of ourselves
3923 * and other objects within the aperture.
3924 *
3925 * Half-the-aperture is used as a simple heuristic.
3926 * More interesting would to do search for a free
3927 * block prior to making the commitment to unbind.
3928 * That caters for the self-harm case, and with a
3929 * little more heuristics (e.g. NOFAULT, NOEVICT)
3930 * we could try to minimise harm to others.
3931 */
3932 if (flags & PIN_NONBLOCK &&
3933 fence_size > dev_priv->ggtt.mappable_end / 2)
3934 return ERR_PTR(-ENOSPC);
3935 }
3936
59bfa124
CW
3937 WARN(i915_vma_is_pinned(vma),
3938 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
3939 " offset=%08x, req.alignment=%llx,"
3940 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3941 i915_ggtt_offset(vma), alignment,
59bfa124 3942 !!(flags & PIN_MAPPABLE),
05a20d09 3943 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
3944 ret = i915_vma_unbind(vma);
3945 if (ret)
058d88c4 3946 return ERR_PTR(ret);
59bfa124
CW
3947 }
3948
058d88c4
CW
3949 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3950 if (ret)
3951 return ERR_PTR(ret);
ec7adb6e 3952
058d88c4 3953 return vma;
673a394b
EA
3954}
3955
edf6b76f 3956static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
3957{
3958 /* Note that we could alias engines in the execbuf API, but
3959 * that would be very unwise as it prevents userspace from
3960 * fine control over engine selection. Ahem.
3961 *
3962 * This should be something like EXEC_MAX_ENGINE instead of
3963 * I915_NUM_ENGINES.
3964 */
3965 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3966 return 0x10000 << id;
3967}
3968
3969static __always_inline unsigned int __busy_write_id(unsigned int id)
3970{
70cb472c
CW
3971 /* The uABI guarantees an active writer is also amongst the read
3972 * engines. This would be true if we accessed the activity tracking
3973 * under the lock, but as we perform the lookup of the object and
3974 * its activity locklessly we can not guarantee that the last_write
3975 * being active implies that we have set the same engine flag from
3976 * last_read - hence we always set both read and write busy for
3977 * last_write.
3978 */
3979 return id | __busy_read_flag(id);
3fdc13c7
CW
3980}
3981
edf6b76f 3982static __always_inline unsigned int
3fdc13c7
CW
3983__busy_set_if_active(const struct i915_gem_active *active,
3984 unsigned int (*flag)(unsigned int id))
3985{
1255501d 3986 struct drm_i915_gem_request *request;
3fdc13c7 3987
1255501d
CW
3988 request = rcu_dereference(active->request);
3989 if (!request || i915_gem_request_completed(request))
3990 return 0;
3fdc13c7 3991
1255501d
CW
3992 /* This is racy. See __i915_gem_active_get_rcu() for an in detail
3993 * discussion of how to handle the race correctly, but for reporting
3994 * the busy state we err on the side of potentially reporting the
3995 * wrong engine as being busy (but we guarantee that the result
3996 * is at least self-consistent).
3997 *
3998 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
3999 * whilst we are inspecting it, even under the RCU read lock as we are.
4000 * This means that there is a small window for the engine and/or the
4001 * seqno to have been overwritten. The seqno will always be in the
4002 * future compared to the intended, and so we know that if that
4003 * seqno is idle (on whatever engine) our request is idle and the
4004 * return 0 above is correct.
4005 *
4006 * The issue is that if the engine is switched, it is just as likely
4007 * to report that it is busy (but since the switch happened, we know
4008 * the request should be idle). So there is a small chance that a busy
4009 * result is actually the wrong engine.
4010 *
4011 * So why don't we care?
4012 *
4013 * For starters, the busy ioctl is a heuristic that is by definition
4014 * racy. Even with perfect serialisation in the driver, the hardware
4015 * state is constantly advancing - the state we report to the user
4016 * is stale.
4017 *
4018 * The critical information for the busy-ioctl is whether the object
4019 * is idle as userspace relies on that to detect whether its next
4020 * access will stall, or if it has missed submitting commands to
4021 * the hardware allowing the GPU to stall. We never generate a
4022 * false-positive for idleness, thus busy-ioctl is reliable at the
4023 * most fundamental level, and we maintain the guarantee that a
4024 * busy object left to itself will eventually become idle (and stay
4025 * idle!).
4026 *
4027 * We allow ourselves the leeway of potentially misreporting the busy
4028 * state because that is an optimisation heuristic that is constantly
4029 * in flux. Being quickly able to detect the busy/idle state is much
4030 * more important than accurate logging of exactly which engines were
4031 * busy.
4032 *
4033 * For accuracy in reporting the engine, we could use
4034 *
4035 * result = 0;
4036 * request = __i915_gem_active_get_rcu(active);
4037 * if (request) {
4038 * if (!i915_gem_request_completed(request))
4039 * result = flag(request->engine->exec_id);
4040 * i915_gem_request_put(request);
4041 * }
4042 *
4043 * but that still remains susceptible to both hardware and userspace
4044 * races. So we accept making the result of that race slightly worse,
4045 * given the rarity of the race and its low impact on the result.
4046 */
4047 return flag(READ_ONCE(request->engine->exec_id));
3fdc13c7
CW
4048}
4049
edf6b76f 4050static __always_inline unsigned int
3fdc13c7
CW
4051busy_check_reader(const struct i915_gem_active *active)
4052{
4053 return __busy_set_if_active(active, __busy_read_flag);
4054}
4055
edf6b76f 4056static __always_inline unsigned int
3fdc13c7
CW
4057busy_check_writer(const struct i915_gem_active *active)
4058{
4059 return __busy_set_if_active(active, __busy_write_id);
4060}
4061
673a394b
EA
4062int
4063i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4064 struct drm_file *file)
673a394b
EA
4065{
4066 struct drm_i915_gem_busy *args = data;
05394f39 4067 struct drm_i915_gem_object *obj;
3fdc13c7 4068 unsigned long active;
673a394b 4069
03ac0642 4070 obj = i915_gem_object_lookup(file, args->handle);
3fdc13c7
CW
4071 if (!obj)
4072 return -ENOENT;
d1b851fc 4073
426960be 4074 args->busy = 0;
3fdc13c7
CW
4075 active = __I915_BO_ACTIVE(obj);
4076 if (active) {
4077 int idx;
426960be 4078
3fdc13c7
CW
4079 /* Yes, the lookups are intentionally racy.
4080 *
4081 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
4082 * to regard the value as stale and as our ABI guarantees
4083 * forward progress, we confirm the status of each active
4084 * request with the hardware.
4085 *
4086 * Even though we guard the pointer lookup by RCU, that only
4087 * guarantees that the pointer and its contents remain
4088 * dereferencable and does *not* mean that the request we
4089 * have is the same as the one being tracked by the object.
4090 *
4091 * Consider that we lookup the request just as it is being
4092 * retired and freed. We take a local copy of the pointer,
4093 * but before we add its engine into the busy set, the other
4094 * thread reallocates it and assigns it to a task on another
1255501d
CW
4095 * engine with a fresh and incomplete seqno. Guarding against
4096 * that requires careful serialisation and reference counting,
4097 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
4098 * instead we expect that if the result is busy, which engines
4099 * are busy is not completely reliable - we only guarantee
4100 * that the object was busy.
3fdc13c7
CW
4101 */
4102 rcu_read_lock();
4103
4104 for_each_active(active, idx)
4105 args->busy |= busy_check_reader(&obj->last_read[idx]);
4106
4107 /* For ABI sanity, we only care that the write engine is in
70cb472c
CW
4108 * the set of read engines. This should be ensured by the
4109 * ordering of setting last_read/last_write in
4110 * i915_vma_move_to_active(), and then in reverse in retire.
4111 * However, for good measure, we always report the last_write
4112 * request as a busy read as well as being a busy write.
3fdc13c7
CW
4113 *
4114 * We don't care that the set of active read/write engines
4115 * may change during construction of the result, as it is
4116 * equally liable to change before userspace can inspect
4117 * the result.
4118 */
4119 args->busy |= busy_check_writer(&obj->last_write);
4120
4121 rcu_read_unlock();
426960be 4122 }
673a394b 4123
3fdc13c7
CW
4124 i915_gem_object_put_unlocked(obj);
4125 return 0;
673a394b
EA
4126}
4127
4128int
4129i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4130 struct drm_file *file_priv)
4131{
0206e353 4132 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4133}
4134
3ef94daa
CW
4135int
4136i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4137 struct drm_file *file_priv)
4138{
fac5e23e 4139 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4140 struct drm_i915_gem_madvise *args = data;
05394f39 4141 struct drm_i915_gem_object *obj;
1233e2db 4142 int err;
3ef94daa
CW
4143
4144 switch (args->madv) {
4145 case I915_MADV_DONTNEED:
4146 case I915_MADV_WILLNEED:
4147 break;
4148 default:
4149 return -EINVAL;
4150 }
4151
03ac0642 4152 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
4153 if (!obj)
4154 return -ENOENT;
4155
4156 err = mutex_lock_interruptible(&obj->mm.lock);
4157 if (err)
4158 goto out;
3ef94daa 4159
a4f5ea64 4160 if (obj->mm.pages &&
3e510a8e 4161 i915_gem_object_is_tiled(obj) &&
656bfa3a 4162 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
a4f5ea64
CW
4163 if (obj->mm.madv == I915_MADV_WILLNEED)
4164 __i915_gem_object_unpin_pages(obj);
656bfa3a 4165 if (args->madv == I915_MADV_WILLNEED)
a4f5ea64 4166 __i915_gem_object_pin_pages(obj);
656bfa3a
DV
4167 }
4168
a4f5ea64
CW
4169 if (obj->mm.madv != __I915_MADV_PURGED)
4170 obj->mm.madv = args->madv;
3ef94daa 4171
6c085a72 4172 /* if the object is no longer attached, discard its backing storage */
a4f5ea64 4173 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
2d7ef395
CW
4174 i915_gem_object_truncate(obj);
4175
a4f5ea64 4176 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 4177 mutex_unlock(&obj->mm.lock);
bb6baf76 4178
1233e2db 4179out:
f8c417cd 4180 i915_gem_object_put(obj);
1233e2db 4181 return err;
3ef94daa
CW
4182}
4183
37e680a1
CW
4184void i915_gem_object_init(struct drm_i915_gem_object *obj,
4185 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4186{
b4716185
CW
4187 int i;
4188
1233e2db
CW
4189 mutex_init(&obj->mm.lock);
4190
35c20a60 4191 INIT_LIST_HEAD(&obj->global_list);
275f039d 4192 INIT_LIST_HEAD(&obj->userfault_link);
666796da 4193 for (i = 0; i < I915_NUM_ENGINES; i++)
fa545cbf
CW
4194 init_request_active(&obj->last_read[i],
4195 i915_gem_object_retire__read);
4196 init_request_active(&obj->last_write,
4197 i915_gem_object_retire__write);
b25cb2f8 4198 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4199 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4200 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4201
37e680a1
CW
4202 obj->ops = ops;
4203
50349247 4204 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
a4f5ea64
CW
4205
4206 obj->mm.madv = I915_MADV_WILLNEED;
4207 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4208 mutex_init(&obj->mm.get_page.lock);
0327d6ba 4209
f19ec8cb 4210 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4211}
4212
37e680a1 4213static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4214 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4215 .get_pages = i915_gem_object_get_pages_gtt,
4216 .put_pages = i915_gem_object_put_pages_gtt,
4217};
4218
b4bcbe2a
CW
4219/* Note we don't consider signbits :| */
4220#define overflows_type(x, T) \
4221 (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
4222
4223struct drm_i915_gem_object *
4224i915_gem_object_create(struct drm_device *dev, u64 size)
ac52bc56 4225{
c397b908 4226 struct drm_i915_gem_object *obj;
5949eac4 4227 struct address_space *mapping;
1a240d4d 4228 gfp_t mask;
fe3db79b 4229 int ret;
ac52bc56 4230
b4bcbe2a
CW
4231 /* There is a prevalence of the assumption that we fit the object's
4232 * page count inside a 32bit _signed_ variable. Let's document this and
4233 * catch if we ever need to fix it. In the meantime, if you do spot
4234 * such a local variable, please consider fixing!
4235 */
4236 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4237 return ERR_PTR(-E2BIG);
4238
4239 if (overflows_type(size, obj->base.size))
4240 return ERR_PTR(-E2BIG);
4241
42dcedd4 4242 obj = i915_gem_object_alloc(dev);
c397b908 4243 if (obj == NULL)
fe3db79b 4244 return ERR_PTR(-ENOMEM);
673a394b 4245
fe3db79b
CW
4246 ret = drm_gem_object_init(dev, &obj->base, size);
4247 if (ret)
4248 goto fail;
673a394b 4249
bed1ea95
CW
4250 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4251 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4252 /* 965gm cannot relocate objects above 4GiB. */
4253 mask &= ~__GFP_HIGHMEM;
4254 mask |= __GFP_DMA32;
4255 }
4256
93c76a3d 4257 mapping = obj->base.filp->f_mapping;
bed1ea95 4258 mapping_set_gfp_mask(mapping, mask);
5949eac4 4259
37e680a1 4260 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4261
c397b908
DV
4262 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4263 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4264
3d29b842
ED
4265 if (HAS_LLC(dev)) {
4266 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4267 * cache) for about a 10% performance improvement
4268 * compared to uncached. Graphics requests other than
4269 * display scanout are coherent with the CPU in
4270 * accessing this cache. This means in this mode we
4271 * don't need to clflush on the CPU side, and on the
4272 * GPU side we only need to flush internal caches to
4273 * get data visible to the CPU.
4274 *
4275 * However, we maintain the display planes as UC, and so
4276 * need to rebind when first used as such.
4277 */
4278 obj->cache_level = I915_CACHE_LLC;
4279 } else
4280 obj->cache_level = I915_CACHE_NONE;
4281
d861e338
DV
4282 trace_i915_gem_object_create(obj);
4283
05394f39 4284 return obj;
fe3db79b
CW
4285
4286fail:
4287 i915_gem_object_free(obj);
4288
4289 return ERR_PTR(ret);
c397b908
DV
4290}
4291
340fbd8c
CW
4292static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4293{
4294 /* If we are the last user of the backing storage (be it shmemfs
4295 * pages or stolen etc), we know that the pages are going to be
4296 * immediately released. In this case, we can then skip copying
4297 * back the contents from the GPU.
4298 */
4299
a4f5ea64 4300 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4301 return false;
4302
4303 if (obj->base.filp == NULL)
4304 return true;
4305
4306 /* At first glance, this looks racy, but then again so would be
4307 * userspace racing mmap against close. However, the first external
4308 * reference to the filp can only be obtained through the
4309 * i915_gem_mmap_ioctl() which safeguards us against the user
4310 * acquiring such a reference whilst we are in the middle of
4311 * freeing the object.
4312 */
4313 return atomic_long_read(&obj->base.filp->f_count) == 1;
4314}
4315
1488fc08 4316void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4317{
1488fc08 4318 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4319 struct drm_device *dev = obj->base.dev;
fac5e23e 4320 struct drm_i915_private *dev_priv = to_i915(dev);
07fe0b12 4321 struct i915_vma *vma, *next;
673a394b 4322
f65c9168
PZ
4323 intel_runtime_pm_get(dev_priv);
4324
26e12f89
CW
4325 trace_i915_gem_object_destroy(obj);
4326
b1f788c6
CW
4327 /* All file-owned VMA should have been released by this point through
4328 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4329 * However, the object may also be bound into the global GTT (e.g.
4330 * older GPUs without per-process support, or for direct access through
4331 * the GTT either for the user or for scanout). Those VMA still need to
4332 * unbound now.
4333 */
1c7f4bca 4334 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3272db53 4335 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
b1f788c6 4336 GEM_BUG_ON(i915_vma_is_active(vma));
3272db53 4337 vma->flags &= ~I915_VMA_PIN_MASK;
b1f788c6 4338 i915_vma_close(vma);
1488fc08 4339 }
15717de2 4340 GEM_BUG_ON(obj->bind_count);
1488fc08 4341
faf5bf0a 4342 WARN_ON(atomic_read(&obj->frontbuffer_bits));
a071fa00 4343
a4f5ea64 4344 if (obj->mm.pages && obj->mm.madv == I915_MADV_WILLNEED &&
656bfa3a 4345 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
3e510a8e 4346 i915_gem_object_is_tiled(obj))
a4f5ea64 4347 __i915_gem_object_unpin_pages(obj);
656bfa3a 4348
a4f5ea64
CW
4349 if (obj->ops->release)
4350 obj->ops->release(obj);
4351
4352 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
1233e2db 4353 atomic_set(&obj->mm.pages_pin_count, 0);
340fbd8c 4354 if (discard_backing_storage(obj))
a4f5ea64
CW
4355 obj->mm.madv = I915_MADV_DONTNEED;
4356 __i915_gem_object_put_pages(obj);
de151cf6 4357
a4f5ea64 4358 GEM_BUG_ON(obj->mm.pages);
9da3da66 4359
2f745ad3
CW
4360 if (obj->base.import_attach)
4361 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4362
05394f39
CW
4363 drm_gem_object_release(&obj->base);
4364 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4365
05394f39 4366 kfree(obj->bit_17);
42dcedd4 4367 i915_gem_object_free(obj);
f65c9168
PZ
4368
4369 intel_runtime_pm_put(dev_priv);
673a394b
EA
4370}
4371
f8a7fde4
CW
4372void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4373{
4374 lockdep_assert_held(&obj->base.dev->struct_mutex);
4375
4376 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4377 if (i915_gem_object_is_active(obj))
4378 i915_gem_object_set_active_reference(obj);
4379 else
4380 i915_gem_object_put(obj);
4381}
4382
dcff85c8 4383int i915_gem_suspend(struct drm_device *dev)
29105ccc 4384{
fac5e23e 4385 struct drm_i915_private *dev_priv = to_i915(dev);
dcff85c8 4386 int ret;
28dfe52a 4387
54b4f68f
CW
4388 intel_suspend_gt_powersave(dev_priv);
4389
45c5f202 4390 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4391
4392 /* We have to flush all the executing contexts to main memory so
4393 * that they can saved in the hibernation image. To ensure the last
4394 * context image is coherent, we have to switch away from it. That
4395 * leaves the dev_priv->kernel_context still active when
4396 * we actually suspend, and its image in memory may not match the GPU
4397 * state. Fortunately, the kernel_context is disposable and we do
4398 * not rely on its state.
4399 */
4400 ret = i915_gem_switch_to_kernel_context(dev_priv);
4401 if (ret)
4402 goto err;
4403
22dd3bb9
CW
4404 ret = i915_gem_wait_for_idle(dev_priv,
4405 I915_WAIT_INTERRUPTIBLE |
4406 I915_WAIT_LOCKED);
f7403347 4407 if (ret)
45c5f202 4408 goto err;
f7403347 4409
c033666a 4410 i915_gem_retire_requests(dev_priv);
673a394b 4411
b2e862d0 4412 i915_gem_context_lost(dev_priv);
45c5f202
CW
4413 mutex_unlock(&dev->struct_mutex);
4414
737b1506 4415 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4416 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4417 flush_delayed_work(&dev_priv->gt.idle_work);
29105ccc 4418
bdcf120b
CW
4419 /* Assert that we sucessfully flushed all the work and
4420 * reset the GPU back to its idle, low power state.
4421 */
67d97da3 4422 WARN_ON(dev_priv->gt.awake);
bdcf120b 4423
1c777c5d
ID
4424 /*
4425 * Neither the BIOS, ourselves or any other kernel
4426 * expects the system to be in execlists mode on startup,
4427 * so we need to reset the GPU back to legacy mode. And the only
4428 * known way to disable logical contexts is through a GPU reset.
4429 *
4430 * So in order to leave the system in a known default configuration,
4431 * always reset the GPU upon unload and suspend. Afterwards we then
4432 * clean up the GEM state tracking, flushing off the requests and
4433 * leaving the system in a known idle state.
4434 *
4435 * Note that is of the upmost importance that the GPU is idle and
4436 * all stray writes are flushed *before* we dismantle the backing
4437 * storage for the pinned objects.
4438 *
4439 * However, since we are uncertain that resetting the GPU on older
4440 * machines is a good idea, we don't - just in case it leaves the
4441 * machine in an unusable condition.
4442 */
4443 if (HAS_HW_CONTEXTS(dev)) {
4444 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4445 WARN_ON(reset && reset != -ENODEV);
4446 }
4447
673a394b 4448 return 0;
45c5f202
CW
4449
4450err:
4451 mutex_unlock(&dev->struct_mutex);
4452 return ret;
673a394b
EA
4453}
4454
5ab57c70
CW
4455void i915_gem_resume(struct drm_device *dev)
4456{
4457 struct drm_i915_private *dev_priv = to_i915(dev);
4458
4459 mutex_lock(&dev->struct_mutex);
4460 i915_gem_restore_gtt_mappings(dev);
4461
4462 /* As we didn't flush the kernel context before suspend, we cannot
4463 * guarantee that the context image is complete. So let's just reset
4464 * it and start again.
4465 */
821ed7df 4466 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4467
4468 mutex_unlock(&dev->struct_mutex);
4469}
4470
f691e2f4
DV
4471void i915_gem_init_swizzling(struct drm_device *dev)
4472{
fac5e23e 4473 struct drm_i915_private *dev_priv = to_i915(dev);
f691e2f4 4474
11782b02 4475 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4476 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4477 return;
4478
4479 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4480 DISP_TILE_SURFACE_SWIZZLING);
4481
5db94019 4482 if (IS_GEN5(dev_priv))
11782b02
DV
4483 return;
4484
f691e2f4 4485 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4486 if (IS_GEN6(dev_priv))
6b26c86d 4487 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4488 else if (IS_GEN7(dev_priv))
6b26c86d 4489 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4490 else if (IS_GEN8(dev_priv))
31a5336e 4491 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4492 else
4493 BUG();
f691e2f4 4494}
e21af88d 4495
50a0bc90 4496static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4497{
81e7f200
VS
4498 I915_WRITE(RING_CTL(base), 0);
4499 I915_WRITE(RING_HEAD(base), 0);
4500 I915_WRITE(RING_TAIL(base), 0);
4501 I915_WRITE(RING_START(base), 0);
4502}
4503
50a0bc90 4504static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4505{
50a0bc90
TU
4506 if (IS_I830(dev_priv)) {
4507 init_unused_ring(dev_priv, PRB1_BASE);
4508 init_unused_ring(dev_priv, SRB0_BASE);
4509 init_unused_ring(dev_priv, SRB1_BASE);
4510 init_unused_ring(dev_priv, SRB2_BASE);
4511 init_unused_ring(dev_priv, SRB3_BASE);
4512 } else if (IS_GEN2(dev_priv)) {
4513 init_unused_ring(dev_priv, SRB0_BASE);
4514 init_unused_ring(dev_priv, SRB1_BASE);
4515 } else if (IS_GEN3(dev_priv)) {
4516 init_unused_ring(dev_priv, PRB1_BASE);
4517 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4518 }
4519}
4520
4fc7c971
BW
4521int
4522i915_gem_init_hw(struct drm_device *dev)
4523{
fac5e23e 4524 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4525 struct intel_engine_cs *engine;
3b3f1650 4526 enum intel_engine_id id;
d200cda6 4527 int ret;
4fc7c971 4528
de867c20
CW
4529 dev_priv->gt.last_init_time = ktime_get();
4530
5e4f5189
CW
4531 /* Double layer security blanket, see i915_gem_init() */
4532 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4533
3accaf7e 4534 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4535 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4536
772c2a51 4537 if (IS_HASWELL(dev_priv))
50a0bc90 4538 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4539 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4540
6e266956 4541 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4542 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4543 u32 temp = I915_READ(GEN7_MSG_CTL);
4544 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4545 I915_WRITE(GEN7_MSG_CTL, temp);
4546 } else if (INTEL_INFO(dev)->gen >= 7) {
4547 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4548 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4549 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4550 }
88a2b2a3
BW
4551 }
4552
4fc7c971
BW
4553 i915_gem_init_swizzling(dev);
4554
d5abdfda
DV
4555 /*
4556 * At least 830 can leave some of the unused rings
4557 * "active" (ie. head != tail) after resume which
4558 * will prevent c3 entry. Makes sure all unused rings
4559 * are totally idle.
4560 */
50a0bc90 4561 init_unused_rings(dev_priv);
d5abdfda 4562
ed54c1a1 4563 BUG_ON(!dev_priv->kernel_context);
90638cc1 4564
4ad2fd88
JH
4565 ret = i915_ppgtt_init_hw(dev);
4566 if (ret) {
4567 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4568 goto out;
4569 }
4570
4571 /* Need to do basic initialisation of all rings first: */
3b3f1650 4572 for_each_engine(engine, dev_priv, id) {
e2f80391 4573 ret = engine->init_hw(engine);
35a57ffb 4574 if (ret)
5e4f5189 4575 goto out;
35a57ffb 4576 }
99433931 4577
0ccdacf6
PA
4578 intel_mocs_init_l3cc_table(dev);
4579
33a732f4 4580 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4581 ret = intel_guc_setup(dev);
4582 if (ret)
4583 goto out;
33a732f4 4584
5e4f5189
CW
4585out:
4586 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4587 return ret;
8187a2b7
ZN
4588}
4589
39df9190
CW
4590bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4591{
4592 if (INTEL_INFO(dev_priv)->gen < 6)
4593 return false;
4594
4595 /* TODO: make semaphores and Execlists play nicely together */
4596 if (i915.enable_execlists)
4597 return false;
4598
4599 if (value >= 0)
4600 return value;
4601
4602#ifdef CONFIG_INTEL_IOMMU
4603 /* Enable semaphores on SNB when IO remapping is off */
4604 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4605 return false;
4606#endif
4607
4608 return true;
4609}
4610
1070a42b
CW
4611int i915_gem_init(struct drm_device *dev)
4612{
fac5e23e 4613 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4614 int ret;
4615
1070a42b 4616 mutex_lock(&dev->struct_mutex);
d62b4892 4617
a83014d3 4618 if (!i915.enable_execlists) {
821ed7df 4619 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4620 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4621 } else {
821ed7df 4622 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4623 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4624 }
4625
5e4f5189
CW
4626 /* This is just a security blanket to placate dragons.
4627 * On some systems, we very sporadically observe that the first TLBs
4628 * used by the CS may be stale, despite us poking the TLB reset. If
4629 * we hold the forcewake during initialisation these problems
4630 * just magically go away.
4631 */
4632 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4633
72778cb2 4634 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4635
4636 ret = i915_gem_init_ggtt(dev_priv);
4637 if (ret)
4638 goto out_unlock;
d62b4892 4639
2fa48d8d 4640 ret = i915_gem_context_init(dev);
7bcc3777
JN
4641 if (ret)
4642 goto out_unlock;
2fa48d8d 4643
8b3e2d36 4644 ret = intel_engines_init(dev);
35a57ffb 4645 if (ret)
7bcc3777 4646 goto out_unlock;
2fa48d8d 4647
1070a42b 4648 ret = i915_gem_init_hw(dev);
60990320 4649 if (ret == -EIO) {
7e21d648 4650 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4651 * wedged. But we only want to do this where the GPU is angry,
4652 * for all other failure, such as an allocation failure, bail.
4653 */
4654 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4655 i915_gem_set_wedged(dev_priv);
60990320 4656 ret = 0;
1070a42b 4657 }
7bcc3777
JN
4658
4659out_unlock:
5e4f5189 4660 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4661 mutex_unlock(&dev->struct_mutex);
1070a42b 4662
60990320 4663 return ret;
1070a42b
CW
4664}
4665
8187a2b7 4666void
117897f4 4667i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4668{
fac5e23e 4669 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4670 struct intel_engine_cs *engine;
3b3f1650 4671 enum intel_engine_id id;
8187a2b7 4672
3b3f1650 4673 for_each_engine(engine, dev_priv, id)
117897f4 4674 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4675}
4676
40ae4e16
ID
4677void
4678i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4679{
91c8a326 4680 struct drm_device *dev = &dev_priv->drm;
49ef5294 4681 int i;
40ae4e16
ID
4682
4683 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4684 !IS_CHERRYVIEW(dev_priv))
4685 dev_priv->num_fence_regs = 32;
4686 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4687 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4688 dev_priv->num_fence_regs = 16;
4689 else
4690 dev_priv->num_fence_regs = 8;
4691
c033666a 4692 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4693 dev_priv->num_fence_regs =
4694 I915_READ(vgtif_reg(avail_rs.fence_num));
4695
4696 /* Initialize fence registers to zero */
49ef5294
CW
4697 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4698 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4699
4700 fence->i915 = dev_priv;
4701 fence->id = i;
4702 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4703 }
40ae4e16
ID
4704 i915_gem_restore_fences(dev);
4705
4706 i915_gem_detect_bit_6_swizzle(dev);
4707}
4708
673a394b 4709void
d64aa096 4710i915_gem_load_init(struct drm_device *dev)
673a394b 4711{
fac5e23e 4712 struct drm_i915_private *dev_priv = to_i915(dev);
42dcedd4 4713
efab6d8d 4714 dev_priv->objects =
42dcedd4
CW
4715 kmem_cache_create("i915_gem_object",
4716 sizeof(struct drm_i915_gem_object), 0,
4717 SLAB_HWCACHE_ALIGN,
4718 NULL);
e20d2ab7
CW
4719 dev_priv->vmas =
4720 kmem_cache_create("i915_gem_vma",
4721 sizeof(struct i915_vma), 0,
4722 SLAB_HWCACHE_ALIGN,
4723 NULL);
efab6d8d
CW
4724 dev_priv->requests =
4725 kmem_cache_create("i915_gem_request",
4726 sizeof(struct drm_i915_gem_request), 0,
0eafec6d
CW
4727 SLAB_HWCACHE_ALIGN |
4728 SLAB_RECLAIM_ACCOUNT |
4729 SLAB_DESTROY_BY_RCU,
efab6d8d 4730 NULL);
673a394b 4731
a33afea5 4732 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4733 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4734 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4735 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 4736 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
67d97da3 4737 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4738 i915_gem_retire_work_handler);
67d97da3 4739 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4740 i915_gem_idle_work_handler);
1f15b76f 4741 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4742 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4743
72bfa19c
CW
4744 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4745
6b95a207 4746 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4747
ce453d81
CW
4748 dev_priv->mm.interruptible = true;
4749
6f633402
JL
4750 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4751
b5add959 4752 spin_lock_init(&dev_priv->fb_tracking.lock);
673a394b 4753}
71acb5eb 4754
d64aa096
ID
4755void i915_gem_load_cleanup(struct drm_device *dev)
4756{
4757 struct drm_i915_private *dev_priv = to_i915(dev);
4758
4759 kmem_cache_destroy(dev_priv->requests);
4760 kmem_cache_destroy(dev_priv->vmas);
4761 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4762
4763 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4764 rcu_barrier();
d64aa096
ID
4765}
4766
6a800eab
CW
4767int i915_gem_freeze(struct drm_i915_private *dev_priv)
4768{
4769 intel_runtime_pm_get(dev_priv);
4770
4771 mutex_lock(&dev_priv->drm.struct_mutex);
4772 i915_gem_shrink_all(dev_priv);
4773 mutex_unlock(&dev_priv->drm.struct_mutex);
4774
4775 intel_runtime_pm_put(dev_priv);
4776
4777 return 0;
4778}
4779
461fb99c
CW
4780int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4781{
4782 struct drm_i915_gem_object *obj;
7aab2d53
CW
4783 struct list_head *phases[] = {
4784 &dev_priv->mm.unbound_list,
4785 &dev_priv->mm.bound_list,
4786 NULL
4787 }, **p;
461fb99c
CW
4788
4789 /* Called just before we write the hibernation image.
4790 *
4791 * We need to update the domain tracking to reflect that the CPU
4792 * will be accessing all the pages to create and restore from the
4793 * hibernation, and so upon restoration those pages will be in the
4794 * CPU domain.
4795 *
4796 * To make sure the hibernation image contains the latest state,
4797 * we update that state just before writing out the image.
7aab2d53
CW
4798 *
4799 * To try and reduce the hibernation image, we manually shrink
4800 * the objects as well.
461fb99c
CW
4801 */
4802
6a800eab
CW
4803 mutex_lock(&dev_priv->drm.struct_mutex);
4804 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
461fb99c 4805
7aab2d53
CW
4806 for (p = phases; *p; p++) {
4807 list_for_each_entry(obj, *p, global_list) {
4808 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4809 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4810 }
461fb99c 4811 }
6a800eab 4812 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
4813
4814 return 0;
4815}
4816
f787a5f5 4817void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4818{
f787a5f5 4819 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4820 struct drm_i915_gem_request *request;
b962442e
EA
4821
4822 /* Clean up our request list when the client is going away, so that
4823 * later retire_requests won't dereference our soon-to-be-gone
4824 * file_priv.
4825 */
1c25595f 4826 spin_lock(&file_priv->mm.lock);
15f7bbc7 4827 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4828 request->file_priv = NULL;
1c25595f 4829 spin_unlock(&file_priv->mm.lock);
b29c19b6 4830
2e1b8730 4831 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4832 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4833 list_del(&file_priv->rps.link);
8d3afd7d 4834 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4835 }
b29c19b6
CW
4836}
4837
4838int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4839{
4840 struct drm_i915_file_private *file_priv;
e422b888 4841 int ret;
b29c19b6
CW
4842
4843 DRM_DEBUG_DRIVER("\n");
4844
4845 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4846 if (!file_priv)
4847 return -ENOMEM;
4848
4849 file->driver_priv = file_priv;
f19ec8cb 4850 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4851 file_priv->file = file;
2e1b8730 4852 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4853
4854 spin_lock_init(&file_priv->mm.lock);
4855 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4856
c80ff16e 4857 file_priv->bsd_engine = -1;
de1add36 4858
e422b888
BW
4859 ret = i915_gem_context_open(dev, file);
4860 if (ret)
4861 kfree(file_priv);
b29c19b6 4862
e422b888 4863 return ret;
b29c19b6
CW
4864}
4865
b680c37a
DV
4866/**
4867 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4868 * @old: current GEM buffer for the frontbuffer slots
4869 * @new: new GEM buffer for the frontbuffer slots
4870 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4871 *
4872 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4873 * from @old and setting them in @new. Both @old and @new can be NULL.
4874 */
a071fa00
DV
4875void i915_gem_track_fb(struct drm_i915_gem_object *old,
4876 struct drm_i915_gem_object *new,
4877 unsigned frontbuffer_bits)
4878{
faf5bf0a
CW
4879 /* Control of individual bits within the mask are guarded by
4880 * the owning plane->mutex, i.e. we can never see concurrent
4881 * manipulation of individual bits. But since the bitfield as a whole
4882 * is updated using RMW, we need to use atomics in order to update
4883 * the bits.
4884 */
4885 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4886 sizeof(atomic_t) * BITS_PER_BYTE);
4887
a071fa00 4888 if (old) {
faf5bf0a
CW
4889 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4890 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4891 }
4892
4893 if (new) {
faf5bf0a
CW
4894 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4895 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4896 }
4897}
4898
ea70299d
DG
4899/* Allocate a new GEM object and fill it with the supplied data */
4900struct drm_i915_gem_object *
4901i915_gem_object_create_from_data(struct drm_device *dev,
4902 const void *data, size_t size)
4903{
4904 struct drm_i915_gem_object *obj;
4905 struct sg_table *sg;
4906 size_t bytes;
4907 int ret;
4908
d37cd8a8 4909 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4910 if (IS_ERR(obj))
ea70299d
DG
4911 return obj;
4912
4913 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4914 if (ret)
4915 goto fail;
4916
a4f5ea64 4917 ret = i915_gem_object_pin_pages(obj);
ea70299d
DG
4918 if (ret)
4919 goto fail;
4920
a4f5ea64 4921 sg = obj->mm.pages;
ea70299d 4922 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
a4f5ea64 4923 obj->mm.dirty = true; /* Backing store is now out of date */
ea70299d
DG
4924 i915_gem_object_unpin_pages(obj);
4925
4926 if (WARN_ON(bytes != size)) {
4927 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4928 ret = -EFAULT;
4929 goto fail;
4930 }
4931
4932 return obj;
4933
4934fail:
f8c417cd 4935 i915_gem_object_put(obj);
ea70299d
DG
4936 return ERR_PTR(ret);
4937}
96d77634
CW
4938
4939struct scatterlist *
4940i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4941 unsigned int n,
4942 unsigned int *offset)
4943{
a4f5ea64 4944 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
4945 struct scatterlist *sg;
4946 unsigned int idx, count;
4947
4948 might_sleep();
4949 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 4950 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
4951
4952 /* As we iterate forward through the sg, we record each entry in a
4953 * radixtree for quick repeated (backwards) lookups. If we have seen
4954 * this index previously, we will have an entry for it.
4955 *
4956 * Initial lookup is O(N), but this is amortized to O(1) for
4957 * sequential page access (where each new request is consecutive
4958 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4959 * i.e. O(1) with a large constant!
4960 */
4961 if (n < READ_ONCE(iter->sg_idx))
4962 goto lookup;
4963
4964 mutex_lock(&iter->lock);
4965
4966 /* We prefer to reuse the last sg so that repeated lookup of this
4967 * (or the subsequent) sg are fast - comparing against the last
4968 * sg is faster than going through the radixtree.
4969 */
4970
4971 sg = iter->sg_pos;
4972 idx = iter->sg_idx;
4973 count = __sg_page_count(sg);
4974
4975 while (idx + count <= n) {
4976 unsigned long exception, i;
4977 int ret;
4978
4979 /* If we cannot allocate and insert this entry, or the
4980 * individual pages from this range, cancel updating the
4981 * sg_idx so that on this lookup we are forced to linearly
4982 * scan onwards, but on future lookups we will try the
4983 * insertion again (in which case we need to be careful of
4984 * the error return reporting that we have already inserted
4985 * this index).
4986 */
4987 ret = radix_tree_insert(&iter->radix, idx, sg);
4988 if (ret && ret != -EEXIST)
4989 goto scan;
4990
4991 exception =
4992 RADIX_TREE_EXCEPTIONAL_ENTRY |
4993 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4994 for (i = 1; i < count; i++) {
4995 ret = radix_tree_insert(&iter->radix, idx + i,
4996 (void *)exception);
4997 if (ret && ret != -EEXIST)
4998 goto scan;
4999 }
5000
5001 idx += count;
5002 sg = ____sg_next(sg);
5003 count = __sg_page_count(sg);
5004 }
5005
5006scan:
5007 iter->sg_pos = sg;
5008 iter->sg_idx = idx;
5009
5010 mutex_unlock(&iter->lock);
5011
5012 if (unlikely(n < idx)) /* insertion completed by another thread */
5013 goto lookup;
5014
5015 /* In case we failed to insert the entry into the radixtree, we need
5016 * to look beyond the current sg.
5017 */
5018 while (idx + count <= n) {
5019 idx += count;
5020 sg = ____sg_next(sg);
5021 count = __sg_page_count(sg);
5022 }
5023
5024 *offset = n - idx;
5025 return sg;
5026
5027lookup:
5028 rcu_read_lock();
5029
5030 sg = radix_tree_lookup(&iter->radix, n);
5031 GEM_BUG_ON(!sg);
5032
5033 /* If this index is in the middle of multi-page sg entry,
5034 * the radixtree will contain an exceptional entry that points
5035 * to the start of that range. We will return the pointer to
5036 * the base page and the offset of this page within the
5037 * sg entry's range.
5038 */
5039 *offset = 0;
5040 if (unlikely(radix_tree_exception(sg))) {
5041 unsigned long base =
5042 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5043
5044 sg = radix_tree_lookup(&iter->radix, base);
5045 GEM_BUG_ON(!sg);
5046
5047 *offset = n - base;
5048 }
5049
5050 rcu_read_unlock();
5051
5052 return sg;
5053}
5054
5055struct page *
5056i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5057{
5058 struct scatterlist *sg;
5059 unsigned int offset;
5060
5061 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5062
5063 sg = i915_gem_object_get_sg(obj, n, &offset);
5064 return nth_page(sg_page(sg), offset);
5065}
5066
5067/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5068struct page *
5069i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5070 unsigned int n)
5071{
5072 struct page *page;
5073
5074 page = i915_gem_object_get_page(obj, n);
a4f5ea64 5075 if (!obj->mm.dirty)
96d77634
CW
5076 set_page_dirty(page);
5077
5078 return page;
5079}
5080
5081dma_addr_t
5082i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5083 unsigned long n)
5084{
5085 struct scatterlist *sg;
5086 unsigned int offset;
5087
5088 sg = i915_gem_object_get_sg(obj, n, &offset);
5089 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5090}