]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Connect requests to rings at creation not submission
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43 63static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 64
c76ce038
CW
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
2c22569b
CW
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
61050808
CW
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
5d82e3e6 87 obj->fence_dirty = false;
61050808
CW
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
73aa808f
CW
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
c20e8355 104 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
c20e8355 107 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108}
109
21dd3734 110static int
33196ded 111i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 112{
30dbf0c0
CW
113 int ret;
114
7abb690a
DV
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
1f83fee0 117 if (EXIT_COND)
30dbf0c0
CW
118 return 0;
119
0a6759c6
DV
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
1f83fee0
DV
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
0a6759c6
DV
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
30dbf0c0 132 return ret;
0a6759c6 133 }
1f83fee0 134#undef EXIT_COND
30dbf0c0 135
21dd3734 136 return 0;
30dbf0c0
CW
137}
138
54cf91dc 139int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 140{
33196ded 141 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
142 int ret;
143
33196ded 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
23bc5982 152 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
153 return 0;
154}
30dbf0c0 155
7d1c4804 156static inline bool
05394f39 157i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 158{
9843877d 159 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
160}
161
5a125c3c
EA
162int
163i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 164 struct drm_file *file)
5a125c3c 165{
73aa808f 166 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 167 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
168 struct drm_i915_gem_object *obj;
169 size_t pinned;
5a125c3c 170
6299f992 171 pinned = 0;
73aa808f 172 mutex_lock(&dev->struct_mutex);
35c20a60 173 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 174 if (i915_gem_obj_is_pinned(obj))
f343c5f6 175 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 176 mutex_unlock(&dev->struct_mutex);
5a125c3c 177
853ba5d2 178 args->aper_size = dev_priv->gtt.base.total;
0206e353 179 args->aper_available_size = args->aper_size - pinned;
6299f992 180
5a125c3c
EA
181 return 0;
182}
183
6a2c4232
CW
184static int
185i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 186{
6a2c4232
CW
187 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
188 char *vaddr = obj->phys_handle->vaddr;
189 struct sg_table *st;
190 struct scatterlist *sg;
191 int i;
00731155 192
6a2c4232
CW
193 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
194 return -EINVAL;
195
196 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
197 struct page *page;
198 char *src;
199
200 page = shmem_read_mapping_page(mapping, i);
201 if (IS_ERR(page))
202 return PTR_ERR(page);
203
204 src = kmap_atomic(page);
205 memcpy(vaddr, src, PAGE_SIZE);
206 drm_clflush_virt_range(vaddr, PAGE_SIZE);
207 kunmap_atomic(src);
208
209 page_cache_release(page);
210 vaddr += PAGE_SIZE;
211 }
212
213 i915_gem_chipset_flush(obj->base.dev);
214
215 st = kmalloc(sizeof(*st), GFP_KERNEL);
216 if (st == NULL)
217 return -ENOMEM;
218
219 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
220 kfree(st);
221 return -ENOMEM;
222 }
223
224 sg = st->sgl;
225 sg->offset = 0;
226 sg->length = obj->base.size;
00731155 227
6a2c4232
CW
228 sg_dma_address(sg) = obj->phys_handle->busaddr;
229 sg_dma_len(sg) = obj->base.size;
230
231 obj->pages = st;
232 obj->has_dma_mapping = true;
233 return 0;
234}
235
236static void
237i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
238{
239 int ret;
240
241 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 242
6a2c4232
CW
243 ret = i915_gem_object_set_to_cpu_domain(obj, true);
244 if (ret) {
245 /* In the event of a disaster, abandon all caches and
246 * hope for the best.
247 */
248 WARN_ON(ret != -EIO);
249 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
250 }
251
252 if (obj->madv == I915_MADV_DONTNEED)
253 obj->dirty = 0;
254
255 if (obj->dirty) {
00731155 256 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 257 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
258 int i;
259
260 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
261 struct page *page;
262 char *dst;
263
264 page = shmem_read_mapping_page(mapping, i);
265 if (IS_ERR(page))
266 continue;
267
268 dst = kmap_atomic(page);
269 drm_clflush_virt_range(vaddr, PAGE_SIZE);
270 memcpy(dst, vaddr, PAGE_SIZE);
271 kunmap_atomic(dst);
272
273 set_page_dirty(page);
274 if (obj->madv == I915_MADV_WILLNEED)
00731155 275 mark_page_accessed(page);
6a2c4232 276 page_cache_release(page);
00731155
CW
277 vaddr += PAGE_SIZE;
278 }
6a2c4232 279 obj->dirty = 0;
00731155
CW
280 }
281
6a2c4232
CW
282 sg_free_table(obj->pages);
283 kfree(obj->pages);
284
285 obj->has_dma_mapping = false;
286}
287
288static void
289i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
290{
291 drm_pci_free(obj->base.dev, obj->phys_handle);
292}
293
294static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
295 .get_pages = i915_gem_object_get_pages_phys,
296 .put_pages = i915_gem_object_put_pages_phys,
297 .release = i915_gem_object_release_phys,
298};
299
300static int
301drop_pages(struct drm_i915_gem_object *obj)
302{
303 struct i915_vma *vma, *next;
304 int ret;
305
306 drm_gem_object_reference(&obj->base);
307 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
308 if (i915_vma_unbind(vma))
309 break;
310
311 ret = i915_gem_object_put_pages(obj);
312 drm_gem_object_unreference(&obj->base);
313
314 return ret;
00731155
CW
315}
316
317int
318i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
319 int align)
320{
321 drm_dma_handle_t *phys;
6a2c4232 322 int ret;
00731155
CW
323
324 if (obj->phys_handle) {
325 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
326 return -EBUSY;
327
328 return 0;
329 }
330
331 if (obj->madv != I915_MADV_WILLNEED)
332 return -EFAULT;
333
334 if (obj->base.filp == NULL)
335 return -EINVAL;
336
6a2c4232
CW
337 ret = drop_pages(obj);
338 if (ret)
339 return ret;
340
00731155
CW
341 /* create a new object */
342 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
343 if (!phys)
344 return -ENOMEM;
345
00731155 346 obj->phys_handle = phys;
6a2c4232
CW
347 obj->ops = &i915_gem_phys_ops;
348
349 return i915_gem_object_get_pages(obj);
00731155
CW
350}
351
352static int
353i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
354 struct drm_i915_gem_pwrite *args,
355 struct drm_file *file_priv)
356{
357 struct drm_device *dev = obj->base.dev;
358 void *vaddr = obj->phys_handle->vaddr + args->offset;
359 char __user *user_data = to_user_ptr(args->data_ptr);
6a2c4232
CW
360 int ret;
361
362 /* We manually control the domain here and pretend that it
363 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
364 */
365 ret = i915_gem_object_wait_rendering(obj, false);
366 if (ret)
367 return ret;
00731155
CW
368
369 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
370 unsigned long unwritten;
371
372 /* The physical object once assigned is fixed for the lifetime
373 * of the obj, so we can safely drop the lock and continue
374 * to access vaddr.
375 */
376 mutex_unlock(&dev->struct_mutex);
377 unwritten = copy_from_user(vaddr, user_data, args->size);
378 mutex_lock(&dev->struct_mutex);
379 if (unwritten)
380 return -EFAULT;
381 }
382
6a2c4232 383 drm_clflush_virt_range(vaddr, args->size);
00731155
CW
384 i915_gem_chipset_flush(dev);
385 return 0;
386}
387
42dcedd4
CW
388void *i915_gem_object_alloc(struct drm_device *dev)
389{
390 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 391 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
392}
393
394void i915_gem_object_free(struct drm_i915_gem_object *obj)
395{
396 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
397 kmem_cache_free(dev_priv->slab, obj);
398}
399
ff72145b
DA
400static int
401i915_gem_create(struct drm_file *file,
402 struct drm_device *dev,
403 uint64_t size,
355a7018 404 bool dumb,
ff72145b 405 uint32_t *handle_p)
673a394b 406{
05394f39 407 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
408 int ret;
409 u32 handle;
673a394b 410
ff72145b 411 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
412 if (size == 0)
413 return -EINVAL;
673a394b
EA
414
415 /* Allocate the new object */
ff72145b 416 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
417 if (obj == NULL)
418 return -ENOMEM;
419
355a7018 420 obj->base.dumb = dumb;
05394f39 421 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 422 /* drop reference from allocate - handle holds it now */
d861e338
DV
423 drm_gem_object_unreference_unlocked(&obj->base);
424 if (ret)
425 return ret;
202f2fef 426
ff72145b 427 *handle_p = handle;
673a394b
EA
428 return 0;
429}
430
ff72145b
DA
431int
432i915_gem_dumb_create(struct drm_file *file,
433 struct drm_device *dev,
434 struct drm_mode_create_dumb *args)
435{
436 /* have to work out size/pitch and return them */
de45eaf7 437 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
438 args->size = args->pitch * args->height;
439 return i915_gem_create(file, dev,
355a7018 440 args->size, true, &args->handle);
ff72145b
DA
441}
442
ff72145b
DA
443/**
444 * Creates a new mm object and returns a handle to it.
445 */
446int
447i915_gem_create_ioctl(struct drm_device *dev, void *data,
448 struct drm_file *file)
449{
450 struct drm_i915_gem_create *args = data;
63ed2cb2 451
ff72145b 452 return i915_gem_create(file, dev,
355a7018 453 args->size, false, &args->handle);
ff72145b
DA
454}
455
8461d226
DV
456static inline int
457__copy_to_user_swizzled(char __user *cpu_vaddr,
458 const char *gpu_vaddr, int gpu_offset,
459 int length)
460{
461 int ret, cpu_offset = 0;
462
463 while (length > 0) {
464 int cacheline_end = ALIGN(gpu_offset + 1, 64);
465 int this_length = min(cacheline_end - gpu_offset, length);
466 int swizzled_gpu_offset = gpu_offset ^ 64;
467
468 ret = __copy_to_user(cpu_vaddr + cpu_offset,
469 gpu_vaddr + swizzled_gpu_offset,
470 this_length);
471 if (ret)
472 return ret + length;
473
474 cpu_offset += this_length;
475 gpu_offset += this_length;
476 length -= this_length;
477 }
478
479 return 0;
480}
481
8c59967c 482static inline int
4f0c7cfb
BW
483__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
484 const char __user *cpu_vaddr,
8c59967c
DV
485 int length)
486{
487 int ret, cpu_offset = 0;
488
489 while (length > 0) {
490 int cacheline_end = ALIGN(gpu_offset + 1, 64);
491 int this_length = min(cacheline_end - gpu_offset, length);
492 int swizzled_gpu_offset = gpu_offset ^ 64;
493
494 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
495 cpu_vaddr + cpu_offset,
496 this_length);
497 if (ret)
498 return ret + length;
499
500 cpu_offset += this_length;
501 gpu_offset += this_length;
502 length -= this_length;
503 }
504
505 return 0;
506}
507
4c914c0c
BV
508/*
509 * Pins the specified object's pages and synchronizes the object with
510 * GPU accesses. Sets needs_clflush to non-zero if the caller should
511 * flush the object from the CPU cache.
512 */
513int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
514 int *needs_clflush)
515{
516 int ret;
517
518 *needs_clflush = 0;
519
520 if (!obj->base.filp)
521 return -EINVAL;
522
523 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
524 /* If we're not in the cpu read domain, set ourself into the gtt
525 * read domain and manually flush cachelines (if required). This
526 * optimizes for the case when the gpu will dirty the data
527 * anyway again before the next pread happens. */
528 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
529 obj->cache_level);
530 ret = i915_gem_object_wait_rendering(obj, true);
531 if (ret)
532 return ret;
c8725f3d
CW
533
534 i915_gem_object_retire(obj);
4c914c0c
BV
535 }
536
537 ret = i915_gem_object_get_pages(obj);
538 if (ret)
539 return ret;
540
541 i915_gem_object_pin_pages(obj);
542
543 return ret;
544}
545
d174bd64
DV
546/* Per-page copy function for the shmem pread fastpath.
547 * Flushes invalid cachelines before reading the target if
548 * needs_clflush is set. */
eb01459f 549static int
d174bd64
DV
550shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
551 char __user *user_data,
552 bool page_do_bit17_swizzling, bool needs_clflush)
553{
554 char *vaddr;
555 int ret;
556
e7e58eb5 557 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
558 return -EINVAL;
559
560 vaddr = kmap_atomic(page);
561 if (needs_clflush)
562 drm_clflush_virt_range(vaddr + shmem_page_offset,
563 page_length);
564 ret = __copy_to_user_inatomic(user_data,
565 vaddr + shmem_page_offset,
566 page_length);
567 kunmap_atomic(vaddr);
568
f60d7f0c 569 return ret ? -EFAULT : 0;
d174bd64
DV
570}
571
23c18c71
DV
572static void
573shmem_clflush_swizzled_range(char *addr, unsigned long length,
574 bool swizzled)
575{
e7e58eb5 576 if (unlikely(swizzled)) {
23c18c71
DV
577 unsigned long start = (unsigned long) addr;
578 unsigned long end = (unsigned long) addr + length;
579
580 /* For swizzling simply ensure that we always flush both
581 * channels. Lame, but simple and it works. Swizzled
582 * pwrite/pread is far from a hotpath - current userspace
583 * doesn't use it at all. */
584 start = round_down(start, 128);
585 end = round_up(end, 128);
586
587 drm_clflush_virt_range((void *)start, end - start);
588 } else {
589 drm_clflush_virt_range(addr, length);
590 }
591
592}
593
d174bd64
DV
594/* Only difference to the fast-path function is that this can handle bit17
595 * and uses non-atomic copy and kmap functions. */
596static int
597shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
598 char __user *user_data,
599 bool page_do_bit17_swizzling, bool needs_clflush)
600{
601 char *vaddr;
602 int ret;
603
604 vaddr = kmap(page);
605 if (needs_clflush)
23c18c71
DV
606 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
607 page_length,
608 page_do_bit17_swizzling);
d174bd64
DV
609
610 if (page_do_bit17_swizzling)
611 ret = __copy_to_user_swizzled(user_data,
612 vaddr, shmem_page_offset,
613 page_length);
614 else
615 ret = __copy_to_user(user_data,
616 vaddr + shmem_page_offset,
617 page_length);
618 kunmap(page);
619
f60d7f0c 620 return ret ? - EFAULT : 0;
d174bd64
DV
621}
622
eb01459f 623static int
dbf7bff0
DV
624i915_gem_shmem_pread(struct drm_device *dev,
625 struct drm_i915_gem_object *obj,
626 struct drm_i915_gem_pread *args,
627 struct drm_file *file)
eb01459f 628{
8461d226 629 char __user *user_data;
eb01459f 630 ssize_t remain;
8461d226 631 loff_t offset;
eb2c0c81 632 int shmem_page_offset, page_length, ret = 0;
8461d226 633 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 634 int prefaulted = 0;
8489731c 635 int needs_clflush = 0;
67d5a50c 636 struct sg_page_iter sg_iter;
eb01459f 637
2bb4629a 638 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
639 remain = args->size;
640
8461d226 641 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 642
4c914c0c 643 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
644 if (ret)
645 return ret;
646
8461d226 647 offset = args->offset;
eb01459f 648
67d5a50c
ID
649 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
650 offset >> PAGE_SHIFT) {
2db76d7c 651 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
652
653 if (remain <= 0)
654 break;
655
eb01459f
EA
656 /* Operation in this page
657 *
eb01459f 658 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
659 * page_length = bytes to copy for this page
660 */
c8cbbb8b 661 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
662 page_length = remain;
663 if ((shmem_page_offset + page_length) > PAGE_SIZE)
664 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 665
8461d226
DV
666 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
667 (page_to_phys(page) & (1 << 17)) != 0;
668
d174bd64
DV
669 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
670 user_data, page_do_bit17_swizzling,
671 needs_clflush);
672 if (ret == 0)
673 goto next_page;
dbf7bff0 674
dbf7bff0
DV
675 mutex_unlock(&dev->struct_mutex);
676
d330a953 677 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 678 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
679 /* Userspace is tricking us, but we've already clobbered
680 * its pages with the prefault and promised to write the
681 * data up to the first fault. Hence ignore any errors
682 * and just continue. */
683 (void)ret;
684 prefaulted = 1;
685 }
eb01459f 686
d174bd64
DV
687 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
688 user_data, page_do_bit17_swizzling,
689 needs_clflush);
eb01459f 690
dbf7bff0 691 mutex_lock(&dev->struct_mutex);
f60d7f0c 692
f60d7f0c 693 if (ret)
8461d226 694 goto out;
8461d226 695
17793c9a 696next_page:
eb01459f 697 remain -= page_length;
8461d226 698 user_data += page_length;
eb01459f
EA
699 offset += page_length;
700 }
701
4f27b75d 702out:
f60d7f0c
CW
703 i915_gem_object_unpin_pages(obj);
704
eb01459f
EA
705 return ret;
706}
707
673a394b
EA
708/**
709 * Reads data from the object referenced by handle.
710 *
711 * On error, the contents of *data are undefined.
712 */
713int
714i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 715 struct drm_file *file)
673a394b
EA
716{
717 struct drm_i915_gem_pread *args = data;
05394f39 718 struct drm_i915_gem_object *obj;
35b62a89 719 int ret = 0;
673a394b 720
51311d0a
CW
721 if (args->size == 0)
722 return 0;
723
724 if (!access_ok(VERIFY_WRITE,
2bb4629a 725 to_user_ptr(args->data_ptr),
51311d0a
CW
726 args->size))
727 return -EFAULT;
728
4f27b75d 729 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 730 if (ret)
4f27b75d 731 return ret;
673a394b 732
05394f39 733 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 734 if (&obj->base == NULL) {
1d7cfea1
CW
735 ret = -ENOENT;
736 goto unlock;
4f27b75d 737 }
673a394b 738
7dcd2499 739 /* Bounds check source. */
05394f39
CW
740 if (args->offset > obj->base.size ||
741 args->size > obj->base.size - args->offset) {
ce9d419d 742 ret = -EINVAL;
35b62a89 743 goto out;
ce9d419d
CW
744 }
745
1286ff73
DV
746 /* prime objects have no backing filp to GEM pread/pwrite
747 * pages from.
748 */
749 if (!obj->base.filp) {
750 ret = -EINVAL;
751 goto out;
752 }
753
db53a302
CW
754 trace_i915_gem_object_pread(obj, args->offset, args->size);
755
dbf7bff0 756 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 757
35b62a89 758out:
05394f39 759 drm_gem_object_unreference(&obj->base);
1d7cfea1 760unlock:
4f27b75d 761 mutex_unlock(&dev->struct_mutex);
eb01459f 762 return ret;
673a394b
EA
763}
764
0839ccb8
KP
765/* This is the fast write path which cannot handle
766 * page faults in the source data
9b7530cc 767 */
0839ccb8
KP
768
769static inline int
770fast_user_write(struct io_mapping *mapping,
771 loff_t page_base, int page_offset,
772 char __user *user_data,
773 int length)
9b7530cc 774{
4f0c7cfb
BW
775 void __iomem *vaddr_atomic;
776 void *vaddr;
0839ccb8 777 unsigned long unwritten;
9b7530cc 778
3e4d3af5 779 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
780 /* We can use the cpu mem copy function because this is X86. */
781 vaddr = (void __force*)vaddr_atomic + page_offset;
782 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 783 user_data, length);
3e4d3af5 784 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 785 return unwritten;
0839ccb8
KP
786}
787
3de09aa3
EA
788/**
789 * This is the fast pwrite path, where we copy the data directly from the
790 * user into the GTT, uncached.
791 */
673a394b 792static int
05394f39
CW
793i915_gem_gtt_pwrite_fast(struct drm_device *dev,
794 struct drm_i915_gem_object *obj,
3de09aa3 795 struct drm_i915_gem_pwrite *args,
05394f39 796 struct drm_file *file)
673a394b 797{
3e31c6c0 798 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 799 ssize_t remain;
0839ccb8 800 loff_t offset, page_base;
673a394b 801 char __user *user_data;
935aaa69
DV
802 int page_offset, page_length, ret;
803
1ec9e26d 804 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
805 if (ret)
806 goto out;
807
808 ret = i915_gem_object_set_to_gtt_domain(obj, true);
809 if (ret)
810 goto out_unpin;
811
812 ret = i915_gem_object_put_fence(obj);
813 if (ret)
814 goto out_unpin;
673a394b 815
2bb4629a 816 user_data = to_user_ptr(args->data_ptr);
673a394b 817 remain = args->size;
673a394b 818
f343c5f6 819 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
820
821 while (remain > 0) {
822 /* Operation in this page
823 *
0839ccb8
KP
824 * page_base = page offset within aperture
825 * page_offset = offset within page
826 * page_length = bytes to copy for this page
673a394b 827 */
c8cbbb8b
CW
828 page_base = offset & PAGE_MASK;
829 page_offset = offset_in_page(offset);
0839ccb8
KP
830 page_length = remain;
831 if ((page_offset + remain) > PAGE_SIZE)
832 page_length = PAGE_SIZE - page_offset;
833
0839ccb8 834 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
835 * source page isn't available. Return the error and we'll
836 * retry in the slow path.
0839ccb8 837 */
5d4545ae 838 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
839 page_offset, user_data, page_length)) {
840 ret = -EFAULT;
841 goto out_unpin;
842 }
673a394b 843
0839ccb8
KP
844 remain -= page_length;
845 user_data += page_length;
846 offset += page_length;
673a394b 847 }
673a394b 848
935aaa69 849out_unpin:
d7f46fc4 850 i915_gem_object_ggtt_unpin(obj);
935aaa69 851out:
3de09aa3 852 return ret;
673a394b
EA
853}
854
d174bd64
DV
855/* Per-page copy function for the shmem pwrite fastpath.
856 * Flushes invalid cachelines before writing to the target if
857 * needs_clflush_before is set and flushes out any written cachelines after
858 * writing if needs_clflush is set. */
3043c60c 859static int
d174bd64
DV
860shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
861 char __user *user_data,
862 bool page_do_bit17_swizzling,
863 bool needs_clflush_before,
864 bool needs_clflush_after)
673a394b 865{
d174bd64 866 char *vaddr;
673a394b 867 int ret;
3de09aa3 868
e7e58eb5 869 if (unlikely(page_do_bit17_swizzling))
d174bd64 870 return -EINVAL;
3de09aa3 871
d174bd64
DV
872 vaddr = kmap_atomic(page);
873 if (needs_clflush_before)
874 drm_clflush_virt_range(vaddr + shmem_page_offset,
875 page_length);
c2831a94
CW
876 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
877 user_data, page_length);
d174bd64
DV
878 if (needs_clflush_after)
879 drm_clflush_virt_range(vaddr + shmem_page_offset,
880 page_length);
881 kunmap_atomic(vaddr);
3de09aa3 882
755d2218 883 return ret ? -EFAULT : 0;
3de09aa3
EA
884}
885
d174bd64
DV
886/* Only difference to the fast-path function is that this can handle bit17
887 * and uses non-atomic copy and kmap functions. */
3043c60c 888static int
d174bd64
DV
889shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
890 char __user *user_data,
891 bool page_do_bit17_swizzling,
892 bool needs_clflush_before,
893 bool needs_clflush_after)
673a394b 894{
d174bd64
DV
895 char *vaddr;
896 int ret;
e5281ccd 897
d174bd64 898 vaddr = kmap(page);
e7e58eb5 899 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
900 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
901 page_length,
902 page_do_bit17_swizzling);
d174bd64
DV
903 if (page_do_bit17_swizzling)
904 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
905 user_data,
906 page_length);
d174bd64
DV
907 else
908 ret = __copy_from_user(vaddr + shmem_page_offset,
909 user_data,
910 page_length);
911 if (needs_clflush_after)
23c18c71
DV
912 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
913 page_length,
914 page_do_bit17_swizzling);
d174bd64 915 kunmap(page);
40123c1f 916
755d2218 917 return ret ? -EFAULT : 0;
40123c1f
EA
918}
919
40123c1f 920static int
e244a443
DV
921i915_gem_shmem_pwrite(struct drm_device *dev,
922 struct drm_i915_gem_object *obj,
923 struct drm_i915_gem_pwrite *args,
924 struct drm_file *file)
40123c1f 925{
40123c1f 926 ssize_t remain;
8c59967c
DV
927 loff_t offset;
928 char __user *user_data;
eb2c0c81 929 int shmem_page_offset, page_length, ret = 0;
8c59967c 930 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 931 int hit_slowpath = 0;
58642885
DV
932 int needs_clflush_after = 0;
933 int needs_clflush_before = 0;
67d5a50c 934 struct sg_page_iter sg_iter;
40123c1f 935
2bb4629a 936 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
937 remain = args->size;
938
8c59967c 939 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 940
58642885
DV
941 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
942 /* If we're not in the cpu write domain, set ourself into the gtt
943 * write domain and manually flush cachelines (if required). This
944 * optimizes for the case when the gpu will use the data
945 * right away and we therefore have to clflush anyway. */
2c22569b 946 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
947 ret = i915_gem_object_wait_rendering(obj, false);
948 if (ret)
949 return ret;
c8725f3d
CW
950
951 i915_gem_object_retire(obj);
58642885 952 }
c76ce038
CW
953 /* Same trick applies to invalidate partially written cachelines read
954 * before writing. */
955 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
956 needs_clflush_before =
957 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 958
755d2218
CW
959 ret = i915_gem_object_get_pages(obj);
960 if (ret)
961 return ret;
962
963 i915_gem_object_pin_pages(obj);
964
673a394b 965 offset = args->offset;
05394f39 966 obj->dirty = 1;
673a394b 967
67d5a50c
ID
968 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
969 offset >> PAGE_SHIFT) {
2db76d7c 970 struct page *page = sg_page_iter_page(&sg_iter);
58642885 971 int partial_cacheline_write;
e5281ccd 972
9da3da66
CW
973 if (remain <= 0)
974 break;
975
40123c1f
EA
976 /* Operation in this page
977 *
40123c1f 978 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
979 * page_length = bytes to copy for this page
980 */
c8cbbb8b 981 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
982
983 page_length = remain;
984 if ((shmem_page_offset + page_length) > PAGE_SIZE)
985 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 986
58642885
DV
987 /* If we don't overwrite a cacheline completely we need to be
988 * careful to have up-to-date data by first clflushing. Don't
989 * overcomplicate things and flush the entire patch. */
990 partial_cacheline_write = needs_clflush_before &&
991 ((shmem_page_offset | page_length)
992 & (boot_cpu_data.x86_clflush_size - 1));
993
8c59967c
DV
994 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
995 (page_to_phys(page) & (1 << 17)) != 0;
996
d174bd64
DV
997 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
998 user_data, page_do_bit17_swizzling,
999 partial_cacheline_write,
1000 needs_clflush_after);
1001 if (ret == 0)
1002 goto next_page;
e244a443
DV
1003
1004 hit_slowpath = 1;
e244a443 1005 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1006 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1007 user_data, page_do_bit17_swizzling,
1008 partial_cacheline_write,
1009 needs_clflush_after);
40123c1f 1010
e244a443 1011 mutex_lock(&dev->struct_mutex);
755d2218 1012
755d2218 1013 if (ret)
8c59967c 1014 goto out;
8c59967c 1015
17793c9a 1016next_page:
40123c1f 1017 remain -= page_length;
8c59967c 1018 user_data += page_length;
40123c1f 1019 offset += page_length;
673a394b
EA
1020 }
1021
fbd5a26d 1022out:
755d2218
CW
1023 i915_gem_object_unpin_pages(obj);
1024
e244a443 1025 if (hit_slowpath) {
8dcf015e
DV
1026 /*
1027 * Fixup: Flush cpu caches in case we didn't flush the dirty
1028 * cachelines in-line while writing and the object moved
1029 * out of the cpu write domain while we've dropped the lock.
1030 */
1031 if (!needs_clflush_after &&
1032 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1033 if (i915_gem_clflush_object(obj, obj->pin_display))
1034 i915_gem_chipset_flush(dev);
e244a443 1035 }
8c59967c 1036 }
673a394b 1037
58642885 1038 if (needs_clflush_after)
e76e9aeb 1039 i915_gem_chipset_flush(dev);
58642885 1040
40123c1f 1041 return ret;
673a394b
EA
1042}
1043
1044/**
1045 * Writes data to the object referenced by handle.
1046 *
1047 * On error, the contents of the buffer that were to be modified are undefined.
1048 */
1049int
1050i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1051 struct drm_file *file)
673a394b
EA
1052{
1053 struct drm_i915_gem_pwrite *args = data;
05394f39 1054 struct drm_i915_gem_object *obj;
51311d0a
CW
1055 int ret;
1056
1057 if (args->size == 0)
1058 return 0;
1059
1060 if (!access_ok(VERIFY_READ,
2bb4629a 1061 to_user_ptr(args->data_ptr),
51311d0a
CW
1062 args->size))
1063 return -EFAULT;
1064
d330a953 1065 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1066 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1067 args->size);
1068 if (ret)
1069 return -EFAULT;
1070 }
673a394b 1071
fbd5a26d 1072 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1073 if (ret)
fbd5a26d 1074 return ret;
1d7cfea1 1075
05394f39 1076 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1077 if (&obj->base == NULL) {
1d7cfea1
CW
1078 ret = -ENOENT;
1079 goto unlock;
fbd5a26d 1080 }
673a394b 1081
7dcd2499 1082 /* Bounds check destination. */
05394f39
CW
1083 if (args->offset > obj->base.size ||
1084 args->size > obj->base.size - args->offset) {
ce9d419d 1085 ret = -EINVAL;
35b62a89 1086 goto out;
ce9d419d
CW
1087 }
1088
1286ff73
DV
1089 /* prime objects have no backing filp to GEM pread/pwrite
1090 * pages from.
1091 */
1092 if (!obj->base.filp) {
1093 ret = -EINVAL;
1094 goto out;
1095 }
1096
db53a302
CW
1097 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1098
935aaa69 1099 ret = -EFAULT;
673a394b
EA
1100 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1101 * it would end up going through the fenced access, and we'll get
1102 * different detiling behavior between reading and writing.
1103 * pread/pwrite currently are reading and writing from the CPU
1104 * perspective, requiring manual detiling by the client.
1105 */
2c22569b
CW
1106 if (obj->tiling_mode == I915_TILING_NONE &&
1107 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1108 cpu_write_needs_clflush(obj)) {
fbd5a26d 1109 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1110 /* Note that the gtt paths might fail with non-page-backed user
1111 * pointers (e.g. gtt mappings when moving data between
1112 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1113 }
673a394b 1114
6a2c4232
CW
1115 if (ret == -EFAULT || ret == -ENOSPC) {
1116 if (obj->phys_handle)
1117 ret = i915_gem_phys_pwrite(obj, args, file);
1118 else
1119 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1120 }
5c0480f2 1121
35b62a89 1122out:
05394f39 1123 drm_gem_object_unreference(&obj->base);
1d7cfea1 1124unlock:
fbd5a26d 1125 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1126 return ret;
1127}
1128
b361237b 1129int
33196ded 1130i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1131 bool interruptible)
1132{
1f83fee0 1133 if (i915_reset_in_progress(error)) {
b361237b
CW
1134 /* Non-interruptible callers can't handle -EAGAIN, hence return
1135 * -EIO unconditionally for these. */
1136 if (!interruptible)
1137 return -EIO;
1138
1f83fee0
DV
1139 /* Recovery complete, but the reset failed ... */
1140 if (i915_terminally_wedged(error))
b361237b
CW
1141 return -EIO;
1142
6689c167
MA
1143 /*
1144 * Check if GPU Reset is in progress - we need intel_ring_begin
1145 * to work properly to reinit the hw state while the gpu is
1146 * still marked as reset-in-progress. Handle this with a flag.
1147 */
1148 if (!error->reload_in_reset)
1149 return -EAGAIN;
b361237b
CW
1150 }
1151
1152 return 0;
1153}
1154
1155/*
b6660d59 1156 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1157 */
84c33a64 1158int
b6660d59 1159i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b
CW
1160{
1161 int ret;
1162
b6660d59 1163 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b
CW
1164
1165 ret = 0;
b6660d59 1166 if (req == req->ring->outstanding_lazy_request)
9400ae5c 1167 ret = i915_add_request(req->ring);
b361237b
CW
1168
1169 return ret;
1170}
1171
094f9a54
CW
1172static void fake_irq(unsigned long data)
1173{
1174 wake_up_process((struct task_struct *)data);
1175}
1176
1177static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1178 struct intel_engine_cs *ring)
094f9a54
CW
1179{
1180 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1181}
1182
b29c19b6
CW
1183static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1184{
1185 if (file_priv == NULL)
1186 return true;
1187
1188 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1189}
1190
b361237b 1191/**
9c654818
JH
1192 * __i915_wait_request - wait until execution of request has finished
1193 * @req: duh!
1194 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1195 * @interruptible: do an interruptible wait (normally yes)
1196 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1197 *
f69061be
DV
1198 * Note: It is of utmost importance that the passed in seqno and reset_counter
1199 * values have been read by the caller in an smp safe manner. Where read-side
1200 * locks are involved, it is sufficient to read the reset_counter before
1201 * unlocking the lock that protects the seqno. For lockless tricks, the
1202 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1203 * inserted.
1204 *
9c654818 1205 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1206 * errno with remaining time filled in timeout argument.
1207 */
9c654818 1208int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1209 unsigned reset_counter,
b29c19b6 1210 bool interruptible,
5ed0bdf2 1211 s64 *timeout,
b29c19b6 1212 struct drm_i915_file_private *file_priv)
b361237b 1213{
9c654818 1214 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1215 struct drm_device *dev = ring->dev;
3e31c6c0 1216 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1217 const bool irq_test_in_progress =
1218 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1219 DEFINE_WAIT(wait);
47e9766d 1220 unsigned long timeout_expire;
5ed0bdf2 1221 s64 before, now;
b361237b
CW
1222 int ret;
1223
9df7575f 1224 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1225
9c654818
JH
1226 if (i915_seqno_passed(ring->get_seqno(ring, true),
1227 i915_gem_request_get_seqno(req)))
b361237b
CW
1228 return 0;
1229
5ed0bdf2 1230 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
b361237b 1231
ec5cc0f9 1232 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1233 gen6_rps_boost(dev_priv);
1234 if (file_priv)
1235 mod_delayed_work(dev_priv->wq,
1236 &file_priv->mm.idle_work,
1237 msecs_to_jiffies(100));
1238 }
1239
168c3f21 1240 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1241 return -ENODEV;
1242
094f9a54 1243 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1244 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1245 before = ktime_get_raw_ns();
094f9a54
CW
1246 for (;;) {
1247 struct timer_list timer;
b361237b 1248
094f9a54
CW
1249 prepare_to_wait(&ring->irq_queue, &wait,
1250 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1251
f69061be
DV
1252 /* We need to check whether any gpu reset happened in between
1253 * the caller grabbing the seqno and now ... */
094f9a54
CW
1254 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1255 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1256 * is truely gone. */
1257 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1258 if (ret == 0)
1259 ret = -EAGAIN;
1260 break;
1261 }
f69061be 1262
9c654818
JH
1263 if (i915_seqno_passed(ring->get_seqno(ring, false),
1264 i915_gem_request_get_seqno(req))) {
094f9a54
CW
1265 ret = 0;
1266 break;
1267 }
b361237b 1268
094f9a54
CW
1269 if (interruptible && signal_pending(current)) {
1270 ret = -ERESTARTSYS;
1271 break;
1272 }
1273
47e9766d 1274 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1275 ret = -ETIME;
1276 break;
1277 }
1278
1279 timer.function = NULL;
1280 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1281 unsigned long expire;
1282
094f9a54 1283 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1284 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1285 mod_timer(&timer, expire);
1286 }
1287
5035c275 1288 io_schedule();
094f9a54 1289
094f9a54
CW
1290 if (timer.function) {
1291 del_singleshot_timer_sync(&timer);
1292 destroy_timer_on_stack(&timer);
1293 }
1294 }
5ed0bdf2 1295 now = ktime_get_raw_ns();
74328ee5 1296 trace_i915_gem_request_wait_end(req);
b361237b 1297
168c3f21
MK
1298 if (!irq_test_in_progress)
1299 ring->irq_put(ring);
094f9a54
CW
1300
1301 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1302
1303 if (timeout) {
5ed0bdf2
TG
1304 s64 tres = *timeout - (now - before);
1305
1306 *timeout = tres < 0 ? 0 : tres;
b361237b
CW
1307 }
1308
094f9a54 1309 return ret;
b361237b
CW
1310}
1311
1312/**
a4b3a571 1313 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1314 * request and object lists appropriately for that event.
1315 */
1316int
a4b3a571 1317i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1318{
a4b3a571
DV
1319 struct drm_device *dev;
1320 struct drm_i915_private *dev_priv;
1321 bool interruptible;
16e9a21f 1322 unsigned reset_counter;
b361237b
CW
1323 int ret;
1324
a4b3a571
DV
1325 BUG_ON(req == NULL);
1326
1327 dev = req->ring->dev;
1328 dev_priv = dev->dev_private;
1329 interruptible = dev_priv->mm.interruptible;
1330
b361237b 1331 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1332
33196ded 1333 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1334 if (ret)
1335 return ret;
1336
a4b3a571 1337 ret = i915_gem_check_olr(req);
b361237b
CW
1338 if (ret)
1339 return ret;
1340
16e9a21f 1341 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
a4b3a571 1342 i915_gem_request_reference(req);
9c654818
JH
1343 ret = __i915_wait_request(req, reset_counter,
1344 interruptible, NULL, NULL);
a4b3a571
DV
1345 i915_gem_request_unreference(req);
1346 return ret;
b361237b
CW
1347}
1348
d26e3af8 1349static int
8e639549 1350i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
d26e3af8 1351{
c8725f3d
CW
1352 if (!obj->active)
1353 return 0;
d26e3af8
CW
1354
1355 /* Manually manage the write flush as we may have not yet
1356 * retired the buffer.
1357 *
97b2a6a1
JH
1358 * Note that the last_write_req is always the earlier of
1359 * the two (read/write) requests, so if we haved successfully waited,
d26e3af8
CW
1360 * we know we have passed the last write.
1361 */
97b2a6a1 1362 i915_gem_request_assign(&obj->last_write_req, NULL);
d26e3af8
CW
1363
1364 return 0;
1365}
1366
b361237b
CW
1367/**
1368 * Ensures that all rendering to the object has completed and the object is
1369 * safe to unbind from the GTT or access from the CPU.
1370 */
1371static __must_check int
1372i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1373 bool readonly)
1374{
97b2a6a1 1375 struct drm_i915_gem_request *req;
b361237b
CW
1376 int ret;
1377
97b2a6a1
JH
1378 req = readonly ? obj->last_write_req : obj->last_read_req;
1379 if (!req)
b361237b
CW
1380 return 0;
1381
a4b3a571 1382 ret = i915_wait_request(req);
b361237b
CW
1383 if (ret)
1384 return ret;
1385
8e639549 1386 return i915_gem_object_wait_rendering__tail(obj);
b361237b
CW
1387}
1388
3236f57a
CW
1389/* A nonblocking variant of the above wait. This is a highly dangerous routine
1390 * as the object state may change during this call.
1391 */
1392static __must_check int
1393i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1394 struct drm_i915_file_private *file_priv,
3236f57a
CW
1395 bool readonly)
1396{
97b2a6a1 1397 struct drm_i915_gem_request *req;
3236f57a
CW
1398 struct drm_device *dev = obj->base.dev;
1399 struct drm_i915_private *dev_priv = dev->dev_private;
f69061be 1400 unsigned reset_counter;
3236f57a
CW
1401 int ret;
1402
1403 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1404 BUG_ON(!dev_priv->mm.interruptible);
1405
97b2a6a1
JH
1406 req = readonly ? obj->last_write_req : obj->last_read_req;
1407 if (!req)
3236f57a
CW
1408 return 0;
1409
33196ded 1410 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1411 if (ret)
1412 return ret;
1413
b6660d59 1414 ret = i915_gem_check_olr(req);
3236f57a
CW
1415 if (ret)
1416 return ret;
1417
f69061be 1418 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 1419 i915_gem_request_reference(req);
3236f57a 1420 mutex_unlock(&dev->struct_mutex);
9c654818 1421 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
3236f57a 1422 mutex_lock(&dev->struct_mutex);
ff865885 1423 i915_gem_request_unreference(req);
d26e3af8
CW
1424 if (ret)
1425 return ret;
3236f57a 1426
8e639549 1427 return i915_gem_object_wait_rendering__tail(obj);
3236f57a
CW
1428}
1429
673a394b 1430/**
2ef7eeaa
EA
1431 * Called when user space prepares to use an object with the CPU, either
1432 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1433 */
1434int
1435i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1436 struct drm_file *file)
673a394b
EA
1437{
1438 struct drm_i915_gem_set_domain *args = data;
05394f39 1439 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1440 uint32_t read_domains = args->read_domains;
1441 uint32_t write_domain = args->write_domain;
673a394b
EA
1442 int ret;
1443
2ef7eeaa 1444 /* Only handle setting domains to types used by the CPU. */
21d509e3 1445 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1446 return -EINVAL;
1447
21d509e3 1448 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1449 return -EINVAL;
1450
1451 /* Having something in the write domain implies it's in the read
1452 * domain, and only that read domain. Enforce that in the request.
1453 */
1454 if (write_domain != 0 && read_domains != write_domain)
1455 return -EINVAL;
1456
76c1dec1 1457 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1458 if (ret)
76c1dec1 1459 return ret;
1d7cfea1 1460
05394f39 1461 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1462 if (&obj->base == NULL) {
1d7cfea1
CW
1463 ret = -ENOENT;
1464 goto unlock;
76c1dec1 1465 }
673a394b 1466
3236f57a
CW
1467 /* Try to flush the object off the GPU without holding the lock.
1468 * We will repeat the flush holding the lock in the normal manner
1469 * to catch cases where we are gazumped.
1470 */
6e4930f6
CW
1471 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1472 file->driver_priv,
1473 !write_domain);
3236f57a
CW
1474 if (ret)
1475 goto unref;
1476
2ef7eeaa
EA
1477 if (read_domains & I915_GEM_DOMAIN_GTT) {
1478 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1479
1480 /* Silently promote "you're not bound, there was nothing to do"
1481 * to success, since the client was just asking us to
1482 * make sure everything was done.
1483 */
1484 if (ret == -EINVAL)
1485 ret = 0;
2ef7eeaa 1486 } else {
e47c68e9 1487 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1488 }
1489
3236f57a 1490unref:
05394f39 1491 drm_gem_object_unreference(&obj->base);
1d7cfea1 1492unlock:
673a394b
EA
1493 mutex_unlock(&dev->struct_mutex);
1494 return ret;
1495}
1496
1497/**
1498 * Called when user space has done writes to this buffer
1499 */
1500int
1501i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1502 struct drm_file *file)
673a394b
EA
1503{
1504 struct drm_i915_gem_sw_finish *args = data;
05394f39 1505 struct drm_i915_gem_object *obj;
673a394b
EA
1506 int ret = 0;
1507
76c1dec1 1508 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1509 if (ret)
76c1dec1 1510 return ret;
1d7cfea1 1511
05394f39 1512 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1513 if (&obj->base == NULL) {
1d7cfea1
CW
1514 ret = -ENOENT;
1515 goto unlock;
673a394b
EA
1516 }
1517
673a394b 1518 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1519 if (obj->pin_display)
1520 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1521
05394f39 1522 drm_gem_object_unreference(&obj->base);
1d7cfea1 1523unlock:
673a394b
EA
1524 mutex_unlock(&dev->struct_mutex);
1525 return ret;
1526}
1527
1528/**
1529 * Maps the contents of an object, returning the address it is mapped
1530 * into.
1531 *
1532 * While the mapping holds a reference on the contents of the object, it doesn't
1533 * imply a ref on the object itself.
34367381
DV
1534 *
1535 * IMPORTANT:
1536 *
1537 * DRM driver writers who look a this function as an example for how to do GEM
1538 * mmap support, please don't implement mmap support like here. The modern way
1539 * to implement DRM mmap support is with an mmap offset ioctl (like
1540 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1541 * That way debug tooling like valgrind will understand what's going on, hiding
1542 * the mmap call in a driver private ioctl will break that. The i915 driver only
1543 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1544 */
1545int
1546i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1547 struct drm_file *file)
673a394b
EA
1548{
1549 struct drm_i915_gem_mmap *args = data;
1550 struct drm_gem_object *obj;
673a394b
EA
1551 unsigned long addr;
1552
05394f39 1553 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1554 if (obj == NULL)
bf79cb91 1555 return -ENOENT;
673a394b 1556
1286ff73
DV
1557 /* prime objects have no backing filp to GEM mmap
1558 * pages from.
1559 */
1560 if (!obj->filp) {
1561 drm_gem_object_unreference_unlocked(obj);
1562 return -EINVAL;
1563 }
1564
6be5ceb0 1565 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1566 PROT_READ | PROT_WRITE, MAP_SHARED,
1567 args->offset);
bc9025bd 1568 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1569 if (IS_ERR((void *)addr))
1570 return addr;
1571
1572 args->addr_ptr = (uint64_t) addr;
1573
1574 return 0;
1575}
1576
de151cf6
JB
1577/**
1578 * i915_gem_fault - fault a page into the GTT
1579 * vma: VMA in question
1580 * vmf: fault info
1581 *
1582 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1583 * from userspace. The fault handler takes care of binding the object to
1584 * the GTT (if needed), allocating and programming a fence register (again,
1585 * only if needed based on whether the old reg is still valid or the object
1586 * is tiled) and inserting a new PTE into the faulting process.
1587 *
1588 * Note that the faulting process may involve evicting existing objects
1589 * from the GTT and/or fence registers to make room. So performance may
1590 * suffer if the GTT working set is large or there are few fence registers
1591 * left.
1592 */
1593int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1594{
05394f39
CW
1595 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1596 struct drm_device *dev = obj->base.dev;
3e31c6c0 1597 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1598 pgoff_t page_offset;
1599 unsigned long pfn;
1600 int ret = 0;
0f973f27 1601 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1602
f65c9168
PZ
1603 intel_runtime_pm_get(dev_priv);
1604
de151cf6
JB
1605 /* We don't use vmf->pgoff since that has the fake offset */
1606 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1607 PAGE_SHIFT;
1608
d9bc7e9f
CW
1609 ret = i915_mutex_lock_interruptible(dev);
1610 if (ret)
1611 goto out;
a00b10c3 1612
db53a302
CW
1613 trace_i915_gem_object_fault(obj, page_offset, true, write);
1614
6e4930f6
CW
1615 /* Try to flush the object off the GPU first without holding the lock.
1616 * Upon reacquiring the lock, we will perform our sanity checks and then
1617 * repeat the flush holding the lock in the normal manner to catch cases
1618 * where we are gazumped.
1619 */
1620 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1621 if (ret)
1622 goto unlock;
1623
eb119bd6
CW
1624 /* Access to snoopable pages through the GTT is incoherent. */
1625 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1626 ret = -EFAULT;
eb119bd6
CW
1627 goto unlock;
1628 }
1629
d9bc7e9f 1630 /* Now bind it into the GTT if needed */
1ec9e26d 1631 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1632 if (ret)
1633 goto unlock;
4a684a41 1634
c9839303
CW
1635 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1636 if (ret)
1637 goto unpin;
74898d7e 1638
06d98131 1639 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1640 if (ret)
c9839303 1641 goto unpin;
7d1c4804 1642
b90b91d8 1643 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1644 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1645 pfn >>= PAGE_SHIFT;
de151cf6 1646
b90b91d8 1647 if (!obj->fault_mappable) {
beff0d0f
VS
1648 unsigned long size = min_t(unsigned long,
1649 vma->vm_end - vma->vm_start,
1650 obj->base.size);
b90b91d8
CW
1651 int i;
1652
beff0d0f 1653 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1654 ret = vm_insert_pfn(vma,
1655 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1656 pfn + i);
1657 if (ret)
1658 break;
1659 }
1660
1661 obj->fault_mappable = true;
1662 } else
1663 ret = vm_insert_pfn(vma,
1664 (unsigned long)vmf->virtual_address,
1665 pfn + page_offset);
c9839303 1666unpin:
d7f46fc4 1667 i915_gem_object_ggtt_unpin(obj);
c715089f 1668unlock:
de151cf6 1669 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1670out:
de151cf6 1671 switch (ret) {
d9bc7e9f 1672 case -EIO:
2232f031
DV
1673 /*
1674 * We eat errors when the gpu is terminally wedged to avoid
1675 * userspace unduly crashing (gl has no provisions for mmaps to
1676 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1677 * and so needs to be reported.
1678 */
1679 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1680 ret = VM_FAULT_SIGBUS;
1681 break;
1682 }
045e769a 1683 case -EAGAIN:
571c608d
DV
1684 /*
1685 * EAGAIN means the gpu is hung and we'll wait for the error
1686 * handler to reset everything when re-faulting in
1687 * i915_mutex_lock_interruptible.
d9bc7e9f 1688 */
c715089f
CW
1689 case 0:
1690 case -ERESTARTSYS:
bed636ab 1691 case -EINTR:
e79e0fe3
DR
1692 case -EBUSY:
1693 /*
1694 * EBUSY is ok: this just means that another thread
1695 * already did the job.
1696 */
f65c9168
PZ
1697 ret = VM_FAULT_NOPAGE;
1698 break;
de151cf6 1699 case -ENOMEM:
f65c9168
PZ
1700 ret = VM_FAULT_OOM;
1701 break;
a7c2e1aa 1702 case -ENOSPC:
45d67817 1703 case -EFAULT:
f65c9168
PZ
1704 ret = VM_FAULT_SIGBUS;
1705 break;
de151cf6 1706 default:
a7c2e1aa 1707 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1708 ret = VM_FAULT_SIGBUS;
1709 break;
de151cf6 1710 }
f65c9168
PZ
1711
1712 intel_runtime_pm_put(dev_priv);
1713 return ret;
de151cf6
JB
1714}
1715
901782b2
CW
1716/**
1717 * i915_gem_release_mmap - remove physical page mappings
1718 * @obj: obj in question
1719 *
af901ca1 1720 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1721 * relinquish ownership of the pages back to the system.
1722 *
1723 * It is vital that we remove the page mapping if we have mapped a tiled
1724 * object through the GTT and then lose the fence register due to
1725 * resource pressure. Similarly if the object has been moved out of the
1726 * aperture, than pages mapped into userspace must be revoked. Removing the
1727 * mapping will then trigger a page fault on the next user access, allowing
1728 * fixup by i915_gem_fault().
1729 */
d05ca301 1730void
05394f39 1731i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1732{
6299f992
CW
1733 if (!obj->fault_mappable)
1734 return;
901782b2 1735
6796cb16
DH
1736 drm_vma_node_unmap(&obj->base.vma_node,
1737 obj->base.dev->anon_inode->i_mapping);
6299f992 1738 obj->fault_mappable = false;
901782b2
CW
1739}
1740
eedd10f4
CW
1741void
1742i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1743{
1744 struct drm_i915_gem_object *obj;
1745
1746 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1747 i915_gem_release_mmap(obj);
1748}
1749
0fa87796 1750uint32_t
e28f8711 1751i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1752{
e28f8711 1753 uint32_t gtt_size;
92b88aeb
CW
1754
1755 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1756 tiling_mode == I915_TILING_NONE)
1757 return size;
92b88aeb
CW
1758
1759 /* Previous chips need a power-of-two fence region when tiling */
1760 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1761 gtt_size = 1024*1024;
92b88aeb 1762 else
e28f8711 1763 gtt_size = 512*1024;
92b88aeb 1764
e28f8711
CW
1765 while (gtt_size < size)
1766 gtt_size <<= 1;
92b88aeb 1767
e28f8711 1768 return gtt_size;
92b88aeb
CW
1769}
1770
de151cf6
JB
1771/**
1772 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1773 * @obj: object to check
1774 *
1775 * Return the required GTT alignment for an object, taking into account
5e783301 1776 * potential fence register mapping.
de151cf6 1777 */
d865110c
ID
1778uint32_t
1779i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1780 int tiling_mode, bool fenced)
de151cf6 1781{
de151cf6
JB
1782 /*
1783 * Minimum alignment is 4k (GTT page size), but might be greater
1784 * if a fence register is needed for the object.
1785 */
d865110c 1786 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1787 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1788 return 4096;
1789
a00b10c3
CW
1790 /*
1791 * Previous chips need to be aligned to the size of the smallest
1792 * fence register that can contain the object.
1793 */
e28f8711 1794 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1795}
1796
d8cb5086
CW
1797static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1798{
1799 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1800 int ret;
1801
0de23977 1802 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1803 return 0;
1804
da494d7c
DV
1805 dev_priv->mm.shrinker_no_lock_stealing = true;
1806
d8cb5086
CW
1807 ret = drm_gem_create_mmap_offset(&obj->base);
1808 if (ret != -ENOSPC)
da494d7c 1809 goto out;
d8cb5086
CW
1810
1811 /* Badly fragmented mmap space? The only way we can recover
1812 * space is by destroying unwanted objects. We can't randomly release
1813 * mmap_offsets as userspace expects them to be persistent for the
1814 * lifetime of the objects. The closest we can is to release the
1815 * offsets on purgeable objects by truncating it and marking it purged,
1816 * which prevents userspace from ever using that object again.
1817 */
21ab4e74
CW
1818 i915_gem_shrink(dev_priv,
1819 obj->base.size >> PAGE_SHIFT,
1820 I915_SHRINK_BOUND |
1821 I915_SHRINK_UNBOUND |
1822 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1823 ret = drm_gem_create_mmap_offset(&obj->base);
1824 if (ret != -ENOSPC)
da494d7c 1825 goto out;
d8cb5086
CW
1826
1827 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1828 ret = drm_gem_create_mmap_offset(&obj->base);
1829out:
1830 dev_priv->mm.shrinker_no_lock_stealing = false;
1831
1832 return ret;
d8cb5086
CW
1833}
1834
1835static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1836{
d8cb5086
CW
1837 drm_gem_free_mmap_offset(&obj->base);
1838}
1839
355a7018 1840static int
ff72145b
DA
1841i915_gem_mmap_gtt(struct drm_file *file,
1842 struct drm_device *dev,
355a7018 1843 uint32_t handle, bool dumb,
ff72145b 1844 uint64_t *offset)
de151cf6 1845{
da761a6e 1846 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1847 struct drm_i915_gem_object *obj;
de151cf6
JB
1848 int ret;
1849
76c1dec1 1850 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1851 if (ret)
76c1dec1 1852 return ret;
de151cf6 1853
ff72145b 1854 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1855 if (&obj->base == NULL) {
1d7cfea1
CW
1856 ret = -ENOENT;
1857 goto unlock;
1858 }
de151cf6 1859
355a7018
TH
1860 /*
1861 * We don't allow dumb mmaps on objects created using another
1862 * interface.
1863 */
1864 WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
1865 "Illegal dumb map of accelerated buffer.\n");
1866
5d4545ae 1867 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1868 ret = -E2BIG;
ff56b0bc 1869 goto out;
da761a6e
CW
1870 }
1871
05394f39 1872 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1873 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1874 ret = -EFAULT;
1d7cfea1 1875 goto out;
ab18282d
CW
1876 }
1877
d8cb5086
CW
1878 ret = i915_gem_object_create_mmap_offset(obj);
1879 if (ret)
1880 goto out;
de151cf6 1881
0de23977 1882 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1883
1d7cfea1 1884out:
05394f39 1885 drm_gem_object_unreference(&obj->base);
1d7cfea1 1886unlock:
de151cf6 1887 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1888 return ret;
de151cf6
JB
1889}
1890
355a7018
TH
1891int
1892i915_gem_dumb_map_offset(struct drm_file *file,
1893 struct drm_device *dev,
1894 uint32_t handle,
1895 uint64_t *offset)
1896{
1897 return i915_gem_mmap_gtt(file, dev, handle, true, offset);
1898}
1899
ff72145b
DA
1900/**
1901 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1902 * @dev: DRM device
1903 * @data: GTT mapping ioctl data
1904 * @file: GEM object info
1905 *
1906 * Simply returns the fake offset to userspace so it can mmap it.
1907 * The mmap call will end up in drm_gem_mmap(), which will set things
1908 * up so we can get faults in the handler above.
1909 *
1910 * The fault handler will take care of binding the object into the GTT
1911 * (since it may have been evicted to make room for something), allocating
1912 * a fence register, and mapping the appropriate aperture address into
1913 * userspace.
1914 */
1915int
1916i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1917 struct drm_file *file)
1918{
1919 struct drm_i915_gem_mmap_gtt *args = data;
1920
355a7018 1921 return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
ff72145b
DA
1922}
1923
5537252b
CW
1924static inline int
1925i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1926{
1927 return obj->madv == I915_MADV_DONTNEED;
1928}
1929
225067ee
DV
1930/* Immediately discard the backing storage */
1931static void
1932i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1933{
4d6294bf 1934 i915_gem_object_free_mmap_offset(obj);
1286ff73 1935
4d6294bf
CW
1936 if (obj->base.filp == NULL)
1937 return;
e5281ccd 1938
225067ee
DV
1939 /* Our goal here is to return as much of the memory as
1940 * is possible back to the system as we are called from OOM.
1941 * To do this we must instruct the shmfs to drop all of its
1942 * backing pages, *now*.
1943 */
5537252b 1944 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1945 obj->madv = __I915_MADV_PURGED;
1946}
e5281ccd 1947
5537252b
CW
1948/* Try to discard unwanted pages */
1949static void
1950i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1951{
5537252b
CW
1952 struct address_space *mapping;
1953
1954 switch (obj->madv) {
1955 case I915_MADV_DONTNEED:
1956 i915_gem_object_truncate(obj);
1957 case __I915_MADV_PURGED:
1958 return;
1959 }
1960
1961 if (obj->base.filp == NULL)
1962 return;
1963
1964 mapping = file_inode(obj->base.filp)->i_mapping,
1965 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1966}
1967
5cdf5881 1968static void
05394f39 1969i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1970{
90797e6d
ID
1971 struct sg_page_iter sg_iter;
1972 int ret;
1286ff73 1973
05394f39 1974 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1975
6c085a72
CW
1976 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1977 if (ret) {
1978 /* In the event of a disaster, abandon all caches and
1979 * hope for the best.
1980 */
1981 WARN_ON(ret != -EIO);
2c22569b 1982 i915_gem_clflush_object(obj, true);
6c085a72
CW
1983 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1984 }
1985
6dacfd2f 1986 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1987 i915_gem_object_save_bit_17_swizzle(obj);
1988
05394f39
CW
1989 if (obj->madv == I915_MADV_DONTNEED)
1990 obj->dirty = 0;
3ef94daa 1991
90797e6d 1992 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1993 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1994
05394f39 1995 if (obj->dirty)
9da3da66 1996 set_page_dirty(page);
3ef94daa 1997
05394f39 1998 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1999 mark_page_accessed(page);
3ef94daa 2000
9da3da66 2001 page_cache_release(page);
3ef94daa 2002 }
05394f39 2003 obj->dirty = 0;
673a394b 2004
9da3da66
CW
2005 sg_free_table(obj->pages);
2006 kfree(obj->pages);
37e680a1 2007}
6c085a72 2008
dd624afd 2009int
37e680a1
CW
2010i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2011{
2012 const struct drm_i915_gem_object_ops *ops = obj->ops;
2013
2f745ad3 2014 if (obj->pages == NULL)
37e680a1
CW
2015 return 0;
2016
a5570178
CW
2017 if (obj->pages_pin_count)
2018 return -EBUSY;
2019
9843877d 2020 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2021
a2165e31
CW
2022 /* ->put_pages might need to allocate memory for the bit17 swizzle
2023 * array, hence protect them from being reaped by removing them from gtt
2024 * lists early. */
35c20a60 2025 list_del(&obj->global_list);
a2165e31 2026
37e680a1 2027 ops->put_pages(obj);
05394f39 2028 obj->pages = NULL;
37e680a1 2029
5537252b 2030 i915_gem_object_invalidate(obj);
6c085a72
CW
2031
2032 return 0;
2033}
2034
21ab4e74
CW
2035unsigned long
2036i915_gem_shrink(struct drm_i915_private *dev_priv,
2037 long target, unsigned flags)
6c085a72 2038{
60a53727
CW
2039 const struct {
2040 struct list_head *list;
2041 unsigned int bit;
2042 } phases[] = {
2043 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2044 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2045 { NULL, 0 },
2046 }, *phase;
d9973b43 2047 unsigned long count = 0;
6c085a72 2048
57094f82 2049 /*
c8725f3d 2050 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
2051 * (due to retiring requests) we have to strictly process only
2052 * one element of the list at the time, and recheck the list
2053 * on every iteration.
c8725f3d
CW
2054 *
2055 * In particular, we must hold a reference whilst removing the
2056 * object as we may end up waiting for and/or retiring the objects.
2057 * This might release the final reference (held by the active list)
2058 * and result in the object being freed from under us. This is
2059 * similar to the precautions the eviction code must take whilst
2060 * removing objects.
2061 *
2062 * Also note that although these lists do not hold a reference to
2063 * the object we can safely grab one here: The final object
2064 * unreferencing and the bound_list are both protected by the
2065 * dev->struct_mutex and so we won't ever be able to observe an
2066 * object on the bound_list with a reference count equals 0.
57094f82 2067 */
60a53727 2068 for (phase = phases; phase->list; phase++) {
21ab4e74 2069 struct list_head still_in_list;
c8725f3d 2070
60a53727
CW
2071 if ((flags & phase->bit) == 0)
2072 continue;
80dcfdbd 2073
21ab4e74 2074 INIT_LIST_HEAD(&still_in_list);
60a53727 2075 while (count < target && !list_empty(phase->list)) {
21ab4e74
CW
2076 struct drm_i915_gem_object *obj;
2077 struct i915_vma *vma, *v;
57094f82 2078
60a53727 2079 obj = list_first_entry(phase->list,
21ab4e74
CW
2080 typeof(*obj), global_list);
2081 list_move_tail(&obj->global_list, &still_in_list);
80dcfdbd 2082
60a53727
CW
2083 if (flags & I915_SHRINK_PURGEABLE &&
2084 !i915_gem_object_is_purgeable(obj))
21ab4e74 2085 continue;
57094f82 2086
21ab4e74 2087 drm_gem_object_reference(&obj->base);
80dcfdbd 2088
60a53727
CW
2089 /* For the unbound phase, this should be a no-op! */
2090 list_for_each_entry_safe(vma, v,
2091 &obj->vma_list, vma_link)
21ab4e74
CW
2092 if (i915_vma_unbind(vma))
2093 break;
57094f82 2094
21ab4e74
CW
2095 if (i915_gem_object_put_pages(obj) == 0)
2096 count += obj->base.size >> PAGE_SHIFT;
2097
2098 drm_gem_object_unreference(&obj->base);
2099 }
60a53727 2100 list_splice(&still_in_list, phase->list);
6c085a72
CW
2101 }
2102
2103 return count;
2104}
2105
d9973b43 2106static unsigned long
6c085a72
CW
2107i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2108{
6c085a72 2109 i915_gem_evict_everything(dev_priv->dev);
21ab4e74
CW
2110 return i915_gem_shrink(dev_priv, LONG_MAX,
2111 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
225067ee
DV
2112}
2113
37e680a1 2114static int
6c085a72 2115i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2116{
6c085a72 2117 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2118 int page_count, i;
2119 struct address_space *mapping;
9da3da66
CW
2120 struct sg_table *st;
2121 struct scatterlist *sg;
90797e6d 2122 struct sg_page_iter sg_iter;
e5281ccd 2123 struct page *page;
90797e6d 2124 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2125 gfp_t gfp;
e5281ccd 2126
6c085a72
CW
2127 /* Assert that the object is not currently in any GPU domain. As it
2128 * wasn't in the GTT, there shouldn't be any way it could have been in
2129 * a GPU cache
2130 */
2131 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2132 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2133
9da3da66
CW
2134 st = kmalloc(sizeof(*st), GFP_KERNEL);
2135 if (st == NULL)
2136 return -ENOMEM;
2137
05394f39 2138 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2139 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2140 kfree(st);
e5281ccd 2141 return -ENOMEM;
9da3da66 2142 }
e5281ccd 2143
9da3da66
CW
2144 /* Get the list of pages out of our struct file. They'll be pinned
2145 * at this point until we release them.
2146 *
2147 * Fail silently without starting the shrinker
2148 */
496ad9aa 2149 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2150 gfp = mapping_gfp_mask(mapping);
caf49191 2151 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2152 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2153 sg = st->sgl;
2154 st->nents = 0;
2155 for (i = 0; i < page_count; i++) {
6c085a72
CW
2156 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2157 if (IS_ERR(page)) {
21ab4e74
CW
2158 i915_gem_shrink(dev_priv,
2159 page_count,
2160 I915_SHRINK_BOUND |
2161 I915_SHRINK_UNBOUND |
2162 I915_SHRINK_PURGEABLE);
6c085a72
CW
2163 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2164 }
2165 if (IS_ERR(page)) {
2166 /* We've tried hard to allocate the memory by reaping
2167 * our own buffer, now let the real VM do its job and
2168 * go down in flames if truly OOM.
2169 */
6c085a72 2170 i915_gem_shrink_all(dev_priv);
f461d1be 2171 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2172 if (IS_ERR(page))
2173 goto err_pages;
6c085a72 2174 }
426729dc
KRW
2175#ifdef CONFIG_SWIOTLB
2176 if (swiotlb_nr_tbl()) {
2177 st->nents++;
2178 sg_set_page(sg, page, PAGE_SIZE, 0);
2179 sg = sg_next(sg);
2180 continue;
2181 }
2182#endif
90797e6d
ID
2183 if (!i || page_to_pfn(page) != last_pfn + 1) {
2184 if (i)
2185 sg = sg_next(sg);
2186 st->nents++;
2187 sg_set_page(sg, page, PAGE_SIZE, 0);
2188 } else {
2189 sg->length += PAGE_SIZE;
2190 }
2191 last_pfn = page_to_pfn(page);
3bbbe706
DV
2192
2193 /* Check that the i965g/gm workaround works. */
2194 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2195 }
426729dc
KRW
2196#ifdef CONFIG_SWIOTLB
2197 if (!swiotlb_nr_tbl())
2198#endif
2199 sg_mark_end(sg);
74ce6b6c
CW
2200 obj->pages = st;
2201
6dacfd2f 2202 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2203 i915_gem_object_do_bit_17_swizzle(obj);
2204
656bfa3a
DV
2205 if (obj->tiling_mode != I915_TILING_NONE &&
2206 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2207 i915_gem_object_pin_pages(obj);
2208
e5281ccd
CW
2209 return 0;
2210
2211err_pages:
90797e6d
ID
2212 sg_mark_end(sg);
2213 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2214 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2215 sg_free_table(st);
2216 kfree(st);
0820baf3
CW
2217
2218 /* shmemfs first checks if there is enough memory to allocate the page
2219 * and reports ENOSPC should there be insufficient, along with the usual
2220 * ENOMEM for a genuine allocation failure.
2221 *
2222 * We use ENOSPC in our driver to mean that we have run out of aperture
2223 * space and so want to translate the error from shmemfs back to our
2224 * usual understanding of ENOMEM.
2225 */
2226 if (PTR_ERR(page) == -ENOSPC)
2227 return -ENOMEM;
2228 else
2229 return PTR_ERR(page);
673a394b
EA
2230}
2231
37e680a1
CW
2232/* Ensure that the associated pages are gathered from the backing storage
2233 * and pinned into our object. i915_gem_object_get_pages() may be called
2234 * multiple times before they are released by a single call to
2235 * i915_gem_object_put_pages() - once the pages are no longer referenced
2236 * either as a result of memory pressure (reaping pages under the shrinker)
2237 * or as the object is itself released.
2238 */
2239int
2240i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2241{
2242 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2243 const struct drm_i915_gem_object_ops *ops = obj->ops;
2244 int ret;
2245
2f745ad3 2246 if (obj->pages)
37e680a1
CW
2247 return 0;
2248
43e28f09 2249 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2250 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2251 return -EFAULT;
43e28f09
CW
2252 }
2253
a5570178
CW
2254 BUG_ON(obj->pages_pin_count);
2255
37e680a1
CW
2256 ret = ops->get_pages(obj);
2257 if (ret)
2258 return ret;
2259
35c20a60 2260 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2261 return 0;
673a394b
EA
2262}
2263
e2d05a8b 2264static void
05394f39 2265i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2266 struct intel_engine_cs *ring)
673a394b 2267{
97b2a6a1 2268 struct drm_i915_gem_request *req = intel_ring_get_request(ring);
617dbe27 2269
852835f3 2270 BUG_ON(ring == NULL);
97b2a6a1
JH
2271 if (obj->ring != ring && obj->last_write_req) {
2272 /* Keep the request relative to the current ring */
2273 i915_gem_request_assign(&obj->last_write_req, req);
02978ff5 2274 }
05394f39 2275 obj->ring = ring;
673a394b
EA
2276
2277 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2278 if (!obj->active) {
2279 drm_gem_object_reference(&obj->base);
2280 obj->active = 1;
673a394b 2281 }
e35a41de 2282
05394f39 2283 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2284
97b2a6a1 2285 i915_gem_request_assign(&obj->last_read_req, req);
caea7476
CW
2286}
2287
e2d05a8b 2288void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2289 struct intel_engine_cs *ring)
e2d05a8b
BW
2290{
2291 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2292 return i915_gem_object_move_to_active(vma->obj, ring);
2293}
2294
caea7476 2295static void
caea7476 2296i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2297{
ca191b13 2298 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2299 struct i915_address_space *vm;
2300 struct i915_vma *vma;
ce44b0ea 2301
65ce3027 2302 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2303 BUG_ON(!obj->active);
caea7476 2304
feb822cf
BW
2305 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2306 vma = i915_gem_obj_to_vma(obj, vm);
2307 if (vma && !list_empty(&vma->mm_list))
2308 list_move_tail(&vma->mm_list, &vm->inactive_list);
2309 }
caea7476 2310
f99d7069
DV
2311 intel_fb_obj_flush(obj, true);
2312
65ce3027 2313 list_del_init(&obj->ring_list);
caea7476
CW
2314 obj->ring = NULL;
2315
97b2a6a1
JH
2316 i915_gem_request_assign(&obj->last_read_req, NULL);
2317 i915_gem_request_assign(&obj->last_write_req, NULL);
65ce3027
CW
2318 obj->base.write_domain = 0;
2319
97b2a6a1 2320 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476
CW
2321
2322 obj->active = 0;
2323 drm_gem_object_unreference(&obj->base);
2324
2325 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2326}
673a394b 2327
c8725f3d
CW
2328static void
2329i915_gem_object_retire(struct drm_i915_gem_object *obj)
2330{
a4872ba6 2331 struct intel_engine_cs *ring = obj->ring;
c8725f3d
CW
2332
2333 if (ring == NULL)
2334 return;
2335
2336 if (i915_seqno_passed(ring->get_seqno(ring, true),
97b2a6a1 2337 i915_gem_request_get_seqno(obj->last_read_req)))
c8725f3d
CW
2338 i915_gem_object_move_to_inactive(obj);
2339}
2340
9d773091 2341static int
fca26bb4 2342i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2343{
9d773091 2344 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2345 struct intel_engine_cs *ring;
9d773091 2346 int ret, i, j;
53d227f2 2347
107f27a5 2348 /* Carefully retire all requests without writing to the rings */
9d773091 2349 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2350 ret = intel_ring_idle(ring);
2351 if (ret)
2352 return ret;
9d773091 2353 }
9d773091 2354 i915_gem_retire_requests(dev);
107f27a5
CW
2355
2356 /* Finally reset hw state */
9d773091 2357 for_each_ring(ring, dev_priv, i) {
fca26bb4 2358 intel_ring_init_seqno(ring, seqno);
498d2ac1 2359
ebc348b2
BW
2360 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2361 ring->semaphore.sync_seqno[j] = 0;
9d773091 2362 }
53d227f2 2363
9d773091 2364 return 0;
53d227f2
DV
2365}
2366
fca26bb4
MK
2367int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2368{
2369 struct drm_i915_private *dev_priv = dev->dev_private;
2370 int ret;
2371
2372 if (seqno == 0)
2373 return -EINVAL;
2374
2375 /* HWS page needs to be set less than what we
2376 * will inject to ring
2377 */
2378 ret = i915_gem_init_seqno(dev, seqno - 1);
2379 if (ret)
2380 return ret;
2381
2382 /* Carefully set the last_seqno value so that wrap
2383 * detection still works
2384 */
2385 dev_priv->next_seqno = seqno;
2386 dev_priv->last_seqno = seqno - 1;
2387 if (dev_priv->last_seqno == 0)
2388 dev_priv->last_seqno--;
2389
2390 return 0;
2391}
2392
9d773091
CW
2393int
2394i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2395{
9d773091
CW
2396 struct drm_i915_private *dev_priv = dev->dev_private;
2397
2398 /* reserve 0 for non-seqno */
2399 if (dev_priv->next_seqno == 0) {
fca26bb4 2400 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2401 if (ret)
2402 return ret;
53d227f2 2403
9d773091
CW
2404 dev_priv->next_seqno = 1;
2405 }
53d227f2 2406
f72b3435 2407 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2408 return 0;
53d227f2
DV
2409}
2410
a4872ba6 2411int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2412 struct drm_file *file,
9400ae5c 2413 struct drm_i915_gem_object *obj)
673a394b 2414{
3e31c6c0 2415 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2416 struct drm_i915_gem_request *request;
48e29f55 2417 struct intel_ringbuffer *ringbuf;
7d736f4f 2418 u32 request_ring_position, request_start;
3cce469c
CW
2419 int ret;
2420
6259cead 2421 request = ring->outstanding_lazy_request;
48e29f55
OM
2422 if (WARN_ON(request == NULL))
2423 return -ENOMEM;
2424
2425 if (i915.enable_execlists) {
2426 struct intel_context *ctx = request->ctx;
2427 ringbuf = ctx->engine[ring->id].ringbuf;
2428 } else
2429 ringbuf = ring->buffer;
2430
2431 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2432 /*
2433 * Emit any outstanding flushes - execbuf can fail to emit the flush
2434 * after having emitted the batchbuffer command. Hence we need to fix
2435 * things up similar to emitting the lazy request. The difference here
2436 * is that the flush _must_ happen before the next request, no matter
2437 * what.
2438 */
48e29f55
OM
2439 if (i915.enable_execlists) {
2440 ret = logical_ring_flush_all_caches(ringbuf);
2441 if (ret)
2442 return ret;
2443 } else {
2444 ret = intel_ring_flush_all_caches(ring);
2445 if (ret)
2446 return ret;
2447 }
cc889e0f 2448
a71d8d94
CW
2449 /* Record the position of the start of the request so that
2450 * should we detect the updated seqno part-way through the
2451 * GPU processing the request, we never over-estimate the
2452 * position of the head.
2453 */
48e29f55 2454 request_ring_position = intel_ring_get_tail(ringbuf);
a71d8d94 2455
48e29f55
OM
2456 if (i915.enable_execlists) {
2457 ret = ring->emit_request(ringbuf);
2458 if (ret)
2459 return ret;
2460 } else {
2461 ret = ring->add_request(ring);
2462 if (ret)
2463 return ret;
2464 }
673a394b 2465
7d736f4f 2466 request->head = request_start;
a71d8d94 2467 request->tail = request_ring_position;
7d736f4f
MK
2468
2469 /* Whilst this request exists, batch_obj will be on the
2470 * active_list, and so will hold the active reference. Only when this
2471 * request is retired will the the batch_obj be moved onto the
2472 * inactive_list and lose its active reference. Hence we do not need
2473 * to explicitly hold another reference here.
2474 */
9a7e0c2a 2475 request->batch_obj = obj;
0e50e96b 2476
48e29f55
OM
2477 if (!i915.enable_execlists) {
2478 /* Hold a reference to the current context so that we can inspect
2479 * it later in case a hangcheck error event fires.
2480 */
2481 request->ctx = ring->last_context;
2482 if (request->ctx)
2483 i915_gem_context_reference(request->ctx);
2484 }
0e50e96b 2485
673a394b 2486 request->emitted_jiffies = jiffies;
852835f3 2487 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2488 request->file_priv = NULL;
852835f3 2489
db53a302
CW
2490 if (file) {
2491 struct drm_i915_file_private *file_priv = file->driver_priv;
2492
1c25595f 2493 spin_lock(&file_priv->mm.lock);
f787a5f5 2494 request->file_priv = file_priv;
b962442e 2495 list_add_tail(&request->client_list,
f787a5f5 2496 &file_priv->mm.request_list);
1c25595f 2497 spin_unlock(&file_priv->mm.lock);
b962442e 2498 }
673a394b 2499
74328ee5 2500 trace_i915_gem_request_add(request);
6259cead 2501 ring->outstanding_lazy_request = NULL;
db53a302 2502
87255483 2503 i915_queue_hangcheck(ring->dev);
10cd45b6 2504
87255483
DV
2505 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2506 queue_delayed_work(dev_priv->wq,
2507 &dev_priv->mm.retire_work,
2508 round_jiffies_up_relative(HZ));
2509 intel_mark_busy(dev_priv->dev);
cc889e0f 2510
3cce469c 2511 return 0;
673a394b
EA
2512}
2513
f787a5f5
CW
2514static inline void
2515i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2516{
1c25595f 2517 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2518
1c25595f
CW
2519 if (!file_priv)
2520 return;
1c5d22f7 2521
1c25595f 2522 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2523 list_del(&request->client_list);
2524 request->file_priv = NULL;
1c25595f 2525 spin_unlock(&file_priv->mm.lock);
673a394b 2526}
673a394b 2527
939fd762 2528static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2529 const struct intel_context *ctx)
be62acb4 2530{
44e2c070 2531 unsigned long elapsed;
be62acb4 2532
44e2c070
MK
2533 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2534
2535 if (ctx->hang_stats.banned)
be62acb4
MK
2536 return true;
2537
2538 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2539 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2540 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2541 return true;
88b4aa87
MK
2542 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2543 if (i915_stop_ring_allow_warn(dev_priv))
2544 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2545 return true;
3fac8978 2546 }
be62acb4
MK
2547 }
2548
2549 return false;
2550}
2551
939fd762 2552static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2553 struct intel_context *ctx,
b6b0fac0 2554 const bool guilty)
aa60c664 2555{
44e2c070
MK
2556 struct i915_ctx_hang_stats *hs;
2557
2558 if (WARN_ON(!ctx))
2559 return;
aa60c664 2560
44e2c070
MK
2561 hs = &ctx->hang_stats;
2562
2563 if (guilty) {
939fd762 2564 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2565 hs->batch_active++;
2566 hs->guilty_ts = get_seconds();
2567 } else {
2568 hs->batch_pending++;
aa60c664
MK
2569 }
2570}
2571
0e50e96b
MK
2572static void i915_gem_free_request(struct drm_i915_gem_request *request)
2573{
2574 list_del(&request->list);
2575 i915_gem_request_remove_from_client(request);
2576
abfe262a
JH
2577 i915_gem_request_unreference(request);
2578}
2579
2580void i915_gem_request_free(struct kref *req_ref)
2581{
2582 struct drm_i915_gem_request *req = container_of(req_ref,
2583 typeof(*req), ref);
2584 struct intel_context *ctx = req->ctx;
2585
0794aed3
TD
2586 if (ctx) {
2587 if (i915.enable_execlists) {
abfe262a 2588 struct intel_engine_cs *ring = req->ring;
0e50e96b 2589
0794aed3
TD
2590 if (ctx != ring->default_context)
2591 intel_lr_context_unpin(ring, ctx);
2592 }
abfe262a 2593
dcb4c12a
OM
2594 i915_gem_context_unreference(ctx);
2595 }
abfe262a
JH
2596
2597 kfree(req);
0e50e96b
MK
2598}
2599
8d9fc7fd 2600struct drm_i915_gem_request *
a4872ba6 2601i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2602{
4db080f9 2603 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2604 u32 completed_seqno;
2605
2606 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2607
2608 list_for_each_entry(request, &ring->request_list, list) {
2609 if (i915_seqno_passed(completed_seqno, request->seqno))
2610 continue;
aa60c664 2611
b6b0fac0 2612 return request;
4db080f9 2613 }
b6b0fac0
MK
2614
2615 return NULL;
2616}
2617
2618static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2619 struct intel_engine_cs *ring)
b6b0fac0
MK
2620{
2621 struct drm_i915_gem_request *request;
2622 bool ring_hung;
2623
8d9fc7fd 2624 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2625
2626 if (request == NULL)
2627 return;
2628
2629 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2630
939fd762 2631 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2632
2633 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2634 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2635}
aa60c664 2636
4db080f9 2637static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2638 struct intel_engine_cs *ring)
4db080f9 2639{
dfaae392 2640 while (!list_empty(&ring->active_list)) {
05394f39 2641 struct drm_i915_gem_object *obj;
9375e446 2642
05394f39
CW
2643 obj = list_first_entry(&ring->active_list,
2644 struct drm_i915_gem_object,
2645 ring_list);
9375e446 2646
05394f39 2647 i915_gem_object_move_to_inactive(obj);
673a394b 2648 }
1d62beea 2649
dcb4c12a
OM
2650 /*
2651 * Clear the execlists queue up before freeing the requests, as those
2652 * are the ones that keep the context and ringbuffer backing objects
2653 * pinned in place.
2654 */
2655 while (!list_empty(&ring->execlist_queue)) {
2656 struct intel_ctx_submit_request *submit_req;
2657
2658 submit_req = list_first_entry(&ring->execlist_queue,
2659 struct intel_ctx_submit_request,
2660 execlist_link);
2661 list_del(&submit_req->execlist_link);
2662 intel_runtime_pm_put(dev_priv);
2663 i915_gem_context_unreference(submit_req->ctx);
2664 kfree(submit_req);
2665 }
2666
1d62beea
BW
2667 /*
2668 * We must free the requests after all the corresponding objects have
2669 * been moved off active lists. Which is the same order as the normal
2670 * retire_requests function does. This is important if object hold
2671 * implicit references on things like e.g. ppgtt address spaces through
2672 * the request.
2673 */
2674 while (!list_empty(&ring->request_list)) {
2675 struct drm_i915_gem_request *request;
2676
2677 request = list_first_entry(&ring->request_list,
2678 struct drm_i915_gem_request,
2679 list);
2680
2681 i915_gem_free_request(request);
2682 }
e3efda49 2683
6259cead
JH
2684 /* This may not have been flushed before the reset, so clean it now */
2685 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2686}
2687
19b2dbde 2688void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2689{
2690 struct drm_i915_private *dev_priv = dev->dev_private;
2691 int i;
2692
4b9de737 2693 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2694 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2695
94a335db
DV
2696 /*
2697 * Commit delayed tiling changes if we have an object still
2698 * attached to the fence, otherwise just clear the fence.
2699 */
2700 if (reg->obj) {
2701 i915_gem_object_update_fence(reg->obj, reg,
2702 reg->obj->tiling_mode);
2703 } else {
2704 i915_gem_write_fence(dev, i, NULL);
2705 }
312817a3
CW
2706 }
2707}
2708
069efc1d 2709void i915_gem_reset(struct drm_device *dev)
673a394b 2710{
77f01230 2711 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2712 struct intel_engine_cs *ring;
1ec14ad3 2713 int i;
673a394b 2714
4db080f9
CW
2715 /*
2716 * Before we free the objects from the requests, we need to inspect
2717 * them for finding the guilty party. As the requests only borrow
2718 * their reference to the objects, the inspection must be done first.
2719 */
2720 for_each_ring(ring, dev_priv, i)
2721 i915_gem_reset_ring_status(dev_priv, ring);
2722
b4519513 2723 for_each_ring(ring, dev_priv, i)
4db080f9 2724 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2725
acce9ffa
BW
2726 i915_gem_context_reset(dev);
2727
19b2dbde 2728 i915_gem_restore_fences(dev);
673a394b
EA
2729}
2730
2731/**
2732 * This function clears the request list as sequence numbers are passed.
2733 */
1cf0ba14 2734void
a4872ba6 2735i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2736{
673a394b
EA
2737 uint32_t seqno;
2738
db53a302 2739 if (list_empty(&ring->request_list))
6c0594a3
KW
2740 return;
2741
db53a302 2742 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2743
b2eadbc8 2744 seqno = ring->get_seqno(ring, true);
1ec14ad3 2745
e9103038
CW
2746 /* Move any buffers on the active list that are no longer referenced
2747 * by the ringbuffer to the flushing/inactive lists as appropriate,
2748 * before we free the context associated with the requests.
2749 */
2750 while (!list_empty(&ring->active_list)) {
2751 struct drm_i915_gem_object *obj;
2752
2753 obj = list_first_entry(&ring->active_list,
2754 struct drm_i915_gem_object,
2755 ring_list);
2756
97b2a6a1
JH
2757 if (!i915_seqno_passed(seqno,
2758 i915_gem_request_get_seqno(obj->last_read_req)))
e9103038
CW
2759 break;
2760
2761 i915_gem_object_move_to_inactive(obj);
2762 }
2763
2764
852835f3 2765 while (!list_empty(&ring->request_list)) {
673a394b 2766 struct drm_i915_gem_request *request;
48e29f55 2767 struct intel_ringbuffer *ringbuf;
673a394b 2768
852835f3 2769 request = list_first_entry(&ring->request_list,
673a394b
EA
2770 struct drm_i915_gem_request,
2771 list);
673a394b 2772
dfaae392 2773 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2774 break;
2775
74328ee5 2776 trace_i915_gem_request_retire(request);
48e29f55
OM
2777
2778 /* This is one of the few common intersection points
2779 * between legacy ringbuffer submission and execlists:
2780 * we need to tell them apart in order to find the correct
2781 * ringbuffer to which the request belongs to.
2782 */
2783 if (i915.enable_execlists) {
2784 struct intel_context *ctx = request->ctx;
2785 ringbuf = ctx->engine[ring->id].ringbuf;
2786 } else
2787 ringbuf = ring->buffer;
2788
a71d8d94
CW
2789 /* We know the GPU must have read the request to have
2790 * sent us the seqno + interrupt, so use the position
2791 * of tail of the request to update the last known position
2792 * of the GPU head.
2793 */
48e29f55 2794 ringbuf->last_retired_head = request->tail;
b84d5f0c 2795
0e50e96b 2796 i915_gem_free_request(request);
b84d5f0c 2797 }
673a394b 2798
db53a302
CW
2799 if (unlikely(ring->trace_irq_seqno &&
2800 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2801 ring->irq_put(ring);
db53a302 2802 ring->trace_irq_seqno = 0;
9d34e5db 2803 }
23bc5982 2804
db53a302 2805 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2806}
2807
b29c19b6 2808bool
b09a1fec
CW
2809i915_gem_retire_requests(struct drm_device *dev)
2810{
3e31c6c0 2811 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2812 struct intel_engine_cs *ring;
b29c19b6 2813 bool idle = true;
1ec14ad3 2814 int i;
b09a1fec 2815
b29c19b6 2816 for_each_ring(ring, dev_priv, i) {
b4519513 2817 i915_gem_retire_requests_ring(ring);
b29c19b6 2818 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2819 if (i915.enable_execlists) {
2820 unsigned long flags;
2821
2822 spin_lock_irqsave(&ring->execlist_lock, flags);
2823 idle &= list_empty(&ring->execlist_queue);
2824 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2825
2826 intel_execlists_retire_requests(ring);
2827 }
b29c19b6
CW
2828 }
2829
2830 if (idle)
2831 mod_delayed_work(dev_priv->wq,
2832 &dev_priv->mm.idle_work,
2833 msecs_to_jiffies(100));
2834
2835 return idle;
b09a1fec
CW
2836}
2837
75ef9da2 2838static void
673a394b
EA
2839i915_gem_retire_work_handler(struct work_struct *work)
2840{
b29c19b6
CW
2841 struct drm_i915_private *dev_priv =
2842 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2843 struct drm_device *dev = dev_priv->dev;
0a58705b 2844 bool idle;
673a394b 2845
891b48cf 2846 /* Come back later if the device is busy... */
b29c19b6
CW
2847 idle = false;
2848 if (mutex_trylock(&dev->struct_mutex)) {
2849 idle = i915_gem_retire_requests(dev);
2850 mutex_unlock(&dev->struct_mutex);
673a394b 2851 }
b29c19b6 2852 if (!idle)
bcb45086
CW
2853 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2854 round_jiffies_up_relative(HZ));
b29c19b6 2855}
0a58705b 2856
b29c19b6
CW
2857static void
2858i915_gem_idle_work_handler(struct work_struct *work)
2859{
2860 struct drm_i915_private *dev_priv =
2861 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2862
2863 intel_mark_idle(dev_priv->dev);
673a394b
EA
2864}
2865
30dfebf3
DV
2866/**
2867 * Ensures that an object will eventually get non-busy by flushing any required
2868 * write domains, emitting any outstanding lazy request and retiring and
2869 * completed requests.
2870 */
2871static int
2872i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2873{
2874 int ret;
2875
2876 if (obj->active) {
b6660d59 2877 ret = i915_gem_check_olr(obj->last_read_req);
30dfebf3
DV
2878 if (ret)
2879 return ret;
2880
30dfebf3
DV
2881 i915_gem_retire_requests_ring(obj->ring);
2882 }
2883
2884 return 0;
2885}
2886
23ba4fd0
BW
2887/**
2888 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2889 * @DRM_IOCTL_ARGS: standard ioctl arguments
2890 *
2891 * Returns 0 if successful, else an error is returned with the remaining time in
2892 * the timeout parameter.
2893 * -ETIME: object is still busy after timeout
2894 * -ERESTARTSYS: signal interrupted the wait
2895 * -ENONENT: object doesn't exist
2896 * Also possible, but rare:
2897 * -EAGAIN: GPU wedged
2898 * -ENOMEM: damn
2899 * -ENODEV: Internal IRQ fail
2900 * -E?: The add request failed
2901 *
2902 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2903 * non-zero timeout parameter the wait ioctl will wait for the given number of
2904 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2905 * without holding struct_mutex the object may become re-busied before this
2906 * function completes. A similar but shorter * race condition exists in the busy
2907 * ioctl
2908 */
2909int
2910i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2911{
3e31c6c0 2912 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2913 struct drm_i915_gem_wait *args = data;
2914 struct drm_i915_gem_object *obj;
ff865885 2915 struct drm_i915_gem_request *req;
f69061be 2916 unsigned reset_counter;
23ba4fd0
BW
2917 int ret = 0;
2918
11b5d511
DV
2919 if (args->flags != 0)
2920 return -EINVAL;
2921
23ba4fd0
BW
2922 ret = i915_mutex_lock_interruptible(dev);
2923 if (ret)
2924 return ret;
2925
2926 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2927 if (&obj->base == NULL) {
2928 mutex_unlock(&dev->struct_mutex);
2929 return -ENOENT;
2930 }
2931
30dfebf3
DV
2932 /* Need to make sure the object gets inactive eventually. */
2933 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2934 if (ret)
2935 goto out;
2936
97b2a6a1
JH
2937 if (!obj->active || !obj->last_read_req)
2938 goto out;
23ba4fd0 2939
ff865885 2940 req = obj->last_read_req;
23ba4fd0 2941
23ba4fd0 2942 /* Do this after OLR check to make sure we make forward progress polling
5ed0bdf2 2943 * on this IOCTL with a timeout <=0 (like busy ioctl)
23ba4fd0 2944 */
5ed0bdf2 2945 if (args->timeout_ns <= 0) {
23ba4fd0
BW
2946 ret = -ETIME;
2947 goto out;
2948 }
2949
2950 drm_gem_object_unreference(&obj->base);
f69061be 2951 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 2952 i915_gem_request_reference(req);
23ba4fd0
BW
2953 mutex_unlock(&dev->struct_mutex);
2954
9c654818
JH
2955 ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
2956 file->driver_priv);
ff865885
JH
2957 mutex_lock(&dev->struct_mutex);
2958 i915_gem_request_unreference(req);
2959 mutex_unlock(&dev->struct_mutex);
2960 return ret;
23ba4fd0
BW
2961
2962out:
2963 drm_gem_object_unreference(&obj->base);
2964 mutex_unlock(&dev->struct_mutex);
2965 return ret;
2966}
2967
5816d648
BW
2968/**
2969 * i915_gem_object_sync - sync an object to a ring.
2970 *
2971 * @obj: object which may be in use on another ring.
2972 * @to: ring we wish to use the object on. May be NULL.
2973 *
2974 * This code is meant to abstract object synchronization with the GPU.
2975 * Calling with NULL implies synchronizing the object with the CPU
2976 * rather than a particular GPU ring.
2977 *
2978 * Returns 0 if successful, else propagates up the lower layer error.
2979 */
2911a35b
BW
2980int
2981i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2982 struct intel_engine_cs *to)
2911a35b 2983{
a4872ba6 2984 struct intel_engine_cs *from = obj->ring;
2911a35b
BW
2985 u32 seqno;
2986 int ret, idx;
2987
2988 if (from == NULL || to == from)
2989 return 0;
2990
5816d648 2991 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2992 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2993
2994 idx = intel_ring_sync_index(from, to);
2995
97b2a6a1 2996 seqno = i915_gem_request_get_seqno(obj->last_read_req);
ddd4dbc6
RV
2997 /* Optimization: Avoid semaphore sync when we are sure we already
2998 * waited for an object with higher seqno */
ebc348b2 2999 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
3000 return 0;
3001
b6660d59 3002 ret = i915_gem_check_olr(obj->last_read_req);
b4aca010
BW
3003 if (ret)
3004 return ret;
2911a35b 3005
74328ee5 3006 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
ebc348b2 3007 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 3008 if (!ret)
97b2a6a1 3009 /* We use last_read_req because sync_to()
7b01e260
MK
3010 * might have just caused seqno wrap under
3011 * the radar.
3012 */
97b2a6a1
JH
3013 from->semaphore.sync_seqno[idx] =
3014 i915_gem_request_get_seqno(obj->last_read_req);
2911a35b 3015
e3a5a225 3016 return ret;
2911a35b
BW
3017}
3018
b5ffc9bc
CW
3019static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3020{
3021 u32 old_write_domain, old_read_domains;
3022
b5ffc9bc
CW
3023 /* Force a pagefault for domain tracking on next user access */
3024 i915_gem_release_mmap(obj);
3025
b97c3d9c
KP
3026 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3027 return;
3028
97c809fd
CW
3029 /* Wait for any direct GTT access to complete */
3030 mb();
3031
b5ffc9bc
CW
3032 old_read_domains = obj->base.read_domains;
3033 old_write_domain = obj->base.write_domain;
3034
3035 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3036 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3037
3038 trace_i915_gem_object_change_domain(obj,
3039 old_read_domains,
3040 old_write_domain);
3041}
3042
07fe0b12 3043int i915_vma_unbind(struct i915_vma *vma)
673a394b 3044{
07fe0b12 3045 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3046 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3047 int ret;
673a394b 3048
07fe0b12 3049 if (list_empty(&vma->vma_link))
673a394b
EA
3050 return 0;
3051
0ff501cb
DV
3052 if (!drm_mm_node_allocated(&vma->node)) {
3053 i915_gem_vma_destroy(vma);
0ff501cb
DV
3054 return 0;
3055 }
433544bd 3056
d7f46fc4 3057 if (vma->pin_count)
31d8d651 3058 return -EBUSY;
673a394b 3059
c4670ad0
CW
3060 BUG_ON(obj->pages == NULL);
3061
a8198eea 3062 ret = i915_gem_object_finish_gpu(obj);
1488fc08 3063 if (ret)
a8198eea
CW
3064 return ret;
3065 /* Continue on if we fail due to EIO, the GPU is hung so we
3066 * should be safe and we need to cleanup or else we might
3067 * cause memory corruption through use-after-free.
3068 */
3069
1d1ef21d
CW
3070 /* Throw away the active reference before moving to the unbound list */
3071 i915_gem_object_retire(obj);
3072
8b1bc9b4
DV
3073 if (i915_is_ggtt(vma->vm)) {
3074 i915_gem_object_finish_gtt(obj);
5323fd04 3075
8b1bc9b4
DV
3076 /* release the fence reg _after_ flushing */
3077 ret = i915_gem_object_put_fence(obj);
3078 if (ret)
3079 return ret;
3080 }
96b47b65 3081
07fe0b12 3082 trace_i915_vma_unbind(vma);
db53a302 3083
6f65e29a
BW
3084 vma->unbind_vma(vma);
3085
64bf9303 3086 list_del_init(&vma->mm_list);
5cacaac7 3087 if (i915_is_ggtt(vma->vm))
e6a84468 3088 obj->map_and_fenceable = false;
673a394b 3089
2f633156
BW
3090 drm_mm_remove_node(&vma->node);
3091 i915_gem_vma_destroy(vma);
3092
3093 /* Since the unbound list is global, only move to that list if
b93dab6e 3094 * no more VMAs exist. */
9490edb5
AR
3095 if (list_empty(&obj->vma_list)) {
3096 i915_gem_gtt_finish_object(obj);
2f633156 3097 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3098 }
673a394b 3099
70903c3b
CW
3100 /* And finally now the object is completely decoupled from this vma,
3101 * we can drop its hold on the backing storage and allow it to be
3102 * reaped by the shrinker.
3103 */
3104 i915_gem_object_unpin_pages(obj);
3105
88241785 3106 return 0;
54cf91dc
CW
3107}
3108
b2da9fe5 3109int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3110{
3e31c6c0 3111 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3112 struct intel_engine_cs *ring;
1ec14ad3 3113 int ret, i;
4df2faf4 3114
4df2faf4 3115 /* Flush everything onto the inactive list. */
b4519513 3116 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3117 if (!i915.enable_execlists) {
3118 ret = i915_switch_context(ring, ring->default_context);
3119 if (ret)
3120 return ret;
3121 }
b6c7488d 3122
3e960501 3123 ret = intel_ring_idle(ring);
1ec14ad3
CW
3124 if (ret)
3125 return ret;
3126 }
4df2faf4 3127
8a1a49f9 3128 return 0;
4df2faf4
DV
3129}
3130
9ce079e4
CW
3131static void i965_write_fence_reg(struct drm_device *dev, int reg,
3132 struct drm_i915_gem_object *obj)
de151cf6 3133{
3e31c6c0 3134 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3135 int fence_reg;
3136 int fence_pitch_shift;
de151cf6 3137
56c844e5
ID
3138 if (INTEL_INFO(dev)->gen >= 6) {
3139 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3140 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3141 } else {
3142 fence_reg = FENCE_REG_965_0;
3143 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3144 }
3145
d18b9619
CW
3146 fence_reg += reg * 8;
3147
3148 /* To w/a incoherency with non-atomic 64-bit register updates,
3149 * we split the 64-bit update into two 32-bit writes. In order
3150 * for a partial fence not to be evaluated between writes, we
3151 * precede the update with write to turn off the fence register,
3152 * and only enable the fence as the last step.
3153 *
3154 * For extra levels of paranoia, we make sure each step lands
3155 * before applying the next step.
3156 */
3157 I915_WRITE(fence_reg, 0);
3158 POSTING_READ(fence_reg);
3159
9ce079e4 3160 if (obj) {
f343c5f6 3161 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3162 uint64_t val;
de151cf6 3163
f343c5f6 3164 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3165 0xfffff000) << 32;
f343c5f6 3166 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3167 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3168 if (obj->tiling_mode == I915_TILING_Y)
3169 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3170 val |= I965_FENCE_REG_VALID;
c6642782 3171
d18b9619
CW
3172 I915_WRITE(fence_reg + 4, val >> 32);
3173 POSTING_READ(fence_reg + 4);
3174
3175 I915_WRITE(fence_reg + 0, val);
3176 POSTING_READ(fence_reg);
3177 } else {
3178 I915_WRITE(fence_reg + 4, 0);
3179 POSTING_READ(fence_reg + 4);
3180 }
de151cf6
JB
3181}
3182
9ce079e4
CW
3183static void i915_write_fence_reg(struct drm_device *dev, int reg,
3184 struct drm_i915_gem_object *obj)
de151cf6 3185{
3e31c6c0 3186 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3187 u32 val;
de151cf6 3188
9ce079e4 3189 if (obj) {
f343c5f6 3190 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3191 int pitch_val;
3192 int tile_width;
c6642782 3193
f343c5f6 3194 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3195 (size & -size) != size ||
f343c5f6
BW
3196 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3197 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3198 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3199
9ce079e4
CW
3200 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3201 tile_width = 128;
3202 else
3203 tile_width = 512;
3204
3205 /* Note: pitch better be a power of two tile widths */
3206 pitch_val = obj->stride / tile_width;
3207 pitch_val = ffs(pitch_val) - 1;
3208
f343c5f6 3209 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3210 if (obj->tiling_mode == I915_TILING_Y)
3211 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3212 val |= I915_FENCE_SIZE_BITS(size);
3213 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3214 val |= I830_FENCE_REG_VALID;
3215 } else
3216 val = 0;
3217
3218 if (reg < 8)
3219 reg = FENCE_REG_830_0 + reg * 4;
3220 else
3221 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3222
3223 I915_WRITE(reg, val);
3224 POSTING_READ(reg);
de151cf6
JB
3225}
3226
9ce079e4
CW
3227static void i830_write_fence_reg(struct drm_device *dev, int reg,
3228 struct drm_i915_gem_object *obj)
de151cf6 3229{
3e31c6c0 3230 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3231 uint32_t val;
de151cf6 3232
9ce079e4 3233 if (obj) {
f343c5f6 3234 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3235 uint32_t pitch_val;
de151cf6 3236
f343c5f6 3237 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3238 (size & -size) != size ||
f343c5f6
BW
3239 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3240 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3241 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3242
9ce079e4
CW
3243 pitch_val = obj->stride / 128;
3244 pitch_val = ffs(pitch_val) - 1;
de151cf6 3245
f343c5f6 3246 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3247 if (obj->tiling_mode == I915_TILING_Y)
3248 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3249 val |= I830_FENCE_SIZE_BITS(size);
3250 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3251 val |= I830_FENCE_REG_VALID;
3252 } else
3253 val = 0;
c6642782 3254
9ce079e4
CW
3255 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3256 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3257}
3258
d0a57789
CW
3259inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3260{
3261 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3262}
3263
9ce079e4
CW
3264static void i915_gem_write_fence(struct drm_device *dev, int reg,
3265 struct drm_i915_gem_object *obj)
3266{
d0a57789
CW
3267 struct drm_i915_private *dev_priv = dev->dev_private;
3268
3269 /* Ensure that all CPU reads are completed before installing a fence
3270 * and all writes before removing the fence.
3271 */
3272 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3273 mb();
3274
94a335db
DV
3275 WARN(obj && (!obj->stride || !obj->tiling_mode),
3276 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3277 obj->stride, obj->tiling_mode);
3278
9ce079e4 3279 switch (INTEL_INFO(dev)->gen) {
01209dd5 3280 case 9:
5ab31333 3281 case 8:
9ce079e4 3282 case 7:
56c844e5 3283 case 6:
9ce079e4
CW
3284 case 5:
3285 case 4: i965_write_fence_reg(dev, reg, obj); break;
3286 case 3: i915_write_fence_reg(dev, reg, obj); break;
3287 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3288 default: BUG();
9ce079e4 3289 }
d0a57789
CW
3290
3291 /* And similarly be paranoid that no direct access to this region
3292 * is reordered to before the fence is installed.
3293 */
3294 if (i915_gem_object_needs_mb(obj))
3295 mb();
de151cf6
JB
3296}
3297
61050808
CW
3298static inline int fence_number(struct drm_i915_private *dev_priv,
3299 struct drm_i915_fence_reg *fence)
3300{
3301 return fence - dev_priv->fence_regs;
3302}
3303
3304static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3305 struct drm_i915_fence_reg *fence,
3306 bool enable)
3307{
2dc8aae0 3308 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3309 int reg = fence_number(dev_priv, fence);
3310
3311 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3312
3313 if (enable) {
46a0b638 3314 obj->fence_reg = reg;
61050808
CW
3315 fence->obj = obj;
3316 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3317 } else {
3318 obj->fence_reg = I915_FENCE_REG_NONE;
3319 fence->obj = NULL;
3320 list_del_init(&fence->lru_list);
3321 }
94a335db 3322 obj->fence_dirty = false;
61050808
CW
3323}
3324
d9e86c0e 3325static int
d0a57789 3326i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3327{
97b2a6a1 3328 if (obj->last_fenced_req) {
a4b3a571 3329 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3330 if (ret)
3331 return ret;
d9e86c0e 3332
97b2a6a1 3333 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3334 }
3335
3336 return 0;
3337}
3338
3339int
3340i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3341{
61050808 3342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3343 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3344 int ret;
3345
d0a57789 3346 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3347 if (ret)
3348 return ret;
3349
61050808
CW
3350 if (obj->fence_reg == I915_FENCE_REG_NONE)
3351 return 0;
d9e86c0e 3352
f9c513e9
CW
3353 fence = &dev_priv->fence_regs[obj->fence_reg];
3354
aff10b30
DV
3355 if (WARN_ON(fence->pin_count))
3356 return -EBUSY;
3357
61050808 3358 i915_gem_object_fence_lost(obj);
f9c513e9 3359 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3360
3361 return 0;
3362}
3363
3364static struct drm_i915_fence_reg *
a360bb1a 3365i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3366{
ae3db24a 3367 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3368 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3369 int i;
ae3db24a
DV
3370
3371 /* First try to find a free reg */
d9e86c0e 3372 avail = NULL;
ae3db24a
DV
3373 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3374 reg = &dev_priv->fence_regs[i];
3375 if (!reg->obj)
d9e86c0e 3376 return reg;
ae3db24a 3377
1690e1eb 3378 if (!reg->pin_count)
d9e86c0e 3379 avail = reg;
ae3db24a
DV
3380 }
3381
d9e86c0e 3382 if (avail == NULL)
5dce5b93 3383 goto deadlock;
ae3db24a
DV
3384
3385 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3386 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3387 if (reg->pin_count)
ae3db24a
DV
3388 continue;
3389
8fe301ad 3390 return reg;
ae3db24a
DV
3391 }
3392
5dce5b93
CW
3393deadlock:
3394 /* Wait for completion of pending flips which consume fences */
3395 if (intel_has_pending_fb_unpin(dev))
3396 return ERR_PTR(-EAGAIN);
3397
3398 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3399}
3400
de151cf6 3401/**
9a5a53b3 3402 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3403 * @obj: object to map through a fence reg
3404 *
3405 * When mapping objects through the GTT, userspace wants to be able to write
3406 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3407 * This function walks the fence regs looking for a free one for @obj,
3408 * stealing one if it can't find any.
3409 *
3410 * It then sets up the reg based on the object's properties: address, pitch
3411 * and tiling format.
9a5a53b3
CW
3412 *
3413 * For an untiled surface, this removes any existing fence.
de151cf6 3414 */
8c4b8c3f 3415int
06d98131 3416i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3417{
05394f39 3418 struct drm_device *dev = obj->base.dev;
79e53945 3419 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3420 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3421 struct drm_i915_fence_reg *reg;
ae3db24a 3422 int ret;
de151cf6 3423
14415745
CW
3424 /* Have we updated the tiling parameters upon the object and so
3425 * will need to serialise the write to the associated fence register?
3426 */
5d82e3e6 3427 if (obj->fence_dirty) {
d0a57789 3428 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3429 if (ret)
3430 return ret;
3431 }
9a5a53b3 3432
d9e86c0e 3433 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3434 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3435 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3436 if (!obj->fence_dirty) {
14415745
CW
3437 list_move_tail(&reg->lru_list,
3438 &dev_priv->mm.fence_list);
3439 return 0;
3440 }
3441 } else if (enable) {
e6a84468
CW
3442 if (WARN_ON(!obj->map_and_fenceable))
3443 return -EINVAL;
3444
14415745 3445 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3446 if (IS_ERR(reg))
3447 return PTR_ERR(reg);
d9e86c0e 3448
14415745
CW
3449 if (reg->obj) {
3450 struct drm_i915_gem_object *old = reg->obj;
3451
d0a57789 3452 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3453 if (ret)
3454 return ret;
3455
14415745 3456 i915_gem_object_fence_lost(old);
29c5a587 3457 }
14415745 3458 } else
a09ba7fa 3459 return 0;
a09ba7fa 3460
14415745 3461 i915_gem_object_update_fence(obj, reg, enable);
14415745 3462
9ce079e4 3463 return 0;
de151cf6
JB
3464}
3465
4144f9b5 3466static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3467 unsigned long cache_level)
3468{
4144f9b5 3469 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3470 struct drm_mm_node *other;
3471
4144f9b5
CW
3472 /*
3473 * On some machines we have to be careful when putting differing types
3474 * of snoopable memory together to avoid the prefetcher crossing memory
3475 * domains and dying. During vm initialisation, we decide whether or not
3476 * these constraints apply and set the drm_mm.color_adjust
3477 * appropriately.
42d6ab48 3478 */
4144f9b5 3479 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3480 return true;
3481
c6cfb325 3482 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3483 return true;
3484
3485 if (list_empty(&gtt_space->node_list))
3486 return true;
3487
3488 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3489 if (other->allocated && !other->hole_follows && other->color != cache_level)
3490 return false;
3491
3492 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3493 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3494 return false;
3495
3496 return true;
3497}
3498
673a394b
EA
3499/**
3500 * Finds free space in the GTT aperture and binds the object there.
3501 */
262de145 3502static struct i915_vma *
07fe0b12
BW
3503i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3504 struct i915_address_space *vm,
3505 unsigned alignment,
d23db88c 3506 uint64_t flags)
673a394b 3507{
05394f39 3508 struct drm_device *dev = obj->base.dev;
3e31c6c0 3509 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3510 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3511 unsigned long start =
3512 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3513 unsigned long end =
1ec9e26d 3514 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3515 struct i915_vma *vma;
07f73f69 3516 int ret;
673a394b 3517
e28f8711
CW
3518 fence_size = i915_gem_get_gtt_size(dev,
3519 obj->base.size,
3520 obj->tiling_mode);
3521 fence_alignment = i915_gem_get_gtt_alignment(dev,
3522 obj->base.size,
d865110c 3523 obj->tiling_mode, true);
e28f8711 3524 unfenced_alignment =
d865110c 3525 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3526 obj->base.size,
3527 obj->tiling_mode, false);
a00b10c3 3528
673a394b 3529 if (alignment == 0)
1ec9e26d 3530 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3531 unfenced_alignment;
1ec9e26d 3532 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3533 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3534 return ERR_PTR(-EINVAL);
673a394b
EA
3535 }
3536
1ec9e26d 3537 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3538
654fc607
CW
3539 /* If the object is bigger than the entire aperture, reject it early
3540 * before evicting everything in a vain attempt to find space.
3541 */
d23db88c
CW
3542 if (obj->base.size > end) {
3543 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3544 obj->base.size,
1ec9e26d 3545 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3546 end);
262de145 3547 return ERR_PTR(-E2BIG);
654fc607
CW
3548 }
3549
37e680a1 3550 ret = i915_gem_object_get_pages(obj);
6c085a72 3551 if (ret)
262de145 3552 return ERR_PTR(ret);
6c085a72 3553
fbdda6fb
CW
3554 i915_gem_object_pin_pages(obj);
3555
accfef2e 3556 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3557 if (IS_ERR(vma))
bc6bc15b 3558 goto err_unpin;
2f633156 3559
0a9ae0d7 3560search_free:
07fe0b12 3561 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3562 size, alignment,
d23db88c
CW
3563 obj->cache_level,
3564 start, end,
62347f9e
LK
3565 DRM_MM_SEARCH_DEFAULT,
3566 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3567 if (ret) {
f6cd1f15 3568 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3569 obj->cache_level,
3570 start, end,
3571 flags);
dc9dd7a2
CW
3572 if (ret == 0)
3573 goto search_free;
9731129c 3574
bc6bc15b 3575 goto err_free_vma;
673a394b 3576 }
4144f9b5 3577 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3578 ret = -EINVAL;
bc6bc15b 3579 goto err_remove_node;
673a394b
EA
3580 }
3581
74163907 3582 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3583 if (ret)
bc6bc15b 3584 goto err_remove_node;
673a394b 3585
35c20a60 3586 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3587 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3588
1ec9e26d 3589 trace_i915_vma_bind(vma, flags);
8ea99c92 3590 vma->bind_vma(vma, obj->cache_level,
c826c449 3591 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
8ea99c92 3592
262de145 3593 return vma;
2f633156 3594
bc6bc15b 3595err_remove_node:
6286ef9b 3596 drm_mm_remove_node(&vma->node);
bc6bc15b 3597err_free_vma:
2f633156 3598 i915_gem_vma_destroy(vma);
262de145 3599 vma = ERR_PTR(ret);
bc6bc15b 3600err_unpin:
2f633156 3601 i915_gem_object_unpin_pages(obj);
262de145 3602 return vma;
673a394b
EA
3603}
3604
000433b6 3605bool
2c22569b
CW
3606i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3607 bool force)
673a394b 3608{
673a394b
EA
3609 /* If we don't have a page list set up, then we're not pinned
3610 * to GPU, and we can ignore the cache flush because it'll happen
3611 * again at bind time.
3612 */
05394f39 3613 if (obj->pages == NULL)
000433b6 3614 return false;
673a394b 3615
769ce464
ID
3616 /*
3617 * Stolen memory is always coherent with the GPU as it is explicitly
3618 * marked as wc by the system, or the system is cache-coherent.
3619 */
6a2c4232 3620 if (obj->stolen || obj->phys_handle)
000433b6 3621 return false;
769ce464 3622
9c23f7fc
CW
3623 /* If the GPU is snooping the contents of the CPU cache,
3624 * we do not need to manually clear the CPU cache lines. However,
3625 * the caches are only snooped when the render cache is
3626 * flushed/invalidated. As we always have to emit invalidations
3627 * and flushes when moving into and out of the RENDER domain, correct
3628 * snooping behaviour occurs naturally as the result of our domain
3629 * tracking.
3630 */
2c22569b 3631 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3632 return false;
9c23f7fc 3633
1c5d22f7 3634 trace_i915_gem_object_clflush(obj);
9da3da66 3635 drm_clflush_sg(obj->pages);
000433b6
CW
3636
3637 return true;
e47c68e9
EA
3638}
3639
3640/** Flushes the GTT write domain for the object if it's dirty. */
3641static void
05394f39 3642i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3643{
1c5d22f7
CW
3644 uint32_t old_write_domain;
3645
05394f39 3646 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3647 return;
3648
63256ec5 3649 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3650 * to it immediately go to main memory as far as we know, so there's
3651 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3652 *
3653 * However, we do have to enforce the order so that all writes through
3654 * the GTT land before any writes to the device, such as updates to
3655 * the GATT itself.
e47c68e9 3656 */
63256ec5
CW
3657 wmb();
3658
05394f39
CW
3659 old_write_domain = obj->base.write_domain;
3660 obj->base.write_domain = 0;
1c5d22f7 3661
f99d7069
DV
3662 intel_fb_obj_flush(obj, false);
3663
1c5d22f7 3664 trace_i915_gem_object_change_domain(obj,
05394f39 3665 obj->base.read_domains,
1c5d22f7 3666 old_write_domain);
e47c68e9
EA
3667}
3668
3669/** Flushes the CPU write domain for the object if it's dirty. */
3670static void
2c22569b
CW
3671i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3672 bool force)
e47c68e9 3673{
1c5d22f7 3674 uint32_t old_write_domain;
e47c68e9 3675
05394f39 3676 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3677 return;
3678
000433b6
CW
3679 if (i915_gem_clflush_object(obj, force))
3680 i915_gem_chipset_flush(obj->base.dev);
3681
05394f39
CW
3682 old_write_domain = obj->base.write_domain;
3683 obj->base.write_domain = 0;
1c5d22f7 3684
f99d7069
DV
3685 intel_fb_obj_flush(obj, false);
3686
1c5d22f7 3687 trace_i915_gem_object_change_domain(obj,
05394f39 3688 obj->base.read_domains,
1c5d22f7 3689 old_write_domain);
e47c68e9
EA
3690}
3691
2ef7eeaa
EA
3692/**
3693 * Moves a single object to the GTT read, and possibly write domain.
3694 *
3695 * This function returns when the move is complete, including waiting on
3696 * flushes to occur.
3697 */
79e53945 3698int
2021746e 3699i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3700{
3e31c6c0 3701 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
dc8cd1e7 3702 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
1c5d22f7 3703 uint32_t old_write_domain, old_read_domains;
e47c68e9 3704 int ret;
2ef7eeaa 3705
02354392 3706 /* Not valid to be called on unbound objects. */
dc8cd1e7 3707 if (vma == NULL)
02354392
EA
3708 return -EINVAL;
3709
8d7e3de1
CW
3710 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3711 return 0;
3712
0201f1ec 3713 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3714 if (ret)
3715 return ret;
3716
c8725f3d 3717 i915_gem_object_retire(obj);
2c22569b 3718 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3719
d0a57789
CW
3720 /* Serialise direct access to this object with the barriers for
3721 * coherent writes from the GPU, by effectively invalidating the
3722 * GTT domain upon first access.
3723 */
3724 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3725 mb();
3726
05394f39
CW
3727 old_write_domain = obj->base.write_domain;
3728 old_read_domains = obj->base.read_domains;
1c5d22f7 3729
e47c68e9
EA
3730 /* It should now be out of any other write domains, and we can update
3731 * the domain values for our changes.
3732 */
05394f39
CW
3733 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3734 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3735 if (write) {
05394f39
CW
3736 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3737 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3738 obj->dirty = 1;
2ef7eeaa
EA
3739 }
3740
f99d7069
DV
3741 if (write)
3742 intel_fb_obj_invalidate(obj, NULL);
3743
1c5d22f7
CW
3744 trace_i915_gem_object_change_domain(obj,
3745 old_read_domains,
3746 old_write_domain);
3747
8325a09d 3748 /* And bump the LRU for this access */
dc8cd1e7
CW
3749 if (i915_gem_object_is_inactive(obj))
3750 list_move_tail(&vma->mm_list,
3751 &dev_priv->gtt.base.inactive_list);
8325a09d 3752
e47c68e9
EA
3753 return 0;
3754}
3755
e4ffd173
CW
3756int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3757 enum i915_cache_level cache_level)
3758{
7bddb01f 3759 struct drm_device *dev = obj->base.dev;
df6f783a 3760 struct i915_vma *vma, *next;
e4ffd173
CW
3761 int ret;
3762
3763 if (obj->cache_level == cache_level)
3764 return 0;
3765
d7f46fc4 3766 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3767 DRM_DEBUG("can not change the cache level of pinned objects\n");
3768 return -EBUSY;
3769 }
3770
df6f783a 3771 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3772 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3773 ret = i915_vma_unbind(vma);
3089c6f2
BW
3774 if (ret)
3775 return ret;
3089c6f2 3776 }
42d6ab48
CW
3777 }
3778
3089c6f2 3779 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3780 ret = i915_gem_object_finish_gpu(obj);
3781 if (ret)
3782 return ret;
3783
3784 i915_gem_object_finish_gtt(obj);
3785
3786 /* Before SandyBridge, you could not use tiling or fence
3787 * registers with snooped memory, so relinquish any fences
3788 * currently pointing to our region in the aperture.
3789 */
42d6ab48 3790 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3791 ret = i915_gem_object_put_fence(obj);
3792 if (ret)
3793 return ret;
3794 }
3795
6f65e29a 3796 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3797 if (drm_mm_node_allocated(&vma->node))
3798 vma->bind_vma(vma, cache_level,
aff43766 3799 vma->bound & GLOBAL_BIND);
e4ffd173
CW
3800 }
3801
2c22569b
CW
3802 list_for_each_entry(vma, &obj->vma_list, vma_link)
3803 vma->node.color = cache_level;
3804 obj->cache_level = cache_level;
3805
3806 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3807 u32 old_read_domains, old_write_domain;
3808
3809 /* If we're coming from LLC cached, then we haven't
3810 * actually been tracking whether the data is in the
3811 * CPU cache or not, since we only allow one bit set
3812 * in obj->write_domain and have been skipping the clflushes.
3813 * Just set it to the CPU cache for now.
3814 */
c8725f3d 3815 i915_gem_object_retire(obj);
e4ffd173 3816 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3817
3818 old_read_domains = obj->base.read_domains;
3819 old_write_domain = obj->base.write_domain;
3820
3821 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3822 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3823
3824 trace_i915_gem_object_change_domain(obj,
3825 old_read_domains,
3826 old_write_domain);
3827 }
3828
e4ffd173
CW
3829 return 0;
3830}
3831
199adf40
BW
3832int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3833 struct drm_file *file)
e6994aee 3834{
199adf40 3835 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3836 struct drm_i915_gem_object *obj;
3837 int ret;
3838
3839 ret = i915_mutex_lock_interruptible(dev);
3840 if (ret)
3841 return ret;
3842
3843 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3844 if (&obj->base == NULL) {
3845 ret = -ENOENT;
3846 goto unlock;
3847 }
3848
651d794f
CW
3849 switch (obj->cache_level) {
3850 case I915_CACHE_LLC:
3851 case I915_CACHE_L3_LLC:
3852 args->caching = I915_CACHING_CACHED;
3853 break;
3854
4257d3ba
CW
3855 case I915_CACHE_WT:
3856 args->caching = I915_CACHING_DISPLAY;
3857 break;
3858
651d794f
CW
3859 default:
3860 args->caching = I915_CACHING_NONE;
3861 break;
3862 }
e6994aee
CW
3863
3864 drm_gem_object_unreference(&obj->base);
3865unlock:
3866 mutex_unlock(&dev->struct_mutex);
3867 return ret;
3868}
3869
199adf40
BW
3870int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3871 struct drm_file *file)
e6994aee 3872{
199adf40 3873 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3874 struct drm_i915_gem_object *obj;
3875 enum i915_cache_level level;
3876 int ret;
3877
199adf40
BW
3878 switch (args->caching) {
3879 case I915_CACHING_NONE:
e6994aee
CW
3880 level = I915_CACHE_NONE;
3881 break;
199adf40 3882 case I915_CACHING_CACHED:
e6994aee
CW
3883 level = I915_CACHE_LLC;
3884 break;
4257d3ba
CW
3885 case I915_CACHING_DISPLAY:
3886 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3887 break;
e6994aee
CW
3888 default:
3889 return -EINVAL;
3890 }
3891
3bc2913e
BW
3892 ret = i915_mutex_lock_interruptible(dev);
3893 if (ret)
3894 return ret;
3895
e6994aee
CW
3896 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3897 if (&obj->base == NULL) {
3898 ret = -ENOENT;
3899 goto unlock;
3900 }
3901
3902 ret = i915_gem_object_set_cache_level(obj, level);
3903
3904 drm_gem_object_unreference(&obj->base);
3905unlock:
3906 mutex_unlock(&dev->struct_mutex);
3907 return ret;
3908}
3909
cc98b413
CW
3910static bool is_pin_display(struct drm_i915_gem_object *obj)
3911{
19656430
OM
3912 struct i915_vma *vma;
3913
19656430
OM
3914 vma = i915_gem_obj_to_ggtt(obj);
3915 if (!vma)
3916 return false;
3917
4feb7659 3918 /* There are 2 sources that pin objects:
cc98b413
CW
3919 * 1. The display engine (scanouts, sprites, cursors);
3920 * 2. Reservations for execbuffer;
cc98b413
CW
3921 *
3922 * We can ignore reservations as we hold the struct_mutex and
4feb7659 3923 * are only called outside of the reservation path.
cc98b413 3924 */
4feb7659 3925 return vma->pin_count;
cc98b413
CW
3926}
3927
b9241ea3 3928/*
2da3b9b9
CW
3929 * Prepare buffer for display plane (scanout, cursors, etc).
3930 * Can be called from an uninterruptible phase (modesetting) and allows
3931 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3932 */
3933int
2da3b9b9
CW
3934i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3935 u32 alignment,
a4872ba6 3936 struct intel_engine_cs *pipelined)
b9241ea3 3937{
2da3b9b9 3938 u32 old_read_domains, old_write_domain;
19656430 3939 bool was_pin_display;
b9241ea3
ZW
3940 int ret;
3941
0be73284 3942 if (pipelined != obj->ring) {
2911a35b
BW
3943 ret = i915_gem_object_sync(obj, pipelined);
3944 if (ret)
b9241ea3
ZW
3945 return ret;
3946 }
3947
cc98b413
CW
3948 /* Mark the pin_display early so that we account for the
3949 * display coherency whilst setting up the cache domains.
3950 */
19656430 3951 was_pin_display = obj->pin_display;
cc98b413
CW
3952 obj->pin_display = true;
3953
a7ef0640
EA
3954 /* The display engine is not coherent with the LLC cache on gen6. As
3955 * a result, we make sure that the pinning that is about to occur is
3956 * done with uncached PTEs. This is lowest common denominator for all
3957 * chipsets.
3958 *
3959 * However for gen6+, we could do better by using the GFDT bit instead
3960 * of uncaching, which would allow us to flush all the LLC-cached data
3961 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3962 */
651d794f
CW
3963 ret = i915_gem_object_set_cache_level(obj,
3964 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3965 if (ret)
cc98b413 3966 goto err_unpin_display;
a7ef0640 3967
2da3b9b9
CW
3968 /* As the user may map the buffer once pinned in the display plane
3969 * (e.g. libkms for the bootup splash), we have to ensure that we
3970 * always use map_and_fenceable for all scanout buffers.
3971 */
1ec9e26d 3972 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3973 if (ret)
cc98b413 3974 goto err_unpin_display;
2da3b9b9 3975
2c22569b 3976 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3977
2da3b9b9 3978 old_write_domain = obj->base.write_domain;
05394f39 3979 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3980
3981 /* It should now be out of any other write domains, and we can update
3982 * the domain values for our changes.
3983 */
e5f1d962 3984 obj->base.write_domain = 0;
05394f39 3985 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3986
3987 trace_i915_gem_object_change_domain(obj,
3988 old_read_domains,
2da3b9b9 3989 old_write_domain);
b9241ea3
ZW
3990
3991 return 0;
cc98b413
CW
3992
3993err_unpin_display:
19656430
OM
3994 WARN_ON(was_pin_display != is_pin_display(obj));
3995 obj->pin_display = was_pin_display;
cc98b413
CW
3996 return ret;
3997}
3998
3999void
4000i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4001{
d7f46fc4 4002 i915_gem_object_ggtt_unpin(obj);
cc98b413 4003 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
4004}
4005
85345517 4006int
a8198eea 4007i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 4008{
88241785
CW
4009 int ret;
4010
a8198eea 4011 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
4012 return 0;
4013
0201f1ec 4014 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
4015 if (ret)
4016 return ret;
4017
a8198eea
CW
4018 /* Ensure that we invalidate the GPU's caches and TLBs. */
4019 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 4020 return 0;
85345517
CW
4021}
4022
e47c68e9
EA
4023/**
4024 * Moves a single object to the CPU read, and possibly write domain.
4025 *
4026 * This function returns when the move is complete, including waiting on
4027 * flushes to occur.
4028 */
dabdfe02 4029int
919926ae 4030i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4031{
1c5d22f7 4032 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4033 int ret;
4034
8d7e3de1
CW
4035 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4036 return 0;
4037
0201f1ec 4038 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4039 if (ret)
4040 return ret;
4041
c8725f3d 4042 i915_gem_object_retire(obj);
e47c68e9 4043 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4044
05394f39
CW
4045 old_write_domain = obj->base.write_domain;
4046 old_read_domains = obj->base.read_domains;
1c5d22f7 4047
e47c68e9 4048 /* Flush the CPU cache if it's still invalid. */
05394f39 4049 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4050 i915_gem_clflush_object(obj, false);
2ef7eeaa 4051
05394f39 4052 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4053 }
4054
4055 /* It should now be out of any other write domains, and we can update
4056 * the domain values for our changes.
4057 */
05394f39 4058 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4059
4060 /* If we're writing through the CPU, then the GPU read domains will
4061 * need to be invalidated at next use.
4062 */
4063 if (write) {
05394f39
CW
4064 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4065 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4066 }
2ef7eeaa 4067
f99d7069
DV
4068 if (write)
4069 intel_fb_obj_invalidate(obj, NULL);
4070
1c5d22f7
CW
4071 trace_i915_gem_object_change_domain(obj,
4072 old_read_domains,
4073 old_write_domain);
4074
2ef7eeaa
EA
4075 return 0;
4076}
4077
673a394b
EA
4078/* Throttle our rendering by waiting until the ring has completed our requests
4079 * emitted over 20 msec ago.
4080 *
b962442e
EA
4081 * Note that if we were to use the current jiffies each time around the loop,
4082 * we wouldn't escape the function with any frames outstanding if the time to
4083 * render a frame was over 20ms.
4084 *
673a394b
EA
4085 * This should get us reasonable parallelism between CPU and GPU but also
4086 * relatively low latency when blocking on a particular request to finish.
4087 */
40a5f0de 4088static int
f787a5f5 4089i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4090{
f787a5f5
CW
4091 struct drm_i915_private *dev_priv = dev->dev_private;
4092 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4093 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
54fb2411 4094 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4095 unsigned reset_counter;
f787a5f5 4096 int ret;
93533c29 4097
308887aa
DV
4098 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4099 if (ret)
4100 return ret;
4101
4102 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4103 if (ret)
4104 return ret;
e110e8d6 4105
1c25595f 4106 spin_lock(&file_priv->mm.lock);
f787a5f5 4107 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4108 if (time_after_eq(request->emitted_jiffies, recent_enough))
4109 break;
40a5f0de 4110
54fb2411 4111 target = request;
b962442e 4112 }
f69061be 4113 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4114 if (target)
4115 i915_gem_request_reference(target);
1c25595f 4116 spin_unlock(&file_priv->mm.lock);
40a5f0de 4117
54fb2411 4118 if (target == NULL)
f787a5f5 4119 return 0;
2bc43b5c 4120
9c654818 4121 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4122 if (ret == 0)
4123 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4124
ff865885
JH
4125 mutex_lock(&dev->struct_mutex);
4126 i915_gem_request_unreference(target);
4127 mutex_unlock(&dev->struct_mutex);
4128
40a5f0de
EA
4129 return ret;
4130}
4131
d23db88c
CW
4132static bool
4133i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4134{
4135 struct drm_i915_gem_object *obj = vma->obj;
4136
4137 if (alignment &&
4138 vma->node.start & (alignment - 1))
4139 return true;
4140
4141 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4142 return true;
4143
4144 if (flags & PIN_OFFSET_BIAS &&
4145 vma->node.start < (flags & PIN_OFFSET_MASK))
4146 return true;
4147
4148 return false;
4149}
4150
673a394b 4151int
05394f39 4152i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 4153 struct i915_address_space *vm,
05394f39 4154 uint32_t alignment,
d23db88c 4155 uint64_t flags)
673a394b 4156{
6e7186af 4157 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4158 struct i915_vma *vma;
ef79e17c 4159 unsigned bound;
673a394b
EA
4160 int ret;
4161
6e7186af
BW
4162 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4163 return -ENODEV;
4164
bf3d149b 4165 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4166 return -EINVAL;
07fe0b12 4167
c826c449
CW
4168 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4169 return -EINVAL;
4170
07fe0b12 4171 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 4172 if (vma) {
d7f46fc4
BW
4173 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4174 return -EBUSY;
4175
d23db88c 4176 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4177 WARN(vma->pin_count,
ae7d49d8 4178 "bo is already pinned with incorrect alignment:"
f343c5f6 4179 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4180 " obj->map_and_fenceable=%d\n",
07fe0b12 4181 i915_gem_obj_offset(obj, vm), alignment,
d23db88c 4182 !!(flags & PIN_MAPPABLE),
05394f39 4183 obj->map_and_fenceable);
07fe0b12 4184 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4185 if (ret)
4186 return ret;
8ea99c92
DV
4187
4188 vma = NULL;
ac0c6b5a
CW
4189 }
4190 }
4191
ef79e17c 4192 bound = vma ? vma->bound : 0;
8ea99c92 4193 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
4194 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4195 if (IS_ERR(vma))
4196 return PTR_ERR(vma);
22c344e9 4197 }
76446cac 4198
aff43766 4199 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
8ea99c92 4200 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 4201
ef79e17c
CW
4202 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4203 bool mappable, fenceable;
4204 u32 fence_size, fence_alignment;
4205
4206 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4207 obj->base.size,
4208 obj->tiling_mode);
4209 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4210 obj->base.size,
4211 obj->tiling_mode,
4212 true);
4213
4214 fenceable = (vma->node.size == fence_size &&
4215 (vma->node.start & (fence_alignment - 1)) == 0);
4216
4217 mappable = (vma->node.start + obj->base.size <=
4218 dev_priv->gtt.mappable_end);
4219
4220 obj->map_and_fenceable = mappable && fenceable;
4221 }
4222
4223 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4224
8ea99c92 4225 vma->pin_count++;
1ec9e26d
DV
4226 if (flags & PIN_MAPPABLE)
4227 obj->pin_mappable |= true;
673a394b
EA
4228
4229 return 0;
4230}
4231
4232void
d7f46fc4 4233i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4234{
d7f46fc4 4235 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4236
d7f46fc4
BW
4237 BUG_ON(!vma);
4238 BUG_ON(vma->pin_count == 0);
4239 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4240
4241 if (--vma->pin_count == 0)
6299f992 4242 obj->pin_mappable = false;
673a394b
EA
4243}
4244
d8ffa60b
DV
4245bool
4246i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4247{
4248 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4249 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4250 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4251
4252 WARN_ON(!ggtt_vma ||
4253 dev_priv->fence_regs[obj->fence_reg].pin_count >
4254 ggtt_vma->pin_count);
4255 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4256 return true;
4257 } else
4258 return false;
4259}
4260
4261void
4262i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4263{
4264 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4265 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4266 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4267 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4268 }
4269}
4270
673a394b
EA
4271int
4272i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4273 struct drm_file *file)
673a394b
EA
4274{
4275 struct drm_i915_gem_busy *args = data;
05394f39 4276 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4277 int ret;
4278
76c1dec1 4279 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4280 if (ret)
76c1dec1 4281 return ret;
673a394b 4282
05394f39 4283 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4284 if (&obj->base == NULL) {
1d7cfea1
CW
4285 ret = -ENOENT;
4286 goto unlock;
673a394b 4287 }
d1b851fc 4288
0be555b6
CW
4289 /* Count all active objects as busy, even if they are currently not used
4290 * by the gpu. Users of this interface expect objects to eventually
4291 * become non-busy without any further actions, therefore emit any
4292 * necessary flushes here.
c4de0a5d 4293 */
30dfebf3 4294 ret = i915_gem_object_flush_active(obj);
0be555b6 4295
30dfebf3 4296 args->busy = obj->active;
e9808edd
CW
4297 if (obj->ring) {
4298 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4299 args->busy |= intel_ring_flag(obj->ring) << 16;
4300 }
673a394b 4301
05394f39 4302 drm_gem_object_unreference(&obj->base);
1d7cfea1 4303unlock:
673a394b 4304 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4305 return ret;
673a394b
EA
4306}
4307
4308int
4309i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4310 struct drm_file *file_priv)
4311{
0206e353 4312 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4313}
4314
3ef94daa
CW
4315int
4316i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4317 struct drm_file *file_priv)
4318{
656bfa3a 4319 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4320 struct drm_i915_gem_madvise *args = data;
05394f39 4321 struct drm_i915_gem_object *obj;
76c1dec1 4322 int ret;
3ef94daa
CW
4323
4324 switch (args->madv) {
4325 case I915_MADV_DONTNEED:
4326 case I915_MADV_WILLNEED:
4327 break;
4328 default:
4329 return -EINVAL;
4330 }
4331
1d7cfea1
CW
4332 ret = i915_mutex_lock_interruptible(dev);
4333 if (ret)
4334 return ret;
4335
05394f39 4336 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4337 if (&obj->base == NULL) {
1d7cfea1
CW
4338 ret = -ENOENT;
4339 goto unlock;
3ef94daa 4340 }
3ef94daa 4341
d7f46fc4 4342 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4343 ret = -EINVAL;
4344 goto out;
3ef94daa
CW
4345 }
4346
656bfa3a
DV
4347 if (obj->pages &&
4348 obj->tiling_mode != I915_TILING_NONE &&
4349 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4350 if (obj->madv == I915_MADV_WILLNEED)
4351 i915_gem_object_unpin_pages(obj);
4352 if (args->madv == I915_MADV_WILLNEED)
4353 i915_gem_object_pin_pages(obj);
4354 }
4355
05394f39
CW
4356 if (obj->madv != __I915_MADV_PURGED)
4357 obj->madv = args->madv;
3ef94daa 4358
6c085a72
CW
4359 /* if the object is no longer attached, discard its backing storage */
4360 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4361 i915_gem_object_truncate(obj);
4362
05394f39 4363 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4364
1d7cfea1 4365out:
05394f39 4366 drm_gem_object_unreference(&obj->base);
1d7cfea1 4367unlock:
3ef94daa 4368 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4369 return ret;
3ef94daa
CW
4370}
4371
37e680a1
CW
4372void i915_gem_object_init(struct drm_i915_gem_object *obj,
4373 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4374{
35c20a60 4375 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4376 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4377 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4378 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4379
37e680a1
CW
4380 obj->ops = ops;
4381
0327d6ba
CW
4382 obj->fence_reg = I915_FENCE_REG_NONE;
4383 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4384
4385 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4386}
4387
37e680a1
CW
4388static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4389 .get_pages = i915_gem_object_get_pages_gtt,
4390 .put_pages = i915_gem_object_put_pages_gtt,
4391};
4392
05394f39
CW
4393struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4394 size_t size)
ac52bc56 4395{
c397b908 4396 struct drm_i915_gem_object *obj;
5949eac4 4397 struct address_space *mapping;
1a240d4d 4398 gfp_t mask;
ac52bc56 4399
42dcedd4 4400 obj = i915_gem_object_alloc(dev);
c397b908
DV
4401 if (obj == NULL)
4402 return NULL;
673a394b 4403
c397b908 4404 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4405 i915_gem_object_free(obj);
c397b908
DV
4406 return NULL;
4407 }
673a394b 4408
bed1ea95
CW
4409 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4410 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4411 /* 965gm cannot relocate objects above 4GiB. */
4412 mask &= ~__GFP_HIGHMEM;
4413 mask |= __GFP_DMA32;
4414 }
4415
496ad9aa 4416 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4417 mapping_set_gfp_mask(mapping, mask);
5949eac4 4418
37e680a1 4419 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4420
c397b908
DV
4421 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4422 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4423
3d29b842
ED
4424 if (HAS_LLC(dev)) {
4425 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4426 * cache) for about a 10% performance improvement
4427 * compared to uncached. Graphics requests other than
4428 * display scanout are coherent with the CPU in
4429 * accessing this cache. This means in this mode we
4430 * don't need to clflush on the CPU side, and on the
4431 * GPU side we only need to flush internal caches to
4432 * get data visible to the CPU.
4433 *
4434 * However, we maintain the display planes as UC, and so
4435 * need to rebind when first used as such.
4436 */
4437 obj->cache_level = I915_CACHE_LLC;
4438 } else
4439 obj->cache_level = I915_CACHE_NONE;
4440
d861e338
DV
4441 trace_i915_gem_object_create(obj);
4442
05394f39 4443 return obj;
c397b908
DV
4444}
4445
340fbd8c
CW
4446static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4447{
4448 /* If we are the last user of the backing storage (be it shmemfs
4449 * pages or stolen etc), we know that the pages are going to be
4450 * immediately released. In this case, we can then skip copying
4451 * back the contents from the GPU.
4452 */
4453
4454 if (obj->madv != I915_MADV_WILLNEED)
4455 return false;
4456
4457 if (obj->base.filp == NULL)
4458 return true;
4459
4460 /* At first glance, this looks racy, but then again so would be
4461 * userspace racing mmap against close. However, the first external
4462 * reference to the filp can only be obtained through the
4463 * i915_gem_mmap_ioctl() which safeguards us against the user
4464 * acquiring such a reference whilst we are in the middle of
4465 * freeing the object.
4466 */
4467 return atomic_long_read(&obj->base.filp->f_count) == 1;
4468}
4469
1488fc08 4470void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4471{
1488fc08 4472 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4473 struct drm_device *dev = obj->base.dev;
3e31c6c0 4474 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4475 struct i915_vma *vma, *next;
673a394b 4476
f65c9168
PZ
4477 intel_runtime_pm_get(dev_priv);
4478
26e12f89
CW
4479 trace_i915_gem_object_destroy(obj);
4480
07fe0b12 4481 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4482 int ret;
4483
4484 vma->pin_count = 0;
4485 ret = i915_vma_unbind(vma);
07fe0b12
BW
4486 if (WARN_ON(ret == -ERESTARTSYS)) {
4487 bool was_interruptible;
1488fc08 4488
07fe0b12
BW
4489 was_interruptible = dev_priv->mm.interruptible;
4490 dev_priv->mm.interruptible = false;
1488fc08 4491
07fe0b12 4492 WARN_ON(i915_vma_unbind(vma));
1488fc08 4493
07fe0b12
BW
4494 dev_priv->mm.interruptible = was_interruptible;
4495 }
1488fc08
CW
4496 }
4497
1d64ae71
BW
4498 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4499 * before progressing. */
4500 if (obj->stolen)
4501 i915_gem_object_unpin_pages(obj);
4502
a071fa00
DV
4503 WARN_ON(obj->frontbuffer_bits);
4504
656bfa3a
DV
4505 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4506 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4507 obj->tiling_mode != I915_TILING_NONE)
4508 i915_gem_object_unpin_pages(obj);
4509
401c29f6
BW
4510 if (WARN_ON(obj->pages_pin_count))
4511 obj->pages_pin_count = 0;
340fbd8c 4512 if (discard_backing_storage(obj))
5537252b 4513 obj->madv = I915_MADV_DONTNEED;
37e680a1 4514 i915_gem_object_put_pages(obj);
d8cb5086 4515 i915_gem_object_free_mmap_offset(obj);
de151cf6 4516
9da3da66
CW
4517 BUG_ON(obj->pages);
4518
2f745ad3
CW
4519 if (obj->base.import_attach)
4520 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4521
5cc9ed4b
CW
4522 if (obj->ops->release)
4523 obj->ops->release(obj);
4524
05394f39
CW
4525 drm_gem_object_release(&obj->base);
4526 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4527
05394f39 4528 kfree(obj->bit_17);
42dcedd4 4529 i915_gem_object_free(obj);
f65c9168
PZ
4530
4531 intel_runtime_pm_put(dev_priv);
673a394b
EA
4532}
4533
e656a6cb 4534struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4535 struct i915_address_space *vm)
e656a6cb
DV
4536{
4537 struct i915_vma *vma;
4538 list_for_each_entry(vma, &obj->vma_list, vma_link)
4539 if (vma->vm == vm)
4540 return vma;
4541
4542 return NULL;
4543}
4544
2f633156
BW
4545void i915_gem_vma_destroy(struct i915_vma *vma)
4546{
b9d06dd9 4547 struct i915_address_space *vm = NULL;
2f633156 4548 WARN_ON(vma->node.allocated);
aaa05667
CW
4549
4550 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4551 if (!list_empty(&vma->exec_list))
4552 return;
4553
b9d06dd9 4554 vm = vma->vm;
b9d06dd9 4555
841cd773
DV
4556 if (!i915_is_ggtt(vm))
4557 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4558
8b9c2b94 4559 list_del(&vma->vma_link);
b93dab6e 4560
2f633156
BW
4561 kfree(vma);
4562}
4563
e3efda49
CW
4564static void
4565i915_gem_stop_ringbuffers(struct drm_device *dev)
4566{
4567 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4568 struct intel_engine_cs *ring;
e3efda49
CW
4569 int i;
4570
4571 for_each_ring(ring, dev_priv, i)
a83014d3 4572 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4573}
4574
29105ccc 4575int
45c5f202 4576i915_gem_suspend(struct drm_device *dev)
29105ccc 4577{
3e31c6c0 4578 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4579 int ret = 0;
28dfe52a 4580
45c5f202 4581 mutex_lock(&dev->struct_mutex);
b2da9fe5 4582 ret = i915_gpu_idle(dev);
f7403347 4583 if (ret)
45c5f202 4584 goto err;
f7403347 4585
b2da9fe5 4586 i915_gem_retire_requests(dev);
673a394b 4587
29105ccc 4588 /* Under UMS, be paranoid and evict. */
a39d7efc 4589 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4590 i915_gem_evict_everything(dev);
29105ccc 4591
e3efda49 4592 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4593 mutex_unlock(&dev->struct_mutex);
4594
4595 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4596 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4597 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4598
bdcf120b
CW
4599 /* Assert that we sucessfully flushed all the work and
4600 * reset the GPU back to its idle, low power state.
4601 */
4602 WARN_ON(dev_priv->mm.busy);
4603
673a394b 4604 return 0;
45c5f202
CW
4605
4606err:
4607 mutex_unlock(&dev->struct_mutex);
4608 return ret;
673a394b
EA
4609}
4610
a4872ba6 4611int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4612{
c3787e2e 4613 struct drm_device *dev = ring->dev;
3e31c6c0 4614 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4615 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4616 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4617 int i, ret;
b9524a1e 4618
040d2baa 4619 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4620 return 0;
b9524a1e 4621
c3787e2e
BW
4622 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4623 if (ret)
4624 return ret;
b9524a1e 4625
c3787e2e
BW
4626 /*
4627 * Note: We do not worry about the concurrent register cacheline hang
4628 * here because no other code should access these registers other than
4629 * at initialization time.
4630 */
b9524a1e 4631 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4632 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4633 intel_ring_emit(ring, reg_base + i);
4634 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4635 }
4636
c3787e2e 4637 intel_ring_advance(ring);
b9524a1e 4638
c3787e2e 4639 return ret;
b9524a1e
BW
4640}
4641
f691e2f4
DV
4642void i915_gem_init_swizzling(struct drm_device *dev)
4643{
3e31c6c0 4644 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4645
11782b02 4646 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4647 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4648 return;
4649
4650 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4651 DISP_TILE_SURFACE_SWIZZLING);
4652
11782b02
DV
4653 if (IS_GEN5(dev))
4654 return;
4655
f691e2f4
DV
4656 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4657 if (IS_GEN6(dev))
6b26c86d 4658 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4659 else if (IS_GEN7(dev))
6b26c86d 4660 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4661 else if (IS_GEN8(dev))
4662 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4663 else
4664 BUG();
f691e2f4 4665}
e21af88d 4666
67b1b571
CW
4667static bool
4668intel_enable_blt(struct drm_device *dev)
4669{
4670 if (!HAS_BLT(dev))
4671 return false;
4672
4673 /* The blitter was dysfunctional on early prototypes */
4674 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4675 DRM_INFO("BLT not supported on this pre-production hardware;"
4676 " graphics performance will be degraded.\n");
4677 return false;
4678 }
4679
4680 return true;
4681}
4682
81e7f200
VS
4683static void init_unused_ring(struct drm_device *dev, u32 base)
4684{
4685 struct drm_i915_private *dev_priv = dev->dev_private;
4686
4687 I915_WRITE(RING_CTL(base), 0);
4688 I915_WRITE(RING_HEAD(base), 0);
4689 I915_WRITE(RING_TAIL(base), 0);
4690 I915_WRITE(RING_START(base), 0);
4691}
4692
4693static void init_unused_rings(struct drm_device *dev)
4694{
4695 if (IS_I830(dev)) {
4696 init_unused_ring(dev, PRB1_BASE);
4697 init_unused_ring(dev, SRB0_BASE);
4698 init_unused_ring(dev, SRB1_BASE);
4699 init_unused_ring(dev, SRB2_BASE);
4700 init_unused_ring(dev, SRB3_BASE);
4701 } else if (IS_GEN2(dev)) {
4702 init_unused_ring(dev, SRB0_BASE);
4703 init_unused_ring(dev, SRB1_BASE);
4704 } else if (IS_GEN3(dev)) {
4705 init_unused_ring(dev, PRB1_BASE);
4706 init_unused_ring(dev, PRB2_BASE);
4707 }
4708}
4709
a83014d3 4710int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4711{
4fc7c971 4712 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4713 int ret;
68f95ba9 4714
81e7f200
VS
4715 /*
4716 * At least 830 can leave some of the unused rings
4717 * "active" (ie. head != tail) after resume which
4718 * will prevent c3 entry. Makes sure all unused rings
4719 * are totally idle.
4720 */
4721 init_unused_rings(dev);
4722
5c1143bb 4723 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4724 if (ret)
b6913e4b 4725 return ret;
68f95ba9
CW
4726
4727 if (HAS_BSD(dev)) {
5c1143bb 4728 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4729 if (ret)
4730 goto cleanup_render_ring;
d1b851fc 4731 }
68f95ba9 4732
67b1b571 4733 if (intel_enable_blt(dev)) {
549f7365
CW
4734 ret = intel_init_blt_ring_buffer(dev);
4735 if (ret)
4736 goto cleanup_bsd_ring;
4737 }
4738
9a8a2213
BW
4739 if (HAS_VEBOX(dev)) {
4740 ret = intel_init_vebox_ring_buffer(dev);
4741 if (ret)
4742 goto cleanup_blt_ring;
4743 }
4744
845f74a7
ZY
4745 if (HAS_BSD2(dev)) {
4746 ret = intel_init_bsd2_ring_buffer(dev);
4747 if (ret)
4748 goto cleanup_vebox_ring;
4749 }
9a8a2213 4750
99433931 4751 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4752 if (ret)
845f74a7 4753 goto cleanup_bsd2_ring;
4fc7c971
BW
4754
4755 return 0;
4756
845f74a7
ZY
4757cleanup_bsd2_ring:
4758 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4759cleanup_vebox_ring:
4760 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4761cleanup_blt_ring:
4762 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4763cleanup_bsd_ring:
4764 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4765cleanup_render_ring:
4766 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4767
4768 return ret;
4769}
4770
4771int
4772i915_gem_init_hw(struct drm_device *dev)
4773{
3e31c6c0 4774 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4775 int ret, i;
4fc7c971
BW
4776
4777 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4778 return -EIO;
4779
59124506 4780 if (dev_priv->ellc_size)
05e21cc4 4781 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4782
0bf21347
VS
4783 if (IS_HASWELL(dev))
4784 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4785 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4786
88a2b2a3 4787 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4788 if (IS_IVYBRIDGE(dev)) {
4789 u32 temp = I915_READ(GEN7_MSG_CTL);
4790 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4791 I915_WRITE(GEN7_MSG_CTL, temp);
4792 } else if (INTEL_INFO(dev)->gen >= 7) {
4793 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4794 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4795 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4796 }
88a2b2a3
BW
4797 }
4798
4fc7c971
BW
4799 i915_gem_init_swizzling(dev);
4800
a83014d3 4801 ret = dev_priv->gt.init_rings(dev);
99433931
MK
4802 if (ret)
4803 return ret;
4804
c3787e2e
BW
4805 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4806 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4807
254f965c 4808 /*
2fa48d8d
BW
4809 * XXX: Contexts should only be initialized once. Doing a switch to the
4810 * default context switch however is something we'd like to do after
4811 * reset or thaw (the latter may not actually be necessary for HW, but
4812 * goes with our code better). Context switching requires rings (for
4813 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4814 */
2fa48d8d 4815 ret = i915_gem_context_enable(dev_priv);
60990320 4816 if (ret && ret != -EIO) {
2fa48d8d 4817 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4818 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4819
4820 return ret;
4821 }
4822
4823 ret = i915_ppgtt_init_hw(dev);
4824 if (ret && ret != -EIO) {
4825 DRM_ERROR("PPGTT enable failed %d\n", ret);
4826 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4827 }
e21af88d 4828
2fa48d8d 4829 return ret;
8187a2b7
ZN
4830}
4831
1070a42b
CW
4832int i915_gem_init(struct drm_device *dev)
4833{
4834 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4835 int ret;
4836
127f1003
OM
4837 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4838 i915.enable_execlists);
4839
1070a42b 4840 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4841
4842 if (IS_VALLEYVIEW(dev)) {
4843 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4844 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4845 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4846 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4847 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4848 }
4849
a83014d3
OM
4850 if (!i915.enable_execlists) {
4851 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4852 dev_priv->gt.init_rings = i915_gem_init_rings;
4853 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4854 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd
OM
4855 } else {
4856 dev_priv->gt.do_execbuf = intel_execlists_submission;
4857 dev_priv->gt.init_rings = intel_logical_rings_init;
4858 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4859 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4860 }
4861
6c5566a8
DV
4862 ret = i915_gem_init_userptr(dev);
4863 if (ret) {
4864 mutex_unlock(&dev->struct_mutex);
4865 return ret;
4866 }
4867
d7e5008f 4868 i915_gem_init_global_gtt(dev);
d62b4892 4869
2fa48d8d 4870 ret = i915_gem_context_init(dev);
e3848694
MK
4871 if (ret) {
4872 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4873 return ret;
e3848694 4874 }
2fa48d8d 4875
1070a42b 4876 ret = i915_gem_init_hw(dev);
60990320
CW
4877 if (ret == -EIO) {
4878 /* Allow ring initialisation to fail by marking the GPU as
4879 * wedged. But we only want to do this where the GPU is angry,
4880 * for all other failure, such as an allocation failure, bail.
4881 */
4882 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4883 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4884 ret = 0;
1070a42b 4885 }
60990320 4886 mutex_unlock(&dev->struct_mutex);
1070a42b 4887
60990320 4888 return ret;
1070a42b
CW
4889}
4890
8187a2b7
ZN
4891void
4892i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4893{
3e31c6c0 4894 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4895 struct intel_engine_cs *ring;
1ec14ad3 4896 int i;
8187a2b7 4897
b4519513 4898 for_each_ring(ring, dev_priv, i)
a83014d3 4899 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4900}
4901
64193406 4902static void
a4872ba6 4903init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4904{
4905 INIT_LIST_HEAD(&ring->active_list);
4906 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4907}
4908
7e0d96bc
BW
4909void i915_init_vm(struct drm_i915_private *dev_priv,
4910 struct i915_address_space *vm)
fc8c067e 4911{
7e0d96bc
BW
4912 if (!i915_is_ggtt(vm))
4913 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4914 vm->dev = dev_priv->dev;
4915 INIT_LIST_HEAD(&vm->active_list);
4916 INIT_LIST_HEAD(&vm->inactive_list);
4917 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4918 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4919}
4920
673a394b
EA
4921void
4922i915_gem_load(struct drm_device *dev)
4923{
3e31c6c0 4924 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4925 int i;
4926
4927 dev_priv->slab =
4928 kmem_cache_create("i915_gem_object",
4929 sizeof(struct drm_i915_gem_object), 0,
4930 SLAB_HWCACHE_ALIGN,
4931 NULL);
673a394b 4932
fc8c067e
BW
4933 INIT_LIST_HEAD(&dev_priv->vm_list);
4934 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4935
a33afea5 4936 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4937 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4938 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4939 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4940 for (i = 0; i < I915_NUM_RINGS; i++)
4941 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4942 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4943 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4944 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4945 i915_gem_retire_work_handler);
b29c19b6
CW
4946 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4947 i915_gem_idle_work_handler);
1f83fee0 4948 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4949
94400120 4950 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4951 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4952 I915_WRITE(MI_ARB_STATE,
4953 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4954 }
4955
72bfa19c
CW
4956 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4957
de151cf6 4958 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4959 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4960 dev_priv->fence_reg_start = 3;
de151cf6 4961
42b5aeab
VS
4962 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4963 dev_priv->num_fence_regs = 32;
4964 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4965 dev_priv->num_fence_regs = 16;
4966 else
4967 dev_priv->num_fence_regs = 8;
4968
b5aa8a0f 4969 /* Initialize fence registers to zero */
19b2dbde
CW
4970 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4971 i915_gem_restore_fences(dev);
10ed13e4 4972
673a394b 4973 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4974 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4975
ce453d81
CW
4976 dev_priv->mm.interruptible = true;
4977
ceabbba5
CW
4978 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4979 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4980 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4981 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
4982
4983 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4984 register_oom_notifier(&dev_priv->mm.oom_notifier);
f99d7069
DV
4985
4986 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 4987}
71acb5eb 4988
f787a5f5 4989void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4990{
f787a5f5 4991 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4992
b29c19b6
CW
4993 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4994
b962442e
EA
4995 /* Clean up our request list when the client is going away, so that
4996 * later retire_requests won't dereference our soon-to-be-gone
4997 * file_priv.
4998 */
1c25595f 4999 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5000 while (!list_empty(&file_priv->mm.request_list)) {
5001 struct drm_i915_gem_request *request;
5002
5003 request = list_first_entry(&file_priv->mm.request_list,
5004 struct drm_i915_gem_request,
5005 client_list);
5006 list_del(&request->client_list);
5007 request->file_priv = NULL;
5008 }
1c25595f 5009 spin_unlock(&file_priv->mm.lock);
b962442e 5010}
31169714 5011
b29c19b6
CW
5012static void
5013i915_gem_file_idle_work_handler(struct work_struct *work)
5014{
5015 struct drm_i915_file_private *file_priv =
5016 container_of(work, typeof(*file_priv), mm.idle_work.work);
5017
5018 atomic_set(&file_priv->rps_wait_boost, false);
5019}
5020
5021int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5022{
5023 struct drm_i915_file_private *file_priv;
e422b888 5024 int ret;
b29c19b6
CW
5025
5026 DRM_DEBUG_DRIVER("\n");
5027
5028 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5029 if (!file_priv)
5030 return -ENOMEM;
5031
5032 file->driver_priv = file_priv;
5033 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5034 file_priv->file = file;
b29c19b6
CW
5035
5036 spin_lock_init(&file_priv->mm.lock);
5037 INIT_LIST_HEAD(&file_priv->mm.request_list);
5038 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5039 i915_gem_file_idle_work_handler);
5040
e422b888
BW
5041 ret = i915_gem_context_open(dev, file);
5042 if (ret)
5043 kfree(file_priv);
b29c19b6 5044
e422b888 5045 return ret;
b29c19b6
CW
5046}
5047
b680c37a
DV
5048/**
5049 * i915_gem_track_fb - update frontbuffer tracking
5050 * old: current GEM buffer for the frontbuffer slots
5051 * new: new GEM buffer for the frontbuffer slots
5052 * frontbuffer_bits: bitmask of frontbuffer slots
5053 *
5054 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5055 * from @old and setting them in @new. Both @old and @new can be NULL.
5056 */
a071fa00
DV
5057void i915_gem_track_fb(struct drm_i915_gem_object *old,
5058 struct drm_i915_gem_object *new,
5059 unsigned frontbuffer_bits)
5060{
5061 if (old) {
5062 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5063 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5064 old->frontbuffer_bits &= ~frontbuffer_bits;
5065 }
5066
5067 if (new) {
5068 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5069 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5070 new->frontbuffer_bits |= frontbuffer_bits;
5071 }
5072}
5073
5774506f
CW
5074static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5075{
5076 if (!mutex_is_locked(mutex))
5077 return false;
5078
5079#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5080 return mutex->owner == task;
5081#else
5082 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5083 return false;
5084#endif
5085}
5086
b453c4db
CW
5087static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5088{
5089 if (!mutex_trylock(&dev->struct_mutex)) {
5090 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5091 return false;
5092
5093 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5094 return false;
5095
5096 *unlock = false;
5097 } else
5098 *unlock = true;
5099
5100 return true;
5101}
5102
ceabbba5
CW
5103static int num_vma_bound(struct drm_i915_gem_object *obj)
5104{
5105 struct i915_vma *vma;
5106 int count = 0;
5107
5108 list_for_each_entry(vma, &obj->vma_list, vma_link)
5109 if (drm_mm_node_allocated(&vma->node))
5110 count++;
5111
5112 return count;
5113}
5114
7dc19d5a 5115static unsigned long
ceabbba5 5116i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5117{
17250b71 5118 struct drm_i915_private *dev_priv =
ceabbba5 5119 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5120 struct drm_device *dev = dev_priv->dev;
6c085a72 5121 struct drm_i915_gem_object *obj;
7dc19d5a 5122 unsigned long count;
b453c4db 5123 bool unlock;
17250b71 5124
b453c4db
CW
5125 if (!i915_gem_shrinker_lock(dev, &unlock))
5126 return 0;
31169714 5127
7dc19d5a 5128 count = 0;
35c20a60 5129 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5130 if (obj->pages_pin_count == 0)
7dc19d5a 5131 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5132
5133 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5134 if (!i915_gem_obj_is_pinned(obj) &&
5135 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5136 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5137 }
17250b71 5138
5774506f
CW
5139 if (unlock)
5140 mutex_unlock(&dev->struct_mutex);
d9973b43 5141
7dc19d5a 5142 return count;
31169714 5143}
a70a3148
BW
5144
5145/* All the new VM stuff */
5146unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5147 struct i915_address_space *vm)
5148{
5149 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5150 struct i915_vma *vma;
5151
896ab1a5 5152 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5153
a70a3148
BW
5154 list_for_each_entry(vma, &o->vma_list, vma_link) {
5155 if (vma->vm == vm)
5156 return vma->node.start;
5157
5158 }
f25748ea
DV
5159 WARN(1, "%s vma for this object not found.\n",
5160 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5161 return -1;
5162}
5163
5164bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5165 struct i915_address_space *vm)
5166{
5167 struct i915_vma *vma;
5168
5169 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5170 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5171 return true;
5172
5173 return false;
5174}
5175
5176bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5177{
5a1d5eb0 5178 struct i915_vma *vma;
a70a3148 5179
5a1d5eb0
CW
5180 list_for_each_entry(vma, &o->vma_list, vma_link)
5181 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5182 return true;
5183
5184 return false;
5185}
5186
5187unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5188 struct i915_address_space *vm)
5189{
5190 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5191 struct i915_vma *vma;
5192
896ab1a5 5193 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5194
5195 BUG_ON(list_empty(&o->vma_list));
5196
5197 list_for_each_entry(vma, &o->vma_list, vma_link)
5198 if (vma->vm == vm)
5199 return vma->node.size;
5200
5201 return 0;
5202}
5203
7dc19d5a 5204static unsigned long
ceabbba5 5205i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5206{
5207 struct drm_i915_private *dev_priv =
ceabbba5 5208 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5209 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5210 unsigned long freed;
b453c4db 5211 bool unlock;
7dc19d5a 5212
b453c4db
CW
5213 if (!i915_gem_shrinker_lock(dev, &unlock))
5214 return SHRINK_STOP;
7dc19d5a 5215
21ab4e74
CW
5216 freed = i915_gem_shrink(dev_priv,
5217 sc->nr_to_scan,
5218 I915_SHRINK_BOUND |
5219 I915_SHRINK_UNBOUND |
5220 I915_SHRINK_PURGEABLE);
d9973b43 5221 if (freed < sc->nr_to_scan)
21ab4e74
CW
5222 freed += i915_gem_shrink(dev_priv,
5223 sc->nr_to_scan - freed,
5224 I915_SHRINK_BOUND |
5225 I915_SHRINK_UNBOUND);
7dc19d5a
DC
5226 if (unlock)
5227 mutex_unlock(&dev->struct_mutex);
d9973b43 5228
7dc19d5a
DC
5229 return freed;
5230}
5c2abbea 5231
2cfcd32a
CW
5232static int
5233i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5234{
5235 struct drm_i915_private *dev_priv =
5236 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5237 struct drm_device *dev = dev_priv->dev;
5238 struct drm_i915_gem_object *obj;
5239 unsigned long timeout = msecs_to_jiffies(5000) + 1;
005445c5 5240 unsigned long pinned, bound, unbound, freed_pages;
2cfcd32a
CW
5241 bool was_interruptible;
5242 bool unlock;
5243
a1db2fa7 5244 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
2cfcd32a 5245 schedule_timeout_killable(1);
a1db2fa7
CW
5246 if (fatal_signal_pending(current))
5247 return NOTIFY_DONE;
5248 }
2cfcd32a
CW
5249 if (timeout == 0) {
5250 pr_err("Unable to purge GPU memory due lock contention.\n");
5251 return NOTIFY_DONE;
5252 }
5253
5254 was_interruptible = dev_priv->mm.interruptible;
5255 dev_priv->mm.interruptible = false;
5256
005445c5 5257 freed_pages = i915_gem_shrink_all(dev_priv);
2cfcd32a
CW
5258
5259 dev_priv->mm.interruptible = was_interruptible;
5260
5261 /* Because we may be allocating inside our own driver, we cannot
5262 * assert that there are no objects with pinned pages that are not
5263 * being pointed to by hardware.
5264 */
5265 unbound = bound = pinned = 0;
5266 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5267 if (!obj->base.filp) /* not backed by a freeable object */
5268 continue;
5269
5270 if (obj->pages_pin_count)
5271 pinned += obj->base.size;
5272 else
5273 unbound += obj->base.size;
5274 }
5275 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5276 if (!obj->base.filp)
5277 continue;
5278
5279 if (obj->pages_pin_count)
5280 pinned += obj->base.size;
5281 else
5282 bound += obj->base.size;
5283 }
5284
5285 if (unlock)
5286 mutex_unlock(&dev->struct_mutex);
5287
bb9059d3
CW
5288 if (freed_pages || unbound || bound)
5289 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5290 freed_pages << PAGE_SHIFT, pinned);
2cfcd32a
CW
5291 if (unbound || bound)
5292 pr_err("%lu and %lu bytes still available in the "
5293 "bound and unbound GPU page lists.\n",
5294 bound, unbound);
5295
005445c5 5296 *(unsigned long *)ptr += freed_pages;
2cfcd32a
CW
5297 return NOTIFY_DONE;
5298}
5299
5c2abbea
BW
5300struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5301{
5302 struct i915_vma *vma;
5303
5c2abbea 5304 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5dc383b0 5305 if (vma->vm != i915_obj_to_ggtt(obj))
5c2abbea
BW
5306 return NULL;
5307
5308 return vma;
5309}