]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915/bxt: add revision id for A1 stepping and use it
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 49
c76ce038
CW
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54}
55
2c22569b
CW
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
73aa808f
CW
64/* some bookkeeping */
65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
c20e8355 68 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
c20e8355 71 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
72}
73
74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
c20e8355 77 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
c20e8355 80 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
81}
82
21dd3734 83static int
33196ded 84i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 85{
30dbf0c0
CW
86 int ret;
87
7abb690a
DV
88#define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
1f83fee0 90 if (EXIT_COND)
30dbf0c0
CW
91 return 0;
92
0a6759c6
DV
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
1f83fee0
DV
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
0a6759c6
DV
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
30dbf0c0 105 return ret;
0a6759c6 106 }
1f83fee0 107#undef EXIT_COND
30dbf0c0 108
21dd3734 109 return 0;
30dbf0c0
CW
110}
111
54cf91dc 112int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 113{
33196ded 114 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
115 int ret;
116
33196ded 117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
23bc5982 125 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
126 return 0;
127}
30dbf0c0 128
5a125c3c
EA
129int
130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 131 struct drm_file *file)
5a125c3c 132{
73aa808f 133 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 134 struct drm_i915_gem_get_aperture *args = data;
ca1543be
TU
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
6299f992 137 size_t pinned;
5a125c3c 138
6299f992 139 pinned = 0;
73aa808f 140 mutex_lock(&dev->struct_mutex);
ca1543be
TU
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
73aa808f 147 mutex_unlock(&dev->struct_mutex);
5a125c3c 148
853ba5d2 149 args->aper_size = dev_priv->gtt.base.total;
0206e353 150 args->aper_available_size = args->aper_size - pinned;
6299f992 151
5a125c3c
EA
152 return 0;
153}
154
6a2c4232
CW
155static int
156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 157{
6a2c4232
CW
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
00731155 163
6a2c4232
CW
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
00731155 198
6a2c4232
CW
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
6a2c4232
CW
203 return 0;
204}
205
206static void
207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208{
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 212
6a2c4232
CW
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
00731155 226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 227 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
00731155 245 mark_page_accessed(page);
6a2c4232 246 page_cache_release(page);
00731155
CW
247 vaddr += PAGE_SIZE;
248 }
6a2c4232 249 obj->dirty = 0;
00731155
CW
250 }
251
6a2c4232
CW
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
6a2c4232
CW
254}
255
256static void
257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258{
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260}
261
262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266};
267
268static int
269drop_pages(struct drm_i915_gem_object *obj)
270{
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
00731155
CW
283}
284
285int
286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288{
289 drm_dma_handle_t *phys;
6a2c4232 290 int ret;
00731155
CW
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
6a2c4232
CW
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
00731155
CW
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
00731155 314 obj->phys_handle = phys;
6a2c4232
CW
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
00731155
CW
318}
319
320static int
321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324{
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 328 int ret = 0;
6a2c4232
CW
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
00731155 336
77a0d1ca 337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
00731155
CW
352 }
353
6a2c4232 354 drm_clflush_virt_range(vaddr, args->size);
00731155 355 i915_gem_chipset_flush(dev);
063e4e6b
PZ
356
357out:
de152b62 358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 359 return ret;
00731155
CW
360}
361
42dcedd4
CW
362void *i915_gem_object_alloc(struct drm_device *dev)
363{
364 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
366}
367
368void i915_gem_object_free(struct drm_i915_gem_object *obj)
369{
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 371 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
372}
373
ff72145b
DA
374static int
375i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
673a394b 379{
05394f39 380 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
381 int ret;
382 u32 handle;
673a394b 383
ff72145b 384 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
385 if (size == 0)
386 return -EINVAL;
673a394b
EA
387
388 /* Allocate the new object */
ff72145b 389 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
390 if (obj == NULL)
391 return -ENOMEM;
392
05394f39 393 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 394 /* drop reference from allocate - handle holds it now */
d861e338
DV
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
202f2fef 398
ff72145b 399 *handle_p = handle;
673a394b
EA
400 return 0;
401}
402
ff72145b
DA
403int
404i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407{
408 /* have to work out size/pitch and return them */
de45eaf7 409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
da6b51d0 412 args->size, &args->handle);
ff72145b
DA
413}
414
ff72145b
DA
415/**
416 * Creates a new mm object and returns a handle to it.
417 */
418int
419i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421{
422 struct drm_i915_gem_create *args = data;
63ed2cb2 423
ff72145b 424 return i915_gem_create(file, dev,
da6b51d0 425 args->size, &args->handle);
ff72145b
DA
426}
427
8461d226
DV
428static inline int
429__copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432{
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452}
453
8c59967c 454static inline int
4f0c7cfb
BW
455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
8c59967c
DV
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
4c914c0c
BV
480/*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487{
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514}
515
d174bd64
DV
516/* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
eb01459f 519static int
d174bd64
DV
520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523{
524 char *vaddr;
525 int ret;
526
e7e58eb5 527 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
f60d7f0c 539 return ret ? -EFAULT : 0;
d174bd64
DV
540}
541
23c18c71
DV
542static void
543shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545{
e7e58eb5 546 if (unlikely(swizzled)) {
23c18c71
DV
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562}
563
d174bd64
DV
564/* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566static int
567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570{
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
23c18c71
DV
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
d174bd64
DV
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
f60d7f0c 590 return ret ? - EFAULT : 0;
d174bd64
DV
591}
592
eb01459f 593static int
dbf7bff0
DV
594i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
eb01459f 598{
8461d226 599 char __user *user_data;
eb01459f 600 ssize_t remain;
8461d226 601 loff_t offset;
eb2c0c81 602 int shmem_page_offset, page_length, ret = 0;
8461d226 603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 604 int prefaulted = 0;
8489731c 605 int needs_clflush = 0;
67d5a50c 606 struct sg_page_iter sg_iter;
eb01459f 607
2bb4629a 608 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
609 remain = args->size;
610
8461d226 611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 612
4c914c0c 613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
614 if (ret)
615 return ret;
616
8461d226 617 offset = args->offset;
eb01459f 618
67d5a50c
ID
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
2db76d7c 621 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
622
623 if (remain <= 0)
624 break;
625
eb01459f
EA
626 /* Operation in this page
627 *
eb01459f 628 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
629 * page_length = bytes to copy for this page
630 */
c8cbbb8b 631 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 635
8461d226
DV
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
d174bd64
DV
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
dbf7bff0 644
dbf7bff0
DV
645 mutex_unlock(&dev->struct_mutex);
646
d330a953 647 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 648 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
eb01459f 656
d174bd64
DV
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
eb01459f 660
dbf7bff0 661 mutex_lock(&dev->struct_mutex);
f60d7f0c 662
f60d7f0c 663 if (ret)
8461d226 664 goto out;
8461d226 665
17793c9a 666next_page:
eb01459f 667 remain -= page_length;
8461d226 668 user_data += page_length;
eb01459f
EA
669 offset += page_length;
670 }
671
4f27b75d 672out:
f60d7f0c
CW
673 i915_gem_object_unpin_pages(obj);
674
eb01459f
EA
675 return ret;
676}
677
673a394b
EA
678/**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683int
684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 685 struct drm_file *file)
673a394b
EA
686{
687 struct drm_i915_gem_pread *args = data;
05394f39 688 struct drm_i915_gem_object *obj;
35b62a89 689 int ret = 0;
673a394b 690
51311d0a
CW
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
2bb4629a 695 to_user_ptr(args->data_ptr),
51311d0a
CW
696 args->size))
697 return -EFAULT;
698
4f27b75d 699 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 700 if (ret)
4f27b75d 701 return ret;
673a394b 702
05394f39 703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 704 if (&obj->base == NULL) {
1d7cfea1
CW
705 ret = -ENOENT;
706 goto unlock;
4f27b75d 707 }
673a394b 708
7dcd2499 709 /* Bounds check source. */
05394f39
CW
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
ce9d419d 712 ret = -EINVAL;
35b62a89 713 goto out;
ce9d419d
CW
714 }
715
1286ff73
DV
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
db53a302
CW
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
dbf7bff0 726 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 727
35b62a89 728out:
05394f39 729 drm_gem_object_unreference(&obj->base);
1d7cfea1 730unlock:
4f27b75d 731 mutex_unlock(&dev->struct_mutex);
eb01459f 732 return ret;
673a394b
EA
733}
734
0839ccb8
KP
735/* This is the fast write path which cannot handle
736 * page faults in the source data
9b7530cc 737 */
0839ccb8
KP
738
739static inline int
740fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
9b7530cc 744{
4f0c7cfb
BW
745 void __iomem *vaddr_atomic;
746 void *vaddr;
0839ccb8 747 unsigned long unwritten;
9b7530cc 748
3e4d3af5 749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 753 user_data, length);
3e4d3af5 754 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 755 return unwritten;
0839ccb8
KP
756}
757
3de09aa3
EA
758/**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
673a394b 762static int
05394f39
CW
763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
3de09aa3 765 struct drm_i915_gem_pwrite *args,
05394f39 766 struct drm_file *file)
673a394b 767{
3e31c6c0 768 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 769 ssize_t remain;
0839ccb8 770 loff_t offset, page_base;
673a394b 771 char __user *user_data;
935aaa69
DV
772 int page_offset, page_length, ret;
773
1ec9e26d 774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
673a394b 785
2bb4629a 786 user_data = to_user_ptr(args->data_ptr);
673a394b 787 remain = args->size;
673a394b 788
f343c5f6 789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 790
77a0d1ca 791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 792
673a394b
EA
793 while (remain > 0) {
794 /* Operation in this page
795 *
0839ccb8
KP
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
673a394b 799 */
c8cbbb8b
CW
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
0839ccb8
KP
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
0839ccb8 806 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
0839ccb8 809 */
5d4545ae 810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
063e4e6b 813 goto out_flush;
935aaa69 814 }
673a394b 815
0839ccb8
KP
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
673a394b 819 }
673a394b 820
063e4e6b 821out_flush:
de152b62 822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 823out_unpin:
d7f46fc4 824 i915_gem_object_ggtt_unpin(obj);
935aaa69 825out:
3de09aa3 826 return ret;
673a394b
EA
827}
828
d174bd64
DV
829/* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
3043c60c 833static int
d174bd64
DV
834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
673a394b 839{
d174bd64 840 char *vaddr;
673a394b 841 int ret;
3de09aa3 842
e7e58eb5 843 if (unlikely(page_do_bit17_swizzling))
d174bd64 844 return -EINVAL;
3de09aa3 845
d174bd64
DV
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
c2831a94
CW
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
d174bd64
DV
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
3de09aa3 856
755d2218 857 return ret ? -EFAULT : 0;
3de09aa3
EA
858}
859
d174bd64
DV
860/* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
3043c60c 862static int
d174bd64
DV
863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
673a394b 868{
d174bd64
DV
869 char *vaddr;
870 int ret;
e5281ccd 871
d174bd64 872 vaddr = kmap(page);
e7e58eb5 873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
d174bd64
DV
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
879 user_data,
880 page_length);
d174bd64
DV
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
23c18c71
DV
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
d174bd64 889 kunmap(page);
40123c1f 890
755d2218 891 return ret ? -EFAULT : 0;
40123c1f
EA
892}
893
40123c1f 894static int
e244a443
DV
895i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
40123c1f 899{
40123c1f 900 ssize_t remain;
8c59967c
DV
901 loff_t offset;
902 char __user *user_data;
eb2c0c81 903 int shmem_page_offset, page_length, ret = 0;
8c59967c 904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 905 int hit_slowpath = 0;
58642885
DV
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
67d5a50c 908 struct sg_page_iter sg_iter;
40123c1f 909
2bb4629a 910 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
911 remain = args->size;
912
8c59967c 913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 914
58642885
DV
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
2c22569b 920 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
58642885 924 }
c76ce038
CW
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 930
755d2218
CW
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
77a0d1ca 935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 936
755d2218
CW
937 i915_gem_object_pin_pages(obj);
938
673a394b 939 offset = args->offset;
05394f39 940 obj->dirty = 1;
673a394b 941
67d5a50c
ID
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
2db76d7c 944 struct page *page = sg_page_iter_page(&sg_iter);
58642885 945 int partial_cacheline_write;
e5281ccd 946
9da3da66
CW
947 if (remain <= 0)
948 break;
949
40123c1f
EA
950 /* Operation in this page
951 *
40123c1f 952 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
953 * page_length = bytes to copy for this page
954 */
c8cbbb8b 955 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 960
58642885
DV
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
8c59967c
DV
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
d174bd64
DV
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
e244a443
DV
977
978 hit_slowpath = 1;
e244a443 979 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
40123c1f 984
e244a443 985 mutex_lock(&dev->struct_mutex);
755d2218 986
755d2218 987 if (ret)
8c59967c 988 goto out;
8c59967c 989
17793c9a 990next_page:
40123c1f 991 remain -= page_length;
8c59967c 992 user_data += page_length;
40123c1f 993 offset += page_length;
673a394b
EA
994 }
995
fbd5a26d 996out:
755d2218
CW
997 i915_gem_object_unpin_pages(obj);
998
e244a443 999 if (hit_slowpath) {
8dcf015e
DV
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1007 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1008 needs_clflush_after = true;
e244a443 1009 }
8c59967c 1010 }
673a394b 1011
58642885 1012 if (needs_clflush_after)
e76e9aeb 1013 i915_gem_chipset_flush(dev);
ed75a55b
VS
1014 else
1015 obj->cache_dirty = true;
58642885 1016
de152b62 1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1018 return ret;
673a394b
EA
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1028 struct drm_file *file)
673a394b 1029{
5d77d9c5 1030 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1031 struct drm_i915_gem_pwrite *args = data;
05394f39 1032 struct drm_i915_gem_object *obj;
51311d0a
CW
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
2bb4629a 1039 to_user_ptr(args->data_ptr),
51311d0a
CW
1040 args->size))
1041 return -EFAULT;
1042
d330a953 1043 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
673a394b 1049
5d77d9c5
ID
1050 intel_runtime_pm_get(dev_priv);
1051
fbd5a26d 1052 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1053 if (ret)
5d77d9c5 1054 goto put_rpm;
1d7cfea1 1055
05394f39 1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1057 if (&obj->base == NULL) {
1d7cfea1
CW
1058 ret = -ENOENT;
1059 goto unlock;
fbd5a26d 1060 }
673a394b 1061
7dcd2499 1062 /* Bounds check destination. */
05394f39
CW
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
ce9d419d 1065 ret = -EINVAL;
35b62a89 1066 goto out;
ce9d419d
CW
1067 }
1068
1286ff73
DV
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
db53a302
CW
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
935aaa69 1079 ret = -EFAULT;
673a394b
EA
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
2c22569b
CW
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
fbd5a26d 1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1093 }
673a394b 1094
6a2c4232
CW
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
5c0480f2 1101
35b62a89 1102out:
05394f39 1103 drm_gem_object_unreference(&obj->base);
1d7cfea1 1104unlock:
fbd5a26d 1105 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1106put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
673a394b
EA
1109 return ret;
1110}
1111
b361237b 1112int
33196ded 1113i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1114 bool interruptible)
1115{
1f83fee0 1116 if (i915_reset_in_progress(error)) {
b361237b
CW
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1f83fee0
DV
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
b361237b
CW
1124 return -EIO;
1125
6689c167
MA
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
b361237b
CW
1133 }
1134
1135 return 0;
1136}
1137
094f9a54
CW
1138static void fake_irq(unsigned long data)
1139{
1140 wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1144 struct intel_engine_cs *ring)
094f9a54
CW
1145{
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147}
1148
eed29a5b 1149static int __i915_spin_request(struct drm_i915_gem_request *req)
b29c19b6 1150{
2def4ad9
CW
1151 unsigned long timeout;
1152
eed29a5b 1153 if (i915_gem_request_get_ring(req)->irq_refcount)
2def4ad9
CW
1154 return -EBUSY;
1155
1156 timeout = jiffies + 1;
1157 while (!need_resched()) {
eed29a5b 1158 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1159 return 0;
1160
1161 if (time_after_eq(jiffies, timeout))
1162 break;
b29c19b6 1163
2def4ad9
CW
1164 cpu_relax_lowlatency();
1165 }
eed29a5b 1166 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1167 return 0;
1168
1169 return -EAGAIN;
b29c19b6
CW
1170}
1171
b361237b 1172/**
9c654818
JH
1173 * __i915_wait_request - wait until execution of request has finished
1174 * @req: duh!
1175 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1176 * @interruptible: do an interruptible wait (normally yes)
1177 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1178 *
f69061be
DV
1179 * Note: It is of utmost importance that the passed in seqno and reset_counter
1180 * values have been read by the caller in an smp safe manner. Where read-side
1181 * locks are involved, it is sufficient to read the reset_counter before
1182 * unlocking the lock that protects the seqno. For lockless tricks, the
1183 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1184 * inserted.
1185 *
9c654818 1186 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1187 * errno with remaining time filled in timeout argument.
1188 */
9c654818 1189int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1190 unsigned reset_counter,
b29c19b6 1191 bool interruptible,
5ed0bdf2 1192 s64 *timeout,
2e1b8730 1193 struct intel_rps_client *rps)
b361237b 1194{
9c654818 1195 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1196 struct drm_device *dev = ring->dev;
3e31c6c0 1197 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1198 const bool irq_test_in_progress =
1199 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1200 DEFINE_WAIT(wait);
47e9766d 1201 unsigned long timeout_expire;
5ed0bdf2 1202 s64 before, now;
b361237b
CW
1203 int ret;
1204
9df7575f 1205 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1206
b4716185
CW
1207 if (list_empty(&req->list))
1208 return 0;
1209
1b5a433a 1210 if (i915_gem_request_completed(req, true))
b361237b
CW
1211 return 0;
1212
7bd0e226
DV
1213 timeout_expire = timeout ?
1214 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1215
2e1b8730 1216 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1217 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1218
094f9a54 1219 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1220 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1221 before = ktime_get_raw_ns();
2def4ad9
CW
1222
1223 /* Optimistic spin for the next jiffie before touching IRQs */
1224 ret = __i915_spin_request(req);
1225 if (ret == 0)
1226 goto out;
1227
1228 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1229 ret = -ENODEV;
1230 goto out;
1231 }
1232
094f9a54
CW
1233 for (;;) {
1234 struct timer_list timer;
b361237b 1235
094f9a54
CW
1236 prepare_to_wait(&ring->irq_queue, &wait,
1237 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1238
f69061be
DV
1239 /* We need to check whether any gpu reset happened in between
1240 * the caller grabbing the seqno and now ... */
094f9a54
CW
1241 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1242 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1243 * is truely gone. */
1244 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1245 if (ret == 0)
1246 ret = -EAGAIN;
1247 break;
1248 }
f69061be 1249
1b5a433a 1250 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1251 ret = 0;
1252 break;
1253 }
b361237b 1254
094f9a54
CW
1255 if (interruptible && signal_pending(current)) {
1256 ret = -ERESTARTSYS;
1257 break;
1258 }
1259
47e9766d 1260 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1261 ret = -ETIME;
1262 break;
1263 }
1264
1265 timer.function = NULL;
1266 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1267 unsigned long expire;
1268
094f9a54 1269 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1270 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1271 mod_timer(&timer, expire);
1272 }
1273
5035c275 1274 io_schedule();
094f9a54 1275
094f9a54
CW
1276 if (timer.function) {
1277 del_singleshot_timer_sync(&timer);
1278 destroy_timer_on_stack(&timer);
1279 }
1280 }
168c3f21
MK
1281 if (!irq_test_in_progress)
1282 ring->irq_put(ring);
094f9a54
CW
1283
1284 finish_wait(&ring->irq_queue, &wait);
b361237b 1285
2def4ad9
CW
1286out:
1287 now = ktime_get_raw_ns();
1288 trace_i915_gem_request_wait_end(req);
1289
b361237b 1290 if (timeout) {
5ed0bdf2
TG
1291 s64 tres = *timeout - (now - before);
1292
1293 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1294
1295 /*
1296 * Apparently ktime isn't accurate enough and occasionally has a
1297 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1298 * things up to make the test happy. We allow up to 1 jiffy.
1299 *
1300 * This is a regrssion from the timespec->ktime conversion.
1301 */
1302 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1303 *timeout = 0;
b361237b
CW
1304 }
1305
094f9a54 1306 return ret;
b361237b
CW
1307}
1308
fcfa423c
JH
1309int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1310 struct drm_file *file)
1311{
1312 struct drm_i915_private *dev_private;
1313 struct drm_i915_file_private *file_priv;
1314
1315 WARN_ON(!req || !file || req->file_priv);
1316
1317 if (!req || !file)
1318 return -EINVAL;
1319
1320 if (req->file_priv)
1321 return -EINVAL;
1322
1323 dev_private = req->ring->dev->dev_private;
1324 file_priv = file->driver_priv;
1325
1326 spin_lock(&file_priv->mm.lock);
1327 req->file_priv = file_priv;
1328 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1329 spin_unlock(&file_priv->mm.lock);
1330
1331 req->pid = get_pid(task_pid(current));
1332
1333 return 0;
1334}
1335
b4716185
CW
1336static inline void
1337i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1338{
1339 struct drm_i915_file_private *file_priv = request->file_priv;
1340
1341 if (!file_priv)
1342 return;
1343
1344 spin_lock(&file_priv->mm.lock);
1345 list_del(&request->client_list);
1346 request->file_priv = NULL;
1347 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1348
1349 put_pid(request->pid);
1350 request->pid = NULL;
b4716185
CW
1351}
1352
1353static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1354{
1355 trace_i915_gem_request_retire(request);
1356
1357 /* We know the GPU must have read the request to have
1358 * sent us the seqno + interrupt, so use the position
1359 * of tail of the request to update the last known position
1360 * of the GPU head.
1361 *
1362 * Note this requires that we are always called in request
1363 * completion order.
1364 */
1365 request->ringbuf->last_retired_head = request->postfix;
1366
1367 list_del_init(&request->list);
1368 i915_gem_request_remove_from_client(request);
1369
b4716185
CW
1370 i915_gem_request_unreference(request);
1371}
1372
1373static void
1374__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375{
1376 struct intel_engine_cs *engine = req->ring;
1377 struct drm_i915_gem_request *tmp;
1378
1379 lockdep_assert_held(&engine->dev->struct_mutex);
1380
1381 if (list_empty(&req->list))
1382 return;
1383
1384 do {
1385 tmp = list_first_entry(&engine->request_list,
1386 typeof(*tmp), list);
1387
1388 i915_gem_request_retire(tmp);
1389 } while (tmp != req);
1390
1391 WARN_ON(i915_verify_lists(engine->dev));
1392}
1393
b361237b 1394/**
a4b3a571 1395 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1396 * request and object lists appropriately for that event.
1397 */
1398int
a4b3a571 1399i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1400{
a4b3a571
DV
1401 struct drm_device *dev;
1402 struct drm_i915_private *dev_priv;
1403 bool interruptible;
b361237b
CW
1404 int ret;
1405
a4b3a571
DV
1406 BUG_ON(req == NULL);
1407
1408 dev = req->ring->dev;
1409 dev_priv = dev->dev_private;
1410 interruptible = dev_priv->mm.interruptible;
1411
b361237b 1412 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1413
33196ded 1414 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1415 if (ret)
1416 return ret;
1417
b4716185
CW
1418 ret = __i915_wait_request(req,
1419 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1420 interruptible, NULL, NULL);
b4716185
CW
1421 if (ret)
1422 return ret;
d26e3af8 1423
b4716185 1424 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1425 return 0;
1426}
1427
b361237b
CW
1428/**
1429 * Ensures that all rendering to the object has completed and the object is
1430 * safe to unbind from the GTT or access from the CPU.
1431 */
2e2f351d 1432int
b361237b
CW
1433i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1434 bool readonly)
1435{
b4716185 1436 int ret, i;
b361237b 1437
b4716185 1438 if (!obj->active)
b361237b
CW
1439 return 0;
1440
b4716185
CW
1441 if (readonly) {
1442 if (obj->last_write_req != NULL) {
1443 ret = i915_wait_request(obj->last_write_req);
1444 if (ret)
1445 return ret;
b361237b 1446
b4716185
CW
1447 i = obj->last_write_req->ring->id;
1448 if (obj->last_read_req[i] == obj->last_write_req)
1449 i915_gem_object_retire__read(obj, i);
1450 else
1451 i915_gem_object_retire__write(obj);
1452 }
1453 } else {
1454 for (i = 0; i < I915_NUM_RINGS; i++) {
1455 if (obj->last_read_req[i] == NULL)
1456 continue;
1457
1458 ret = i915_wait_request(obj->last_read_req[i]);
1459 if (ret)
1460 return ret;
1461
1462 i915_gem_object_retire__read(obj, i);
1463 }
1464 RQ_BUG_ON(obj->active);
1465 }
1466
1467 return 0;
1468}
1469
1470static void
1471i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1472 struct drm_i915_gem_request *req)
1473{
1474 int ring = req->ring->id;
1475
1476 if (obj->last_read_req[ring] == req)
1477 i915_gem_object_retire__read(obj, ring);
1478 else if (obj->last_write_req == req)
1479 i915_gem_object_retire__write(obj);
1480
1481 __i915_gem_request_retire__upto(req);
b361237b
CW
1482}
1483
3236f57a
CW
1484/* A nonblocking variant of the above wait. This is a highly dangerous routine
1485 * as the object state may change during this call.
1486 */
1487static __must_check int
1488i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1489 struct intel_rps_client *rps,
3236f57a
CW
1490 bool readonly)
1491{
1492 struct drm_device *dev = obj->base.dev;
1493 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1494 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1495 unsigned reset_counter;
b4716185 1496 int ret, i, n = 0;
3236f57a
CW
1497
1498 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1499 BUG_ON(!dev_priv->mm.interruptible);
1500
b4716185 1501 if (!obj->active)
3236f57a
CW
1502 return 0;
1503
33196ded 1504 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1505 if (ret)
1506 return ret;
1507
f69061be 1508 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1509
1510 if (readonly) {
1511 struct drm_i915_gem_request *req;
1512
1513 req = obj->last_write_req;
1514 if (req == NULL)
1515 return 0;
1516
b4716185
CW
1517 requests[n++] = i915_gem_request_reference(req);
1518 } else {
1519 for (i = 0; i < I915_NUM_RINGS; i++) {
1520 struct drm_i915_gem_request *req;
1521
1522 req = obj->last_read_req[i];
1523 if (req == NULL)
1524 continue;
1525
b4716185
CW
1526 requests[n++] = i915_gem_request_reference(req);
1527 }
1528 }
1529
3236f57a 1530 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1531 for (i = 0; ret == 0 && i < n; i++)
1532 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1533 NULL, rps);
3236f57a
CW
1534 mutex_lock(&dev->struct_mutex);
1535
b4716185
CW
1536 for (i = 0; i < n; i++) {
1537 if (ret == 0)
1538 i915_gem_object_retire_request(obj, requests[i]);
1539 i915_gem_request_unreference(requests[i]);
1540 }
1541
1542 return ret;
3236f57a
CW
1543}
1544
2e1b8730
CW
1545static struct intel_rps_client *to_rps_client(struct drm_file *file)
1546{
1547 struct drm_i915_file_private *fpriv = file->driver_priv;
1548 return &fpriv->rps;
1549}
1550
673a394b 1551/**
2ef7eeaa
EA
1552 * Called when user space prepares to use an object with the CPU, either
1553 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1554 */
1555int
1556i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1557 struct drm_file *file)
673a394b
EA
1558{
1559 struct drm_i915_gem_set_domain *args = data;
05394f39 1560 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1561 uint32_t read_domains = args->read_domains;
1562 uint32_t write_domain = args->write_domain;
673a394b
EA
1563 int ret;
1564
2ef7eeaa 1565 /* Only handle setting domains to types used by the CPU. */
21d509e3 1566 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1567 return -EINVAL;
1568
21d509e3 1569 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1570 return -EINVAL;
1571
1572 /* Having something in the write domain implies it's in the read
1573 * domain, and only that read domain. Enforce that in the request.
1574 */
1575 if (write_domain != 0 && read_domains != write_domain)
1576 return -EINVAL;
1577
76c1dec1 1578 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1579 if (ret)
76c1dec1 1580 return ret;
1d7cfea1 1581
05394f39 1582 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1583 if (&obj->base == NULL) {
1d7cfea1
CW
1584 ret = -ENOENT;
1585 goto unlock;
76c1dec1 1586 }
673a394b 1587
3236f57a
CW
1588 /* Try to flush the object off the GPU without holding the lock.
1589 * We will repeat the flush holding the lock in the normal manner
1590 * to catch cases where we are gazumped.
1591 */
6e4930f6 1592 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1593 to_rps_client(file),
6e4930f6 1594 !write_domain);
3236f57a
CW
1595 if (ret)
1596 goto unref;
1597
43566ded 1598 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1599 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1600 else
e47c68e9 1601 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1602
031b698a
DV
1603 if (write_domain != 0)
1604 intel_fb_obj_invalidate(obj,
1605 write_domain == I915_GEM_DOMAIN_GTT ?
1606 ORIGIN_GTT : ORIGIN_CPU);
1607
3236f57a 1608unref:
05394f39 1609 drm_gem_object_unreference(&obj->base);
1d7cfea1 1610unlock:
673a394b
EA
1611 mutex_unlock(&dev->struct_mutex);
1612 return ret;
1613}
1614
1615/**
1616 * Called when user space has done writes to this buffer
1617 */
1618int
1619i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1620 struct drm_file *file)
673a394b
EA
1621{
1622 struct drm_i915_gem_sw_finish *args = data;
05394f39 1623 struct drm_i915_gem_object *obj;
673a394b
EA
1624 int ret = 0;
1625
76c1dec1 1626 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1627 if (ret)
76c1dec1 1628 return ret;
1d7cfea1 1629
05394f39 1630 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1631 if (&obj->base == NULL) {
1d7cfea1
CW
1632 ret = -ENOENT;
1633 goto unlock;
673a394b
EA
1634 }
1635
673a394b 1636 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1637 if (obj->pin_display)
e62b59e4 1638 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1639
05394f39 1640 drm_gem_object_unreference(&obj->base);
1d7cfea1 1641unlock:
673a394b
EA
1642 mutex_unlock(&dev->struct_mutex);
1643 return ret;
1644}
1645
1646/**
1647 * Maps the contents of an object, returning the address it is mapped
1648 * into.
1649 *
1650 * While the mapping holds a reference on the contents of the object, it doesn't
1651 * imply a ref on the object itself.
34367381
DV
1652 *
1653 * IMPORTANT:
1654 *
1655 * DRM driver writers who look a this function as an example for how to do GEM
1656 * mmap support, please don't implement mmap support like here. The modern way
1657 * to implement DRM mmap support is with an mmap offset ioctl (like
1658 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1659 * That way debug tooling like valgrind will understand what's going on, hiding
1660 * the mmap call in a driver private ioctl will break that. The i915 driver only
1661 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1662 */
1663int
1664i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1665 struct drm_file *file)
673a394b
EA
1666{
1667 struct drm_i915_gem_mmap *args = data;
1668 struct drm_gem_object *obj;
673a394b
EA
1669 unsigned long addr;
1670
1816f923
AG
1671 if (args->flags & ~(I915_MMAP_WC))
1672 return -EINVAL;
1673
1674 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1675 return -ENODEV;
1676
05394f39 1677 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1678 if (obj == NULL)
bf79cb91 1679 return -ENOENT;
673a394b 1680
1286ff73
DV
1681 /* prime objects have no backing filp to GEM mmap
1682 * pages from.
1683 */
1684 if (!obj->filp) {
1685 drm_gem_object_unreference_unlocked(obj);
1686 return -EINVAL;
1687 }
1688
6be5ceb0 1689 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1690 PROT_READ | PROT_WRITE, MAP_SHARED,
1691 args->offset);
1816f923
AG
1692 if (args->flags & I915_MMAP_WC) {
1693 struct mm_struct *mm = current->mm;
1694 struct vm_area_struct *vma;
1695
1696 down_write(&mm->mmap_sem);
1697 vma = find_vma(mm, addr);
1698 if (vma)
1699 vma->vm_page_prot =
1700 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1701 else
1702 addr = -ENOMEM;
1703 up_write(&mm->mmap_sem);
1704 }
bc9025bd 1705 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1706 if (IS_ERR((void *)addr))
1707 return addr;
1708
1709 args->addr_ptr = (uint64_t) addr;
1710
1711 return 0;
1712}
1713
de151cf6
JB
1714/**
1715 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1716 * @vma: VMA in question
1717 * @vmf: fault info
de151cf6
JB
1718 *
1719 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1720 * from userspace. The fault handler takes care of binding the object to
1721 * the GTT (if needed), allocating and programming a fence register (again,
1722 * only if needed based on whether the old reg is still valid or the object
1723 * is tiled) and inserting a new PTE into the faulting process.
1724 *
1725 * Note that the faulting process may involve evicting existing objects
1726 * from the GTT and/or fence registers to make room. So performance may
1727 * suffer if the GTT working set is large or there are few fence registers
1728 * left.
1729 */
1730int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1731{
05394f39
CW
1732 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1733 struct drm_device *dev = obj->base.dev;
3e31c6c0 1734 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1735 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1736 pgoff_t page_offset;
1737 unsigned long pfn;
1738 int ret = 0;
0f973f27 1739 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1740
f65c9168
PZ
1741 intel_runtime_pm_get(dev_priv);
1742
de151cf6
JB
1743 /* We don't use vmf->pgoff since that has the fake offset */
1744 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1745 PAGE_SHIFT;
1746
d9bc7e9f
CW
1747 ret = i915_mutex_lock_interruptible(dev);
1748 if (ret)
1749 goto out;
a00b10c3 1750
db53a302
CW
1751 trace_i915_gem_object_fault(obj, page_offset, true, write);
1752
6e4930f6
CW
1753 /* Try to flush the object off the GPU first without holding the lock.
1754 * Upon reacquiring the lock, we will perform our sanity checks and then
1755 * repeat the flush holding the lock in the normal manner to catch cases
1756 * where we are gazumped.
1757 */
1758 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1759 if (ret)
1760 goto unlock;
1761
eb119bd6
CW
1762 /* Access to snoopable pages through the GTT is incoherent. */
1763 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1764 ret = -EFAULT;
eb119bd6
CW
1765 goto unlock;
1766 }
1767
c5ad54cf 1768 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1769 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1770 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1771 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1772
c5ad54cf
JL
1773 memset(&view, 0, sizeof(view));
1774 view.type = I915_GGTT_VIEW_PARTIAL;
1775 view.params.partial.offset = rounddown(page_offset, chunk_size);
1776 view.params.partial.size =
1777 min_t(unsigned int,
1778 chunk_size,
1779 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1780 view.params.partial.offset);
1781 }
1782
1783 /* Now pin it into the GTT if needed */
1784 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1785 if (ret)
1786 goto unlock;
4a684a41 1787
c9839303
CW
1788 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1789 if (ret)
1790 goto unpin;
74898d7e 1791
06d98131 1792 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1793 if (ret)
c9839303 1794 goto unpin;
7d1c4804 1795
b90b91d8 1796 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1797 pfn = dev_priv->gtt.mappable_base +
1798 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1799 pfn >>= PAGE_SHIFT;
de151cf6 1800
c5ad54cf
JL
1801 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1802 /* Overriding existing pages in partial view does not cause
1803 * us any trouble as TLBs are still valid because the fault
1804 * is due to userspace losing part of the mapping or never
1805 * having accessed it before (at this partials' range).
1806 */
1807 unsigned long base = vma->vm_start +
1808 (view.params.partial.offset << PAGE_SHIFT);
1809 unsigned int i;
b90b91d8 1810
c5ad54cf
JL
1811 for (i = 0; i < view.params.partial.size; i++) {
1812 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1813 if (ret)
1814 break;
1815 }
1816
1817 obj->fault_mappable = true;
c5ad54cf
JL
1818 } else {
1819 if (!obj->fault_mappable) {
1820 unsigned long size = min_t(unsigned long,
1821 vma->vm_end - vma->vm_start,
1822 obj->base.size);
1823 int i;
1824
1825 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1826 ret = vm_insert_pfn(vma,
1827 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1828 pfn + i);
1829 if (ret)
1830 break;
1831 }
1832
1833 obj->fault_mappable = true;
1834 } else
1835 ret = vm_insert_pfn(vma,
1836 (unsigned long)vmf->virtual_address,
1837 pfn + page_offset);
1838 }
c9839303 1839unpin:
c5ad54cf 1840 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1841unlock:
de151cf6 1842 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1843out:
de151cf6 1844 switch (ret) {
d9bc7e9f 1845 case -EIO:
2232f031
DV
1846 /*
1847 * We eat errors when the gpu is terminally wedged to avoid
1848 * userspace unduly crashing (gl has no provisions for mmaps to
1849 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1850 * and so needs to be reported.
1851 */
1852 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1853 ret = VM_FAULT_SIGBUS;
1854 break;
1855 }
045e769a 1856 case -EAGAIN:
571c608d
DV
1857 /*
1858 * EAGAIN means the gpu is hung and we'll wait for the error
1859 * handler to reset everything when re-faulting in
1860 * i915_mutex_lock_interruptible.
d9bc7e9f 1861 */
c715089f
CW
1862 case 0:
1863 case -ERESTARTSYS:
bed636ab 1864 case -EINTR:
e79e0fe3
DR
1865 case -EBUSY:
1866 /*
1867 * EBUSY is ok: this just means that another thread
1868 * already did the job.
1869 */
f65c9168
PZ
1870 ret = VM_FAULT_NOPAGE;
1871 break;
de151cf6 1872 case -ENOMEM:
f65c9168
PZ
1873 ret = VM_FAULT_OOM;
1874 break;
a7c2e1aa 1875 case -ENOSPC:
45d67817 1876 case -EFAULT:
f65c9168
PZ
1877 ret = VM_FAULT_SIGBUS;
1878 break;
de151cf6 1879 default:
a7c2e1aa 1880 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1881 ret = VM_FAULT_SIGBUS;
1882 break;
de151cf6 1883 }
f65c9168
PZ
1884
1885 intel_runtime_pm_put(dev_priv);
1886 return ret;
de151cf6
JB
1887}
1888
901782b2
CW
1889/**
1890 * i915_gem_release_mmap - remove physical page mappings
1891 * @obj: obj in question
1892 *
af901ca1 1893 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1894 * relinquish ownership of the pages back to the system.
1895 *
1896 * It is vital that we remove the page mapping if we have mapped a tiled
1897 * object through the GTT and then lose the fence register due to
1898 * resource pressure. Similarly if the object has been moved out of the
1899 * aperture, than pages mapped into userspace must be revoked. Removing the
1900 * mapping will then trigger a page fault on the next user access, allowing
1901 * fixup by i915_gem_fault().
1902 */
d05ca301 1903void
05394f39 1904i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1905{
6299f992
CW
1906 if (!obj->fault_mappable)
1907 return;
901782b2 1908
6796cb16
DH
1909 drm_vma_node_unmap(&obj->base.vma_node,
1910 obj->base.dev->anon_inode->i_mapping);
6299f992 1911 obj->fault_mappable = false;
901782b2
CW
1912}
1913
eedd10f4
CW
1914void
1915i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1916{
1917 struct drm_i915_gem_object *obj;
1918
1919 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1920 i915_gem_release_mmap(obj);
1921}
1922
0fa87796 1923uint32_t
e28f8711 1924i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1925{
e28f8711 1926 uint32_t gtt_size;
92b88aeb
CW
1927
1928 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1929 tiling_mode == I915_TILING_NONE)
1930 return size;
92b88aeb
CW
1931
1932 /* Previous chips need a power-of-two fence region when tiling */
1933 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1934 gtt_size = 1024*1024;
92b88aeb 1935 else
e28f8711 1936 gtt_size = 512*1024;
92b88aeb 1937
e28f8711
CW
1938 while (gtt_size < size)
1939 gtt_size <<= 1;
92b88aeb 1940
e28f8711 1941 return gtt_size;
92b88aeb
CW
1942}
1943
de151cf6
JB
1944/**
1945 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1946 * @obj: object to check
1947 *
1948 * Return the required GTT alignment for an object, taking into account
5e783301 1949 * potential fence register mapping.
de151cf6 1950 */
d865110c
ID
1951uint32_t
1952i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1953 int tiling_mode, bool fenced)
de151cf6 1954{
de151cf6
JB
1955 /*
1956 * Minimum alignment is 4k (GTT page size), but might be greater
1957 * if a fence register is needed for the object.
1958 */
d865110c 1959 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1960 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1961 return 4096;
1962
a00b10c3
CW
1963 /*
1964 * Previous chips need to be aligned to the size of the smallest
1965 * fence register that can contain the object.
1966 */
e28f8711 1967 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1968}
1969
d8cb5086
CW
1970static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1971{
1972 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1973 int ret;
1974
0de23977 1975 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1976 return 0;
1977
da494d7c
DV
1978 dev_priv->mm.shrinker_no_lock_stealing = true;
1979
d8cb5086
CW
1980 ret = drm_gem_create_mmap_offset(&obj->base);
1981 if (ret != -ENOSPC)
da494d7c 1982 goto out;
d8cb5086
CW
1983
1984 /* Badly fragmented mmap space? The only way we can recover
1985 * space is by destroying unwanted objects. We can't randomly release
1986 * mmap_offsets as userspace expects them to be persistent for the
1987 * lifetime of the objects. The closest we can is to release the
1988 * offsets on purgeable objects by truncating it and marking it purged,
1989 * which prevents userspace from ever using that object again.
1990 */
21ab4e74
CW
1991 i915_gem_shrink(dev_priv,
1992 obj->base.size >> PAGE_SHIFT,
1993 I915_SHRINK_BOUND |
1994 I915_SHRINK_UNBOUND |
1995 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1996 ret = drm_gem_create_mmap_offset(&obj->base);
1997 if (ret != -ENOSPC)
da494d7c 1998 goto out;
d8cb5086
CW
1999
2000 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2001 ret = drm_gem_create_mmap_offset(&obj->base);
2002out:
2003 dev_priv->mm.shrinker_no_lock_stealing = false;
2004
2005 return ret;
d8cb5086
CW
2006}
2007
2008static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2009{
d8cb5086
CW
2010 drm_gem_free_mmap_offset(&obj->base);
2011}
2012
da6b51d0 2013int
ff72145b
DA
2014i915_gem_mmap_gtt(struct drm_file *file,
2015 struct drm_device *dev,
da6b51d0 2016 uint32_t handle,
ff72145b 2017 uint64_t *offset)
de151cf6 2018{
05394f39 2019 struct drm_i915_gem_object *obj;
de151cf6
JB
2020 int ret;
2021
76c1dec1 2022 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2023 if (ret)
76c1dec1 2024 return ret;
de151cf6 2025
ff72145b 2026 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2027 if (&obj->base == NULL) {
1d7cfea1
CW
2028 ret = -ENOENT;
2029 goto unlock;
2030 }
de151cf6 2031
05394f39 2032 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2033 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2034 ret = -EFAULT;
1d7cfea1 2035 goto out;
ab18282d
CW
2036 }
2037
d8cb5086
CW
2038 ret = i915_gem_object_create_mmap_offset(obj);
2039 if (ret)
2040 goto out;
de151cf6 2041
0de23977 2042 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2043
1d7cfea1 2044out:
05394f39 2045 drm_gem_object_unreference(&obj->base);
1d7cfea1 2046unlock:
de151cf6 2047 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2048 return ret;
de151cf6
JB
2049}
2050
ff72145b
DA
2051/**
2052 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2053 * @dev: DRM device
2054 * @data: GTT mapping ioctl data
2055 * @file: GEM object info
2056 *
2057 * Simply returns the fake offset to userspace so it can mmap it.
2058 * The mmap call will end up in drm_gem_mmap(), which will set things
2059 * up so we can get faults in the handler above.
2060 *
2061 * The fault handler will take care of binding the object into the GTT
2062 * (since it may have been evicted to make room for something), allocating
2063 * a fence register, and mapping the appropriate aperture address into
2064 * userspace.
2065 */
2066int
2067i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2068 struct drm_file *file)
2069{
2070 struct drm_i915_gem_mmap_gtt *args = data;
2071
da6b51d0 2072 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2073}
2074
225067ee
DV
2075/* Immediately discard the backing storage */
2076static void
2077i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2078{
4d6294bf 2079 i915_gem_object_free_mmap_offset(obj);
1286ff73 2080
4d6294bf
CW
2081 if (obj->base.filp == NULL)
2082 return;
e5281ccd 2083
225067ee
DV
2084 /* Our goal here is to return as much of the memory as
2085 * is possible back to the system as we are called from OOM.
2086 * To do this we must instruct the shmfs to drop all of its
2087 * backing pages, *now*.
2088 */
5537252b 2089 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2090 obj->madv = __I915_MADV_PURGED;
2091}
e5281ccd 2092
5537252b
CW
2093/* Try to discard unwanted pages */
2094static void
2095i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2096{
5537252b
CW
2097 struct address_space *mapping;
2098
2099 switch (obj->madv) {
2100 case I915_MADV_DONTNEED:
2101 i915_gem_object_truncate(obj);
2102 case __I915_MADV_PURGED:
2103 return;
2104 }
2105
2106 if (obj->base.filp == NULL)
2107 return;
2108
2109 mapping = file_inode(obj->base.filp)->i_mapping,
2110 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2111}
2112
5cdf5881 2113static void
05394f39 2114i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2115{
90797e6d
ID
2116 struct sg_page_iter sg_iter;
2117 int ret;
1286ff73 2118
05394f39 2119 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2120
6c085a72
CW
2121 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2122 if (ret) {
2123 /* In the event of a disaster, abandon all caches and
2124 * hope for the best.
2125 */
2126 WARN_ON(ret != -EIO);
2c22569b 2127 i915_gem_clflush_object(obj, true);
6c085a72
CW
2128 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2129 }
2130
e2273302
ID
2131 i915_gem_gtt_finish_object(obj);
2132
6dacfd2f 2133 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2134 i915_gem_object_save_bit_17_swizzle(obj);
2135
05394f39
CW
2136 if (obj->madv == I915_MADV_DONTNEED)
2137 obj->dirty = 0;
3ef94daa 2138
90797e6d 2139 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2140 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2141
05394f39 2142 if (obj->dirty)
9da3da66 2143 set_page_dirty(page);
3ef94daa 2144
05394f39 2145 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2146 mark_page_accessed(page);
3ef94daa 2147
9da3da66 2148 page_cache_release(page);
3ef94daa 2149 }
05394f39 2150 obj->dirty = 0;
673a394b 2151
9da3da66
CW
2152 sg_free_table(obj->pages);
2153 kfree(obj->pages);
37e680a1 2154}
6c085a72 2155
dd624afd 2156int
37e680a1
CW
2157i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2158{
2159 const struct drm_i915_gem_object_ops *ops = obj->ops;
2160
2f745ad3 2161 if (obj->pages == NULL)
37e680a1
CW
2162 return 0;
2163
a5570178
CW
2164 if (obj->pages_pin_count)
2165 return -EBUSY;
2166
9843877d 2167 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2168
a2165e31
CW
2169 /* ->put_pages might need to allocate memory for the bit17 swizzle
2170 * array, hence protect them from being reaped by removing them from gtt
2171 * lists early. */
35c20a60 2172 list_del(&obj->global_list);
a2165e31 2173
37e680a1 2174 ops->put_pages(obj);
05394f39 2175 obj->pages = NULL;
37e680a1 2176
5537252b 2177 i915_gem_object_invalidate(obj);
6c085a72
CW
2178
2179 return 0;
2180}
2181
37e680a1 2182static int
6c085a72 2183i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2184{
6c085a72 2185 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2186 int page_count, i;
2187 struct address_space *mapping;
9da3da66
CW
2188 struct sg_table *st;
2189 struct scatterlist *sg;
90797e6d 2190 struct sg_page_iter sg_iter;
e5281ccd 2191 struct page *page;
90797e6d 2192 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2193 int ret;
6c085a72 2194 gfp_t gfp;
e5281ccd 2195
6c085a72
CW
2196 /* Assert that the object is not currently in any GPU domain. As it
2197 * wasn't in the GTT, there shouldn't be any way it could have been in
2198 * a GPU cache
2199 */
2200 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2201 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2202
9da3da66
CW
2203 st = kmalloc(sizeof(*st), GFP_KERNEL);
2204 if (st == NULL)
2205 return -ENOMEM;
2206
05394f39 2207 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2208 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2209 kfree(st);
e5281ccd 2210 return -ENOMEM;
9da3da66 2211 }
e5281ccd 2212
9da3da66
CW
2213 /* Get the list of pages out of our struct file. They'll be pinned
2214 * at this point until we release them.
2215 *
2216 * Fail silently without starting the shrinker
2217 */
496ad9aa 2218 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2219 gfp = mapping_gfp_mask(mapping);
caf49191 2220 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2221 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2222 sg = st->sgl;
2223 st->nents = 0;
2224 for (i = 0; i < page_count; i++) {
6c085a72
CW
2225 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2226 if (IS_ERR(page)) {
21ab4e74
CW
2227 i915_gem_shrink(dev_priv,
2228 page_count,
2229 I915_SHRINK_BOUND |
2230 I915_SHRINK_UNBOUND |
2231 I915_SHRINK_PURGEABLE);
6c085a72
CW
2232 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2233 }
2234 if (IS_ERR(page)) {
2235 /* We've tried hard to allocate the memory by reaping
2236 * our own buffer, now let the real VM do its job and
2237 * go down in flames if truly OOM.
2238 */
6c085a72 2239 i915_gem_shrink_all(dev_priv);
f461d1be 2240 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2241 if (IS_ERR(page)) {
2242 ret = PTR_ERR(page);
6c085a72 2243 goto err_pages;
e2273302 2244 }
6c085a72 2245 }
426729dc
KRW
2246#ifdef CONFIG_SWIOTLB
2247 if (swiotlb_nr_tbl()) {
2248 st->nents++;
2249 sg_set_page(sg, page, PAGE_SIZE, 0);
2250 sg = sg_next(sg);
2251 continue;
2252 }
2253#endif
90797e6d
ID
2254 if (!i || page_to_pfn(page) != last_pfn + 1) {
2255 if (i)
2256 sg = sg_next(sg);
2257 st->nents++;
2258 sg_set_page(sg, page, PAGE_SIZE, 0);
2259 } else {
2260 sg->length += PAGE_SIZE;
2261 }
2262 last_pfn = page_to_pfn(page);
3bbbe706
DV
2263
2264 /* Check that the i965g/gm workaround works. */
2265 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2266 }
426729dc
KRW
2267#ifdef CONFIG_SWIOTLB
2268 if (!swiotlb_nr_tbl())
2269#endif
2270 sg_mark_end(sg);
74ce6b6c
CW
2271 obj->pages = st;
2272
e2273302
ID
2273 ret = i915_gem_gtt_prepare_object(obj);
2274 if (ret)
2275 goto err_pages;
2276
6dacfd2f 2277 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2278 i915_gem_object_do_bit_17_swizzle(obj);
2279
656bfa3a
DV
2280 if (obj->tiling_mode != I915_TILING_NONE &&
2281 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2282 i915_gem_object_pin_pages(obj);
2283
e5281ccd
CW
2284 return 0;
2285
2286err_pages:
90797e6d
ID
2287 sg_mark_end(sg);
2288 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2289 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2290 sg_free_table(st);
2291 kfree(st);
0820baf3
CW
2292
2293 /* shmemfs first checks if there is enough memory to allocate the page
2294 * and reports ENOSPC should there be insufficient, along with the usual
2295 * ENOMEM for a genuine allocation failure.
2296 *
2297 * We use ENOSPC in our driver to mean that we have run out of aperture
2298 * space and so want to translate the error from shmemfs back to our
2299 * usual understanding of ENOMEM.
2300 */
e2273302
ID
2301 if (ret == -ENOSPC)
2302 ret = -ENOMEM;
2303
2304 return ret;
673a394b
EA
2305}
2306
37e680a1
CW
2307/* Ensure that the associated pages are gathered from the backing storage
2308 * and pinned into our object. i915_gem_object_get_pages() may be called
2309 * multiple times before they are released by a single call to
2310 * i915_gem_object_put_pages() - once the pages are no longer referenced
2311 * either as a result of memory pressure (reaping pages under the shrinker)
2312 * or as the object is itself released.
2313 */
2314int
2315i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2316{
2317 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2318 const struct drm_i915_gem_object_ops *ops = obj->ops;
2319 int ret;
2320
2f745ad3 2321 if (obj->pages)
37e680a1
CW
2322 return 0;
2323
43e28f09 2324 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2325 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2326 return -EFAULT;
43e28f09
CW
2327 }
2328
a5570178
CW
2329 BUG_ON(obj->pages_pin_count);
2330
37e680a1
CW
2331 ret = ops->get_pages(obj);
2332 if (ret)
2333 return ret;
2334
35c20a60 2335 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2336
2337 obj->get_page.sg = obj->pages->sgl;
2338 obj->get_page.last = 0;
2339
37e680a1 2340 return 0;
673a394b
EA
2341}
2342
b4716185 2343void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2344 struct drm_i915_gem_request *req)
673a394b 2345{
b4716185 2346 struct drm_i915_gem_object *obj = vma->obj;
b2af0376
JH
2347 struct intel_engine_cs *ring;
2348
2349 ring = i915_gem_request_get_ring(req);
673a394b
EA
2350
2351 /* Add a reference if we're newly entering the active list. */
b4716185 2352 if (obj->active == 0)
05394f39 2353 drm_gem_object_reference(&obj->base);
b4716185 2354 obj->active |= intel_ring_flag(ring);
e35a41de 2355
b4716185 2356 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
b2af0376 2357 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
caea7476 2358
b4716185 2359 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2360}
2361
b4716185
CW
2362static void
2363i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2364{
b4716185
CW
2365 RQ_BUG_ON(obj->last_write_req == NULL);
2366 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2367
2368 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2369 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2370}
2371
caea7476 2372static void
b4716185 2373i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2374{
feb822cf 2375 struct i915_vma *vma;
ce44b0ea 2376
b4716185
CW
2377 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2378 RQ_BUG_ON(!(obj->active & (1 << ring)));
2379
2380 list_del_init(&obj->ring_list[ring]);
2381 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2382
2383 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2384 i915_gem_object_retire__write(obj);
2385
2386 obj->active &= ~(1 << ring);
2387 if (obj->active)
2388 return;
caea7476 2389
6c246959
CW
2390 /* Bump our place on the bound list to keep it roughly in LRU order
2391 * so that we don't steal from recently used but inactive objects
2392 * (unless we are forced to ofc!)
2393 */
2394 list_move_tail(&obj->global_list,
2395 &to_i915(obj->base.dev)->mm.bound_list);
2396
fe14d5f4
TU
2397 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2398 if (!list_empty(&vma->mm_list))
2399 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2400 }
caea7476 2401
97b2a6a1 2402 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2403 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2404}
2405
9d773091 2406static int
fca26bb4 2407i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2408{
9d773091 2409 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2410 struct intel_engine_cs *ring;
9d773091 2411 int ret, i, j;
53d227f2 2412
107f27a5 2413 /* Carefully retire all requests without writing to the rings */
9d773091 2414 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2415 ret = intel_ring_idle(ring);
2416 if (ret)
2417 return ret;
9d773091 2418 }
9d773091 2419 i915_gem_retire_requests(dev);
107f27a5
CW
2420
2421 /* Finally reset hw state */
9d773091 2422 for_each_ring(ring, dev_priv, i) {
fca26bb4 2423 intel_ring_init_seqno(ring, seqno);
498d2ac1 2424
ebc348b2
BW
2425 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2426 ring->semaphore.sync_seqno[j] = 0;
9d773091 2427 }
53d227f2 2428
9d773091 2429 return 0;
53d227f2
DV
2430}
2431
fca26bb4
MK
2432int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2433{
2434 struct drm_i915_private *dev_priv = dev->dev_private;
2435 int ret;
2436
2437 if (seqno == 0)
2438 return -EINVAL;
2439
2440 /* HWS page needs to be set less than what we
2441 * will inject to ring
2442 */
2443 ret = i915_gem_init_seqno(dev, seqno - 1);
2444 if (ret)
2445 return ret;
2446
2447 /* Carefully set the last_seqno value so that wrap
2448 * detection still works
2449 */
2450 dev_priv->next_seqno = seqno;
2451 dev_priv->last_seqno = seqno - 1;
2452 if (dev_priv->last_seqno == 0)
2453 dev_priv->last_seqno--;
2454
2455 return 0;
2456}
2457
9d773091
CW
2458int
2459i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2460{
9d773091
CW
2461 struct drm_i915_private *dev_priv = dev->dev_private;
2462
2463 /* reserve 0 for non-seqno */
2464 if (dev_priv->next_seqno == 0) {
fca26bb4 2465 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2466 if (ret)
2467 return ret;
53d227f2 2468
9d773091
CW
2469 dev_priv->next_seqno = 1;
2470 }
53d227f2 2471
f72b3435 2472 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2473 return 0;
53d227f2
DV
2474}
2475
bf7dc5b7
JH
2476/*
2477 * NB: This function is not allowed to fail. Doing so would mean the the
2478 * request is not being tracked for completion but the work itself is
2479 * going to happen on the hardware. This would be a Bad Thing(tm).
2480 */
75289874 2481void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2482 struct drm_i915_gem_object *obj,
2483 bool flush_caches)
673a394b 2484{
75289874
JH
2485 struct intel_engine_cs *ring;
2486 struct drm_i915_private *dev_priv;
48e29f55 2487 struct intel_ringbuffer *ringbuf;
6d3d8274 2488 u32 request_start;
3cce469c
CW
2489 int ret;
2490
48e29f55 2491 if (WARN_ON(request == NULL))
bf7dc5b7 2492 return;
48e29f55 2493
75289874
JH
2494 ring = request->ring;
2495 dev_priv = ring->dev->dev_private;
2496 ringbuf = request->ringbuf;
2497
29b1b415
JH
2498 /*
2499 * To ensure that this call will not fail, space for its emissions
2500 * should already have been reserved in the ring buffer. Let the ring
2501 * know that it is time to use that space up.
2502 */
2503 intel_ring_reserved_space_use(ringbuf);
2504
48e29f55 2505 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2506 /*
2507 * Emit any outstanding flushes - execbuf can fail to emit the flush
2508 * after having emitted the batchbuffer command. Hence we need to fix
2509 * things up similar to emitting the lazy request. The difference here
2510 * is that the flush _must_ happen before the next request, no matter
2511 * what.
2512 */
5b4a60c2
JH
2513 if (flush_caches) {
2514 if (i915.enable_execlists)
4866d729 2515 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2516 else
4866d729 2517 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2518 /* Not allowed to fail! */
2519 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2520 }
cc889e0f 2521
a71d8d94
CW
2522 /* Record the position of the start of the request so that
2523 * should we detect the updated seqno part-way through the
2524 * GPU processing the request, we never over-estimate the
2525 * position of the head.
2526 */
6d3d8274 2527 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2528
bf7dc5b7 2529 if (i915.enable_execlists)
c4e76638 2530 ret = ring->emit_request(request);
bf7dc5b7 2531 else {
ee044a88 2532 ret = ring->add_request(request);
53292cdb
MT
2533
2534 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2535 }
bf7dc5b7
JH
2536 /* Not allowed to fail! */
2537 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2538
7d736f4f 2539 request->head = request_start;
7d736f4f
MK
2540
2541 /* Whilst this request exists, batch_obj will be on the
2542 * active_list, and so will hold the active reference. Only when this
2543 * request is retired will the the batch_obj be moved onto the
2544 * inactive_list and lose its active reference. Hence we do not need
2545 * to explicitly hold another reference here.
2546 */
9a7e0c2a 2547 request->batch_obj = obj;
0e50e96b 2548
673a394b 2549 request->emitted_jiffies = jiffies;
94f7bbe1 2550 ring->last_submitted_seqno = request->seqno;
852835f3 2551 list_add_tail(&request->list, &ring->request_list);
673a394b 2552
74328ee5 2553 trace_i915_gem_request_add(request);
db53a302 2554
87255483 2555 i915_queue_hangcheck(ring->dev);
10cd45b6 2556
87255483
DV
2557 queue_delayed_work(dev_priv->wq,
2558 &dev_priv->mm.retire_work,
2559 round_jiffies_up_relative(HZ));
2560 intel_mark_busy(dev_priv->dev);
cc889e0f 2561
29b1b415
JH
2562 /* Sanity check that the reserved size was large enough. */
2563 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2564}
2565
939fd762 2566static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2567 const struct intel_context *ctx)
be62acb4 2568{
44e2c070 2569 unsigned long elapsed;
be62acb4 2570
44e2c070
MK
2571 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2572
2573 if (ctx->hang_stats.banned)
be62acb4
MK
2574 return true;
2575
676fa572
CW
2576 if (ctx->hang_stats.ban_period_seconds &&
2577 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2578 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2579 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2580 return true;
88b4aa87
MK
2581 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2582 if (i915_stop_ring_allow_warn(dev_priv))
2583 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2584 return true;
3fac8978 2585 }
be62acb4
MK
2586 }
2587
2588 return false;
2589}
2590
939fd762 2591static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2592 struct intel_context *ctx,
b6b0fac0 2593 const bool guilty)
aa60c664 2594{
44e2c070
MK
2595 struct i915_ctx_hang_stats *hs;
2596
2597 if (WARN_ON(!ctx))
2598 return;
aa60c664 2599
44e2c070
MK
2600 hs = &ctx->hang_stats;
2601
2602 if (guilty) {
939fd762 2603 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2604 hs->batch_active++;
2605 hs->guilty_ts = get_seconds();
2606 } else {
2607 hs->batch_pending++;
aa60c664
MK
2608 }
2609}
2610
abfe262a
JH
2611void i915_gem_request_free(struct kref *req_ref)
2612{
2613 struct drm_i915_gem_request *req = container_of(req_ref,
2614 typeof(*req), ref);
2615 struct intel_context *ctx = req->ctx;
2616
fcfa423c
JH
2617 if (req->file_priv)
2618 i915_gem_request_remove_from_client(req);
2619
0794aed3
TD
2620 if (ctx) {
2621 if (i915.enable_execlists) {
8ba319da
MK
2622 if (ctx != req->ring->default_context)
2623 intel_lr_context_unpin(req);
0794aed3 2624 }
abfe262a 2625
dcb4c12a
OM
2626 i915_gem_context_unreference(ctx);
2627 }
abfe262a 2628
efab6d8d 2629 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2630}
2631
6689cb2b 2632int i915_gem_request_alloc(struct intel_engine_cs *ring,
217e46b5
JH
2633 struct intel_context *ctx,
2634 struct drm_i915_gem_request **req_out)
6689cb2b 2635{
efab6d8d 2636 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2637 struct drm_i915_gem_request *req;
6689cb2b 2638 int ret;
6689cb2b 2639
217e46b5
JH
2640 if (!req_out)
2641 return -EINVAL;
2642
bccca494 2643 *req_out = NULL;
6689cb2b 2644
eed29a5b
DV
2645 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2646 if (req == NULL)
6689cb2b
JH
2647 return -ENOMEM;
2648
eed29a5b 2649 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2650 if (ret)
2651 goto err;
6689cb2b 2652
40e895ce
JH
2653 kref_init(&req->ref);
2654 req->i915 = dev_priv;
eed29a5b 2655 req->ring = ring;
40e895ce
JH
2656 req->ctx = ctx;
2657 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2658
2659 if (i915.enable_execlists)
40e895ce 2660 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2661 else
eed29a5b 2662 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2663 if (ret) {
2664 i915_gem_context_unreference(req->ctx);
9a0c1e27 2665 goto err;
40e895ce 2666 }
6689cb2b 2667
29b1b415
JH
2668 /*
2669 * Reserve space in the ring buffer for all the commands required to
2670 * eventually emit this request. This is to guarantee that the
2671 * i915_add_request() call can't fail. Note that the reserve may need
2672 * to be redone if the request is not actually submitted straight
2673 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2674 */
ccd98fe4
JH
2675 if (i915.enable_execlists)
2676 ret = intel_logical_ring_reserve_space(req);
2677 else
2678 ret = intel_ring_reserve_space(req);
2679 if (ret) {
2680 /*
2681 * At this point, the request is fully allocated even if not
2682 * fully prepared. Thus it can be cleaned up using the proper
2683 * free code.
2684 */
2685 i915_gem_request_cancel(req);
2686 return ret;
2687 }
29b1b415 2688
bccca494 2689 *req_out = req;
6689cb2b 2690 return 0;
9a0c1e27
CW
2691
2692err:
2693 kmem_cache_free(dev_priv->requests, req);
2694 return ret;
0e50e96b
MK
2695}
2696
29b1b415
JH
2697void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2698{
2699 intel_ring_reserved_space_cancel(req->ringbuf);
2700
2701 i915_gem_request_unreference(req);
2702}
2703
8d9fc7fd 2704struct drm_i915_gem_request *
a4872ba6 2705i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2706{
4db080f9
CW
2707 struct drm_i915_gem_request *request;
2708
2709 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2710 if (i915_gem_request_completed(request, false))
4db080f9 2711 continue;
aa60c664 2712
b6b0fac0 2713 return request;
4db080f9 2714 }
b6b0fac0
MK
2715
2716 return NULL;
2717}
2718
2719static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2720 struct intel_engine_cs *ring)
b6b0fac0
MK
2721{
2722 struct drm_i915_gem_request *request;
2723 bool ring_hung;
2724
8d9fc7fd 2725 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2726
2727 if (request == NULL)
2728 return;
2729
2730 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2731
939fd762 2732 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2733
2734 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2735 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2736}
aa60c664 2737
4db080f9 2738static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2739 struct intel_engine_cs *ring)
4db080f9 2740{
dfaae392 2741 while (!list_empty(&ring->active_list)) {
05394f39 2742 struct drm_i915_gem_object *obj;
9375e446 2743
05394f39
CW
2744 obj = list_first_entry(&ring->active_list,
2745 struct drm_i915_gem_object,
b4716185 2746 ring_list[ring->id]);
9375e446 2747
b4716185 2748 i915_gem_object_retire__read(obj, ring->id);
673a394b 2749 }
1d62beea 2750
dcb4c12a
OM
2751 /*
2752 * Clear the execlists queue up before freeing the requests, as those
2753 * are the ones that keep the context and ringbuffer backing objects
2754 * pinned in place.
2755 */
2756 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2757 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2758
2759 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2760 struct drm_i915_gem_request,
dcb4c12a
OM
2761 execlist_link);
2762 list_del(&submit_req->execlist_link);
1197b4f2
MK
2763
2764 if (submit_req->ctx != ring->default_context)
8ba319da 2765 intel_lr_context_unpin(submit_req);
1197b4f2 2766
b3a38998 2767 i915_gem_request_unreference(submit_req);
dcb4c12a
OM
2768 }
2769
1d62beea
BW
2770 /*
2771 * We must free the requests after all the corresponding objects have
2772 * been moved off active lists. Which is the same order as the normal
2773 * retire_requests function does. This is important if object hold
2774 * implicit references on things like e.g. ppgtt address spaces through
2775 * the request.
2776 */
2777 while (!list_empty(&ring->request_list)) {
2778 struct drm_i915_gem_request *request;
2779
2780 request = list_first_entry(&ring->request_list,
2781 struct drm_i915_gem_request,
2782 list);
2783
b4716185 2784 i915_gem_request_retire(request);
1d62beea 2785 }
673a394b
EA
2786}
2787
069efc1d 2788void i915_gem_reset(struct drm_device *dev)
673a394b 2789{
77f01230 2790 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2791 struct intel_engine_cs *ring;
1ec14ad3 2792 int i;
673a394b 2793
4db080f9
CW
2794 /*
2795 * Before we free the objects from the requests, we need to inspect
2796 * them for finding the guilty party. As the requests only borrow
2797 * their reference to the objects, the inspection must be done first.
2798 */
2799 for_each_ring(ring, dev_priv, i)
2800 i915_gem_reset_ring_status(dev_priv, ring);
2801
b4519513 2802 for_each_ring(ring, dev_priv, i)
4db080f9 2803 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2804
acce9ffa
BW
2805 i915_gem_context_reset(dev);
2806
19b2dbde 2807 i915_gem_restore_fences(dev);
b4716185
CW
2808
2809 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2810}
2811
2812/**
2813 * This function clears the request list as sequence numbers are passed.
2814 */
1cf0ba14 2815void
a4872ba6 2816i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2817{
db53a302 2818 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2819
832a3aad
CW
2820 /* Retire requests first as we use it above for the early return.
2821 * If we retire requests last, we may use a later seqno and so clear
2822 * the requests lists without clearing the active list, leading to
2823 * confusion.
e9103038 2824 */
852835f3 2825 while (!list_empty(&ring->request_list)) {
673a394b 2826 struct drm_i915_gem_request *request;
673a394b 2827
852835f3 2828 request = list_first_entry(&ring->request_list,
673a394b
EA
2829 struct drm_i915_gem_request,
2830 list);
673a394b 2831
1b5a433a 2832 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2833 break;
2834
b4716185 2835 i915_gem_request_retire(request);
b84d5f0c 2836 }
673a394b 2837
832a3aad
CW
2838 /* Move any buffers on the active list that are no longer referenced
2839 * by the ringbuffer to the flushing/inactive lists as appropriate,
2840 * before we free the context associated with the requests.
2841 */
2842 while (!list_empty(&ring->active_list)) {
2843 struct drm_i915_gem_object *obj;
2844
2845 obj = list_first_entry(&ring->active_list,
2846 struct drm_i915_gem_object,
b4716185 2847 ring_list[ring->id]);
832a3aad 2848
b4716185 2849 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2850 break;
2851
b4716185 2852 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2853 }
2854
581c26e8
JH
2855 if (unlikely(ring->trace_irq_req &&
2856 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2857 ring->irq_put(ring);
581c26e8 2858 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2859 }
23bc5982 2860
db53a302 2861 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2862}
2863
b29c19b6 2864bool
b09a1fec
CW
2865i915_gem_retire_requests(struct drm_device *dev)
2866{
3e31c6c0 2867 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2868 struct intel_engine_cs *ring;
b29c19b6 2869 bool idle = true;
1ec14ad3 2870 int i;
b09a1fec 2871
b29c19b6 2872 for_each_ring(ring, dev_priv, i) {
b4519513 2873 i915_gem_retire_requests_ring(ring);
b29c19b6 2874 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2875 if (i915.enable_execlists) {
2876 unsigned long flags;
2877
2878 spin_lock_irqsave(&ring->execlist_lock, flags);
2879 idle &= list_empty(&ring->execlist_queue);
2880 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2881
2882 intel_execlists_retire_requests(ring);
2883 }
b29c19b6
CW
2884 }
2885
2886 if (idle)
2887 mod_delayed_work(dev_priv->wq,
2888 &dev_priv->mm.idle_work,
2889 msecs_to_jiffies(100));
2890
2891 return idle;
b09a1fec
CW
2892}
2893
75ef9da2 2894static void
673a394b
EA
2895i915_gem_retire_work_handler(struct work_struct *work)
2896{
b29c19b6
CW
2897 struct drm_i915_private *dev_priv =
2898 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2899 struct drm_device *dev = dev_priv->dev;
0a58705b 2900 bool idle;
673a394b 2901
891b48cf 2902 /* Come back later if the device is busy... */
b29c19b6
CW
2903 idle = false;
2904 if (mutex_trylock(&dev->struct_mutex)) {
2905 idle = i915_gem_retire_requests(dev);
2906 mutex_unlock(&dev->struct_mutex);
673a394b 2907 }
b29c19b6 2908 if (!idle)
bcb45086
CW
2909 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2910 round_jiffies_up_relative(HZ));
b29c19b6 2911}
0a58705b 2912
b29c19b6
CW
2913static void
2914i915_gem_idle_work_handler(struct work_struct *work)
2915{
2916 struct drm_i915_private *dev_priv =
2917 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2918 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2919 struct intel_engine_cs *ring;
2920 int i;
b29c19b6 2921
423795cb
CW
2922 for_each_ring(ring, dev_priv, i)
2923 if (!list_empty(&ring->request_list))
2924 return;
35c94185
CW
2925
2926 intel_mark_idle(dev);
2927
2928 if (mutex_trylock(&dev->struct_mutex)) {
2929 struct intel_engine_cs *ring;
2930 int i;
2931
2932 for_each_ring(ring, dev_priv, i)
2933 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 2934
35c94185
CW
2935 mutex_unlock(&dev->struct_mutex);
2936 }
673a394b
EA
2937}
2938
30dfebf3
DV
2939/**
2940 * Ensures that an object will eventually get non-busy by flushing any required
2941 * write domains, emitting any outstanding lazy request and retiring and
2942 * completed requests.
2943 */
2944static int
2945i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2946{
a5ac0f90 2947 int i;
b4716185
CW
2948
2949 if (!obj->active)
2950 return 0;
30dfebf3 2951
b4716185
CW
2952 for (i = 0; i < I915_NUM_RINGS; i++) {
2953 struct drm_i915_gem_request *req;
41c52415 2954
b4716185
CW
2955 req = obj->last_read_req[i];
2956 if (req == NULL)
2957 continue;
2958
2959 if (list_empty(&req->list))
2960 goto retire;
2961
b4716185
CW
2962 if (i915_gem_request_completed(req, true)) {
2963 __i915_gem_request_retire__upto(req);
2964retire:
2965 i915_gem_object_retire__read(obj, i);
2966 }
30dfebf3
DV
2967 }
2968
2969 return 0;
2970}
2971
23ba4fd0
BW
2972/**
2973 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2974 * @DRM_IOCTL_ARGS: standard ioctl arguments
2975 *
2976 * Returns 0 if successful, else an error is returned with the remaining time in
2977 * the timeout parameter.
2978 * -ETIME: object is still busy after timeout
2979 * -ERESTARTSYS: signal interrupted the wait
2980 * -ENONENT: object doesn't exist
2981 * Also possible, but rare:
2982 * -EAGAIN: GPU wedged
2983 * -ENOMEM: damn
2984 * -ENODEV: Internal IRQ fail
2985 * -E?: The add request failed
2986 *
2987 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2988 * non-zero timeout parameter the wait ioctl will wait for the given number of
2989 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2990 * without holding struct_mutex the object may become re-busied before this
2991 * function completes. A similar but shorter * race condition exists in the busy
2992 * ioctl
2993 */
2994int
2995i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2996{
3e31c6c0 2997 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2998 struct drm_i915_gem_wait *args = data;
2999 struct drm_i915_gem_object *obj;
b4716185 3000 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 3001 unsigned reset_counter;
b4716185
CW
3002 int i, n = 0;
3003 int ret;
23ba4fd0 3004
11b5d511
DV
3005 if (args->flags != 0)
3006 return -EINVAL;
3007
23ba4fd0
BW
3008 ret = i915_mutex_lock_interruptible(dev);
3009 if (ret)
3010 return ret;
3011
3012 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3013 if (&obj->base == NULL) {
3014 mutex_unlock(&dev->struct_mutex);
3015 return -ENOENT;
3016 }
3017
30dfebf3
DV
3018 /* Need to make sure the object gets inactive eventually. */
3019 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3020 if (ret)
3021 goto out;
3022
b4716185 3023 if (!obj->active)
97b2a6a1 3024 goto out;
23ba4fd0 3025
23ba4fd0 3026 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3027 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3028 */
762e4583 3029 if (args->timeout_ns == 0) {
23ba4fd0
BW
3030 ret = -ETIME;
3031 goto out;
3032 }
3033
3034 drm_gem_object_unreference(&obj->base);
f69061be 3035 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
3036
3037 for (i = 0; i < I915_NUM_RINGS; i++) {
3038 if (obj->last_read_req[i] == NULL)
3039 continue;
3040
3041 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3042 }
3043
23ba4fd0
BW
3044 mutex_unlock(&dev->struct_mutex);
3045
b4716185
CW
3046 for (i = 0; i < n; i++) {
3047 if (ret == 0)
3048 ret = __i915_wait_request(req[i], reset_counter, true,
3049 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3050 file->driver_priv);
3051 i915_gem_request_unreference__unlocked(req[i]);
3052 }
ff865885 3053 return ret;
23ba4fd0
BW
3054
3055out:
3056 drm_gem_object_unreference(&obj->base);
3057 mutex_unlock(&dev->struct_mutex);
3058 return ret;
3059}
3060
b4716185
CW
3061static int
3062__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3063 struct intel_engine_cs *to,
91af127f
JH
3064 struct drm_i915_gem_request *from_req,
3065 struct drm_i915_gem_request **to_req)
b4716185
CW
3066{
3067 struct intel_engine_cs *from;
3068 int ret;
3069
91af127f 3070 from = i915_gem_request_get_ring(from_req);
b4716185
CW
3071 if (to == from)
3072 return 0;
3073
91af127f 3074 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3075 return 0;
3076
b4716185 3077 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3078 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3079 ret = __i915_wait_request(from_req,
a6f766f3
CW
3080 atomic_read(&i915->gpu_error.reset_counter),
3081 i915->mm.interruptible,
3082 NULL,
3083 &i915->rps.semaphores);
b4716185
CW
3084 if (ret)
3085 return ret;
3086
91af127f 3087 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3088 } else {
3089 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3090 u32 seqno = i915_gem_request_get_seqno(from_req);
3091
3092 WARN_ON(!to_req);
b4716185
CW
3093
3094 if (seqno <= from->semaphore.sync_seqno[idx])
3095 return 0;
3096
91af127f
JH
3097 if (*to_req == NULL) {
3098 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3099 if (ret)
3100 return ret;
3101 }
3102
599d924c
JH
3103 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3104 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3105 if (ret)
3106 return ret;
3107
3108 /* We use last_read_req because sync_to()
3109 * might have just caused seqno wrap under
3110 * the radar.
3111 */
3112 from->semaphore.sync_seqno[idx] =
3113 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3114 }
3115
3116 return 0;
3117}
3118
5816d648
BW
3119/**
3120 * i915_gem_object_sync - sync an object to a ring.
3121 *
3122 * @obj: object which may be in use on another ring.
3123 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3124 * @to_req: request we wish to use the object for. See below.
3125 * This will be allocated and returned if a request is
3126 * required but not passed in.
5816d648
BW
3127 *
3128 * This code is meant to abstract object synchronization with the GPU.
3129 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3130 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3131 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3132 * into a buffer at any time, but multiple readers. To ensure each has
3133 * a coherent view of memory, we must:
3134 *
3135 * - If there is an outstanding write request to the object, the new
3136 * request must wait for it to complete (either CPU or in hw, requests
3137 * on the same ring will be naturally ordered).
3138 *
3139 * - If we are a write request (pending_write_domain is set), the new
3140 * request must wait for outstanding read requests to complete.
5816d648 3141 *
91af127f
JH
3142 * For CPU synchronisation (NULL to) no request is required. For syncing with
3143 * rings to_req must be non-NULL. However, a request does not have to be
3144 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3145 * request will be allocated automatically and returned through *to_req. Note
3146 * that it is not guaranteed that commands will be emitted (because the system
3147 * might already be idle). Hence there is no need to create a request that
3148 * might never have any work submitted. Note further that if a request is
3149 * returned in *to_req, it is the responsibility of the caller to submit
3150 * that request (after potentially adding more work to it).
3151 *
5816d648
BW
3152 * Returns 0 if successful, else propagates up the lower layer error.
3153 */
2911a35b
BW
3154int
3155i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3156 struct intel_engine_cs *to,
3157 struct drm_i915_gem_request **to_req)
2911a35b 3158{
b4716185
CW
3159 const bool readonly = obj->base.pending_write_domain == 0;
3160 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3161 int ret, i, n;
41c52415 3162
b4716185 3163 if (!obj->active)
2911a35b
BW
3164 return 0;
3165
b4716185
CW
3166 if (to == NULL)
3167 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3168
b4716185
CW
3169 n = 0;
3170 if (readonly) {
3171 if (obj->last_write_req)
3172 req[n++] = obj->last_write_req;
3173 } else {
3174 for (i = 0; i < I915_NUM_RINGS; i++)
3175 if (obj->last_read_req[i])
3176 req[n++] = obj->last_read_req[i];
3177 }
3178 for (i = 0; i < n; i++) {
91af127f 3179 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3180 if (ret)
3181 return ret;
3182 }
2911a35b 3183
b4716185 3184 return 0;
2911a35b
BW
3185}
3186
b5ffc9bc
CW
3187static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3188{
3189 u32 old_write_domain, old_read_domains;
3190
b5ffc9bc
CW
3191 /* Force a pagefault for domain tracking on next user access */
3192 i915_gem_release_mmap(obj);
3193
b97c3d9c
KP
3194 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3195 return;
3196
97c809fd
CW
3197 /* Wait for any direct GTT access to complete */
3198 mb();
3199
b5ffc9bc
CW
3200 old_read_domains = obj->base.read_domains;
3201 old_write_domain = obj->base.write_domain;
3202
3203 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3204 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3205
3206 trace_i915_gem_object_change_domain(obj,
3207 old_read_domains,
3208 old_write_domain);
3209}
3210
e9f24d5f 3211static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3212{
07fe0b12 3213 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3214 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3215 int ret;
673a394b 3216
07fe0b12 3217 if (list_empty(&vma->vma_link))
673a394b
EA
3218 return 0;
3219
0ff501cb
DV
3220 if (!drm_mm_node_allocated(&vma->node)) {
3221 i915_gem_vma_destroy(vma);
0ff501cb
DV
3222 return 0;
3223 }
433544bd 3224
d7f46fc4 3225 if (vma->pin_count)
31d8d651 3226 return -EBUSY;
673a394b 3227
c4670ad0
CW
3228 BUG_ON(obj->pages == NULL);
3229
e9f24d5f
TU
3230 if (wait) {
3231 ret = i915_gem_object_wait_rendering(obj, false);
3232 if (ret)
3233 return ret;
3234 }
a8198eea 3235
fe14d5f4
TU
3236 if (i915_is_ggtt(vma->vm) &&
3237 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3238 i915_gem_object_finish_gtt(obj);
5323fd04 3239
8b1bc9b4
DV
3240 /* release the fence reg _after_ flushing */
3241 ret = i915_gem_object_put_fence(obj);
3242 if (ret)
3243 return ret;
3244 }
96b47b65 3245
07fe0b12 3246 trace_i915_vma_unbind(vma);
db53a302 3247
777dc5bb 3248 vma->vm->unbind_vma(vma);
5e562f1d 3249 vma->bound = 0;
6f65e29a 3250
64bf9303 3251 list_del_init(&vma->mm_list);
fe14d5f4
TU
3252 if (i915_is_ggtt(vma->vm)) {
3253 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3254 obj->map_and_fenceable = false;
3255 } else if (vma->ggtt_view.pages) {
3256 sg_free_table(vma->ggtt_view.pages);
3257 kfree(vma->ggtt_view.pages);
fe14d5f4 3258 }
016a65a3 3259 vma->ggtt_view.pages = NULL;
fe14d5f4 3260 }
673a394b 3261
2f633156
BW
3262 drm_mm_remove_node(&vma->node);
3263 i915_gem_vma_destroy(vma);
3264
3265 /* Since the unbound list is global, only move to that list if
b93dab6e 3266 * no more VMAs exist. */
e2273302 3267 if (list_empty(&obj->vma_list))
2f633156 3268 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3269
70903c3b
CW
3270 /* And finally now the object is completely decoupled from this vma,
3271 * we can drop its hold on the backing storage and allow it to be
3272 * reaped by the shrinker.
3273 */
3274 i915_gem_object_unpin_pages(obj);
3275
88241785 3276 return 0;
54cf91dc
CW
3277}
3278
e9f24d5f
TU
3279int i915_vma_unbind(struct i915_vma *vma)
3280{
3281 return __i915_vma_unbind(vma, true);
3282}
3283
3284int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3285{
3286 return __i915_vma_unbind(vma, false);
3287}
3288
b2da9fe5 3289int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3290{
3e31c6c0 3291 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3292 struct intel_engine_cs *ring;
1ec14ad3 3293 int ret, i;
4df2faf4 3294
4df2faf4 3295 /* Flush everything onto the inactive list. */
b4519513 3296 for_each_ring(ring, dev_priv, i) {
ecdb5fd8 3297 if (!i915.enable_execlists) {
73cfa865
JH
3298 struct drm_i915_gem_request *req;
3299
3300 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
ecdb5fd8
TD
3301 if (ret)
3302 return ret;
73cfa865 3303
ba01cc93 3304 ret = i915_switch_context(req);
73cfa865
JH
3305 if (ret) {
3306 i915_gem_request_cancel(req);
3307 return ret;
3308 }
3309
75289874 3310 i915_add_request_no_flush(req);
ecdb5fd8 3311 }
b6c7488d 3312
3e960501 3313 ret = intel_ring_idle(ring);
1ec14ad3
CW
3314 if (ret)
3315 return ret;
3316 }
4df2faf4 3317
b4716185 3318 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3319 return 0;
4df2faf4
DV
3320}
3321
4144f9b5 3322static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3323 unsigned long cache_level)
3324{
4144f9b5 3325 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3326 struct drm_mm_node *other;
3327
4144f9b5
CW
3328 /*
3329 * On some machines we have to be careful when putting differing types
3330 * of snoopable memory together to avoid the prefetcher crossing memory
3331 * domains and dying. During vm initialisation, we decide whether or not
3332 * these constraints apply and set the drm_mm.color_adjust
3333 * appropriately.
42d6ab48 3334 */
4144f9b5 3335 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3336 return true;
3337
c6cfb325 3338 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3339 return true;
3340
3341 if (list_empty(&gtt_space->node_list))
3342 return true;
3343
3344 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3345 if (other->allocated && !other->hole_follows && other->color != cache_level)
3346 return false;
3347
3348 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3349 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3350 return false;
3351
3352 return true;
3353}
3354
673a394b 3355/**
91e6711e
JL
3356 * Finds free space in the GTT aperture and binds the object or a view of it
3357 * there.
673a394b 3358 */
262de145 3359static struct i915_vma *
07fe0b12
BW
3360i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3361 struct i915_address_space *vm,
ec7adb6e 3362 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3363 unsigned alignment,
ec7adb6e 3364 uint64_t flags)
673a394b 3365{
05394f39 3366 struct drm_device *dev = obj->base.dev;
3e31c6c0 3367 struct drm_i915_private *dev_priv = dev->dev_private;
65bd342f 3368 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3369 u32 search_flag, alloc_flag;
3370 u64 start, end;
65bd342f 3371 u64 size, fence_size;
2f633156 3372 struct i915_vma *vma;
07f73f69 3373 int ret;
673a394b 3374
91e6711e
JL
3375 if (i915_is_ggtt(vm)) {
3376 u32 view_size;
3377
3378 if (WARN_ON(!ggtt_view))
3379 return ERR_PTR(-EINVAL);
ec7adb6e 3380
91e6711e
JL
3381 view_size = i915_ggtt_view_size(obj, ggtt_view);
3382
3383 fence_size = i915_gem_get_gtt_size(dev,
3384 view_size,
3385 obj->tiling_mode);
3386 fence_alignment = i915_gem_get_gtt_alignment(dev,
3387 view_size,
3388 obj->tiling_mode,
3389 true);
3390 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3391 view_size,
3392 obj->tiling_mode,
3393 false);
3394 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3395 } else {
3396 fence_size = i915_gem_get_gtt_size(dev,
3397 obj->base.size,
3398 obj->tiling_mode);
3399 fence_alignment = i915_gem_get_gtt_alignment(dev,
3400 obj->base.size,
3401 obj->tiling_mode,
3402 true);
3403 unfenced_alignment =
3404 i915_gem_get_gtt_alignment(dev,
3405 obj->base.size,
3406 obj->tiling_mode,
3407 false);
3408 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3409 }
a00b10c3 3410
101b506a
MT
3411 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3412 end = vm->total;
3413 if (flags & PIN_MAPPABLE)
3414 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3415 if (flags & PIN_ZONE_4G)
3416 end = min_t(u64, end, (1ULL << 32));
3417
673a394b 3418 if (alignment == 0)
1ec9e26d 3419 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3420 unfenced_alignment;
1ec9e26d 3421 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3422 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3423 ggtt_view ? ggtt_view->type : 0,
3424 alignment);
262de145 3425 return ERR_PTR(-EINVAL);
673a394b
EA
3426 }
3427
91e6711e
JL
3428 /* If binding the object/GGTT view requires more space than the entire
3429 * aperture has, reject it early before evicting everything in a vain
3430 * attempt to find space.
654fc607 3431 */
91e6711e 3432 if (size > end) {
65bd342f 3433 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3434 ggtt_view ? ggtt_view->type : 0,
3435 size,
1ec9e26d 3436 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3437 end);
262de145 3438 return ERR_PTR(-E2BIG);
654fc607
CW
3439 }
3440
37e680a1 3441 ret = i915_gem_object_get_pages(obj);
6c085a72 3442 if (ret)
262de145 3443 return ERR_PTR(ret);
6c085a72 3444
fbdda6fb
CW
3445 i915_gem_object_pin_pages(obj);
3446
ec7adb6e
JL
3447 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3448 i915_gem_obj_lookup_or_create_vma(obj, vm);
3449
262de145 3450 if (IS_ERR(vma))
bc6bc15b 3451 goto err_unpin;
2f633156 3452
101b506a
MT
3453 if (flags & PIN_HIGH) {
3454 search_flag = DRM_MM_SEARCH_BELOW;
3455 alloc_flag = DRM_MM_CREATE_TOP;
3456 } else {
3457 search_flag = DRM_MM_SEARCH_DEFAULT;
3458 alloc_flag = DRM_MM_CREATE_DEFAULT;
3459 }
3460
0a9ae0d7 3461search_free:
07fe0b12 3462 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3463 size, alignment,
d23db88c
CW
3464 obj->cache_level,
3465 start, end,
101b506a
MT
3466 search_flag,
3467 alloc_flag);
dc9dd7a2 3468 if (ret) {
f6cd1f15 3469 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3470 obj->cache_level,
3471 start, end,
3472 flags);
dc9dd7a2
CW
3473 if (ret == 0)
3474 goto search_free;
9731129c 3475
bc6bc15b 3476 goto err_free_vma;
673a394b 3477 }
4144f9b5 3478 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3479 ret = -EINVAL;
bc6bc15b 3480 goto err_remove_node;
673a394b
EA
3481 }
3482
fe14d5f4 3483 trace_i915_vma_bind(vma, flags);
0875546c 3484 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3485 if (ret)
e2273302 3486 goto err_remove_node;
fe14d5f4 3487
35c20a60 3488 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3489 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3490
262de145 3491 return vma;
2f633156 3492
bc6bc15b 3493err_remove_node:
6286ef9b 3494 drm_mm_remove_node(&vma->node);
bc6bc15b 3495err_free_vma:
2f633156 3496 i915_gem_vma_destroy(vma);
262de145 3497 vma = ERR_PTR(ret);
bc6bc15b 3498err_unpin:
2f633156 3499 i915_gem_object_unpin_pages(obj);
262de145 3500 return vma;
673a394b
EA
3501}
3502
000433b6 3503bool
2c22569b
CW
3504i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3505 bool force)
673a394b 3506{
673a394b
EA
3507 /* If we don't have a page list set up, then we're not pinned
3508 * to GPU, and we can ignore the cache flush because it'll happen
3509 * again at bind time.
3510 */
05394f39 3511 if (obj->pages == NULL)
000433b6 3512 return false;
673a394b 3513
769ce464
ID
3514 /*
3515 * Stolen memory is always coherent with the GPU as it is explicitly
3516 * marked as wc by the system, or the system is cache-coherent.
3517 */
6a2c4232 3518 if (obj->stolen || obj->phys_handle)
000433b6 3519 return false;
769ce464 3520
9c23f7fc
CW
3521 /* If the GPU is snooping the contents of the CPU cache,
3522 * we do not need to manually clear the CPU cache lines. However,
3523 * the caches are only snooped when the render cache is
3524 * flushed/invalidated. As we always have to emit invalidations
3525 * and flushes when moving into and out of the RENDER domain, correct
3526 * snooping behaviour occurs naturally as the result of our domain
3527 * tracking.
3528 */
0f71979a
CW
3529 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3530 obj->cache_dirty = true;
000433b6 3531 return false;
0f71979a 3532 }
9c23f7fc 3533
1c5d22f7 3534 trace_i915_gem_object_clflush(obj);
9da3da66 3535 drm_clflush_sg(obj->pages);
0f71979a 3536 obj->cache_dirty = false;
000433b6
CW
3537
3538 return true;
e47c68e9
EA
3539}
3540
3541/** Flushes the GTT write domain for the object if it's dirty. */
3542static void
05394f39 3543i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3544{
1c5d22f7
CW
3545 uint32_t old_write_domain;
3546
05394f39 3547 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3548 return;
3549
63256ec5 3550 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3551 * to it immediately go to main memory as far as we know, so there's
3552 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3553 *
3554 * However, we do have to enforce the order so that all writes through
3555 * the GTT land before any writes to the device, such as updates to
3556 * the GATT itself.
e47c68e9 3557 */
63256ec5
CW
3558 wmb();
3559
05394f39
CW
3560 old_write_domain = obj->base.write_domain;
3561 obj->base.write_domain = 0;
1c5d22f7 3562
de152b62 3563 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3564
1c5d22f7 3565 trace_i915_gem_object_change_domain(obj,
05394f39 3566 obj->base.read_domains,
1c5d22f7 3567 old_write_domain);
e47c68e9
EA
3568}
3569
3570/** Flushes the CPU write domain for the object if it's dirty. */
3571static void
e62b59e4 3572i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3573{
1c5d22f7 3574 uint32_t old_write_domain;
e47c68e9 3575
05394f39 3576 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3577 return;
3578
e62b59e4 3579 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3580 i915_gem_chipset_flush(obj->base.dev);
3581
05394f39
CW
3582 old_write_domain = obj->base.write_domain;
3583 obj->base.write_domain = 0;
1c5d22f7 3584
de152b62 3585 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3586
1c5d22f7 3587 trace_i915_gem_object_change_domain(obj,
05394f39 3588 obj->base.read_domains,
1c5d22f7 3589 old_write_domain);
e47c68e9
EA
3590}
3591
2ef7eeaa
EA
3592/**
3593 * Moves a single object to the GTT read, and possibly write domain.
3594 *
3595 * This function returns when the move is complete, including waiting on
3596 * flushes to occur.
3597 */
79e53945 3598int
2021746e 3599i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3600{
1c5d22f7 3601 uint32_t old_write_domain, old_read_domains;
43566ded 3602 struct i915_vma *vma;
e47c68e9 3603 int ret;
2ef7eeaa 3604
8d7e3de1
CW
3605 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3606 return 0;
3607
0201f1ec 3608 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3609 if (ret)
3610 return ret;
3611
43566ded
CW
3612 /* Flush and acquire obj->pages so that we are coherent through
3613 * direct access in memory with previous cached writes through
3614 * shmemfs and that our cache domain tracking remains valid.
3615 * For example, if the obj->filp was moved to swap without us
3616 * being notified and releasing the pages, we would mistakenly
3617 * continue to assume that the obj remained out of the CPU cached
3618 * domain.
3619 */
3620 ret = i915_gem_object_get_pages(obj);
3621 if (ret)
3622 return ret;
3623
e62b59e4 3624 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3625
d0a57789
CW
3626 /* Serialise direct access to this object with the barriers for
3627 * coherent writes from the GPU, by effectively invalidating the
3628 * GTT domain upon first access.
3629 */
3630 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3631 mb();
3632
05394f39
CW
3633 old_write_domain = obj->base.write_domain;
3634 old_read_domains = obj->base.read_domains;
1c5d22f7 3635
e47c68e9
EA
3636 /* It should now be out of any other write domains, and we can update
3637 * the domain values for our changes.
3638 */
05394f39
CW
3639 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3640 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3641 if (write) {
05394f39
CW
3642 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3643 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3644 obj->dirty = 1;
2ef7eeaa
EA
3645 }
3646
1c5d22f7
CW
3647 trace_i915_gem_object_change_domain(obj,
3648 old_read_domains,
3649 old_write_domain);
3650
8325a09d 3651 /* And bump the LRU for this access */
43566ded
CW
3652 vma = i915_gem_obj_to_ggtt(obj);
3653 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3654 list_move_tail(&vma->mm_list,
43566ded 3655 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3656
e47c68e9
EA
3657 return 0;
3658}
3659
ef55f92a
CW
3660/**
3661 * Changes the cache-level of an object across all VMA.
3662 *
3663 * After this function returns, the object will be in the new cache-level
3664 * across all GTT and the contents of the backing storage will be coherent,
3665 * with respect to the new cache-level. In order to keep the backing storage
3666 * coherent for all users, we only allow a single cache level to be set
3667 * globally on the object and prevent it from being changed whilst the
3668 * hardware is reading from the object. That is if the object is currently
3669 * on the scanout it will be set to uncached (or equivalent display
3670 * cache coherency) and all non-MOCS GPU access will also be uncached so
3671 * that all direct access to the scanout remains coherent.
3672 */
e4ffd173
CW
3673int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3674 enum i915_cache_level cache_level)
3675{
7bddb01f 3676 struct drm_device *dev = obj->base.dev;
df6f783a 3677 struct i915_vma *vma, *next;
ef55f92a 3678 bool bound = false;
ed75a55b 3679 int ret = 0;
e4ffd173
CW
3680
3681 if (obj->cache_level == cache_level)
ed75a55b 3682 goto out;
e4ffd173 3683
ef55f92a
CW
3684 /* Inspect the list of currently bound VMA and unbind any that would
3685 * be invalid given the new cache-level. This is principally to
3686 * catch the issue of the CS prefetch crossing page boundaries and
3687 * reading an invalid PTE on older architectures.
3688 */
df6f783a 3689 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
ef55f92a
CW
3690 if (!drm_mm_node_allocated(&vma->node))
3691 continue;
3692
3693 if (vma->pin_count) {
3694 DRM_DEBUG("can not change the cache level of pinned objects\n");
3695 return -EBUSY;
3696 }
3697
4144f9b5 3698 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3699 ret = i915_vma_unbind(vma);
3089c6f2
BW
3700 if (ret)
3701 return ret;
ef55f92a
CW
3702 } else
3703 bound = true;
42d6ab48
CW
3704 }
3705
ef55f92a
CW
3706 /* We can reuse the existing drm_mm nodes but need to change the
3707 * cache-level on the PTE. We could simply unbind them all and
3708 * rebind with the correct cache-level on next use. However since
3709 * we already have a valid slot, dma mapping, pages etc, we may as
3710 * rewrite the PTE in the belief that doing so tramples upon less
3711 * state and so involves less work.
3712 */
3713 if (bound) {
3714 /* Before we change the PTE, the GPU must not be accessing it.
3715 * If we wait upon the object, we know that all the bound
3716 * VMA are no longer active.
3717 */
2e2f351d 3718 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3719 if (ret)
3720 return ret;
3721
ef55f92a
CW
3722 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3723 /* Access to snoopable pages through the GTT is
3724 * incoherent and on some machines causes a hard
3725 * lockup. Relinquish the CPU mmaping to force
3726 * userspace to refault in the pages and we can
3727 * then double check if the GTT mapping is still
3728 * valid for that pointer access.
3729 */
3730 i915_gem_release_mmap(obj);
3731
3732 /* As we no longer need a fence for GTT access,
3733 * we can relinquish it now (and so prevent having
3734 * to steal a fence from someone else on the next
3735 * fence request). Note GPU activity would have
3736 * dropped the fence as all snoopable access is
3737 * supposed to be linear.
3738 */
e4ffd173
CW
3739 ret = i915_gem_object_put_fence(obj);
3740 if (ret)
3741 return ret;
ef55f92a
CW
3742 } else {
3743 /* We either have incoherent backing store and
3744 * so no GTT access or the architecture is fully
3745 * coherent. In such cases, existing GTT mmaps
3746 * ignore the cache bit in the PTE and we can
3747 * rewrite it without confusing the GPU or having
3748 * to force userspace to fault back in its mmaps.
3749 */
e4ffd173
CW
3750 }
3751
ef55f92a
CW
3752 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3753 if (!drm_mm_node_allocated(&vma->node))
3754 continue;
3755
3756 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3757 if (ret)
3758 return ret;
3759 }
e4ffd173
CW
3760 }
3761
2c22569b
CW
3762 list_for_each_entry(vma, &obj->vma_list, vma_link)
3763 vma->node.color = cache_level;
3764 obj->cache_level = cache_level;
3765
ed75a55b 3766out:
ef55f92a
CW
3767 /* Flush the dirty CPU caches to the backing storage so that the
3768 * object is now coherent at its new cache level (with respect
3769 * to the access domain).
3770 */
0f71979a
CW
3771 if (obj->cache_dirty &&
3772 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3773 cpu_write_needs_clflush(obj)) {
3774 if (i915_gem_clflush_object(obj, true))
3775 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3776 }
3777
e4ffd173
CW
3778 return 0;
3779}
3780
199adf40
BW
3781int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3782 struct drm_file *file)
e6994aee 3783{
199adf40 3784 struct drm_i915_gem_caching *args = data;
e6994aee 3785 struct drm_i915_gem_object *obj;
e6994aee
CW
3786
3787 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3788 if (&obj->base == NULL)
3789 return -ENOENT;
e6994aee 3790
651d794f
CW
3791 switch (obj->cache_level) {
3792 case I915_CACHE_LLC:
3793 case I915_CACHE_L3_LLC:
3794 args->caching = I915_CACHING_CACHED;
3795 break;
3796
4257d3ba
CW
3797 case I915_CACHE_WT:
3798 args->caching = I915_CACHING_DISPLAY;
3799 break;
3800
651d794f
CW
3801 default:
3802 args->caching = I915_CACHING_NONE;
3803 break;
3804 }
e6994aee 3805
432be69d
CW
3806 drm_gem_object_unreference_unlocked(&obj->base);
3807 return 0;
e6994aee
CW
3808}
3809
199adf40
BW
3810int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3811 struct drm_file *file)
e6994aee 3812{
199adf40 3813 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3814 struct drm_i915_gem_object *obj;
3815 enum i915_cache_level level;
3816 int ret;
3817
199adf40
BW
3818 switch (args->caching) {
3819 case I915_CACHING_NONE:
e6994aee
CW
3820 level = I915_CACHE_NONE;
3821 break;
199adf40 3822 case I915_CACHING_CACHED:
e5756c10
ID
3823 /*
3824 * Due to a HW issue on BXT A stepping, GPU stores via a
3825 * snooped mapping may leave stale data in a corresponding CPU
3826 * cacheline, whereas normally such cachelines would get
3827 * invalidated.
3828 */
fffda3f4 3829 if (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A1)
e5756c10
ID
3830 return -ENODEV;
3831
e6994aee
CW
3832 level = I915_CACHE_LLC;
3833 break;
4257d3ba
CW
3834 case I915_CACHING_DISPLAY:
3835 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3836 break;
e6994aee
CW
3837 default:
3838 return -EINVAL;
3839 }
3840
3bc2913e
BW
3841 ret = i915_mutex_lock_interruptible(dev);
3842 if (ret)
3843 return ret;
3844
e6994aee
CW
3845 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3846 if (&obj->base == NULL) {
3847 ret = -ENOENT;
3848 goto unlock;
3849 }
3850
3851 ret = i915_gem_object_set_cache_level(obj, level);
3852
3853 drm_gem_object_unreference(&obj->base);
3854unlock:
3855 mutex_unlock(&dev->struct_mutex);
3856 return ret;
3857}
3858
b9241ea3 3859/*
2da3b9b9
CW
3860 * Prepare buffer for display plane (scanout, cursors, etc).
3861 * Can be called from an uninterruptible phase (modesetting) and allows
3862 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3863 */
3864int
2da3b9b9
CW
3865i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3866 u32 alignment,
e6617330 3867 struct intel_engine_cs *pipelined,
91af127f 3868 struct drm_i915_gem_request **pipelined_request,
e6617330 3869 const struct i915_ggtt_view *view)
b9241ea3 3870{
2da3b9b9 3871 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3872 int ret;
3873
91af127f 3874 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
b4716185
CW
3875 if (ret)
3876 return ret;
b9241ea3 3877
cc98b413
CW
3878 /* Mark the pin_display early so that we account for the
3879 * display coherency whilst setting up the cache domains.
3880 */
8a0c39b1 3881 obj->pin_display++;
cc98b413 3882
a7ef0640
EA
3883 /* The display engine is not coherent with the LLC cache on gen6. As
3884 * a result, we make sure that the pinning that is about to occur is
3885 * done with uncached PTEs. This is lowest common denominator for all
3886 * chipsets.
3887 *
3888 * However for gen6+, we could do better by using the GFDT bit instead
3889 * of uncaching, which would allow us to flush all the LLC-cached data
3890 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3891 */
651d794f
CW
3892 ret = i915_gem_object_set_cache_level(obj,
3893 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3894 if (ret)
cc98b413 3895 goto err_unpin_display;
a7ef0640 3896
2da3b9b9
CW
3897 /* As the user may map the buffer once pinned in the display plane
3898 * (e.g. libkms for the bootup splash), we have to ensure that we
3899 * always use map_and_fenceable for all scanout buffers.
3900 */
50470bb0
TU
3901 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3902 view->type == I915_GGTT_VIEW_NORMAL ?
3903 PIN_MAPPABLE : 0);
2da3b9b9 3904 if (ret)
cc98b413 3905 goto err_unpin_display;
2da3b9b9 3906
e62b59e4 3907 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3908
2da3b9b9 3909 old_write_domain = obj->base.write_domain;
05394f39 3910 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3911
3912 /* It should now be out of any other write domains, and we can update
3913 * the domain values for our changes.
3914 */
e5f1d962 3915 obj->base.write_domain = 0;
05394f39 3916 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3917
3918 trace_i915_gem_object_change_domain(obj,
3919 old_read_domains,
2da3b9b9 3920 old_write_domain);
b9241ea3
ZW
3921
3922 return 0;
cc98b413
CW
3923
3924err_unpin_display:
8a0c39b1 3925 obj->pin_display--;
cc98b413
CW
3926 return ret;
3927}
3928
3929void
e6617330
TU
3930i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3931 const struct i915_ggtt_view *view)
cc98b413 3932{
8a0c39b1
TU
3933 if (WARN_ON(obj->pin_display == 0))
3934 return;
3935
e6617330
TU
3936 i915_gem_object_ggtt_unpin_view(obj, view);
3937
8a0c39b1 3938 obj->pin_display--;
b9241ea3
ZW
3939}
3940
e47c68e9
EA
3941/**
3942 * Moves a single object to the CPU read, and possibly write domain.
3943 *
3944 * This function returns when the move is complete, including waiting on
3945 * flushes to occur.
3946 */
dabdfe02 3947int
919926ae 3948i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3949{
1c5d22f7 3950 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3951 int ret;
3952
8d7e3de1
CW
3953 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3954 return 0;
3955
0201f1ec 3956 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3957 if (ret)
3958 return ret;
3959
e47c68e9 3960 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3961
05394f39
CW
3962 old_write_domain = obj->base.write_domain;
3963 old_read_domains = obj->base.read_domains;
1c5d22f7 3964
e47c68e9 3965 /* Flush the CPU cache if it's still invalid. */
05394f39 3966 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3967 i915_gem_clflush_object(obj, false);
2ef7eeaa 3968
05394f39 3969 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3970 }
3971
3972 /* It should now be out of any other write domains, and we can update
3973 * the domain values for our changes.
3974 */
05394f39 3975 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3976
3977 /* If we're writing through the CPU, then the GPU read domains will
3978 * need to be invalidated at next use.
3979 */
3980 if (write) {
05394f39
CW
3981 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3982 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3983 }
2ef7eeaa 3984
1c5d22f7
CW
3985 trace_i915_gem_object_change_domain(obj,
3986 old_read_domains,
3987 old_write_domain);
3988
2ef7eeaa
EA
3989 return 0;
3990}
3991
673a394b
EA
3992/* Throttle our rendering by waiting until the ring has completed our requests
3993 * emitted over 20 msec ago.
3994 *
b962442e
EA
3995 * Note that if we were to use the current jiffies each time around the loop,
3996 * we wouldn't escape the function with any frames outstanding if the time to
3997 * render a frame was over 20ms.
3998 *
673a394b
EA
3999 * This should get us reasonable parallelism between CPU and GPU but also
4000 * relatively low latency when blocking on a particular request to finish.
4001 */
40a5f0de 4002static int
f787a5f5 4003i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4004{
f787a5f5
CW
4005 struct drm_i915_private *dev_priv = dev->dev_private;
4006 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4007 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4008 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4009 unsigned reset_counter;
f787a5f5 4010 int ret;
93533c29 4011
308887aa
DV
4012 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4013 if (ret)
4014 return ret;
4015
4016 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4017 if (ret)
4018 return ret;
e110e8d6 4019
1c25595f 4020 spin_lock(&file_priv->mm.lock);
f787a5f5 4021 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4022 if (time_after_eq(request->emitted_jiffies, recent_enough))
4023 break;
40a5f0de 4024
fcfa423c
JH
4025 /*
4026 * Note that the request might not have been submitted yet.
4027 * In which case emitted_jiffies will be zero.
4028 */
4029 if (!request->emitted_jiffies)
4030 continue;
4031
54fb2411 4032 target = request;
b962442e 4033 }
f69061be 4034 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4035 if (target)
4036 i915_gem_request_reference(target);
1c25595f 4037 spin_unlock(&file_priv->mm.lock);
40a5f0de 4038
54fb2411 4039 if (target == NULL)
f787a5f5 4040 return 0;
2bc43b5c 4041
9c654818 4042 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4043 if (ret == 0)
4044 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4045
41037f9f 4046 i915_gem_request_unreference__unlocked(target);
ff865885 4047
40a5f0de
EA
4048 return ret;
4049}
4050
d23db88c
CW
4051static bool
4052i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4053{
4054 struct drm_i915_gem_object *obj = vma->obj;
4055
4056 if (alignment &&
4057 vma->node.start & (alignment - 1))
4058 return true;
4059
4060 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4061 return true;
4062
4063 if (flags & PIN_OFFSET_BIAS &&
4064 vma->node.start < (flags & PIN_OFFSET_MASK))
4065 return true;
4066
4067 return false;
4068}
4069
ec7adb6e
JL
4070static int
4071i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4072 struct i915_address_space *vm,
4073 const struct i915_ggtt_view *ggtt_view,
4074 uint32_t alignment,
4075 uint64_t flags)
673a394b 4076{
6e7186af 4077 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4078 struct i915_vma *vma;
ef79e17c 4079 unsigned bound;
673a394b
EA
4080 int ret;
4081
6e7186af
BW
4082 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4083 return -ENODEV;
4084
bf3d149b 4085 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4086 return -EINVAL;
07fe0b12 4087
c826c449
CW
4088 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4089 return -EINVAL;
4090
ec7adb6e
JL
4091 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4092 return -EINVAL;
4093
4094 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4095 i915_gem_obj_to_vma(obj, vm);
4096
4097 if (IS_ERR(vma))
4098 return PTR_ERR(vma);
4099
07fe0b12 4100 if (vma) {
d7f46fc4
BW
4101 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4102 return -EBUSY;
4103
d23db88c 4104 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4105 WARN(vma->pin_count,
ec7adb6e 4106 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4107 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4108 " obj->map_and_fenceable=%d\n",
ec7adb6e 4109 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4110 upper_32_bits(vma->node.start),
4111 lower_32_bits(vma->node.start),
fe14d5f4 4112 alignment,
d23db88c 4113 !!(flags & PIN_MAPPABLE),
05394f39 4114 obj->map_and_fenceable);
07fe0b12 4115 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4116 if (ret)
4117 return ret;
8ea99c92
DV
4118
4119 vma = NULL;
ac0c6b5a
CW
4120 }
4121 }
4122
ef79e17c 4123 bound = vma ? vma->bound : 0;
8ea99c92 4124 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4125 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4126 flags);
262de145
DV
4127 if (IS_ERR(vma))
4128 return PTR_ERR(vma);
0875546c
DV
4129 } else {
4130 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4131 if (ret)
4132 return ret;
4133 }
74898d7e 4134
91e6711e
JL
4135 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4136 (bound ^ vma->bound) & GLOBAL_BIND) {
ef79e17c
CW
4137 bool mappable, fenceable;
4138 u32 fence_size, fence_alignment;
4139
4140 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4141 obj->base.size,
4142 obj->tiling_mode);
4143 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4144 obj->base.size,
4145 obj->tiling_mode,
4146 true);
4147
4148 fenceable = (vma->node.size == fence_size &&
4149 (vma->node.start & (fence_alignment - 1)) == 0);
4150
e8dec1dd 4151 mappable = (vma->node.start + fence_size <=
ef79e17c
CW
4152 dev_priv->gtt.mappable_end);
4153
4154 obj->map_and_fenceable = mappable && fenceable;
ef79e17c 4155
91e6711e
JL
4156 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4157 }
ef79e17c 4158
8ea99c92 4159 vma->pin_count++;
673a394b
EA
4160 return 0;
4161}
4162
ec7adb6e
JL
4163int
4164i915_gem_object_pin(struct drm_i915_gem_object *obj,
4165 struct i915_address_space *vm,
4166 uint32_t alignment,
4167 uint64_t flags)
4168{
4169 return i915_gem_object_do_pin(obj, vm,
4170 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4171 alignment, flags);
4172}
4173
4174int
4175i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4176 const struct i915_ggtt_view *view,
4177 uint32_t alignment,
4178 uint64_t flags)
4179{
4180 if (WARN_ONCE(!view, "no view specified"))
4181 return -EINVAL;
4182
4183 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4184 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4185}
4186
673a394b 4187void
e6617330
TU
4188i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4189 const struct i915_ggtt_view *view)
673a394b 4190{
e6617330 4191 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4192
d7f46fc4 4193 BUG_ON(!vma);
e6617330 4194 WARN_ON(vma->pin_count == 0);
9abc4648 4195 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4196
30154650 4197 --vma->pin_count;
673a394b
EA
4198}
4199
673a394b
EA
4200int
4201i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4202 struct drm_file *file)
673a394b
EA
4203{
4204 struct drm_i915_gem_busy *args = data;
05394f39 4205 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4206 int ret;
4207
76c1dec1 4208 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4209 if (ret)
76c1dec1 4210 return ret;
673a394b 4211
05394f39 4212 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4213 if (&obj->base == NULL) {
1d7cfea1
CW
4214 ret = -ENOENT;
4215 goto unlock;
673a394b 4216 }
d1b851fc 4217
0be555b6
CW
4218 /* Count all active objects as busy, even if they are currently not used
4219 * by the gpu. Users of this interface expect objects to eventually
4220 * become non-busy without any further actions, therefore emit any
4221 * necessary flushes here.
c4de0a5d 4222 */
30dfebf3 4223 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4224 if (ret)
4225 goto unref;
0be555b6 4226
b4716185
CW
4227 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4228 args->busy = obj->active << 16;
4229 if (obj->last_write_req)
4230 args->busy |= obj->last_write_req->ring->id;
673a394b 4231
b4716185 4232unref:
05394f39 4233 drm_gem_object_unreference(&obj->base);
1d7cfea1 4234unlock:
673a394b 4235 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4236 return ret;
673a394b
EA
4237}
4238
4239int
4240i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4241 struct drm_file *file_priv)
4242{
0206e353 4243 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4244}
4245
3ef94daa
CW
4246int
4247i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4248 struct drm_file *file_priv)
4249{
656bfa3a 4250 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4251 struct drm_i915_gem_madvise *args = data;
05394f39 4252 struct drm_i915_gem_object *obj;
76c1dec1 4253 int ret;
3ef94daa
CW
4254
4255 switch (args->madv) {
4256 case I915_MADV_DONTNEED:
4257 case I915_MADV_WILLNEED:
4258 break;
4259 default:
4260 return -EINVAL;
4261 }
4262
1d7cfea1
CW
4263 ret = i915_mutex_lock_interruptible(dev);
4264 if (ret)
4265 return ret;
4266
05394f39 4267 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4268 if (&obj->base == NULL) {
1d7cfea1
CW
4269 ret = -ENOENT;
4270 goto unlock;
3ef94daa 4271 }
3ef94daa 4272
d7f46fc4 4273 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4274 ret = -EINVAL;
4275 goto out;
3ef94daa
CW
4276 }
4277
656bfa3a
DV
4278 if (obj->pages &&
4279 obj->tiling_mode != I915_TILING_NONE &&
4280 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4281 if (obj->madv == I915_MADV_WILLNEED)
4282 i915_gem_object_unpin_pages(obj);
4283 if (args->madv == I915_MADV_WILLNEED)
4284 i915_gem_object_pin_pages(obj);
4285 }
4286
05394f39
CW
4287 if (obj->madv != __I915_MADV_PURGED)
4288 obj->madv = args->madv;
3ef94daa 4289
6c085a72 4290 /* if the object is no longer attached, discard its backing storage */
be6a0376 4291 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4292 i915_gem_object_truncate(obj);
4293
05394f39 4294 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4295
1d7cfea1 4296out:
05394f39 4297 drm_gem_object_unreference(&obj->base);
1d7cfea1 4298unlock:
3ef94daa 4299 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4300 return ret;
3ef94daa
CW
4301}
4302
37e680a1
CW
4303void i915_gem_object_init(struct drm_i915_gem_object *obj,
4304 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4305{
b4716185
CW
4306 int i;
4307
35c20a60 4308 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4309 for (i = 0; i < I915_NUM_RINGS; i++)
4310 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4311 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4312 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4313 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4314
37e680a1
CW
4315 obj->ops = ops;
4316
0327d6ba
CW
4317 obj->fence_reg = I915_FENCE_REG_NONE;
4318 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4319
4320 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4321}
4322
37e680a1
CW
4323static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4324 .get_pages = i915_gem_object_get_pages_gtt,
4325 .put_pages = i915_gem_object_put_pages_gtt,
4326};
4327
05394f39
CW
4328struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4329 size_t size)
ac52bc56 4330{
c397b908 4331 struct drm_i915_gem_object *obj;
5949eac4 4332 struct address_space *mapping;
1a240d4d 4333 gfp_t mask;
ac52bc56 4334
42dcedd4 4335 obj = i915_gem_object_alloc(dev);
c397b908
DV
4336 if (obj == NULL)
4337 return NULL;
673a394b 4338
c397b908 4339 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4340 i915_gem_object_free(obj);
c397b908
DV
4341 return NULL;
4342 }
673a394b 4343
bed1ea95
CW
4344 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4345 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4346 /* 965gm cannot relocate objects above 4GiB. */
4347 mask &= ~__GFP_HIGHMEM;
4348 mask |= __GFP_DMA32;
4349 }
4350
496ad9aa 4351 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4352 mapping_set_gfp_mask(mapping, mask);
5949eac4 4353
37e680a1 4354 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4355
c397b908
DV
4356 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4357 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4358
3d29b842
ED
4359 if (HAS_LLC(dev)) {
4360 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4361 * cache) for about a 10% performance improvement
4362 * compared to uncached. Graphics requests other than
4363 * display scanout are coherent with the CPU in
4364 * accessing this cache. This means in this mode we
4365 * don't need to clflush on the CPU side, and on the
4366 * GPU side we only need to flush internal caches to
4367 * get data visible to the CPU.
4368 *
4369 * However, we maintain the display planes as UC, and so
4370 * need to rebind when first used as such.
4371 */
4372 obj->cache_level = I915_CACHE_LLC;
4373 } else
4374 obj->cache_level = I915_CACHE_NONE;
4375
d861e338
DV
4376 trace_i915_gem_object_create(obj);
4377
05394f39 4378 return obj;
c397b908
DV
4379}
4380
340fbd8c
CW
4381static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4382{
4383 /* If we are the last user of the backing storage (be it shmemfs
4384 * pages or stolen etc), we know that the pages are going to be
4385 * immediately released. In this case, we can then skip copying
4386 * back the contents from the GPU.
4387 */
4388
4389 if (obj->madv != I915_MADV_WILLNEED)
4390 return false;
4391
4392 if (obj->base.filp == NULL)
4393 return true;
4394
4395 /* At first glance, this looks racy, but then again so would be
4396 * userspace racing mmap against close. However, the first external
4397 * reference to the filp can only be obtained through the
4398 * i915_gem_mmap_ioctl() which safeguards us against the user
4399 * acquiring such a reference whilst we are in the middle of
4400 * freeing the object.
4401 */
4402 return atomic_long_read(&obj->base.filp->f_count) == 1;
4403}
4404
1488fc08 4405void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4406{
1488fc08 4407 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4408 struct drm_device *dev = obj->base.dev;
3e31c6c0 4409 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4410 struct i915_vma *vma, *next;
673a394b 4411
f65c9168
PZ
4412 intel_runtime_pm_get(dev_priv);
4413
26e12f89
CW
4414 trace_i915_gem_object_destroy(obj);
4415
07fe0b12 4416 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4417 int ret;
4418
4419 vma->pin_count = 0;
4420 ret = i915_vma_unbind(vma);
07fe0b12
BW
4421 if (WARN_ON(ret == -ERESTARTSYS)) {
4422 bool was_interruptible;
1488fc08 4423
07fe0b12
BW
4424 was_interruptible = dev_priv->mm.interruptible;
4425 dev_priv->mm.interruptible = false;
1488fc08 4426
07fe0b12 4427 WARN_ON(i915_vma_unbind(vma));
1488fc08 4428
07fe0b12
BW
4429 dev_priv->mm.interruptible = was_interruptible;
4430 }
1488fc08
CW
4431 }
4432
1d64ae71
BW
4433 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4434 * before progressing. */
4435 if (obj->stolen)
4436 i915_gem_object_unpin_pages(obj);
4437
a071fa00
DV
4438 WARN_ON(obj->frontbuffer_bits);
4439
656bfa3a
DV
4440 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4441 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4442 obj->tiling_mode != I915_TILING_NONE)
4443 i915_gem_object_unpin_pages(obj);
4444
401c29f6
BW
4445 if (WARN_ON(obj->pages_pin_count))
4446 obj->pages_pin_count = 0;
340fbd8c 4447 if (discard_backing_storage(obj))
5537252b 4448 obj->madv = I915_MADV_DONTNEED;
37e680a1 4449 i915_gem_object_put_pages(obj);
d8cb5086 4450 i915_gem_object_free_mmap_offset(obj);
de151cf6 4451
9da3da66
CW
4452 BUG_ON(obj->pages);
4453
2f745ad3
CW
4454 if (obj->base.import_attach)
4455 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4456
5cc9ed4b
CW
4457 if (obj->ops->release)
4458 obj->ops->release(obj);
4459
05394f39
CW
4460 drm_gem_object_release(&obj->base);
4461 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4462
05394f39 4463 kfree(obj->bit_17);
42dcedd4 4464 i915_gem_object_free(obj);
f65c9168
PZ
4465
4466 intel_runtime_pm_put(dev_priv);
673a394b
EA
4467}
4468
ec7adb6e
JL
4469struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4470 struct i915_address_space *vm)
e656a6cb
DV
4471{
4472 struct i915_vma *vma;
ec7adb6e
JL
4473 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4474 if (i915_is_ggtt(vma->vm) &&
4475 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4476 continue;
4477 if (vma->vm == vm)
e656a6cb 4478 return vma;
ec7adb6e
JL
4479 }
4480 return NULL;
4481}
4482
4483struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4484 const struct i915_ggtt_view *view)
4485{
4486 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4487 struct i915_vma *vma;
e656a6cb 4488
ec7adb6e
JL
4489 if (WARN_ONCE(!view, "no view specified"))
4490 return ERR_PTR(-EINVAL);
4491
4492 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4493 if (vma->vm == ggtt &&
4494 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4495 return vma;
e656a6cb
DV
4496 return NULL;
4497}
4498
2f633156
BW
4499void i915_gem_vma_destroy(struct i915_vma *vma)
4500{
b9d06dd9 4501 struct i915_address_space *vm = NULL;
2f633156 4502 WARN_ON(vma->node.allocated);
aaa05667
CW
4503
4504 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4505 if (!list_empty(&vma->exec_list))
4506 return;
4507
b9d06dd9 4508 vm = vma->vm;
b9d06dd9 4509
841cd773
DV
4510 if (!i915_is_ggtt(vm))
4511 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4512
8b9c2b94 4513 list_del(&vma->vma_link);
b93dab6e 4514
e20d2ab7 4515 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4516}
4517
e3efda49
CW
4518static void
4519i915_gem_stop_ringbuffers(struct drm_device *dev)
4520{
4521 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4522 struct intel_engine_cs *ring;
e3efda49
CW
4523 int i;
4524
4525 for_each_ring(ring, dev_priv, i)
a83014d3 4526 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4527}
4528
29105ccc 4529int
45c5f202 4530i915_gem_suspend(struct drm_device *dev)
29105ccc 4531{
3e31c6c0 4532 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4533 int ret = 0;
28dfe52a 4534
45c5f202 4535 mutex_lock(&dev->struct_mutex);
b2da9fe5 4536 ret = i915_gpu_idle(dev);
f7403347 4537 if (ret)
45c5f202 4538 goto err;
f7403347 4539
b2da9fe5 4540 i915_gem_retire_requests(dev);
673a394b 4541
e3efda49 4542 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4543 mutex_unlock(&dev->struct_mutex);
4544
737b1506 4545 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4546 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4547 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4548
bdcf120b
CW
4549 /* Assert that we sucessfully flushed all the work and
4550 * reset the GPU back to its idle, low power state.
4551 */
4552 WARN_ON(dev_priv->mm.busy);
4553
673a394b 4554 return 0;
45c5f202
CW
4555
4556err:
4557 mutex_unlock(&dev->struct_mutex);
4558 return ret;
673a394b
EA
4559}
4560
6909a666 4561int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4562{
6909a666 4563 struct intel_engine_cs *ring = req->ring;
c3787e2e 4564 struct drm_device *dev = ring->dev;
3e31c6c0 4565 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4566 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4567 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4568 int i, ret;
b9524a1e 4569
040d2baa 4570 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4571 return 0;
b9524a1e 4572
5fb9de1a 4573 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4574 if (ret)
4575 return ret;
b9524a1e 4576
c3787e2e
BW
4577 /*
4578 * Note: We do not worry about the concurrent register cacheline hang
4579 * here because no other code should access these registers other than
4580 * at initialization time.
4581 */
b9524a1e 4582 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4583 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4584 intel_ring_emit(ring, reg_base + i);
4585 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4586 }
4587
c3787e2e 4588 intel_ring_advance(ring);
b9524a1e 4589
c3787e2e 4590 return ret;
b9524a1e
BW
4591}
4592
f691e2f4
DV
4593void i915_gem_init_swizzling(struct drm_device *dev)
4594{
3e31c6c0 4595 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4596
11782b02 4597 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4598 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4599 return;
4600
4601 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4602 DISP_TILE_SURFACE_SWIZZLING);
4603
11782b02
DV
4604 if (IS_GEN5(dev))
4605 return;
4606
f691e2f4
DV
4607 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4608 if (IS_GEN6(dev))
6b26c86d 4609 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4610 else if (IS_GEN7(dev))
6b26c86d 4611 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4612 else if (IS_GEN8(dev))
4613 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4614 else
4615 BUG();
f691e2f4 4616}
e21af88d 4617
81e7f200
VS
4618static void init_unused_ring(struct drm_device *dev, u32 base)
4619{
4620 struct drm_i915_private *dev_priv = dev->dev_private;
4621
4622 I915_WRITE(RING_CTL(base), 0);
4623 I915_WRITE(RING_HEAD(base), 0);
4624 I915_WRITE(RING_TAIL(base), 0);
4625 I915_WRITE(RING_START(base), 0);
4626}
4627
4628static void init_unused_rings(struct drm_device *dev)
4629{
4630 if (IS_I830(dev)) {
4631 init_unused_ring(dev, PRB1_BASE);
4632 init_unused_ring(dev, SRB0_BASE);
4633 init_unused_ring(dev, SRB1_BASE);
4634 init_unused_ring(dev, SRB2_BASE);
4635 init_unused_ring(dev, SRB3_BASE);
4636 } else if (IS_GEN2(dev)) {
4637 init_unused_ring(dev, SRB0_BASE);
4638 init_unused_ring(dev, SRB1_BASE);
4639 } else if (IS_GEN3(dev)) {
4640 init_unused_ring(dev, PRB1_BASE);
4641 init_unused_ring(dev, PRB2_BASE);
4642 }
4643}
4644
a83014d3 4645int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4646{
4fc7c971 4647 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4648 int ret;
68f95ba9 4649
5c1143bb 4650 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4651 if (ret)
b6913e4b 4652 return ret;
68f95ba9
CW
4653
4654 if (HAS_BSD(dev)) {
5c1143bb 4655 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4656 if (ret)
4657 goto cleanup_render_ring;
d1b851fc 4658 }
68f95ba9 4659
d39398f5 4660 if (HAS_BLT(dev)) {
549f7365
CW
4661 ret = intel_init_blt_ring_buffer(dev);
4662 if (ret)
4663 goto cleanup_bsd_ring;
4664 }
4665
9a8a2213
BW
4666 if (HAS_VEBOX(dev)) {
4667 ret = intel_init_vebox_ring_buffer(dev);
4668 if (ret)
4669 goto cleanup_blt_ring;
4670 }
4671
845f74a7
ZY
4672 if (HAS_BSD2(dev)) {
4673 ret = intel_init_bsd2_ring_buffer(dev);
4674 if (ret)
4675 goto cleanup_vebox_ring;
4676 }
9a8a2213 4677
4fc7c971
BW
4678 return 0;
4679
9a8a2213
BW
4680cleanup_vebox_ring:
4681 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4682cleanup_blt_ring:
4683 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4684cleanup_bsd_ring:
4685 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4686cleanup_render_ring:
4687 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4688
4689 return ret;
4690}
4691
4692int
4693i915_gem_init_hw(struct drm_device *dev)
4694{
3e31c6c0 4695 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4696 struct intel_engine_cs *ring;
4ad2fd88 4697 int ret, i, j;
4fc7c971
BW
4698
4699 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4700 return -EIO;
4701
5e4f5189
CW
4702 /* Double layer security blanket, see i915_gem_init() */
4703 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4704
59124506 4705 if (dev_priv->ellc_size)
05e21cc4 4706 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4707
0bf21347
VS
4708 if (IS_HASWELL(dev))
4709 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4710 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4711
88a2b2a3 4712 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4713 if (IS_IVYBRIDGE(dev)) {
4714 u32 temp = I915_READ(GEN7_MSG_CTL);
4715 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4716 I915_WRITE(GEN7_MSG_CTL, temp);
4717 } else if (INTEL_INFO(dev)->gen >= 7) {
4718 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4719 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4720 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4721 }
88a2b2a3
BW
4722 }
4723
4fc7c971
BW
4724 i915_gem_init_swizzling(dev);
4725
d5abdfda
DV
4726 /*
4727 * At least 830 can leave some of the unused rings
4728 * "active" (ie. head != tail) after resume which
4729 * will prevent c3 entry. Makes sure all unused rings
4730 * are totally idle.
4731 */
4732 init_unused_rings(dev);
4733
90638cc1
JH
4734 BUG_ON(!dev_priv->ring[RCS].default_context);
4735
4ad2fd88
JH
4736 ret = i915_ppgtt_init_hw(dev);
4737 if (ret) {
4738 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4739 goto out;
4740 }
4741
4742 /* Need to do basic initialisation of all rings first: */
35a57ffb
DV
4743 for_each_ring(ring, dev_priv, i) {
4744 ret = ring->init_hw(ring);
4745 if (ret)
5e4f5189 4746 goto out;
35a57ffb 4747 }
99433931 4748
33a732f4 4749 /* We can't enable contexts until all firmware is loaded */
87bcdd2e
JB
4750 if (HAS_GUC_UCODE(dev)) {
4751 ret = intel_guc_ucode_load(dev);
4752 if (ret) {
4753 /*
4754 * If we got an error and GuC submission is enabled, map
4755 * the error to -EIO so the GPU will be declared wedged.
4756 * OTOH, if we didn't intend to use the GuC anyway, just
4757 * discard the error and carry on.
4758 */
4759 DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
4760 i915.enable_guc_submission ? "" :
4761 " (ignored)");
4762 ret = i915.enable_guc_submission ? -EIO : 0;
4763 if (ret)
4764 goto out;
4765 }
33a732f4
AD
4766 }
4767
e84fe803
NH
4768 /*
4769 * Increment the next seqno by 0x100 so we have a visible break
4770 * on re-initialisation
4771 */
4772 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4773 if (ret)
4774 goto out;
4775
4ad2fd88
JH
4776 /* Now it is safe to go back round and do everything else: */
4777 for_each_ring(ring, dev_priv, i) {
dc4be607
JH
4778 struct drm_i915_gem_request *req;
4779
90638cc1
JH
4780 WARN_ON(!ring->default_context);
4781
dc4be607
JH
4782 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4783 if (ret) {
4784 i915_gem_cleanup_ringbuffer(dev);
4785 goto out;
4786 }
4787
4ad2fd88
JH
4788 if (ring->id == RCS) {
4789 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 4790 i915_gem_l3_remap(req, j);
4ad2fd88 4791 }
c3787e2e 4792
b3dd6b96 4793 ret = i915_ppgtt_init_ring(req);
4ad2fd88
JH
4794 if (ret && ret != -EIO) {
4795 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
dc4be607 4796 i915_gem_request_cancel(req);
4ad2fd88
JH
4797 i915_gem_cleanup_ringbuffer(dev);
4798 goto out;
4799 }
82460d97 4800
b3dd6b96 4801 ret = i915_gem_context_enable(req);
90638cc1
JH
4802 if (ret && ret != -EIO) {
4803 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
dc4be607 4804 i915_gem_request_cancel(req);
90638cc1
JH
4805 i915_gem_cleanup_ringbuffer(dev);
4806 goto out;
4807 }
dc4be607 4808
75289874 4809 i915_add_request_no_flush(req);
b7c36d25 4810 }
e21af88d 4811
5e4f5189
CW
4812out:
4813 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4814 return ret;
8187a2b7
ZN
4815}
4816
1070a42b
CW
4817int i915_gem_init(struct drm_device *dev)
4818{
4819 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4820 int ret;
4821
127f1003
OM
4822 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4823 i915.enable_execlists);
4824
1070a42b 4825 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4826
4827 if (IS_VALLEYVIEW(dev)) {
4828 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4829 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4830 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4831 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4832 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4833 }
4834
a83014d3 4835 if (!i915.enable_execlists) {
f3dc74c0 4836 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
4837 dev_priv->gt.init_rings = i915_gem_init_rings;
4838 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4839 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 4840 } else {
f3dc74c0 4841 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
4842 dev_priv->gt.init_rings = intel_logical_rings_init;
4843 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4844 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4845 }
4846
5e4f5189
CW
4847 /* This is just a security blanket to placate dragons.
4848 * On some systems, we very sporadically observe that the first TLBs
4849 * used by the CS may be stale, despite us poking the TLB reset. If
4850 * we hold the forcewake during initialisation these problems
4851 * just magically go away.
4852 */
4853 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4854
6c5566a8 4855 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4856 if (ret)
4857 goto out_unlock;
6c5566a8 4858
d7e5008f 4859 i915_gem_init_global_gtt(dev);
d62b4892 4860
2fa48d8d 4861 ret = i915_gem_context_init(dev);
7bcc3777
JN
4862 if (ret)
4863 goto out_unlock;
2fa48d8d 4864
35a57ffb
DV
4865 ret = dev_priv->gt.init_rings(dev);
4866 if (ret)
7bcc3777 4867 goto out_unlock;
2fa48d8d 4868
1070a42b 4869 ret = i915_gem_init_hw(dev);
60990320
CW
4870 if (ret == -EIO) {
4871 /* Allow ring initialisation to fail by marking the GPU as
4872 * wedged. But we only want to do this where the GPU is angry,
4873 * for all other failure, such as an allocation failure, bail.
4874 */
4875 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4876 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4877 ret = 0;
1070a42b 4878 }
7bcc3777
JN
4879
4880out_unlock:
5e4f5189 4881 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4882 mutex_unlock(&dev->struct_mutex);
1070a42b 4883
60990320 4884 return ret;
1070a42b
CW
4885}
4886
8187a2b7
ZN
4887void
4888i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4889{
3e31c6c0 4890 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4891 struct intel_engine_cs *ring;
1ec14ad3 4892 int i;
8187a2b7 4893
b4519513 4894 for_each_ring(ring, dev_priv, i)
a83014d3 4895 dev_priv->gt.cleanup_ring(ring);
a647828a
NB
4896
4897 if (i915.enable_execlists)
4898 /*
4899 * Neither the BIOS, ourselves or any other kernel
4900 * expects the system to be in execlists mode on startup,
4901 * so we need to reset the GPU back to legacy mode.
4902 */
4903 intel_gpu_reset(dev);
8187a2b7
ZN
4904}
4905
64193406 4906static void
a4872ba6 4907init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4908{
4909 INIT_LIST_HEAD(&ring->active_list);
4910 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4911}
4912
673a394b
EA
4913void
4914i915_gem_load(struct drm_device *dev)
4915{
3e31c6c0 4916 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4917 int i;
4918
efab6d8d 4919 dev_priv->objects =
42dcedd4
CW
4920 kmem_cache_create("i915_gem_object",
4921 sizeof(struct drm_i915_gem_object), 0,
4922 SLAB_HWCACHE_ALIGN,
4923 NULL);
e20d2ab7
CW
4924 dev_priv->vmas =
4925 kmem_cache_create("i915_gem_vma",
4926 sizeof(struct i915_vma), 0,
4927 SLAB_HWCACHE_ALIGN,
4928 NULL);
efab6d8d
CW
4929 dev_priv->requests =
4930 kmem_cache_create("i915_gem_request",
4931 sizeof(struct drm_i915_gem_request), 0,
4932 SLAB_HWCACHE_ALIGN,
4933 NULL);
673a394b 4934
fc8c067e 4935 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 4936 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4937 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4938 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4939 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4940 for (i = 0; i < I915_NUM_RINGS; i++)
4941 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4942 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4943 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4944 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4945 i915_gem_retire_work_handler);
b29c19b6
CW
4946 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4947 i915_gem_idle_work_handler);
1f83fee0 4948 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4949
72bfa19c
CW
4950 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4951
42b5aeab
VS
4952 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4953 dev_priv->num_fence_regs = 32;
4954 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4955 dev_priv->num_fence_regs = 16;
4956 else
4957 dev_priv->num_fence_regs = 8;
4958
eb82289a
YZ
4959 if (intel_vgpu_active(dev))
4960 dev_priv->num_fence_regs =
4961 I915_READ(vgtif_reg(avail_rs.fence_num));
4962
e84fe803
NH
4963 /*
4964 * Set initial sequence number for requests.
4965 * Using this number allows the wraparound to happen early,
4966 * catching any obvious problems.
4967 */
4968 dev_priv->next_seqno = ((u32)~0 - 0x1100);
4969 dev_priv->last_seqno = ((u32)~0 - 0x1101);
4970
b5aa8a0f 4971 /* Initialize fence registers to zero */
19b2dbde
CW
4972 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4973 i915_gem_restore_fences(dev);
10ed13e4 4974
673a394b 4975 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4976 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4977
ce453d81
CW
4978 dev_priv->mm.interruptible = true;
4979
be6a0376 4980 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
4981
4982 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 4983}
71acb5eb 4984
f787a5f5 4985void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4986{
f787a5f5 4987 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4988
4989 /* Clean up our request list when the client is going away, so that
4990 * later retire_requests won't dereference our soon-to-be-gone
4991 * file_priv.
4992 */
1c25595f 4993 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4994 while (!list_empty(&file_priv->mm.request_list)) {
4995 struct drm_i915_gem_request *request;
4996
4997 request = list_first_entry(&file_priv->mm.request_list,
4998 struct drm_i915_gem_request,
4999 client_list);
5000 list_del(&request->client_list);
5001 request->file_priv = NULL;
5002 }
1c25595f 5003 spin_unlock(&file_priv->mm.lock);
b29c19b6 5004
2e1b8730 5005 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5006 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5007 list_del(&file_priv->rps.link);
8d3afd7d 5008 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5009 }
b29c19b6
CW
5010}
5011
5012int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5013{
5014 struct drm_i915_file_private *file_priv;
e422b888 5015 int ret;
b29c19b6
CW
5016
5017 DRM_DEBUG_DRIVER("\n");
5018
5019 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5020 if (!file_priv)
5021 return -ENOMEM;
5022
5023 file->driver_priv = file_priv;
5024 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5025 file_priv->file = file;
2e1b8730 5026 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5027
5028 spin_lock_init(&file_priv->mm.lock);
5029 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5030
e422b888
BW
5031 ret = i915_gem_context_open(dev, file);
5032 if (ret)
5033 kfree(file_priv);
b29c19b6 5034
e422b888 5035 return ret;
b29c19b6
CW
5036}
5037
b680c37a
DV
5038/**
5039 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5040 * @old: current GEM buffer for the frontbuffer slots
5041 * @new: new GEM buffer for the frontbuffer slots
5042 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5043 *
5044 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5045 * from @old and setting them in @new. Both @old and @new can be NULL.
5046 */
a071fa00
DV
5047void i915_gem_track_fb(struct drm_i915_gem_object *old,
5048 struct drm_i915_gem_object *new,
5049 unsigned frontbuffer_bits)
5050{
5051 if (old) {
5052 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5053 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5054 old->frontbuffer_bits &= ~frontbuffer_bits;
5055 }
5056
5057 if (new) {
5058 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5059 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5060 new->frontbuffer_bits |= frontbuffer_bits;
5061 }
5062}
5063
a70a3148 5064/* All the new VM stuff */
088e0df4
MT
5065u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5066 struct i915_address_space *vm)
a70a3148
BW
5067{
5068 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5069 struct i915_vma *vma;
5070
896ab1a5 5071 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5072
a70a3148 5073 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5074 if (i915_is_ggtt(vma->vm) &&
5075 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5076 continue;
5077 if (vma->vm == vm)
a70a3148 5078 return vma->node.start;
a70a3148 5079 }
ec7adb6e 5080
f25748ea
DV
5081 WARN(1, "%s vma for this object not found.\n",
5082 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5083 return -1;
5084}
5085
088e0df4
MT
5086u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5087 const struct i915_ggtt_view *view)
a70a3148 5088{
ec7adb6e 5089 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5090 struct i915_vma *vma;
5091
5092 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5093 if (vma->vm == ggtt &&
5094 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5095 return vma->node.start;
5096
5678ad73 5097 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5098 return -1;
5099}
5100
5101bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5102 struct i915_address_space *vm)
5103{
5104 struct i915_vma *vma;
5105
5106 list_for_each_entry(vma, &o->vma_list, vma_link) {
5107 if (i915_is_ggtt(vma->vm) &&
5108 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5109 continue;
5110 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5111 return true;
5112 }
5113
5114 return false;
5115}
5116
5117bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5118 const struct i915_ggtt_view *view)
ec7adb6e
JL
5119{
5120 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5121 struct i915_vma *vma;
5122
5123 list_for_each_entry(vma, &o->vma_list, vma_link)
5124 if (vma->vm == ggtt &&
9abc4648 5125 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5126 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5127 return true;
5128
5129 return false;
5130}
5131
5132bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5133{
5a1d5eb0 5134 struct i915_vma *vma;
a70a3148 5135
5a1d5eb0
CW
5136 list_for_each_entry(vma, &o->vma_list, vma_link)
5137 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5138 return true;
5139
5140 return false;
5141}
5142
5143unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5144 struct i915_address_space *vm)
5145{
5146 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5147 struct i915_vma *vma;
5148
896ab1a5 5149 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5150
5151 BUG_ON(list_empty(&o->vma_list));
5152
ec7adb6e
JL
5153 list_for_each_entry(vma, &o->vma_list, vma_link) {
5154 if (i915_is_ggtt(vma->vm) &&
5155 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5156 continue;
a70a3148
BW
5157 if (vma->vm == vm)
5158 return vma->node.size;
ec7adb6e 5159 }
a70a3148
BW
5160 return 0;
5161}
5162
ec7adb6e 5163bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5164{
5165 struct i915_vma *vma;
a6631ae1 5166 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5167 if (vma->pin_count > 0)
5168 return true;
a6631ae1 5169
ec7adb6e 5170 return false;
5c2abbea 5171}
ea70299d
DG
5172
5173/* Allocate a new GEM object and fill it with the supplied data */
5174struct drm_i915_gem_object *
5175i915_gem_object_create_from_data(struct drm_device *dev,
5176 const void *data, size_t size)
5177{
5178 struct drm_i915_gem_object *obj;
5179 struct sg_table *sg;
5180 size_t bytes;
5181 int ret;
5182
5183 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5184 if (IS_ERR_OR_NULL(obj))
5185 return obj;
5186
5187 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5188 if (ret)
5189 goto fail;
5190
5191 ret = i915_gem_object_get_pages(obj);
5192 if (ret)
5193 goto fail;
5194
5195 i915_gem_object_pin_pages(obj);
5196 sg = obj->pages;
5197 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5198 i915_gem_object_unpin_pages(obj);
5199
5200 if (WARN_ON(bytes != size)) {
5201 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5202 ret = -EFAULT;
5203 goto fail;
5204 }
5205
5206 return obj;
5207
5208fail:
5209 drm_gem_object_unreference(&obj->base);
5210 return ERR_PTR(ret);
5211}