]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem_execbuffer.c
drm/i915: First try the previous execbuffer location
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
CommitLineData
54cf91dc
CW
1/*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
ad778f89
CW
29#include <linux/dma_remapping.h>
30#include <linux/reservation.h>
fec0445c 31#include <linux/sync_file.h>
ad778f89
CW
32#include <linux/uaccess.h>
33
760285e7
DH
34#include <drm/drmP.h>
35#include <drm/i915_drm.h>
ad778f89 36
54cf91dc 37#include "i915_drv.h"
57822dc6 38#include "i915_gem_clflush.h"
54cf91dc
CW
39#include "i915_trace.h"
40#include "intel_drv.h"
5d723d7a 41#include "intel_frontbuffer.h"
54cf91dc 42
d50415cc
CW
43#define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */
44
dade2a61
CW
45#define __EXEC_OBJECT_HAS_REF BIT(31)
46#define __EXEC_OBJECT_HAS_PIN BIT(30)
47#define __EXEC_OBJECT_HAS_FENCE BIT(29)
48#define __EXEC_OBJECT_NEEDS_MAP BIT(28)
49#define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
50#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
2889caa9
CW
51#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
52
53#define __EXEC_HAS_RELOC BIT(31)
54#define __EXEC_VALIDATED BIT(30)
55#define UPDATE PIN_OFFSET_FIXED
d23db88c
CW
56
57#define BATCH_OFFSET_BIAS (256*1024)
a415d355 58
650bc635
CW
59#define __I915_EXEC_ILLEGAL_FLAGS \
60 (__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
5b043f4e 61
2889caa9
CW
62/**
63 * DOC: User command execution
64 *
65 * Userspace submits commands to be executed on the GPU as an instruction
66 * stream within a GEM object we call a batchbuffer. This instructions may
67 * refer to other GEM objects containing auxiliary state such as kernels,
68 * samplers, render targets and even secondary batchbuffers. Userspace does
69 * not know where in the GPU memory these objects reside and so before the
70 * batchbuffer is passed to the GPU for execution, those addresses in the
71 * batchbuffer and auxiliary objects are updated. This is known as relocation,
72 * or patching. To try and avoid having to relocate each object on the next
73 * execution, userspace is told the location of those objects in this pass,
74 * but this remains just a hint as the kernel may choose a new location for
75 * any object in the future.
76 *
77 * Processing an execbuf ioctl is conceptually split up into a few phases.
78 *
79 * 1. Validation - Ensure all the pointers, handles and flags are valid.
80 * 2. Reservation - Assign GPU address space for every object
81 * 3. Relocation - Update any addresses to point to the final locations
82 * 4. Serialisation - Order the request with respect to its dependencies
83 * 5. Construction - Construct a request to execute the batchbuffer
84 * 6. Submission (at some point in the future execution)
85 *
86 * Reserving resources for the execbuf is the most complicated phase. We
87 * neither want to have to migrate the object in the address space, nor do
88 * we want to have to update any relocations pointing to this object. Ideally,
89 * we want to leave the object where it is and for all the existing relocations
90 * to match. If the object is given a new address, or if userspace thinks the
91 * object is elsewhere, we have to parse all the relocation entries and update
92 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
93 * all the target addresses in all of its objects match the value in the
94 * relocation entries and that they all match the presumed offsets given by the
95 * list of execbuffer objects. Using this knowledge, we know that if we haven't
96 * moved any buffers, all the relocation entries are valid and we can skip
97 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
98 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
99 *
100 * The addresses written in the objects must match the corresponding
101 * reloc.presumed_offset which in turn must match the corresponding
102 * execobject.offset.
103 *
104 * Any render targets written to in the batch must be flagged with
105 * EXEC_OBJECT_WRITE.
106 *
107 * To avoid stalling, execobject.offset should match the current
108 * address of that object within the active context.
109 *
110 * The reservation is done is multiple phases. First we try and keep any
111 * object already bound in its current location - so as long as meets the
112 * constraints imposed by the new execbuffer. Any object left unbound after the
113 * first pass is then fitted into any available idle space. If an object does
114 * not fit, all objects are removed from the reservation and the process rerun
115 * after sorting the objects into a priority order (more difficult to fit
116 * objects are tried first). Failing that, the entire VM is cleared and we try
117 * to fit the execbuf once last time before concluding that it simply will not
118 * fit.
119 *
120 * A small complication to all of this is that we allow userspace not only to
121 * specify an alignment and a size for the object in the address space, but
122 * we also allow userspace to specify the exact offset. This objects are
123 * simpler to place (the location is known a priori) all we have to do is make
124 * sure the space is available.
125 *
126 * Once all the objects are in place, patching up the buried pointers to point
127 * to the final locations is a fairly simple job of walking over the relocation
128 * entry arrays, looking up the right address and rewriting the value into
129 * the object. Simple! ... The relocation entries are stored in user memory
130 * and so to access them we have to copy them into a local buffer. That copy
131 * has to avoid taking any pagefaults as they may lead back to a GEM object
132 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
133 * the relocation into multiple passes. First we try to do everything within an
134 * atomic context (avoid the pagefaults) which requires that we never wait. If
135 * we detect that we may wait, or if we need to fault, then we have to fallback
136 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
137 * bells yet?) Dropping the mutex means that we lose all the state we have
138 * built up so far for the execbuf and we must reset any global data. However,
139 * we do leave the objects pinned in their final locations - which is a
140 * potential issue for concurrent execbufs. Once we have left the mutex, we can
141 * allocate and copy all the relocation entries into a large array at our
142 * leisure, reacquire the mutex, reclaim all the objects and other state and
143 * then proceed to update any incorrect addresses with the objects.
144 *
145 * As we process the relocation entries, we maintain a record of whether the
146 * object is being written to. Using NORELOC, we expect userspace to provide
147 * this information instead. We also check whether we can skip the relocation
148 * by comparing the expected value inside the relocation entry with the target's
149 * final address. If they differ, we have to map the current object and rewrite
150 * the 4 or 8 byte pointer within.
151 *
152 * Serialising an execbuf is quite simple according to the rules of the GEM
153 * ABI. Execution within each context is ordered by the order of submission.
154 * Writes to any GEM object are in order of submission and are exclusive. Reads
155 * from a GEM object are unordered with respect to other reads, but ordered by
156 * writes. A write submitted after a read cannot occur before the read, and
157 * similarly any read submitted after a write cannot occur before the write.
158 * Writes are ordered between engines such that only one write occurs at any
159 * time (completing any reads beforehand) - using semaphores where available
160 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
161 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
162 * reads before starting, and any read (either using set-domain or pread) must
163 * flush all GPU writes before starting. (Note we only employ a barrier before,
164 * we currently rely on userspace not concurrently starting a new execution
165 * whilst reading or writing to an object. This may be an advantage or not
166 * depending on how much you trust userspace not to shoot themselves in the
167 * foot.) Serialisation may just result in the request being inserted into
168 * a DAG awaiting its turn, but most simple is to wait on the CPU until
169 * all dependencies are resolved.
170 *
171 * After all of that, is just a matter of closing the request and handing it to
172 * the hardware (well, leaving it in a queue to be executed). However, we also
173 * offer the ability for batchbuffers to be run with elevated privileges so
174 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
175 * Before any batch is given extra privileges we first must check that it
176 * contains no nefarious instructions, we check that each instruction is from
177 * our whitelist and all registers are also from an allowed list. We first
178 * copy the user's batchbuffer to a shadow (so that the user doesn't have
179 * access to it, either by the CPU or GPU as we scan it) and then parse each
180 * instruction. If everything is ok, we set a flag telling the hardware to run
181 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
182 */
183
650bc635 184struct i915_execbuffer {
2889caa9
CW
185 struct drm_i915_private *i915; /** i915 backpointer */
186 struct drm_file *file; /** per-file lookup tables and limits */
187 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
188 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
189
190 struct intel_engine_cs *engine; /** engine to queue the request to */
191 struct i915_gem_context *ctx; /** context for building the request */
192 struct i915_address_space *vm; /** GTT and vma for the request */
193
194 struct drm_i915_gem_request *request; /** our request to build */
195 struct i915_vma *batch; /** identity of the batch obj/vma */
196
197 /** actual size of execobj[] as we may extend it for the cmdparser */
198 unsigned int buffer_count;
199
200 /** list of vma not yet bound during reservation phase */
201 struct list_head unbound;
202
203 /** list of vma that have execobj.relocation_count */
204 struct list_head relocs;
205
206 /**
207 * Track the most recently used object for relocations, as we
208 * frequently have to perform multiple relocations within the same
209 * obj/page
210 */
650bc635 211 struct reloc_cache {
2889caa9
CW
212 struct drm_mm_node node; /** temporary GTT binding */
213 unsigned long vaddr; /** Current kmap address */
214 unsigned long page; /** Currently mapped page index */
650bc635 215 bool use_64bit_reloc : 1;
2889caa9
CW
216 bool has_llc : 1;
217 bool has_fence : 1;
218 bool needs_unfenced : 1;
650bc635 219 } reloc_cache;
2889caa9
CW
220
221 u64 invalid_flags; /** Set of execobj.flags that are invalid */
222 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
223
224 u32 batch_start_offset; /** Location within object of batch */
225 u32 batch_len; /** Length of batch within object */
226 u32 batch_flags; /** Flags composed for emit_bb_start() */
227
228 /**
229 * Indicate either the size of the hastable used to resolve
230 * relocation handles, or if negative that we are using a direct
231 * index into the execobj[].
232 */
233 int lut_size;
234 struct hlist_head *buckets; /** ht for relocation handles */
67731b87
CW
235};
236
4ff4b44c
CW
237/*
238 * As an alternative to creating a hashtable of handle-to-vma for a batch,
239 * we used the last available reserved field in the execobject[] and stash
240 * a link from the execobj to its vma.
241 */
242#define __exec_to_vma(ee) (ee)->rsvd2
243#define exec_to_vma(ee) u64_to_ptr(struct i915_vma, __exec_to_vma(ee))
244
2889caa9
CW
245/*
246 * Used to convert any address to canonical form.
247 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
248 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
249 * addresses to be in a canonical form:
250 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
251 * canonical form [63:48] == [47]."
252 */
253#define GEN8_HIGH_ADDRESS_BIT 47
254static inline u64 gen8_canonical_addr(u64 address)
255{
256 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
257}
258
259static inline u64 gen8_noncanonical_addr(u64 address)
260{
261 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
262}
263
650bc635 264static int eb_create(struct i915_execbuffer *eb)
67731b87 265{
2889caa9
CW
266 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
267 unsigned int size = 1 + ilog2(eb->buffer_count);
4ff4b44c 268
2889caa9
CW
269 /*
270 * Without a 1:1 association between relocation handles and
271 * the execobject[] index, we instead create a hashtable.
272 * We size it dynamically based on available memory, starting
273 * first with 1:1 assocative hash and scaling back until
274 * the allocation succeeds.
275 *
276 * Later on we use a positive lut_size to indicate we are
277 * using this hashtable, and a negative value to indicate a
278 * direct lookup.
279 */
4ff4b44c
CW
280 do {
281 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
282 GFP_TEMPORARY |
283 __GFP_NORETRY |
284 __GFP_NOWARN);
285 if (eb->buckets)
286 break;
287 } while (--size);
288
289 if (unlikely(!eb->buckets)) {
290 eb->buckets = kzalloc(sizeof(struct hlist_head),
291 GFP_TEMPORARY);
292 if (unlikely(!eb->buckets))
293 return -ENOMEM;
294 }
eef90ccb 295
2889caa9 296 eb->lut_size = size;
650bc635 297 } else {
2889caa9 298 eb->lut_size = -eb->buffer_count;
650bc635 299 }
eef90ccb 300
650bc635 301 return 0;
67731b87
CW
302}
303
2889caa9
CW
304static bool
305eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
306 const struct i915_vma *vma)
307{
308 if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
309 return true;
310
311 if (vma->node.size < entry->pad_to_size)
312 return true;
313
314 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
315 return true;
316
317 if (entry->flags & EXEC_OBJECT_PINNED &&
318 vma->node.start != entry->offset)
319 return true;
320
321 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
322 vma->node.start < BATCH_OFFSET_BIAS)
323 return true;
324
325 if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
326 (vma->node.start + vma->node.size - 1) >> 32)
327 return true;
328
329 return false;
330}
331
332static inline void
333eb_pin_vma(struct i915_execbuffer *eb,
334 struct drm_i915_gem_exec_object2 *entry,
335 struct i915_vma *vma)
336{
337 u64 flags;
338
616d9cee
CW
339 if (vma->node.size)
340 flags = vma->node.start;
341 else
342 flags = entry->offset & PIN_OFFSET_MASK;
343
344 flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
2889caa9
CW
345 if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_GTT))
346 flags |= PIN_GLOBAL;
616d9cee 347
2889caa9
CW
348 if (unlikely(i915_vma_pin(vma, 0, 0, flags)))
349 return;
350
351 if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
352 if (unlikely(i915_vma_get_fence(vma))) {
353 i915_vma_unpin(vma);
354 return;
355 }
356
357 if (i915_vma_pin_fence(vma))
358 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
359 }
360
361 entry->flags |= __EXEC_OBJECT_HAS_PIN;
362}
363
d55495b4
CW
364static inline void
365__eb_unreserve_vma(struct i915_vma *vma,
366 const struct drm_i915_gem_exec_object2 *entry)
367{
2889caa9
CW
368 GEM_BUG_ON(!(entry->flags & __EXEC_OBJECT_HAS_PIN));
369
d55495b4
CW
370 if (unlikely(entry->flags & __EXEC_OBJECT_HAS_FENCE))
371 i915_vma_unpin_fence(vma);
372
2889caa9 373 __i915_vma_unpin(vma);
d55495b4
CW
374}
375
2889caa9
CW
376static inline void
377eb_unreserve_vma(struct i915_vma *vma,
378 struct drm_i915_gem_exec_object2 *entry)
d55495b4 379{
2889caa9
CW
380 if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
381 return;
d55495b4
CW
382
383 __eb_unreserve_vma(vma, entry);
2889caa9 384 entry->flags &= ~__EXEC_OBJECT_RESERVED;
d55495b4
CW
385}
386
2889caa9
CW
387static int
388eb_validate_vma(struct i915_execbuffer *eb,
389 struct drm_i915_gem_exec_object2 *entry,
390 struct i915_vma *vma)
67731b87 391{
2889caa9
CW
392 if (unlikely(entry->flags & eb->invalid_flags))
393 return -EINVAL;
d55495b4 394
2889caa9
CW
395 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
396 return -EINVAL;
397
398 /*
399 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
400 * any non-page-aligned or non-canonical addresses.
401 */
402 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
403 entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
404 return -EINVAL;
405
406 /* pad_to_size was once a reserved field, so sanitize it */
407 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
408 if (unlikely(offset_in_page(entry->pad_to_size)))
409 return -EINVAL;
410 } else {
411 entry->pad_to_size = 0;
d55495b4
CW
412 }
413
2889caa9
CW
414 if (unlikely(vma->exec_entry)) {
415 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
416 entry->handle, (int)(entry - eb->exec));
417 return -EINVAL;
418 }
419
420 /*
421 * From drm_mm perspective address space is continuous,
422 * so from this point we're always using non-canonical
423 * form internally.
424 */
425 entry->offset = gen8_noncanonical_addr(entry->offset);
426
427 return 0;
67731b87
CW
428}
429
2889caa9
CW
430static int
431eb_add_vma(struct i915_execbuffer *eb,
432 struct drm_i915_gem_exec_object2 *entry,
433 struct i915_vma *vma)
59bfa124 434{
2889caa9
CW
435 int err;
436
437 GEM_BUG_ON(i915_vma_is_closed(vma));
438
439 if (!(eb->args->flags & __EXEC_VALIDATED)) {
440 err = eb_validate_vma(eb, entry, vma);
441 if (unlikely(err))
442 return err;
4ff4b44c 443 }
4ff4b44c 444
2889caa9
CW
445 if (eb->lut_size >= 0) {
446 vma->exec_handle = entry->handle;
4ff4b44c 447 hlist_add_head(&vma->exec_node,
2889caa9
CW
448 &eb->buckets[hash_32(entry->handle,
449 eb->lut_size)]);
4ff4b44c 450 }
59bfa124 451
2889caa9
CW
452 if (entry->relocation_count)
453 list_add_tail(&vma->reloc_link, &eb->relocs);
454
455 if (!eb->reloc_cache.has_fence) {
456 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
457 } else {
458 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
459 eb->reloc_cache.needs_unfenced) &&
460 i915_gem_object_is_tiled(vma->obj))
461 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
462 }
463
464 if (!(entry->flags & EXEC_OBJECT_PINNED))
465 entry->flags |= eb->context_flags;
466
467 /*
468 * Stash a pointer from the vma to execobj, so we can query its flags,
469 * size, alignment etc as provided by the user. Also we stash a pointer
470 * to the vma inside the execobj so that we can use a direct lookup
471 * to find the right target VMA when doing relocations.
472 */
473 vma->exec_entry = entry;
dade2a61 474 __exec_to_vma(entry) = (uintptr_t)vma;
2889caa9
CW
475
476 err = 0;
616d9cee 477 eb_pin_vma(eb, entry, vma);
2889caa9
CW
478 if (eb_vma_misplaced(entry, vma)) {
479 eb_unreserve_vma(vma, entry);
480
481 list_add_tail(&vma->exec_link, &eb->unbound);
482 if (drm_mm_node_allocated(&vma->node))
483 err = i915_vma_unbind(vma);
484 } else {
485 if (entry->offset != vma->node.start) {
486 entry->offset = vma->node.start | UPDATE;
487 eb->args->flags |= __EXEC_HAS_RELOC;
488 }
489 }
490 return err;
491}
492
493static inline int use_cpu_reloc(const struct reloc_cache *cache,
494 const struct drm_i915_gem_object *obj)
495{
496 if (!i915_gem_object_has_struct_page(obj))
497 return false;
498
499 if (DBG_USE_CPU_RELOC)
500 return DBG_USE_CPU_RELOC > 0;
501
502 return (cache->has_llc ||
503 obj->cache_dirty ||
504 obj->cache_level != I915_CACHE_NONE);
505}
506
507static int eb_reserve_vma(const struct i915_execbuffer *eb,
508 struct i915_vma *vma)
509{
510 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
511 u64 flags;
512 int err;
513
514 flags = PIN_USER | PIN_NONBLOCK;
515 if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
516 flags |= PIN_GLOBAL;
517
518 /*
519 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
520 * limit address to the first 4GBs for unflagged objects.
521 */
522 if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
523 flags |= PIN_ZONE_4G;
524
525 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
526 flags |= PIN_MAPPABLE;
527
528 if (entry->flags & EXEC_OBJECT_PINNED) {
529 flags |= entry->offset | PIN_OFFSET_FIXED;
530 flags &= ~PIN_NONBLOCK; /* force overlapping PINNED checks */
531 } else if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS) {
532 flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
533 }
534
535 err = i915_vma_pin(vma, entry->pad_to_size, entry->alignment, flags);
536 if (err)
537 return err;
538
539 if (entry->offset != vma->node.start) {
540 entry->offset = vma->node.start | UPDATE;
541 eb->args->flags |= __EXEC_HAS_RELOC;
542 }
543
544 entry->flags |= __EXEC_OBJECT_HAS_PIN;
545 GEM_BUG_ON(eb_vma_misplaced(entry, vma));
546
547 if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
548 err = i915_vma_get_fence(vma);
549 if (unlikely(err)) {
550 i915_vma_unpin(vma);
551 return err;
552 }
553
554 if (i915_vma_pin_fence(vma))
555 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
556 }
557
558 return 0;
559}
560
561static int eb_reserve(struct i915_execbuffer *eb)
562{
563 const unsigned int count = eb->buffer_count;
564 struct list_head last;
565 struct i915_vma *vma;
566 unsigned int i, pass;
567 int err;
568
569 /*
570 * Attempt to pin all of the buffers into the GTT.
571 * This is done in 3 phases:
572 *
573 * 1a. Unbind all objects that do not match the GTT constraints for
574 * the execbuffer (fenceable, mappable, alignment etc).
575 * 1b. Increment pin count for already bound objects.
576 * 2. Bind new objects.
577 * 3. Decrement pin count.
578 *
579 * This avoid unnecessary unbinding of later objects in order to make
580 * room for the earlier objects *unless* we need to defragment.
581 */
582
583 pass = 0;
584 err = 0;
585 do {
586 list_for_each_entry(vma, &eb->unbound, exec_link) {
587 err = eb_reserve_vma(eb, vma);
588 if (err)
589 break;
590 }
591 if (err != -ENOSPC)
592 return err;
593
594 /* Resort *all* the objects into priority order */
595 INIT_LIST_HEAD(&eb->unbound);
596 INIT_LIST_HEAD(&last);
597 for (i = 0; i < count; i++) {
598 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
599
600 if (entry->flags & EXEC_OBJECT_PINNED &&
601 entry->flags & __EXEC_OBJECT_HAS_PIN)
602 continue;
603
604 vma = exec_to_vma(entry);
605 eb_unreserve_vma(vma, entry);
606
607 if (entry->flags & EXEC_OBJECT_PINNED)
608 list_add(&vma->exec_link, &eb->unbound);
609 else if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
610 list_add_tail(&vma->exec_link, &eb->unbound);
611 else
612 list_add_tail(&vma->exec_link, &last);
613 }
614 list_splice_tail(&last, &eb->unbound);
615
616 switch (pass++) {
617 case 0:
618 break;
619
620 case 1:
621 /* Too fragmented, unbind everything and retry */
622 err = i915_gem_evict_vm(eb->vm);
623 if (err)
624 return err;
625 break;
626
627 default:
628 return -ENOSPC;
629 }
630 } while (1);
4ff4b44c 631}
59bfa124 632
4ff4b44c 633static inline struct hlist_head *
2889caa9 634ht_head(const struct i915_gem_context_vma_lut *lut, u32 handle)
4ff4b44c 635{
2889caa9 636 return &lut->ht[hash_32(handle, lut->ht_bits)];
4ff4b44c
CW
637}
638
639static inline bool
2889caa9 640ht_needs_resize(const struct i915_gem_context_vma_lut *lut)
4ff4b44c 641{
2889caa9
CW
642 return (4*lut->ht_count > 3*lut->ht_size ||
643 4*lut->ht_count + 1 < lut->ht_size);
59bfa124
CW
644}
645
2889caa9
CW
646static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
647{
648 return eb->buffer_count - 1;
649}
650
651static int eb_select_context(struct i915_execbuffer *eb)
652{
653 struct i915_gem_context *ctx;
654
655 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
656 if (unlikely(IS_ERR(ctx)))
657 return PTR_ERR(ctx);
658
659 if (unlikely(i915_gem_context_is_banned(ctx))) {
660 DRM_DEBUG("Context %u tried to submit while banned\n",
661 ctx->user_handle);
662 return -EIO;
663 }
664
665 eb->ctx = i915_gem_context_get(ctx);
666 eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;
667
668 eb->context_flags = 0;
669 if (ctx->flags & CONTEXT_NO_ZEROMAP)
670 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
671
672 return 0;
673}
674
675static int eb_lookup_vmas(struct i915_execbuffer *eb)
3b96eff4 676{
4ff4b44c 677#define INTERMEDIATE BIT(0)
2889caa9
CW
678 const unsigned int count = eb->buffer_count;
679 struct i915_gem_context_vma_lut *lut = &eb->ctx->vma_lut;
4ff4b44c 680 struct i915_vma *vma;
2889caa9
CW
681 struct idr *idr;
682 unsigned int i;
4ff4b44c 683 int slow_pass = -1;
2889caa9 684 int err;
3b96eff4 685
2889caa9
CW
686 INIT_LIST_HEAD(&eb->relocs);
687 INIT_LIST_HEAD(&eb->unbound);
d55495b4 688
2889caa9
CW
689 if (unlikely(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS))
690 flush_work(&lut->resize);
691 GEM_BUG_ON(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS);
4ff4b44c
CW
692
693 for (i = 0; i < count; i++) {
694 __exec_to_vma(&eb->exec[i]) = 0;
695
696 hlist_for_each_entry(vma,
2889caa9 697 ht_head(lut, eb->exec[i].handle),
4ff4b44c
CW
698 ctx_node) {
699 if (vma->ctx_handle != eb->exec[i].handle)
700 continue;
701
2889caa9
CW
702 err = eb_add_vma(eb, &eb->exec[i], vma);
703 if (unlikely(err))
704 return err;
4ff4b44c
CW
705
706 goto next_vma;
707 }
708
709 if (slow_pass < 0)
710 slow_pass = i;
711next_vma: ;
712 }
713
714 if (slow_pass < 0)
2889caa9 715 goto out;
4ff4b44c 716
650bc635 717 spin_lock(&eb->file->table_lock);
2889caa9
CW
718 /*
719 * Grab a reference to the object and release the lock so we can lookup
720 * or create the VMA without using GFP_ATOMIC
721 */
722 idr = &eb->file->object_idr;
4ff4b44c
CW
723 for (i = slow_pass; i < count; i++) {
724 struct drm_i915_gem_object *obj;
3b96eff4 725
4ff4b44c
CW
726 if (__exec_to_vma(&eb->exec[i]))
727 continue;
728
2889caa9 729 obj = to_intel_bo(idr_find(idr, eb->exec[i].handle));
4ff4b44c 730 if (unlikely(!obj)) {
650bc635 731 spin_unlock(&eb->file->table_lock);
4ff4b44c
CW
732 DRM_DEBUG("Invalid object handle %d at index %d\n",
733 eb->exec[i].handle, i);
2889caa9
CW
734 err = -ENOENT;
735 goto err;
3b96eff4
CW
736 }
737
4ff4b44c 738 __exec_to_vma(&eb->exec[i]) = INTERMEDIATE | (uintptr_t)obj;
27173f1f 739 }
650bc635 740 spin_unlock(&eb->file->table_lock);
3b96eff4 741
4ff4b44c
CW
742 for (i = slow_pass; i < count; i++) {
743 struct drm_i915_gem_object *obj;
6f65e29a 744
2889caa9 745 if (!(__exec_to_vma(&eb->exec[i]) & INTERMEDIATE))
4ff4b44c 746 continue;
9ae9ab52 747
e656a6cb
DV
748 /*
749 * NOTE: We can leak any vmas created here when something fails
750 * later on. But that's no issue since vma_unbind can deal with
751 * vmas which are not actually bound. And since only
752 * lookup_or_create exists as an interface to get at the vma
753 * from the (obj, vm) we don't run the risk of creating
754 * duplicated vmas for the same vm.
755 */
2889caa9 756 obj = u64_to_ptr(typeof(*obj),
4ff4b44c 757 __exec_to_vma(&eb->exec[i]) & ~INTERMEDIATE);
650bc635 758 vma = i915_vma_instance(obj, eb->vm, NULL);
058d88c4 759 if (unlikely(IS_ERR(vma))) {
27173f1f 760 DRM_DEBUG("Failed to lookup VMA\n");
2889caa9
CW
761 err = PTR_ERR(vma);
762 goto err;
27173f1f
BW
763 }
764
4ff4b44c
CW
765 /* First come, first served */
766 if (!vma->ctx) {
767 vma->ctx = eb->ctx;
768 vma->ctx_handle = eb->exec[i].handle;
769 hlist_add_head(&vma->ctx_node,
2889caa9
CW
770 ht_head(lut, eb->exec[i].handle));
771 lut->ht_count++;
772 lut->ht_size |= I915_CTX_RESIZE_IN_PROGRESS;
4ff4b44c
CW
773 if (i915_vma_is_ggtt(vma)) {
774 GEM_BUG_ON(obj->vma_hashed);
775 obj->vma_hashed = vma;
776 }
dade2a61
CW
777
778 i915_vma_get(vma);
eef90ccb 779 }
4ff4b44c 780
2889caa9
CW
781 err = eb_add_vma(eb, &eb->exec[i], vma);
782 if (unlikely(err))
783 goto err;
dade2a61
CW
784
785 /* Only after we validated the user didn't use our bits */
786 if (vma->ctx != eb->ctx) {
787 i915_vma_get(vma);
788 eb->exec[i].flags |= __EXEC_OBJECT_HAS_REF;
789 }
4ff4b44c
CW
790 }
791
2889caa9
CW
792 if (lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS) {
793 if (ht_needs_resize(lut))
794 queue_work(system_highpri_wq, &lut->resize);
795 else
796 lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
3b96eff4 797 }
3b96eff4 798
2889caa9
CW
799out:
800 /* take note of the batch buffer before we might reorder the lists */
801 i = eb_batch_index(eb);
802 eb->batch = exec_to_vma(&eb->exec[i]);
27173f1f 803
9ae9ab52 804 /*
4ff4b44c
CW
805 * SNA is doing fancy tricks with compressing batch buffers, which leads
806 * to negative relocation deltas. Usually that works out ok since the
807 * relocate address is still positive, except when the batch is placed
808 * very low in the GTT. Ensure this doesn't happen.
809 *
810 * Note that actual hangs have only been observed on gen7, but for
811 * paranoia do it everywhere.
9ae9ab52 812 */
2889caa9
CW
813 if (!(eb->exec[i].flags & EXEC_OBJECT_PINNED))
814 eb->exec[i].flags |= __EXEC_OBJECT_NEEDS_BIAS;
815 if (eb->reloc_cache.has_fence)
816 eb->exec[i].flags |= EXEC_OBJECT_NEEDS_FENCE;
9ae9ab52 817
2889caa9
CW
818 eb->args->flags |= __EXEC_VALIDATED;
819 return eb_reserve(eb);
820
821err:
822 for (i = slow_pass; i < count; i++) {
823 if (__exec_to_vma(&eb->exec[i]) & INTERMEDIATE)
824 __exec_to_vma(&eb->exec[i]) = 0;
825 }
826 lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
827 return err;
828#undef INTERMEDIATE
3b96eff4
CW
829}
830
4ff4b44c 831static struct i915_vma *
2889caa9 832eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
67731b87 833{
2889caa9
CW
834 if (eb->lut_size < 0) {
835 if (handle >= -eb->lut_size)
eef90ccb 836 return NULL;
4ff4b44c 837 return exec_to_vma(&eb->exec[handle]);
eef90ccb
CW
838 } else {
839 struct hlist_head *head;
aa45950b 840 struct i915_vma *vma;
67731b87 841
2889caa9 842 head = &eb->buckets[hash_32(handle, eb->lut_size)];
aa45950b 843 hlist_for_each_entry(vma, head, exec_node) {
27173f1f
BW
844 if (vma->exec_handle == handle)
845 return vma;
eef90ccb
CW
846 }
847 return NULL;
848 }
67731b87
CW
849}
850
2889caa9 851static void eb_release_vmas(const struct i915_execbuffer *eb)
a415d355 852{
2889caa9
CW
853 const unsigned int count = eb->buffer_count;
854 unsigned int i;
855
856 for (i = 0; i < count; i++) {
857 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
858 struct i915_vma *vma = exec_to_vma(entry);
650bc635 859
2889caa9 860 if (!vma)
d55495b4 861 continue;
bcffc3fa 862
2889caa9 863 GEM_BUG_ON(vma->exec_entry != entry);
172ae5b4 864 vma->exec_entry = NULL;
9e53d9be 865
dade2a61
CW
866 if (entry->flags & __EXEC_OBJECT_HAS_PIN)
867 __eb_unreserve_vma(vma, entry);
868
869 if (entry->flags & __EXEC_OBJECT_HAS_REF)
870 i915_vma_put(vma);
d50415cc 871
dade2a61
CW
872 entry->flags &=
873 ~(__EXEC_OBJECT_RESERVED | __EXEC_OBJECT_HAS_REF);
2889caa9 874 }
dabdfe02
CW
875}
876
2889caa9 877static void eb_reset_vmas(const struct i915_execbuffer *eb)
934acce3 878{
2889caa9
CW
879 eb_release_vmas(eb);
880 if (eb->lut_size >= 0)
881 memset(eb->buckets, 0,
882 sizeof(struct hlist_head) << eb->lut_size);
934acce3
MW
883}
884
2889caa9 885static void eb_destroy(const struct i915_execbuffer *eb)
934acce3 886{
2889caa9
CW
887 if (eb->lut_size >= 0)
888 kfree(eb->buckets);
934acce3
MW
889}
890
2889caa9 891static inline u64
d50415cc 892relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
2889caa9 893 const struct i915_vma *target)
934acce3 894{
2889caa9 895 return gen8_canonical_addr((int)reloc->delta + target->node.start);
934acce3
MW
896}
897
d50415cc
CW
898static void reloc_cache_init(struct reloc_cache *cache,
899 struct drm_i915_private *i915)
5032d871 900{
31a39207 901 cache->page = -1;
d50415cc 902 cache->vaddr = 0;
dfc5148f 903 /* Must be a variable in the struct to allow GCC to unroll. */
2889caa9
CW
904 cache->has_llc = HAS_LLC(i915);
905 cache->has_fence = INTEL_GEN(i915) < 4;
906 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
dfc5148f 907 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
e8cb909a 908 cache->node.allocated = false;
d50415cc 909}
5032d871 910
d50415cc
CW
911static inline void *unmask_page(unsigned long p)
912{
913 return (void *)(uintptr_t)(p & PAGE_MASK);
914}
915
916static inline unsigned int unmask_flags(unsigned long p)
917{
918 return p & ~PAGE_MASK;
31a39207
CW
919}
920
d50415cc
CW
921#define KMAP 0x4 /* after CLFLUSH_FLAGS */
922
650bc635
CW
923static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
924{
925 struct drm_i915_private *i915 =
926 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
927 return &i915->ggtt;
928}
929
930static void reloc_cache_reset(struct reloc_cache *cache)
31a39207 931{
d50415cc 932 void *vaddr;
5032d871 933
31a39207
CW
934 if (!cache->vaddr)
935 return;
3c94ceee 936
d50415cc
CW
937 vaddr = unmask_page(cache->vaddr);
938 if (cache->vaddr & KMAP) {
939 if (cache->vaddr & CLFLUSH_AFTER)
940 mb();
3c94ceee 941
d50415cc
CW
942 kunmap_atomic(vaddr);
943 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
944 } else {
e8cb909a 945 wmb();
d50415cc 946 io_mapping_unmap_atomic((void __iomem *)vaddr);
e8cb909a 947 if (cache->node.allocated) {
650bc635 948 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
e8cb909a
CW
949
950 ggtt->base.clear_range(&ggtt->base,
951 cache->node.start,
4fb84d99 952 cache->node.size);
e8cb909a
CW
953 drm_mm_remove_node(&cache->node);
954 } else {
955 i915_vma_unpin((struct i915_vma *)cache->node.mm);
3c94ceee 956 }
31a39207 957 }
650bc635
CW
958
959 cache->vaddr = 0;
960 cache->page = -1;
31a39207
CW
961}
962
963static void *reloc_kmap(struct drm_i915_gem_object *obj,
964 struct reloc_cache *cache,
2889caa9 965 unsigned long page)
31a39207 966{
d50415cc
CW
967 void *vaddr;
968
969 if (cache->vaddr) {
970 kunmap_atomic(unmask_page(cache->vaddr));
971 } else {
972 unsigned int flushes;
2889caa9 973 int err;
31a39207 974
2889caa9
CW
975 err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
976 if (err)
977 return ERR_PTR(err);
d50415cc
CW
978
979 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
980 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
3c94ceee 981
d50415cc
CW
982 cache->vaddr = flushes | KMAP;
983 cache->node.mm = (void *)obj;
984 if (flushes)
985 mb();
3c94ceee
BW
986 }
987
d50415cc
CW
988 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
989 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
31a39207 990 cache->page = page;
5032d871 991
d50415cc 992 return vaddr;
5032d871
RB
993}
994
d50415cc
CW
995static void *reloc_iomap(struct drm_i915_gem_object *obj,
996 struct reloc_cache *cache,
2889caa9 997 unsigned long page)
5032d871 998{
650bc635 999 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
e8cb909a 1000 unsigned long offset;
d50415cc 1001 void *vaddr;
5032d871 1002
d50415cc 1003 if (cache->vaddr) {
615e5000 1004 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
d50415cc
CW
1005 } else {
1006 struct i915_vma *vma;
2889caa9 1007 int err;
5032d871 1008
2889caa9 1009 if (use_cpu_reloc(cache, obj))
d50415cc 1010 return NULL;
3c94ceee 1011
2889caa9
CW
1012 err = i915_gem_object_set_to_gtt_domain(obj, true);
1013 if (err)
1014 return ERR_PTR(err);
3c94ceee 1015
d50415cc
CW
1016 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1017 PIN_MAPPABLE | PIN_NONBLOCK);
e8cb909a
CW
1018 if (IS_ERR(vma)) {
1019 memset(&cache->node, 0, sizeof(cache->node));
2889caa9 1020 err = drm_mm_insert_node_in_range
e8cb909a 1021 (&ggtt->base.mm, &cache->node,
f51455d4 1022 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
e8cb909a 1023 0, ggtt->mappable_end,
4e64e553 1024 DRM_MM_INSERT_LOW);
2889caa9 1025 if (err) /* no inactive aperture space, use cpu reloc */
c92fa4fe 1026 return NULL;
e8cb909a 1027 } else {
2889caa9
CW
1028 err = i915_vma_put_fence(vma);
1029 if (err) {
e8cb909a 1030 i915_vma_unpin(vma);
2889caa9 1031 return ERR_PTR(err);
e8cb909a 1032 }
5032d871 1033
e8cb909a
CW
1034 cache->node.start = vma->node.start;
1035 cache->node.mm = (void *)vma;
3c94ceee 1036 }
e8cb909a 1037 }
3c94ceee 1038
e8cb909a
CW
1039 offset = cache->node.start;
1040 if (cache->node.allocated) {
fc099090 1041 wmb();
e8cb909a
CW
1042 ggtt->base.insert_page(&ggtt->base,
1043 i915_gem_object_get_dma_address(obj, page),
1044 offset, I915_CACHE_NONE, 0);
1045 } else {
1046 offset += page << PAGE_SHIFT;
3c94ceee
BW
1047 }
1048
650bc635
CW
1049 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable,
1050 offset);
d50415cc
CW
1051 cache->page = page;
1052 cache->vaddr = (unsigned long)vaddr;
5032d871 1053
d50415cc 1054 return vaddr;
5032d871
RB
1055}
1056
d50415cc
CW
1057static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1058 struct reloc_cache *cache,
2889caa9 1059 unsigned long page)
edf4427b 1060{
d50415cc 1061 void *vaddr;
5032d871 1062
d50415cc
CW
1063 if (cache->page == page) {
1064 vaddr = unmask_page(cache->vaddr);
1065 } else {
1066 vaddr = NULL;
1067 if ((cache->vaddr & KMAP) == 0)
1068 vaddr = reloc_iomap(obj, cache, page);
1069 if (!vaddr)
1070 vaddr = reloc_kmap(obj, cache, page);
3c94ceee
BW
1071 }
1072
d50415cc 1073 return vaddr;
edf4427b
CW
1074}
1075
d50415cc 1076static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
edf4427b 1077{
d50415cc
CW
1078 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1079 if (flushes & CLFLUSH_BEFORE) {
1080 clflushopt(addr);
1081 mb();
1082 }
edf4427b 1083
d50415cc 1084 *addr = value;
edf4427b 1085
2889caa9
CW
1086 /*
1087 * Writes to the same cacheline are serialised by the CPU
d50415cc
CW
1088 * (including clflush). On the write path, we only require
1089 * that it hits memory in an orderly fashion and place
1090 * mb barriers at the start and end of the relocation phase
1091 * to ensure ordering of clflush wrt to the system.
1092 */
1093 if (flushes & CLFLUSH_AFTER)
1094 clflushopt(addr);
1095 } else
1096 *addr = value;
edf4427b 1097}
edf4427b 1098
2889caa9
CW
1099static u64
1100relocate_entry(struct i915_vma *vma,
d50415cc 1101 const struct drm_i915_gem_relocation_entry *reloc,
2889caa9
CW
1102 struct i915_execbuffer *eb,
1103 const struct i915_vma *target)
edf4427b 1104{
2889caa9 1105 struct drm_i915_gem_object *obj = vma->obj;
d50415cc 1106 u64 offset = reloc->offset;
2889caa9
CW
1107 u64 target_offset = relocation_target(reloc, target);
1108 bool wide = eb->reloc_cache.use_64bit_reloc;
d50415cc 1109 void *vaddr;
edf4427b 1110
d50415cc 1111repeat:
2889caa9 1112 vaddr = reloc_vaddr(obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
d50415cc
CW
1113 if (IS_ERR(vaddr))
1114 return PTR_ERR(vaddr);
1115
1116 clflush_write32(vaddr + offset_in_page(offset),
1117 lower_32_bits(target_offset),
2889caa9 1118 eb->reloc_cache.vaddr);
d50415cc
CW
1119
1120 if (wide) {
1121 offset += sizeof(u32);
1122 target_offset >>= 32;
1123 wide = false;
1124 goto repeat;
edf4427b 1125 }
edf4427b 1126
2889caa9 1127 return target->node.start | UPDATE;
edf4427b 1128}
edf4427b 1129
2889caa9
CW
1130static u64
1131eb_relocate_entry(struct i915_execbuffer *eb,
1132 struct i915_vma *vma,
1133 const struct drm_i915_gem_relocation_entry *reloc)
54cf91dc 1134{
507d977f 1135 struct i915_vma *target;
2889caa9 1136 int err;
54cf91dc 1137
67731b87 1138 /* we've already hold a reference to all valid objects */
507d977f
CW
1139 target = eb_get_vma(eb, reloc->target_handle);
1140 if (unlikely(!target))
54cf91dc 1141 return -ENOENT;
e844b990 1142
54cf91dc 1143 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 1144 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
ff240199 1145 DRM_DEBUG("reloc with multiple write domains: "
507d977f 1146 "target %d offset %d "
54cf91dc 1147 "read %08x write %08x",
507d977f 1148 reloc->target_handle,
54cf91dc
CW
1149 (int) reloc->offset,
1150 reloc->read_domains,
1151 reloc->write_domain);
8b78f0e5 1152 return -EINVAL;
54cf91dc 1153 }
4ca4a250
DV
1154 if (unlikely((reloc->write_domain | reloc->read_domains)
1155 & ~I915_GEM_GPU_DOMAINS)) {
ff240199 1156 DRM_DEBUG("reloc with read/write non-GPU domains: "
507d977f 1157 "target %d offset %d "
54cf91dc 1158 "read %08x write %08x",
507d977f 1159 reloc->target_handle,
54cf91dc
CW
1160 (int) reloc->offset,
1161 reloc->read_domains,
1162 reloc->write_domain);
8b78f0e5 1163 return -EINVAL;
54cf91dc 1164 }
54cf91dc 1165
2889caa9 1166 if (reloc->write_domain) {
507d977f
CW
1167 target->exec_entry->flags |= EXEC_OBJECT_WRITE;
1168
2889caa9
CW
1169 /*
1170 * Sandybridge PPGTT errata: We need a global gtt mapping
1171 * for MI and pipe_control writes because the gpu doesn't
1172 * properly redirect them through the ppgtt for non_secure
1173 * batchbuffers.
1174 */
1175 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1176 IS_GEN6(eb->i915)) {
1177 err = i915_vma_bind(target, target->obj->cache_level,
1178 PIN_GLOBAL);
1179 if (WARN_ONCE(err,
1180 "Unexpected failure to bind target VMA!"))
1181 return err;
1182 }
507d977f 1183 }
54cf91dc 1184
2889caa9
CW
1185 /*
1186 * If the relocation already has the right value in it, no
54cf91dc
CW
1187 * more work needs to be done.
1188 */
2889caa9 1189 if (gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
67731b87 1190 return 0;
54cf91dc
CW
1191
1192 /* Check that the relocation address is valid... */
3c94ceee 1193 if (unlikely(reloc->offset >
507d977f 1194 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
ff240199 1195 DRM_DEBUG("Relocation beyond object bounds: "
507d977f
CW
1196 "target %d offset %d size %d.\n",
1197 reloc->target_handle,
1198 (int)reloc->offset,
1199 (int)vma->size);
8b78f0e5 1200 return -EINVAL;
54cf91dc 1201 }
b8f7ab17 1202 if (unlikely(reloc->offset & 3)) {
ff240199 1203 DRM_DEBUG("Relocation not 4-byte aligned: "
507d977f
CW
1204 "target %d offset %d.\n",
1205 reloc->target_handle,
1206 (int)reloc->offset);
8b78f0e5 1207 return -EINVAL;
54cf91dc
CW
1208 }
1209
071750e5
CW
1210 /*
1211 * If we write into the object, we need to force the synchronisation
1212 * barrier, either with an asynchronous clflush or if we executed the
1213 * patching using the GPU (though that should be serialised by the
1214 * timeline). To be completely sure, and since we are required to
1215 * do relocations we are already stalling, disable the user's opt
1216 * of our synchronisation.
1217 */
1218 vma->exec_entry->flags &= ~EXEC_OBJECT_ASYNC;
1219
54cf91dc 1220 /* and update the user's relocation entry */
2889caa9 1221 return relocate_entry(vma, reloc, eb, target);
54cf91dc
CW
1222}
1223
2889caa9 1224static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
54cf91dc 1225{
1d83f442 1226#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
2889caa9
CW
1227 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1228 struct drm_i915_gem_relocation_entry __user *urelocs;
1229 const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
1230 unsigned int remain;
54cf91dc 1231
2889caa9 1232 urelocs = u64_to_user_ptr(entry->relocs_ptr);
1d83f442 1233 remain = entry->relocation_count;
2889caa9
CW
1234 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1235 return -EINVAL;
ebc0808f 1236
2889caa9
CW
1237 /*
1238 * We must check that the entire relocation array is safe
1239 * to read. However, if the array is not writable the user loses
1240 * the updated relocation values.
1241 */
1242 if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(urelocs))))
1243 return -EFAULT;
1244
1245 do {
1246 struct drm_i915_gem_relocation_entry *r = stack;
1247 unsigned int count =
1248 min_t(unsigned int, remain, ARRAY_SIZE(stack));
1249 unsigned int copied;
1d83f442 1250
2889caa9
CW
1251 /*
1252 * This is the fast path and we cannot handle a pagefault
ebc0808f
CW
1253 * whilst holding the struct mutex lest the user pass in the
1254 * relocations contained within a mmaped bo. For in such a case
1255 * we, the page fault handler would call i915_gem_fault() and
1256 * we would try to acquire the struct mutex again. Obviously
1257 * this is bad and so lockdep complains vehemently.
1258 */
1259 pagefault_disable();
2889caa9 1260 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
ebc0808f 1261 pagefault_enable();
2889caa9
CW
1262 if (unlikely(copied)) {
1263 remain = -EFAULT;
31a39207
CW
1264 goto out;
1265 }
54cf91dc 1266
2889caa9 1267 remain -= count;
1d83f442 1268 do {
2889caa9 1269 u64 offset = eb_relocate_entry(eb, vma, r);
54cf91dc 1270
2889caa9
CW
1271 if (likely(offset == 0)) {
1272 } else if ((s64)offset < 0) {
1273 remain = (int)offset;
31a39207 1274 goto out;
2889caa9
CW
1275 } else {
1276 /*
1277 * Note that reporting an error now
1278 * leaves everything in an inconsistent
1279 * state as we have *already* changed
1280 * the relocation value inside the
1281 * object. As we have not changed the
1282 * reloc.presumed_offset or will not
1283 * change the execobject.offset, on the
1284 * call we may not rewrite the value
1285 * inside the object, leaving it
1286 * dangling and causing a GPU hang. Unless
1287 * userspace dynamically rebuilds the
1288 * relocations on each execbuf rather than
1289 * presume a static tree.
1290 *
1291 * We did previously check if the relocations
1292 * were writable (access_ok), an error now
1293 * would be a strange race with mprotect,
1294 * having already demonstrated that we
1295 * can read from this userspace address.
1296 */
1297 offset = gen8_canonical_addr(offset & ~UPDATE);
1298 __put_user(offset,
1299 &urelocs[r-stack].presumed_offset);
1d83f442 1300 }
2889caa9
CW
1301 } while (r++, --count);
1302 urelocs += ARRAY_SIZE(stack);
1303 } while (remain);
31a39207 1304out:
650bc635 1305 reloc_cache_reset(&eb->reloc_cache);
2889caa9 1306 return remain;
54cf91dc
CW
1307}
1308
1309static int
2889caa9 1310eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
54cf91dc 1311{
27173f1f 1312 const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
2889caa9
CW
1313 struct drm_i915_gem_relocation_entry *relocs =
1314 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1315 unsigned int i;
1316 int err;
54cf91dc
CW
1317
1318 for (i = 0; i < entry->relocation_count; i++) {
2889caa9 1319 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
d4aeee77 1320
2889caa9
CW
1321 if ((s64)offset < 0) {
1322 err = (int)offset;
1323 goto err;
1324 }
54cf91dc 1325 }
2889caa9
CW
1326 err = 0;
1327err:
1328 reloc_cache_reset(&eb->reloc_cache);
1329 return err;
edf4427b
CW
1330}
1331
2889caa9 1332static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1690e1eb 1333{
2889caa9
CW
1334 const char __user *addr, *end;
1335 unsigned long size;
1336 char __maybe_unused c;
1690e1eb 1337
2889caa9
CW
1338 size = entry->relocation_count;
1339 if (size == 0)
1340 return 0;
7788a765 1341
2889caa9
CW
1342 if (size > N_RELOC(ULONG_MAX))
1343 return -EINVAL;
9a5a53b3 1344
2889caa9
CW
1345 addr = u64_to_user_ptr(entry->relocs_ptr);
1346 size *= sizeof(struct drm_i915_gem_relocation_entry);
1347 if (!access_ok(VERIFY_READ, addr, size))
1348 return -EFAULT;
1690e1eb 1349
2889caa9
CW
1350 end = addr + size;
1351 for (; addr < end; addr += PAGE_SIZE) {
1352 int err = __get_user(c, addr);
1353 if (err)
1354 return err;
ed5982e6 1355 }
2889caa9 1356 return __get_user(c, end - 1);
7788a765 1357}
1690e1eb 1358
2889caa9 1359static int eb_copy_relocations(const struct i915_execbuffer *eb)
d23db88c 1360{
2889caa9
CW
1361 const unsigned int count = eb->buffer_count;
1362 unsigned int i;
1363 int err;
e6a84468 1364
2889caa9
CW
1365 for (i = 0; i < count; i++) {
1366 const unsigned int nreloc = eb->exec[i].relocation_count;
1367 struct drm_i915_gem_relocation_entry __user *urelocs;
1368 struct drm_i915_gem_relocation_entry *relocs;
1369 unsigned long size;
1370 unsigned long copied;
e6a84468 1371
2889caa9
CW
1372 if (nreloc == 0)
1373 continue;
e6a84468 1374
2889caa9
CW
1375 err = check_relocations(&eb->exec[i]);
1376 if (err)
1377 goto err;
d23db88c 1378
2889caa9
CW
1379 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1380 size = nreloc * sizeof(*relocs);
d23db88c 1381
2889caa9
CW
1382 relocs = kvmalloc_array(size, 1, GFP_TEMPORARY);
1383 if (!relocs) {
1384 kvfree(relocs);
1385 err = -ENOMEM;
1386 goto err;
1387 }
d23db88c 1388
2889caa9
CW
1389 /* copy_from_user is limited to < 4GiB */
1390 copied = 0;
1391 do {
1392 unsigned int len =
1393 min_t(u64, BIT_ULL(31), size - copied);
1394
1395 if (__copy_from_user((char *)relocs + copied,
1396 (char *)urelocs + copied,
1397 len)) {
1398 kvfree(relocs);
1399 err = -EFAULT;
1400 goto err;
1401 }
91b2db6f 1402
2889caa9
CW
1403 copied += len;
1404 } while (copied < size);
506a8e87 1405
2889caa9
CW
1406 /*
1407 * As we do not update the known relocation offsets after
1408 * relocating (due to the complexities in lock handling),
1409 * we need to mark them as invalid now so that we force the
1410 * relocation processing next time. Just in case the target
1411 * object is evicted and then rebound into its old
1412 * presumed_offset before the next execbuffer - if that
1413 * happened we would make the mistake of assuming that the
1414 * relocations were valid.
1415 */
1416 user_access_begin();
1417 for (copied = 0; copied < nreloc; copied++)
1418 unsafe_put_user(-1,
1419 &urelocs[copied].presumed_offset,
1420 end_user);
1421end_user:
1422 user_access_end();
d23db88c 1423
2889caa9
CW
1424 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1425 }
edf4427b 1426
2889caa9 1427 return 0;
101b506a 1428
2889caa9
CW
1429err:
1430 while (i--) {
1431 struct drm_i915_gem_relocation_entry *relocs =
1432 u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1433 if (eb->exec[i].relocation_count)
1434 kvfree(relocs);
1435 }
1436 return err;
d23db88c
CW
1437}
1438
2889caa9 1439static int eb_prefault_relocations(const struct i915_execbuffer *eb)
54cf91dc 1440{
2889caa9
CW
1441 const unsigned int count = eb->buffer_count;
1442 unsigned int i;
54cf91dc 1443
2889caa9
CW
1444 if (unlikely(i915.prefault_disable))
1445 return 0;
54cf91dc 1446
2889caa9
CW
1447 for (i = 0; i < count; i++) {
1448 int err;
54cf91dc 1449
2889caa9
CW
1450 err = check_relocations(&eb->exec[i]);
1451 if (err)
1452 return err;
1453 }
a415d355 1454
2889caa9 1455 return 0;
54cf91dc
CW
1456}
1457
2889caa9 1458static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
54cf91dc 1459{
650bc635 1460 struct drm_device *dev = &eb->i915->drm;
2889caa9 1461 bool have_copy = false;
27173f1f 1462 struct i915_vma *vma;
2889caa9
CW
1463 int err = 0;
1464
1465repeat:
1466 if (signal_pending(current)) {
1467 err = -ERESTARTSYS;
1468 goto out;
1469 }
27173f1f 1470
67731b87 1471 /* We may process another execbuffer during the unlock... */
2889caa9 1472 eb_reset_vmas(eb);
54cf91dc
CW
1473 mutex_unlock(&dev->struct_mutex);
1474
2889caa9
CW
1475 /*
1476 * We take 3 passes through the slowpatch.
1477 *
1478 * 1 - we try to just prefault all the user relocation entries and
1479 * then attempt to reuse the atomic pagefault disabled fast path again.
1480 *
1481 * 2 - we copy the user entries to a local buffer here outside of the
1482 * local and allow ourselves to wait upon any rendering before
1483 * relocations
1484 *
1485 * 3 - we already have a local copy of the relocation entries, but
1486 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1487 */
1488 if (!err) {
1489 err = eb_prefault_relocations(eb);
1490 } else if (!have_copy) {
1491 err = eb_copy_relocations(eb);
1492 have_copy = err == 0;
1493 } else {
1494 cond_resched();
1495 err = 0;
54cf91dc 1496 }
2889caa9
CW
1497 if (err) {
1498 mutex_lock(&dev->struct_mutex);
1499 goto out;
54cf91dc
CW
1500 }
1501
2889caa9
CW
1502 err = i915_mutex_lock_interruptible(dev);
1503 if (err) {
54cf91dc 1504 mutex_lock(&dev->struct_mutex);
2889caa9 1505 goto out;
54cf91dc
CW
1506 }
1507
67731b87 1508 /* reacquire the objects */
2889caa9
CW
1509 err = eb_lookup_vmas(eb);
1510 if (err)
3b96eff4 1511 goto err;
67731b87 1512
2889caa9
CW
1513 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1514 if (!have_copy) {
1515 pagefault_disable();
1516 err = eb_relocate_vma(eb, vma);
1517 pagefault_enable();
1518 if (err)
1519 goto repeat;
1520 } else {
1521 err = eb_relocate_vma_slow(eb, vma);
1522 if (err)
1523 goto err;
1524 }
54cf91dc
CW
1525 }
1526
2889caa9
CW
1527 /*
1528 * Leave the user relocations as are, this is the painfully slow path,
54cf91dc
CW
1529 * and we want to avoid the complication of dropping the lock whilst
1530 * having buffers reserved in the aperture and so causing spurious
1531 * ENOSPC for random operations.
1532 */
1533
1534err:
2889caa9
CW
1535 if (err == -EAGAIN)
1536 goto repeat;
1537
1538out:
1539 if (have_copy) {
1540 const unsigned int count = eb->buffer_count;
1541 unsigned int i;
1542
1543 for (i = 0; i < count; i++) {
1544 const struct drm_i915_gem_exec_object2 *entry =
1545 &eb->exec[i];
1546 struct drm_i915_gem_relocation_entry *relocs;
1547
1548 if (!entry->relocation_count)
1549 continue;
1550
1551 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1552 kvfree(relocs);
1553 }
1554 }
1555
1556 return err ?: have_copy;
54cf91dc
CW
1557}
1558
2889caa9 1559static int eb_relocate(struct i915_execbuffer *eb)
54cf91dc 1560{
2889caa9
CW
1561 if (eb_lookup_vmas(eb))
1562 goto slow;
1563
1564 /* The objects are in their final locations, apply the relocations. */
1565 if (eb->args->flags & __EXEC_HAS_RELOC) {
1566 struct i915_vma *vma;
1567
1568 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1569 if (eb_relocate_vma(eb, vma))
1570 goto slow;
1571 }
1572 }
1573
1574 return 0;
1575
1576slow:
1577 return eb_relocate_slow(eb);
1578}
1579
1580static void eb_export_fence(struct drm_i915_gem_object *obj,
1581 struct drm_i915_gem_request *req,
1582 unsigned int flags)
1583{
1584 struct reservation_object *resv = obj->resv;
1585
1586 /*
1587 * Ignore errors from failing to allocate the new fence, we can't
1588 * handle an error right now. Worst case should be missed
1589 * synchronisation leading to rendering corruption.
1590 */
1591 reservation_object_lock(resv, NULL);
1592 if (flags & EXEC_OBJECT_WRITE)
1593 reservation_object_add_excl_fence(resv, &req->fence);
1594 else if (reservation_object_reserve_shared(resv) == 0)
1595 reservation_object_add_shared_fence(resv, &req->fence);
1596 reservation_object_unlock(resv);
1597}
1598
1599static int eb_move_to_gpu(struct i915_execbuffer *eb)
1600{
1601 const unsigned int count = eb->buffer_count;
1602 unsigned int i;
1603 int err;
54cf91dc 1604
2889caa9
CW
1605 for (i = 0; i < count; i++) {
1606 const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1607 struct i915_vma *vma = exec_to_vma(entry);
27173f1f 1608 struct drm_i915_gem_object *obj = vma->obj;
03ade511 1609
2889caa9 1610 if (entry->flags & EXEC_OBJECT_CAPTURE) {
b0fd47ad
CW
1611 struct i915_gem_capture_list *capture;
1612
1613 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1614 if (unlikely(!capture))
1615 return -ENOMEM;
1616
650bc635 1617 capture->next = eb->request->capture_list;
b0fd47ad 1618 capture->vma = vma;
650bc635 1619 eb->request->capture_list = capture;
b0fd47ad
CW
1620 }
1621
2889caa9
CW
1622 if (entry->flags & EXEC_OBJECT_ASYNC)
1623 goto skip_flushes;
77ae9957 1624
7fc92e96 1625 if (unlikely(obj->cache_dirty && !obj->cache_coherent))
57822dc6 1626 i915_gem_clflush_object(obj, 0);
57822dc6 1627
2889caa9
CW
1628 err = i915_gem_request_await_object
1629 (eb->request, obj, entry->flags & EXEC_OBJECT_WRITE);
1630 if (err)
1631 return err;
1632
1633skip_flushes:
1634 i915_vma_move_to_active(vma, eb->request, entry->flags);
1635 __eb_unreserve_vma(vma, entry);
1636 vma->exec_entry = NULL;
1637 }
1638
1639 for (i = 0; i < count; i++) {
1640 const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1641 struct i915_vma *vma = exec_to_vma(entry);
1642
1643 eb_export_fence(vma->obj, eb->request, entry->flags);
dade2a61
CW
1644 if (unlikely(entry->flags & __EXEC_OBJECT_HAS_REF))
1645 i915_vma_put(vma);
c59a333f 1646 }
2889caa9 1647 eb->exec = NULL;
c59a333f 1648
dcd79934 1649 /* Unconditionally flush any chipset caches (for streaming writes). */
650bc635 1650 i915_gem_chipset_flush(eb->i915);
6ac42f41 1651
c7fe7d25 1652 /* Unconditionally invalidate GPU caches and TLBs. */
650bc635 1653 return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE);
54cf91dc
CW
1654}
1655
2889caa9 1656static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 1657{
650bc635 1658 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
ed5982e6
DV
1659 return false;
1660
2f5945bc
CW
1661 /* Kernel clipping was a DRI1 misfeature */
1662 if (exec->num_cliprects || exec->cliprects_ptr)
1663 return false;
1664
1665 if (exec->DR4 == 0xffffffff) {
1666 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1667 exec->DR4 = 0;
1668 }
1669 if (exec->DR1 || exec->DR4)
1670 return false;
1671
1672 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1673 return false;
1674
1675 return true;
54cf91dc
CW
1676}
1677
5cf3d280
CW
1678void i915_vma_move_to_active(struct i915_vma *vma,
1679 struct drm_i915_gem_request *req,
1680 unsigned int flags)
1681{
1682 struct drm_i915_gem_object *obj = vma->obj;
1683 const unsigned int idx = req->engine->id;
1684
81147b07 1685 lockdep_assert_held(&req->i915->drm.struct_mutex);
5cf3d280
CW
1686 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1687
2889caa9
CW
1688 /*
1689 * Add a reference if we're newly entering the active list.
b0decaf7
CW
1690 * The order in which we add operations to the retirement queue is
1691 * vital here: mark_active adds to the start of the callback list,
1692 * such that subsequent callbacks are called first. Therefore we
1693 * add the active reference first and queue for it to be dropped
1694 * *last*.
1695 */
d07f0e59
CW
1696 if (!i915_vma_is_active(vma))
1697 obj->active_count++;
1698 i915_vma_set_active(vma, idx);
1699 i915_gem_active_set(&vma->last_read[idx], req);
1700 list_move_tail(&vma->vm_link, &vma->vm->active_list);
5cf3d280 1701
e27ab73d 1702 obj->base.write_domain = 0;
5cf3d280 1703 if (flags & EXEC_OBJECT_WRITE) {
e27ab73d
CW
1704 obj->base.write_domain = I915_GEM_DOMAIN_RENDER;
1705
5b8c8aec
CW
1706 if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1707 i915_gem_active_set(&obj->frontbuffer_write, req);
5cf3d280 1708
e27ab73d 1709 obj->base.read_domains = 0;
5cf3d280 1710 }
e27ab73d 1711 obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
5cf3d280 1712
49ef5294
CW
1713 if (flags & EXEC_OBJECT_NEEDS_FENCE)
1714 i915_gem_active_set(&vma->last_fence, req);
5cf3d280
CW
1715}
1716
2889caa9 1717static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
ae662d31 1718{
73dec95e
TU
1719 u32 *cs;
1720 int i;
ae662d31 1721
b5321f30 1722 if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
9d662da8
DV
1723 DRM_DEBUG("sol reset is gen7/rcs only\n");
1724 return -EINVAL;
1725 }
ae662d31 1726
2889caa9 1727 cs = intel_ring_begin(req, 4 * 2 + 2);
73dec95e
TU
1728 if (IS_ERR(cs))
1729 return PTR_ERR(cs);
ae662d31 1730
2889caa9 1731 *cs++ = MI_LOAD_REGISTER_IMM(4);
ae662d31 1732 for (i = 0; i < 4; i++) {
73dec95e
TU
1733 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1734 *cs++ = 0;
ae662d31 1735 }
2889caa9 1736 *cs++ = MI_NOOP;
73dec95e 1737 intel_ring_advance(req, cs);
ae662d31
EA
1738
1739 return 0;
1740}
1741
650bc635 1742static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
71745376 1743{
71745376 1744 struct drm_i915_gem_object *shadow_batch_obj;
17cabf57 1745 struct i915_vma *vma;
2889caa9 1746 int err;
71745376 1747
650bc635
CW
1748 shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
1749 PAGE_ALIGN(eb->batch_len));
71745376 1750 if (IS_ERR(shadow_batch_obj))
59bfa124 1751 return ERR_CAST(shadow_batch_obj);
71745376 1752
2889caa9 1753 err = intel_engine_cmd_parser(eb->engine,
650bc635 1754 eb->batch->obj,
33a051a5 1755 shadow_batch_obj,
650bc635
CW
1756 eb->batch_start_offset,
1757 eb->batch_len,
33a051a5 1758 is_master);
2889caa9
CW
1759 if (err) {
1760 if (err == -EACCES) /* unhandled chained batch */
058d88c4
CW
1761 vma = NULL;
1762 else
2889caa9 1763 vma = ERR_PTR(err);
058d88c4
CW
1764 goto out;
1765 }
71745376 1766
058d88c4
CW
1767 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1768 if (IS_ERR(vma))
1769 goto out;
de4e783a 1770
650bc635 1771 vma->exec_entry =
2889caa9
CW
1772 memset(&eb->exec[eb->buffer_count++],
1773 0, sizeof(*vma->exec_entry));
dade2a61 1774 vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
2889caa9 1775 __exec_to_vma(vma->exec_entry) = (uintptr_t)i915_vma_get(vma);
71745376 1776
058d88c4 1777out:
de4e783a 1778 i915_gem_object_unpin_pages(shadow_batch_obj);
058d88c4 1779 return vma;
71745376 1780}
5c6c6003 1781
c8659efa 1782static void
2889caa9 1783add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
c8659efa
CW
1784{
1785 req->file_priv = file->driver_priv;
1786 list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
1787}
1788
2889caa9 1789static int eb_submit(struct i915_execbuffer *eb)
78382593 1790{
2889caa9 1791 int err;
78382593 1792
2889caa9
CW
1793 err = eb_move_to_gpu(eb);
1794 if (err)
1795 return err;
78382593 1796
2889caa9
CW
1797 err = i915_switch_context(eb->request);
1798 if (err)
1799 return err;
78382593 1800
650bc635 1801 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2889caa9
CW
1802 err = i915_reset_gen7_sol_offsets(eb->request);
1803 if (err)
1804 return err;
78382593
OM
1805 }
1806
2889caa9 1807 err = eb->engine->emit_bb_start(eb->request,
650bc635
CW
1808 eb->batch->node.start +
1809 eb->batch_start_offset,
1810 eb->batch_len,
2889caa9
CW
1811 eb->batch_flags);
1812 if (err)
1813 return err;
78382593 1814
2f5945bc 1815 return 0;
78382593
OM
1816}
1817
a8ebba75
ZY
1818/**
1819 * Find one BSD ring to dispatch the corresponding BSD command.
c80ff16e 1820 * The engine index is returned.
a8ebba75 1821 */
de1add36 1822static unsigned int
c80ff16e
CW
1823gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1824 struct drm_file *file)
a8ebba75 1825{
a8ebba75
ZY
1826 struct drm_i915_file_private *file_priv = file->driver_priv;
1827
de1add36 1828 /* Check whether the file_priv has already selected one ring. */
6f633402
JL
1829 if ((int)file_priv->bsd_engine < 0)
1830 file_priv->bsd_engine = atomic_fetch_xor(1,
1831 &dev_priv->mm.bsd_engine_dispatch_index);
d23db88c 1832
c80ff16e 1833 return file_priv->bsd_engine;
d23db88c
CW
1834}
1835
de1add36
TU
1836#define I915_USER_RINGS (4)
1837
117897f4 1838static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
de1add36
TU
1839 [I915_EXEC_DEFAULT] = RCS,
1840 [I915_EXEC_RENDER] = RCS,
1841 [I915_EXEC_BLT] = BCS,
1842 [I915_EXEC_BSD] = VCS,
1843 [I915_EXEC_VEBOX] = VECS
1844};
1845
f8ca0c07
DG
1846static struct intel_engine_cs *
1847eb_select_engine(struct drm_i915_private *dev_priv,
1848 struct drm_file *file,
1849 struct drm_i915_gem_execbuffer2 *args)
de1add36
TU
1850{
1851 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
f8ca0c07 1852 struct intel_engine_cs *engine;
de1add36
TU
1853
1854 if (user_ring_id > I915_USER_RINGS) {
1855 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
f8ca0c07 1856 return NULL;
de1add36
TU
1857 }
1858
1859 if ((user_ring_id != I915_EXEC_BSD) &&
1860 ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
1861 DRM_DEBUG("execbuf with non bsd ring but with invalid "
1862 "bsd dispatch flags: %d\n", (int)(args->flags));
f8ca0c07 1863 return NULL;
de1add36
TU
1864 }
1865
1866 if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
1867 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
1868
1869 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
c80ff16e 1870 bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
de1add36
TU
1871 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
1872 bsd_idx <= I915_EXEC_BSD_RING2) {
d9da6aa0 1873 bsd_idx >>= I915_EXEC_BSD_SHIFT;
de1add36
TU
1874 bsd_idx--;
1875 } else {
1876 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
1877 bsd_idx);
f8ca0c07 1878 return NULL;
de1add36
TU
1879 }
1880
3b3f1650 1881 engine = dev_priv->engine[_VCS(bsd_idx)];
de1add36 1882 } else {
3b3f1650 1883 engine = dev_priv->engine[user_ring_map[user_ring_id]];
de1add36
TU
1884 }
1885
3b3f1650 1886 if (!engine) {
de1add36 1887 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
f8ca0c07 1888 return NULL;
de1add36
TU
1889 }
1890
f8ca0c07 1891 return engine;
de1add36
TU
1892}
1893
54cf91dc 1894static int
650bc635 1895i915_gem_do_execbuffer(struct drm_device *dev,
54cf91dc
CW
1896 struct drm_file *file,
1897 struct drm_i915_gem_execbuffer2 *args,
41bde553 1898 struct drm_i915_gem_exec_object2 *exec)
54cf91dc 1899{
650bc635 1900 struct i915_execbuffer eb;
fec0445c
CW
1901 struct dma_fence *in_fence = NULL;
1902 struct sync_file *out_fence = NULL;
1903 int out_fence_fd = -1;
2889caa9 1904 int err;
432e58ed 1905
2889caa9
CW
1906 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
1907 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
54cf91dc 1908
650bc635
CW
1909 eb.i915 = to_i915(dev);
1910 eb.file = file;
1911 eb.args = args;
2889caa9
CW
1912 if (!(args->flags & I915_EXEC_NO_RELOC))
1913 args->flags |= __EXEC_HAS_RELOC;
650bc635 1914 eb.exec = exec;
2889caa9
CW
1915 eb.ctx = NULL;
1916 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
1917 if (USES_FULL_PPGTT(eb.i915))
1918 eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
650bc635
CW
1919 reloc_cache_init(&eb.reloc_cache, eb.i915);
1920
2889caa9 1921 eb.buffer_count = args->buffer_count;
650bc635
CW
1922 eb.batch_start_offset = args->batch_start_offset;
1923 eb.batch_len = args->batch_len;
1924
2889caa9 1925 eb.batch_flags = 0;
d7d4eedd 1926 if (args->flags & I915_EXEC_SECURE) {
b3ac9f25 1927 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
d7d4eedd
CW
1928 return -EPERM;
1929
2889caa9 1930 eb.batch_flags |= I915_DISPATCH_SECURE;
d7d4eedd 1931 }
b45305fc 1932 if (args->flags & I915_EXEC_IS_PINNED)
2889caa9 1933 eb.batch_flags |= I915_DISPATCH_PINNED;
54cf91dc 1934
650bc635
CW
1935 eb.engine = eb_select_engine(eb.i915, file, args);
1936 if (!eb.engine)
54cf91dc 1937 return -EINVAL;
54cf91dc 1938
a9ed33ca 1939 if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
650bc635 1940 if (!HAS_RESOURCE_STREAMER(eb.i915)) {
a9ed33ca
AJ
1941 DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
1942 return -EINVAL;
1943 }
650bc635 1944 if (eb.engine->id != RCS) {
a9ed33ca 1945 DRM_DEBUG("RS is not available on %s\n",
650bc635 1946 eb.engine->name);
a9ed33ca
AJ
1947 return -EINVAL;
1948 }
1949
2889caa9 1950 eb.batch_flags |= I915_DISPATCH_RS;
a9ed33ca
AJ
1951 }
1952
fec0445c
CW
1953 if (args->flags & I915_EXEC_FENCE_IN) {
1954 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
4a04e371
DCS
1955 if (!in_fence)
1956 return -EINVAL;
fec0445c
CW
1957 }
1958
1959 if (args->flags & I915_EXEC_FENCE_OUT) {
1960 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
1961 if (out_fence_fd < 0) {
2889caa9 1962 err = out_fence_fd;
4a04e371 1963 goto err_in_fence;
fec0445c
CW
1964 }
1965 }
1966
2889caa9
CW
1967 if (eb_create(&eb))
1968 return -ENOMEM;
1969
1970 /*
1971 * Take a local wakeref for preparing to dispatch the execbuf as
67d97da3
CW
1972 * we expect to access the hardware fairly frequently in the
1973 * process. Upon first dispatch, we acquire another prolonged
1974 * wakeref that we hold until the GPU has been idle for at least
1975 * 100ms.
1976 */
650bc635 1977 intel_runtime_pm_get(eb.i915);
2889caa9
CW
1978 err = i915_mutex_lock_interruptible(dev);
1979 if (err)
1980 goto err_rpm;
f65c9168 1981
2889caa9
CW
1982 err = eb_select_context(&eb);
1983 if (unlikely(err))
1984 goto err_unlock;
54cf91dc 1985
2889caa9
CW
1986 err = eb_relocate(&eb);
1987 if (err)
1988 /*
1989 * If the user expects the execobject.offset and
1990 * reloc.presumed_offset to be an exact match,
1991 * as for using NO_RELOC, then we cannot update
1992 * the execobject.offset until we have completed
1993 * relocation.
1994 */
1995 args->flags &= ~__EXEC_HAS_RELOC;
1996 if (err < 0)
1997 goto err_vma;
54cf91dc 1998
2889caa9 1999 if (unlikely(eb.batch->exec_entry->flags & EXEC_OBJECT_WRITE)) {
ff240199 2000 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2889caa9
CW
2001 err = -EINVAL;
2002 goto err_vma;
54cf91dc 2003 }
650bc635
CW
2004 if (eb.batch_start_offset > eb.batch->size ||
2005 eb.batch_len > eb.batch->size - eb.batch_start_offset) {
0b537272 2006 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2889caa9
CW
2007 err = -EINVAL;
2008 goto err_vma;
0b537272 2009 }
54cf91dc 2010
650bc635 2011 if (eb.engine->needs_cmd_parser && eb.batch_len) {
59bfa124
CW
2012 struct i915_vma *vma;
2013
650bc635 2014 vma = eb_parse(&eb, drm_is_current_master(file));
59bfa124 2015 if (IS_ERR(vma)) {
2889caa9
CW
2016 err = PTR_ERR(vma);
2017 goto err_vma;
78a42377 2018 }
17cabf57 2019
59bfa124 2020 if (vma) {
c7c7372e
RP
2021 /*
2022 * Batch parsed and accepted:
2023 *
2024 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2025 * bit from MI_BATCH_BUFFER_START commands issued in
2026 * the dispatch_execbuffer implementations. We
2027 * specifically don't want that set on batches the
2028 * command parser has accepted.
2029 */
2889caa9 2030 eb.batch_flags |= I915_DISPATCH_SECURE;
650bc635
CW
2031 eb.batch_start_offset = 0;
2032 eb.batch = vma;
c7c7372e 2033 }
351e3db2
BV
2034 }
2035
650bc635
CW
2036 if (eb.batch_len == 0)
2037 eb.batch_len = eb.batch->size - eb.batch_start_offset;
78a42377 2038
2889caa9
CW
2039 /*
2040 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
d7d4eedd 2041 * batch" bit. Hence we need to pin secure batches into the global gtt.
28cf5415 2042 * hsw should have this fixed, but bdw mucks it up again. */
2889caa9 2043 if (eb.batch_flags & I915_DISPATCH_SECURE) {
058d88c4 2044 struct i915_vma *vma;
59bfa124 2045
da51a1e7
DV
2046 /*
2047 * So on first glance it looks freaky that we pin the batch here
2048 * outside of the reservation loop. But:
2049 * - The batch is already pinned into the relevant ppgtt, so we
2050 * already have the backing storage fully allocated.
2051 * - No other BO uses the global gtt (well contexts, but meh),
fd0753cf 2052 * so we don't really have issues with multiple objects not
da51a1e7
DV
2053 * fitting due to fragmentation.
2054 * So this is actually safe.
2055 */
2889caa9 2056 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
058d88c4 2057 if (IS_ERR(vma)) {
2889caa9
CW
2058 err = PTR_ERR(vma);
2059 goto err_vma;
058d88c4 2060 }
d7d4eedd 2061
650bc635 2062 eb.batch = vma;
59bfa124 2063 }
d7d4eedd 2064
0c8dac88 2065 /* Allocate a request for this batch buffer nice and early. */
650bc635
CW
2066 eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
2067 if (IS_ERR(eb.request)) {
2889caa9 2068 err = PTR_ERR(eb.request);
0c8dac88 2069 goto err_batch_unpin;
26827088 2070 }
0c8dac88 2071
fec0445c 2072 if (in_fence) {
2889caa9
CW
2073 err = i915_gem_request_await_dma_fence(eb.request, in_fence);
2074 if (err < 0)
fec0445c
CW
2075 goto err_request;
2076 }
2077
2078 if (out_fence_fd != -1) {
650bc635 2079 out_fence = sync_file_create(&eb.request->fence);
fec0445c 2080 if (!out_fence) {
2889caa9 2081 err = -ENOMEM;
fec0445c
CW
2082 goto err_request;
2083 }
2084 }
2085
2889caa9
CW
2086 /*
2087 * Whilst this request exists, batch_obj will be on the
17f298cf
CW
2088 * active_list, and so will hold the active reference. Only when this
2089 * request is retired will the the batch_obj be moved onto the
2090 * inactive_list and lose its active reference. Hence we do not need
2091 * to explicitly hold another reference here.
2092 */
650bc635 2093 eb.request->batch = eb.batch;
5f19e2bf 2094
2889caa9
CW
2095 trace_i915_gem_request_queue(eb.request, eb.batch_flags);
2096 err = eb_submit(&eb);
aa9b7810 2097err_request:
2889caa9 2098 __i915_add_request(eb.request, err == 0);
650bc635 2099 add_to_client(eb.request, file);
c8659efa 2100
fec0445c 2101 if (out_fence) {
2889caa9 2102 if (err == 0) {
fec0445c
CW
2103 fd_install(out_fence_fd, out_fence->file);
2104 args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
2105 args->rsvd2 |= (u64)out_fence_fd << 32;
2106 out_fence_fd = -1;
2107 } else {
2108 fput(out_fence->file);
2109 }
2110 }
54cf91dc 2111
0c8dac88 2112err_batch_unpin:
2889caa9 2113 if (eb.batch_flags & I915_DISPATCH_SECURE)
650bc635 2114 i915_vma_unpin(eb.batch);
2889caa9
CW
2115err_vma:
2116 if (eb.exec)
2117 eb_release_vmas(&eb);
2118 i915_gem_context_put(eb.ctx);
2119err_unlock:
54cf91dc 2120 mutex_unlock(&dev->struct_mutex);
2889caa9 2121err_rpm:
650bc635 2122 intel_runtime_pm_put(eb.i915);
2889caa9 2123 eb_destroy(&eb);
fec0445c
CW
2124 if (out_fence_fd != -1)
2125 put_unused_fd(out_fence_fd);
4a04e371 2126err_in_fence:
fec0445c 2127 dma_fence_put(in_fence);
2889caa9 2128 return err;
54cf91dc
CW
2129}
2130
2131/*
2132 * Legacy execbuffer just creates an exec2 list from the original exec object
2133 * list array and passes it to the real function.
2134 */
2135int
2136i915_gem_execbuffer(struct drm_device *dev, void *data,
2137 struct drm_file *file)
2138{
2889caa9 2139 const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
54cf91dc
CW
2140 struct drm_i915_gem_execbuffer *args = data;
2141 struct drm_i915_gem_execbuffer2 exec2;
2142 struct drm_i915_gem_exec_object *exec_list = NULL;
2143 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2889caa9
CW
2144 unsigned int i;
2145 int err;
54cf91dc 2146
2889caa9
CW
2147 if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2148 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
54cf91dc
CW
2149 return -EINVAL;
2150 }
2151
2889caa9
CW
2152 exec2.buffers_ptr = args->buffers_ptr;
2153 exec2.buffer_count = args->buffer_count;
2154 exec2.batch_start_offset = args->batch_start_offset;
2155 exec2.batch_len = args->batch_len;
2156 exec2.DR1 = args->DR1;
2157 exec2.DR4 = args->DR4;
2158 exec2.num_cliprects = args->num_cliprects;
2159 exec2.cliprects_ptr = args->cliprects_ptr;
2160 exec2.flags = I915_EXEC_RENDER;
2161 i915_execbuffer2_set_context_id(exec2, 0);
2162
2163 if (!i915_gem_check_execbuffer(&exec2))
2164 return -EINVAL;
2165
54cf91dc 2166 /* Copy in the exec list from userland */
2889caa9
CW
2167 exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list),
2168 __GFP_NOWARN | GFP_TEMPORARY);
2169 exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
2170 __GFP_NOWARN | GFP_TEMPORARY);
54cf91dc 2171 if (exec_list == NULL || exec2_list == NULL) {
ff240199 2172 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
54cf91dc 2173 args->buffer_count);
2098105e
MH
2174 kvfree(exec_list);
2175 kvfree(exec2_list);
54cf91dc
CW
2176 return -ENOMEM;
2177 }
2889caa9 2178 err = copy_from_user(exec_list,
3ed605bc 2179 u64_to_user_ptr(args->buffers_ptr),
54cf91dc 2180 sizeof(*exec_list) * args->buffer_count);
2889caa9 2181 if (err) {
ff240199 2182 DRM_DEBUG("copy %d exec entries failed %d\n",
2889caa9 2183 args->buffer_count, err);
2098105e
MH
2184 kvfree(exec_list);
2185 kvfree(exec2_list);
54cf91dc
CW
2186 return -EFAULT;
2187 }
2188
2189 for (i = 0; i < args->buffer_count; i++) {
2190 exec2_list[i].handle = exec_list[i].handle;
2191 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2192 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2193 exec2_list[i].alignment = exec_list[i].alignment;
2194 exec2_list[i].offset = exec_list[i].offset;
f0836b72 2195 if (INTEL_GEN(to_i915(dev)) < 4)
54cf91dc
CW
2196 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2197 else
2198 exec2_list[i].flags = 0;
2199 }
2200
2889caa9
CW
2201 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
2202 if (exec2.flags & __EXEC_HAS_RELOC) {
9aab8bff 2203 struct drm_i915_gem_exec_object __user *user_exec_list =
3ed605bc 2204 u64_to_user_ptr(args->buffers_ptr);
9aab8bff 2205
54cf91dc 2206 /* Copy the new buffer offsets back to the user's exec list. */
9aab8bff 2207 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2208 if (!(exec2_list[i].offset & UPDATE))
2209 continue;
2210
934acce3 2211 exec2_list[i].offset =
2889caa9
CW
2212 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2213 exec2_list[i].offset &= PIN_OFFSET_MASK;
2214 if (__copy_to_user(&user_exec_list[i].offset,
2215 &exec2_list[i].offset,
2216 sizeof(user_exec_list[i].offset)))
9aab8bff 2217 break;
54cf91dc
CW
2218 }
2219 }
2220
2098105e
MH
2221 kvfree(exec_list);
2222 kvfree(exec2_list);
2889caa9 2223 return err;
54cf91dc
CW
2224}
2225
2226int
2227i915_gem_execbuffer2(struct drm_device *dev, void *data,
2228 struct drm_file *file)
2229{
2889caa9 2230 const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
54cf91dc 2231 struct drm_i915_gem_execbuffer2 *args = data;
2889caa9
CW
2232 struct drm_i915_gem_exec_object2 *exec2_list;
2233 int err;
54cf91dc 2234
2889caa9 2235 if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
ff240199 2236 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
54cf91dc
CW
2237 return -EINVAL;
2238 }
2239
2889caa9
CW
2240 if (!i915_gem_check_execbuffer(args))
2241 return -EINVAL;
2242
2243 /* Allocate an extra slot for use by the command parser */
2244 exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
2245 __GFP_NOWARN | GFP_TEMPORARY);
54cf91dc 2246 if (exec2_list == NULL) {
ff240199 2247 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
54cf91dc
CW
2248 args->buffer_count);
2249 return -ENOMEM;
2250 }
2889caa9
CW
2251 if (copy_from_user(exec2_list,
2252 u64_to_user_ptr(args->buffers_ptr),
2253 sizeof(*exec2_list) * args->buffer_count)) {
2254 DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count);
2098105e 2255 kvfree(exec2_list);
54cf91dc
CW
2256 return -EFAULT;
2257 }
2258
2889caa9
CW
2259 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
2260
2261 /*
2262 * Now that we have begun execution of the batchbuffer, we ignore
2263 * any new error after this point. Also given that we have already
2264 * updated the associated relocations, we try to write out the current
2265 * object locations irrespective of any error.
2266 */
2267 if (args->flags & __EXEC_HAS_RELOC) {
d593d992 2268 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2889caa9
CW
2269 u64_to_user_ptr(args->buffers_ptr);
2270 unsigned int i;
9aab8bff 2271
2889caa9
CW
2272 /* Copy the new buffer offsets back to the user's exec list. */
2273 user_access_begin();
9aab8bff 2274 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2275 if (!(exec2_list[i].offset & UPDATE))
2276 continue;
2277
934acce3 2278 exec2_list[i].offset =
2889caa9
CW
2279 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2280 unsafe_put_user(exec2_list[i].offset,
2281 &user_exec_list[i].offset,
2282 end_user);
54cf91dc 2283 }
2889caa9
CW
2284end_user:
2285 user_access_end();
54cf91dc
CW
2286 }
2287
2889caa9 2288 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2098105e 2289 kvfree(exec2_list);
2889caa9 2290 return err;
54cf91dc 2291}