]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/gpu/drm/i915/i915_gem_execbuffer.c
drm/i915: Re-arm the idle timers if the device is still busy
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
CommitLineData
54cf91dc
CW
1/*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
29#include "drmP.h"
30#include "drm.h"
31#include "i915_drm.h"
32#include "i915_drv.h"
33#include "i915_trace.h"
34#include "intel_drv.h"
35
36struct change_domains {
37 uint32_t invalidate_domains;
38 uint32_t flush_domains;
39 uint32_t flush_rings;
40};
41
42/*
43 * Set the next domain for the specified object. This
44 * may not actually perform the necessary flushing/invaliding though,
45 * as that may want to be batched with other set_domain operations
46 *
47 * This is (we hope) the only really tricky part of gem. The goal
48 * is fairly simple -- track which caches hold bits of the object
49 * and make sure they remain coherent. A few concrete examples may
50 * help to explain how it works. For shorthand, we use the notation
51 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
52 * a pair of read and write domain masks.
53 *
54 * Case 1: the batch buffer
55 *
56 * 1. Allocated
57 * 2. Written by CPU
58 * 3. Mapped to GTT
59 * 4. Read by GPU
60 * 5. Unmapped from GTT
61 * 6. Freed
62 *
63 * Let's take these a step at a time
64 *
65 * 1. Allocated
66 * Pages allocated from the kernel may still have
67 * cache contents, so we set them to (CPU, CPU) always.
68 * 2. Written by CPU (using pwrite)
69 * The pwrite function calls set_domain (CPU, CPU) and
70 * this function does nothing (as nothing changes)
71 * 3. Mapped by GTT
72 * This function asserts that the object is not
73 * currently in any GPU-based read or write domains
74 * 4. Read by GPU
75 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
76 * As write_domain is zero, this function adds in the
77 * current read domains (CPU+COMMAND, 0).
78 * flush_domains is set to CPU.
79 * invalidate_domains is set to COMMAND
80 * clflush is run to get data out of the CPU caches
81 * then i915_dev_set_domain calls i915_gem_flush to
82 * emit an MI_FLUSH and drm_agp_chipset_flush
83 * 5. Unmapped from GTT
84 * i915_gem_object_unbind calls set_domain (CPU, CPU)
85 * flush_domains and invalidate_domains end up both zero
86 * so no flushing/invalidating happens
87 * 6. Freed
88 * yay, done
89 *
90 * Case 2: The shared render buffer
91 *
92 * 1. Allocated
93 * 2. Mapped to GTT
94 * 3. Read/written by GPU
95 * 4. set_domain to (CPU,CPU)
96 * 5. Read/written by CPU
97 * 6. Read/written by GPU
98 *
99 * 1. Allocated
100 * Same as last example, (CPU, CPU)
101 * 2. Mapped to GTT
102 * Nothing changes (assertions find that it is not in the GPU)
103 * 3. Read/written by GPU
104 * execbuffer calls set_domain (RENDER, RENDER)
105 * flush_domains gets CPU
106 * invalidate_domains gets GPU
107 * clflush (obj)
108 * MI_FLUSH and drm_agp_chipset_flush
109 * 4. set_domain (CPU, CPU)
110 * flush_domains gets GPU
111 * invalidate_domains gets CPU
112 * wait_rendering (obj) to make sure all drawing is complete.
113 * This will include an MI_FLUSH to get the data from GPU
114 * to memory
115 * clflush (obj) to invalidate the CPU cache
116 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
117 * 5. Read/written by CPU
118 * cache lines are loaded and dirtied
119 * 6. Read written by GPU
120 * Same as last GPU access
121 *
122 * Case 3: The constant buffer
123 *
124 * 1. Allocated
125 * 2. Written by CPU
126 * 3. Read by GPU
127 * 4. Updated (written) by CPU again
128 * 5. Read by GPU
129 *
130 * 1. Allocated
131 * (CPU, CPU)
132 * 2. Written by CPU
133 * (CPU, CPU)
134 * 3. Read by GPU
135 * (CPU+RENDER, 0)
136 * flush_domains = CPU
137 * invalidate_domains = RENDER
138 * clflush (obj)
139 * MI_FLUSH
140 * drm_agp_chipset_flush
141 * 4. Updated (written) by CPU again
142 * (CPU, CPU)
143 * flush_domains = 0 (no previous write domain)
144 * invalidate_domains = 0 (no new read domains)
145 * 5. Read by GPU
146 * (CPU+RENDER, 0)
147 * flush_domains = CPU
148 * invalidate_domains = RENDER
149 * clflush (obj)
150 * MI_FLUSH
151 * drm_agp_chipset_flush
152 */
153static void
154i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
155 struct intel_ring_buffer *ring,
156 struct change_domains *cd)
157{
158 uint32_t invalidate_domains = 0, flush_domains = 0;
159
160 /*
161 * If the object isn't moving to a new write domain,
162 * let the object stay in multiple read domains
163 */
164 if (obj->base.pending_write_domain == 0)
165 obj->base.pending_read_domains |= obj->base.read_domains;
166
167 /*
168 * Flush the current write domain if
169 * the new read domains don't match. Invalidate
170 * any read domains which differ from the old
171 * write domain
172 */
173 if (obj->base.write_domain &&
174 (((obj->base.write_domain != obj->base.pending_read_domains ||
175 obj->ring != ring)) ||
176 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
177 flush_domains |= obj->base.write_domain;
178 invalidate_domains |=
179 obj->base.pending_read_domains & ~obj->base.write_domain;
180 }
181 /*
182 * Invalidate any read caches which may have
183 * stale data. That is, any new read domains.
184 */
185 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
186 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
187 i915_gem_clflush_object(obj);
188
189 /* blow away mappings if mapped through GTT */
190 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
191 i915_gem_release_mmap(obj);
192
193 /* The actual obj->write_domain will be updated with
194 * pending_write_domain after we emit the accumulated flush for all
195 * of our domain changes in execbuffers (which clears objects'
196 * write_domains). So if we have a current write domain that we
197 * aren't changing, set pending_write_domain to that.
198 */
199 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
200 obj->base.pending_write_domain = obj->base.write_domain;
201
202 cd->invalidate_domains |= invalidate_domains;
203 cd->flush_domains |= flush_domains;
204 if (flush_domains & I915_GEM_GPU_DOMAINS)
205 cd->flush_rings |= obj->ring->id;
206 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
207 cd->flush_rings |= ring->id;
208}
209
210static int
211i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
212 struct drm_file *file_priv,
213 struct drm_i915_gem_exec_object2 *entry,
214 struct drm_i915_gem_relocation_entry *reloc)
215{
216 struct drm_device *dev = obj->base.dev;
217 struct drm_gem_object *target_obj;
218 uint32_t target_offset;
219 int ret = -EINVAL;
220
221 target_obj = drm_gem_object_lookup(dev, file_priv,
222 reloc->target_handle);
223 if (target_obj == NULL)
224 return -ENOENT;
225
226 target_offset = to_intel_bo(target_obj)->gtt_offset;
227
228#if WATCH_RELOC
229 DRM_INFO("%s: obj %p offset %08x target %d "
230 "read %08x write %08x gtt %08x "
231 "presumed %08x delta %08x\n",
232 __func__,
233 obj,
234 (int) reloc->offset,
235 (int) reloc->target_handle,
236 (int) reloc->read_domains,
237 (int) reloc->write_domain,
238 (int) target_offset,
239 (int) reloc->presumed_offset,
240 reloc->delta);
241#endif
242
243 /* The target buffer should have appeared before us in the
244 * exec_object list, so it should have a GTT space bound by now.
245 */
246 if (target_offset == 0) {
247 DRM_ERROR("No GTT space found for object %d\n",
248 reloc->target_handle);
249 goto err;
250 }
251
252 /* Validate that the target is in a valid r/w GPU domain */
253 if (reloc->write_domain & (reloc->write_domain - 1)) {
254 DRM_ERROR("reloc with multiple write domains: "
255 "obj %p target %d offset %d "
256 "read %08x write %08x",
257 obj, reloc->target_handle,
258 (int) reloc->offset,
259 reloc->read_domains,
260 reloc->write_domain);
261 goto err;
262 }
263 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
264 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
265 DRM_ERROR("reloc with read/write CPU domains: "
266 "obj %p target %d offset %d "
267 "read %08x write %08x",
268 obj, reloc->target_handle,
269 (int) reloc->offset,
270 reloc->read_domains,
271 reloc->write_domain);
272 goto err;
273 }
274 if (reloc->write_domain && target_obj->pending_write_domain &&
275 reloc->write_domain != target_obj->pending_write_domain) {
276 DRM_ERROR("Write domain conflict: "
277 "obj %p target %d offset %d "
278 "new %08x old %08x\n",
279 obj, reloc->target_handle,
280 (int) reloc->offset,
281 reloc->write_domain,
282 target_obj->pending_write_domain);
283 goto err;
284 }
285
286 target_obj->pending_read_domains |= reloc->read_domains;
287 target_obj->pending_write_domain |= reloc->write_domain;
288
289 /* If the relocation already has the right value in it, no
290 * more work needs to be done.
291 */
292 if (target_offset == reloc->presumed_offset)
293 goto out;
294
295 /* Check that the relocation address is valid... */
296 if (reloc->offset > obj->base.size - 4) {
297 DRM_ERROR("Relocation beyond object bounds: "
298 "obj %p target %d offset %d size %d.\n",
299 obj, reloc->target_handle,
300 (int) reloc->offset,
301 (int) obj->base.size);
302 goto err;
303 }
304 if (reloc->offset & 3) {
305 DRM_ERROR("Relocation not 4-byte aligned: "
306 "obj %p target %d offset %d.\n",
307 obj, reloc->target_handle,
308 (int) reloc->offset);
309 goto err;
310 }
311
312 /* and points to somewhere within the target object. */
313 if (reloc->delta >= target_obj->size) {
314 DRM_ERROR("Relocation beyond target object bounds: "
315 "obj %p target %d delta %d size %d.\n",
316 obj, reloc->target_handle,
317 (int) reloc->delta,
318 (int) target_obj->size);
319 goto err;
320 }
321
322 reloc->delta += target_offset;
323 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
324 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
325 char *vaddr;
326
327 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
328 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
329 kunmap_atomic(vaddr);
330 } else {
331 struct drm_i915_private *dev_priv = dev->dev_private;
332 uint32_t __iomem *reloc_entry;
333 void __iomem *reloc_page;
334
335 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
336 if (ret)
337 goto err;
338
339 /* Map the page containing the relocation we're going to perform. */
340 reloc->offset += obj->gtt_offset;
341 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
342 reloc->offset & PAGE_MASK);
343 reloc_entry = (uint32_t __iomem *)
344 (reloc_page + (reloc->offset & ~PAGE_MASK));
345 iowrite32(reloc->delta, reloc_entry);
346 io_mapping_unmap_atomic(reloc_page);
347 }
348
349 /* and update the user's relocation entry */
350 reloc->presumed_offset = target_offset;
351
352out:
353 ret = 0;
354err:
355 drm_gem_object_unreference(target_obj);
356 return ret;
357}
358
359static int
360i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
361 struct drm_file *file_priv,
362 struct drm_i915_gem_exec_object2 *entry)
363{
364 struct drm_i915_gem_relocation_entry __user *user_relocs;
365 int i, ret;
366
367 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
368 for (i = 0; i < entry->relocation_count; i++) {
369 struct drm_i915_gem_relocation_entry reloc;
370
371 if (__copy_from_user_inatomic(&reloc,
372 user_relocs+i,
373 sizeof(reloc)))
374 return -EFAULT;
375
376 ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc);
377 if (ret)
378 return ret;
379
380 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
381 &reloc.presumed_offset,
382 sizeof(reloc.presumed_offset)))
383 return -EFAULT;
384 }
385
386 return 0;
387}
388
389static int
390i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
391 struct drm_file *file_priv,
392 struct drm_i915_gem_exec_object2 *entry,
393 struct drm_i915_gem_relocation_entry *relocs)
394{
395 int i, ret;
396
397 for (i = 0; i < entry->relocation_count; i++) {
398 ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]);
399 if (ret)
400 return ret;
401 }
402
403 return 0;
404}
405
406static int
407i915_gem_execbuffer_relocate(struct drm_device *dev,
408 struct drm_file *file,
432e58ed
CW
409 struct list_head *objects,
410 struct drm_i915_gem_exec_object2 *exec)
54cf91dc 411{
432e58ed
CW
412 struct drm_i915_gem_object *obj;
413 int ret;
54cf91dc 414
432e58ed 415 list_for_each_entry(obj, objects, exec_list) {
54cf91dc
CW
416 obj->base.pending_read_domains = 0;
417 obj->base.pending_write_domain = 0;
432e58ed 418 ret = i915_gem_execbuffer_relocate_object(obj, file, exec++);
54cf91dc
CW
419 if (ret)
420 return ret;
421 }
422
423 return 0;
424}
425
426static int
d9e86c0e 427i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
54cf91dc 428 struct drm_file *file,
432e58ed
CW
429 struct list_head *objects,
430 struct drm_i915_gem_exec_object2 *exec)
54cf91dc 431{
432e58ed
CW
432 struct drm_i915_gem_object *obj;
433 struct drm_i915_gem_exec_object2 *entry;
434 int ret, retry;
9b3826bf 435 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
54cf91dc
CW
436
437 /* Attempt to pin all of the buffers into the GTT.
438 * This is done in 3 phases:
439 *
440 * 1a. Unbind all objects that do not match the GTT constraints for
441 * the execbuffer (fenceable, mappable, alignment etc).
442 * 1b. Increment pin count for already bound objects.
443 * 2. Bind new objects.
444 * 3. Decrement pin count.
445 *
446 * This avoid unnecessary unbinding of later objects in order to makr
447 * room for the earlier objects *unless* we need to defragment.
448 */
449 retry = 0;
450 do {
451 ret = 0;
452
453 /* Unbind any ill-fitting objects or pin. */
432e58ed
CW
454 entry = exec;
455 list_for_each_entry(obj, objects, exec_list) {
54cf91dc
CW
456 bool need_fence, need_mappable;
457
432e58ed
CW
458 if (!obj->gtt_space) {
459 entry++;
54cf91dc 460 continue;
432e58ed 461 }
54cf91dc
CW
462
463 need_fence =
9b3826bf 464 has_fenced_gpu_access &&
54cf91dc
CW
465 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
466 obj->tiling_mode != I915_TILING_NONE;
467 need_mappable =
468 entry->relocation_count ? true : need_fence;
469
470 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
471 (need_mappable && !obj->map_and_fenceable))
472 ret = i915_gem_object_unbind(obj);
473 else
474 ret = i915_gem_object_pin(obj,
475 entry->alignment,
476 need_mappable);
432e58ed 477 if (ret)
54cf91dc 478 goto err;
432e58ed
CW
479
480 entry++;
54cf91dc
CW
481 }
482
483 /* Bind fresh objects */
432e58ed
CW
484 entry = exec;
485 list_for_each_entry(obj, objects, exec_list) {
54cf91dc
CW
486 bool need_fence;
487
488 need_fence =
9b3826bf 489 has_fenced_gpu_access &&
54cf91dc
CW
490 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
491 obj->tiling_mode != I915_TILING_NONE;
492
493 if (!obj->gtt_space) {
494 bool need_mappable =
495 entry->relocation_count ? true : need_fence;
496
497 ret = i915_gem_object_pin(obj,
498 entry->alignment,
499 need_mappable);
500 if (ret)
501 break;
502 }
503
9b3826bf
CW
504 if (has_fenced_gpu_access) {
505 if (need_fence) {
506 ret = i915_gem_object_get_fence(obj, ring, 1);
507 if (ret)
508 break;
509 } else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
510 obj->tiling_mode == I915_TILING_NONE) {
511 /* XXX pipelined! */
512 ret = i915_gem_object_put_fence(obj);
513 if (ret)
514 break;
515 }
516 obj->pending_fenced_gpu_access = need_fence;
54cf91dc
CW
517 }
518
519 entry->offset = obj->gtt_offset;
432e58ed 520 entry++;
54cf91dc
CW
521 }
522
432e58ed
CW
523 /* Decrement pin count for bound objects */
524 list_for_each_entry(obj, objects, exec_list) {
54cf91dc
CW
525 if (obj->gtt_space)
526 i915_gem_object_unpin(obj);
527 }
528
529 if (ret != -ENOSPC || retry > 1)
530 return ret;
531
532 /* First attempt, just clear anything that is purgeable.
533 * Second attempt, clear the entire GTT.
534 */
d9e86c0e 535 ret = i915_gem_evict_everything(ring->dev, retry == 0);
54cf91dc
CW
536 if (ret)
537 return ret;
538
539 retry++;
540 } while (1);
432e58ed
CW
541
542err:
602606a4
CW
543 obj = list_entry(obj->exec_list.prev,
544 struct drm_i915_gem_object,
545 exec_list);
432e58ed
CW
546 while (objects != &obj->exec_list) {
547 if (obj->gtt_space)
548 i915_gem_object_unpin(obj);
549
550 obj = list_entry(obj->exec_list.prev,
551 struct drm_i915_gem_object,
552 exec_list);
553 }
554
555 return ret;
54cf91dc
CW
556}
557
558static int
559i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
560 struct drm_file *file,
d9e86c0e 561 struct intel_ring_buffer *ring,
432e58ed
CW
562 struct list_head *objects,
563 struct drm_i915_gem_exec_object2 *exec,
54cf91dc
CW
564 int count)
565{
566 struct drm_i915_gem_relocation_entry *reloc;
432e58ed 567 struct drm_i915_gem_object *obj;
54cf91dc
CW
568 int i, total, ret;
569
54cf91dc
CW
570 mutex_unlock(&dev->struct_mutex);
571
572 total = 0;
573 for (i = 0; i < count; i++)
432e58ed 574 total += exec[i].relocation_count;
54cf91dc
CW
575
576 reloc = drm_malloc_ab(total, sizeof(*reloc));
577 if (reloc == NULL) {
578 mutex_lock(&dev->struct_mutex);
579 return -ENOMEM;
580 }
581
582 total = 0;
583 for (i = 0; i < count; i++) {
584 struct drm_i915_gem_relocation_entry __user *user_relocs;
585
432e58ed 586 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
54cf91dc
CW
587
588 if (copy_from_user(reloc+total, user_relocs,
432e58ed 589 exec[i].relocation_count * sizeof(*reloc))) {
54cf91dc
CW
590 ret = -EFAULT;
591 mutex_lock(&dev->struct_mutex);
592 goto err;
593 }
594
432e58ed 595 total += exec[i].relocation_count;
54cf91dc
CW
596 }
597
598 ret = i915_mutex_lock_interruptible(dev);
599 if (ret) {
600 mutex_lock(&dev->struct_mutex);
601 goto err;
602 }
603
d9e86c0e 604 ret = i915_gem_execbuffer_reserve(ring, file, objects, exec);
54cf91dc
CW
605 if (ret)
606 goto err;
607
608 total = 0;
432e58ed 609 list_for_each_entry(obj, objects, exec_list) {
54cf91dc
CW
610 obj->base.pending_read_domains = 0;
611 obj->base.pending_write_domain = 0;
612 ret = i915_gem_execbuffer_relocate_object_slow(obj, file,
432e58ed 613 exec,
54cf91dc
CW
614 reloc + total);
615 if (ret)
616 goto err;
617
432e58ed
CW
618 total += exec->relocation_count;
619 exec++;
54cf91dc
CW
620 }
621
622 /* Leave the user relocations as are, this is the painfully slow path,
623 * and we want to avoid the complication of dropping the lock whilst
624 * having buffers reserved in the aperture and so causing spurious
625 * ENOSPC for random operations.
626 */
627
628err:
629 drm_free_large(reloc);
630 return ret;
631}
632
633static void
634i915_gem_execbuffer_flush(struct drm_device *dev,
635 uint32_t invalidate_domains,
636 uint32_t flush_domains,
637 uint32_t flush_rings)
638{
639 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 640 int i;
54cf91dc
CW
641
642 if (flush_domains & I915_GEM_DOMAIN_CPU)
643 intel_gtt_chipset_flush();
644
645 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
1ec14ad3
CW
646 for (i = 0; i < I915_NUM_RINGS; i++)
647 if (flush_rings & (1 << i))
648 i915_gem_flush_ring(dev, &dev_priv->ring[i],
649 invalidate_domains,
650 flush_domains);
54cf91dc
CW
651 }
652}
653
1ec14ad3
CW
654static int
655i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
656 struct intel_ring_buffer *to)
657{
658 struct intel_ring_buffer *from = obj->ring;
659 u32 seqno;
660 int ret, idx;
661
662 if (from == NULL || to == from)
663 return 0;
664
665 if (INTEL_INFO(obj->base.dev)->gen < 6)
666 return i915_gem_object_wait_rendering(obj, true);
667
668 idx = intel_ring_sync_index(from, to);
669
670 seqno = obj->last_rendering_seqno;
671 if (seqno <= from->sync_seqno[idx])
672 return 0;
673
674 if (seqno == from->outstanding_lazy_request) {
675 struct drm_i915_gem_request *request;
676
677 request = kzalloc(sizeof(*request), GFP_KERNEL);
678 if (request == NULL)
679 return -ENOMEM;
680
681 ret = i915_add_request(obj->base.dev, NULL, request, from);
682 if (ret) {
683 kfree(request);
684 return ret;
685 }
686
687 seqno = request->seqno;
688 }
689
690 from->sync_seqno[idx] = seqno;
691 return intel_ring_sync(to, from, seqno - 1);
692}
54cf91dc
CW
693
694static int
432e58ed
CW
695i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
696 struct list_head *objects)
54cf91dc 697{
432e58ed 698 struct drm_i915_gem_object *obj;
54cf91dc 699 struct change_domains cd;
432e58ed 700 int ret;
54cf91dc
CW
701
702 cd.invalidate_domains = 0;
703 cd.flush_domains = 0;
704 cd.flush_rings = 0;
432e58ed
CW
705 list_for_each_entry(obj, objects, exec_list)
706 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
54cf91dc
CW
707
708 if (cd.invalidate_domains | cd.flush_domains) {
709#if WATCH_EXEC
710 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
711 __func__,
712 cd.invalidate_domains,
713 cd.flush_domains);
714#endif
432e58ed 715 i915_gem_execbuffer_flush(ring->dev,
54cf91dc
CW
716 cd.invalidate_domains,
717 cd.flush_domains,
718 cd.flush_rings);
719 }
720
432e58ed 721 list_for_each_entry(obj, objects, exec_list) {
1ec14ad3
CW
722 ret = i915_gem_execbuffer_sync_rings(obj, ring);
723 if (ret)
724 return ret;
54cf91dc
CW
725 }
726
727 return 0;
728}
729
432e58ed
CW
730static bool
731i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 732{
432e58ed 733 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
54cf91dc
CW
734}
735
736static int
737validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
738 int count)
739{
740 int i;
741
742 for (i = 0; i < count; i++) {
743 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
744 int length; /* limited by fault_in_pages_readable() */
745
746 /* First check for malicious input causing overflow */
747 if (exec[i].relocation_count >
748 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
749 return -EINVAL;
750
751 length = exec[i].relocation_count *
752 sizeof(struct drm_i915_gem_relocation_entry);
753 if (!access_ok(VERIFY_READ, ptr, length))
754 return -EFAULT;
755
756 /* we may also need to update the presumed offsets */
757 if (!access_ok(VERIFY_WRITE, ptr, length))
758 return -EFAULT;
759
760 if (fault_in_pages_readable(ptr, length))
761 return -EFAULT;
762 }
763
764 return 0;
765}
766
432e58ed
CW
767static int
768i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring,
769 struct list_head *objects)
770{
771 struct drm_i915_gem_object *obj;
772 int flips;
773
774 /* Check for any pending flips. As we only maintain a flip queue depth
775 * of 1, we can simply insert a WAIT for the next display flip prior
776 * to executing the batch and avoid stalling the CPU.
777 */
778 flips = 0;
779 list_for_each_entry(obj, objects, exec_list) {
780 if (obj->base.write_domain)
781 flips |= atomic_read(&obj->pending_flip);
782 }
783 if (flips) {
784 int plane, flip_mask, ret;
785
786 for (plane = 0; flips >> plane; plane++) {
787 if (((flips >> plane) & 1) == 0)
788 continue;
789
790 if (plane)
791 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
792 else
793 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
794
795 ret = intel_ring_begin(ring, 2);
796 if (ret)
797 return ret;
798
799 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
800 intel_ring_emit(ring, MI_NOOP);
801 intel_ring_advance(ring);
802 }
803 }
804
805 return 0;
806}
807
808static void
809i915_gem_execbuffer_move_to_active(struct list_head *objects,
1ec14ad3
CW
810 struct intel_ring_buffer *ring,
811 u32 seqno)
432e58ed
CW
812{
813 struct drm_i915_gem_object *obj;
814
815 list_for_each_entry(obj, objects, exec_list) {
816 obj->base.read_domains = obj->base.pending_read_domains;
817 obj->base.write_domain = obj->base.pending_write_domain;
818 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
819
1ec14ad3 820 i915_gem_object_move_to_active(obj, ring, seqno);
432e58ed
CW
821 if (obj->base.write_domain) {
822 obj->dirty = 1;
87ca9c8a 823 obj->pending_gpu_write = true;
432e58ed
CW
824 list_move_tail(&obj->gpu_write_list,
825 &ring->gpu_write_list);
826 intel_mark_busy(ring->dev, obj);
827 }
828
829 trace_i915_gem_object_change_domain(obj,
830 obj->base.read_domains,
831 obj->base.write_domain);
832 }
833}
834
54cf91dc
CW
835static void
836i915_gem_execbuffer_retire_commands(struct drm_device *dev,
432e58ed 837 struct drm_file *file,
54cf91dc
CW
838 struct intel_ring_buffer *ring)
839{
432e58ed
CW
840 struct drm_i915_gem_request *request;
841 u32 flush_domains;
54cf91dc 842
432e58ed
CW
843 /*
844 * Ensure that the commands in the batch buffer are
845 * finished before the interrupt fires.
846 *
847 * The sampler always gets flushed on i965 (sigh).
848 */
849 flush_domains = 0;
54cf91dc
CW
850 if (INTEL_INFO(dev)->gen >= 4)
851 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852
853 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
54cf91dc 854
432e58ed
CW
855 /* Add a breadcrumb for the completion of the batch buffer */
856 request = kzalloc(sizeof(*request), GFP_KERNEL);
857 if (request == NULL || i915_add_request(dev, file, request, ring)) {
858 i915_gem_next_request_seqno(dev, ring);
859 kfree(request);
860 }
861}
54cf91dc
CW
862
863static int
864i915_gem_do_execbuffer(struct drm_device *dev, void *data,
865 struct drm_file *file,
866 struct drm_i915_gem_execbuffer2 *args,
432e58ed 867 struct drm_i915_gem_exec_object2 *exec)
54cf91dc
CW
868{
869 drm_i915_private_t *dev_priv = dev->dev_private;
432e58ed 870 struct list_head objects;
54cf91dc
CW
871 struct drm_i915_gem_object *batch_obj;
872 struct drm_clip_rect *cliprects = NULL;
54cf91dc 873 struct intel_ring_buffer *ring;
c4e7a414 874 u32 exec_start, exec_len;
1ec14ad3 875 u32 seqno;
432e58ed 876 int ret, i;
54cf91dc 877
432e58ed
CW
878 if (!i915_gem_check_execbuffer(args)) {
879 DRM_ERROR("execbuf with invalid offset/length\n");
880 return -EINVAL;
881 }
882
883 ret = validate_exec_list(exec, args->buffer_count);
54cf91dc
CW
884 if (ret)
885 return ret;
886
887#if WATCH_EXEC
888 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
889 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
890#endif
891 switch (args->flags & I915_EXEC_RING_MASK) {
892 case I915_EXEC_DEFAULT:
893 case I915_EXEC_RENDER:
1ec14ad3 894 ring = &dev_priv->ring[RCS];
54cf91dc
CW
895 break;
896 case I915_EXEC_BSD:
897 if (!HAS_BSD(dev)) {
898 DRM_ERROR("execbuf with invalid ring (BSD)\n");
899 return -EINVAL;
900 }
1ec14ad3 901 ring = &dev_priv->ring[VCS];
54cf91dc
CW
902 break;
903 case I915_EXEC_BLT:
904 if (!HAS_BLT(dev)) {
905 DRM_ERROR("execbuf with invalid ring (BLT)\n");
906 return -EINVAL;
907 }
1ec14ad3 908 ring = &dev_priv->ring[BCS];
54cf91dc
CW
909 break;
910 default:
911 DRM_ERROR("execbuf with unknown ring: %d\n",
912 (int)(args->flags & I915_EXEC_RING_MASK));
913 return -EINVAL;
914 }
915
916 if (args->buffer_count < 1) {
917 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
918 return -EINVAL;
919 }
54cf91dc
CW
920
921 if (args->num_cliprects != 0) {
1ec14ad3 922 if (ring != &dev_priv->ring[RCS]) {
c4e7a414
CW
923 DRM_ERROR("clip rectangles are only valid with the render ring\n");
924 return -EINVAL;
925 }
926
432e58ed 927 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
54cf91dc
CW
928 GFP_KERNEL);
929 if (cliprects == NULL) {
930 ret = -ENOMEM;
931 goto pre_mutex_err;
932 }
933
432e58ed
CW
934 if (copy_from_user(cliprects,
935 (struct drm_clip_rect __user *)(uintptr_t)
936 args->cliprects_ptr,
937 sizeof(*cliprects)*args->num_cliprects)) {
54cf91dc
CW
938 ret = -EFAULT;
939 goto pre_mutex_err;
940 }
941 }
942
54cf91dc
CW
943 ret = i915_mutex_lock_interruptible(dev);
944 if (ret)
945 goto pre_mutex_err;
946
947 if (dev_priv->mm.suspended) {
948 mutex_unlock(&dev->struct_mutex);
949 ret = -EBUSY;
950 goto pre_mutex_err;
951 }
952
953 /* Look up object handles */
432e58ed 954 INIT_LIST_HEAD(&objects);
54cf91dc
CW
955 for (i = 0; i < args->buffer_count; i++) {
956 struct drm_i915_gem_object *obj;
957
432e58ed
CW
958 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
959 exec[i].handle));
54cf91dc
CW
960 if (obj == NULL) {
961 DRM_ERROR("Invalid object handle %d at index %d\n",
432e58ed 962 exec[i].handle, i);
54cf91dc 963 /* prevent error path from reading uninitialized data */
54cf91dc
CW
964 ret = -ENOENT;
965 goto err;
966 }
54cf91dc 967
432e58ed
CW
968 if (!list_empty(&obj->exec_list)) {
969 DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
970 obj, exec[i].handle, i);
54cf91dc
CW
971 ret = -EINVAL;
972 goto err;
973 }
432e58ed
CW
974
975 list_add_tail(&obj->exec_list, &objects);
54cf91dc
CW
976 }
977
978 /* Move the objects en-masse into the GTT, evicting if necessary. */
d9e86c0e 979 ret = i915_gem_execbuffer_reserve(ring, file, &objects, exec);
54cf91dc
CW
980 if (ret)
981 goto err;
982
983 /* The objects are in their final locations, apply the relocations. */
432e58ed 984 ret = i915_gem_execbuffer_relocate(dev, file, &objects, exec);
54cf91dc
CW
985 if (ret) {
986 if (ret == -EFAULT) {
d9e86c0e 987 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
432e58ed 988 &objects, exec,
54cf91dc
CW
989 args->buffer_count);
990 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
991 }
992 if (ret)
993 goto err;
994 }
995
996 /* Set the pending read domains for the batch buffer to COMMAND */
432e58ed
CW
997 batch_obj = list_entry(objects.prev,
998 struct drm_i915_gem_object,
999 exec_list);
54cf91dc
CW
1000 if (batch_obj->base.pending_write_domain) {
1001 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
1002 ret = -EINVAL;
1003 goto err;
1004 }
1005 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1006
432e58ed
CW
1007 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1008 if (ret)
54cf91dc 1009 goto err;
54cf91dc 1010
432e58ed 1011 ret = i915_gem_execbuffer_wait_for_flips(ring, &objects);
54cf91dc
CW
1012 if (ret)
1013 goto err;
1014
1ec14ad3
CW
1015 seqno = i915_gem_next_request_seqno(dev, ring);
1016 for (i = 0; i < I915_NUM_RINGS-1; i++) {
1017 if (seqno < ring->sync_seqno[i]) {
1018 /* The GPU can not handle its semaphore value wrapping,
1019 * so every billion or so execbuffers, we need to stall
1020 * the GPU in order to reset the counters.
1021 */
1022 ret = i915_gpu_idle(dev);
1023 if (ret)
1024 goto err;
1025
1026 BUG_ON(ring->sync_seqno[i]);
1027 }
1028 }
1029
c4e7a414
CW
1030 exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1031 exec_len = args->batch_len;
1032 if (cliprects) {
1033 for (i = 0; i < args->num_cliprects; i++) {
1034 ret = i915_emit_box(dev, &cliprects[i],
1035 args->DR1, args->DR4);
1036 if (ret)
1037 goto err;
1038
1039 ret = ring->dispatch_execbuffer(ring,
1040 exec_start, exec_len);
1041 if (ret)
1042 goto err;
1043 }
1044 } else {
1045 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1046 if (ret)
1047 goto err;
1048 }
54cf91dc 1049
1ec14ad3 1050 i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
432e58ed 1051 i915_gem_execbuffer_retire_commands(dev, file, ring);
54cf91dc
CW
1052
1053err:
432e58ed
CW
1054 while (!list_empty(&objects)) {
1055 struct drm_i915_gem_object *obj;
1056
1057 obj = list_first_entry(&objects,
1058 struct drm_i915_gem_object,
1059 exec_list);
1060 list_del_init(&obj->exec_list);
1061 drm_gem_object_unreference(&obj->base);
54cf91dc
CW
1062 }
1063
1064 mutex_unlock(&dev->struct_mutex);
1065
1066pre_mutex_err:
54cf91dc 1067 kfree(cliprects);
54cf91dc
CW
1068 return ret;
1069}
1070
1071/*
1072 * Legacy execbuffer just creates an exec2 list from the original exec object
1073 * list array and passes it to the real function.
1074 */
1075int
1076i915_gem_execbuffer(struct drm_device *dev, void *data,
1077 struct drm_file *file)
1078{
1079 struct drm_i915_gem_execbuffer *args = data;
1080 struct drm_i915_gem_execbuffer2 exec2;
1081 struct drm_i915_gem_exec_object *exec_list = NULL;
1082 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1083 int ret, i;
1084
1085#if WATCH_EXEC
1086 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
1087 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1088#endif
1089
1090 if (args->buffer_count < 1) {
1091 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1092 return -EINVAL;
1093 }
1094
1095 /* Copy in the exec list from userland */
1096 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1097 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1098 if (exec_list == NULL || exec2_list == NULL) {
1099 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1100 args->buffer_count);
1101 drm_free_large(exec_list);
1102 drm_free_large(exec2_list);
1103 return -ENOMEM;
1104 }
1105 ret = copy_from_user(exec_list,
1106 (struct drm_i915_relocation_entry __user *)
1107 (uintptr_t) args->buffers_ptr,
1108 sizeof(*exec_list) * args->buffer_count);
1109 if (ret != 0) {
1110 DRM_ERROR("copy %d exec entries failed %d\n",
1111 args->buffer_count, ret);
1112 drm_free_large(exec_list);
1113 drm_free_large(exec2_list);
1114 return -EFAULT;
1115 }
1116
1117 for (i = 0; i < args->buffer_count; i++) {
1118 exec2_list[i].handle = exec_list[i].handle;
1119 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1120 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1121 exec2_list[i].alignment = exec_list[i].alignment;
1122 exec2_list[i].offset = exec_list[i].offset;
1123 if (INTEL_INFO(dev)->gen < 4)
1124 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1125 else
1126 exec2_list[i].flags = 0;
1127 }
1128
1129 exec2.buffers_ptr = args->buffers_ptr;
1130 exec2.buffer_count = args->buffer_count;
1131 exec2.batch_start_offset = args->batch_start_offset;
1132 exec2.batch_len = args->batch_len;
1133 exec2.DR1 = args->DR1;
1134 exec2.DR4 = args->DR4;
1135 exec2.num_cliprects = args->num_cliprects;
1136 exec2.cliprects_ptr = args->cliprects_ptr;
1137 exec2.flags = I915_EXEC_RENDER;
1138
1139 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1140 if (!ret) {
1141 /* Copy the new buffer offsets back to the user's exec list. */
1142 for (i = 0; i < args->buffer_count; i++)
1143 exec_list[i].offset = exec2_list[i].offset;
1144 /* ... and back out to userspace */
1145 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1146 (uintptr_t) args->buffers_ptr,
1147 exec_list,
1148 sizeof(*exec_list) * args->buffer_count);
1149 if (ret) {
1150 ret = -EFAULT;
1151 DRM_ERROR("failed to copy %d exec entries "
1152 "back to user (%d)\n",
1153 args->buffer_count, ret);
1154 }
1155 }
1156
1157 drm_free_large(exec_list);
1158 drm_free_large(exec2_list);
1159 return ret;
1160}
1161
1162int
1163i915_gem_execbuffer2(struct drm_device *dev, void *data,
1164 struct drm_file *file)
1165{
1166 struct drm_i915_gem_execbuffer2 *args = data;
1167 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1168 int ret;
1169
1170#if WATCH_EXEC
1171 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
1172 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1173#endif
1174
1175 if (args->buffer_count < 1) {
1176 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
1177 return -EINVAL;
1178 }
1179
1180 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1181 if (exec2_list == NULL) {
1182 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1183 args->buffer_count);
1184 return -ENOMEM;
1185 }
1186 ret = copy_from_user(exec2_list,
1187 (struct drm_i915_relocation_entry __user *)
1188 (uintptr_t) args->buffers_ptr,
1189 sizeof(*exec2_list) * args->buffer_count);
1190 if (ret != 0) {
1191 DRM_ERROR("copy %d exec entries failed %d\n",
1192 args->buffer_count, ret);
1193 drm_free_large(exec2_list);
1194 return -EFAULT;
1195 }
1196
1197 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1198 if (!ret) {
1199 /* Copy the new buffer offsets back to the user's exec list. */
1200 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1201 (uintptr_t) args->buffers_ptr,
1202 exec2_list,
1203 sizeof(*exec2_list) * args->buffer_count);
1204 if (ret) {
1205 ret = -EFAULT;
1206 DRM_ERROR("failed to copy %d exec entries "
1207 "back to user (%d)\n",
1208 args->buffer_count, ret);
1209 }
1210 }
1211
1212 drm_free_large(exec2_list);
1213 return ret;
1214}
1215