]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/gpu/drm/i915/i915_gem_execbuffer.c
drm/i915: remove the i915_batchbuffer_info debugfs file
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
CommitLineData
54cf91dc
CW
1/*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
29#include "drmP.h"
30#include "drm.h"
31#include "i915_drm.h"
32#include "i915_drv.h"
33#include "i915_trace.h"
34#include "intel_drv.h"
f45b5557 35#include <linux/dma_remapping.h>
54cf91dc
CW
36
37struct change_domains {
38 uint32_t invalidate_domains;
39 uint32_t flush_domains;
40 uint32_t flush_rings;
c59a333f 41 uint32_t flips;
54cf91dc
CW
42};
43
44/*
45 * Set the next domain for the specified object. This
46 * may not actually perform the necessary flushing/invaliding though,
47 * as that may want to be batched with other set_domain operations
48 *
49 * This is (we hope) the only really tricky part of gem. The goal
50 * is fairly simple -- track which caches hold bits of the object
51 * and make sure they remain coherent. A few concrete examples may
52 * help to explain how it works. For shorthand, we use the notation
53 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
54 * a pair of read and write domain masks.
55 *
56 * Case 1: the batch buffer
57 *
58 * 1. Allocated
59 * 2. Written by CPU
60 * 3. Mapped to GTT
61 * 4. Read by GPU
62 * 5. Unmapped from GTT
63 * 6. Freed
64 *
65 * Let's take these a step at a time
66 *
67 * 1. Allocated
68 * Pages allocated from the kernel may still have
69 * cache contents, so we set them to (CPU, CPU) always.
70 * 2. Written by CPU (using pwrite)
71 * The pwrite function calls set_domain (CPU, CPU) and
72 * this function does nothing (as nothing changes)
73 * 3. Mapped by GTT
74 * This function asserts that the object is not
75 * currently in any GPU-based read or write domains
76 * 4. Read by GPU
77 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
78 * As write_domain is zero, this function adds in the
79 * current read domains (CPU+COMMAND, 0).
80 * flush_domains is set to CPU.
81 * invalidate_domains is set to COMMAND
82 * clflush is run to get data out of the CPU caches
83 * then i915_dev_set_domain calls i915_gem_flush to
84 * emit an MI_FLUSH and drm_agp_chipset_flush
85 * 5. Unmapped from GTT
86 * i915_gem_object_unbind calls set_domain (CPU, CPU)
87 * flush_domains and invalidate_domains end up both zero
88 * so no flushing/invalidating happens
89 * 6. Freed
90 * yay, done
91 *
92 * Case 2: The shared render buffer
93 *
94 * 1. Allocated
95 * 2. Mapped to GTT
96 * 3. Read/written by GPU
97 * 4. set_domain to (CPU,CPU)
98 * 5. Read/written by CPU
99 * 6. Read/written by GPU
100 *
101 * 1. Allocated
102 * Same as last example, (CPU, CPU)
103 * 2. Mapped to GTT
104 * Nothing changes (assertions find that it is not in the GPU)
105 * 3. Read/written by GPU
106 * execbuffer calls set_domain (RENDER, RENDER)
107 * flush_domains gets CPU
108 * invalidate_domains gets GPU
109 * clflush (obj)
110 * MI_FLUSH and drm_agp_chipset_flush
111 * 4. set_domain (CPU, CPU)
112 * flush_domains gets GPU
113 * invalidate_domains gets CPU
114 * wait_rendering (obj) to make sure all drawing is complete.
115 * This will include an MI_FLUSH to get the data from GPU
116 * to memory
117 * clflush (obj) to invalidate the CPU cache
118 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
119 * 5. Read/written by CPU
120 * cache lines are loaded and dirtied
121 * 6. Read written by GPU
122 * Same as last GPU access
123 *
124 * Case 3: The constant buffer
125 *
126 * 1. Allocated
127 * 2. Written by CPU
128 * 3. Read by GPU
129 * 4. Updated (written) by CPU again
130 * 5. Read by GPU
131 *
132 * 1. Allocated
133 * (CPU, CPU)
134 * 2. Written by CPU
135 * (CPU, CPU)
136 * 3. Read by GPU
137 * (CPU+RENDER, 0)
138 * flush_domains = CPU
139 * invalidate_domains = RENDER
140 * clflush (obj)
141 * MI_FLUSH
142 * drm_agp_chipset_flush
143 * 4. Updated (written) by CPU again
144 * (CPU, CPU)
145 * flush_domains = 0 (no previous write domain)
146 * invalidate_domains = 0 (no new read domains)
147 * 5. Read by GPU
148 * (CPU+RENDER, 0)
149 * flush_domains = CPU
150 * invalidate_domains = RENDER
151 * clflush (obj)
152 * MI_FLUSH
153 * drm_agp_chipset_flush
154 */
155static void
156i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
157 struct intel_ring_buffer *ring,
158 struct change_domains *cd)
159{
160 uint32_t invalidate_domains = 0, flush_domains = 0;
161
162 /*
163 * If the object isn't moving to a new write domain,
164 * let the object stay in multiple read domains
165 */
166 if (obj->base.pending_write_domain == 0)
167 obj->base.pending_read_domains |= obj->base.read_domains;
168
169 /*
170 * Flush the current write domain if
171 * the new read domains don't match. Invalidate
172 * any read domains which differ from the old
173 * write domain
174 */
175 if (obj->base.write_domain &&
176 (((obj->base.write_domain != obj->base.pending_read_domains ||
177 obj->ring != ring)) ||
178 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
179 flush_domains |= obj->base.write_domain;
180 invalidate_domains |=
181 obj->base.pending_read_domains & ~obj->base.write_domain;
182 }
183 /*
184 * Invalidate any read caches which may have
185 * stale data. That is, any new read domains.
186 */
187 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
188 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
189 i915_gem_clflush_object(obj);
190
c59a333f
CW
191 if (obj->base.pending_write_domain)
192 cd->flips |= atomic_read(&obj->pending_flip);
193
54cf91dc
CW
194 /* The actual obj->write_domain will be updated with
195 * pending_write_domain after we emit the accumulated flush for all
196 * of our domain changes in execbuffers (which clears objects'
197 * write_domains). So if we have a current write domain that we
198 * aren't changing, set pending_write_domain to that.
199 */
200 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
201 obj->base.pending_write_domain = obj->base.write_domain;
202
203 cd->invalidate_domains |= invalidate_domains;
204 cd->flush_domains |= flush_domains;
205 if (flush_domains & I915_GEM_GPU_DOMAINS)
96154f2f 206 cd->flush_rings |= intel_ring_flag(obj->ring);
54cf91dc 207 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
96154f2f 208 cd->flush_rings |= intel_ring_flag(ring);
54cf91dc
CW
209}
210
67731b87
CW
211struct eb_objects {
212 int and;
213 struct hlist_head buckets[0];
214};
215
216static struct eb_objects *
217eb_create(int size)
218{
219 struct eb_objects *eb;
220 int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
221 while (count > size)
222 count >>= 1;
223 eb = kzalloc(count*sizeof(struct hlist_head) +
224 sizeof(struct eb_objects),
225 GFP_KERNEL);
226 if (eb == NULL)
227 return eb;
228
229 eb->and = count - 1;
230 return eb;
231}
232
233static void
234eb_reset(struct eb_objects *eb)
235{
236 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
237}
238
239static void
240eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
241{
242 hlist_add_head(&obj->exec_node,
243 &eb->buckets[obj->exec_handle & eb->and]);
244}
245
246static struct drm_i915_gem_object *
247eb_get_object(struct eb_objects *eb, unsigned long handle)
248{
249 struct hlist_head *head;
250 struct hlist_node *node;
251 struct drm_i915_gem_object *obj;
252
253 head = &eb->buckets[handle & eb->and];
254 hlist_for_each(node, head) {
255 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
256 if (obj->exec_handle == handle)
257 return obj;
258 }
259
260 return NULL;
261}
262
263static void
264eb_destroy(struct eb_objects *eb)
265{
266 kfree(eb);
267}
268
54cf91dc
CW
269static int
270i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
67731b87 271 struct eb_objects *eb,
54cf91dc
CW
272 struct drm_i915_gem_relocation_entry *reloc)
273{
274 struct drm_device *dev = obj->base.dev;
275 struct drm_gem_object *target_obj;
276 uint32_t target_offset;
277 int ret = -EINVAL;
278
67731b87
CW
279 /* we've already hold a reference to all valid objects */
280 target_obj = &eb_get_object(eb, reloc->target_handle)->base;
281 if (unlikely(target_obj == NULL))
54cf91dc
CW
282 return -ENOENT;
283
284 target_offset = to_intel_bo(target_obj)->gtt_offset;
285
54cf91dc
CW
286 /* The target buffer should have appeared before us in the
287 * exec_object list, so it should have a GTT space bound by now.
288 */
b8f7ab17 289 if (unlikely(target_offset == 0)) {
54cf91dc
CW
290 DRM_ERROR("No GTT space found for object %d\n",
291 reloc->target_handle);
67731b87 292 return ret;
54cf91dc
CW
293 }
294
295 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 296 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
54cf91dc
CW
297 DRM_ERROR("reloc with multiple write domains: "
298 "obj %p target %d offset %d "
299 "read %08x write %08x",
300 obj, reloc->target_handle,
301 (int) reloc->offset,
302 reloc->read_domains,
303 reloc->write_domain);
67731b87 304 return ret;
54cf91dc 305 }
b8f7ab17 306 if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) {
54cf91dc
CW
307 DRM_ERROR("reloc with read/write CPU domains: "
308 "obj %p target %d offset %d "
309 "read %08x write %08x",
310 obj, reloc->target_handle,
311 (int) reloc->offset,
312 reloc->read_domains,
313 reloc->write_domain);
67731b87 314 return ret;
54cf91dc 315 }
b8f7ab17
CW
316 if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
317 reloc->write_domain != target_obj->pending_write_domain)) {
54cf91dc
CW
318 DRM_ERROR("Write domain conflict: "
319 "obj %p target %d offset %d "
320 "new %08x old %08x\n",
321 obj, reloc->target_handle,
322 (int) reloc->offset,
323 reloc->write_domain,
324 target_obj->pending_write_domain);
67731b87 325 return ret;
54cf91dc
CW
326 }
327
328 target_obj->pending_read_domains |= reloc->read_domains;
329 target_obj->pending_write_domain |= reloc->write_domain;
330
331 /* If the relocation already has the right value in it, no
332 * more work needs to be done.
333 */
334 if (target_offset == reloc->presumed_offset)
67731b87 335 return 0;
54cf91dc
CW
336
337 /* Check that the relocation address is valid... */
b8f7ab17 338 if (unlikely(reloc->offset > obj->base.size - 4)) {
54cf91dc
CW
339 DRM_ERROR("Relocation beyond object bounds: "
340 "obj %p target %d offset %d size %d.\n",
341 obj, reloc->target_handle,
342 (int) reloc->offset,
343 (int) obj->base.size);
67731b87 344 return ret;
54cf91dc 345 }
b8f7ab17 346 if (unlikely(reloc->offset & 3)) {
54cf91dc
CW
347 DRM_ERROR("Relocation not 4-byte aligned: "
348 "obj %p target %d offset %d.\n",
349 obj, reloc->target_handle,
350 (int) reloc->offset);
67731b87 351 return ret;
54cf91dc
CW
352 }
353
54cf91dc
CW
354 reloc->delta += target_offset;
355 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
356 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
357 char *vaddr;
358
359 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
360 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
361 kunmap_atomic(vaddr);
362 } else {
363 struct drm_i915_private *dev_priv = dev->dev_private;
364 uint32_t __iomem *reloc_entry;
365 void __iomem *reloc_page;
366
d4aeee77
CW
367 /* We can't wait for rendering with pagefaults disabled */
368 if (obj->active && in_atomic())
369 return -EFAULT;
370
54cf91dc
CW
371 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
372 if (ret)
67731b87 373 return ret;
54cf91dc
CW
374
375 /* Map the page containing the relocation we're going to perform. */
376 reloc->offset += obj->gtt_offset;
377 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
378 reloc->offset & PAGE_MASK);
379 reloc_entry = (uint32_t __iomem *)
380 (reloc_page + (reloc->offset & ~PAGE_MASK));
381 iowrite32(reloc->delta, reloc_entry);
382 io_mapping_unmap_atomic(reloc_page);
383 }
384
385 /* and update the user's relocation entry */
386 reloc->presumed_offset = target_offset;
387
67731b87 388 return 0;
54cf91dc
CW
389}
390
391static int
392i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
6fe4f140 393 struct eb_objects *eb)
54cf91dc
CW
394{
395 struct drm_i915_gem_relocation_entry __user *user_relocs;
6fe4f140 396 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
54cf91dc
CW
397 int i, ret;
398
399 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
400 for (i = 0; i < entry->relocation_count; i++) {
401 struct drm_i915_gem_relocation_entry reloc;
402
403 if (__copy_from_user_inatomic(&reloc,
404 user_relocs+i,
405 sizeof(reloc)))
406 return -EFAULT;
407
6fe4f140 408 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
54cf91dc
CW
409 if (ret)
410 return ret;
411
412 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
413 &reloc.presumed_offset,
414 sizeof(reloc.presumed_offset)))
415 return -EFAULT;
416 }
417
418 return 0;
419}
420
421static int
422i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
67731b87 423 struct eb_objects *eb,
54cf91dc
CW
424 struct drm_i915_gem_relocation_entry *relocs)
425{
6fe4f140 426 const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
54cf91dc
CW
427 int i, ret;
428
429 for (i = 0; i < entry->relocation_count; i++) {
6fe4f140 430 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
54cf91dc
CW
431 if (ret)
432 return ret;
433 }
434
435 return 0;
436}
437
438static int
439i915_gem_execbuffer_relocate(struct drm_device *dev,
67731b87 440 struct eb_objects *eb,
6fe4f140 441 struct list_head *objects)
54cf91dc 442{
432e58ed 443 struct drm_i915_gem_object *obj;
d4aeee77
CW
444 int ret = 0;
445
446 /* This is the fast path and we cannot handle a pagefault whilst
447 * holding the struct mutex lest the user pass in the relocations
448 * contained within a mmaped bo. For in such a case we, the page
449 * fault handler would call i915_gem_fault() and we would try to
450 * acquire the struct mutex again. Obviously this is bad and so
451 * lockdep complains vehemently.
452 */
453 pagefault_disable();
432e58ed 454 list_for_each_entry(obj, objects, exec_list) {
6fe4f140 455 ret = i915_gem_execbuffer_relocate_object(obj, eb);
54cf91dc 456 if (ret)
d4aeee77 457 break;
54cf91dc 458 }
d4aeee77 459 pagefault_enable();
54cf91dc 460
d4aeee77 461 return ret;
54cf91dc
CW
462}
463
1690e1eb
CW
464#define __EXEC_OBJECT_HAS_FENCE (1<<31)
465
466static int
467pin_and_fence_object(struct drm_i915_gem_object *obj,
468 struct intel_ring_buffer *ring)
469{
470 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
471 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
472 bool need_fence, need_mappable;
473 int ret;
474
475 need_fence =
476 has_fenced_gpu_access &&
477 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
478 obj->tiling_mode != I915_TILING_NONE;
479 need_mappable =
480 entry->relocation_count ? true : need_fence;
481
482 ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
483 if (ret)
484 return ret;
485
486 if (has_fenced_gpu_access) {
487 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
488 if (obj->tiling_mode) {
489 ret = i915_gem_object_get_fence(obj, ring);
490 if (ret)
491 goto err_unpin;
492
493 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
494 i915_gem_object_pin_fence(obj);
495 } else {
496 ret = i915_gem_object_put_fence(obj);
497 if (ret)
498 goto err_unpin;
499 }
500 }
501 obj->pending_fenced_gpu_access = need_fence;
502 }
503
504 entry->offset = obj->gtt_offset;
505 return 0;
506
507err_unpin:
508 i915_gem_object_unpin(obj);
509 return ret;
510}
511
54cf91dc 512static int
d9e86c0e 513i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
54cf91dc 514 struct drm_file *file,
6fe4f140 515 struct list_head *objects)
54cf91dc 516{
432e58ed 517 struct drm_i915_gem_object *obj;
432e58ed 518 int ret, retry;
9b3826bf 519 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
6fe4f140
CW
520 struct list_head ordered_objects;
521
522 INIT_LIST_HEAD(&ordered_objects);
523 while (!list_empty(objects)) {
524 struct drm_i915_gem_exec_object2 *entry;
525 bool need_fence, need_mappable;
526
527 obj = list_first_entry(objects,
528 struct drm_i915_gem_object,
529 exec_list);
530 entry = obj->exec_entry;
531
532 need_fence =
533 has_fenced_gpu_access &&
534 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
535 obj->tiling_mode != I915_TILING_NONE;
536 need_mappable =
537 entry->relocation_count ? true : need_fence;
538
539 if (need_mappable)
540 list_move(&obj->exec_list, &ordered_objects);
541 else
542 list_move_tail(&obj->exec_list, &ordered_objects);
595dad76
CW
543
544 obj->base.pending_read_domains = 0;
545 obj->base.pending_write_domain = 0;
6fe4f140
CW
546 }
547 list_splice(&ordered_objects, objects);
54cf91dc
CW
548
549 /* Attempt to pin all of the buffers into the GTT.
550 * This is done in 3 phases:
551 *
552 * 1a. Unbind all objects that do not match the GTT constraints for
553 * the execbuffer (fenceable, mappable, alignment etc).
554 * 1b. Increment pin count for already bound objects.
555 * 2. Bind new objects.
556 * 3. Decrement pin count.
557 *
558 * This avoid unnecessary unbinding of later objects in order to makr
559 * room for the earlier objects *unless* we need to defragment.
560 */
561 retry = 0;
562 do {
563 ret = 0;
564
565 /* Unbind any ill-fitting objects or pin. */
432e58ed 566 list_for_each_entry(obj, objects, exec_list) {
6fe4f140 567 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
54cf91dc 568 bool need_fence, need_mappable;
1690e1eb 569
6fe4f140 570 if (!obj->gtt_space)
54cf91dc
CW
571 continue;
572
573 need_fence =
9b3826bf 574 has_fenced_gpu_access &&
54cf91dc
CW
575 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
576 obj->tiling_mode != I915_TILING_NONE;
577 need_mappable =
578 entry->relocation_count ? true : need_fence;
579
580 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
581 (need_mappable && !obj->map_and_fenceable))
582 ret = i915_gem_object_unbind(obj);
583 else
1690e1eb 584 ret = pin_and_fence_object(obj, ring);
432e58ed 585 if (ret)
54cf91dc 586 goto err;
54cf91dc
CW
587 }
588
589 /* Bind fresh objects */
432e58ed 590 list_for_each_entry(obj, objects, exec_list) {
1690e1eb
CW
591 if (obj->gtt_space)
592 continue;
54cf91dc 593
1690e1eb
CW
594 ret = pin_and_fence_object(obj, ring);
595 if (ret) {
596 int ret_ignore;
597
598 /* This can potentially raise a harmless
599 * -EINVAL if we failed to bind in the above
600 * call. It cannot raise -EINTR since we know
601 * that the bo is freshly bound and so will
602 * not need to be flushed or waited upon.
603 */
604 ret_ignore = i915_gem_object_unbind(obj);
605 (void)ret_ignore;
606 WARN_ON(obj->gtt_space);
607 break;
54cf91dc 608 }
54cf91dc
CW
609 }
610
432e58ed
CW
611 /* Decrement pin count for bound objects */
612 list_for_each_entry(obj, objects, exec_list) {
1690e1eb
CW
613 struct drm_i915_gem_exec_object2 *entry;
614
615 if (!obj->gtt_space)
616 continue;
617
618 entry = obj->exec_entry;
619 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
620 i915_gem_object_unpin_fence(obj);
621 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
622 }
623
624 i915_gem_object_unpin(obj);
54cf91dc
CW
625 }
626
627 if (ret != -ENOSPC || retry > 1)
628 return ret;
629
630 /* First attempt, just clear anything that is purgeable.
631 * Second attempt, clear the entire GTT.
632 */
d9e86c0e 633 ret = i915_gem_evict_everything(ring->dev, retry == 0);
54cf91dc
CW
634 if (ret)
635 return ret;
636
637 retry++;
638 } while (1);
432e58ed
CW
639
640err:
1690e1eb
CW
641 list_for_each_entry_continue_reverse(obj, objects, exec_list) {
642 struct drm_i915_gem_exec_object2 *entry;
643
644 if (!obj->gtt_space)
645 continue;
646
647 entry = obj->exec_entry;
648 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
649 i915_gem_object_unpin_fence(obj);
650 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
651 }
432e58ed 652
1690e1eb 653 i915_gem_object_unpin(obj);
432e58ed
CW
654 }
655
656 return ret;
54cf91dc
CW
657}
658
659static int
660i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
661 struct drm_file *file,
d9e86c0e 662 struct intel_ring_buffer *ring,
432e58ed 663 struct list_head *objects,
67731b87 664 struct eb_objects *eb,
432e58ed 665 struct drm_i915_gem_exec_object2 *exec,
54cf91dc
CW
666 int count)
667{
668 struct drm_i915_gem_relocation_entry *reloc;
432e58ed 669 struct drm_i915_gem_object *obj;
dd6864a4 670 int *reloc_offset;
54cf91dc
CW
671 int i, total, ret;
672
67731b87 673 /* We may process another execbuffer during the unlock... */
36cf1742 674 while (!list_empty(objects)) {
67731b87
CW
675 obj = list_first_entry(objects,
676 struct drm_i915_gem_object,
677 exec_list);
678 list_del_init(&obj->exec_list);
679 drm_gem_object_unreference(&obj->base);
680 }
681
54cf91dc
CW
682 mutex_unlock(&dev->struct_mutex);
683
684 total = 0;
685 for (i = 0; i < count; i++)
432e58ed 686 total += exec[i].relocation_count;
54cf91dc 687
dd6864a4 688 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
54cf91dc 689 reloc = drm_malloc_ab(total, sizeof(*reloc));
dd6864a4
CW
690 if (reloc == NULL || reloc_offset == NULL) {
691 drm_free_large(reloc);
692 drm_free_large(reloc_offset);
54cf91dc
CW
693 mutex_lock(&dev->struct_mutex);
694 return -ENOMEM;
695 }
696
697 total = 0;
698 for (i = 0; i < count; i++) {
699 struct drm_i915_gem_relocation_entry __user *user_relocs;
700
432e58ed 701 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
54cf91dc
CW
702
703 if (copy_from_user(reloc+total, user_relocs,
432e58ed 704 exec[i].relocation_count * sizeof(*reloc))) {
54cf91dc
CW
705 ret = -EFAULT;
706 mutex_lock(&dev->struct_mutex);
707 goto err;
708 }
709
dd6864a4 710 reloc_offset[i] = total;
432e58ed 711 total += exec[i].relocation_count;
54cf91dc
CW
712 }
713
714 ret = i915_mutex_lock_interruptible(dev);
715 if (ret) {
716 mutex_lock(&dev->struct_mutex);
717 goto err;
718 }
719
67731b87 720 /* reacquire the objects */
67731b87
CW
721 eb_reset(eb);
722 for (i = 0; i < count; i++) {
67731b87
CW
723 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
724 exec[i].handle));
c8725226 725 if (&obj->base == NULL) {
67731b87
CW
726 DRM_ERROR("Invalid object handle %d at index %d\n",
727 exec[i].handle, i);
728 ret = -ENOENT;
729 goto err;
730 }
731
732 list_add_tail(&obj->exec_list, objects);
733 obj->exec_handle = exec[i].handle;
6fe4f140 734 obj->exec_entry = &exec[i];
67731b87
CW
735 eb_add_object(eb, obj);
736 }
737
6fe4f140 738 ret = i915_gem_execbuffer_reserve(ring, file, objects);
54cf91dc
CW
739 if (ret)
740 goto err;
741
432e58ed 742 list_for_each_entry(obj, objects, exec_list) {
dd6864a4 743 int offset = obj->exec_entry - exec;
67731b87 744 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
dd6864a4 745 reloc + reloc_offset[offset]);
54cf91dc
CW
746 if (ret)
747 goto err;
54cf91dc
CW
748 }
749
750 /* Leave the user relocations as are, this is the painfully slow path,
751 * and we want to avoid the complication of dropping the lock whilst
752 * having buffers reserved in the aperture and so causing spurious
753 * ENOSPC for random operations.
754 */
755
756err:
757 drm_free_large(reloc);
dd6864a4 758 drm_free_large(reloc_offset);
54cf91dc
CW
759 return ret;
760}
761
88241785 762static int
54cf91dc
CW
763i915_gem_execbuffer_flush(struct drm_device *dev,
764 uint32_t invalidate_domains,
765 uint32_t flush_domains,
766 uint32_t flush_rings)
767{
768 drm_i915_private_t *dev_priv = dev->dev_private;
88241785 769 int i, ret;
54cf91dc
CW
770
771 if (flush_domains & I915_GEM_DOMAIN_CPU)
772 intel_gtt_chipset_flush();
773
63256ec5
CW
774 if (flush_domains & I915_GEM_DOMAIN_GTT)
775 wmb();
776
54cf91dc 777 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
1ec14ad3 778 for (i = 0; i < I915_NUM_RINGS; i++)
88241785 779 if (flush_rings & (1 << i)) {
db53a302 780 ret = i915_gem_flush_ring(&dev_priv->ring[i],
88241785
CW
781 invalidate_domains,
782 flush_domains);
783 if (ret)
784 return ret;
785 }
54cf91dc 786 }
88241785
CW
787
788 return 0;
54cf91dc
CW
789}
790
f45b5557
ED
791static bool
792intel_enable_semaphores(struct drm_device *dev)
793{
794 if (INTEL_INFO(dev)->gen < 6)
795 return 0;
796
797 if (i915_semaphores >= 0)
798 return i915_semaphores;
799
800 /* Enable semaphores on SNB when IO remapping is off */
801 if (INTEL_INFO(dev)->gen == 6)
802 return !intel_iommu_enabled;
803
804 return 1;
805}
806
1ec14ad3
CW
807static int
808i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
809 struct intel_ring_buffer *to)
810{
811 struct intel_ring_buffer *from = obj->ring;
812 u32 seqno;
813 int ret, idx;
814
815 if (from == NULL || to == from)
816 return 0;
817
a1656b90 818 /* XXX gpu semaphores are implicated in various hard hangs on SNB */
f45b5557 819 if (!intel_enable_semaphores(obj->base.dev))
ce453d81 820 return i915_gem_object_wait_rendering(obj);
1ec14ad3
CW
821
822 idx = intel_ring_sync_index(from, to);
823
824 seqno = obj->last_rendering_seqno;
825 if (seqno <= from->sync_seqno[idx])
826 return 0;
827
828 if (seqno == from->outstanding_lazy_request) {
829 struct drm_i915_gem_request *request;
830
831 request = kzalloc(sizeof(*request), GFP_KERNEL);
832 if (request == NULL)
833 return -ENOMEM;
834
db53a302 835 ret = i915_add_request(from, NULL, request);
1ec14ad3
CW
836 if (ret) {
837 kfree(request);
838 return ret;
839 }
840
841 seqno = request->seqno;
842 }
843
844 from->sync_seqno[idx] = seqno;
c8c99b0f
BW
845
846 return to->sync_to(to, from, seqno - 1);
1ec14ad3 847}
54cf91dc 848
c59a333f
CW
849static int
850i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
851{
852 u32 plane, flip_mask;
853 int ret;
854
855 /* Check for any pending flips. As we only maintain a flip queue depth
856 * of 1, we can simply insert a WAIT for the next display flip prior
857 * to executing the batch and avoid stalling the CPU.
858 */
859
860 for (plane = 0; flips >> plane; plane++) {
861 if (((flips >> plane) & 1) == 0)
862 continue;
863
864 if (plane)
865 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
866 else
867 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
868
869 ret = intel_ring_begin(ring, 2);
870 if (ret)
871 return ret;
872
873 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
874 intel_ring_emit(ring, MI_NOOP);
875 intel_ring_advance(ring);
876 }
877
878 return 0;
879}
880
881
54cf91dc 882static int
432e58ed
CW
883i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
884 struct list_head *objects)
54cf91dc 885{
432e58ed 886 struct drm_i915_gem_object *obj;
54cf91dc 887 struct change_domains cd;
432e58ed 888 int ret;
54cf91dc 889
c59a333f 890 memset(&cd, 0, sizeof(cd));
432e58ed
CW
891 list_for_each_entry(obj, objects, exec_list)
892 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
54cf91dc
CW
893
894 if (cd.invalidate_domains | cd.flush_domains) {
88241785
CW
895 ret = i915_gem_execbuffer_flush(ring->dev,
896 cd.invalidate_domains,
897 cd.flush_domains,
898 cd.flush_rings);
899 if (ret)
900 return ret;
54cf91dc
CW
901 }
902
c59a333f
CW
903 if (cd.flips) {
904 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
905 if (ret)
906 return ret;
907 }
908
432e58ed 909 list_for_each_entry(obj, objects, exec_list) {
1ec14ad3
CW
910 ret = i915_gem_execbuffer_sync_rings(obj, ring);
911 if (ret)
912 return ret;
54cf91dc
CW
913 }
914
915 return 0;
916}
917
432e58ed
CW
918static bool
919i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 920{
432e58ed 921 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
54cf91dc
CW
922}
923
924static int
925validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
926 int count)
927{
928 int i;
929
930 for (i = 0; i < count; i++) {
931 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
932 int length; /* limited by fault_in_pages_readable() */
933
934 /* First check for malicious input causing overflow */
935 if (exec[i].relocation_count >
936 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
937 return -EINVAL;
938
939 length = exec[i].relocation_count *
940 sizeof(struct drm_i915_gem_relocation_entry);
941 if (!access_ok(VERIFY_READ, ptr, length))
942 return -EFAULT;
943
944 /* we may also need to update the presumed offsets */
945 if (!access_ok(VERIFY_WRITE, ptr, length))
946 return -EFAULT;
947
948 if (fault_in_pages_readable(ptr, length))
949 return -EFAULT;
950 }
951
952 return 0;
953}
954
432e58ed
CW
955static void
956i915_gem_execbuffer_move_to_active(struct list_head *objects,
1ec14ad3
CW
957 struct intel_ring_buffer *ring,
958 u32 seqno)
432e58ed
CW
959{
960 struct drm_i915_gem_object *obj;
961
962 list_for_each_entry(obj, objects, exec_list) {
db53a302
CW
963 u32 old_read = obj->base.read_domains;
964 u32 old_write = obj->base.write_domain;
965
966
432e58ed
CW
967 obj->base.read_domains = obj->base.pending_read_domains;
968 obj->base.write_domain = obj->base.pending_write_domain;
969 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
970
1ec14ad3 971 i915_gem_object_move_to_active(obj, ring, seqno);
432e58ed
CW
972 if (obj->base.write_domain) {
973 obj->dirty = 1;
87ca9c8a 974 obj->pending_gpu_write = true;
432e58ed
CW
975 list_move_tail(&obj->gpu_write_list,
976 &ring->gpu_write_list);
977 intel_mark_busy(ring->dev, obj);
978 }
979
db53a302 980 trace_i915_gem_object_change_domain(obj, old_read, old_write);
432e58ed
CW
981 }
982}
983
54cf91dc
CW
984static void
985i915_gem_execbuffer_retire_commands(struct drm_device *dev,
432e58ed 986 struct drm_file *file,
54cf91dc
CW
987 struct intel_ring_buffer *ring)
988{
432e58ed 989 struct drm_i915_gem_request *request;
b72f3acb 990 u32 invalidate;
54cf91dc 991
432e58ed
CW
992 /*
993 * Ensure that the commands in the batch buffer are
994 * finished before the interrupt fires.
995 *
996 * The sampler always gets flushed on i965 (sigh).
997 */
b72f3acb 998 invalidate = I915_GEM_DOMAIN_COMMAND;
54cf91dc 999 if (INTEL_INFO(dev)->gen >= 4)
b72f3acb
CW
1000 invalidate |= I915_GEM_DOMAIN_SAMPLER;
1001 if (ring->flush(ring, invalidate, 0)) {
db53a302 1002 i915_gem_next_request_seqno(ring);
b72f3acb
CW
1003 return;
1004 }
54cf91dc 1005
432e58ed
CW
1006 /* Add a breadcrumb for the completion of the batch buffer */
1007 request = kzalloc(sizeof(*request), GFP_KERNEL);
db53a302
CW
1008 if (request == NULL || i915_add_request(ring, file, request)) {
1009 i915_gem_next_request_seqno(ring);
432e58ed
CW
1010 kfree(request);
1011 }
1012}
54cf91dc 1013
ae662d31
EA
1014static int
1015i915_reset_gen7_sol_offsets(struct drm_device *dev,
1016 struct intel_ring_buffer *ring)
1017{
1018 drm_i915_private_t *dev_priv = dev->dev_private;
1019 int ret, i;
1020
1021 if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
1022 return 0;
1023
1024 ret = intel_ring_begin(ring, 4 * 3);
1025 if (ret)
1026 return ret;
1027
1028 for (i = 0; i < 4; i++) {
1029 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1030 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
1031 intel_ring_emit(ring, 0);
1032 }
1033
1034 intel_ring_advance(ring);
1035
1036 return 0;
1037}
1038
54cf91dc
CW
1039static int
1040i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1041 struct drm_file *file,
1042 struct drm_i915_gem_execbuffer2 *args,
432e58ed 1043 struct drm_i915_gem_exec_object2 *exec)
54cf91dc
CW
1044{
1045 drm_i915_private_t *dev_priv = dev->dev_private;
432e58ed 1046 struct list_head objects;
67731b87 1047 struct eb_objects *eb;
54cf91dc
CW
1048 struct drm_i915_gem_object *batch_obj;
1049 struct drm_clip_rect *cliprects = NULL;
54cf91dc 1050 struct intel_ring_buffer *ring;
c4e7a414 1051 u32 exec_start, exec_len;
1ec14ad3 1052 u32 seqno;
84f9f938 1053 u32 mask;
72bfa19c 1054 int ret, mode, i;
54cf91dc 1055
432e58ed
CW
1056 if (!i915_gem_check_execbuffer(args)) {
1057 DRM_ERROR("execbuf with invalid offset/length\n");
1058 return -EINVAL;
1059 }
1060
1061 ret = validate_exec_list(exec, args->buffer_count);
54cf91dc
CW
1062 if (ret)
1063 return ret;
1064
54cf91dc
CW
1065 switch (args->flags & I915_EXEC_RING_MASK) {
1066 case I915_EXEC_DEFAULT:
1067 case I915_EXEC_RENDER:
1ec14ad3 1068 ring = &dev_priv->ring[RCS];
54cf91dc
CW
1069 break;
1070 case I915_EXEC_BSD:
1071 if (!HAS_BSD(dev)) {
1072 DRM_ERROR("execbuf with invalid ring (BSD)\n");
1073 return -EINVAL;
1074 }
1ec14ad3 1075 ring = &dev_priv->ring[VCS];
54cf91dc
CW
1076 break;
1077 case I915_EXEC_BLT:
1078 if (!HAS_BLT(dev)) {
1079 DRM_ERROR("execbuf with invalid ring (BLT)\n");
1080 return -EINVAL;
1081 }
1ec14ad3 1082 ring = &dev_priv->ring[BCS];
54cf91dc
CW
1083 break;
1084 default:
1085 DRM_ERROR("execbuf with unknown ring: %d\n",
1086 (int)(args->flags & I915_EXEC_RING_MASK));
1087 return -EINVAL;
1088 }
1089
72bfa19c 1090 mode = args->flags & I915_EXEC_CONSTANTS_MASK;
84f9f938 1091 mask = I915_EXEC_CONSTANTS_MASK;
72bfa19c
CW
1092 switch (mode) {
1093 case I915_EXEC_CONSTANTS_REL_GENERAL:
1094 case I915_EXEC_CONSTANTS_ABSOLUTE:
1095 case I915_EXEC_CONSTANTS_REL_SURFACE:
1096 if (ring == &dev_priv->ring[RCS] &&
1097 mode != dev_priv->relative_constants_mode) {
1098 if (INTEL_INFO(dev)->gen < 4)
1099 return -EINVAL;
1100
1101 if (INTEL_INFO(dev)->gen > 5 &&
1102 mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1103 return -EINVAL;
84f9f938
BW
1104
1105 /* The HW changed the meaning on this bit on gen6 */
1106 if (INTEL_INFO(dev)->gen >= 6)
1107 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
72bfa19c
CW
1108 }
1109 break;
1110 default:
1111 DRM_ERROR("execbuf with unknown constants: %d\n", mode);
1112 return -EINVAL;
1113 }
1114
54cf91dc
CW
1115 if (args->buffer_count < 1) {
1116 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1117 return -EINVAL;
1118 }
54cf91dc
CW
1119
1120 if (args->num_cliprects != 0) {
1ec14ad3 1121 if (ring != &dev_priv->ring[RCS]) {
c4e7a414
CW
1122 DRM_ERROR("clip rectangles are only valid with the render ring\n");
1123 return -EINVAL;
1124 }
1125
432e58ed 1126 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
54cf91dc
CW
1127 GFP_KERNEL);
1128 if (cliprects == NULL) {
1129 ret = -ENOMEM;
1130 goto pre_mutex_err;
1131 }
1132
432e58ed
CW
1133 if (copy_from_user(cliprects,
1134 (struct drm_clip_rect __user *)(uintptr_t)
1135 args->cliprects_ptr,
1136 sizeof(*cliprects)*args->num_cliprects)) {
54cf91dc
CW
1137 ret = -EFAULT;
1138 goto pre_mutex_err;
1139 }
1140 }
1141
54cf91dc
CW
1142 ret = i915_mutex_lock_interruptible(dev);
1143 if (ret)
1144 goto pre_mutex_err;
1145
1146 if (dev_priv->mm.suspended) {
1147 mutex_unlock(&dev->struct_mutex);
1148 ret = -EBUSY;
1149 goto pre_mutex_err;
1150 }
1151
67731b87
CW
1152 eb = eb_create(args->buffer_count);
1153 if (eb == NULL) {
1154 mutex_unlock(&dev->struct_mutex);
1155 ret = -ENOMEM;
1156 goto pre_mutex_err;
1157 }
1158
54cf91dc 1159 /* Look up object handles */
432e58ed 1160 INIT_LIST_HEAD(&objects);
54cf91dc
CW
1161 for (i = 0; i < args->buffer_count; i++) {
1162 struct drm_i915_gem_object *obj;
1163
432e58ed
CW
1164 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1165 exec[i].handle));
c8725226 1166 if (&obj->base == NULL) {
54cf91dc 1167 DRM_ERROR("Invalid object handle %d at index %d\n",
432e58ed 1168 exec[i].handle, i);
54cf91dc 1169 /* prevent error path from reading uninitialized data */
54cf91dc
CW
1170 ret = -ENOENT;
1171 goto err;
1172 }
54cf91dc 1173
432e58ed
CW
1174 if (!list_empty(&obj->exec_list)) {
1175 DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
1176 obj, exec[i].handle, i);
54cf91dc
CW
1177 ret = -EINVAL;
1178 goto err;
1179 }
432e58ed
CW
1180
1181 list_add_tail(&obj->exec_list, &objects);
67731b87 1182 obj->exec_handle = exec[i].handle;
6fe4f140 1183 obj->exec_entry = &exec[i];
67731b87 1184 eb_add_object(eb, obj);
54cf91dc
CW
1185 }
1186
6fe4f140
CW
1187 /* take note of the batch buffer before we might reorder the lists */
1188 batch_obj = list_entry(objects.prev,
1189 struct drm_i915_gem_object,
1190 exec_list);
1191
54cf91dc 1192 /* Move the objects en-masse into the GTT, evicting if necessary. */
6fe4f140 1193 ret = i915_gem_execbuffer_reserve(ring, file, &objects);
54cf91dc
CW
1194 if (ret)
1195 goto err;
1196
1197 /* The objects are in their final locations, apply the relocations. */
6fe4f140 1198 ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
54cf91dc
CW
1199 if (ret) {
1200 if (ret == -EFAULT) {
d9e86c0e 1201 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
67731b87
CW
1202 &objects, eb,
1203 exec,
54cf91dc
CW
1204 args->buffer_count);
1205 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1206 }
1207 if (ret)
1208 goto err;
1209 }
1210
1211 /* Set the pending read domains for the batch buffer to COMMAND */
54cf91dc
CW
1212 if (batch_obj->base.pending_write_domain) {
1213 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
1214 ret = -EINVAL;
1215 goto err;
1216 }
1217 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1218
432e58ed
CW
1219 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1220 if (ret)
54cf91dc 1221 goto err;
54cf91dc 1222
db53a302 1223 seqno = i915_gem_next_request_seqno(ring);
076e2c0e 1224 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1ec14ad3
CW
1225 if (seqno < ring->sync_seqno[i]) {
1226 /* The GPU can not handle its semaphore value wrapping,
1227 * so every billion or so execbuffers, we need to stall
1228 * the GPU in order to reset the counters.
1229 */
b93f9cf1 1230 ret = i915_gpu_idle(dev, true);
1ec14ad3
CW
1231 if (ret)
1232 goto err;
1233
1234 BUG_ON(ring->sync_seqno[i]);
1235 }
1236 }
1237
e2971bda
BW
1238 if (ring == &dev_priv->ring[RCS] &&
1239 mode != dev_priv->relative_constants_mode) {
1240 ret = intel_ring_begin(ring, 4);
1241 if (ret)
1242 goto err;
1243
1244 intel_ring_emit(ring, MI_NOOP);
1245 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1246 intel_ring_emit(ring, INSTPM);
84f9f938 1247 intel_ring_emit(ring, mask << 16 | mode);
e2971bda
BW
1248 intel_ring_advance(ring);
1249
1250 dev_priv->relative_constants_mode = mode;
1251 }
1252
ae662d31
EA
1253 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1254 ret = i915_reset_gen7_sol_offsets(dev, ring);
1255 if (ret)
1256 goto err;
1257 }
1258
db53a302
CW
1259 trace_i915_gem_ring_dispatch(ring, seqno);
1260
c4e7a414
CW
1261 exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1262 exec_len = args->batch_len;
1263 if (cliprects) {
1264 for (i = 0; i < args->num_cliprects; i++) {
1265 ret = i915_emit_box(dev, &cliprects[i],
1266 args->DR1, args->DR4);
1267 if (ret)
1268 goto err;
1269
1270 ret = ring->dispatch_execbuffer(ring,
1271 exec_start, exec_len);
1272 if (ret)
1273 goto err;
1274 }
1275 } else {
1276 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1277 if (ret)
1278 goto err;
1279 }
54cf91dc 1280
1ec14ad3 1281 i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
432e58ed 1282 i915_gem_execbuffer_retire_commands(dev, file, ring);
54cf91dc
CW
1283
1284err:
67731b87 1285 eb_destroy(eb);
432e58ed
CW
1286 while (!list_empty(&objects)) {
1287 struct drm_i915_gem_object *obj;
1288
1289 obj = list_first_entry(&objects,
1290 struct drm_i915_gem_object,
1291 exec_list);
1292 list_del_init(&obj->exec_list);
1293 drm_gem_object_unreference(&obj->base);
54cf91dc
CW
1294 }
1295
1296 mutex_unlock(&dev->struct_mutex);
1297
1298pre_mutex_err:
54cf91dc 1299 kfree(cliprects);
54cf91dc
CW
1300 return ret;
1301}
1302
1303/*
1304 * Legacy execbuffer just creates an exec2 list from the original exec object
1305 * list array and passes it to the real function.
1306 */
1307int
1308i915_gem_execbuffer(struct drm_device *dev, void *data,
1309 struct drm_file *file)
1310{
1311 struct drm_i915_gem_execbuffer *args = data;
1312 struct drm_i915_gem_execbuffer2 exec2;
1313 struct drm_i915_gem_exec_object *exec_list = NULL;
1314 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1315 int ret, i;
1316
54cf91dc
CW
1317 if (args->buffer_count < 1) {
1318 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1319 return -EINVAL;
1320 }
1321
1322 /* Copy in the exec list from userland */
1323 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1324 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1325 if (exec_list == NULL || exec2_list == NULL) {
1326 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1327 args->buffer_count);
1328 drm_free_large(exec_list);
1329 drm_free_large(exec2_list);
1330 return -ENOMEM;
1331 }
1332 ret = copy_from_user(exec_list,
1333 (struct drm_i915_relocation_entry __user *)
1334 (uintptr_t) args->buffers_ptr,
1335 sizeof(*exec_list) * args->buffer_count);
1336 if (ret != 0) {
1337 DRM_ERROR("copy %d exec entries failed %d\n",
1338 args->buffer_count, ret);
1339 drm_free_large(exec_list);
1340 drm_free_large(exec2_list);
1341 return -EFAULT;
1342 }
1343
1344 for (i = 0; i < args->buffer_count; i++) {
1345 exec2_list[i].handle = exec_list[i].handle;
1346 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1347 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1348 exec2_list[i].alignment = exec_list[i].alignment;
1349 exec2_list[i].offset = exec_list[i].offset;
1350 if (INTEL_INFO(dev)->gen < 4)
1351 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1352 else
1353 exec2_list[i].flags = 0;
1354 }
1355
1356 exec2.buffers_ptr = args->buffers_ptr;
1357 exec2.buffer_count = args->buffer_count;
1358 exec2.batch_start_offset = args->batch_start_offset;
1359 exec2.batch_len = args->batch_len;
1360 exec2.DR1 = args->DR1;
1361 exec2.DR4 = args->DR4;
1362 exec2.num_cliprects = args->num_cliprects;
1363 exec2.cliprects_ptr = args->cliprects_ptr;
1364 exec2.flags = I915_EXEC_RENDER;
1365
1366 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1367 if (!ret) {
1368 /* Copy the new buffer offsets back to the user's exec list. */
1369 for (i = 0; i < args->buffer_count; i++)
1370 exec_list[i].offset = exec2_list[i].offset;
1371 /* ... and back out to userspace */
1372 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1373 (uintptr_t) args->buffers_ptr,
1374 exec_list,
1375 sizeof(*exec_list) * args->buffer_count);
1376 if (ret) {
1377 ret = -EFAULT;
1378 DRM_ERROR("failed to copy %d exec entries "
1379 "back to user (%d)\n",
1380 args->buffer_count, ret);
1381 }
1382 }
1383
1384 drm_free_large(exec_list);
1385 drm_free_large(exec2_list);
1386 return ret;
1387}
1388
1389int
1390i915_gem_execbuffer2(struct drm_device *dev, void *data,
1391 struct drm_file *file)
1392{
1393 struct drm_i915_gem_execbuffer2 *args = data;
1394 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1395 int ret;
1396
54cf91dc
CW
1397 if (args->buffer_count < 1) {
1398 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
1399 return -EINVAL;
1400 }
1401
8408c282
CW
1402 exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1403 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1404 if (exec2_list == NULL)
1405 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1406 args->buffer_count);
54cf91dc
CW
1407 if (exec2_list == NULL) {
1408 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1409 args->buffer_count);
1410 return -ENOMEM;
1411 }
1412 ret = copy_from_user(exec2_list,
1413 (struct drm_i915_relocation_entry __user *)
1414 (uintptr_t) args->buffers_ptr,
1415 sizeof(*exec2_list) * args->buffer_count);
1416 if (ret != 0) {
1417 DRM_ERROR("copy %d exec entries failed %d\n",
1418 args->buffer_count, ret);
1419 drm_free_large(exec2_list);
1420 return -EFAULT;
1421 }
1422
1423 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1424 if (!ret) {
1425 /* Copy the new buffer offsets back to the user's exec list. */
1426 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1427 (uintptr_t) args->buffers_ptr,
1428 exec2_list,
1429 sizeof(*exec2_list) * args->buffer_count);
1430 if (ret) {
1431 ret = -EFAULT;
1432 DRM_ERROR("failed to copy %d exec entries "
1433 "back to user (%d)\n",
1434 args->buffer_count, ret);
1435 }
1436 }
1437
1438 drm_free_large(exec2_list);
1439 return ret;
1440}