]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem_fence_reg.c
drm/i915/bios: filter out invalid DDC pins from VBT child devices
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem_fence_reg.c
CommitLineData
41a36b73
DV
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include <drm/drmP.h>
25#include <drm/i915_drm.h>
26#include "i915_drv.h"
27
a794f62a
DV
28/**
29 * DOC: fence register handling
30 *
31 * Important to avoid confusions: "fences" in the i915 driver are not execution
32 * fences used to track command completion but hardware detiler objects which
33 * wrap a given range of the global GTT. Each platform has only a fairly limited
34 * set of these objects.
35 *
36 * Fences are used to detile GTT memory mappings. They're also connected to the
34fd3e14
MI
37 * hardware frontbuffer render tracking and hence interact with frontbuffer
38 * compression. Furthermore on older platforms fences are required for tiled
a794f62a
DV
39 * objects used by the display engine. They can also be used by the render
40 * engine - they're required for blitter commands and are optional for render
41 * commands. But on gen4+ both display (with the exception of fbc) and rendering
42 * have their own tiling state bits and don't need fences.
43 *
44 * Also note that fences only support X and Y tiling and hence can't be used for
45 * the fancier new tiling formats like W, Ys and Yf.
46 *
47 * Finally note that because fences are such a restricted resource they're
48 * dynamically associated with objects. Furthermore fence state is committed to
34fd3e14
MI
49 * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
50 * explicitly call i915_gem_object_get_fence() to synchronize fencing status
a794f62a
DV
51 * for cpu access. Also note that some code wants an unfenced view, for those
52 * cases the fence can be removed forcefully with i915_gem_object_put_fence().
53 *
54 * Internally these functions will synchronize with userspace access by removing
55 * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
56 */
57
49ef5294
CW
58#define pipelined 0
59
60static void i965_write_fence_reg(struct drm_i915_fence_reg *fence,
61 struct i915_vma *vma)
41a36b73 62{
f0f59a00 63 i915_reg_t fence_reg_lo, fence_reg_hi;
41a36b73 64 int fence_pitch_shift;
49ef5294 65 u64 val;
41a36b73 66
49ef5294
CW
67 if (INTEL_INFO(fence->i915)->gen >= 6) {
68 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
69 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
eecf613a 70 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
49ef5294 71
41a36b73 72 } else {
49ef5294
CW
73 fence_reg_lo = FENCE_REG_965_LO(fence->id);
74 fence_reg_hi = FENCE_REG_965_HI(fence->id);
41a36b73
DV
75 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
76 }
77
49ef5294
CW
78 val = 0;
79 if (vma) {
49ef5294 80 unsigned int stride = i915_gem_object_get_stride(vma->obj);
a83718b6 81
0d4e8f1d 82 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
f51455d4
CW
83 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, I965_FENCE_PAGE));
84 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I965_FENCE_PAGE));
85 GEM_BUG_ON(!IS_ALIGNED(stride, 128));
0d4e8f1d 86
f51455d4 87 val = (vma->node.start + vma->fence_size - I965_FENCE_PAGE) << 32;
0d4e8f1d 88 val |= vma->node.start;
a83718b6 89 val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
6649a0b6 90 if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
49ef5294 91 val |= BIT(I965_FENCE_TILING_Y_SHIFT);
41a36b73 92 val |= I965_FENCE_REG_VALID;
49ef5294 93 }
41a36b73 94
49ef5294
CW
95 if (!pipelined) {
96 struct drm_i915_private *dev_priv = fence->i915;
97
98 /* To w/a incoherency with non-atomic 64-bit register updates,
99 * we split the 64-bit update into two 32-bit writes. In order
100 * for a partial fence not to be evaluated between writes, we
101 * precede the update with write to turn off the fence register,
102 * and only enable the fence as the last step.
103 *
104 * For extra levels of paranoia, we make sure each step lands
105 * before applying the next step.
106 */
107 I915_WRITE(fence_reg_lo, 0);
108 POSTING_READ(fence_reg_lo);
41a36b73 109
49ef5294
CW
110 I915_WRITE(fence_reg_hi, upper_32_bits(val));
111 I915_WRITE(fence_reg_lo, lower_32_bits(val));
eecf613a 112 POSTING_READ(fence_reg_lo);
41a36b73
DV
113 }
114}
115
49ef5294
CW
116static void i915_write_fence_reg(struct drm_i915_fence_reg *fence,
117 struct i915_vma *vma)
41a36b73 118{
41a36b73
DV
119 u32 val;
120
49ef5294
CW
121 val = 0;
122 if (vma) {
123 unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
124 bool is_y_tiled = tiling == I915_TILING_Y;
125 unsigned int stride = i915_gem_object_get_stride(vma->obj);
41a36b73 126
0d4e8f1d
CW
127 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
128 GEM_BUG_ON(vma->node.start & ~I915_FENCE_START_MASK);
944397f0 129 GEM_BUG_ON(!is_power_of_2(vma->fence_size));
f51455d4 130 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
41a36b73 131
49ef5294 132 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence->i915))
0d4e8f1d 133 stride /= 128;
41a36b73 134 else
0d4e8f1d
CW
135 stride /= 512;
136 GEM_BUG_ON(!is_power_of_2(stride));
41a36b73 137
a83718b6 138 val = vma->node.start;
49ef5294
CW
139 if (is_y_tiled)
140 val |= BIT(I830_FENCE_TILING_Y_SHIFT);
944397f0 141 val |= I915_FENCE_SIZE_BITS(vma->fence_size);
0d4e8f1d
CW
142 val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
143
41a36b73 144 val |= I830_FENCE_REG_VALID;
49ef5294 145 }
41a36b73 146
49ef5294
CW
147 if (!pipelined) {
148 struct drm_i915_private *dev_priv = fence->i915;
149 i915_reg_t reg = FENCE_REG(fence->id);
150
151 I915_WRITE(reg, val);
152 POSTING_READ(reg);
153 }
41a36b73
DV
154}
155
49ef5294
CW
156static void i830_write_fence_reg(struct drm_i915_fence_reg *fence,
157 struct i915_vma *vma)
41a36b73 158{
a83718b6 159 u32 val;
41a36b73 160
49ef5294
CW
161 val = 0;
162 if (vma) {
49ef5294 163 unsigned int stride = i915_gem_object_get_stride(vma->obj);
41a36b73 164
0d4e8f1d
CW
165 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
166 GEM_BUG_ON(vma->node.start & ~I830_FENCE_START_MASK);
944397f0 167 GEM_BUG_ON(!is_power_of_2(vma->fence_size));
0d4e8f1d 168 GEM_BUG_ON(!is_power_of_2(stride / 128));
f51455d4 169 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
41a36b73 170
a83718b6 171 val = vma->node.start;
944397f0 172 if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
49ef5294 173 val |= BIT(I830_FENCE_TILING_Y_SHIFT);
944397f0 174 val |= I830_FENCE_SIZE_BITS(vma->fence_size);
0d4e8f1d 175 val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
41a36b73 176 val |= I830_FENCE_REG_VALID;
49ef5294 177 }
41a36b73 178
49ef5294
CW
179 if (!pipelined) {
180 struct drm_i915_private *dev_priv = fence->i915;
181 i915_reg_t reg = FENCE_REG(fence->id);
41a36b73 182
49ef5294
CW
183 I915_WRITE(reg, val);
184 POSTING_READ(reg);
185 }
41a36b73
DV
186}
187
49ef5294
CW
188static void fence_write(struct drm_i915_fence_reg *fence,
189 struct i915_vma *vma)
41a36b73 190{
49ef5294
CW
191 /* Previous access through the fence register is marshalled by
192 * the mb() inside the fault handlers (i915_gem_release_mmaps)
193 * and explicitly managed for internal users.
41a36b73 194 */
49ef5294
CW
195
196 if (IS_GEN2(fence->i915))
197 i830_write_fence_reg(fence, vma);
198 else if (IS_GEN3(fence->i915))
199 i915_write_fence_reg(fence, vma);
200 else
201 i965_write_fence_reg(fence, vma);
202
203 /* Access through the fenced region afterwards is
204 * ordered by the posting reads whilst writing the registers.
41a36b73 205 */
41a36b73 206
49ef5294 207 fence->dirty = false;
41a36b73
DV
208}
209
49ef5294
CW
210static int fence_update(struct drm_i915_fence_reg *fence,
211 struct i915_vma *vma)
41a36b73 212{
49ef5294 213 int ret;
41a36b73 214
49ef5294
CW
215 if (vma) {
216 if (!i915_vma_is_map_and_fenceable(vma))
217 return -EINVAL;
41a36b73 218
49ef5294
CW
219 if (WARN(!i915_gem_object_get_stride(vma->obj) ||
220 !i915_gem_object_get_tiling(vma->obj),
221 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
222 i915_gem_object_get_stride(vma->obj),
223 i915_gem_object_get_tiling(vma->obj)))
224 return -EINVAL;
225
226 ret = i915_gem_active_retire(&vma->last_fence,
227 &vma->obj->base.dev->struct_mutex);
228 if (ret)
229 return ret;
41a36b73 230 }
41a36b73 231
49ef5294
CW
232 if (fence->vma) {
233 ret = i915_gem_active_retire(&fence->vma->last_fence,
234 &fence->vma->obj->base.dev->struct_mutex);
235 if (ret)
236 return ret;
237 }
41a36b73 238
49ef5294
CW
239 if (fence->vma && fence->vma != vma) {
240 /* Ensure that all userspace CPU access is completed before
241 * stealing the fence.
242 */
243 i915_gem_release_mmap(fence->vma->obj);
41a36b73 244
49ef5294
CW
245 fence->vma->fence = NULL;
246 fence->vma = NULL;
247
248 list_move(&fence->link, &fence->i915->mm.fence_list);
249 }
250
181df2d4
CW
251 /* We only need to update the register itself if the device is awake.
252 * If the device is currently powered down, we will defer the write
253 * to the runtime resume, see i915_gem_restore_fences().
254 */
255 if (intel_runtime_pm_get_if_in_use(fence->i915)) {
256 fence_write(fence, vma);
257 intel_runtime_pm_put(fence->i915);
258 }
49ef5294
CW
259
260 if (vma) {
261 if (fence->vma != vma) {
262 vma->fence = fence;
263 fence->vma = vma;
264 }
265
266 list_move_tail(&fence->link, &fence->i915->mm.fence_list);
267 }
268
269 return 0;
41a36b73
DV
270}
271
a794f62a 272/**
49ef5294
CW
273 * i915_vma_put_fence - force-remove fence for a VMA
274 * @vma: vma to map linearly (not through a fence reg)
a794f62a
DV
275 *
276 * This function force-removes any fence from the given object, which is useful
277 * if the kernel wants to do untiled GTT access.
278 *
279 * Returns:
280 *
281 * 0 on success, negative error code on failure.
282 */
41a36b73 283int
49ef5294 284i915_vma_put_fence(struct i915_vma *vma)
41a36b73 285{
49ef5294 286 struct drm_i915_fence_reg *fence = vma->fence;
41a36b73 287
49ef5294 288 if (!fence)
41a36b73
DV
289 return 0;
290
18034584 291 if (fence->pin_count)
41a36b73
DV
292 return -EBUSY;
293
49ef5294 294 return fence_update(fence, NULL);
41a36b73
DV
295}
296
49ef5294 297static struct drm_i915_fence_reg *fence_find(struct drm_i915_private *dev_priv)
41a36b73 298{
49ef5294 299 struct drm_i915_fence_reg *fence;
41a36b73 300
49ef5294
CW
301 list_for_each_entry(fence, &dev_priv->mm.fence_list, link) {
302 if (fence->pin_count)
41a36b73
DV
303 continue;
304
49ef5294 305 return fence;
41a36b73
DV
306 }
307
41a36b73 308 /* Wait for completion of pending flips which consume fences */
49d73912 309 if (intel_has_pending_fb_unpin(dev_priv))
41a36b73
DV
310 return ERR_PTR(-EAGAIN);
311
312 return ERR_PTR(-EDEADLK);
313}
314
315/**
49ef5294
CW
316 * i915_vma_get_fence - set up fencing for a vma
317 * @vma: vma to map through a fence reg
41a36b73
DV
318 *
319 * When mapping objects through the GTT, userspace wants to be able to write
320 * to them without having to worry about swizzling if the object is tiled.
321 * This function walks the fence regs looking for a free one for @obj,
322 * stealing one if it can't find any.
323 *
324 * It then sets up the reg based on the object's properties: address, pitch
325 * and tiling format.
326 *
327 * For an untiled surface, this removes any existing fence.
a794f62a
DV
328 *
329 * Returns:
330 *
331 * 0 on success, negative error code on failure.
41a36b73
DV
332 */
333int
49ef5294 334i915_vma_get_fence(struct i915_vma *vma)
41a36b73 335{
49ef5294
CW
336 struct drm_i915_fence_reg *fence;
337 struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
41a36b73 338
7c108fd8
CW
339 /* Note that we revoke fences on runtime suspend. Therefore the user
340 * must keep the device awake whilst using the fence.
341 */
49d73912 342 assert_rpm_wakelock_held(vma->vm->i915);
4676dc83 343
41a36b73 344 /* Just update our place in the LRU if our fence is getting reused. */
49ef5294
CW
345 if (vma->fence) {
346 fence = vma->fence;
347 if (!fence->dirty) {
348 list_move_tail(&fence->link,
349 &fence->i915->mm.fence_list);
41a36b73
DV
350 return 0;
351 }
49ef5294 352 } else if (set) {
49d73912 353 fence = fence_find(vma->vm->i915);
49ef5294
CW
354 if (IS_ERR(fence))
355 return PTR_ERR(fence);
41a36b73
DV
356 } else
357 return 0;
358
49ef5294 359 return fence_update(fence, set);
41a36b73
DV
360}
361
b1ed35d9
CW
362/**
363 * i915_gem_revoke_fences - revoke fence state
364 * @dev_priv: i915 device private
365 *
366 * Removes all GTT mmappings via the fence registers. This forces any user
367 * of the fence to reacquire that fence before continuing with their access.
368 * One use is during GPU reset where the fence register is lost and we need to
369 * revoke concurrent userspace access via GTT mmaps until the hardware has been
370 * reset and the fence registers have been restored.
371 */
372void i915_gem_revoke_fences(struct drm_i915_private *dev_priv)
373{
374 int i;
375
376 lockdep_assert_held(&dev_priv->drm.struct_mutex);
377
378 for (i = 0; i < dev_priv->num_fence_regs; i++) {
379 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
380
381 if (fence->vma)
382 i915_gem_release_mmap(fence->vma->obj);
383 }
384}
385
a794f62a
DV
386/**
387 * i915_gem_restore_fences - restore fence state
4362f4f6 388 * @dev_priv: i915 device private
a794f62a
DV
389 *
390 * Restore the hw fence state to match the software tracking again, to be called
7c108fd8
CW
391 * after a gpu reset and on resume. Note that on runtime suspend we only cancel
392 * the fences, to be reacquired by the user later.
a794f62a 393 */
4362f4f6 394void i915_gem_restore_fences(struct drm_i915_private *dev_priv)
41a36b73 395{
41a36b73
DV
396 int i;
397
398 for (i = 0; i < dev_priv->num_fence_regs; i++) {
399 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
4fc788f5 400 struct i915_vma *vma = reg->vma;
41a36b73
DV
401
402 /*
403 * Commit delayed tiling changes if we have an object still
404 * attached to the fence, otherwise just clear the fence.
405 */
4676dc83
CW
406 if (vma && !i915_gem_object_is_tiled(vma->obj)) {
407 GEM_BUG_ON(!reg->dirty);
275f039d 408 GEM_BUG_ON(!list_empty(&vma->obj->userfault_link));
4676dc83
CW
409
410 list_move(&reg->link, &dev_priv->mm.fence_list);
411 vma->fence = NULL;
4fc788f5 412 vma = NULL;
4676dc83 413 }
4fc788f5 414
4676dc83
CW
415 fence_write(reg, vma);
416 reg->vma = vma;
41a36b73
DV
417 }
418}
7f96ecaf
DV
419
420/**
3271dca4 421 * DOC: tiling swizzling details
7f96ecaf
DV
422 *
423 * The idea behind tiling is to increase cache hit rates by rearranging
424 * pixel data so that a group of pixel accesses are in the same cacheline.
425 * Performance improvement from doing this on the back/depth buffer are on
426 * the order of 30%.
427 *
428 * Intel architectures make this somewhat more complicated, though, by
429 * adjustments made to addressing of data when the memory is in interleaved
430 * mode (matched pairs of DIMMS) to improve memory bandwidth.
431 * For interleaved memory, the CPU sends every sequential 64 bytes
432 * to an alternate memory channel so it can get the bandwidth from both.
433 *
434 * The GPU also rearranges its accesses for increased bandwidth to interleaved
435 * memory, and it matches what the CPU does for non-tiled. However, when tiled
436 * it does it a little differently, since one walks addresses not just in the
437 * X direction but also Y. So, along with alternating channels when bit
438 * 6 of the address flips, it also alternates when other bits flip -- Bits 9
439 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
440 * are common to both the 915 and 965-class hardware.
441 *
442 * The CPU also sometimes XORs in higher bits as well, to improve
443 * bandwidth doing strided access like we do so frequently in graphics. This
444 * is called "Channel XOR Randomization" in the MCH documentation. The result
445 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
446 * decode.
447 *
448 * All of this bit 6 XORing has an effect on our memory management,
449 * as we need to make sure that the 3d driver can correctly address object
450 * contents.
451 *
452 * If we don't have interleaved memory, all tiling is safe and no swizzling is
453 * required.
454 *
455 * When bit 17 is XORed in, we simply refuse to tile at all. Bit
34fd3e14 456 * 17 is not just a page offset, so as we page an object out and back in,
7f96ecaf
DV
457 * individual pages in it will have different bit 17 addresses, resulting in
458 * each 64 bytes being swapped with its neighbor!
459 *
460 * Otherwise, if interleaved, we have to tell the 3d driver what the address
461 * swizzling it needs to do is, since it's writing with the CPU to the pages
462 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
463 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
464 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
465 * to match what the GPU expects.
466 */
467
468/**
3271dca4 469 * i915_gem_detect_bit_6_swizzle - detect bit 6 swizzling pattern
4362f4f6 470 * @dev_priv: i915 device private
3271dca4 471 *
7f96ecaf
DV
472 * Detects bit 6 swizzling of address lookup between IGD access and CPU
473 * access through main memory.
474 */
475void
4362f4f6 476i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv)
7f96ecaf 477{
7f96ecaf
DV
478 uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
479 uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
480
11a914c2 481 if (INTEL_GEN(dev_priv) >= 8 || IS_VALLEYVIEW(dev_priv)) {
7f96ecaf
DV
482 /*
483 * On BDW+, swizzling is not used. We leave the CPU memory
484 * controller in charge of optimizing memory accesses without
485 * the extra address manipulation GPU side.
486 *
487 * VLV and CHV don't have GPU swizzling.
488 */
489 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
490 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
4362f4f6 491 } else if (INTEL_GEN(dev_priv) >= 6) {
7f96ecaf
DV
492 if (dev_priv->preserve_bios_swizzle) {
493 if (I915_READ(DISP_ARB_CTL) &
494 DISP_TILE_SURFACE_SWIZZLING) {
495 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
496 swizzle_y = I915_BIT_6_SWIZZLE_9;
497 } else {
498 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
499 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
500 }
501 } else {
502 uint32_t dimm_c0, dimm_c1;
503 dimm_c0 = I915_READ(MAD_DIMM_C0);
504 dimm_c1 = I915_READ(MAD_DIMM_C1);
505 dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
506 dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
507 /* Enable swizzling when the channels are populated
508 * with identically sized dimms. We don't need to check
509 * the 3rd channel because no cpu with gpu attached
510 * ships in that configuration. Also, swizzling only
511 * makes sense for 2 channels anyway. */
512 if (dimm_c0 == dimm_c1) {
513 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
514 swizzle_y = I915_BIT_6_SWIZZLE_9;
515 } else {
516 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
517 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
518 }
519 }
5db94019 520 } else if (IS_GEN5(dev_priv)) {
7f96ecaf
DV
521 /* On Ironlake whatever DRAM config, GPU always do
522 * same swizzling setup.
523 */
524 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
525 swizzle_y = I915_BIT_6_SWIZZLE_9;
5db94019 526 } else if (IS_GEN2(dev_priv)) {
7f96ecaf
DV
527 /* As far as we know, the 865 doesn't have these bit 6
528 * swizzling issues.
529 */
530 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
531 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
73f67aa8 532 } else if (IS_MOBILE(dev_priv) ||
9eebfdbf 533 IS_I915G(dev_priv) || IS_I945G(dev_priv)) {
7f96ecaf
DV
534 uint32_t dcc;
535
536 /* On 9xx chipsets, channel interleave by the CPU is
537 * determined by DCC. For single-channel, neither the CPU
538 * nor the GPU do swizzling. For dual channel interleaved,
539 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
540 * 9 for Y tiled. The CPU's interleave is independent, and
541 * can be based on either bit 11 (haven't seen this yet) or
542 * bit 17 (common).
543 */
544 dcc = I915_READ(DCC);
545 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
546 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
547 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
548 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
549 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
550 break;
551 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
552 if (dcc & DCC_CHANNEL_XOR_DISABLE) {
553 /* This is the base swizzling by the GPU for
554 * tiled buffers.
555 */
556 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
557 swizzle_y = I915_BIT_6_SWIZZLE_9;
558 } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
559 /* Bit 11 swizzling by the CPU in addition. */
560 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
561 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
562 } else {
563 /* Bit 17 swizzling by the CPU in addition. */
564 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
565 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
566 }
567 break;
568 }
569
570 /* check for L-shaped memory aka modified enhanced addressing */
5db94019 571 if (IS_GEN4(dev_priv) &&
0b466dc2
CW
572 !(I915_READ(DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
573 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
574 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
7f96ecaf
DV
575 }
576
577 if (dcc == 0xffffffff) {
578 DRM_ERROR("Couldn't read from MCHBAR. "
579 "Disabling tiling.\n");
580 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
581 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
582 }
583 } else {
584 /* The 965, G33, and newer, have a very flexible memory
585 * configuration. It will enable dual-channel mode
586 * (interleaving) on as much memory as it can, and the GPU
587 * will additionally sometimes enable different bit 6
588 * swizzling for tiled objects from the CPU.
589 *
590 * Here's what I found on the G965:
591 * slot fill memory size swizzling
592 * 0A 0B 1A 1B 1-ch 2-ch
593 * 512 0 0 0 512 0 O
594 * 512 0 512 0 16 1008 X
595 * 512 0 0 512 16 1008 X
596 * 0 512 0 512 16 1008 X
597 * 1024 1024 1024 0 2048 1024 O
598 *
599 * We could probably detect this based on either the DRB
600 * matching, which was the case for the swizzling required in
601 * the table above, or from the 1-ch value being less than
602 * the minimum size of a rank.
0b466dc2
CW
603 *
604 * Reports indicate that the swizzling actually
605 * varies depending upon page placement inside the
606 * channels, i.e. we see swizzled pages where the
607 * banks of memory are paired and unswizzled on the
608 * uneven portion, so leave that as unknown.
7f96ecaf 609 */
0b466dc2 610 if (I915_READ16(C0DRB3) == I915_READ16(C1DRB3)) {
7f96ecaf
DV
611 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
612 swizzle_y = I915_BIT_6_SWIZZLE_9;
613 }
614 }
615
0b466dc2
CW
616 if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
617 swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
618 /* Userspace likes to explode if it sees unknown swizzling,
619 * so lie. We will finish the lie when reporting through
620 * the get-tiling-ioctl by reporting the physical swizzle
621 * mode as unknown instead.
622 *
623 * As we don't strictly know what the swizzling is, it may be
624 * bit17 dependent, and so we need to also prevent the pages
625 * from being moved.
626 */
627 dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
628 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
629 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
630 }
631
7f96ecaf
DV
632 dev_priv->mm.bit_6_swizzle_x = swizzle_x;
633 dev_priv->mm.bit_6_swizzle_y = swizzle_y;
634}
635
3271dca4 636/*
7f96ecaf
DV
637 * Swap every 64 bytes of this page around, to account for it having a new
638 * bit 17 of its physical address and therefore being interpreted differently
639 * by the GPU.
640 */
641static void
642i915_gem_swizzle_page(struct page *page)
643{
644 char temp[64];
645 char *vaddr;
646 int i;
647
648 vaddr = kmap(page);
649
650 for (i = 0; i < PAGE_SIZE; i += 128) {
651 memcpy(temp, &vaddr[i], 64);
652 memcpy(&vaddr[i], &vaddr[i + 64], 64);
653 memcpy(&vaddr[i + 64], temp, 64);
654 }
655
656 kunmap(page);
657}
658
3271dca4
DV
659/**
660 * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
661 * @obj: i915 GEM buffer object
03ac84f1 662 * @pages: the scattergather list of physical pages
3271dca4
DV
663 *
664 * This function fixes up the swizzling in case any page frame number for this
665 * object has changed in bit 17 since that state has been saved with
666 * i915_gem_object_save_bit_17_swizzle().
667 *
668 * This is called when pinning backing storage again, since the kernel is free
669 * to move unpinned backing storage around (either by directly moving pages or
670 * by swapping them out and back in again).
671 */
7f96ecaf 672void
03ac84f1
CW
673i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
674 struct sg_table *pages)
7f96ecaf 675{
85d1225e
DG
676 struct sgt_iter sgt_iter;
677 struct page *page;
7f96ecaf
DV
678 int i;
679
680 if (obj->bit_17 == NULL)
681 return;
682
683 i = 0;
03ac84f1 684 for_each_sgt_page(page, sgt_iter, pages) {
7f96ecaf 685 char new_bit_17 = page_to_phys(page) >> 17;
03ac84f1 686 if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
7f96ecaf
DV
687 i915_gem_swizzle_page(page);
688 set_page_dirty(page);
689 }
690 i++;
691 }
692}
693
3271dca4
DV
694/**
695 * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
696 * @obj: i915 GEM buffer object
03ac84f1 697 * @pages: the scattergather list of physical pages
3271dca4
DV
698 *
699 * This function saves the bit 17 of each page frame number so that swizzling
700 * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
701 * be called before the backing storage can be unpinned.
702 */
7f96ecaf 703void
03ac84f1
CW
704i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
705 struct sg_table *pages)
7f96ecaf 706{
03ac84f1 707 const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
85d1225e
DG
708 struct sgt_iter sgt_iter;
709 struct page *page;
7f96ecaf
DV
710 int i;
711
712 if (obj->bit_17 == NULL) {
713 obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
714 sizeof(long), GFP_KERNEL);
715 if (obj->bit_17 == NULL) {
716 DRM_ERROR("Failed to allocate memory for bit 17 "
717 "record\n");
718 return;
719 }
720 }
721
722 i = 0;
85d1225e 723
03ac84f1 724 for_each_sgt_page(page, sgt_iter, pages) {
85d1225e 725 if (page_to_phys(page) & (1 << 17))
7f96ecaf
DV
726 __set_bit(i, obj->bit_17);
727 else
728 __clear_bit(i, obj->bit_17);
729 i++;
730 }
731}