]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem_gtt.h
drm/i915: Don't try to outsmart gcc in i915_gem_gtt.c
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.h
CommitLineData
0260c420
BW
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34#ifndef __I915_GEM_GTT_H__
35#define __I915_GEM_GTT_H__
36
4d884705
DV
37struct drm_i915_file_private;
38
07749ef3
MT
39typedef uint32_t gen6_pte_t;
40typedef uint64_t gen8_pte_t;
41typedef uint64_t gen8_pde_t;
0260c420
BW
42
43#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
44
07749ef3 45
0260c420
BW
46/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
47#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
48#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
49#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50#define GEN6_PTE_CACHE_LLC (2 << 1)
51#define GEN6_PTE_UNCACHED (1 << 1)
52#define GEN6_PTE_VALID (1 << 0)
53
07749ef3
MT
54#define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
55#define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
56#define I915_PDES 512
57#define I915_PDE_MASK (I915_PDES - 1)
678d96fb 58#define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
07749ef3
MT
59
60#define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
61#define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
0260c420 62#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
678d96fb 63#define GEN6_PDE_SHIFT 22
0260c420
BW
64#define GEN6_PDE_VALID (1 << 0)
65
66#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
67
68#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
69#define BYT_PTE_WRITEABLE (1 << 1)
70
71/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
72 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
73 */
74#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
75 (((bits) & 0x8) << (11 - 3)))
76#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
77#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
78#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
79#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
80#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
81#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
82#define HSW_PTE_UNCACHED (0)
83#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
84#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
85
86/* GEN8 legacy style address is defined as a 3 level page table:
87 * 31:30 | 29:21 | 20:12 | 11:0
88 * PDPE | PDE | PTE | offset
89 * The difference as compared to normal x86 3 level page table is the PDPEs are
90 * programmed via register.
91 */
92#define GEN8_PDPE_SHIFT 30
93#define GEN8_PDPE_MASK 0x3
94#define GEN8_PDE_SHIFT 21
95#define GEN8_PDE_MASK 0x1ff
96#define GEN8_PTE_SHIFT 12
97#define GEN8_PTE_MASK 0x1ff
76643600 98#define GEN8_LEGACY_PDPES 4
07749ef3 99#define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
0260c420
BW
100
101#define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
102#define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
103#define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
104#define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
105
ee0ce478 106#define CHV_PPAT_SNOOP (1<<6)
0260c420
BW
107#define GEN8_PPAT_AGE(x) (x<<4)
108#define GEN8_PPAT_LLCeLLC (3<<2)
109#define GEN8_PPAT_LLCELLC (2<<2)
110#define GEN8_PPAT_LLC (1<<2)
111#define GEN8_PPAT_WB (3<<0)
112#define GEN8_PPAT_WT (2<<0)
113#define GEN8_PPAT_WC (1<<0)
114#define GEN8_PPAT_UC (0<<0)
115#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
116#define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
117
fe14d5f4
TU
118enum i915_ggtt_view_type {
119 I915_GGTT_VIEW_NORMAL = 0,
50470bb0
TU
120 I915_GGTT_VIEW_ROTATED
121};
122
123struct intel_rotation_info {
124 unsigned int height;
125 unsigned int pitch;
126 uint32_t pixel_format;
127 uint64_t fb_modifier;
fe14d5f4
TU
128};
129
130struct i915_ggtt_view {
131 enum i915_ggtt_view_type type;
132
133 struct sg_table *pages;
50470bb0
TU
134
135 union {
136 struct intel_rotation_info rotation_info;
137 };
fe14d5f4
TU
138};
139
140extern const struct i915_ggtt_view i915_ggtt_view_normal;
9abc4648 141extern const struct i915_ggtt_view i915_ggtt_view_rotated;
fe14d5f4 142
0260c420 143enum i915_cache_level;
fe14d5f4 144
0260c420
BW
145/**
146 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
147 * VMA's presence cannot be guaranteed before binding, or after unbinding the
148 * object into/from the address space.
149 *
150 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
151 * will always be <= an objects lifetime. So object refcounting should cover us.
152 */
153struct i915_vma {
154 struct drm_mm_node node;
155 struct drm_i915_gem_object *obj;
156 struct i915_address_space *vm;
157
aff43766
TU
158 /** Flags and address space this VMA is bound to */
159#define GLOBAL_BIND (1<<0)
160#define LOCAL_BIND (1<<1)
aff43766
TU
161 unsigned int bound : 4;
162
fe14d5f4
TU
163 /**
164 * Support different GGTT views into the same object.
165 * This means there can be multiple VMA mappings per object and per VM.
166 * i915_ggtt_view_type is used to distinguish between those entries.
167 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
168 * assumed in GEM functions which take no ggtt view parameter.
169 */
170 struct i915_ggtt_view ggtt_view;
171
0260c420
BW
172 /** This object's place on the active/inactive lists */
173 struct list_head mm_list;
174
175 struct list_head vma_link; /* Link in the object's VMA list */
176
177 /** This vma's place in the batchbuffer or on the eviction list */
178 struct list_head exec_list;
179
180 /**
181 * Used for performing relocations during execbuffer insertion.
182 */
183 struct hlist_node exec_node;
184 unsigned long exec_handle;
185 struct drm_i915_gem_exec_object2 *exec_entry;
186
187 /**
188 * How many users have pinned this object in GTT space. The following
4feb7659
DV
189 * users can each hold at most one reference: pwrite/pread, execbuffer
190 * (objects are not allowed multiple times for the same batchbuffer),
191 * and the framebuffer code. When switching/pageflipping, the
192 * framebuffer code has at most two buffers pinned per crtc.
0260c420
BW
193 *
194 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
195 * bits with absolutely no headroom. So use 4 bits. */
196 unsigned int pin_count:4;
197#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
0260c420
BW
198};
199
ec565b3c 200struct i915_page_table {
d7b3de91 201 struct page *page;
7324cc04 202 dma_addr_t daddr;
678d96fb
BW
203
204 unsigned long *used_ptes;
d7b3de91
BW
205};
206
ec565b3c 207struct i915_page_directory {
d7b3de91 208 struct page *page; /* NULL for GEN6-GEN7 */
7324cc04
BW
209 union {
210 uint32_t pd_offset;
211 dma_addr_t daddr;
212 };
213
33c8819f 214 unsigned long *used_pdes;
ec565b3c 215 struct i915_page_table *page_table[I915_PDES]; /* PDEs */
d7b3de91
BW
216};
217
ec565b3c 218struct i915_page_directory_pointer {
d7b3de91 219 /* struct page *page; */
33c8819f 220 DECLARE_BITMAP(used_pdpes, GEN8_LEGACY_PDPES);
ec565b3c 221 struct i915_page_directory *page_directory[GEN8_LEGACY_PDPES];
d7b3de91
BW
222};
223
0260c420
BW
224struct i915_address_space {
225 struct drm_mm mm;
226 struct drm_device *dev;
227 struct list_head global_link;
228 unsigned long start; /* Start offset always 0 for dri2 */
229 size_t total; /* size addr space maps (ex. 2GB for ggtt) */
230
231 struct {
232 dma_addr_t addr;
233 struct page *page;
234 } scratch;
235
236 /**
237 * List of objects currently involved in rendering.
238 *
239 * Includes buffers having the contents of their GPU caches
97b2a6a1 240 * flushed, not necessarily primitives. last_read_req
0260c420
BW
241 * represents when the rendering involved will be completed.
242 *
243 * A reference is held on the buffer while on this list.
244 */
245 struct list_head active_list;
246
247 /**
248 * LRU list of objects which are not in the ringbuffer and
249 * are ready to unbind, but are still in the GTT.
250 *
97b2a6a1 251 * last_read_req is NULL while an object is in this list.
0260c420
BW
252 *
253 * A reference is not held on the buffer while on this list,
254 * as merely being GTT-bound shouldn't prevent its being
255 * freed, and we'll pull it off the list in the free path.
256 */
257 struct list_head inactive_list;
258
259 /* FIXME: Need a more generic return type */
07749ef3
MT
260 gen6_pte_t (*pte_encode)(dma_addr_t addr,
261 enum i915_cache_level level,
262 bool valid, u32 flags); /* Create a valid PTE */
f329f5f6
DV
263 /* flags for pte_encode */
264#define PTE_READ_ONLY (1<<0)
678d96fb
BW
265 int (*allocate_va_range)(struct i915_address_space *vm,
266 uint64_t start,
267 uint64_t length);
0260c420
BW
268 void (*clear_range)(struct i915_address_space *vm,
269 uint64_t start,
270 uint64_t length,
271 bool use_scratch);
272 void (*insert_entries)(struct i915_address_space *vm,
273 struct sg_table *st,
274 uint64_t start,
24f3a8cf 275 enum i915_cache_level cache_level, u32 flags);
0260c420 276 void (*cleanup)(struct i915_address_space *vm);
777dc5bb
DV
277 /** Unmap an object from an address space. This usually consists of
278 * setting the valid PTE entries to a reserved scratch page. */
279 void (*unbind_vma)(struct i915_vma *vma);
280 /* Map an object into an address space with the given cache flags. */
281 void (*bind_vma)(struct i915_vma *vma,
282 enum i915_cache_level cache_level,
283 u32 flags);
0260c420
BW
284};
285
286/* The Graphics Translation Table is the way in which GEN hardware translates a
287 * Graphics Virtual Address into a Physical Address. In addition to the normal
288 * collateral associated with any va->pa translations GEN hardware also has a
289 * portion of the GTT which can be mapped by the CPU and remain both coherent
290 * and correct (in cases like swizzling). That region is referred to as GMADR in
291 * the spec.
292 */
293struct i915_gtt {
294 struct i915_address_space base;
295 size_t stolen_size; /* Total size of stolen memory */
296
297 unsigned long mappable_end; /* End offset that we can CPU map */
298 struct io_mapping *mappable; /* Mapping to our CPU mappable region */
299 phys_addr_t mappable_base; /* PA of our GMADR */
300
301 /** "Graphics Stolen Memory" holds the global PTEs */
302 void __iomem *gsm;
303
304 bool do_idle_maps;
305
306 int mtrr;
307
308 /* global gtt ops */
309 int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
310 size_t *stolen, phys_addr_t *mappable_base,
311 unsigned long *mappable_end);
312};
313
314struct i915_hw_ppgtt {
315 struct i915_address_space base;
316 struct kref ref;
317 struct drm_mm_node node;
563222a7 318 unsigned long pd_dirty_rings;
d7b3de91 319 union {
ec565b3c
MT
320 struct i915_page_directory_pointer pdp;
321 struct i915_page_directory pd;
d7b3de91 322 };
0260c420 323
ec565b3c 324 struct i915_page_table *scratch_pt;
7cb6d7ac 325 struct i915_page_directory *scratch_pd;
4933d519 326
4d884705 327 struct drm_i915_file_private *file_priv;
0260c420 328
678d96fb
BW
329 gen6_pte_t __iomem *pd_addr;
330
0260c420
BW
331 int (*enable)(struct i915_hw_ppgtt *ppgtt);
332 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
6689c167 333 struct intel_engine_cs *ring);
0260c420
BW
334 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
335};
336
678d96fb
BW
337/* For each pde iterates over every pde between from start until start + length.
338 * If start, and start+length are not perfectly divisible, the macro will round
339 * down, and up as needed. The macro modifies pde, start, and length. Dev is
340 * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0,
341 * and length = 2G effectively iterates over every PDE in the system.
342 *
343 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
344 */
345#define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
fdc454c1
MT
346 for (iter = gen6_pde_index(start); \
347 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
348 iter++, \
678d96fb
BW
349 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
350 temp = min_t(unsigned, temp, length), \
351 start += temp, length -= temp)
352
09942c65
MT
353#define gen6_for_all_pdes(pt, ppgtt, iter) \
354 for (iter = 0; \
355 pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \
356 iter++)
357
678d96fb
BW
358static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
359{
360 const uint32_t mask = NUM_PTE(pde_shift) - 1;
361
362 return (address >> PAGE_SHIFT) & mask;
363}
364
365/* Helper to counts the number of PTEs within the given length. This count
366 * does not cross a page table boundary, so the max value would be
367 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
368*/
369static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
370 uint32_t pde_shift)
371{
372 const uint64_t mask = ~((1 << pde_shift) - 1);
373 uint64_t end;
374
375 WARN_ON(length == 0);
376 WARN_ON(offset_in_page(addr|length));
377
378 end = addr + length;
379
380 if ((addr & mask) != (end & mask))
381 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
382
383 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
384}
385
386static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
387{
388 return (addr >> shift) & I915_PDE_MASK;
389}
390
391static inline uint32_t gen6_pte_index(uint32_t addr)
392{
393 return i915_pte_index(addr, GEN6_PDE_SHIFT);
394}
395
396static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
397{
398 return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
399}
400
401static inline uint32_t gen6_pde_index(uint32_t addr)
402{
403 return i915_pde_index(addr, GEN6_PDE_SHIFT);
404}
405
9271d959
MT
406/* Equivalent to the gen6 version, For each pde iterates over every pde
407 * between from start until start + length. On gen8+ it simply iterates
408 * over every page directory entry in a page directory.
409 */
410#define gen8_for_each_pde(pt, pd, start, length, temp, iter) \
411 for (iter = gen8_pde_index(start); \
412 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
413 iter++, \
414 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT) - start, \
415 temp = min(temp, length), \
416 start += temp, length -= temp)
417
418#define gen8_for_each_pdpe(pd, pdp, start, length, temp, iter) \
419 for (iter = gen8_pdpe_index(start); \
420 pd = (pdp)->page_directory[iter], length > 0 && iter < GEN8_LEGACY_PDPES; \
421 iter++, \
422 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT) - start, \
423 temp = min(temp, length), \
424 start += temp, length -= temp)
425
426/* Clamp length to the next page_directory boundary */
427static inline uint64_t gen8_clamp_pd(uint64_t start, uint64_t length)
428{
429 uint64_t next_pd = ALIGN(start + 1, 1 << GEN8_PDPE_SHIFT);
430
431 if (next_pd > (start + length))
432 return length;
433
434 return next_pd - start;
435}
436
437static inline uint32_t gen8_pte_index(uint64_t address)
438{
439 return i915_pte_index(address, GEN8_PDE_SHIFT);
440}
441
442static inline uint32_t gen8_pde_index(uint64_t address)
443{
444 return i915_pde_index(address, GEN8_PDE_SHIFT);
445}
446
447static inline uint32_t gen8_pdpe_index(uint64_t address)
448{
449 return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
450}
451
452static inline uint32_t gen8_pml4e_index(uint64_t address)
453{
454 WARN_ON(1); /* For 64B */
455 return 0;
456}
457
33c8819f
MT
458static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
459{
460 return i915_pte_count(address, length, GEN8_PDE_SHIFT);
461}
462
0260c420
BW
463int i915_gem_gtt_init(struct drm_device *dev);
464void i915_gem_init_global_gtt(struct drm_device *dev);
90d0a0e8 465void i915_global_gtt_cleanup(struct drm_device *dev);
0260c420 466
ee960be7
DV
467
468int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
82460d97 469int i915_ppgtt_init_hw(struct drm_device *dev);
ee960be7 470void i915_ppgtt_release(struct kref *kref);
4d884705
DV
471struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
472 struct drm_i915_file_private *fpriv);
ee960be7
DV
473static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
474{
475 if (ppgtt)
476 kref_get(&ppgtt->ref);
477}
478static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
479{
480 if (ppgtt)
481 kref_put(&ppgtt->ref, i915_ppgtt_release);
482}
0260c420
BW
483
484void i915_check_and_clear_faults(struct drm_device *dev);
485void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
486void i915_gem_restore_gtt_mappings(struct drm_device *dev);
487
488int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
489void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
490
9abc4648
JL
491static inline bool
492i915_ggtt_view_equal(const struct i915_ggtt_view *a,
493 const struct i915_ggtt_view *b)
494{
495 if (WARN_ON(!a || !b))
496 return false;
497
498 return a->type == b->type;
499}
500
0260c420 501#endif