]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/gpu/drm/i915/i915_gem_tiling.c
drm/i915: no more agp for gem
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / i915_gem_tiling.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
280b713b
EA
28#include "linux/string.h"
29#include "linux/bitops.h"
673a394b
EA
30#include "drmP.h"
31#include "drm.h"
32#include "i915_drm.h"
33#include "i915_drv.h"
34
35/** @file i915_gem_tiling.c
36 *
37 * Support for managing tiling state of buffer objects.
38 *
39 * The idea behind tiling is to increase cache hit rates by rearranging
40 * pixel data so that a group of pixel accesses are in the same cacheline.
41 * Performance improvement from doing this on the back/depth buffer are on
42 * the order of 30%.
43 *
44 * Intel architectures make this somewhat more complicated, though, by
45 * adjustments made to addressing of data when the memory is in interleaved
46 * mode (matched pairs of DIMMS) to improve memory bandwidth.
47 * For interleaved memory, the CPU sends every sequential 64 bytes
48 * to an alternate memory channel so it can get the bandwidth from both.
49 *
50 * The GPU also rearranges its accesses for increased bandwidth to interleaved
51 * memory, and it matches what the CPU does for non-tiled. However, when tiled
52 * it does it a little differently, since one walks addresses not just in the
53 * X direction but also Y. So, along with alternating channels when bit
54 * 6 of the address flips, it also alternates when other bits flip -- Bits 9
55 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
56 * are common to both the 915 and 965-class hardware.
57 *
58 * The CPU also sometimes XORs in higher bits as well, to improve
59 * bandwidth doing strided access like we do so frequently in graphics. This
60 * is called "Channel XOR Randomization" in the MCH documentation. The result
61 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
62 * decode.
63 *
64 * All of this bit 6 XORing has an effect on our memory management,
65 * as we need to make sure that the 3d driver can correctly address object
66 * contents.
67 *
68 * If we don't have interleaved memory, all tiling is safe and no swizzling is
69 * required.
70 *
71 * When bit 17 is XORed in, we simply refuse to tile at all. Bit
72 * 17 is not just a page offset, so as we page an objet out and back in,
73 * individual pages in it will have different bit 17 addresses, resulting in
74 * each 64 bytes being swapped with its neighbor!
75 *
76 * Otherwise, if interleaved, we have to tell the 3d driver what the address
77 * swizzling it needs to do is, since it's writing with the CPU to the pages
78 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
79 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
80 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
81 * to match what the GPU expects.
82 */
83
84/**
85 * Detects bit 6 swizzling of address lookup between IGD access and CPU
86 * access through main memory.
87 */
88void
89i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
90{
91 drm_i915_private_t *dev_priv = dev->dev_private;
92 uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
93 uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
94
f00a3ddf 95 if (IS_GEN5(dev) || IS_GEN6(dev)) {
f2b115e6 96 /* On Ironlake whatever DRAM config, GPU always do
553bd149
ZW
97 * same swizzling setup.
98 */
99 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
100 swizzle_y = I915_BIT_6_SWIZZLE_9;
a6c45cf0 101 } else if (IS_GEN2(dev)) {
673a394b
EA
102 /* As far as we know, the 865 doesn't have these bit 6
103 * swizzling issues.
104 */
105 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
106 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
568d9a8f 107 } else if (IS_MOBILE(dev)) {
673a394b
EA
108 uint32_t dcc;
109
568d9a8f
EA
110 /* On mobile 9xx chipsets, channel interleave by the CPU is
111 * determined by DCC. For single-channel, neither the CPU
112 * nor the GPU do swizzling. For dual channel interleaved,
113 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
114 * 9 for Y tiled. The CPU's interleave is independent, and
115 * can be based on either bit 11 (haven't seen this yet) or
116 * bit 17 (common).
673a394b
EA
117 */
118 dcc = I915_READ(DCC);
119 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
120 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
121 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
122 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
123 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
124 break;
125 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
568d9a8f
EA
126 if (dcc & DCC_CHANNEL_XOR_DISABLE) {
127 /* This is the base swizzling by the GPU for
128 * tiled buffers.
129 */
673a394b
EA
130 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
131 swizzle_y = I915_BIT_6_SWIZZLE_9;
568d9a8f
EA
132 } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
133 /* Bit 11 swizzling by the CPU in addition. */
673a394b
EA
134 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
135 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
136 } else {
568d9a8f 137 /* Bit 17 swizzling by the CPU in addition. */
280b713b
EA
138 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
139 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
673a394b
EA
140 }
141 break;
142 }
143 if (dcc == 0xffffffff) {
144 DRM_ERROR("Couldn't read from MCHBAR. "
145 "Disabling tiling.\n");
146 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
147 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
148 }
149 } else {
150 /* The 965, G33, and newer, have a very flexible memory
151 * configuration. It will enable dual-channel mode
152 * (interleaving) on as much memory as it can, and the GPU
153 * will additionally sometimes enable different bit 6
154 * swizzling for tiled objects from the CPU.
155 *
156 * Here's what I found on the G965:
157 * slot fill memory size swizzling
158 * 0A 0B 1A 1B 1-ch 2-ch
159 * 512 0 0 0 512 0 O
160 * 512 0 512 0 16 1008 X
161 * 512 0 0 512 16 1008 X
162 * 0 512 0 512 16 1008 X
163 * 1024 1024 1024 0 2048 1024 O
164 *
165 * We could probably detect this based on either the DRB
166 * matching, which was the case for the swizzling required in
167 * the table above, or from the 1-ch value being less than
168 * the minimum size of a rank.
169 */
170 if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
171 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
172 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
173 } else {
174 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
175 swizzle_y = I915_BIT_6_SWIZZLE_9;
176 }
177 }
178
179 dev_priv->mm.bit_6_swizzle_x = swizzle_x;
180 dev_priv->mm.bit_6_swizzle_y = swizzle_y;
181}
182
0f973f27 183/* Check pitch constriants for all chips & tiling formats */
a00b10c3 184static bool
0f973f27
JB
185i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
186{
187 int tile_width;
188
189 /* Linear is always fine */
190 if (tiling_mode == I915_TILING_NONE)
191 return true;
192
a6c45cf0 193 if (IS_GEN2(dev) ||
e76a16de 194 (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
0f973f27
JB
195 tile_width = 128;
196 else
197 tile_width = 512;
198
8d7773a3 199 /* check maximum stride & object size */
a6c45cf0 200 if (INTEL_INFO(dev)->gen >= 4) {
8d7773a3
DV
201 /* i965 stores the end address of the gtt mapping in the fence
202 * reg, so dont bother to check the size */
203 if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
204 return false;
a6c45cf0 205 } else {
c36a2a6d 206 if (stride > 8192)
8d7773a3 207 return false;
e76a16de 208
c36a2a6d
DV
209 if (IS_GEN3(dev)) {
210 if (size > I830_FENCE_MAX_SIZE_VAL << 20)
211 return false;
212 } else {
213 if (size > I830_FENCE_MAX_SIZE_VAL << 19)
214 return false;
215 }
8d7773a3
DV
216 }
217
0f973f27 218 /* 965+ just needs multiples of tile width */
a6c45cf0 219 if (INTEL_INFO(dev)->gen >= 4) {
0f973f27
JB
220 if (stride & (tile_width - 1))
221 return false;
222 return true;
223 }
224
225 /* Pre-965 needs power of two tile widths */
226 if (stride < tile_width)
227 return false;
228
229 if (stride & (stride - 1))
230 return false;
231
0f973f27
JB
232 return true;
233}
234
a00b10c3
CW
235/* Is the current GTT allocation valid for the change in tiling? */
236static bool
237i915_gem_object_fence_ok(struct drm_gem_object *obj, int tiling_mode)
52dc7d32 238{
23010e43 239 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3 240 u32 size;
52dc7d32
CW
241
242 if (tiling_mode == I915_TILING_NONE)
243 return true;
244
a00b10c3 245 if (INTEL_INFO(obj->dev)->gen >= 4)
a6c45cf0
CW
246 return true;
247
df153158
CW
248 if (!obj_priv->gtt_space)
249 return true;
250
251 if (INTEL_INFO(obj->dev)->gen == 3) {
252 if (obj_priv->gtt_offset & ~I915_FENCE_START_MASK)
253 return false;
254 } else {
255 if (obj_priv->gtt_offset & ~I830_FENCE_START_MASK)
256 return false;
257 }
258
a00b10c3
CW
259 /*
260 * Previous chips need to be aligned to the size of the smallest
261 * fence register that can contain the object.
262 */
263 if (INTEL_INFO(obj->dev)->gen == 3)
264 size = 1024*1024;
265 else
266 size = 512*1024;
267
268 while (size < obj_priv->base.size)
269 size <<= 1;
270
df153158 271 if (obj_priv->gtt_space->size != size)
a6c45cf0
CW
272 return false;
273
df153158
CW
274 if (obj_priv->gtt_offset & (size - 1))
275 return false;
52dc7d32
CW
276
277 return true;
278}
279
673a394b
EA
280/**
281 * Sets the tiling mode of an object, returning the required swizzling of
282 * bit 6 of addresses in the object.
283 */
284int
285i915_gem_set_tiling(struct drm_device *dev, void *data,
286 struct drm_file *file_priv)
287{
288 struct drm_i915_gem_set_tiling *args = data;
289 drm_i915_private_t *dev_priv = dev->dev_private;
290 struct drm_gem_object *obj;
291 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
292 int ret;
293
294 ret = i915_gem_check_is_wedged(dev);
295 if (ret)
296 return ret;
673a394b
EA
297
298 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
299 if (obj == NULL)
bf79cb91 300 return -ENOENT;
23010e43 301 obj_priv = to_intel_bo(obj);
673a394b 302
72daad40 303 if (!i915_tiling_ok(dev, args->stride, obj->size, args->tiling_mode)) {
bc9025bd 304 drm_gem_object_unreference_unlocked(obj);
0f973f27 305 return -EINVAL;
72daad40 306 }
0f973f27 307
31770bd4
DV
308 if (obj_priv->pin_count) {
309 drm_gem_object_unreference_unlocked(obj);
310 return -EBUSY;
311 }
312
673a394b 313 if (args->tiling_mode == I915_TILING_NONE) {
673a394b 314 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
52dc7d32 315 args->stride = 0;
673a394b
EA
316 } else {
317 if (args->tiling_mode == I915_TILING_X)
318 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
319 else
320 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
280b713b
EA
321
322 /* Hide bit 17 swizzling from the user. This prevents old Mesa
323 * from aborting the application on sw fallbacks to bit 17,
324 * and we use the pread/pwrite bit17 paths to swizzle for it.
325 * If there was a user that was relying on the swizzle
326 * information for drm_intel_bo_map()ed reads/writes this would
327 * break it, but we don't have any of those.
328 */
329 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
330 args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
331 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
332 args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
333
673a394b
EA
334 /* If we can't handle the swizzling, make it untiled. */
335 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
336 args->tiling_mode = I915_TILING_NONE;
337 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
52dc7d32 338 args->stride = 0;
673a394b
EA
339 }
340 }
0f973f27 341
52dc7d32
CW
342 mutex_lock(&dev->struct_mutex);
343 if (args->tiling_mode != obj_priv->tiling_mode ||
344 args->stride != obj_priv->stride) {
345 /* We need to rebind the object if its current allocation
346 * no longer meets the alignment restrictions for its new
347 * tiling mode. Otherwise we can just leave it alone, but
348 * need to ensure that any fence register is cleared.
0f973f27 349 */
a00b10c3 350 if (!i915_gem_object_fence_ok(obj, args->tiling_mode))
fe305198
DV
351 ret = i915_gem_object_unbind(obj);
352 else if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2cf34d7b 353 ret = i915_gem_object_put_fence_reg(obj, true);
52dc7d32 354 else
fe305198
DV
355 i915_gem_release_mmap(obj);
356
0f973f27 357 if (ret != 0) {
0f973f27 358 args->tiling_mode = obj_priv->tiling_mode;
52dc7d32
CW
359 args->stride = obj_priv->stride;
360 goto err;
0f973f27 361 }
52dc7d32 362
0f973f27 363 obj_priv->tiling_mode = args->tiling_mode;
52dc7d32 364 obj_priv->stride = args->stride;
0f973f27 365 }
52dc7d32 366err:
673a394b 367 drm_gem_object_unreference(obj);
d6873102 368 mutex_unlock(&dev->struct_mutex);
673a394b 369
52dc7d32 370 return ret;
673a394b
EA
371}
372
373/**
374 * Returns the current tiling mode and required bit 6 swizzling for the object.
375 */
376int
377i915_gem_get_tiling(struct drm_device *dev, void *data,
378 struct drm_file *file_priv)
379{
380 struct drm_i915_gem_get_tiling *args = data;
381 drm_i915_private_t *dev_priv = dev->dev_private;
382 struct drm_gem_object *obj;
383 struct drm_i915_gem_object *obj_priv;
384
385 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
386 if (obj == NULL)
bf79cb91 387 return -ENOENT;
23010e43 388 obj_priv = to_intel_bo(obj);
673a394b
EA
389
390 mutex_lock(&dev->struct_mutex);
391
392 args->tiling_mode = obj_priv->tiling_mode;
393 switch (obj_priv->tiling_mode) {
394 case I915_TILING_X:
395 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
396 break;
397 case I915_TILING_Y:
398 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
399 break;
400 case I915_TILING_NONE:
401 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
402 break;
403 default:
404 DRM_ERROR("unknown tiling mode\n");
405 }
406
280b713b
EA
407 /* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
408 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
409 args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
410 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
411 args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
412
673a394b 413 drm_gem_object_unreference(obj);
d6873102 414 mutex_unlock(&dev->struct_mutex);
673a394b
EA
415
416 return 0;
417}
280b713b
EA
418
419/**
420 * Swap every 64 bytes of this page around, to account for it having a new
421 * bit 17 of its physical address and therefore being interpreted differently
422 * by the GPU.
423 */
dd2575ff 424static void
280b713b
EA
425i915_gem_swizzle_page(struct page *page)
426{
dd2575ff 427 char temp[64];
280b713b
EA
428 char *vaddr;
429 int i;
280b713b
EA
430
431 vaddr = kmap(page);
280b713b
EA
432
433 for (i = 0; i < PAGE_SIZE; i += 128) {
434 memcpy(temp, &vaddr[i], 64);
435 memcpy(&vaddr[i], &vaddr[i + 64], 64);
436 memcpy(&vaddr[i + 64], temp, 64);
437 }
438
439 kunmap(page);
280b713b
EA
440}
441
442void
443i915_gem_object_do_bit_17_swizzle(struct drm_gem_object *obj)
444{
445 struct drm_device *dev = obj->dev;
446 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 447 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
448 int page_count = obj->size >> PAGE_SHIFT;
449 int i;
450
451 if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
452 return;
453
454 if (obj_priv->bit_17 == NULL)
455 return;
456
457 for (i = 0; i < page_count; i++) {
458 char new_bit_17 = page_to_phys(obj_priv->pages[i]) >> 17;
459 if ((new_bit_17 & 0x1) !=
460 (test_bit(i, obj_priv->bit_17) != 0)) {
dd2575ff 461 i915_gem_swizzle_page(obj_priv->pages[i]);
280b713b
EA
462 set_page_dirty(obj_priv->pages[i]);
463 }
464 }
465}
466
467void
468i915_gem_object_save_bit_17_swizzle(struct drm_gem_object *obj)
469{
470 struct drm_device *dev = obj->dev;
471 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 472 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
473 int page_count = obj->size >> PAGE_SHIFT;
474 int i;
475
476 if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
477 return;
478
479 if (obj_priv->bit_17 == NULL) {
480 obj_priv->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
481 sizeof(long), GFP_KERNEL);
482 if (obj_priv->bit_17 == NULL) {
483 DRM_ERROR("Failed to allocate memory for bit 17 "
484 "record\n");
485 return;
486 }
487 }
488
489 for (i = 0; i < page_count; i++) {
490 if (page_to_phys(obj_priv->pages[i]) & (1 << 17))
491 __set_bit(i, obj_priv->bit_17);
492 else
493 __clear_bit(i, obj_priv->bit_17);
494 }
495}