]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem_tiling.c
Merge remote-tracking branches 'spi/topic/atmel', 'spi/topic/cadence', 'spi/topic...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem_tiling.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <linux/string.h>
29#include <linux/bitops.h>
30#include <drm/drmP.h>
31#include <drm/i915_drm.h>
673a394b
EA
32#include "i915_drv.h"
33
34/** @file i915_gem_tiling.c
35 *
36 * Support for managing tiling state of buffer objects.
37 *
38 * The idea behind tiling is to increase cache hit rates by rearranging
39 * pixel data so that a group of pixel accesses are in the same cacheline.
40 * Performance improvement from doing this on the back/depth buffer are on
41 * the order of 30%.
42 *
43 * Intel architectures make this somewhat more complicated, though, by
44 * adjustments made to addressing of data when the memory is in interleaved
45 * mode (matched pairs of DIMMS) to improve memory bandwidth.
46 * For interleaved memory, the CPU sends every sequential 64 bytes
47 * to an alternate memory channel so it can get the bandwidth from both.
48 *
49 * The GPU also rearranges its accesses for increased bandwidth to interleaved
50 * memory, and it matches what the CPU does for non-tiled. However, when tiled
51 * it does it a little differently, since one walks addresses not just in the
52 * X direction but also Y. So, along with alternating channels when bit
53 * 6 of the address flips, it also alternates when other bits flip -- Bits 9
54 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
55 * are common to both the 915 and 965-class hardware.
56 *
57 * The CPU also sometimes XORs in higher bits as well, to improve
58 * bandwidth doing strided access like we do so frequently in graphics. This
59 * is called "Channel XOR Randomization" in the MCH documentation. The result
60 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
61 * decode.
62 *
63 * All of this bit 6 XORing has an effect on our memory management,
64 * as we need to make sure that the 3d driver can correctly address object
65 * contents.
66 *
67 * If we don't have interleaved memory, all tiling is safe and no swizzling is
68 * required.
69 *
70 * When bit 17 is XORed in, we simply refuse to tile at all. Bit
71 * 17 is not just a page offset, so as we page an objet out and back in,
72 * individual pages in it will have different bit 17 addresses, resulting in
73 * each 64 bytes being swapped with its neighbor!
74 *
75 * Otherwise, if interleaved, we have to tell the 3d driver what the address
76 * swizzling it needs to do is, since it's writing with the CPU to the pages
77 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
78 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
79 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
80 * to match what the GPU expects.
81 */
82
83/**
84 * Detects bit 6 swizzling of address lookup between IGD access and CPU
85 * access through main memory.
86 */
87void
88i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
89{
50227e1c 90 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
91 uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
92 uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
93
be292e15
DL
94 if (INTEL_INFO(dev)->gen >= 8 || IS_VALLEYVIEW(dev)) {
95 /*
96 * On BDW+, swizzling is not used. We leave the CPU memory
97 * controller in charge of optimizing memory accesses without
98 * the extra address manipulation GPU side.
99 *
100 * VLV and CHV don't have GPU swizzling.
101 */
7f661341
JB
102 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
103 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
104 } else if (INTEL_INFO(dev)->gen >= 6) {
f691e2f4
DV
105 uint32_t dimm_c0, dimm_c1;
106 dimm_c0 = I915_READ(MAD_DIMM_C0);
107 dimm_c1 = I915_READ(MAD_DIMM_C1);
108 dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
109 dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
110 /* Enable swizzling when the channels are populated with
111 * identically sized dimms. We don't need to check the 3rd
112 * channel because no cpu with gpu attached ships in that
113 * configuration. Also, swizzling only makes sense for 2
114 * channels anyway. */
115 if (dimm_c0 == dimm_c1) {
116 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
117 swizzle_y = I915_BIT_6_SWIZZLE_9;
118 } else {
119 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
120 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
121 }
acc83eb5 122 } else if (IS_GEN5(dev)) {
f2b115e6 123 /* On Ironlake whatever DRAM config, GPU always do
553bd149
ZW
124 * same swizzling setup.
125 */
126 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
127 swizzle_y = I915_BIT_6_SWIZZLE_9;
a6c45cf0 128 } else if (IS_GEN2(dev)) {
673a394b
EA
129 /* As far as we know, the 865 doesn't have these bit 6
130 * swizzling issues.
131 */
132 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
133 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
c9c4b6f6 134 } else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
673a394b
EA
135 uint32_t dcc;
136
c9c4b6f6 137 /* On 9xx chipsets, channel interleave by the CPU is
568d9a8f
EA
138 * determined by DCC. For single-channel, neither the CPU
139 * nor the GPU do swizzling. For dual channel interleaved,
140 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
141 * 9 for Y tiled. The CPU's interleave is independent, and
142 * can be based on either bit 11 (haven't seen this yet) or
143 * bit 17 (common).
673a394b
EA
144 */
145 dcc = I915_READ(DCC);
146 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
147 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
148 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
149 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
150 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
151 break;
152 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
568d9a8f
EA
153 if (dcc & DCC_CHANNEL_XOR_DISABLE) {
154 /* This is the base swizzling by the GPU for
155 * tiled buffers.
156 */
673a394b
EA
157 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
158 swizzle_y = I915_BIT_6_SWIZZLE_9;
568d9a8f
EA
159 } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
160 /* Bit 11 swizzling by the CPU in addition. */
673a394b
EA
161 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
162 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
163 } else {
568d9a8f 164 /* Bit 17 swizzling by the CPU in addition. */
280b713b
EA
165 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
166 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
673a394b
EA
167 }
168 break;
169 }
170 if (dcc == 0xffffffff) {
171 DRM_ERROR("Couldn't read from MCHBAR. "
172 "Disabling tiling.\n");
173 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
174 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
175 }
176 } else {
177 /* The 965, G33, and newer, have a very flexible memory
178 * configuration. It will enable dual-channel mode
179 * (interleaving) on as much memory as it can, and the GPU
180 * will additionally sometimes enable different bit 6
181 * swizzling for tiled objects from the CPU.
182 *
183 * Here's what I found on the G965:
184 * slot fill memory size swizzling
185 * 0A 0B 1A 1B 1-ch 2-ch
186 * 512 0 0 0 512 0 O
187 * 512 0 512 0 16 1008 X
188 * 512 0 0 512 16 1008 X
189 * 0 512 0 512 16 1008 X
190 * 1024 1024 1024 0 2048 1024 O
191 *
192 * We could probably detect this based on either the DRB
193 * matching, which was the case for the swizzling required in
194 * the table above, or from the 1-ch value being less than
195 * the minimum size of a rank.
196 */
197 if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
198 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
199 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
200 } else {
201 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
202 swizzle_y = I915_BIT_6_SWIZZLE_9;
203 }
204 }
205
206 dev_priv->mm.bit_6_swizzle_x = swizzle_x;
207 dev_priv->mm.bit_6_swizzle_y = swizzle_y;
208}
209
0f973f27 210/* Check pitch constriants for all chips & tiling formats */
a00b10c3 211static bool
0f973f27
JB
212i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
213{
0ee537ab 214 int tile_width;
0f973f27
JB
215
216 /* Linear is always fine */
217 if (tiling_mode == I915_TILING_NONE)
218 return true;
219
a6c45cf0 220 if (IS_GEN2(dev) ||
e76a16de 221 (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
0f973f27
JB
222 tile_width = 128;
223 else
224 tile_width = 512;
225
8d7773a3 226 /* check maximum stride & object size */
3a062478
VS
227 /* i965+ stores the end address of the gtt mapping in the fence
228 * reg, so dont bother to check the size */
229 if (INTEL_INFO(dev)->gen >= 7) {
230 if (stride / 128 > GEN7_FENCE_MAX_PITCH_VAL)
231 return false;
232 } else if (INTEL_INFO(dev)->gen >= 4) {
8d7773a3
DV
233 if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
234 return false;
a6c45cf0 235 } else {
c36a2a6d 236 if (stride > 8192)
8d7773a3 237 return false;
e76a16de 238
c36a2a6d
DV
239 if (IS_GEN3(dev)) {
240 if (size > I830_FENCE_MAX_SIZE_VAL << 20)
241 return false;
242 } else {
243 if (size > I830_FENCE_MAX_SIZE_VAL << 19)
244 return false;
245 }
8d7773a3
DV
246 }
247
fe48d8de
VS
248 if (stride < tile_width)
249 return false;
250
0f973f27 251 /* 965+ just needs multiples of tile width */
a6c45cf0 252 if (INTEL_INFO(dev)->gen >= 4) {
0f973f27
JB
253 if (stride & (tile_width - 1))
254 return false;
255 return true;
256 }
257
258 /* Pre-965 needs power of two tile widths */
0f973f27
JB
259 if (stride & (stride - 1))
260 return false;
261
0f973f27
JB
262 return true;
263}
264
a00b10c3
CW
265/* Is the current GTT allocation valid for the change in tiling? */
266static bool
05394f39 267i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
52dc7d32 268{
a00b10c3 269 u32 size;
52dc7d32
CW
270
271 if (tiling_mode == I915_TILING_NONE)
272 return true;
273
05394f39 274 if (INTEL_INFO(obj->base.dev)->gen >= 4)
a6c45cf0
CW
275 return true;
276
05394f39 277 if (INTEL_INFO(obj->base.dev)->gen == 3) {
f343c5f6 278 if (i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK)
df153158
CW
279 return false;
280 } else {
f343c5f6 281 if (i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK)
df153158
CW
282 return false;
283 }
284
0fa87796 285 size = i915_gem_get_gtt_size(obj->base.dev, obj->base.size, tiling_mode);
f343c5f6 286 if (i915_gem_obj_ggtt_size(obj) != size)
a6c45cf0
CW
287 return false;
288
f343c5f6 289 if (i915_gem_obj_ggtt_offset(obj) & (size - 1))
df153158 290 return false;
52dc7d32
CW
291
292 return true;
293}
294
673a394b
EA
295/**
296 * Sets the tiling mode of an object, returning the required swizzling of
297 * bit 6 of addresses in the object.
298 */
299int
300i915_gem_set_tiling(struct drm_device *dev, void *data,
05394f39 301 struct drm_file *file)
673a394b
EA
302{
303 struct drm_i915_gem_set_tiling *args = data;
50227e1c 304 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 305 struct drm_i915_gem_object *obj;
47ae63e0 306 int ret = 0;
673a394b 307
05394f39 308 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 309 if (&obj->base == NULL)
bf79cb91 310 return -ENOENT;
673a394b 311
05394f39
CW
312 if (!i915_tiling_ok(dev,
313 args->stride, obj->base.size, args->tiling_mode)) {
314 drm_gem_object_unreference_unlocked(&obj->base);
0f973f27 315 return -EINVAL;
72daad40 316 }
0f973f27 317
d7f46fc4 318 if (i915_gem_obj_is_pinned(obj) || obj->framebuffer_references) {
05394f39 319 drm_gem_object_unreference_unlocked(&obj->base);
31770bd4
DV
320 return -EBUSY;
321 }
322
673a394b 323 if (args->tiling_mode == I915_TILING_NONE) {
673a394b 324 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
52dc7d32 325 args->stride = 0;
673a394b
EA
326 } else {
327 if (args->tiling_mode == I915_TILING_X)
328 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
329 else
330 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
280b713b
EA
331
332 /* Hide bit 17 swizzling from the user. This prevents old Mesa
333 * from aborting the application on sw fallbacks to bit 17,
334 * and we use the pread/pwrite bit17 paths to swizzle for it.
335 * If there was a user that was relying on the swizzle
336 * information for drm_intel_bo_map()ed reads/writes this would
337 * break it, but we don't have any of those.
338 */
339 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
340 args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
341 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
342 args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
343
673a394b
EA
344 /* If we can't handle the swizzling, make it untiled. */
345 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
346 args->tiling_mode = I915_TILING_NONE;
347 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
52dc7d32 348 args->stride = 0;
673a394b
EA
349 }
350 }
0f973f27 351
52dc7d32 352 mutex_lock(&dev->struct_mutex);
05394f39
CW
353 if (args->tiling_mode != obj->tiling_mode ||
354 args->stride != obj->stride) {
52dc7d32
CW
355 /* We need to rebind the object if its current allocation
356 * no longer meets the alignment restrictions for its new
357 * tiling mode. Otherwise we can just leave it alone, but
1869b620
CW
358 * need to ensure that any fence register is updated before
359 * the next fenced (either through the GTT or by the BLT unit
360 * on older GPUs) access.
5d82e3e6
CW
361 *
362 * After updating the tiling parameters, we then flag whether
363 * we need to update an associated fence register. Note this
364 * has to also include the unfenced register the GPU uses
365 * whilst executing a fenced command for an untiled object.
0f973f27 366 */
e9d784d5
CW
367 if (obj->map_and_fenceable &&
368 !i915_gem_object_fence_ok(obj, args->tiling_mode))
369 ret = i915_gem_object_ggtt_unbind(obj);
467cffba
CW
370
371 if (ret == 0) {
5d82e3e6 372 obj->fence_dirty =
82b6b6d7 373 obj->last_fenced_seqno ||
5d82e3e6
CW
374 obj->fence_reg != I915_FENCE_REG_NONE;
375
467cffba
CW
376 obj->tiling_mode = args->tiling_mode;
377 obj->stride = args->stride;
1869b620
CW
378
379 /* Force the fence to be reacquired for GTT access */
380 i915_gem_release_mmap(obj);
467cffba 381 }
0f973f27 382 }
467cffba
CW
383 /* we have to maintain this existing ABI... */
384 args->stride = obj->stride;
385 args->tiling_mode = obj->tiling_mode;
e9b73c67
CW
386
387 /* Try to preallocate memory required to save swizzling on put-pages */
388 if (i915_gem_object_needs_bit17_swizzle(obj)) {
389 if (obj->bit_17 == NULL) {
a1e22653 390 obj->bit_17 = kcalloc(BITS_TO_LONGS(obj->base.size >> PAGE_SHIFT),
e9b73c67
CW
391 sizeof(long), GFP_KERNEL);
392 }
393 } else {
394 kfree(obj->bit_17);
395 obj->bit_17 = NULL;
396 }
397
05394f39 398 drm_gem_object_unreference(&obj->base);
d6873102 399 mutex_unlock(&dev->struct_mutex);
673a394b 400
467cffba 401 return ret;
673a394b
EA
402}
403
404/**
405 * Returns the current tiling mode and required bit 6 swizzling for the object.
406 */
407int
408i915_gem_get_tiling(struct drm_device *dev, void *data,
05394f39 409 struct drm_file *file)
673a394b
EA
410{
411 struct drm_i915_gem_get_tiling *args = data;
50227e1c 412 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 413 struct drm_i915_gem_object *obj;
673a394b 414
05394f39 415 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 416 if (&obj->base == NULL)
bf79cb91 417 return -ENOENT;
673a394b
EA
418
419 mutex_lock(&dev->struct_mutex);
420
05394f39
CW
421 args->tiling_mode = obj->tiling_mode;
422 switch (obj->tiling_mode) {
673a394b
EA
423 case I915_TILING_X:
424 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
425 break;
426 case I915_TILING_Y:
427 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
428 break;
429 case I915_TILING_NONE:
430 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
431 break;
432 default:
433 DRM_ERROR("unknown tiling mode\n");
434 }
435
280b713b
EA
436 /* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
437 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
438 args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
439 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
440 args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
441
05394f39 442 drm_gem_object_unreference(&obj->base);
d6873102 443 mutex_unlock(&dev->struct_mutex);
673a394b
EA
444
445 return 0;
446}
280b713b
EA
447
448/**
449 * Swap every 64 bytes of this page around, to account for it having a new
450 * bit 17 of its physical address and therefore being interpreted differently
451 * by the GPU.
452 */
dd2575ff 453static void
280b713b
EA
454i915_gem_swizzle_page(struct page *page)
455{
dd2575ff 456 char temp[64];
280b713b
EA
457 char *vaddr;
458 int i;
280b713b
EA
459
460 vaddr = kmap(page);
280b713b
EA
461
462 for (i = 0; i < PAGE_SIZE; i += 128) {
463 memcpy(temp, &vaddr[i], 64);
464 memcpy(&vaddr[i], &vaddr[i + 64], 64);
465 memcpy(&vaddr[i + 64], temp, 64);
466 }
467
468 kunmap(page);
280b713b
EA
469}
470
471void
05394f39 472i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
280b713b 473{
67d5a50c 474 struct sg_page_iter sg_iter;
280b713b
EA
475 int i;
476
05394f39 477 if (obj->bit_17 == NULL)
280b713b
EA
478 return;
479
67d5a50c
ID
480 i = 0;
481 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 482 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 483 char new_bit_17 = page_to_phys(page) >> 17;
280b713b 484 if ((new_bit_17 & 0x1) !=
05394f39 485 (test_bit(i, obj->bit_17) != 0)) {
9da3da66
CW
486 i915_gem_swizzle_page(page);
487 set_page_dirty(page);
280b713b 488 }
67d5a50c 489 i++;
280b713b
EA
490 }
491}
492
493void
05394f39 494i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
280b713b 495{
67d5a50c 496 struct sg_page_iter sg_iter;
05394f39 497 int page_count = obj->base.size >> PAGE_SHIFT;
280b713b
EA
498 int i;
499
05394f39 500 if (obj->bit_17 == NULL) {
a1e22653
DV
501 obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
502 sizeof(long), GFP_KERNEL);
05394f39 503 if (obj->bit_17 == NULL) {
280b713b
EA
504 DRM_ERROR("Failed to allocate memory for bit 17 "
505 "record\n");
506 return;
507 }
508 }
509
67d5a50c
ID
510 i = 0;
511 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 512 if (page_to_phys(sg_page_iter_page(&sg_iter)) & (1 << 17))
05394f39 513 __set_bit(i, obj->bit_17);
280b713b 514 else
05394f39 515 __clear_bit(i, obj->bit_17);
67d5a50c 516 i++;
280b713b
EA
517 }
518}