]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem_tiling.c
Merge branch 'x86/urgent' into x86/setup
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_tiling.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
280b713b
EA
28#include "linux/string.h"
29#include "linux/bitops.h"
673a394b
EA
30#include "drmP.h"
31#include "drm.h"
32#include "i915_drm.h"
33#include "i915_drv.h"
34
35/** @file i915_gem_tiling.c
36 *
37 * Support for managing tiling state of buffer objects.
38 *
39 * The idea behind tiling is to increase cache hit rates by rearranging
40 * pixel data so that a group of pixel accesses are in the same cacheline.
41 * Performance improvement from doing this on the back/depth buffer are on
42 * the order of 30%.
43 *
44 * Intel architectures make this somewhat more complicated, though, by
45 * adjustments made to addressing of data when the memory is in interleaved
46 * mode (matched pairs of DIMMS) to improve memory bandwidth.
47 * For interleaved memory, the CPU sends every sequential 64 bytes
48 * to an alternate memory channel so it can get the bandwidth from both.
49 *
50 * The GPU also rearranges its accesses for increased bandwidth to interleaved
51 * memory, and it matches what the CPU does for non-tiled. However, when tiled
52 * it does it a little differently, since one walks addresses not just in the
53 * X direction but also Y. So, along with alternating channels when bit
54 * 6 of the address flips, it also alternates when other bits flip -- Bits 9
55 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
56 * are common to both the 915 and 965-class hardware.
57 *
58 * The CPU also sometimes XORs in higher bits as well, to improve
59 * bandwidth doing strided access like we do so frequently in graphics. This
60 * is called "Channel XOR Randomization" in the MCH documentation. The result
61 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
62 * decode.
63 *
64 * All of this bit 6 XORing has an effect on our memory management,
65 * as we need to make sure that the 3d driver can correctly address object
66 * contents.
67 *
68 * If we don't have interleaved memory, all tiling is safe and no swizzling is
69 * required.
70 *
71 * When bit 17 is XORed in, we simply refuse to tile at all. Bit
72 * 17 is not just a page offset, so as we page an objet out and back in,
73 * individual pages in it will have different bit 17 addresses, resulting in
74 * each 64 bytes being swapped with its neighbor!
75 *
76 * Otherwise, if interleaved, we have to tell the 3d driver what the address
77 * swizzling it needs to do is, since it's writing with the CPU to the pages
78 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
79 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
80 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
81 * to match what the GPU expects.
82 */
83
84/**
85 * Detects bit 6 swizzling of address lookup between IGD access and CPU
86 * access through main memory.
87 */
88void
89i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
90{
91 drm_i915_private_t *dev_priv = dev->dev_private;
92 uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
93 uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
94
95 if (!IS_I9XX(dev)) {
96 /* As far as we know, the 865 doesn't have these bit 6
97 * swizzling issues.
98 */
99 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
100 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
568d9a8f 101 } else if (IS_MOBILE(dev)) {
673a394b
EA
102 uint32_t dcc;
103
568d9a8f
EA
104 /* On mobile 9xx chipsets, channel interleave by the CPU is
105 * determined by DCC. For single-channel, neither the CPU
106 * nor the GPU do swizzling. For dual channel interleaved,
107 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
108 * 9 for Y tiled. The CPU's interleave is independent, and
109 * can be based on either bit 11 (haven't seen this yet) or
110 * bit 17 (common).
673a394b
EA
111 */
112 dcc = I915_READ(DCC);
113 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
114 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
115 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
116 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
117 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
118 break;
119 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
568d9a8f
EA
120 if (dcc & DCC_CHANNEL_XOR_DISABLE) {
121 /* This is the base swizzling by the GPU for
122 * tiled buffers.
123 */
673a394b
EA
124 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
125 swizzle_y = I915_BIT_6_SWIZZLE_9;
568d9a8f
EA
126 } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
127 /* Bit 11 swizzling by the CPU in addition. */
673a394b
EA
128 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
129 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
130 } else {
568d9a8f 131 /* Bit 17 swizzling by the CPU in addition. */
280b713b
EA
132 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
133 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
673a394b
EA
134 }
135 break;
136 }
137 if (dcc == 0xffffffff) {
138 DRM_ERROR("Couldn't read from MCHBAR. "
139 "Disabling tiling.\n");
140 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
141 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
142 }
143 } else {
144 /* The 965, G33, and newer, have a very flexible memory
145 * configuration. It will enable dual-channel mode
146 * (interleaving) on as much memory as it can, and the GPU
147 * will additionally sometimes enable different bit 6
148 * swizzling for tiled objects from the CPU.
149 *
150 * Here's what I found on the G965:
151 * slot fill memory size swizzling
152 * 0A 0B 1A 1B 1-ch 2-ch
153 * 512 0 0 0 512 0 O
154 * 512 0 512 0 16 1008 X
155 * 512 0 0 512 16 1008 X
156 * 0 512 0 512 16 1008 X
157 * 1024 1024 1024 0 2048 1024 O
158 *
159 * We could probably detect this based on either the DRB
160 * matching, which was the case for the swizzling required in
161 * the table above, or from the 1-ch value being less than
162 * the minimum size of a rank.
163 */
164 if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
165 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
166 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
167 } else {
168 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
169 swizzle_y = I915_BIT_6_SWIZZLE_9;
170 }
171 }
172
173 dev_priv->mm.bit_6_swizzle_x = swizzle_x;
174 dev_priv->mm.bit_6_swizzle_y = swizzle_y;
175}
176
0f973f27
JB
177
178/**
179 * Returns the size of the fence for a tiled object of the given size.
180 */
181static int
182i915_get_fence_size(struct drm_device *dev, int size)
183{
184 int i;
185 int start;
186
187 if (IS_I965G(dev)) {
188 /* The 965 can have fences at any page boundary. */
189 return ALIGN(size, 4096);
190 } else {
191 /* Align the size to a power of two greater than the smallest
192 * fence size.
193 */
194 if (IS_I9XX(dev))
195 start = 1024 * 1024;
196 else
197 start = 512 * 1024;
198
199 for (i = start; i < size; i <<= 1)
200 ;
201
202 return i;
203 }
204}
205
206/* Check pitch constriants for all chips & tiling formats */
207static bool
208i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
209{
210 int tile_width;
211
212 /* Linear is always fine */
213 if (tiling_mode == I915_TILING_NONE)
214 return true;
215
216 if (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
217 tile_width = 128;
218 else
219 tile_width = 512;
220
8d7773a3
DV
221 /* check maximum stride & object size */
222 if (IS_I965G(dev)) {
223 /* i965 stores the end address of the gtt mapping in the fence
224 * reg, so dont bother to check the size */
225 if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
226 return false;
227 } else if (IS_I9XX(dev)) {
228 if (stride / tile_width > I830_FENCE_MAX_PITCH_VAL ||
229 size > (I830_FENCE_MAX_SIZE_VAL << 20))
230 return false;
231 } else {
232 if (stride / 128 > I830_FENCE_MAX_PITCH_VAL ||
233 size > (I830_FENCE_MAX_SIZE_VAL << 19))
234 return false;
235 }
236
0f973f27
JB
237 /* 965+ just needs multiples of tile width */
238 if (IS_I965G(dev)) {
239 if (stride & (tile_width - 1))
240 return false;
241 return true;
242 }
243
244 /* Pre-965 needs power of two tile widths */
245 if (stride < tile_width)
246 return false;
247
248 if (stride & (stride - 1))
249 return false;
250
251 /* We don't handle the aperture area covered by the fence being bigger
252 * than the object size.
253 */
254 if (i915_get_fence_size(dev, size) != size)
255 return false;
256
257 return true;
258}
259
673a394b
EA
260/**
261 * Sets the tiling mode of an object, returning the required swizzling of
262 * bit 6 of addresses in the object.
263 */
264int
265i915_gem_set_tiling(struct drm_device *dev, void *data,
266 struct drm_file *file_priv)
267{
268 struct drm_i915_gem_set_tiling *args = data;
269 drm_i915_private_t *dev_priv = dev->dev_private;
270 struct drm_gem_object *obj;
271 struct drm_i915_gem_object *obj_priv;
272
273 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
274 if (obj == NULL)
275 return -EINVAL;
276 obj_priv = obj->driver_private;
277
72daad40
CW
278 if (!i915_tiling_ok(dev, args->stride, obj->size, args->tiling_mode)) {
279 drm_gem_object_unreference(obj);
0f973f27 280 return -EINVAL;
72daad40 281 }
0f973f27 282
673a394b
EA
283 mutex_lock(&dev->struct_mutex);
284
285 if (args->tiling_mode == I915_TILING_NONE) {
673a394b
EA
286 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
287 } else {
288 if (args->tiling_mode == I915_TILING_X)
289 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
290 else
291 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
280b713b
EA
292
293 /* Hide bit 17 swizzling from the user. This prevents old Mesa
294 * from aborting the application on sw fallbacks to bit 17,
295 * and we use the pread/pwrite bit17 paths to swizzle for it.
296 * If there was a user that was relying on the swizzle
297 * information for drm_intel_bo_map()ed reads/writes this would
298 * break it, but we don't have any of those.
299 */
300 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
301 args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
302 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
303 args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
304
673a394b
EA
305 /* If we can't handle the swizzling, make it untiled. */
306 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
307 args->tiling_mode = I915_TILING_NONE;
308 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
309 }
310 }
0f973f27
JB
311 if (args->tiling_mode != obj_priv->tiling_mode) {
312 int ret;
313
314 /* Unbind the object, as switching tiling means we're
315 * switching the cache organization due to fencing, probably.
316 */
317 ret = i915_gem_object_unbind(obj);
318 if (ret != 0) {
319 WARN(ret != -ERESTARTSYS,
320 "failed to unbind object for tiling switch");
321 args->tiling_mode = obj_priv->tiling_mode;
322 mutex_unlock(&dev->struct_mutex);
72daad40 323 drm_gem_object_unreference(obj);
0f973f27
JB
324
325 return ret;
326 }
327 obj_priv->tiling_mode = args->tiling_mode;
328 }
de151cf6 329 obj_priv->stride = args->stride;
673a394b 330
673a394b 331 drm_gem_object_unreference(obj);
d6873102 332 mutex_unlock(&dev->struct_mutex);
673a394b
EA
333
334 return 0;
335}
336
337/**
338 * Returns the current tiling mode and required bit 6 swizzling for the object.
339 */
340int
341i915_gem_get_tiling(struct drm_device *dev, void *data,
342 struct drm_file *file_priv)
343{
344 struct drm_i915_gem_get_tiling *args = data;
345 drm_i915_private_t *dev_priv = dev->dev_private;
346 struct drm_gem_object *obj;
347 struct drm_i915_gem_object *obj_priv;
348
349 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
350 if (obj == NULL)
351 return -EINVAL;
352 obj_priv = obj->driver_private;
353
354 mutex_lock(&dev->struct_mutex);
355
356 args->tiling_mode = obj_priv->tiling_mode;
357 switch (obj_priv->tiling_mode) {
358 case I915_TILING_X:
359 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
360 break;
361 case I915_TILING_Y:
362 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
363 break;
364 case I915_TILING_NONE:
365 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
366 break;
367 default:
368 DRM_ERROR("unknown tiling mode\n");
369 }
370
280b713b
EA
371 /* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
372 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
373 args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
374 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
375 args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
376
673a394b 377 drm_gem_object_unreference(obj);
d6873102 378 mutex_unlock(&dev->struct_mutex);
673a394b
EA
379
380 return 0;
381}
280b713b
EA
382
383/**
384 * Swap every 64 bytes of this page around, to account for it having a new
385 * bit 17 of its physical address and therefore being interpreted differently
386 * by the GPU.
387 */
388static int
389i915_gem_swizzle_page(struct page *page)
390{
391 char *vaddr;
392 int i;
393 char temp[64];
394
395 vaddr = kmap(page);
396 if (vaddr == NULL)
397 return -ENOMEM;
398
399 for (i = 0; i < PAGE_SIZE; i += 128) {
400 memcpy(temp, &vaddr[i], 64);
401 memcpy(&vaddr[i], &vaddr[i + 64], 64);
402 memcpy(&vaddr[i + 64], temp, 64);
403 }
404
405 kunmap(page);
406
407 return 0;
408}
409
410void
411i915_gem_object_do_bit_17_swizzle(struct drm_gem_object *obj)
412{
413 struct drm_device *dev = obj->dev;
414 drm_i915_private_t *dev_priv = dev->dev_private;
415 struct drm_i915_gem_object *obj_priv = obj->driver_private;
416 int page_count = obj->size >> PAGE_SHIFT;
417 int i;
418
419 if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
420 return;
421
422 if (obj_priv->bit_17 == NULL)
423 return;
424
425 for (i = 0; i < page_count; i++) {
426 char new_bit_17 = page_to_phys(obj_priv->pages[i]) >> 17;
427 if ((new_bit_17 & 0x1) !=
428 (test_bit(i, obj_priv->bit_17) != 0)) {
429 int ret = i915_gem_swizzle_page(obj_priv->pages[i]);
430 if (ret != 0) {
431 DRM_ERROR("Failed to swizzle page\n");
432 return;
433 }
434 set_page_dirty(obj_priv->pages[i]);
435 }
436 }
437}
438
439void
440i915_gem_object_save_bit_17_swizzle(struct drm_gem_object *obj)
441{
442 struct drm_device *dev = obj->dev;
443 drm_i915_private_t *dev_priv = dev->dev_private;
444 struct drm_i915_gem_object *obj_priv = obj->driver_private;
445 int page_count = obj->size >> PAGE_SHIFT;
446 int i;
447
448 if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
449 return;
450
451 if (obj_priv->bit_17 == NULL) {
452 obj_priv->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
453 sizeof(long), GFP_KERNEL);
454 if (obj_priv->bit_17 == NULL) {
455 DRM_ERROR("Failed to allocate memory for bit 17 "
456 "record\n");
457 return;
458 }
459 }
460
461 for (i = 0; i < page_count; i++) {
462 if (page_to_phys(obj_priv->pages[i]) & (1 << 17))
463 __set_bit(i, obj_priv->bit_17);
464 else
465 __clear_bit(i, obj_priv->bit_17);
466 }
467}