]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_perf.c
drm/i915/perf: Initialise dynamic sysfs group before creation
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_perf.c
CommitLineData
eec688e1
RB
1/*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
7abbd8d6
RB
27
28/**
16d98b31 29 * DOC: i915 Perf Overview
7abbd8d6
RB
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
16d98b31
RB
48 */
49
50/**
51 * DOC: i915 Perf History and Comparison with Core Perf
7abbd8d6
RB
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
16d98b31
RB
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7abbd8d6
RB
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
16d98b31 142 * - As a side note on perf's grouping feature; there was also some concern
7abbd8d6
RB
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
eec688e1 194#include <linux/anon_inodes.h>
d7965152 195#include <linux/sizes.h>
f89823c2 196#include <linux/uuid.h>
eec688e1
RB
197
198#include "i915_drv.h"
d7965152 199#include "i915_oa_hsw.h"
19f81df2
RB
200#include "i915_oa_bdw.h"
201#include "i915_oa_chv.h"
202#include "i915_oa_sklgt2.h"
203#include "i915_oa_sklgt3.h"
204#include "i915_oa_sklgt4.h"
205#include "i915_oa_bxt.h"
6c5c1d89
LL
206#include "i915_oa_kblgt2.h"
207#include "i915_oa_kblgt3.h"
28c7ef9e 208#include "i915_oa_glk.h"
d7965152
RB
209
210/* HW requires this to be a power of two, between 128k and 16M, though driver
211 * is currently generally designed assuming the largest 16M size is used such
212 * that the overflow cases are unlikely in normal operation.
213 */
214#define OA_BUFFER_SIZE SZ_16M
215
216#define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
217
0dd860cf
RB
218/**
219 * DOC: OA Tail Pointer Race
220 *
221 * There's a HW race condition between OA unit tail pointer register updates and
d7965152 222 * writes to memory whereby the tail pointer can sometimes get ahead of what's
0dd860cf
RB
223 * been written out to the OA buffer so far (in terms of what's visible to the
224 * CPU).
225 *
226 * Although this can be observed explicitly while copying reports to userspace
227 * by checking for a zeroed report-id field in tail reports, we want to account
19f81df2 228 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
0dd860cf
RB
229 * read() attempts.
230 *
231 * In effect we define a tail pointer for reading that lags the real tail
232 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
233 * time for the corresponding reports to become visible to the CPU.
234 *
235 * To manage this we actually track two tail pointers:
236 * 1) An 'aging' tail with an associated timestamp that is tracked until we
237 * can trust the corresponding data is visible to the CPU; at which point
238 * it is considered 'aged'.
239 * 2) An 'aged' tail that can be used for read()ing.
d7965152 240 *
0dd860cf 241 * The two separate pointers let us decouple read()s from tail pointer aging.
d7965152 242 *
0dd860cf
RB
243 * The tail pointers are checked and updated at a limited rate within a hrtimer
244 * callback (the same callback that is used for delivering POLLIN events)
d7965152 245 *
0dd860cf
RB
246 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
247 * indicates that an updated tail pointer is needed.
248 *
249 * Most of the implementation details for this workaround are in
19f81df2 250 * oa_buffer_check_unlocked() and _append_oa_reports()
0dd860cf
RB
251 *
252 * Note for posterity: previously the driver used to define an effective tail
253 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
254 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
255 * This was flawed considering that the OA unit may also automatically generate
256 * non-periodic reports (such as on context switch) or the OA unit may be
257 * enabled without any periodic sampling.
d7965152
RB
258 */
259#define OA_TAIL_MARGIN_NSEC 100000ULL
0dd860cf 260#define INVALID_TAIL_PTR 0xffffffff
d7965152
RB
261
262/* frequency for checking whether the OA unit has written new reports to the
263 * circular OA buffer...
264 */
265#define POLL_FREQUENCY 200
266#define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
267
ccdf6341
RB
268/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
269static int zero;
270static int one = 1;
271static u32 i915_perf_stream_paranoid = true;
272
d7965152
RB
273/* The maximum exponent the hardware accepts is 63 (essentially it selects one
274 * of the 64bit timestamp bits to trigger reports from) but there's currently
275 * no known use case for sampling as infrequently as once per 47 thousand years.
276 *
277 * Since the timestamps included in OA reports are only 32bits it seems
278 * reasonable to limit the OA exponent where it's still possible to account for
279 * overflow in OA report timestamps.
280 */
281#define OA_EXPONENT_MAX 31
282
283#define INVALID_CTX_ID 0xffffffff
284
19f81df2
RB
285/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
286#define OAREPORT_REASON_MASK 0x3f
287#define OAREPORT_REASON_SHIFT 19
288#define OAREPORT_REASON_TIMER (1<<0)
289#define OAREPORT_REASON_CTX_SWITCH (1<<3)
290#define OAREPORT_REASON_CLK_RATIO (1<<5)
291
d7965152 292
00319ba0
RB
293/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
294 *
155e941f
RB
295 * The highest sampling frequency we can theoretically program the OA unit
296 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
297 *
298 * Initialized just before we register the sysctl parameter.
00319ba0 299 */
155e941f 300static int oa_sample_rate_hard_limit;
00319ba0
RB
301
302/* Theoretically we can program the OA unit to sample every 160ns but don't
303 * allow that by default unless root...
304 *
305 * The default threshold of 100000Hz is based on perf's similar
306 * kernel.perf_event_max_sample_rate sysctl parameter.
307 */
308static u32 i915_oa_max_sample_rate = 100000;
309
d7965152
RB
310/* XXX: beware if future OA HW adds new report formats that the current
311 * code assumes all reports have a power-of-two size and ~(size - 1) can
312 * be used as a mask to align the OA tail pointer.
313 */
314static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
315 [I915_OA_FORMAT_A13] = { 0, 64 },
316 [I915_OA_FORMAT_A29] = { 1, 128 },
317 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
318 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
319 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
320 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
321 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
322 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
323};
324
19f81df2
RB
325static struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
326 [I915_OA_FORMAT_A12] = { 0, 64 },
327 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
328 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
329 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
330};
331
d7965152 332#define SAMPLE_OA_REPORT (1<<0)
eec688e1 333
16d98b31
RB
334/**
335 * struct perf_open_properties - for validated properties given to open a stream
336 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
337 * @single_context: Whether a single or all gpu contexts should be monitored
338 * @ctx_handle: A gem ctx handle for use with @single_context
339 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
340 * @oa_format: An OA unit HW report format
341 * @oa_periodic: Whether to enable periodic OA unit sampling
342 * @oa_period_exponent: The OA unit sampling period is derived from this
343 *
344 * As read_properties_unlocked() enumerates and validates the properties given
345 * to open a stream of metrics the configuration is built up in the structure
346 * which starts out zero initialized.
347 */
eec688e1
RB
348struct perf_open_properties {
349 u32 sample_flags;
350
351 u64 single_context:1;
352 u64 ctx_handle;
d7965152
RB
353
354 /* OA sampling state */
355 int metrics_set;
356 int oa_format;
357 bool oa_periodic;
358 int oa_period_exponent;
359};
360
f89823c2
LL
361static void free_oa_config(struct drm_i915_private *dev_priv,
362 struct i915_oa_config *oa_config)
363{
364 if (!PTR_ERR(oa_config->flex_regs))
365 kfree(oa_config->flex_regs);
366 if (!PTR_ERR(oa_config->b_counter_regs))
367 kfree(oa_config->b_counter_regs);
368 if (!PTR_ERR(oa_config->mux_regs))
369 kfree(oa_config->mux_regs);
370 kfree(oa_config);
371}
372
373static void put_oa_config(struct drm_i915_private *dev_priv,
374 struct i915_oa_config *oa_config)
375{
376 if (!atomic_dec_and_test(&oa_config->ref_count))
377 return;
378
379 free_oa_config(dev_priv, oa_config);
380}
381
382static int get_oa_config(struct drm_i915_private *dev_priv,
383 int metrics_set,
384 struct i915_oa_config **out_config)
385{
386 int ret;
387
388 if (metrics_set == 1) {
389 *out_config = &dev_priv->perf.oa.test_config;
390 atomic_inc(&dev_priv->perf.oa.test_config.ref_count);
391 return 0;
392 }
393
394 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
395 if (ret)
396 return ret;
397
398 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
399 if (!*out_config)
400 ret = -EINVAL;
401 else
402 atomic_inc(&(*out_config)->ref_count);
403
404 mutex_unlock(&dev_priv->perf.metrics_lock);
405
406 return ret;
407}
408
19f81df2
RB
409static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
410{
411 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
412}
413
414static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
415{
416 u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
417
418 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
419}
420
0dd860cf 421/**
19f81df2 422 * oa_buffer_check_unlocked - check for data and update tail ptr state
0dd860cf 423 * @dev_priv: i915 device instance
d7965152 424 *
0dd860cf
RB
425 * This is either called via fops (for blocking reads in user ctx) or the poll
426 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
427 * if there is data available for userspace to read.
d7965152 428 *
0dd860cf
RB
429 * This function is central to providing a workaround for the OA unit tail
430 * pointer having a race with respect to what data is visible to the CPU.
431 * It is responsible for reading tail pointers from the hardware and giving
432 * the pointers time to 'age' before they are made available for reading.
433 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
434 *
435 * Besides returning true when there is data available to read() this function
436 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
437 * and .aged_tail_idx state used for reading.
438 *
439 * Note: It's safe to read OA config state here unlocked, assuming that this is
440 * only called while the stream is enabled, while the global OA configuration
441 * can't be modified.
442 *
443 * Returns: %true if the OA buffer contains data, else %false
d7965152 444 */
19f81df2 445static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
d7965152
RB
446{
447 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
0dd860cf
RB
448 unsigned long flags;
449 unsigned int aged_idx;
0dd860cf
RB
450 u32 head, hw_tail, aged_tail, aging_tail;
451 u64 now;
452
453 /* We have to consider the (unlikely) possibility that read() errors
454 * could result in an OA buffer reset which might reset the head,
455 * tails[] and aged_tail state.
456 */
457 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
458
459 /* NB: The head we observe here might effectively be a little out of
460 * date (between head and tails[aged_idx].offset if there is currently
461 * a read() in progress.
462 */
463 head = dev_priv->perf.oa.oa_buffer.head;
464
465 aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
466 aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
467 aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
468
19f81df2 469 hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
0dd860cf
RB
470
471 /* The tail pointer increases in 64 byte increments,
472 * not in report_size steps...
473 */
474 hw_tail &= ~(report_size - 1);
475
476 now = ktime_get_mono_fast_ns();
477
4117ebc7
RB
478 /* Update the aged tail
479 *
480 * Flip the tail pointer available for read()s once the aging tail is
481 * old enough to trust that the corresponding data will be visible to
482 * the CPU...
483 *
484 * Do this before updating the aging pointer in case we may be able to
485 * immediately start aging a new pointer too (if new data has become
486 * available) without needing to wait for a later hrtimer callback.
487 */
488 if (aging_tail != INVALID_TAIL_PTR &&
489 ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
490 OA_TAIL_MARGIN_NSEC)) {
19f81df2 491
4117ebc7
RB
492 aged_idx ^= 1;
493 dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
494
495 aged_tail = aging_tail;
496
497 /* Mark that we need a new pointer to start aging... */
498 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
499 aging_tail = INVALID_TAIL_PTR;
500 }
501
0dd860cf
RB
502 /* Update the aging tail
503 *
504 * We throttle aging tail updates until we have a new tail that
505 * represents >= one report more data than is already available for
506 * reading. This ensures there will be enough data for a successful
507 * read once this new pointer has aged and ensures we will give the new
508 * pointer time to age.
509 */
510 if (aging_tail == INVALID_TAIL_PTR &&
511 (aged_tail == INVALID_TAIL_PTR ||
512 OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
513 struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
514 u32 gtt_offset = i915_ggtt_offset(vma);
515
516 /* Be paranoid and do a bounds check on the pointer read back
517 * from hardware, just in case some spurious hardware condition
518 * could put the tail out of bounds...
519 */
520 if (hw_tail >= gtt_offset &&
521 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
522 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
523 aging_tail = hw_tail;
524 dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
525 } else {
526 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
527 hw_tail);
528 }
529 }
530
0dd860cf
RB
531 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
532
533 return aged_tail == INVALID_TAIL_PTR ?
534 false : OA_TAKEN(aged_tail, head) >= report_size;
d7965152
RB
535}
536
537/**
16d98b31
RB
538 * append_oa_status - Appends a status record to a userspace read() buffer.
539 * @stream: An i915-perf stream opened for OA metrics
540 * @buf: destination buffer given by userspace
541 * @count: the number of bytes userspace wants to read
542 * @offset: (inout): the current position for writing into @buf
543 * @type: The kind of status to report to userspace
544 *
545 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
546 * into the userspace read() buffer.
547 *
548 * The @buf @offset will only be updated on success.
549 *
550 * Returns: 0 on success, negative error code on failure.
d7965152
RB
551 */
552static int append_oa_status(struct i915_perf_stream *stream,
553 char __user *buf,
554 size_t count,
555 size_t *offset,
556 enum drm_i915_perf_record_type type)
557{
558 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
559
560 if ((count - *offset) < header.size)
561 return -ENOSPC;
562
563 if (copy_to_user(buf + *offset, &header, sizeof(header)))
564 return -EFAULT;
565
566 (*offset) += header.size;
567
568 return 0;
569}
570
571/**
16d98b31
RB
572 * append_oa_sample - Copies single OA report into userspace read() buffer.
573 * @stream: An i915-perf stream opened for OA metrics
574 * @buf: destination buffer given by userspace
575 * @count: the number of bytes userspace wants to read
576 * @offset: (inout): the current position for writing into @buf
577 * @report: A single OA report to (optionally) include as part of the sample
578 *
579 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
580 * properties when opening a stream, tracked as `stream->sample_flags`. This
581 * function copies the requested components of a single sample to the given
582 * read() @buf.
583 *
584 * The @buf @offset will only be updated on success.
585 *
586 * Returns: 0 on success, negative error code on failure.
d7965152
RB
587 */
588static int append_oa_sample(struct i915_perf_stream *stream,
589 char __user *buf,
590 size_t count,
591 size_t *offset,
592 const u8 *report)
593{
594 struct drm_i915_private *dev_priv = stream->dev_priv;
595 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
596 struct drm_i915_perf_record_header header;
597 u32 sample_flags = stream->sample_flags;
598
599 header.type = DRM_I915_PERF_RECORD_SAMPLE;
600 header.pad = 0;
601 header.size = stream->sample_size;
602
603 if ((count - *offset) < header.size)
604 return -ENOSPC;
605
606 buf += *offset;
607 if (copy_to_user(buf, &header, sizeof(header)))
608 return -EFAULT;
609 buf += sizeof(header);
610
611 if (sample_flags & SAMPLE_OA_REPORT) {
612 if (copy_to_user(buf, report, report_size))
613 return -EFAULT;
614 }
615
616 (*offset) += header.size;
617
618 return 0;
619}
620
19f81df2
RB
621/**
622 * Copies all buffered OA reports into userspace read() buffer.
623 * @stream: An i915-perf stream opened for OA metrics
624 * @buf: destination buffer given by userspace
625 * @count: the number of bytes userspace wants to read
626 * @offset: (inout): the current position for writing into @buf
627 *
628 * Notably any error condition resulting in a short read (-%ENOSPC or
629 * -%EFAULT) will be returned even though one or more records may
630 * have been successfully copied. In this case it's up to the caller
631 * to decide if the error should be squashed before returning to
632 * userspace.
633 *
634 * Note: reports are consumed from the head, and appended to the
635 * tail, so the tail chases the head?... If you think that's mad
636 * and back-to-front you're not alone, but this follows the
637 * Gen PRM naming convention.
638 *
639 * Returns: 0 on success, negative error code on failure.
640 */
641static int gen8_append_oa_reports(struct i915_perf_stream *stream,
642 char __user *buf,
643 size_t count,
644 size_t *offset)
645{
646 struct drm_i915_private *dev_priv = stream->dev_priv;
647 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
648 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
649 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
650 u32 mask = (OA_BUFFER_SIZE - 1);
651 size_t start_offset = *offset;
652 unsigned long flags;
653 unsigned int aged_tail_idx;
654 u32 head, tail;
655 u32 taken;
656 int ret = 0;
657
658 if (WARN_ON(!stream->enabled))
659 return -EIO;
660
661 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
662
663 head = dev_priv->perf.oa.oa_buffer.head;
664 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
665 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
666
667 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
668
669 /*
670 * An invalid tail pointer here means we're still waiting for the poll
671 * hrtimer callback to give us a pointer
672 */
673 if (tail == INVALID_TAIL_PTR)
674 return -EAGAIN;
675
676 /*
677 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
678 * while indexing relative to oa_buf_base.
679 */
680 head -= gtt_offset;
681 tail -= gtt_offset;
682
683 /*
684 * An out of bounds or misaligned head or tail pointer implies a driver
685 * bug since we validate + align the tail pointers we read from the
686 * hardware and we are in full control of the head pointer which should
687 * only be incremented by multiples of the report size (notably also
688 * all a power of two).
689 */
690 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
691 tail > OA_BUFFER_SIZE || tail % report_size,
692 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
693 head, tail))
694 return -EIO;
695
696
697 for (/* none */;
698 (taken = OA_TAKEN(tail, head));
699 head = (head + report_size) & mask) {
700 u8 *report = oa_buf_base + head;
701 u32 *report32 = (void *)report;
702 u32 ctx_id;
703 u32 reason;
704
705 /*
706 * All the report sizes factor neatly into the buffer
707 * size so we never expect to see a report split
708 * between the beginning and end of the buffer.
709 *
710 * Given the initial alignment check a misalignment
711 * here would imply a driver bug that would result
712 * in an overrun.
713 */
714 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
715 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
716 break;
717 }
718
719 /*
720 * The reason field includes flags identifying what
721 * triggered this specific report (mostly timer
722 * triggered or e.g. due to a context switch).
723 *
724 * This field is never expected to be zero so we can
725 * check that the report isn't invalid before copying
726 * it to userspace...
727 */
728 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
729 OAREPORT_REASON_MASK);
730 if (reason == 0) {
731 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
732 DRM_NOTE("Skipping spurious, invalid OA report\n");
733 continue;
734 }
735
736 /*
737 * XXX: Just keep the lower 21 bits for now since I'm not
738 * entirely sure if the HW touches any of the higher bits in
739 * this field
740 */
741 ctx_id = report32[2] & 0x1fffff;
742
743 /*
744 * Squash whatever is in the CTX_ID field if it's marked as
745 * invalid to be sure we avoid false-positive, single-context
746 * filtering below...
747 *
748 * Note: that we don't clear the valid_ctx_bit so userspace can
749 * understand that the ID has been squashed by the kernel.
750 */
751 if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
752 ctx_id = report32[2] = INVALID_CTX_ID;
753
754 /*
755 * NB: For Gen 8 the OA unit no longer supports clock gating
756 * off for a specific context and the kernel can't securely
757 * stop the counters from updating as system-wide / global
758 * values.
759 *
760 * Automatic reports now include a context ID so reports can be
761 * filtered on the cpu but it's not worth trying to
762 * automatically subtract/hide counter progress for other
763 * contexts while filtering since we can't stop userspace
764 * issuing MI_REPORT_PERF_COUNT commands which would still
765 * provide a side-band view of the real values.
766 *
767 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
768 * to normalize counters for a single filtered context then it
769 * needs be forwarded bookend context-switch reports so that it
770 * can track switches in between MI_REPORT_PERF_COUNT commands
771 * and can itself subtract/ignore the progress of counters
772 * associated with other contexts. Note that the hardware
773 * automatically triggers reports when switching to a new
774 * context which are tagged with the ID of the newly active
775 * context. To avoid the complexity (and likely fragility) of
776 * reading ahead while parsing reports to try and minimize
777 * forwarding redundant context switch reports (i.e. between
778 * other, unrelated contexts) we simply elect to forward them
779 * all.
780 *
781 * We don't rely solely on the reason field to identify context
782 * switches since it's not-uncommon for periodic samples to
783 * identify a switch before any 'context switch' report.
784 */
785 if (!dev_priv->perf.oa.exclusive_stream->ctx ||
786 dev_priv->perf.oa.specific_ctx_id == ctx_id ||
787 (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
788 dev_priv->perf.oa.specific_ctx_id) ||
789 reason & OAREPORT_REASON_CTX_SWITCH) {
790
791 /*
792 * While filtering for a single context we avoid
793 * leaking the IDs of other contexts.
794 */
795 if (dev_priv->perf.oa.exclusive_stream->ctx &&
796 dev_priv->perf.oa.specific_ctx_id != ctx_id) {
797 report32[2] = INVALID_CTX_ID;
798 }
799
800 ret = append_oa_sample(stream, buf, count, offset,
801 report);
802 if (ret)
803 break;
804
805 dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
806 }
807
808 /*
809 * The above reason field sanity check is based on
810 * the assumption that the OA buffer is initially
811 * zeroed and we reset the field after copying so the
812 * check is still meaningful once old reports start
813 * being overwritten.
814 */
815 report32[0] = 0;
816 }
817
818 if (start_offset != *offset) {
819 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
820
821 /*
822 * We removed the gtt_offset for the copy loop above, indexing
823 * relative to oa_buf_base so put back here...
824 */
825 head += gtt_offset;
826
827 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
828 dev_priv->perf.oa.oa_buffer.head = head;
829
830 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
831 }
832
833 return ret;
834}
835
836/**
837 * gen8_oa_read - copy status records then buffered OA reports
838 * @stream: An i915-perf stream opened for OA metrics
839 * @buf: destination buffer given by userspace
840 * @count: the number of bytes userspace wants to read
841 * @offset: (inout): the current position for writing into @buf
842 *
843 * Checks OA unit status registers and if necessary appends corresponding
844 * status records for userspace (such as for a buffer full condition) and then
845 * initiate appending any buffered OA reports.
846 *
847 * Updates @offset according to the number of bytes successfully copied into
848 * the userspace buffer.
849 *
850 * NB: some data may be successfully copied to the userspace buffer
851 * even if an error is returned, and this is reflected in the
852 * updated @offset.
853 *
854 * Returns: zero on success or a negative error code
855 */
856static int gen8_oa_read(struct i915_perf_stream *stream,
857 char __user *buf,
858 size_t count,
859 size_t *offset)
860{
861 struct drm_i915_private *dev_priv = stream->dev_priv;
862 u32 oastatus;
863 int ret;
864
865 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
866 return -EIO;
867
868 oastatus = I915_READ(GEN8_OASTATUS);
869
870 /*
871 * We treat OABUFFER_OVERFLOW as a significant error:
872 *
873 * Although theoretically we could handle this more gracefully
874 * sometimes, some Gens don't correctly suppress certain
875 * automatically triggered reports in this condition and so we
876 * have to assume that old reports are now being trampled
877 * over.
878 *
879 * Considering how we don't currently give userspace control
880 * over the OA buffer size and always configure a large 16MB
881 * buffer, then a buffer overflow does anyway likely indicate
882 * that something has gone quite badly wrong.
883 */
884 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
885 ret = append_oa_status(stream, buf, count, offset,
886 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
887 if (ret)
888 return ret;
889
890 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
891 dev_priv->perf.oa.period_exponent);
892
893 dev_priv->perf.oa.ops.oa_disable(dev_priv);
894 dev_priv->perf.oa.ops.oa_enable(dev_priv);
895
896 /*
897 * Note: .oa_enable() is expected to re-init the oabuffer and
898 * reset GEN8_OASTATUS for us
899 */
900 oastatus = I915_READ(GEN8_OASTATUS);
901 }
902
903 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
904 ret = append_oa_status(stream, buf, count, offset,
905 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
906 if (ret)
907 return ret;
908 I915_WRITE(GEN8_OASTATUS,
909 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
910 }
911
912 return gen8_append_oa_reports(stream, buf, count, offset);
913}
914
d7965152
RB
915/**
916 * Copies all buffered OA reports into userspace read() buffer.
917 * @stream: An i915-perf stream opened for OA metrics
918 * @buf: destination buffer given by userspace
919 * @count: the number of bytes userspace wants to read
920 * @offset: (inout): the current position for writing into @buf
d7965152 921 *
16d98b31
RB
922 * Notably any error condition resulting in a short read (-%ENOSPC or
923 * -%EFAULT) will be returned even though one or more records may
d7965152
RB
924 * have been successfully copied. In this case it's up to the caller
925 * to decide if the error should be squashed before returning to
926 * userspace.
927 *
928 * Note: reports are consumed from the head, and appended to the
e81b3a55 929 * tail, so the tail chases the head?... If you think that's mad
d7965152
RB
930 * and back-to-front you're not alone, but this follows the
931 * Gen PRM naming convention.
16d98b31
RB
932 *
933 * Returns: 0 on success, negative error code on failure.
d7965152
RB
934 */
935static int gen7_append_oa_reports(struct i915_perf_stream *stream,
936 char __user *buf,
937 size_t count,
3bb335c1 938 size_t *offset)
d7965152
RB
939{
940 struct drm_i915_private *dev_priv = stream->dev_priv;
941 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
942 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
d7965152
RB
943 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
944 u32 mask = (OA_BUFFER_SIZE - 1);
3bb335c1 945 size_t start_offset = *offset;
0dd860cf
RB
946 unsigned long flags;
947 unsigned int aged_tail_idx;
948 u32 head, tail;
d7965152
RB
949 u32 taken;
950 int ret = 0;
951
952 if (WARN_ON(!stream->enabled))
953 return -EIO;
954
0dd860cf 955 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
f279020a 956
0dd860cf
RB
957 head = dev_priv->perf.oa.oa_buffer.head;
958 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
959 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
f279020a 960
0dd860cf 961 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
d7965152 962
0dd860cf
RB
963 /* An invalid tail pointer here means we're still waiting for the poll
964 * hrtimer callback to give us a pointer
d7965152 965 */
0dd860cf
RB
966 if (tail == INVALID_TAIL_PTR)
967 return -EAGAIN;
d7965152 968
0dd860cf
RB
969 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
970 * while indexing relative to oa_buf_base.
d7965152 971 */
0dd860cf
RB
972 head -= gtt_offset;
973 tail -= gtt_offset;
d7965152 974
0dd860cf
RB
975 /* An out of bounds or misaligned head or tail pointer implies a driver
976 * bug since we validate + align the tail pointers we read from the
977 * hardware and we are in full control of the head pointer which should
978 * only be incremented by multiples of the report size (notably also
979 * all a power of two).
d7965152 980 */
0dd860cf
RB
981 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
982 tail > OA_BUFFER_SIZE || tail % report_size,
983 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
984 head, tail))
985 return -EIO;
d7965152 986
d7965152
RB
987
988 for (/* none */;
989 (taken = OA_TAKEN(tail, head));
990 head = (head + report_size) & mask) {
991 u8 *report = oa_buf_base + head;
992 u32 *report32 = (void *)report;
993
994 /* All the report sizes factor neatly into the buffer
995 * size so we never expect to see a report split
996 * between the beginning and end of the buffer.
997 *
998 * Given the initial alignment check a misalignment
999 * here would imply a driver bug that would result
1000 * in an overrun.
1001 */
1002 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1003 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1004 break;
1005 }
1006
1007 /* The report-ID field for periodic samples includes
1008 * some undocumented flags related to what triggered
1009 * the report and is never expected to be zero so we
1010 * can check that the report isn't invalid before
1011 * copying it to userspace...
1012 */
1013 if (report32[0] == 0) {
712122ea
RB
1014 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
1015 DRM_NOTE("Skipping spurious, invalid OA report\n");
d7965152
RB
1016 continue;
1017 }
1018
1019 ret = append_oa_sample(stream, buf, count, offset, report);
1020 if (ret)
1021 break;
1022
1023 /* The above report-id field sanity check is based on
1024 * the assumption that the OA buffer is initially
1025 * zeroed and we reset the field after copying so the
1026 * check is still meaningful once old reports start
1027 * being overwritten.
1028 */
1029 report32[0] = 0;
1030 }
1031
3bb335c1 1032 if (start_offset != *offset) {
0dd860cf
RB
1033 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1034
3bb335c1
RB
1035 /* We removed the gtt_offset for the copy loop above, indexing
1036 * relative to oa_buf_base so put back here...
1037 */
1038 head += gtt_offset;
1039
1040 I915_WRITE(GEN7_OASTATUS2,
1041 ((head & GEN7_OASTATUS2_HEAD_MASK) |
1042 OA_MEM_SELECT_GGTT));
1043 dev_priv->perf.oa.oa_buffer.head = head;
0dd860cf
RB
1044
1045 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
3bb335c1 1046 }
d7965152
RB
1047
1048 return ret;
1049}
1050
16d98b31
RB
1051/**
1052 * gen7_oa_read - copy status records then buffered OA reports
1053 * @stream: An i915-perf stream opened for OA metrics
1054 * @buf: destination buffer given by userspace
1055 * @count: the number of bytes userspace wants to read
1056 * @offset: (inout): the current position for writing into @buf
1057 *
1058 * Checks Gen 7 specific OA unit status registers and if necessary appends
1059 * corresponding status records for userspace (such as for a buffer full
1060 * condition) and then initiate appending any buffered OA reports.
1061 *
1062 * Updates @offset according to the number of bytes successfully copied into
1063 * the userspace buffer.
1064 *
1065 * Returns: zero on success or a negative error code
1066 */
d7965152
RB
1067static int gen7_oa_read(struct i915_perf_stream *stream,
1068 char __user *buf,
1069 size_t count,
1070 size_t *offset)
1071{
1072 struct drm_i915_private *dev_priv = stream->dev_priv;
d7965152 1073 u32 oastatus1;
d7965152
RB
1074 int ret;
1075
1076 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1077 return -EIO;
1078
d7965152
RB
1079 oastatus1 = I915_READ(GEN7_OASTATUS1);
1080
d7965152
RB
1081 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1082 * bits while the OA unit is enabled (while the tail pointer
1083 * may be updated asynchronously) so we ignore status bits
1084 * that have already been reported to userspace.
1085 */
1086 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1087
1088 /* We treat OABUFFER_OVERFLOW as a significant error:
1089 *
1090 * - The status can be interpreted to mean that the buffer is
1091 * currently full (with a higher precedence than OA_TAKEN()
1092 * which will start to report a near-empty buffer after an
1093 * overflow) but it's awkward that we can't clear the status
1094 * on Haswell, so without a reset we won't be able to catch
1095 * the state again.
1096 *
1097 * - Since it also implies the HW has started overwriting old
1098 * reports it may also affect our sanity checks for invalid
1099 * reports when copying to userspace that assume new reports
1100 * are being written to cleared memory.
1101 *
1102 * - In the future we may want to introduce a flight recorder
1103 * mode where the driver will automatically maintain a safe
1104 * guard band between head/tail, avoiding this overflow
1105 * condition, but we avoid the added driver complexity for
1106 * now.
1107 */
1108 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1109 ret = append_oa_status(stream, buf, count, offset,
1110 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1111 if (ret)
1112 return ret;
1113
19f81df2
RB
1114 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1115 dev_priv->perf.oa.period_exponent);
d7965152
RB
1116
1117 dev_priv->perf.oa.ops.oa_disable(dev_priv);
1118 dev_priv->perf.oa.ops.oa_enable(dev_priv);
1119
d7965152 1120 oastatus1 = I915_READ(GEN7_OASTATUS1);
d7965152
RB
1121 }
1122
1123 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1124 ret = append_oa_status(stream, buf, count, offset,
1125 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1126 if (ret)
1127 return ret;
1128 dev_priv->perf.oa.gen7_latched_oastatus1 |=
1129 GEN7_OASTATUS1_REPORT_LOST;
1130 }
1131
3bb335c1 1132 return gen7_append_oa_reports(stream, buf, count, offset);
d7965152
RB
1133}
1134
16d98b31
RB
1135/**
1136 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1137 * @stream: An i915-perf stream opened for OA metrics
1138 *
1139 * Called when userspace tries to read() from a blocking stream FD opened
1140 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1141 * OA buffer and wakes us.
1142 *
1143 * Note: it's acceptable to have this return with some false positives
1144 * since any subsequent read handling will return -EAGAIN if there isn't
1145 * really data ready for userspace yet.
1146 *
1147 * Returns: zero on success or a negative error code
1148 */
d7965152
RB
1149static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1150{
1151 struct drm_i915_private *dev_priv = stream->dev_priv;
1152
1153 /* We would wait indefinitely if periodic sampling is not enabled */
1154 if (!dev_priv->perf.oa.periodic)
1155 return -EIO;
1156
d7965152 1157 return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
19f81df2 1158 oa_buffer_check_unlocked(dev_priv));
d7965152
RB
1159}
1160
16d98b31
RB
1161/**
1162 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1163 * @stream: An i915-perf stream opened for OA metrics
1164 * @file: An i915 perf stream file
1165 * @wait: poll() state table
1166 *
1167 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1168 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1169 * when it sees data ready to read in the circular OA buffer.
1170 */
d7965152
RB
1171static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1172 struct file *file,
1173 poll_table *wait)
1174{
1175 struct drm_i915_private *dev_priv = stream->dev_priv;
1176
1177 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1178}
1179
16d98b31
RB
1180/**
1181 * i915_oa_read - just calls through to &i915_oa_ops->read
1182 * @stream: An i915-perf stream opened for OA metrics
1183 * @buf: destination buffer given by userspace
1184 * @count: the number of bytes userspace wants to read
1185 * @offset: (inout): the current position for writing into @buf
1186 *
1187 * Updates @offset according to the number of bytes successfully copied into
1188 * the userspace buffer.
1189 *
1190 * Returns: zero on success or a negative error code
1191 */
d7965152
RB
1192static int i915_oa_read(struct i915_perf_stream *stream,
1193 char __user *buf,
1194 size_t count,
1195 size_t *offset)
1196{
1197 struct drm_i915_private *dev_priv = stream->dev_priv;
1198
1199 return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1200}
1201
16d98b31
RB
1202/**
1203 * oa_get_render_ctx_id - determine and hold ctx hw id
1204 * @stream: An i915-perf stream opened for OA metrics
1205 *
1206 * Determine the render context hw id, and ensure it remains fixed for the
d7965152
RB
1207 * lifetime of the stream. This ensures that we don't have to worry about
1208 * updating the context ID in OACONTROL on the fly.
16d98b31
RB
1209 *
1210 * Returns: zero on success or a negative error code
d7965152
RB
1211 */
1212static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1213{
1214 struct drm_i915_private *dev_priv = stream->dev_priv;
d7965152 1215
19f81df2
RB
1216 if (i915.enable_execlists)
1217 dev_priv->perf.oa.specific_ctx_id = stream->ctx->hw_id;
1218 else {
1219 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1220 struct intel_ring *ring;
1221 int ret;
d7965152 1222
19f81df2
RB
1223 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1224 if (ret)
1225 return ret;
1226
1227 /*
1228 * As the ID is the gtt offset of the context's vma we
1229 * pin the vma to ensure the ID remains fixed.
1230 *
1231 * NB: implied RCS engine...
1232 */
1233 ring = engine->context_pin(engine, stream->ctx);
1234 mutex_unlock(&dev_priv->drm.struct_mutex);
1235 if (IS_ERR(ring))
1236 return PTR_ERR(ring);
d7965152 1237
19f81df2
RB
1238
1239 /*
1240 * Explicitly track the ID (instead of calling
1241 * i915_ggtt_offset() on the fly) considering the difference
1242 * with gen8+ and execlists
1243 */
1244 dev_priv->perf.oa.specific_ctx_id =
1245 i915_ggtt_offset(stream->ctx->engine[engine->id].state);
1246 }
d7965152 1247
266a240b 1248 return 0;
d7965152
RB
1249}
1250
16d98b31
RB
1251/**
1252 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1253 * @stream: An i915-perf stream opened for OA metrics
1254 *
1255 * In case anything needed doing to ensure the context HW ID would remain valid
1256 * for the lifetime of the stream, then that can be undone here.
1257 */
d7965152
RB
1258static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1259{
1260 struct drm_i915_private *dev_priv = stream->dev_priv;
1261
19f81df2
RB
1262 if (i915.enable_execlists) {
1263 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1264 } else {
1265 struct intel_engine_cs *engine = dev_priv->engine[RCS];
d7965152 1266
19f81df2 1267 mutex_lock(&dev_priv->drm.struct_mutex);
d7965152 1268
19f81df2
RB
1269 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1270 engine->context_unpin(engine, stream->ctx);
1271
1272 mutex_unlock(&dev_priv->drm.struct_mutex);
1273 }
d7965152
RB
1274}
1275
1276static void
1277free_oa_buffer(struct drm_i915_private *i915)
1278{
1279 mutex_lock(&i915->drm.struct_mutex);
1280
1281 i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
1282 i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
1283 i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);
1284
1285 i915->perf.oa.oa_buffer.vma = NULL;
1286 i915->perf.oa.oa_buffer.vaddr = NULL;
1287
1288 mutex_unlock(&i915->drm.struct_mutex);
1289}
1290
1291static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1292{
1293 struct drm_i915_private *dev_priv = stream->dev_priv;
1294
1295 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1296
19f81df2 1297 /*
f89823c2
LL
1298 * Unset exclusive_stream first, it will be checked while disabling
1299 * the metric set on gen8+.
19f81df2 1300 */
701f8231 1301 mutex_lock(&dev_priv->drm.struct_mutex);
19f81df2 1302 dev_priv->perf.oa.exclusive_stream = NULL;
701f8231 1303 mutex_unlock(&dev_priv->drm.struct_mutex);
19f81df2 1304
d7965152
RB
1305 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1306
1307 free_oa_buffer(dev_priv);
1308
1309 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1310 intel_runtime_pm_put(dev_priv);
1311
1312 if (stream->ctx)
1313 oa_put_render_ctx_id(stream);
1314
f89823c2
LL
1315 put_oa_config(dev_priv, stream->oa_config);
1316
712122ea
RB
1317 if (dev_priv->perf.oa.spurious_report_rs.missed) {
1318 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1319 dev_priv->perf.oa.spurious_report_rs.missed);
1320 }
d7965152
RB
1321}
1322
1323static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1324{
1325 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
0dd860cf
RB
1326 unsigned long flags;
1327
1328 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
d7965152
RB
1329
1330 /* Pre-DevBDW: OABUFFER must be set with counters off,
1331 * before OASTATUS1, but after OASTATUS2
1332 */
1333 I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */
f279020a
RB
1334 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1335
d7965152 1336 I915_WRITE(GEN7_OABUFFER, gtt_offset);
f279020a 1337
d7965152
RB
1338 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1339
0dd860cf
RB
1340 /* Mark that we need updated tail pointers to read from... */
1341 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1342 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1343
1344 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1345
d7965152
RB
1346 /* On Haswell we have to track which OASTATUS1 flags we've
1347 * already seen since they can't be cleared while periodic
1348 * sampling is enabled.
1349 */
1350 dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1351
1352 /* NB: although the OA buffer will initially be allocated
1353 * zeroed via shmfs (and so this memset is redundant when
1354 * first allocating), we may re-init the OA buffer, either
1355 * when re-enabling a stream or in error/reset paths.
1356 *
1357 * The reason we clear the buffer for each re-init is for the
1358 * sanity check in gen7_append_oa_reports() that looks at the
1359 * report-id field to make sure it's non-zero which relies on
1360 * the assumption that new reports are being written to zeroed
1361 * memory...
1362 */
1363 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1364
1365 /* Maybe make ->pollin per-stream state if we support multiple
1366 * concurrent streams in the future.
1367 */
1368 dev_priv->perf.oa.pollin = false;
1369}
1370
19f81df2
RB
1371static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1372{
1373 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1374 unsigned long flags;
1375
1376 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1377
1378 I915_WRITE(GEN8_OASTATUS, 0);
1379 I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1380 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1381
1382 I915_WRITE(GEN8_OABUFFER_UDW, 0);
1383
1384 /*
1385 * PRM says:
1386 *
1387 * "This MMIO must be set before the OATAILPTR
1388 * register and after the OAHEADPTR register. This is
1389 * to enable proper functionality of the overflow
1390 * bit."
1391 */
1392 I915_WRITE(GEN8_OABUFFER, gtt_offset |
1393 OABUFFER_SIZE_16M | OA_MEM_SELECT_GGTT);
1394 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1395
1396 /* Mark that we need updated tail pointers to read from... */
1397 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1398 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1399
1400 /*
1401 * Reset state used to recognise context switches, affecting which
1402 * reports we will forward to userspace while filtering for a single
1403 * context.
1404 */
1405 dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1406
1407 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1408
1409 /*
1410 * NB: although the OA buffer will initially be allocated
1411 * zeroed via shmfs (and so this memset is redundant when
1412 * first allocating), we may re-init the OA buffer, either
1413 * when re-enabling a stream or in error/reset paths.
1414 *
1415 * The reason we clear the buffer for each re-init is for the
1416 * sanity check in gen8_append_oa_reports() that looks at the
1417 * reason field to make sure it's non-zero which relies on
1418 * the assumption that new reports are being written to zeroed
1419 * memory...
1420 */
1421 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1422
1423 /*
1424 * Maybe make ->pollin per-stream state if we support multiple
1425 * concurrent streams in the future.
1426 */
1427 dev_priv->perf.oa.pollin = false;
1428}
1429
d7965152
RB
1430static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1431{
1432 struct drm_i915_gem_object *bo;
1433 struct i915_vma *vma;
1434 int ret;
1435
1436 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1437 return -ENODEV;
1438
1439 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1440 if (ret)
1441 return ret;
1442
1443 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1444 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1445
12d79d78 1446 bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
d7965152
RB
1447 if (IS_ERR(bo)) {
1448 DRM_ERROR("Failed to allocate OA buffer\n");
1449 ret = PTR_ERR(bo);
1450 goto unlock;
1451 }
1452
1453 ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
1454 if (ret)
1455 goto err_unref;
1456
1457 /* PreHSW required 512K alignment, HSW requires 16M */
1458 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1459 if (IS_ERR(vma)) {
1460 ret = PTR_ERR(vma);
1461 goto err_unref;
1462 }
1463 dev_priv->perf.oa.oa_buffer.vma = vma;
1464
1465 dev_priv->perf.oa.oa_buffer.vaddr =
1466 i915_gem_object_pin_map(bo, I915_MAP_WB);
1467 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1468 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1469 goto err_unpin;
1470 }
1471
1472 dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);
1473
1474 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1475 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1476 dev_priv->perf.oa.oa_buffer.vaddr);
1477
1478 goto unlock;
1479
1480err_unpin:
1481 __i915_vma_unpin(vma);
1482
1483err_unref:
1484 i915_gem_object_put(bo);
1485
1486 dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1487 dev_priv->perf.oa.oa_buffer.vma = NULL;
1488
1489unlock:
1490 mutex_unlock(&dev_priv->drm.struct_mutex);
1491 return ret;
1492}
1493
1494static void config_oa_regs(struct drm_i915_private *dev_priv,
1495 const struct i915_oa_reg *regs,
701f8231 1496 u32 n_regs)
d7965152 1497{
701f8231 1498 u32 i;
d7965152
RB
1499
1500 for (i = 0; i < n_regs; i++) {
1501 const struct i915_oa_reg *reg = regs + i;
1502
1503 I915_WRITE(reg->addr, reg->value);
1504 }
1505}
1506
701f8231
LL
1507static int hsw_enable_metric_set(struct drm_i915_private *dev_priv,
1508 const struct i915_oa_config *oa_config)
d7965152 1509{
d7965152
RB
1510 /* PRM:
1511 *
1512 * OA unit is using “crclk” for its functionality. When trunk
1513 * level clock gating takes place, OA clock would be gated,
1514 * unable to count the events from non-render clock domain.
1515 * Render clock gating must be disabled when OA is enabled to
1516 * count the events from non-render domain. Unit level clock
1517 * gating for RCS should also be disabled.
1518 */
1519 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1520 ~GEN7_DOP_CLOCK_GATE_ENABLE));
1521 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1522 GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1523
701f8231 1524 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
d7965152
RB
1525
1526 /* It apparently takes a fairly long time for a new MUX
1527 * configuration to be be applied after these register writes.
1528 * This delay duration was derived empirically based on the
1529 * render_basic config but hopefully it covers the maximum
1530 * configuration latency.
1531 *
1532 * As a fallback, the checks in _append_oa_reports() to skip
1533 * invalid OA reports do also seem to work to discard reports
1534 * generated before this config has completed - albeit not
1535 * silently.
1536 *
1537 * Unfortunately this is essentially a magic number, since we
1538 * don't currently know of a reliable mechanism for predicting
1539 * how long the MUX config will take to apply and besides
1540 * seeing invalid reports we don't know of a reliable way to
1541 * explicitly check that the MUX config has landed.
1542 *
1543 * It's even possible we've miss characterized the underlying
1544 * problem - it just seems like the simplest explanation why
1545 * a delay at this location would mitigate any invalid reports.
1546 */
1547 usleep_range(15000, 20000);
1548
701f8231
LL
1549 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1550 oa_config->b_counter_regs_len);
d7965152
RB
1551
1552 return 0;
1553}
1554
1555static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1556{
1557 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1558 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1559 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1560 GEN7_DOP_CLOCK_GATE_ENABLE));
1561
1562 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1563 ~GT_NOA_ENABLE));
1564}
1565
19f81df2
RB
1566/*
1567 * NB: It must always remain pointer safe to run this even if the OA unit
1568 * has been disabled.
1569 *
1570 * It's fine to put out-of-date values into these per-context registers
1571 * in the case that the OA unit has been disabled.
1572 */
1573static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx,
701f8231
LL
1574 u32 *reg_state,
1575 const struct i915_oa_config *oa_config)
19f81df2
RB
1576{
1577 struct drm_i915_private *dev_priv = ctx->i915;
19f81df2
RB
1578 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
1579 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
1580 /* The MMIO offsets for Flex EU registers aren't contiguous */
1581 u32 flex_mmio[] = {
1582 i915_mmio_reg_offset(EU_PERF_CNTL0),
1583 i915_mmio_reg_offset(EU_PERF_CNTL1),
1584 i915_mmio_reg_offset(EU_PERF_CNTL2),
1585 i915_mmio_reg_offset(EU_PERF_CNTL3),
1586 i915_mmio_reg_offset(EU_PERF_CNTL4),
1587 i915_mmio_reg_offset(EU_PERF_CNTL5),
1588 i915_mmio_reg_offset(EU_PERF_CNTL6),
1589 };
1590 int i;
1591
1592 reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1593 reg_state[ctx_oactxctrl+1] = (dev_priv->perf.oa.period_exponent <<
1594 GEN8_OA_TIMER_PERIOD_SHIFT) |
1595 (dev_priv->perf.oa.periodic ?
1596 GEN8_OA_TIMER_ENABLE : 0) |
1597 GEN8_OA_COUNTER_RESUME;
1598
1599 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1600 u32 state_offset = ctx_flexeu0 + i * 2;
1601 u32 mmio = flex_mmio[i];
1602
1603 /*
1604 * This arbitrary default will select the 'EU FPU0 Pipeline
1605 * Active' event. In the future it's anticipated that there
1606 * will be an explicit 'No Event' we can select, but not yet...
1607 */
1608 u32 value = 0;
19f81df2 1609
701f8231
LL
1610 if (oa_config) {
1611 u32 j;
1612
1613 for (j = 0; j < oa_config->flex_regs_len; j++) {
1614 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1615 value = oa_config->flex_regs[j].value;
1616 break;
1617 }
19f81df2
RB
1618 }
1619 }
1620
1621 reg_state[state_offset] = mmio;
1622 reg_state[state_offset+1] = value;
1623 }
1624}
1625
1626/*
1627 * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This
1628 * is only used by the kernel context.
1629 */
701f8231
LL
1630static int gen8_emit_oa_config(struct drm_i915_gem_request *req,
1631 const struct i915_oa_config *oa_config)
19f81df2
RB
1632{
1633 struct drm_i915_private *dev_priv = req->i915;
19f81df2
RB
1634 /* The MMIO offsets for Flex EU registers aren't contiguous */
1635 u32 flex_mmio[] = {
1636 i915_mmio_reg_offset(EU_PERF_CNTL0),
1637 i915_mmio_reg_offset(EU_PERF_CNTL1),
1638 i915_mmio_reg_offset(EU_PERF_CNTL2),
1639 i915_mmio_reg_offset(EU_PERF_CNTL3),
1640 i915_mmio_reg_offset(EU_PERF_CNTL4),
1641 i915_mmio_reg_offset(EU_PERF_CNTL5),
1642 i915_mmio_reg_offset(EU_PERF_CNTL6),
1643 };
1644 u32 *cs;
1645 int i;
1646
01d928e9 1647 cs = intel_ring_begin(req, ARRAY_SIZE(flex_mmio) * 2 + 4);
19f81df2
RB
1648 if (IS_ERR(cs))
1649 return PTR_ERR(cs);
1650
01d928e9 1651 *cs++ = MI_LOAD_REGISTER_IMM(ARRAY_SIZE(flex_mmio) + 1);
19f81df2
RB
1652
1653 *cs++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1654 *cs++ = (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1655 (dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1656 GEN8_OA_COUNTER_RESUME;
1657
1658 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1659 u32 mmio = flex_mmio[i];
1660
1661 /*
1662 * This arbitrary default will select the 'EU FPU0 Pipeline
1663 * Active' event. In the future it's anticipated that there
1664 * will be an explicit 'No Event' we can select, but not
1665 * yet...
1666 */
1667 u32 value = 0;
19f81df2 1668
701f8231
LL
1669 if (oa_config) {
1670 u32 j;
1671
1672 for (j = 0; j < oa_config->flex_regs_len; j++) {
1673 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1674 value = oa_config->flex_regs[j].value;
1675 break;
1676 }
19f81df2
RB
1677 }
1678 }
1679
1680 *cs++ = mmio;
1681 *cs++ = value;
1682 }
1683
1684 *cs++ = MI_NOOP;
1685 intel_ring_advance(req, cs);
1686
1687 return 0;
1688}
1689
701f8231
LL
1690static int gen8_switch_to_updated_kernel_context(struct drm_i915_private *dev_priv,
1691 const struct i915_oa_config *oa_config)
19f81df2
RB
1692{
1693 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1694 struct i915_gem_timeline *timeline;
1695 struct drm_i915_gem_request *req;
1696 int ret;
1697
1698 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1699
1700 i915_gem_retire_requests(dev_priv);
1701
1702 req = i915_gem_request_alloc(engine, dev_priv->kernel_context);
1703 if (IS_ERR(req))
1704 return PTR_ERR(req);
1705
701f8231 1706 ret = gen8_emit_oa_config(req, oa_config);
19f81df2
RB
1707 if (ret) {
1708 i915_add_request(req);
1709 return ret;
1710 }
1711
1712 /* Queue this switch after all other activity */
1713 list_for_each_entry(timeline, &dev_priv->gt.timelines, link) {
1714 struct drm_i915_gem_request *prev;
1715 struct intel_timeline *tl;
1716
1717 tl = &timeline->engine[engine->id];
1718 prev = i915_gem_active_raw(&tl->last_request,
1719 &dev_priv->drm.struct_mutex);
1720 if (prev)
1721 i915_sw_fence_await_sw_fence_gfp(&req->submit,
1722 &prev->submit,
1723 GFP_KERNEL);
1724 }
1725
1726 ret = i915_switch_context(req);
1727 i915_add_request(req);
1728
1729 return ret;
1730}
1731
1732/*
1733 * Manages updating the per-context aspects of the OA stream
1734 * configuration across all contexts.
1735 *
1736 * The awkward consideration here is that OACTXCONTROL controls the
1737 * exponent for periodic sampling which is primarily used for system
1738 * wide profiling where we'd like a consistent sampling period even in
1739 * the face of context switches.
1740 *
1741 * Our approach of updating the register state context (as opposed to
1742 * say using a workaround batch buffer) ensures that the hardware
1743 * won't automatically reload an out-of-date timer exponent even
1744 * transiently before a WA BB could be parsed.
1745 *
1746 * This function needs to:
1747 * - Ensure the currently running context's per-context OA state is
1748 * updated
1749 * - Ensure that all existing contexts will have the correct per-context
1750 * OA state if they are scheduled for use.
1751 * - Ensure any new contexts will be initialized with the correct
1752 * per-context OA state.
1753 *
1754 * Note: it's only the RCS/Render context that has any OA state.
1755 */
1756static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
701f8231 1757 const struct i915_oa_config *oa_config,
19f81df2
RB
1758 bool interruptible)
1759{
1760 struct i915_gem_context *ctx;
1761 int ret;
1762 unsigned int wait_flags = I915_WAIT_LOCKED;
1763
1764 if (interruptible) {
1765 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1766 if (ret)
1767 return ret;
1768
1769 wait_flags |= I915_WAIT_INTERRUPTIBLE;
1770 } else {
1771 mutex_lock(&dev_priv->drm.struct_mutex);
1772 }
1773
1774 /* Switch away from any user context. */
701f8231 1775 ret = gen8_switch_to_updated_kernel_context(dev_priv, oa_config);
19f81df2
RB
1776 if (ret)
1777 goto out;
1778
1779 /*
1780 * The OA register config is setup through the context image. This image
1781 * might be written to by the GPU on context switch (in particular on
1782 * lite-restore). This means we can't safely update a context's image,
1783 * if this context is scheduled/submitted to run on the GPU.
1784 *
1785 * We could emit the OA register config through the batch buffer but
1786 * this might leave small interval of time where the OA unit is
1787 * configured at an invalid sampling period.
1788 *
1789 * So far the best way to work around this issue seems to be draining
1790 * the GPU from any submitted work.
1791 */
1792 ret = i915_gem_wait_for_idle(dev_priv, wait_flags);
1793 if (ret)
1794 goto out;
1795
1796 /* Update all contexts now that we've stalled the submission. */
829a0af2 1797 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
19f81df2
RB
1798 struct intel_context *ce = &ctx->engine[RCS];
1799 u32 *regs;
1800
1801 /* OA settings will be set upon first use */
1802 if (!ce->state)
1803 continue;
1804
1805 regs = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1806 if (IS_ERR(regs)) {
1807 ret = PTR_ERR(regs);
1808 goto out;
1809 }
1810
1811 ce->state->obj->mm.dirty = true;
1812 regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1813
701f8231 1814 gen8_update_reg_state_unlocked(ctx, regs, oa_config);
19f81df2
RB
1815
1816 i915_gem_object_unpin_map(ce->state->obj);
1817 }
1818
1819 out:
1820 mutex_unlock(&dev_priv->drm.struct_mutex);
1821
1822 return ret;
1823}
1824
701f8231
LL
1825static int gen8_enable_metric_set(struct drm_i915_private *dev_priv,
1826 const struct i915_oa_config *oa_config)
19f81df2 1827{
701f8231 1828 int ret;
19f81df2
RB
1829
1830 /*
1831 * We disable slice/unslice clock ratio change reports on SKL since
1832 * they are too noisy. The HW generates a lot of redundant reports
1833 * where the ratio hasn't really changed causing a lot of redundant
1834 * work to processes and increasing the chances we'll hit buffer
1835 * overruns.
1836 *
1837 * Although we don't currently use the 'disable overrun' OABUFFER
1838 * feature it's worth noting that clock ratio reports have to be
1839 * disabled before considering to use that feature since the HW doesn't
1840 * correctly block these reports.
1841 *
1842 * Currently none of the high-level metrics we have depend on knowing
1843 * this ratio to normalize.
1844 *
1845 * Note: This register is not power context saved and restored, but
1846 * that's OK considering that we disable RC6 while the OA unit is
1847 * enabled.
1848 *
1849 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1850 * be read back from automatically triggered reports, as part of the
1851 * RPT_ID field.
1852 */
6c5c1d89 1853 if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
28c7ef9e 1854 IS_KABYLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) {
19f81df2
RB
1855 I915_WRITE(GEN8_OA_DEBUG,
1856 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1857 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1858 }
1859
1860 /*
1861 * Update all contexts prior writing the mux configurations as we need
1862 * to make sure all slices/subslices are ON before writing to NOA
1863 * registers.
1864 */
701f8231 1865 ret = gen8_configure_all_contexts(dev_priv, oa_config, true);
19f81df2
RB
1866 if (ret)
1867 return ret;
1868
701f8231
LL
1869 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1870
701f8231
LL
1871 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1872 oa_config->b_counter_regs_len);
19f81df2
RB
1873
1874 return 0;
1875}
1876
1877static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1878{
1879 /* Reset all contexts' slices/subslices configurations. */
701f8231 1880 gen8_configure_all_contexts(dev_priv, NULL, false);
28964cf2
LL
1881
1882 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1883 ~GT_NOA_ENABLE));
1884
19f81df2
RB
1885}
1886
1bef3409 1887static void gen7_oa_enable(struct drm_i915_private *dev_priv)
d7965152 1888{
1bef3409
RB
1889 /*
1890 * Reset buf pointers so we don't forward reports from before now.
1891 *
1892 * Think carefully if considering trying to avoid this, since it
1893 * also ensures status flags and the buffer itself are cleared
1894 * in error paths, and we have checks for invalid reports based
1895 * on the assumption that certain fields are written to zeroed
1896 * memory which this helps maintains.
1897 */
1898 gen7_init_oa_buffer(dev_priv);
d7965152
RB
1899
1900 if (dev_priv->perf.oa.exclusive_stream->enabled) {
1901 struct i915_gem_context *ctx =
1902 dev_priv->perf.oa.exclusive_stream->ctx;
1903 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1904
1905 bool periodic = dev_priv->perf.oa.periodic;
1906 u32 period_exponent = dev_priv->perf.oa.period_exponent;
1907 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1908
1909 I915_WRITE(GEN7_OACONTROL,
1910 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1911 (period_exponent <<
1912 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1913 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1914 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1915 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1916 GEN7_OACONTROL_ENABLE);
1917 } else
1918 I915_WRITE(GEN7_OACONTROL, 0);
1919}
1920
19f81df2
RB
1921static void gen8_oa_enable(struct drm_i915_private *dev_priv)
1922{
1923 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1924
1925 /*
1926 * Reset buf pointers so we don't forward reports from before now.
1927 *
1928 * Think carefully if considering trying to avoid this, since it
1929 * also ensures status flags and the buffer itself are cleared
1930 * in error paths, and we have checks for invalid reports based
1931 * on the assumption that certain fields are written to zeroed
1932 * memory which this helps maintains.
1933 */
1934 gen8_init_oa_buffer(dev_priv);
1935
1936 /*
1937 * Note: we don't rely on the hardware to perform single context
1938 * filtering and instead filter on the cpu based on the context-id
1939 * field of reports
1940 */
1941 I915_WRITE(GEN8_OACONTROL, (report_format <<
1942 GEN8_OA_REPORT_FORMAT_SHIFT) |
1943 GEN8_OA_COUNTER_ENABLE);
1944}
1945
16d98b31
RB
1946/**
1947 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1948 * @stream: An i915 perf stream opened for OA metrics
1949 *
1950 * [Re]enables hardware periodic sampling according to the period configured
1951 * when opening the stream. This also starts a hrtimer that will periodically
1952 * check for data in the circular OA buffer for notifying userspace (e.g.
1953 * during a read() or poll()).
1954 */
d7965152
RB
1955static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1956{
1957 struct drm_i915_private *dev_priv = stream->dev_priv;
1958
1959 dev_priv->perf.oa.ops.oa_enable(dev_priv);
1960
1961 if (dev_priv->perf.oa.periodic)
1962 hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1963 ns_to_ktime(POLL_PERIOD),
1964 HRTIMER_MODE_REL_PINNED);
1965}
1966
1967static void gen7_oa_disable(struct drm_i915_private *dev_priv)
1968{
1969 I915_WRITE(GEN7_OACONTROL, 0);
1970}
1971
19f81df2
RB
1972static void gen8_oa_disable(struct drm_i915_private *dev_priv)
1973{
1974 I915_WRITE(GEN8_OACONTROL, 0);
1975}
1976
16d98b31
RB
1977/**
1978 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1979 * @stream: An i915 perf stream opened for OA metrics
1980 *
1981 * Stops the OA unit from periodically writing counter reports into the
1982 * circular OA buffer. This also stops the hrtimer that periodically checks for
1983 * data in the circular OA buffer, for notifying userspace.
1984 */
d7965152
RB
1985static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1986{
1987 struct drm_i915_private *dev_priv = stream->dev_priv;
1988
1989 dev_priv->perf.oa.ops.oa_disable(dev_priv);
1990
1991 if (dev_priv->perf.oa.periodic)
1992 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
1993}
1994
d7965152
RB
1995static const struct i915_perf_stream_ops i915_oa_stream_ops = {
1996 .destroy = i915_oa_stream_destroy,
1997 .enable = i915_oa_stream_enable,
1998 .disable = i915_oa_stream_disable,
1999 .wait_unlocked = i915_oa_wait_unlocked,
2000 .poll_wait = i915_oa_poll_wait,
2001 .read = i915_oa_read,
eec688e1
RB
2002};
2003
16d98b31
RB
2004/**
2005 * i915_oa_stream_init - validate combined props for OA stream and init
2006 * @stream: An i915 perf stream
2007 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2008 * @props: The property state that configures stream (individually validated)
2009 *
2010 * While read_properties_unlocked() validates properties in isolation it
2011 * doesn't ensure that the combination necessarily makes sense.
2012 *
2013 * At this point it has been determined that userspace wants a stream of
2014 * OA metrics, but still we need to further validate the combined
2015 * properties are OK.
2016 *
2017 * If the configuration makes sense then we can allocate memory for
2018 * a circular OA buffer and apply the requested metric set configuration.
2019 *
2020 * Returns: zero on success or a negative error code.
2021 */
d7965152
RB
2022static int i915_oa_stream_init(struct i915_perf_stream *stream,
2023 struct drm_i915_perf_open_param *param,
2024 struct perf_open_properties *props)
2025{
2026 struct drm_i915_private *dev_priv = stream->dev_priv;
2027 int format_size;
2028 int ret;
2029
442b8c06
RB
2030 /* If the sysfs metrics/ directory wasn't registered for some
2031 * reason then don't let userspace try their luck with config
2032 * IDs
2033 */
2034 if (!dev_priv->perf.metrics_kobj) {
7708550c 2035 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
442b8c06
RB
2036 return -EINVAL;
2037 }
2038
d7965152 2039 if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
7708550c 2040 DRM_DEBUG("Only OA report sampling supported\n");
d7965152
RB
2041 return -EINVAL;
2042 }
2043
2044 if (!dev_priv->perf.oa.ops.init_oa_buffer) {
7708550c 2045 DRM_DEBUG("OA unit not supported\n");
d7965152
RB
2046 return -ENODEV;
2047 }
2048
2049 /* To avoid the complexity of having to accurately filter
2050 * counter reports and marshal to the appropriate client
2051 * we currently only allow exclusive access
2052 */
2053 if (dev_priv->perf.oa.exclusive_stream) {
7708550c 2054 DRM_DEBUG("OA unit already in use\n");
d7965152
RB
2055 return -EBUSY;
2056 }
2057
d7965152 2058 if (!props->oa_format) {
7708550c 2059 DRM_DEBUG("OA report format not specified\n");
d7965152
RB
2060 return -EINVAL;
2061 }
2062
712122ea
RB
2063 /* We set up some ratelimit state to potentially throttle any _NOTES
2064 * about spurious, invalid OA reports which we don't forward to
2065 * userspace.
2066 *
2067 * The initialization is associated with opening the stream (not driver
2068 * init) considering we print a _NOTE about any throttling when closing
2069 * the stream instead of waiting until driver _fini which no one would
2070 * ever see.
2071 *
2072 * Using the same limiting factors as printk_ratelimit()
2073 */
2074 ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2075 5 * HZ, 10);
2076 /* Since we use a DRM_NOTE for spurious reports it would be
2077 * inconsistent to let __ratelimit() automatically print a warning for
2078 * throttling.
2079 */
2080 ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2081 RATELIMIT_MSG_ON_RELEASE);
2082
d7965152
RB
2083 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2084
2085 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2086
2087 stream->sample_flags |= SAMPLE_OA_REPORT;
2088 stream->sample_size += format_size;
2089
2090 dev_priv->perf.oa.oa_buffer.format_size = format_size;
2091 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2092 return -EINVAL;
2093
2094 dev_priv->perf.oa.oa_buffer.format =
2095 dev_priv->perf.oa.oa_formats[props->oa_format].format;
2096
d7965152 2097 dev_priv->perf.oa.periodic = props->oa_periodic;
0dd860cf 2098 if (dev_priv->perf.oa.periodic)
d7965152
RB
2099 dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2100
d7965152
RB
2101 if (stream->ctx) {
2102 ret = oa_get_render_ctx_id(stream);
2103 if (ret)
2104 return ret;
2105 }
2106
f89823c2
LL
2107 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2108 if (ret)
2109 goto err_config;
701f8231 2110
d7965152
RB
2111 /* PRM - observability performance counters:
2112 *
2113 * OACONTROL, performance counter enable, note:
2114 *
2115 * "When this bit is set, in order to have coherent counts,
2116 * RC6 power state and trunk clock gating must be disabled.
2117 * This can be achieved by programming MMIO registers as
2118 * 0xA094=0 and 0xA090[31]=1"
2119 *
2120 * In our case we are expecting that taking pm + FORCEWAKE
2121 * references will effectively disable RC6.
2122 */
2123 intel_runtime_pm_get(dev_priv);
2124 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2125
987f8c44 2126 ret = alloc_oa_buffer(dev_priv);
2127 if (ret)
2128 goto err_oa_buf_alloc;
2129
701f8231
LL
2130 ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv,
2131 stream->oa_config);
d7965152
RB
2132 if (ret)
2133 goto err_enable;
2134
2135 stream->ops = &i915_oa_stream_ops;
2136
701f8231
LL
2137 /* Lock device for exclusive_stream access late because
2138 * enable_metric_set() might lock as well on gen8+.
2139 */
2140 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2141 if (ret)
2142 goto err_lock;
2143
d7965152
RB
2144 dev_priv->perf.oa.exclusive_stream = stream;
2145
701f8231
LL
2146 mutex_unlock(&dev_priv->drm.struct_mutex);
2147
d7965152
RB
2148 return 0;
2149
701f8231
LL
2150err_lock:
2151 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
2152
d7965152 2153err_enable:
d7965152
RB
2154 free_oa_buffer(dev_priv);
2155
2156err_oa_buf_alloc:
f89823c2
LL
2157 put_oa_config(dev_priv, stream->oa_config);
2158
987f8c44 2159 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2160 intel_runtime_pm_put(dev_priv);
f89823c2
LL
2161
2162err_config:
d7965152
RB
2163 if (stream->ctx)
2164 oa_put_render_ctx_id(stream);
2165
2166 return ret;
2167}
2168
19f81df2
RB
2169void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2170 struct i915_gem_context *ctx,
2171 u32 *reg_state)
2172{
2173 struct drm_i915_private *dev_priv = engine->i915;
701f8231 2174 struct i915_perf_stream *stream = dev_priv->perf.oa.exclusive_stream;
19f81df2 2175
f89823c2
LL
2176 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2177
19f81df2
RB
2178 if (engine->id != RCS)
2179 return;
2180
2181 if (!dev_priv->perf.initialized)
2182 return;
2183
701f8231
LL
2184 if (stream)
2185 gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config);
19f81df2
RB
2186}
2187
16d98b31
RB
2188/**
2189 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2190 * @stream: An i915 perf stream
2191 * @file: An i915 perf stream file
2192 * @buf: destination buffer given by userspace
2193 * @count: the number of bytes userspace wants to read
2194 * @ppos: (inout) file seek position (unused)
2195 *
2196 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2197 * ensure that if we've successfully copied any data then reporting that takes
2198 * precedence over any internal error status, so the data isn't lost.
2199 *
2200 * For example ret will be -ENOSPC whenever there is more buffered data than
2201 * can be copied to userspace, but that's only interesting if we weren't able
2202 * to copy some data because it implies the userspace buffer is too small to
2203 * receive a single record (and we never split records).
2204 *
2205 * Another case with ret == -EFAULT is more of a grey area since it would seem
2206 * like bad form for userspace to ask us to overrun its buffer, but the user
2207 * knows best:
2208 *
2209 * http://yarchive.net/comp/linux/partial_reads_writes.html
2210 *
2211 * Returns: The number of bytes copied or a negative error code on failure.
2212 */
eec688e1
RB
2213static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2214 struct file *file,
2215 char __user *buf,
2216 size_t count,
2217 loff_t *ppos)
2218{
2219 /* Note we keep the offset (aka bytes read) separate from any
2220 * error status so that the final check for whether we return
2221 * the bytes read with a higher precedence than any error (see
2222 * comment below) doesn't need to be handled/duplicated in
2223 * stream->ops->read() implementations.
2224 */
2225 size_t offset = 0;
2226 int ret = stream->ops->read(stream, buf, count, &offset);
2227
eec688e1
RB
2228 return offset ?: (ret ?: -EAGAIN);
2229}
2230
16d98b31
RB
2231/**
2232 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2233 * @file: An i915 perf stream file
2234 * @buf: destination buffer given by userspace
2235 * @count: the number of bytes userspace wants to read
2236 * @ppos: (inout) file seek position (unused)
2237 *
2238 * The entry point for handling a read() on a stream file descriptor from
2239 * userspace. Most of the work is left to the i915_perf_read_locked() and
2240 * &i915_perf_stream_ops->read but to save having stream implementations (of
2241 * which we might have multiple later) we handle blocking read here.
2242 *
2243 * We can also consistently treat trying to read from a disabled stream
2244 * as an IO error so implementations can assume the stream is enabled
2245 * while reading.
2246 *
2247 * Returns: The number of bytes copied or a negative error code on failure.
2248 */
eec688e1
RB
2249static ssize_t i915_perf_read(struct file *file,
2250 char __user *buf,
2251 size_t count,
2252 loff_t *ppos)
2253{
2254 struct i915_perf_stream *stream = file->private_data;
2255 struct drm_i915_private *dev_priv = stream->dev_priv;
2256 ssize_t ret;
2257
d7965152
RB
2258 /* To ensure it's handled consistently we simply treat all reads of a
2259 * disabled stream as an error. In particular it might otherwise lead
2260 * to a deadlock for blocking file descriptors...
2261 */
2262 if (!stream->enabled)
2263 return -EIO;
2264
eec688e1 2265 if (!(file->f_flags & O_NONBLOCK)) {
d7965152
RB
2266 /* There's the small chance of false positives from
2267 * stream->ops->wait_unlocked.
2268 *
2269 * E.g. with single context filtering since we only wait until
2270 * oabuffer has >= 1 report we don't immediately know whether
2271 * any reports really belong to the current context
eec688e1
RB
2272 */
2273 do {
2274 ret = stream->ops->wait_unlocked(stream);
2275 if (ret)
2276 return ret;
2277
2278 mutex_lock(&dev_priv->perf.lock);
2279 ret = i915_perf_read_locked(stream, file,
2280 buf, count, ppos);
2281 mutex_unlock(&dev_priv->perf.lock);
2282 } while (ret == -EAGAIN);
2283 } else {
2284 mutex_lock(&dev_priv->perf.lock);
2285 ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2286 mutex_unlock(&dev_priv->perf.lock);
2287 }
2288
26ebd9c7
RB
2289 /* We allow the poll checking to sometimes report false positive POLLIN
2290 * events where we might actually report EAGAIN on read() if there's
2291 * not really any data available. In this situation though we don't
2292 * want to enter a busy loop between poll() reporting a POLLIN event
2293 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2294 * effectively ensures we back off until the next hrtimer callback
2295 * before reporting another POLLIN event.
2296 */
2297 if (ret >= 0 || ret == -EAGAIN) {
d7965152
RB
2298 /* Maybe make ->pollin per-stream state if we support multiple
2299 * concurrent streams in the future.
2300 */
2301 dev_priv->perf.oa.pollin = false;
2302 }
2303
eec688e1
RB
2304 return ret;
2305}
2306
d7965152
RB
2307static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2308{
2309 struct drm_i915_private *dev_priv =
2310 container_of(hrtimer, typeof(*dev_priv),
2311 perf.oa.poll_check_timer);
2312
19f81df2 2313 if (oa_buffer_check_unlocked(dev_priv)) {
d7965152
RB
2314 dev_priv->perf.oa.pollin = true;
2315 wake_up(&dev_priv->perf.oa.poll_wq);
2316 }
2317
2318 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2319
2320 return HRTIMER_RESTART;
2321}
2322
16d98b31
RB
2323/**
2324 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2325 * @dev_priv: i915 device instance
2326 * @stream: An i915 perf stream
2327 * @file: An i915 perf stream file
2328 * @wait: poll() state table
2329 *
2330 * For handling userspace polling on an i915 perf stream, this calls through to
2331 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2332 * will be woken for new stream data.
2333 *
2334 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2335 * with any non-file-operation driver hooks.
2336 *
2337 * Returns: any poll events that are ready without sleeping
2338 */
d7965152
RB
2339static unsigned int i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2340 struct i915_perf_stream *stream,
eec688e1
RB
2341 struct file *file,
2342 poll_table *wait)
2343{
d7965152 2344 unsigned int events = 0;
eec688e1
RB
2345
2346 stream->ops->poll_wait(stream, file, wait);
2347
d7965152
RB
2348 /* Note: we don't explicitly check whether there's something to read
2349 * here since this path may be very hot depending on what else
2350 * userspace is polling, or on the timeout in use. We rely solely on
2351 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2352 * samples to read.
2353 */
2354 if (dev_priv->perf.oa.pollin)
2355 events |= POLLIN;
eec688e1 2356
d7965152 2357 return events;
eec688e1
RB
2358}
2359
16d98b31
RB
2360/**
2361 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2362 * @file: An i915 perf stream file
2363 * @wait: poll() state table
2364 *
2365 * For handling userspace polling on an i915 perf stream, this ensures
2366 * poll_wait() gets called with a wait queue that will be woken for new stream
2367 * data.
2368 *
2369 * Note: Implementation deferred to i915_perf_poll_locked()
2370 *
2371 * Returns: any poll events that are ready without sleeping
2372 */
eec688e1
RB
2373static unsigned int i915_perf_poll(struct file *file, poll_table *wait)
2374{
2375 struct i915_perf_stream *stream = file->private_data;
2376 struct drm_i915_private *dev_priv = stream->dev_priv;
2377 int ret;
2378
2379 mutex_lock(&dev_priv->perf.lock);
d7965152 2380 ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
eec688e1
RB
2381 mutex_unlock(&dev_priv->perf.lock);
2382
2383 return ret;
2384}
2385
16d98b31
RB
2386/**
2387 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2388 * @stream: A disabled i915 perf stream
2389 *
2390 * [Re]enables the associated capture of data for this stream.
2391 *
2392 * If a stream was previously enabled then there's currently no intention
2393 * to provide userspace any guarantee about the preservation of previously
2394 * buffered data.
2395 */
eec688e1
RB
2396static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2397{
2398 if (stream->enabled)
2399 return;
2400
2401 /* Allow stream->ops->enable() to refer to this */
2402 stream->enabled = true;
2403
2404 if (stream->ops->enable)
2405 stream->ops->enable(stream);
2406}
2407
16d98b31
RB
2408/**
2409 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2410 * @stream: An enabled i915 perf stream
2411 *
2412 * Disables the associated capture of data for this stream.
2413 *
2414 * The intention is that disabling an re-enabling a stream will ideally be
2415 * cheaper than destroying and re-opening a stream with the same configuration,
2416 * though there are no formal guarantees about what state or buffered data
2417 * must be retained between disabling and re-enabling a stream.
2418 *
2419 * Note: while a stream is disabled it's considered an error for userspace
2420 * to attempt to read from the stream (-EIO).
2421 */
eec688e1
RB
2422static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2423{
2424 if (!stream->enabled)
2425 return;
2426
2427 /* Allow stream->ops->disable() to refer to this */
2428 stream->enabled = false;
2429
2430 if (stream->ops->disable)
2431 stream->ops->disable(stream);
2432}
2433
16d98b31
RB
2434/**
2435 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2436 * @stream: An i915 perf stream
2437 * @cmd: the ioctl request
2438 * @arg: the ioctl data
2439 *
2440 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2441 * with any non-file-operation driver hooks.
2442 *
2443 * Returns: zero on success or a negative error code. Returns -EINVAL for
2444 * an unknown ioctl request.
2445 */
eec688e1
RB
2446static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2447 unsigned int cmd,
2448 unsigned long arg)
2449{
2450 switch (cmd) {
2451 case I915_PERF_IOCTL_ENABLE:
2452 i915_perf_enable_locked(stream);
2453 return 0;
2454 case I915_PERF_IOCTL_DISABLE:
2455 i915_perf_disable_locked(stream);
2456 return 0;
2457 }
2458
2459 return -EINVAL;
2460}
2461
16d98b31
RB
2462/**
2463 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2464 * @file: An i915 perf stream file
2465 * @cmd: the ioctl request
2466 * @arg: the ioctl data
2467 *
2468 * Implementation deferred to i915_perf_ioctl_locked().
2469 *
2470 * Returns: zero on success or a negative error code. Returns -EINVAL for
2471 * an unknown ioctl request.
2472 */
eec688e1
RB
2473static long i915_perf_ioctl(struct file *file,
2474 unsigned int cmd,
2475 unsigned long arg)
2476{
2477 struct i915_perf_stream *stream = file->private_data;
2478 struct drm_i915_private *dev_priv = stream->dev_priv;
2479 long ret;
2480
2481 mutex_lock(&dev_priv->perf.lock);
2482 ret = i915_perf_ioctl_locked(stream, cmd, arg);
2483 mutex_unlock(&dev_priv->perf.lock);
2484
2485 return ret;
2486}
2487
16d98b31
RB
2488/**
2489 * i915_perf_destroy_locked - destroy an i915 perf stream
2490 * @stream: An i915 perf stream
2491 *
2492 * Frees all resources associated with the given i915 perf @stream, disabling
2493 * any associated data capture in the process.
2494 *
2495 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2496 * with any non-file-operation driver hooks.
2497 */
eec688e1
RB
2498static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2499{
eec688e1
RB
2500 if (stream->enabled)
2501 i915_perf_disable_locked(stream);
2502
2503 if (stream->ops->destroy)
2504 stream->ops->destroy(stream);
2505
2506 list_del(&stream->link);
2507
69df05e1 2508 if (stream->ctx)
5f09a9c8 2509 i915_gem_context_put(stream->ctx);
eec688e1
RB
2510
2511 kfree(stream);
2512}
2513
16d98b31
RB
2514/**
2515 * i915_perf_release - handles userspace close() of a stream file
2516 * @inode: anonymous inode associated with file
2517 * @file: An i915 perf stream file
2518 *
2519 * Cleans up any resources associated with an open i915 perf stream file.
2520 *
2521 * NB: close() can't really fail from the userspace point of view.
2522 *
2523 * Returns: zero on success or a negative error code.
2524 */
eec688e1
RB
2525static int i915_perf_release(struct inode *inode, struct file *file)
2526{
2527 struct i915_perf_stream *stream = file->private_data;
2528 struct drm_i915_private *dev_priv = stream->dev_priv;
2529
2530 mutex_lock(&dev_priv->perf.lock);
2531 i915_perf_destroy_locked(stream);
2532 mutex_unlock(&dev_priv->perf.lock);
2533
2534 return 0;
2535}
2536
2537
2538static const struct file_operations fops = {
2539 .owner = THIS_MODULE,
2540 .llseek = no_llseek,
2541 .release = i915_perf_release,
2542 .poll = i915_perf_poll,
2543 .read = i915_perf_read,
2544 .unlocked_ioctl = i915_perf_ioctl,
2545};
2546
2547
16d98b31
RB
2548/**
2549 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2550 * @dev_priv: i915 device instance
2551 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2552 * @props: individually validated u64 property value pairs
2553 * @file: drm file
2554 *
2555 * See i915_perf_ioctl_open() for interface details.
2556 *
2557 * Implements further stream config validation and stream initialization on
2558 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2559 * taken to serialize with any non-file-operation driver hooks.
2560 *
2561 * Note: at this point the @props have only been validated in isolation and
2562 * it's still necessary to validate that the combination of properties makes
2563 * sense.
2564 *
2565 * In the case where userspace is interested in OA unit metrics then further
2566 * config validation and stream initialization details will be handled by
2567 * i915_oa_stream_init(). The code here should only validate config state that
2568 * will be relevant to all stream types / backends.
2569 *
2570 * Returns: zero on success or a negative error code.
2571 */
eec688e1
RB
2572static int
2573i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2574 struct drm_i915_perf_open_param *param,
2575 struct perf_open_properties *props,
2576 struct drm_file *file)
2577{
2578 struct i915_gem_context *specific_ctx = NULL;
2579 struct i915_perf_stream *stream = NULL;
2580 unsigned long f_flags = 0;
19f81df2 2581 bool privileged_op = true;
eec688e1
RB
2582 int stream_fd;
2583 int ret;
2584
2585 if (props->single_context) {
2586 u32 ctx_handle = props->ctx_handle;
2587 struct drm_i915_file_private *file_priv = file->driver_priv;
2588
635f56c3
ID
2589 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2590 if (!specific_ctx) {
2591 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2592 ctx_handle);
2593 ret = -ENOENT;
eec688e1
RB
2594 goto err;
2595 }
2596 }
2597
19f81df2
RB
2598 /*
2599 * On Haswell the OA unit supports clock gating off for a specific
2600 * context and in this mode there's no visibility of metrics for the
2601 * rest of the system, which we consider acceptable for a
2602 * non-privileged client.
2603 *
2604 * For Gen8+ the OA unit no longer supports clock gating off for a
2605 * specific context and the kernel can't securely stop the counters
2606 * from updating as system-wide / global values. Even though we can
2607 * filter reports based on the included context ID we can't block
2608 * clients from seeing the raw / global counter values via
2609 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2610 * enable the OA unit by default.
2611 */
2612 if (IS_HASWELL(dev_priv) && specific_ctx)
2613 privileged_op = false;
2614
ccdf6341
RB
2615 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2616 * we check a dev.i915.perf_stream_paranoid sysctl option
2617 * to determine if it's ok to access system wide OA counters
2618 * without CAP_SYS_ADMIN privileges.
2619 */
19f81df2 2620 if (privileged_op &&
ccdf6341 2621 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
7708550c 2622 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
eec688e1
RB
2623 ret = -EACCES;
2624 goto err_ctx;
2625 }
2626
2627 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2628 if (!stream) {
2629 ret = -ENOMEM;
2630 goto err_ctx;
2631 }
2632
eec688e1
RB
2633 stream->dev_priv = dev_priv;
2634 stream->ctx = specific_ctx;
2635
d7965152
RB
2636 ret = i915_oa_stream_init(stream, param, props);
2637 if (ret)
2638 goto err_alloc;
2639
2640 /* we avoid simply assigning stream->sample_flags = props->sample_flags
2641 * to have _stream_init check the combination of sample flags more
2642 * thoroughly, but still this is the expected result at this point.
eec688e1 2643 */
d7965152
RB
2644 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2645 ret = -ENODEV;
22f880ca 2646 goto err_flags;
d7965152 2647 }
eec688e1
RB
2648
2649 list_add(&stream->link, &dev_priv->perf.streams);
2650
2651 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2652 f_flags |= O_CLOEXEC;
2653 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2654 f_flags |= O_NONBLOCK;
2655
2656 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2657 if (stream_fd < 0) {
2658 ret = stream_fd;
2659 goto err_open;
2660 }
2661
2662 if (!(param->flags & I915_PERF_FLAG_DISABLED))
2663 i915_perf_enable_locked(stream);
2664
2665 return stream_fd;
2666
2667err_open:
2668 list_del(&stream->link);
22f880ca 2669err_flags:
eec688e1
RB
2670 if (stream->ops->destroy)
2671 stream->ops->destroy(stream);
2672err_alloc:
2673 kfree(stream);
2674err_ctx:
69df05e1 2675 if (specific_ctx)
5f09a9c8 2676 i915_gem_context_put(specific_ctx);
eec688e1
RB
2677err:
2678 return ret;
2679}
2680
155e941f
RB
2681static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2682{
2683 return div_u64(1000000000ULL * (2ULL << exponent),
2684 dev_priv->perf.oa.timestamp_frequency);
2685}
2686
16d98b31
RB
2687/**
2688 * read_properties_unlocked - validate + copy userspace stream open properties
2689 * @dev_priv: i915 device instance
2690 * @uprops: The array of u64 key value pairs given by userspace
2691 * @n_props: The number of key value pairs expected in @uprops
2692 * @props: The stream configuration built up while validating properties
eec688e1
RB
2693 *
2694 * Note this function only validates properties in isolation it doesn't
2695 * validate that the combination of properties makes sense or that all
2696 * properties necessary for a particular kind of stream have been set.
16d98b31
RB
2697 *
2698 * Note that there currently aren't any ordering requirements for properties so
2699 * we shouldn't validate or assume anything about ordering here. This doesn't
2700 * rule out defining new properties with ordering requirements in the future.
eec688e1
RB
2701 */
2702static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2703 u64 __user *uprops,
2704 u32 n_props,
2705 struct perf_open_properties *props)
2706{
2707 u64 __user *uprop = uprops;
701f8231 2708 u32 i;
eec688e1
RB
2709
2710 memset(props, 0, sizeof(struct perf_open_properties));
2711
2712 if (!n_props) {
7708550c 2713 DRM_DEBUG("No i915 perf properties given\n");
eec688e1
RB
2714 return -EINVAL;
2715 }
2716
2717 /* Considering that ID = 0 is reserved and assuming that we don't
2718 * (currently) expect any configurations to ever specify duplicate
2719 * values for a particular property ID then the last _PROP_MAX value is
2720 * one greater than the maximum number of properties we expect to get
2721 * from userspace.
2722 */
2723 if (n_props >= DRM_I915_PERF_PROP_MAX) {
7708550c 2724 DRM_DEBUG("More i915 perf properties specified than exist\n");
eec688e1
RB
2725 return -EINVAL;
2726 }
2727
2728 for (i = 0; i < n_props; i++) {
00319ba0 2729 u64 oa_period, oa_freq_hz;
eec688e1
RB
2730 u64 id, value;
2731 int ret;
2732
2733 ret = get_user(id, uprop);
2734 if (ret)
2735 return ret;
2736
2737 ret = get_user(value, uprop + 1);
2738 if (ret)
2739 return ret;
2740
0a309f9e
MA
2741 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2742 DRM_DEBUG("Unknown i915 perf property ID\n");
2743 return -EINVAL;
2744 }
2745
eec688e1
RB
2746 switch ((enum drm_i915_perf_property_id)id) {
2747 case DRM_I915_PERF_PROP_CTX_HANDLE:
2748 props->single_context = 1;
2749 props->ctx_handle = value;
2750 break;
d7965152
RB
2751 case DRM_I915_PERF_PROP_SAMPLE_OA:
2752 props->sample_flags |= SAMPLE_OA_REPORT;
2753 break;
2754 case DRM_I915_PERF_PROP_OA_METRICS_SET:
701f8231 2755 if (value == 0) {
7708550c 2756 DRM_DEBUG("Unknown OA metric set ID\n");
d7965152
RB
2757 return -EINVAL;
2758 }
2759 props->metrics_set = value;
2760 break;
2761 case DRM_I915_PERF_PROP_OA_FORMAT:
2762 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
52c57c26
RB
2763 DRM_DEBUG("Out-of-range OA report format %llu\n",
2764 value);
d7965152
RB
2765 return -EINVAL;
2766 }
2767 if (!dev_priv->perf.oa.oa_formats[value].size) {
52c57c26
RB
2768 DRM_DEBUG("Unsupported OA report format %llu\n",
2769 value);
d7965152
RB
2770 return -EINVAL;
2771 }
2772 props->oa_format = value;
2773 break;
2774 case DRM_I915_PERF_PROP_OA_EXPONENT:
2775 if (value > OA_EXPONENT_MAX) {
7708550c
RB
2776 DRM_DEBUG("OA timer exponent too high (> %u)\n",
2777 OA_EXPONENT_MAX);
d7965152
RB
2778 return -EINVAL;
2779 }
2780
00319ba0 2781 /* Theoretically we can program the OA unit to sample
155e941f
RB
2782 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2783 * for BXT. We don't allow such high sampling
2784 * frequencies by default unless root.
00319ba0 2785 */
155e941f 2786
00319ba0 2787 BUILD_BUG_ON(sizeof(oa_period) != 8);
155e941f 2788 oa_period = oa_exponent_to_ns(dev_priv, value);
00319ba0
RB
2789
2790 /* This check is primarily to ensure that oa_period <=
2791 * UINT32_MAX (before passing to do_div which only
2792 * accepts a u32 denominator), but we can also skip
2793 * checking anything < 1Hz which implicitly can't be
2794 * limited via an integer oa_max_sample_rate.
d7965152 2795 */
00319ba0
RB
2796 if (oa_period <= NSEC_PER_SEC) {
2797 u64 tmp = NSEC_PER_SEC;
2798 do_div(tmp, oa_period);
2799 oa_freq_hz = tmp;
2800 } else
2801 oa_freq_hz = 0;
2802
2803 if (oa_freq_hz > i915_oa_max_sample_rate &&
2804 !capable(CAP_SYS_ADMIN)) {
7708550c 2805 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
00319ba0 2806 i915_oa_max_sample_rate);
d7965152
RB
2807 return -EACCES;
2808 }
2809
2810 props->oa_periodic = true;
2811 props->oa_period_exponent = value;
2812 break;
0a309f9e 2813 case DRM_I915_PERF_PROP_MAX:
eec688e1 2814 MISSING_CASE(id);
eec688e1
RB
2815 return -EINVAL;
2816 }
2817
2818 uprop += 2;
2819 }
2820
2821 return 0;
2822}
2823
16d98b31
RB
2824/**
2825 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2826 * @dev: drm device
2827 * @data: ioctl data copied from userspace (unvalidated)
2828 * @file: drm file
2829 *
2830 * Validates the stream open parameters given by userspace including flags
2831 * and an array of u64 key, value pair properties.
2832 *
2833 * Very little is assumed up front about the nature of the stream being
2834 * opened (for instance we don't assume it's for periodic OA unit metrics). An
2835 * i915-perf stream is expected to be a suitable interface for other forms of
2836 * buffered data written by the GPU besides periodic OA metrics.
2837 *
2838 * Note we copy the properties from userspace outside of the i915 perf
2839 * mutex to avoid an awkward lockdep with mmap_sem.
2840 *
2841 * Most of the implementation details are handled by
2842 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2843 * mutex for serializing with any non-file-operation driver hooks.
2844 *
2845 * Return: A newly opened i915 Perf stream file descriptor or negative
2846 * error code on failure.
2847 */
eec688e1
RB
2848int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2849 struct drm_file *file)
2850{
2851 struct drm_i915_private *dev_priv = dev->dev_private;
2852 struct drm_i915_perf_open_param *param = data;
2853 struct perf_open_properties props;
2854 u32 known_open_flags;
2855 int ret;
2856
2857 if (!dev_priv->perf.initialized) {
7708550c 2858 DRM_DEBUG("i915 perf interface not available for this system\n");
eec688e1
RB
2859 return -ENOTSUPP;
2860 }
2861
2862 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2863 I915_PERF_FLAG_FD_NONBLOCK |
2864 I915_PERF_FLAG_DISABLED;
2865 if (param->flags & ~known_open_flags) {
7708550c 2866 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
eec688e1
RB
2867 return -EINVAL;
2868 }
2869
2870 ret = read_properties_unlocked(dev_priv,
2871 u64_to_user_ptr(param->properties_ptr),
2872 param->num_properties,
2873 &props);
2874 if (ret)
2875 return ret;
2876
2877 mutex_lock(&dev_priv->perf.lock);
2878 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2879 mutex_unlock(&dev_priv->perf.lock);
2880
2881 return ret;
2882}
2883
16d98b31
RB
2884/**
2885 * i915_perf_register - exposes i915-perf to userspace
2886 * @dev_priv: i915 device instance
2887 *
2888 * In particular OA metric sets are advertised under a sysfs metrics/
2889 * directory allowing userspace to enumerate valid IDs that can be
2890 * used to open an i915-perf stream.
2891 */
442b8c06
RB
2892void i915_perf_register(struct drm_i915_private *dev_priv)
2893{
701f8231
LL
2894 int ret;
2895
442b8c06
RB
2896 if (!dev_priv->perf.initialized)
2897 return;
2898
2899 /* To be sure we're synchronized with an attempted
2900 * i915_perf_open_ioctl(); considering that we register after
2901 * being exposed to userspace.
2902 */
2903 mutex_lock(&dev_priv->perf.lock);
2904
2905 dev_priv->perf.metrics_kobj =
2906 kobject_create_and_add("metrics",
2907 &dev_priv->drm.primary->kdev->kobj);
2908 if (!dev_priv->perf.metrics_kobj)
2909 goto exit;
2910
40f75ea4 2911 sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr);
701f8231 2912
19f81df2 2913 if (IS_HASWELL(dev_priv)) {
701f8231 2914 i915_perf_load_test_config_hsw(dev_priv);
19f81df2 2915 } else if (IS_BROADWELL(dev_priv)) {
701f8231 2916 i915_perf_load_test_config_bdw(dev_priv);
19f81df2 2917 } else if (IS_CHERRYVIEW(dev_priv)) {
701f8231 2918 i915_perf_load_test_config_chv(dev_priv);
19f81df2 2919 } else if (IS_SKYLAKE(dev_priv)) {
701f8231
LL
2920 if (IS_SKL_GT2(dev_priv))
2921 i915_perf_load_test_config_sklgt2(dev_priv);
2922 else if (IS_SKL_GT3(dev_priv))
2923 i915_perf_load_test_config_sklgt3(dev_priv);
2924 else if (IS_SKL_GT4(dev_priv))
2925 i915_perf_load_test_config_sklgt4(dev_priv);
19f81df2 2926 } else if (IS_BROXTON(dev_priv)) {
701f8231 2927 i915_perf_load_test_config_bxt(dev_priv);
6c5c1d89 2928 } else if (IS_KABYLAKE(dev_priv)) {
701f8231
LL
2929 if (IS_KBL_GT2(dev_priv))
2930 i915_perf_load_test_config_kblgt2(dev_priv);
2931 else if (IS_KBL_GT3(dev_priv))
2932 i915_perf_load_test_config_kblgt3(dev_priv);
28c7ef9e 2933 } else if (IS_GEMINILAKE(dev_priv)) {
701f8231 2934 i915_perf_load_test_config_glk(dev_priv);
442b8c06
RB
2935 }
2936
701f8231
LL
2937 if (dev_priv->perf.oa.test_config.id == 0)
2938 goto sysfs_error;
2939
2940 ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
2941 &dev_priv->perf.oa.test_config.sysfs_metric);
2942 if (ret)
2943 goto sysfs_error;
f89823c2
LL
2944
2945 atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1);
2946
19f81df2
RB
2947 goto exit;
2948
2949sysfs_error:
2950 kobject_put(dev_priv->perf.metrics_kobj);
2951 dev_priv->perf.metrics_kobj = NULL;
2952
442b8c06
RB
2953exit:
2954 mutex_unlock(&dev_priv->perf.lock);
2955}
2956
16d98b31
RB
2957/**
2958 * i915_perf_unregister - hide i915-perf from userspace
2959 * @dev_priv: i915 device instance
2960 *
2961 * i915-perf state cleanup is split up into an 'unregister' and
2962 * 'deinit' phase where the interface is first hidden from
2963 * userspace by i915_perf_unregister() before cleaning up
2964 * remaining state in i915_perf_fini().
2965 */
442b8c06
RB
2966void i915_perf_unregister(struct drm_i915_private *dev_priv)
2967{
442b8c06
RB
2968 if (!dev_priv->perf.metrics_kobj)
2969 return;
2970
701f8231
LL
2971 sysfs_remove_group(dev_priv->perf.metrics_kobj,
2972 &dev_priv->perf.oa.test_config.sysfs_metric);
442b8c06
RB
2973
2974 kobject_put(dev_priv->perf.metrics_kobj);
2975 dev_priv->perf.metrics_kobj = NULL;
2976}
2977
f89823c2
LL
2978static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
2979{
2980 static const i915_reg_t flex_eu_regs[] = {
2981 EU_PERF_CNTL0,
2982 EU_PERF_CNTL1,
2983 EU_PERF_CNTL2,
2984 EU_PERF_CNTL3,
2985 EU_PERF_CNTL4,
2986 EU_PERF_CNTL5,
2987 EU_PERF_CNTL6,
2988 };
2989 int i;
2990
2991 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
2992 if (flex_eu_regs[i].reg == addr)
2993 return true;
2994 }
2995 return false;
2996}
2997
2998static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
2999{
3000 return (addr >= OASTARTTRIG1.reg && addr <= OASTARTTRIG8.reg) ||
3001 (addr >= OAREPORTTRIG1.reg && addr <= OAREPORTTRIG8.reg) ||
3002 (addr >= OACEC0_0.reg && addr <= OACEC7_1.reg);
3003}
3004
3005static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3006{
3007 return addr == HALF_SLICE_CHICKEN2.reg ||
3008 (addr >= MICRO_BP0_0.reg && addr <= NOA_WRITE.reg) ||
3009 (addr >= OA_PERFCNT1_LO.reg && addr <= OA_PERFCNT2_HI.reg) ||
3010 (addr >= OA_PERFMATRIX_LO.reg && addr <= OA_PERFMATRIX_HI.reg);
3011}
3012
3013static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3014{
3015 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3016 addr == WAIT_FOR_RC6_EXIT.reg ||
3017 (addr >= RPM_CONFIG0.reg && addr <= NOA_CONFIG(8).reg);
3018}
3019
3020static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3021{
3022 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3023 (addr >= 0x25100 && addr <= 0x2FF90) ||
3024 addr == 0x9ec0;
3025}
3026
3027static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3028{
3029 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3030 (addr >= 0x182300 && addr <= 0x1823A4);
3031}
3032
3033static uint32_t mask_reg_value(u32 reg, u32 val)
3034{
3035 /* HALF_SLICE_CHICKEN2 is programmed with a the
3036 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3037 * programmed by userspace doesn't change this.
3038 */
3039 if (HALF_SLICE_CHICKEN2.reg == reg)
3040 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3041
3042 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3043 * indicated by its name and a bunch of selection fields used by OA
3044 * configs.
3045 */
3046 if (WAIT_FOR_RC6_EXIT.reg == reg)
3047 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3048
3049 return val;
3050}
3051
3052static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3053 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3054 u32 __user *regs,
3055 u32 n_regs)
3056{
3057 struct i915_oa_reg *oa_regs;
3058 int err;
3059 u32 i;
3060
3061 if (!n_regs)
3062 return NULL;
3063
3064 if (!access_ok(VERIFY_READ, regs, n_regs * sizeof(u32) * 2))
3065 return ERR_PTR(-EFAULT);
3066
3067 /* No is_valid function means we're not allowing any register to be programmed. */
3068 GEM_BUG_ON(!is_valid);
3069 if (!is_valid)
3070 return ERR_PTR(-EINVAL);
3071
3072 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3073 if (!oa_regs)
3074 return ERR_PTR(-ENOMEM);
3075
3076 for (i = 0; i < n_regs; i++) {
3077 u32 addr, value;
3078
3079 err = get_user(addr, regs);
3080 if (err)
3081 goto addr_err;
3082
3083 if (!is_valid(dev_priv, addr)) {
3084 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3085 err = -EINVAL;
3086 goto addr_err;
3087 }
3088
3089 err = get_user(value, regs + 1);
3090 if (err)
3091 goto addr_err;
3092
3093 oa_regs[i].addr = _MMIO(addr);
3094 oa_regs[i].value = mask_reg_value(addr, value);
3095
3096 regs += 2;
3097 }
3098
3099 return oa_regs;
3100
3101addr_err:
3102 kfree(oa_regs);
3103 return ERR_PTR(err);
3104}
3105
3106static ssize_t show_dynamic_id(struct device *dev,
3107 struct device_attribute *attr,
3108 char *buf)
3109{
3110 struct i915_oa_config *oa_config =
3111 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3112
3113 return sprintf(buf, "%d\n", oa_config->id);
3114}
3115
3116static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3117 struct i915_oa_config *oa_config)
3118{
28152a23 3119 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
f89823c2
LL
3120 oa_config->sysfs_metric_id.attr.name = "id";
3121 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3122 oa_config->sysfs_metric_id.show = show_dynamic_id;
3123 oa_config->sysfs_metric_id.store = NULL;
3124
3125 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3126 oa_config->attrs[1] = NULL;
3127
3128 oa_config->sysfs_metric.name = oa_config->uuid;
3129 oa_config->sysfs_metric.attrs = oa_config->attrs;
3130
3131 return sysfs_create_group(dev_priv->perf.metrics_kobj,
3132 &oa_config->sysfs_metric);
3133}
3134
3135/**
3136 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3137 * @dev: drm device
3138 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3139 * userspace (unvalidated)
3140 * @file: drm file
3141 *
3142 * Validates the submitted OA register to be saved into a new OA config that
3143 * can then be used for programming the OA unit and its NOA network.
3144 *
3145 * Returns: A new allocated config number to be used with the perf open ioctl
3146 * or a negative error code on failure.
3147 */
3148int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3149 struct drm_file *file)
3150{
3151 struct drm_i915_private *dev_priv = dev->dev_private;
3152 struct drm_i915_perf_oa_config *args = data;
3153 struct i915_oa_config *oa_config, *tmp;
3154 int err, id;
3155
3156 if (!dev_priv->perf.initialized) {
3157 DRM_DEBUG("i915 perf interface not available for this system\n");
3158 return -ENOTSUPP;
3159 }
3160
3161 if (!dev_priv->perf.metrics_kobj) {
3162 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3163 return -EINVAL;
3164 }
3165
3166 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3167 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3168 return -EACCES;
3169 }
3170
3171 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3172 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3173 (!args->flex_regs_ptr || !args->n_flex_regs)) {
3174 DRM_DEBUG("No OA registers given\n");
3175 return -EINVAL;
3176 }
3177
3178 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3179 if (!oa_config) {
3180 DRM_DEBUG("Failed to allocate memory for the OA config\n");
3181 return -ENOMEM;
3182 }
3183
3184 atomic_set(&oa_config->ref_count, 1);
3185
3186 if (!uuid_is_valid(args->uuid)) {
3187 DRM_DEBUG("Invalid uuid format for OA config\n");
3188 err = -EINVAL;
3189 goto reg_err;
3190 }
3191
3192 /* Last character in oa_config->uuid will be 0 because oa_config is
3193 * kzalloc.
3194 */
3195 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3196
3197 oa_config->mux_regs_len = args->n_mux_regs;
3198 oa_config->mux_regs =
3199 alloc_oa_regs(dev_priv,
3200 dev_priv->perf.oa.ops.is_valid_mux_reg,
3201 u64_to_user_ptr(args->mux_regs_ptr),
3202 args->n_mux_regs);
3203
3204 if (IS_ERR(oa_config->mux_regs)) {
3205 DRM_DEBUG("Failed to create OA config for mux_regs\n");
3206 err = PTR_ERR(oa_config->mux_regs);
3207 goto reg_err;
3208 }
3209
3210 oa_config->b_counter_regs_len = args->n_boolean_regs;
3211 oa_config->b_counter_regs =
3212 alloc_oa_regs(dev_priv,
3213 dev_priv->perf.oa.ops.is_valid_b_counter_reg,
3214 u64_to_user_ptr(args->boolean_regs_ptr),
3215 args->n_boolean_regs);
3216
3217 if (IS_ERR(oa_config->b_counter_regs)) {
3218 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3219 err = PTR_ERR(oa_config->b_counter_regs);
3220 goto reg_err;
3221 }
3222
3223 if (INTEL_GEN(dev_priv) < 8) {
3224 if (args->n_flex_regs != 0) {
3225 err = -EINVAL;
3226 goto reg_err;
3227 }
3228 } else {
3229 oa_config->flex_regs_len = args->n_flex_regs;
3230 oa_config->flex_regs =
3231 alloc_oa_regs(dev_priv,
3232 dev_priv->perf.oa.ops.is_valid_flex_reg,
3233 u64_to_user_ptr(args->flex_regs_ptr),
3234 args->n_flex_regs);
3235
3236 if (IS_ERR(oa_config->flex_regs)) {
3237 DRM_DEBUG("Failed to create OA config for flex_regs\n");
3238 err = PTR_ERR(oa_config->flex_regs);
3239 goto reg_err;
3240 }
3241 }
3242
3243 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3244 if (err)
3245 goto reg_err;
3246
3247 /* We shouldn't have too many configs, so this iteration shouldn't be
3248 * too costly.
3249 */
3250 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3251 if (!strcmp(tmp->uuid, oa_config->uuid)) {
3252 DRM_DEBUG("OA config already exists with this uuid\n");
3253 err = -EADDRINUSE;
3254 goto sysfs_err;
3255 }
3256 }
3257
3258 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3259 if (err) {
3260 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3261 goto sysfs_err;
3262 }
3263
3264 /* Config id 0 is invalid, id 1 for kernel stored test config. */
3265 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3266 oa_config, 2,
3267 0, GFP_KERNEL);
3268 if (oa_config->id < 0) {
3269 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3270 err = oa_config->id;
3271 goto sysfs_err;
3272 }
3273
3274 mutex_unlock(&dev_priv->perf.metrics_lock);
3275
3276 return oa_config->id;
3277
3278sysfs_err:
3279 mutex_unlock(&dev_priv->perf.metrics_lock);
3280reg_err:
3281 put_oa_config(dev_priv, oa_config);
3282 DRM_DEBUG("Failed to add new OA config\n");
3283 return err;
3284}
3285
3286/**
3287 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3288 * @dev: drm device
3289 * @data: ioctl data (pointer to u64 integer) copied from userspace
3290 * @file: drm file
3291 *
3292 * Configs can be removed while being used, the will stop appearing in sysfs
3293 * and their content will be freed when the stream using the config is closed.
3294 *
3295 * Returns: 0 on success or a negative error code on failure.
3296 */
3297int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3298 struct drm_file *file)
3299{
3300 struct drm_i915_private *dev_priv = dev->dev_private;
3301 u64 *arg = data;
3302 struct i915_oa_config *oa_config;
3303 int ret;
3304
3305 if (!dev_priv->perf.initialized) {
3306 DRM_DEBUG("i915 perf interface not available for this system\n");
3307 return -ENOTSUPP;
3308 }
3309
3310 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3311 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3312 return -EACCES;
3313 }
3314
3315 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3316 if (ret)
3317 goto lock_err;
3318
3319 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3320 if (!oa_config) {
3321 DRM_DEBUG("Failed to remove unknown OA config\n");
3322 ret = -ENOENT;
3323 goto config_err;
3324 }
3325
3326 GEM_BUG_ON(*arg != oa_config->id);
3327
3328 sysfs_remove_group(dev_priv->perf.metrics_kobj,
3329 &oa_config->sysfs_metric);
3330
3331 idr_remove(&dev_priv->perf.metrics_idr, *arg);
3332 put_oa_config(dev_priv, oa_config);
3333
3334config_err:
3335 mutex_unlock(&dev_priv->perf.metrics_lock);
3336lock_err:
3337 return ret;
3338}
3339
ccdf6341
RB
3340static struct ctl_table oa_table[] = {
3341 {
3342 .procname = "perf_stream_paranoid",
3343 .data = &i915_perf_stream_paranoid,
3344 .maxlen = sizeof(i915_perf_stream_paranoid),
3345 .mode = 0644,
3346 .proc_handler = proc_dointvec_minmax,
3347 .extra1 = &zero,
3348 .extra2 = &one,
3349 },
00319ba0
RB
3350 {
3351 .procname = "oa_max_sample_rate",
3352 .data = &i915_oa_max_sample_rate,
3353 .maxlen = sizeof(i915_oa_max_sample_rate),
3354 .mode = 0644,
3355 .proc_handler = proc_dointvec_minmax,
3356 .extra1 = &zero,
3357 .extra2 = &oa_sample_rate_hard_limit,
3358 },
ccdf6341
RB
3359 {}
3360};
3361
3362static struct ctl_table i915_root[] = {
3363 {
3364 .procname = "i915",
3365 .maxlen = 0,
3366 .mode = 0555,
3367 .child = oa_table,
3368 },
3369 {}
3370};
3371
3372static struct ctl_table dev_root[] = {
3373 {
3374 .procname = "dev",
3375 .maxlen = 0,
3376 .mode = 0555,
3377 .child = i915_root,
3378 },
3379 {}
3380};
3381
16d98b31
RB
3382/**
3383 * i915_perf_init - initialize i915-perf state on module load
3384 * @dev_priv: i915 device instance
3385 *
3386 * Initializes i915-perf state without exposing anything to userspace.
3387 *
3388 * Note: i915-perf initialization is split into an 'init' and 'register'
3389 * phase with the i915_perf_register() exposing state to userspace.
3390 */
eec688e1
RB
3391void i915_perf_init(struct drm_i915_private *dev_priv)
3392{
701f8231 3393 dev_priv->perf.oa.timestamp_frequency = 0;
19f81df2
RB
3394
3395 if (IS_HASWELL(dev_priv)) {
f89823c2
LL
3396 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3397 gen7_is_valid_b_counter_addr;
3398 dev_priv->perf.oa.ops.is_valid_mux_reg =
3399 hsw_is_valid_mux_addr;
3400 dev_priv->perf.oa.ops.is_valid_flex_reg = NULL;
19f81df2
RB
3401 dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
3402 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3403 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3404 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3405 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3406 dev_priv->perf.oa.ops.read = gen7_oa_read;
3407 dev_priv->perf.oa.ops.oa_hw_tail_read =
3408 gen7_oa_hw_tail_read;
3409
155e941f
RB
3410 dev_priv->perf.oa.timestamp_frequency = 12500000;
3411
19f81df2 3412 dev_priv->perf.oa.oa_formats = hsw_oa_formats;
19f81df2
RB
3413 } else if (i915.enable_execlists) {
3414 /* Note: that although we could theoretically also support the
3415 * legacy ringbuffer mode on BDW (and earlier iterations of
3416 * this driver, before upstreaming did this) it didn't seem
3417 * worth the complexity to maintain now that BDW+ enable
3418 * execlist mode by default.
3419 */
f89823c2
LL
3420 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3421 gen7_is_valid_b_counter_addr;
3422 dev_priv->perf.oa.ops.is_valid_mux_reg =
3423 gen8_is_valid_mux_addr;
3424 dev_priv->perf.oa.ops.is_valid_flex_reg =
3425 gen8_is_valid_flex_addr;
d7965152 3426
701f8231
LL
3427 dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer;
3428 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3429 dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set;
3430 dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3431 dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3432 dev_priv->perf.oa.ops.read = gen8_oa_read;
3433 dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3434
3435 dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3436
19f81df2
RB
3437 if (IS_GEN8(dev_priv)) {
3438 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3439 dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
155e941f
RB
3440
3441 dev_priv->perf.oa.timestamp_frequency = 12500000;
3442
19f81df2 3443 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
f89823c2
LL
3444 if (IS_CHERRYVIEW(dev_priv)) {
3445 dev_priv->perf.oa.ops.is_valid_mux_reg =
3446 chv_is_valid_mux_addr;
3447 }
19f81df2
RB
3448 } else if (IS_GEN9(dev_priv)) {
3449 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3450 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
155e941f 3451
19f81df2
RB
3452 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3453
701f8231
LL
3454 switch (dev_priv->info.platform) {
3455 case INTEL_BROXTON:
3456 case INTEL_GEMINILAKE:
155e941f 3457 dev_priv->perf.oa.timestamp_frequency = 19200000;
701f8231
LL
3458 break;
3459 case INTEL_SKYLAKE:
3460 case INTEL_KABYLAKE:
3461 dev_priv->perf.oa.timestamp_frequency = 12000000;
3462 break;
3463 default:
3464 /* Leave timestamp_frequency to 0 so we can
3465 * detect unsupported platforms.
3466 */
3467 break;
19f81df2
RB
3468 }
3469 }
19f81df2 3470 }
d7965152 3471
701f8231 3472 if (dev_priv->perf.oa.timestamp_frequency) {
19f81df2
RB
3473 hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3474 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3475 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3476 init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
d7965152 3477
19f81df2
RB
3478 INIT_LIST_HEAD(&dev_priv->perf.streams);
3479 mutex_init(&dev_priv->perf.lock);
19f81df2 3480 spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
eec688e1 3481
155e941f
RB
3482 oa_sample_rate_hard_limit =
3483 dev_priv->perf.oa.timestamp_frequency / 2;
19f81df2 3484 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
ccdf6341 3485
f89823c2
LL
3486 mutex_init(&dev_priv->perf.metrics_lock);
3487 idr_init(&dev_priv->perf.metrics_idr);
3488
19f81df2
RB
3489 dev_priv->perf.initialized = true;
3490 }
eec688e1
RB
3491}
3492
f89823c2
LL
3493static int destroy_config(int id, void *p, void *data)
3494{
3495 struct drm_i915_private *dev_priv = data;
3496 struct i915_oa_config *oa_config = p;
3497
3498 put_oa_config(dev_priv, oa_config);
3499
3500 return 0;
3501}
3502
16d98b31
RB
3503/**
3504 * i915_perf_fini - Counter part to i915_perf_init()
3505 * @dev_priv: i915 device instance
3506 */
eec688e1
RB
3507void i915_perf_fini(struct drm_i915_private *dev_priv)
3508{
3509 if (!dev_priv->perf.initialized)
3510 return;
3511
f89823c2
LL
3512 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3513 idr_destroy(&dev_priv->perf.metrics_idr);
3514
ccdf6341
RB
3515 unregister_sysctl_table(dev_priv->perf.sysctl_header);
3516
d7965152 3517 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
19f81df2 3518
eec688e1
RB
3519 dev_priv->perf.initialized = false;
3520}