]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Disable RCS flips on Ivybridge
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void intel_dp_set_m_n(struct intel_crtc *crtc);
95static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab
DV
97static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n);
99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 103
79e53945 104typedef struct {
0206e353 105 int min, max;
79e53945
JB
106} intel_range_t;
107
108typedef struct {
0206e353
AJ
109 int dot_limit;
110 int p2_slow, p2_fast;
79e53945
JB
111} intel_p2_t;
112
d4906093
ML
113typedef struct intel_limit intel_limit_t;
114struct intel_limit {
0206e353
AJ
115 intel_range_t dot, vco, n, m, m1, m2, p, p1;
116 intel_p2_t p2;
d4906093 117};
79e53945 118
d2acd215
DV
119int
120intel_pch_rawclk(struct drm_device *dev)
121{
122 struct drm_i915_private *dev_priv = dev->dev_private;
123
124 WARN_ON(!HAS_PCH_SPLIT(dev));
125
126 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
127}
128
021357ac
CW
129static inline u32 /* units of 100MHz */
130intel_fdi_link_freq(struct drm_device *dev)
131{
8b99e68c
CW
132 if (IS_GEN5(dev)) {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
135 } else
136 return 27;
021357ac
CW
137}
138
5d536e28 139static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 140 .dot = { .min = 25000, .max = 350000 },
9c333719 141 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 142 .n = { .min = 2, .max = 16 },
0206e353
AJ
143 .m = { .min = 96, .max = 140 },
144 .m1 = { .min = 18, .max = 26 },
145 .m2 = { .min = 6, .max = 16 },
146 .p = { .min = 4, .max = 128 },
147 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
148 .p2 = { .dot_limit = 165000,
149 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
150};
151
5d536e28
DV
152static const intel_limit_t intel_limits_i8xx_dvo = {
153 .dot = { .min = 25000, .max = 350000 },
9c333719 154 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 155 .n = { .min = 2, .max = 16 },
5d536e28
DV
156 .m = { .min = 96, .max = 140 },
157 .m1 = { .min = 18, .max = 26 },
158 .m2 = { .min = 6, .max = 16 },
159 .p = { .min = 4, .max = 128 },
160 .p1 = { .min = 2, .max = 33 },
161 .p2 = { .dot_limit = 165000,
162 .p2_slow = 4, .p2_fast = 4 },
163};
164
e4b36699 165static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 166 .dot = { .min = 25000, .max = 350000 },
9c333719 167 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 168 .n = { .min = 2, .max = 16 },
0206e353
AJ
169 .m = { .min = 96, .max = 140 },
170 .m1 = { .min = 18, .max = 26 },
171 .m2 = { .min = 6, .max = 16 },
172 .p = { .min = 4, .max = 128 },
173 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
174 .p2 = { .dot_limit = 165000,
175 .p2_slow = 14, .p2_fast = 7 },
e4b36699 176};
273e27ca 177
e4b36699 178static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
179 .dot = { .min = 20000, .max = 400000 },
180 .vco = { .min = 1400000, .max = 2800000 },
181 .n = { .min = 1, .max = 6 },
182 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
183 .m1 = { .min = 8, .max = 18 },
184 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
185 .p = { .min = 5, .max = 80 },
186 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
187 .p2 = { .dot_limit = 200000,
188 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
189};
190
191static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
192 .dot = { .min = 20000, .max = 400000 },
193 .vco = { .min = 1400000, .max = 2800000 },
194 .n = { .min = 1, .max = 6 },
195 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
196 .m1 = { .min = 8, .max = 18 },
197 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
198 .p = { .min = 7, .max = 98 },
199 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
200 .p2 = { .dot_limit = 112000,
201 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
202};
203
273e27ca 204
e4b36699 205static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
206 .dot = { .min = 25000, .max = 270000 },
207 .vco = { .min = 1750000, .max = 3500000},
208 .n = { .min = 1, .max = 4 },
209 .m = { .min = 104, .max = 138 },
210 .m1 = { .min = 17, .max = 23 },
211 .m2 = { .min = 5, .max = 11 },
212 .p = { .min = 10, .max = 30 },
213 .p1 = { .min = 1, .max = 3},
214 .p2 = { .dot_limit = 270000,
215 .p2_slow = 10,
216 .p2_fast = 10
044c7c41 217 },
e4b36699
KP
218};
219
220static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
221 .dot = { .min = 22000, .max = 400000 },
222 .vco = { .min = 1750000, .max = 3500000},
223 .n = { .min = 1, .max = 4 },
224 .m = { .min = 104, .max = 138 },
225 .m1 = { .min = 16, .max = 23 },
226 .m2 = { .min = 5, .max = 11 },
227 .p = { .min = 5, .max = 80 },
228 .p1 = { .min = 1, .max = 8},
229 .p2 = { .dot_limit = 165000,
230 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
231};
232
233static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
234 .dot = { .min = 20000, .max = 115000 },
235 .vco = { .min = 1750000, .max = 3500000 },
236 .n = { .min = 1, .max = 3 },
237 .m = { .min = 104, .max = 138 },
238 .m1 = { .min = 17, .max = 23 },
239 .m2 = { .min = 5, .max = 11 },
240 .p = { .min = 28, .max = 112 },
241 .p1 = { .min = 2, .max = 8 },
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 14, .p2_fast = 14
044c7c41 244 },
e4b36699
KP
245};
246
247static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
248 .dot = { .min = 80000, .max = 224000 },
249 .vco = { .min = 1750000, .max = 3500000 },
250 .n = { .min = 1, .max = 3 },
251 .m = { .min = 104, .max = 138 },
252 .m1 = { .min = 17, .max = 23 },
253 .m2 = { .min = 5, .max = 11 },
254 .p = { .min = 14, .max = 42 },
255 .p1 = { .min = 2, .max = 6 },
256 .p2 = { .dot_limit = 0,
257 .p2_slow = 7, .p2_fast = 7
044c7c41 258 },
e4b36699
KP
259};
260
f2b115e6 261static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
262 .dot = { .min = 20000, .max = 400000},
263 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 264 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
265 .n = { .min = 3, .max = 6 },
266 .m = { .min = 2, .max = 256 },
273e27ca 267 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 5, .max = 80 },
271 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
272 .p2 = { .dot_limit = 200000,
273 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
274};
275
f2b115e6 276static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
277 .dot = { .min = 20000, .max = 400000 },
278 .vco = { .min = 1700000, .max = 3500000 },
279 .n = { .min = 3, .max = 6 },
280 .m = { .min = 2, .max = 256 },
281 .m1 = { .min = 0, .max = 0 },
282 .m2 = { .min = 0, .max = 254 },
283 .p = { .min = 7, .max = 112 },
284 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
285 .p2 = { .dot_limit = 112000,
286 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
287};
288
273e27ca
EA
289/* Ironlake / Sandybridge
290 *
291 * We calculate clock using (register_value + 2) for N/M1/M2, so here
292 * the range value for them is (actual_value - 2).
293 */
b91ad0ec 294static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
295 .dot = { .min = 25000, .max = 350000 },
296 .vco = { .min = 1760000, .max = 3510000 },
297 .n = { .min = 1, .max = 5 },
298 .m = { .min = 79, .max = 127 },
299 .m1 = { .min = 12, .max = 22 },
300 .m2 = { .min = 5, .max = 9 },
301 .p = { .min = 5, .max = 80 },
302 .p1 = { .min = 1, .max = 8 },
303 .p2 = { .dot_limit = 225000,
304 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
305};
306
b91ad0ec 307static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
308 .dot = { .min = 25000, .max = 350000 },
309 .vco = { .min = 1760000, .max = 3510000 },
310 .n = { .min = 1, .max = 3 },
311 .m = { .min = 79, .max = 118 },
312 .m1 = { .min = 12, .max = 22 },
313 .m2 = { .min = 5, .max = 9 },
314 .p = { .min = 28, .max = 112 },
315 .p1 = { .min = 2, .max = 8 },
316 .p2 = { .dot_limit = 225000,
317 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
318};
319
320static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
331};
332
273e27ca 333/* LVDS 100mhz refclk limits. */
b91ad0ec 334static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 2 },
338 .m = { .min = 79, .max = 126 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 28, .max = 112 },
0206e353 342 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
345};
346
347static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
0206e353 355 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
358};
359
dc730512 360static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
361 /*
362 * These are the data rate limits (measured in fast clocks)
363 * since those are the strictest limits we have. The fast
364 * clock and actual rate limits are more relaxed, so checking
365 * them would make no difference.
366 */
367 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 368 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 369 .n = { .min = 1, .max = 7 },
a0c4da24
JB
370 .m1 = { .min = 2, .max = 3 },
371 .m2 = { .min = 11, .max = 156 },
b99ab663 372 .p1 = { .min = 2, .max = 3 },
5fdc9c49 373 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
374};
375
ef9348c8
CML
376static const intel_limit_t intel_limits_chv = {
377 /*
378 * These are the data rate limits (measured in fast clocks)
379 * since those are the strictest limits we have. The fast
380 * clock and actual rate limits are more relaxed, so checking
381 * them would make no difference.
382 */
383 .dot = { .min = 25000 * 5, .max = 540000 * 5},
384 .vco = { .min = 4860000, .max = 6700000 },
385 .n = { .min = 1, .max = 1 },
386 .m1 = { .min = 2, .max = 2 },
387 .m2 = { .min = 24 << 22, .max = 175 << 22 },
388 .p1 = { .min = 2, .max = 4 },
389 .p2 = { .p2_slow = 1, .p2_fast = 14 },
390};
391
6b4bf1c4
VS
392static void vlv_clock(int refclk, intel_clock_t *clock)
393{
394 clock->m = clock->m1 * clock->m2;
395 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
396 if (WARN_ON(clock->n == 0 || clock->p == 0))
397 return;
fb03ac01
VS
398 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
399 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
400}
401
e0638cdf
PZ
402/**
403 * Returns whether any output on the specified pipe is of the specified type
404 */
405static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
406{
407 struct drm_device *dev = crtc->dev;
408 struct intel_encoder *encoder;
409
410 for_each_encoder_on_crtc(dev, crtc, encoder)
411 if (encoder->type == type)
412 return true;
413
414 return false;
415}
416
1b894b59
CW
417static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
418 int refclk)
2c07245f 419{
b91ad0ec 420 struct drm_device *dev = crtc->dev;
2c07245f 421 const intel_limit_t *limit;
b91ad0ec
ZW
422
423 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 424 if (intel_is_dual_link_lvds(dev)) {
1b894b59 425 if (refclk == 100000)
b91ad0ec
ZW
426 limit = &intel_limits_ironlake_dual_lvds_100m;
427 else
428 limit = &intel_limits_ironlake_dual_lvds;
429 } else {
1b894b59 430 if (refclk == 100000)
b91ad0ec
ZW
431 limit = &intel_limits_ironlake_single_lvds_100m;
432 else
433 limit = &intel_limits_ironlake_single_lvds;
434 }
c6bb3538 435 } else
b91ad0ec 436 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
437
438 return limit;
439}
440
044c7c41
ML
441static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
442{
443 struct drm_device *dev = crtc->dev;
044c7c41
ML
444 const intel_limit_t *limit;
445
446 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 447 if (intel_is_dual_link_lvds(dev))
e4b36699 448 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 449 else
e4b36699 450 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
451 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
452 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 453 limit = &intel_limits_g4x_hdmi;
044c7c41 454 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 455 limit = &intel_limits_g4x_sdvo;
044c7c41 456 } else /* The option is for other outputs */
e4b36699 457 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
458
459 return limit;
460}
461
1b894b59 462static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
463{
464 struct drm_device *dev = crtc->dev;
465 const intel_limit_t *limit;
466
bad720ff 467 if (HAS_PCH_SPLIT(dev))
1b894b59 468 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 469 else if (IS_G4X(dev)) {
044c7c41 470 limit = intel_g4x_limit(crtc);
f2b115e6 471 } else if (IS_PINEVIEW(dev)) {
2177832f 472 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 473 limit = &intel_limits_pineview_lvds;
2177832f 474 else
f2b115e6 475 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
476 } else if (IS_CHERRYVIEW(dev)) {
477 limit = &intel_limits_chv;
a0c4da24 478 } else if (IS_VALLEYVIEW(dev)) {
dc730512 479 limit = &intel_limits_vlv;
a6c45cf0
CW
480 } else if (!IS_GEN2(dev)) {
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482 limit = &intel_limits_i9xx_lvds;
483 else
484 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
485 } else {
486 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 487 limit = &intel_limits_i8xx_lvds;
5d536e28 488 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 489 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
490 else
491 limit = &intel_limits_i8xx_dac;
79e53945
JB
492 }
493 return limit;
494}
495
f2b115e6
AJ
496/* m1 is reserved as 0 in Pineview, n is a ring counter */
497static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 498{
2177832f
SL
499 clock->m = clock->m2 + 2;
500 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
501 if (WARN_ON(clock->n == 0 || clock->p == 0))
502 return;
fb03ac01
VS
503 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
504 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
505}
506
7429e9d4
DV
507static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
508{
509 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
510}
511
ac58c3f0 512static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 513{
7429e9d4 514 clock->m = i9xx_dpll_compute_m(clock);
79e53945 515 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
516 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
517 return;
fb03ac01
VS
518 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
519 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
520}
521
ef9348c8
CML
522static void chv_clock(int refclk, intel_clock_t *clock)
523{
524 clock->m = clock->m1 * clock->m2;
525 clock->p = clock->p1 * clock->p2;
526 if (WARN_ON(clock->n == 0 || clock->p == 0))
527 return;
528 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
529 clock->n << 22);
530 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
531}
532
7c04d1d9 533#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
534/**
535 * Returns whether the given set of divisors are valid for a given refclk with
536 * the given connectors.
537 */
538
1b894b59
CW
539static bool intel_PLL_is_valid(struct drm_device *dev,
540 const intel_limit_t *limit,
541 const intel_clock_t *clock)
79e53945 542{
f01b7962
VS
543 if (clock->n < limit->n.min || limit->n.max < clock->n)
544 INTELPllInvalid("n out of range\n");
79e53945 545 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 546 INTELPllInvalid("p1 out of range\n");
79e53945 547 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 548 INTELPllInvalid("m2 out of range\n");
79e53945 549 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 550 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
551
552 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
553 if (clock->m1 <= clock->m2)
554 INTELPllInvalid("m1 <= m2\n");
555
556 if (!IS_VALLEYVIEW(dev)) {
557 if (clock->p < limit->p.min || limit->p.max < clock->p)
558 INTELPllInvalid("p out of range\n");
559 if (clock->m < limit->m.min || limit->m.max < clock->m)
560 INTELPllInvalid("m out of range\n");
561 }
562
79e53945 563 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 564 INTELPllInvalid("vco out of range\n");
79e53945
JB
565 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
566 * connector, etc., rather than just a single range.
567 */
568 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 569 INTELPllInvalid("dot out of range\n");
79e53945
JB
570
571 return true;
572}
573
d4906093 574static bool
ee9300bb 575i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
576 int target, int refclk, intel_clock_t *match_clock,
577 intel_clock_t *best_clock)
79e53945
JB
578{
579 struct drm_device *dev = crtc->dev;
79e53945 580 intel_clock_t clock;
79e53945
JB
581 int err = target;
582
a210b028 583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 584 /*
a210b028
DV
585 * For LVDS just rely on its current settings for dual-channel.
586 * We haven't figured out how to reliably set up different
587 * single/dual channel state, if we even can.
79e53945 588 */
1974cad0 589 if (intel_is_dual_link_lvds(dev))
79e53945
JB
590 clock.p2 = limit->p2.p2_fast;
591 else
592 clock.p2 = limit->p2.p2_slow;
593 } else {
594 if (target < limit->p2.dot_limit)
595 clock.p2 = limit->p2.p2_slow;
596 else
597 clock.p2 = limit->p2.p2_fast;
598 }
599
0206e353 600 memset(best_clock, 0, sizeof(*best_clock));
79e53945 601
42158660
ZY
602 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
603 clock.m1++) {
604 for (clock.m2 = limit->m2.min;
605 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 606 if (clock.m2 >= clock.m1)
42158660
ZY
607 break;
608 for (clock.n = limit->n.min;
609 clock.n <= limit->n.max; clock.n++) {
610 for (clock.p1 = limit->p1.min;
611 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
612 int this_err;
613
ac58c3f0
DV
614 i9xx_clock(refclk, &clock);
615 if (!intel_PLL_is_valid(dev, limit,
616 &clock))
617 continue;
618 if (match_clock &&
619 clock.p != match_clock->p)
620 continue;
621
622 this_err = abs(clock.dot - target);
623 if (this_err < err) {
624 *best_clock = clock;
625 err = this_err;
626 }
627 }
628 }
629 }
630 }
631
632 return (err != target);
633}
634
635static bool
ee9300bb
DV
636pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
637 int target, int refclk, intel_clock_t *match_clock,
638 intel_clock_t *best_clock)
79e53945
JB
639{
640 struct drm_device *dev = crtc->dev;
79e53945 641 intel_clock_t clock;
79e53945
JB
642 int err = target;
643
a210b028 644 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 645 /*
a210b028
DV
646 * For LVDS just rely on its current settings for dual-channel.
647 * We haven't figured out how to reliably set up different
648 * single/dual channel state, if we even can.
79e53945 649 */
1974cad0 650 if (intel_is_dual_link_lvds(dev))
79e53945
JB
651 clock.p2 = limit->p2.p2_fast;
652 else
653 clock.p2 = limit->p2.p2_slow;
654 } else {
655 if (target < limit->p2.dot_limit)
656 clock.p2 = limit->p2.p2_slow;
657 else
658 clock.p2 = limit->p2.p2_fast;
659 }
660
0206e353 661 memset(best_clock, 0, sizeof(*best_clock));
79e53945 662
42158660
ZY
663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 clock.m1++) {
665 for (clock.m2 = limit->m2.min;
666 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
667 for (clock.n = limit->n.min;
668 clock.n <= limit->n.max; clock.n++) {
669 for (clock.p1 = limit->p1.min;
670 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
671 int this_err;
672
ac58c3f0 673 pineview_clock(refclk, &clock);
1b894b59
CW
674 if (!intel_PLL_is_valid(dev, limit,
675 &clock))
79e53945 676 continue;
cec2f356
SP
677 if (match_clock &&
678 clock.p != match_clock->p)
679 continue;
79e53945
JB
680
681 this_err = abs(clock.dot - target);
682 if (this_err < err) {
683 *best_clock = clock;
684 err = this_err;
685 }
686 }
687 }
688 }
689 }
690
691 return (err != target);
692}
693
d4906093 694static bool
ee9300bb
DV
695g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
696 int target, int refclk, intel_clock_t *match_clock,
697 intel_clock_t *best_clock)
d4906093
ML
698{
699 struct drm_device *dev = crtc->dev;
d4906093
ML
700 intel_clock_t clock;
701 int max_n;
702 bool found;
6ba770dc
AJ
703 /* approximately equals target * 0.00585 */
704 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
705 found = false;
706
707 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 708 if (intel_is_dual_link_lvds(dev))
d4906093
ML
709 clock.p2 = limit->p2.p2_fast;
710 else
711 clock.p2 = limit->p2.p2_slow;
712 } else {
713 if (target < limit->p2.dot_limit)
714 clock.p2 = limit->p2.p2_slow;
715 else
716 clock.p2 = limit->p2.p2_fast;
717 }
718
719 memset(best_clock, 0, sizeof(*best_clock));
720 max_n = limit->n.max;
f77f13e2 721 /* based on hardware requirement, prefer smaller n to precision */
d4906093 722 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 723 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
724 for (clock.m1 = limit->m1.max;
725 clock.m1 >= limit->m1.min; clock.m1--) {
726 for (clock.m2 = limit->m2.max;
727 clock.m2 >= limit->m2.min; clock.m2--) {
728 for (clock.p1 = limit->p1.max;
729 clock.p1 >= limit->p1.min; clock.p1--) {
730 int this_err;
731
ac58c3f0 732 i9xx_clock(refclk, &clock);
1b894b59
CW
733 if (!intel_PLL_is_valid(dev, limit,
734 &clock))
d4906093 735 continue;
1b894b59
CW
736
737 this_err = abs(clock.dot - target);
d4906093
ML
738 if (this_err < err_most) {
739 *best_clock = clock;
740 err_most = this_err;
741 max_n = clock.n;
742 found = true;
743 }
744 }
745 }
746 }
747 }
2c07245f
ZW
748 return found;
749}
750
a0c4da24 751static bool
ee9300bb
DV
752vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
753 int target, int refclk, intel_clock_t *match_clock,
754 intel_clock_t *best_clock)
a0c4da24 755{
f01b7962 756 struct drm_device *dev = crtc->dev;
6b4bf1c4 757 intel_clock_t clock;
69e4f900 758 unsigned int bestppm = 1000000;
27e639bf
VS
759 /* min update 19.2 MHz */
760 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 761 bool found = false;
a0c4da24 762
6b4bf1c4
VS
763 target *= 5; /* fast clock */
764
765 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
766
767 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 768 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 769 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 770 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 771 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 772 clock.p = clock.p1 * clock.p2;
a0c4da24 773 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 774 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
775 unsigned int ppm, diff;
776
6b4bf1c4
VS
777 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
778 refclk * clock.m1);
779
780 vlv_clock(refclk, &clock);
43b0ac53 781
f01b7962
VS
782 if (!intel_PLL_is_valid(dev, limit,
783 &clock))
43b0ac53
VS
784 continue;
785
6b4bf1c4
VS
786 diff = abs(clock.dot - target);
787 ppm = div_u64(1000000ULL * diff, target);
788
789 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 790 bestppm = 0;
6b4bf1c4 791 *best_clock = clock;
49e497ef 792 found = true;
43b0ac53 793 }
6b4bf1c4 794
c686122c 795 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 796 bestppm = ppm;
6b4bf1c4 797 *best_clock = clock;
49e497ef 798 found = true;
a0c4da24
JB
799 }
800 }
801 }
802 }
803 }
a0c4da24 804
49e497ef 805 return found;
a0c4da24 806}
a4fc5ed6 807
ef9348c8
CML
808static bool
809chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812{
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815 uint64_t m2;
816 int found = false;
817
818 memset(best_clock, 0, sizeof(*best_clock));
819
820 /*
821 * Based on hardware doc, the n always set to 1, and m1 always
822 * set to 2. If requires to support 200Mhz refclk, we need to
823 * revisit this because n may not 1 anymore.
824 */
825 clock.n = 1, clock.m1 = 2;
826 target *= 5; /* fast clock */
827
828 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
829 for (clock.p2 = limit->p2.p2_fast;
830 clock.p2 >= limit->p2.p2_slow;
831 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
832
833 clock.p = clock.p1 * clock.p2;
834
835 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
836 clock.n) << 22, refclk * clock.m1);
837
838 if (m2 > INT_MAX/clock.m1)
839 continue;
840
841 clock.m2 = m2;
842
843 chv_clock(refclk, &clock);
844
845 if (!intel_PLL_is_valid(dev, limit, &clock))
846 continue;
847
848 /* based on hardware requirement, prefer bigger p
849 */
850 if (clock.p > best_clock->p) {
851 *best_clock = clock;
852 found = true;
853 }
854 }
855 }
856
857 return found;
858}
859
20ddf665
VS
860bool intel_crtc_active(struct drm_crtc *crtc)
861{
862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
863
864 /* Be paranoid as we can arrive here with only partial
865 * state retrieved from the hardware during setup.
866 *
241bfc38 867 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
868 * as Haswell has gained clock readout/fastboot support.
869 *
66e514c1 870 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
871 * properly reconstruct framebuffers.
872 */
f4510a27 873 return intel_crtc->active && crtc->primary->fb &&
241bfc38 874 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
875}
876
a5c961d1
PZ
877enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
878 enum pipe pipe)
879{
880 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
882
3b117c8f 883 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
884}
885
57e22f4a 886static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
887{
888 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 889 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
890
891 frame = I915_READ(frame_reg);
892
893 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
93937071 894 WARN(1, "vblank wait timed out\n");
a928d536
PZ
895}
896
9d0498a2
JB
897/**
898 * intel_wait_for_vblank - wait for vblank on a given pipe
899 * @dev: drm device
900 * @pipe: pipe to wait for
901 *
902 * Wait for vblank to occur on a given pipe. Needed for various bits of
903 * mode setting code.
904 */
905void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 906{
9d0498a2 907 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 908 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 909
57e22f4a
VS
910 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
911 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
912 return;
913 }
914
300387c0
CW
915 /* Clear existing vblank status. Note this will clear any other
916 * sticky status fields as well.
917 *
918 * This races with i915_driver_irq_handler() with the result
919 * that either function could miss a vblank event. Here it is not
920 * fatal, as we will either wait upon the next vblank interrupt or
921 * timeout. Generally speaking intel_wait_for_vblank() is only
922 * called during modeset at which time the GPU should be idle and
923 * should *not* be performing page flips and thus not waiting on
924 * vblanks...
925 * Currently, the result of us stealing a vblank from the irq
926 * handler is that a single frame will be skipped during swapbuffers.
927 */
928 I915_WRITE(pipestat_reg,
929 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
930
9d0498a2 931 /* Wait for vblank interrupt bit to set */
481b6af3
CW
932 if (wait_for(I915_READ(pipestat_reg) &
933 PIPE_VBLANK_INTERRUPT_STATUS,
934 50))
9d0498a2
JB
935 DRM_DEBUG_KMS("vblank wait timed out\n");
936}
937
fbf49ea2
VS
938static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
939{
940 struct drm_i915_private *dev_priv = dev->dev_private;
941 u32 reg = PIPEDSL(pipe);
942 u32 line1, line2;
943 u32 line_mask;
944
945 if (IS_GEN2(dev))
946 line_mask = DSL_LINEMASK_GEN2;
947 else
948 line_mask = DSL_LINEMASK_GEN3;
949
950 line1 = I915_READ(reg) & line_mask;
951 mdelay(5);
952 line2 = I915_READ(reg) & line_mask;
953
954 return line1 == line2;
955}
956
ab7ad7f6
KP
957/*
958 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
959 * @dev: drm device
960 * @pipe: pipe to wait for
961 *
962 * After disabling a pipe, we can't wait for vblank in the usual way,
963 * spinning on the vblank interrupt status bit, since we won't actually
964 * see an interrupt when the pipe is disabled.
965 *
ab7ad7f6
KP
966 * On Gen4 and above:
967 * wait for the pipe register state bit to turn off
968 *
969 * Otherwise:
970 * wait for the display line value to settle (it usually
971 * ends up stopping at the start of the next frame).
58e10eb9 972 *
9d0498a2 973 */
58e10eb9 974void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
975{
976 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
977 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
978 pipe);
ab7ad7f6
KP
979
980 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 981 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
982
983 /* Wait for the Pipe State to go off */
58e10eb9
CW
984 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
985 100))
284637d9 986 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 987 } else {
ab7ad7f6 988 /* Wait for the display line to settle */
fbf49ea2 989 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 990 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 991 }
79e53945
JB
992}
993
b0ea7d37
DL
994/*
995 * ibx_digital_port_connected - is the specified port connected?
996 * @dev_priv: i915 private structure
997 * @port: the port to test
998 *
999 * Returns true if @port is connected, false otherwise.
1000 */
1001bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1002 struct intel_digital_port *port)
1003{
1004 u32 bit;
1005
c36346e3 1006 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1007 switch (port->port) {
c36346e3
DL
1008 case PORT_B:
1009 bit = SDE_PORTB_HOTPLUG;
1010 break;
1011 case PORT_C:
1012 bit = SDE_PORTC_HOTPLUG;
1013 break;
1014 case PORT_D:
1015 bit = SDE_PORTD_HOTPLUG;
1016 break;
1017 default:
1018 return true;
1019 }
1020 } else {
eba905b2 1021 switch (port->port) {
c36346e3
DL
1022 case PORT_B:
1023 bit = SDE_PORTB_HOTPLUG_CPT;
1024 break;
1025 case PORT_C:
1026 bit = SDE_PORTC_HOTPLUG_CPT;
1027 break;
1028 case PORT_D:
1029 bit = SDE_PORTD_HOTPLUG_CPT;
1030 break;
1031 default:
1032 return true;
1033 }
b0ea7d37
DL
1034 }
1035
1036 return I915_READ(SDEISR) & bit;
1037}
1038
b24e7179
JB
1039static const char *state_string(bool enabled)
1040{
1041 return enabled ? "on" : "off";
1042}
1043
1044/* Only for pre-ILK configs */
55607e8a
DV
1045void assert_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
b24e7179
JB
1047{
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = DPLL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & DPLL_VCO_ENABLE);
1055 WARN(cur_state != state,
1056 "PLL state assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058}
b24e7179 1059
23538ef1
JN
1060/* XXX: the dsi pll is shared between MIPI DSI ports */
1061static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1062{
1063 u32 val;
1064 bool cur_state;
1065
1066 mutex_lock(&dev_priv->dpio_lock);
1067 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1068 mutex_unlock(&dev_priv->dpio_lock);
1069
1070 cur_state = val & DSI_PLL_VCO_EN;
1071 WARN(cur_state != state,
1072 "DSI PLL state assertion failure (expected %s, current %s)\n",
1073 state_string(state), state_string(cur_state));
1074}
1075#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1076#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1077
55607e8a 1078struct intel_shared_dpll *
e2b78267
DV
1079intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1080{
1081 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1082
a43f6e0f 1083 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1084 return NULL;
1085
a43f6e0f 1086 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1087}
1088
040484af 1089/* For ILK+ */
55607e8a
DV
1090void assert_shared_dpll(struct drm_i915_private *dev_priv,
1091 struct intel_shared_dpll *pll,
1092 bool state)
040484af 1093{
040484af 1094 bool cur_state;
5358901f 1095 struct intel_dpll_hw_state hw_state;
040484af 1096
9d82aa17
ED
1097 if (HAS_PCH_LPT(dev_priv->dev)) {
1098 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1099 return;
1100 }
1101
92b27b08 1102 if (WARN (!pll,
46edb027 1103 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1104 return;
ee7b9f93 1105
5358901f 1106 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1107 WARN(cur_state != state,
5358901f
DV
1108 "%s assertion failure (expected %s, current %s)\n",
1109 pll->name, state_string(state), state_string(cur_state));
040484af 1110}
040484af
JB
1111
1112static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1113 enum pipe pipe, bool state)
1114{
1115 int reg;
1116 u32 val;
1117 bool cur_state;
ad80a810
PZ
1118 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1119 pipe);
040484af 1120
affa9354
PZ
1121 if (HAS_DDI(dev_priv->dev)) {
1122 /* DDI does not have a specific FDI_TX register */
ad80a810 1123 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1124 val = I915_READ(reg);
ad80a810 1125 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1126 } else {
1127 reg = FDI_TX_CTL(pipe);
1128 val = I915_READ(reg);
1129 cur_state = !!(val & FDI_TX_ENABLE);
1130 }
040484af
JB
1131 WARN(cur_state != state,
1132 "FDI TX state assertion failure (expected %s, current %s)\n",
1133 state_string(state), state_string(cur_state));
1134}
1135#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1136#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1137
1138static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1139 enum pipe pipe, bool state)
1140{
1141 int reg;
1142 u32 val;
1143 bool cur_state;
1144
d63fa0dc
PZ
1145 reg = FDI_RX_CTL(pipe);
1146 val = I915_READ(reg);
1147 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1148 WARN(cur_state != state,
1149 "FDI RX state assertion failure (expected %s, current %s)\n",
1150 state_string(state), state_string(cur_state));
1151}
1152#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1153#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1154
1155static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1156 enum pipe pipe)
1157{
1158 int reg;
1159 u32 val;
1160
1161 /* ILK FDI PLL is always enabled */
3d13ef2e 1162 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1163 return;
1164
bf507ef7 1165 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1166 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1167 return;
1168
040484af
JB
1169 reg = FDI_TX_CTL(pipe);
1170 val = I915_READ(reg);
1171 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1172}
1173
55607e8a
DV
1174void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1175 enum pipe pipe, bool state)
040484af
JB
1176{
1177 int reg;
1178 u32 val;
55607e8a 1179 bool cur_state;
040484af
JB
1180
1181 reg = FDI_RX_CTL(pipe);
1182 val = I915_READ(reg);
55607e8a
DV
1183 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1184 WARN(cur_state != state,
1185 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1186 state_string(state), state_string(cur_state));
040484af
JB
1187}
1188
ea0760cf
JB
1189static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1190 enum pipe pipe)
1191{
1192 int pp_reg, lvds_reg;
1193 u32 val;
1194 enum pipe panel_pipe = PIPE_A;
0de3b485 1195 bool locked = true;
ea0760cf
JB
1196
1197 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1198 pp_reg = PCH_PP_CONTROL;
1199 lvds_reg = PCH_LVDS;
1200 } else {
1201 pp_reg = PP_CONTROL;
1202 lvds_reg = LVDS;
1203 }
1204
1205 val = I915_READ(pp_reg);
1206 if (!(val & PANEL_POWER_ON) ||
1207 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1208 locked = false;
1209
1210 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1211 panel_pipe = PIPE_B;
1212
1213 WARN(panel_pipe == pipe && locked,
1214 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1215 pipe_name(pipe));
ea0760cf
JB
1216}
1217
93ce0ba6
JN
1218static void assert_cursor(struct drm_i915_private *dev_priv,
1219 enum pipe pipe, bool state)
1220{
1221 struct drm_device *dev = dev_priv->dev;
1222 bool cur_state;
1223
d9d82081 1224 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1225 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1226 else
5efb3e28 1227 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1228
1229 WARN(cur_state != state,
1230 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1231 pipe_name(pipe), state_string(state), state_string(cur_state));
1232}
1233#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1234#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1235
b840d907
JB
1236void assert_pipe(struct drm_i915_private *dev_priv,
1237 enum pipe pipe, bool state)
b24e7179
JB
1238{
1239 int reg;
1240 u32 val;
63d7bbe9 1241 bool cur_state;
702e7a56
PZ
1242 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1243 pipe);
b24e7179 1244
8e636784
DV
1245 /* if we need the pipe A quirk it must be always on */
1246 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1247 state = true;
1248
da7e29bd 1249 if (!intel_display_power_enabled(dev_priv,
b97186f0 1250 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1251 cur_state = false;
1252 } else {
1253 reg = PIPECONF(cpu_transcoder);
1254 val = I915_READ(reg);
1255 cur_state = !!(val & PIPECONF_ENABLE);
1256 }
1257
63d7bbe9
JB
1258 WARN(cur_state != state,
1259 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1260 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1261}
1262
931872fc
CW
1263static void assert_plane(struct drm_i915_private *dev_priv,
1264 enum plane plane, bool state)
b24e7179
JB
1265{
1266 int reg;
1267 u32 val;
931872fc 1268 bool cur_state;
b24e7179
JB
1269
1270 reg = DSPCNTR(plane);
1271 val = I915_READ(reg);
931872fc
CW
1272 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1273 WARN(cur_state != state,
1274 "plane %c assertion failure (expected %s, current %s)\n",
1275 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1276}
1277
931872fc
CW
1278#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1279#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1280
b24e7179
JB
1281static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1282 enum pipe pipe)
1283{
653e1026 1284 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1285 int reg, i;
1286 u32 val;
1287 int cur_pipe;
1288
653e1026
VS
1289 /* Primary planes are fixed to pipes on gen4+ */
1290 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1291 reg = DSPCNTR(pipe);
1292 val = I915_READ(reg);
83f26f16 1293 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1294 "plane %c assertion failure, should be disabled but not\n",
1295 plane_name(pipe));
19ec1358 1296 return;
28c05794 1297 }
19ec1358 1298
b24e7179 1299 /* Need to check both planes against the pipe */
08e2a7de 1300 for_each_pipe(i) {
b24e7179
JB
1301 reg = DSPCNTR(i);
1302 val = I915_READ(reg);
1303 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1304 DISPPLANE_SEL_PIPE_SHIFT;
1305 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1306 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1307 plane_name(i), pipe_name(pipe));
b24e7179
JB
1308 }
1309}
1310
19332d7a
JB
1311static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1312 enum pipe pipe)
1313{
20674eef 1314 struct drm_device *dev = dev_priv->dev;
1fe47785 1315 int reg, sprite;
19332d7a
JB
1316 u32 val;
1317
20674eef 1318 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1319 for_each_sprite(pipe, sprite) {
1320 reg = SPCNTR(pipe, sprite);
20674eef 1321 val = I915_READ(reg);
83f26f16 1322 WARN(val & SP_ENABLE,
20674eef 1323 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1324 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1325 }
1326 } else if (INTEL_INFO(dev)->gen >= 7) {
1327 reg = SPRCTL(pipe);
19332d7a 1328 val = I915_READ(reg);
83f26f16 1329 WARN(val & SPRITE_ENABLE,
06da8da2 1330 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1331 plane_name(pipe), pipe_name(pipe));
1332 } else if (INTEL_INFO(dev)->gen >= 5) {
1333 reg = DVSCNTR(pipe);
19332d7a 1334 val = I915_READ(reg);
83f26f16 1335 WARN(val & DVS_ENABLE,
06da8da2 1336 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1337 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1338 }
1339}
1340
89eff4be 1341static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1342{
1343 u32 val;
1344 bool enabled;
1345
89eff4be 1346 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1347
92f2584a
JB
1348 val = I915_READ(PCH_DREF_CONTROL);
1349 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1350 DREF_SUPERSPREAD_SOURCE_MASK));
1351 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1352}
1353
ab9412ba
DV
1354static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe)
92f2584a
JB
1356{
1357 int reg;
1358 u32 val;
1359 bool enabled;
1360
ab9412ba 1361 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1362 val = I915_READ(reg);
1363 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1364 WARN(enabled,
1365 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1366 pipe_name(pipe));
92f2584a
JB
1367}
1368
4e634389
KP
1369static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1370 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1371{
1372 if ((val & DP_PORT_EN) == 0)
1373 return false;
1374
1375 if (HAS_PCH_CPT(dev_priv->dev)) {
1376 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1377 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1378 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1379 return false;
44f37d1f
CML
1380 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1381 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1382 return false;
f0575e92
KP
1383 } else {
1384 if ((val & DP_PIPE_MASK) != (pipe << 30))
1385 return false;
1386 }
1387 return true;
1388}
1389
1519b995
KP
1390static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1391 enum pipe pipe, u32 val)
1392{
dc0fa718 1393 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1394 return false;
1395
1396 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1397 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1398 return false;
44f37d1f
CML
1399 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1400 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1401 return false;
1519b995 1402 } else {
dc0fa718 1403 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1404 return false;
1405 }
1406 return true;
1407}
1408
1409static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, u32 val)
1411{
1412 if ((val & LVDS_PORT_EN) == 0)
1413 return false;
1414
1415 if (HAS_PCH_CPT(dev_priv->dev)) {
1416 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1417 return false;
1418 } else {
1419 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1420 return false;
1421 }
1422 return true;
1423}
1424
1425static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1426 enum pipe pipe, u32 val)
1427{
1428 if ((val & ADPA_DAC_ENABLE) == 0)
1429 return false;
1430 if (HAS_PCH_CPT(dev_priv->dev)) {
1431 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1432 return false;
1433 } else {
1434 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1435 return false;
1436 }
1437 return true;
1438}
1439
291906f1 1440static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1441 enum pipe pipe, int reg, u32 port_sel)
291906f1 1442{
47a05eca 1443 u32 val = I915_READ(reg);
4e634389 1444 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1445 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1446 reg, pipe_name(pipe));
de9a35ab 1447
75c5da27
DV
1448 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1449 && (val & DP_PIPEB_SELECT),
de9a35ab 1450 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1451}
1452
1453static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1454 enum pipe pipe, int reg)
1455{
47a05eca 1456 u32 val = I915_READ(reg);
b70ad586 1457 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1458 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1459 reg, pipe_name(pipe));
de9a35ab 1460
dc0fa718 1461 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1462 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1463 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1464}
1465
1466static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1467 enum pipe pipe)
1468{
1469 int reg;
1470 u32 val;
291906f1 1471
f0575e92
KP
1472 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1473 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1475
1476 reg = PCH_ADPA;
1477 val = I915_READ(reg);
b70ad586 1478 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1479 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1480 pipe_name(pipe));
291906f1
JB
1481
1482 reg = PCH_LVDS;
1483 val = I915_READ(reg);
b70ad586 1484 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1485 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1486 pipe_name(pipe));
291906f1 1487
e2debe91
PZ
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1490 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1491}
1492
40e9cf64
JB
1493static void intel_init_dpio(struct drm_device *dev)
1494{
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496
1497 if (!IS_VALLEYVIEW(dev))
1498 return;
1499
a09caddd
CML
1500 /*
1501 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1502 * CHV x1 PHY (DP/HDMI D)
1503 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1504 */
1505 if (IS_CHERRYVIEW(dev)) {
1506 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1507 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1508 } else {
1509 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1510 }
5382f5f3
JB
1511}
1512
1513static void intel_reset_dpio(struct drm_device *dev)
1514{
1515 struct drm_i915_private *dev_priv = dev->dev_private;
1516
076ed3b2
CML
1517 if (IS_CHERRYVIEW(dev)) {
1518 enum dpio_phy phy;
1519 u32 val;
1520
1521 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1522 /* Poll for phypwrgood signal */
1523 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1524 PHY_POWERGOOD(phy), 1))
1525 DRM_ERROR("Display PHY %d is not power up\n", phy);
1526
1527 /*
1528 * Deassert common lane reset for PHY.
1529 *
1530 * This should only be done on init and resume from S3
1531 * with both PLLs disabled, or we risk losing DPIO and
1532 * PLL synchronization.
1533 */
1534 val = I915_READ(DISPLAY_PHY_CONTROL);
1535 I915_WRITE(DISPLAY_PHY_CONTROL,
1536 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1537 }
076ed3b2 1538 }
40e9cf64
JB
1539}
1540
426115cf 1541static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1542{
426115cf
DV
1543 struct drm_device *dev = crtc->base.dev;
1544 struct drm_i915_private *dev_priv = dev->dev_private;
1545 int reg = DPLL(crtc->pipe);
1546 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1547
426115cf 1548 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1549
1550 /* No really, not for ILK+ */
1551 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1552
1553 /* PLL is protected by panel, make sure we can write it */
1554 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
426115cf 1555 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1556
426115cf
DV
1557 I915_WRITE(reg, dpll);
1558 POSTING_READ(reg);
1559 udelay(150);
1560
1561 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1562 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1563
1564 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1565 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1566
1567 /* We do this three times for luck */
426115cf 1568 I915_WRITE(reg, dpll);
87442f73
DV
1569 POSTING_READ(reg);
1570 udelay(150); /* wait for warmup */
426115cf 1571 I915_WRITE(reg, dpll);
87442f73
DV
1572 POSTING_READ(reg);
1573 udelay(150); /* wait for warmup */
426115cf 1574 I915_WRITE(reg, dpll);
87442f73
DV
1575 POSTING_READ(reg);
1576 udelay(150); /* wait for warmup */
1577}
1578
9d556c99
CML
1579static void chv_enable_pll(struct intel_crtc *crtc)
1580{
1581 struct drm_device *dev = crtc->base.dev;
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1583 int pipe = crtc->pipe;
1584 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1585 u32 tmp;
1586
1587 assert_pipe_disabled(dev_priv, crtc->pipe);
1588
1589 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1590
1591 mutex_lock(&dev_priv->dpio_lock);
1592
1593 /* Enable back the 10bit clock to display controller */
1594 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1595 tmp |= DPIO_DCLKP_EN;
1596 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1597
1598 /*
1599 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1600 */
1601 udelay(1);
1602
1603 /* Enable PLL */
a11b0703 1604 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1605
1606 /* Check PLL is locked */
a11b0703 1607 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1608 DRM_ERROR("PLL %d failed to lock\n", pipe);
1609
a11b0703
VS
1610 /* not sure when this should be written */
1611 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1612 POSTING_READ(DPLL_MD(pipe));
1613
9d556c99
CML
1614 mutex_unlock(&dev_priv->dpio_lock);
1615}
1616
66e3d5c0 1617static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1618{
66e3d5c0
DV
1619 struct drm_device *dev = crtc->base.dev;
1620 struct drm_i915_private *dev_priv = dev->dev_private;
1621 int reg = DPLL(crtc->pipe);
1622 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1623
66e3d5c0 1624 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1625
63d7bbe9 1626 /* No really, not for ILK+ */
3d13ef2e 1627 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1628
1629 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1630 if (IS_MOBILE(dev) && !IS_I830(dev))
1631 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1632
66e3d5c0
DV
1633 I915_WRITE(reg, dpll);
1634
1635 /* Wait for the clocks to stabilize. */
1636 POSTING_READ(reg);
1637 udelay(150);
1638
1639 if (INTEL_INFO(dev)->gen >= 4) {
1640 I915_WRITE(DPLL_MD(crtc->pipe),
1641 crtc->config.dpll_hw_state.dpll_md);
1642 } else {
1643 /* The pixel multiplier can only be updated once the
1644 * DPLL is enabled and the clocks are stable.
1645 *
1646 * So write it again.
1647 */
1648 I915_WRITE(reg, dpll);
1649 }
63d7bbe9
JB
1650
1651 /* We do this three times for luck */
66e3d5c0 1652 I915_WRITE(reg, dpll);
63d7bbe9
JB
1653 POSTING_READ(reg);
1654 udelay(150); /* wait for warmup */
66e3d5c0 1655 I915_WRITE(reg, dpll);
63d7bbe9
JB
1656 POSTING_READ(reg);
1657 udelay(150); /* wait for warmup */
66e3d5c0 1658 I915_WRITE(reg, dpll);
63d7bbe9
JB
1659 POSTING_READ(reg);
1660 udelay(150); /* wait for warmup */
1661}
1662
1663/**
50b44a44 1664 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1665 * @dev_priv: i915 private structure
1666 * @pipe: pipe PLL to disable
1667 *
1668 * Disable the PLL for @pipe, making sure the pipe is off first.
1669 *
1670 * Note! This is for pre-ILK only.
1671 */
50b44a44 1672static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1673{
63d7bbe9
JB
1674 /* Don't disable pipe A or pipe A PLLs if needed */
1675 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1676 return;
1677
1678 /* Make sure the pipe isn't still relying on us */
1679 assert_pipe_disabled(dev_priv, pipe);
1680
50b44a44
DV
1681 I915_WRITE(DPLL(pipe), 0);
1682 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1683}
1684
f6071166
JB
1685static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1686{
1687 u32 val = 0;
1688
1689 /* Make sure the pipe isn't still relying on us */
1690 assert_pipe_disabled(dev_priv, pipe);
1691
e5cbfbfb
ID
1692 /*
1693 * Leave integrated clock source and reference clock enabled for pipe B.
1694 * The latter is needed for VGA hotplug / manual detection.
1695 */
f6071166 1696 if (pipe == PIPE_B)
e5cbfbfb 1697 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1698 I915_WRITE(DPLL(pipe), val);
1699 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1700
1701}
1702
1703static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1704{
d752048d 1705 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1706 u32 val;
1707
a11b0703
VS
1708 /* Make sure the pipe isn't still relying on us */
1709 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1710
a11b0703
VS
1711 /* Set PLL en = 0 */
1712 val = DPLL_SSC_REF_CLOCK_CHV;
1713 if (pipe != PIPE_A)
1714 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1715 I915_WRITE(DPLL(pipe), val);
1716 POSTING_READ(DPLL(pipe));
d752048d
VS
1717
1718 mutex_lock(&dev_priv->dpio_lock);
1719
1720 /* Disable 10bit clock to display controller */
1721 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1722 val &= ~DPIO_DCLKP_EN;
1723 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1724
61407f6d
VS
1725 /* disable left/right clock distribution */
1726 if (pipe != PIPE_B) {
1727 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1728 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1729 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1730 } else {
1731 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1732 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1733 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1734 }
1735
d752048d 1736 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1737}
1738
e4607fcf
CML
1739void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1740 struct intel_digital_port *dport)
89b667f8
JB
1741{
1742 u32 port_mask;
00fc31b7 1743 int dpll_reg;
89b667f8 1744
e4607fcf
CML
1745 switch (dport->port) {
1746 case PORT_B:
89b667f8 1747 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1748 dpll_reg = DPLL(0);
e4607fcf
CML
1749 break;
1750 case PORT_C:
89b667f8 1751 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1752 dpll_reg = DPLL(0);
1753 break;
1754 case PORT_D:
1755 port_mask = DPLL_PORTD_READY_MASK;
1756 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1757 break;
1758 default:
1759 BUG();
1760 }
89b667f8 1761
00fc31b7 1762 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1763 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1764 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1765}
1766
b14b1055
DV
1767static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1768{
1769 struct drm_device *dev = crtc->base.dev;
1770 struct drm_i915_private *dev_priv = dev->dev_private;
1771 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1772
be19f0ff
CW
1773 if (WARN_ON(pll == NULL))
1774 return;
1775
b14b1055
DV
1776 WARN_ON(!pll->refcount);
1777 if (pll->active == 0) {
1778 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1779 WARN_ON(pll->on);
1780 assert_shared_dpll_disabled(dev_priv, pll);
1781
1782 pll->mode_set(dev_priv, pll);
1783 }
1784}
1785
92f2584a 1786/**
85b3894f 1787 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1788 * @dev_priv: i915 private structure
1789 * @pipe: pipe PLL to enable
1790 *
1791 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1792 * drives the transcoder clock.
1793 */
85b3894f 1794static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1795{
3d13ef2e
DL
1796 struct drm_device *dev = crtc->base.dev;
1797 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1798 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1799
87a875bb 1800 if (WARN_ON(pll == NULL))
48da64a8
CW
1801 return;
1802
1803 if (WARN_ON(pll->refcount == 0))
1804 return;
ee7b9f93 1805
46edb027
DV
1806 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1807 pll->name, pll->active, pll->on,
e2b78267 1808 crtc->base.base.id);
92f2584a 1809
cdbd2316
DV
1810 if (pll->active++) {
1811 WARN_ON(!pll->on);
e9d6944e 1812 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1813 return;
1814 }
f4a091c7 1815 WARN_ON(pll->on);
ee7b9f93 1816
46edb027 1817 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1818 pll->enable(dev_priv, pll);
ee7b9f93 1819 pll->on = true;
92f2584a
JB
1820}
1821
e2b78267 1822static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1823{
3d13ef2e
DL
1824 struct drm_device *dev = crtc->base.dev;
1825 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1826 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1827
92f2584a 1828 /* PCH only available on ILK+ */
3d13ef2e 1829 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1830 if (WARN_ON(pll == NULL))
ee7b9f93 1831 return;
92f2584a 1832
48da64a8
CW
1833 if (WARN_ON(pll->refcount == 0))
1834 return;
7a419866 1835
46edb027
DV
1836 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1837 pll->name, pll->active, pll->on,
e2b78267 1838 crtc->base.base.id);
7a419866 1839
48da64a8 1840 if (WARN_ON(pll->active == 0)) {
e9d6944e 1841 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1842 return;
1843 }
1844
e9d6944e 1845 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1846 WARN_ON(!pll->on);
cdbd2316 1847 if (--pll->active)
7a419866 1848 return;
ee7b9f93 1849
46edb027 1850 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1851 pll->disable(dev_priv, pll);
ee7b9f93 1852 pll->on = false;
92f2584a
JB
1853}
1854
b8a4f404
PZ
1855static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1856 enum pipe pipe)
040484af 1857{
23670b32 1858 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1859 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1860 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1861 uint32_t reg, val, pipeconf_val;
040484af
JB
1862
1863 /* PCH only available on ILK+ */
3d13ef2e 1864 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1865
1866 /* Make sure PCH DPLL is enabled */
e72f9fbf 1867 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1868 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1869
1870 /* FDI must be feeding us bits for PCH ports */
1871 assert_fdi_tx_enabled(dev_priv, pipe);
1872 assert_fdi_rx_enabled(dev_priv, pipe);
1873
23670b32
DV
1874 if (HAS_PCH_CPT(dev)) {
1875 /* Workaround: Set the timing override bit before enabling the
1876 * pch transcoder. */
1877 reg = TRANS_CHICKEN2(pipe);
1878 val = I915_READ(reg);
1879 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1880 I915_WRITE(reg, val);
59c859d6 1881 }
23670b32 1882
ab9412ba 1883 reg = PCH_TRANSCONF(pipe);
040484af 1884 val = I915_READ(reg);
5f7f726d 1885 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1886
1887 if (HAS_PCH_IBX(dev_priv->dev)) {
1888 /*
1889 * make the BPC in transcoder be consistent with
1890 * that in pipeconf reg.
1891 */
dfd07d72
DV
1892 val &= ~PIPECONF_BPC_MASK;
1893 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1894 }
5f7f726d
PZ
1895
1896 val &= ~TRANS_INTERLACE_MASK;
1897 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1898 if (HAS_PCH_IBX(dev_priv->dev) &&
1899 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1900 val |= TRANS_LEGACY_INTERLACED_ILK;
1901 else
1902 val |= TRANS_INTERLACED;
5f7f726d
PZ
1903 else
1904 val |= TRANS_PROGRESSIVE;
1905
040484af
JB
1906 I915_WRITE(reg, val | TRANS_ENABLE);
1907 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1908 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1909}
1910
8fb033d7 1911static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1912 enum transcoder cpu_transcoder)
040484af 1913{
8fb033d7 1914 u32 val, pipeconf_val;
8fb033d7
PZ
1915
1916 /* PCH only available on ILK+ */
3d13ef2e 1917 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1918
8fb033d7 1919 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1920 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1921 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1922
223a6fdf
PZ
1923 /* Workaround: set timing override bit. */
1924 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1925 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1926 I915_WRITE(_TRANSA_CHICKEN2, val);
1927
25f3ef11 1928 val = TRANS_ENABLE;
937bb610 1929 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1930
9a76b1c6
PZ
1931 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1932 PIPECONF_INTERLACED_ILK)
a35f2679 1933 val |= TRANS_INTERLACED;
8fb033d7
PZ
1934 else
1935 val |= TRANS_PROGRESSIVE;
1936
ab9412ba
DV
1937 I915_WRITE(LPT_TRANSCONF, val);
1938 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1939 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1940}
1941
b8a4f404
PZ
1942static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1943 enum pipe pipe)
040484af 1944{
23670b32
DV
1945 struct drm_device *dev = dev_priv->dev;
1946 uint32_t reg, val;
040484af
JB
1947
1948 /* FDI relies on the transcoder */
1949 assert_fdi_tx_disabled(dev_priv, pipe);
1950 assert_fdi_rx_disabled(dev_priv, pipe);
1951
291906f1
JB
1952 /* Ports must be off as well */
1953 assert_pch_ports_disabled(dev_priv, pipe);
1954
ab9412ba 1955 reg = PCH_TRANSCONF(pipe);
040484af
JB
1956 val = I915_READ(reg);
1957 val &= ~TRANS_ENABLE;
1958 I915_WRITE(reg, val);
1959 /* wait for PCH transcoder off, transcoder state */
1960 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1961 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1962
1963 if (!HAS_PCH_IBX(dev)) {
1964 /* Workaround: Clear the timing override chicken bit again. */
1965 reg = TRANS_CHICKEN2(pipe);
1966 val = I915_READ(reg);
1967 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1968 I915_WRITE(reg, val);
1969 }
040484af
JB
1970}
1971
ab4d966c 1972static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1973{
8fb033d7
PZ
1974 u32 val;
1975
ab9412ba 1976 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1977 val &= ~TRANS_ENABLE;
ab9412ba 1978 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1979 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1980 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1981 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1982
1983 /* Workaround: clear timing override bit. */
1984 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1985 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1986 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1987}
1988
b24e7179 1989/**
309cfea8 1990 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1991 * @crtc: crtc responsible for the pipe
b24e7179 1992 *
0372264a 1993 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1994 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1995 */
e1fdc473 1996static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1997{
0372264a
PZ
1998 struct drm_device *dev = crtc->base.dev;
1999 struct drm_i915_private *dev_priv = dev->dev_private;
2000 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2001 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2002 pipe);
1a240d4d 2003 enum pipe pch_transcoder;
b24e7179
JB
2004 int reg;
2005 u32 val;
2006
58c6eaa2 2007 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2008 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2009 assert_sprites_disabled(dev_priv, pipe);
2010
681e5811 2011 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2012 pch_transcoder = TRANSCODER_A;
2013 else
2014 pch_transcoder = pipe;
2015
b24e7179
JB
2016 /*
2017 * A pipe without a PLL won't actually be able to drive bits from
2018 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2019 * need the check.
2020 */
2021 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2022 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2023 assert_dsi_pll_enabled(dev_priv);
2024 else
2025 assert_pll_enabled(dev_priv, pipe);
040484af 2026 else {
30421c4f 2027 if (crtc->config.has_pch_encoder) {
040484af 2028 /* if driving the PCH, we need FDI enabled */
cc391bbb 2029 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2030 assert_fdi_tx_pll_enabled(dev_priv,
2031 (enum pipe) cpu_transcoder);
040484af
JB
2032 }
2033 /* FIXME: assert CPU port conditions for SNB+ */
2034 }
b24e7179 2035
702e7a56 2036 reg = PIPECONF(cpu_transcoder);
b24e7179 2037 val = I915_READ(reg);
7ad25d48
PZ
2038 if (val & PIPECONF_ENABLE) {
2039 WARN_ON(!(pipe == PIPE_A &&
2040 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2041 return;
7ad25d48 2042 }
00d70b15
CW
2043
2044 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2045 POSTING_READ(reg);
b24e7179
JB
2046}
2047
2048/**
309cfea8 2049 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2050 * @dev_priv: i915 private structure
2051 * @pipe: pipe to disable
2052 *
2053 * Disable @pipe, making sure that various hardware specific requirements
2054 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2055 *
2056 * @pipe should be %PIPE_A or %PIPE_B.
2057 *
2058 * Will wait until the pipe has shut down before returning.
2059 */
2060static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2061 enum pipe pipe)
2062{
702e7a56
PZ
2063 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2064 pipe);
b24e7179
JB
2065 int reg;
2066 u32 val;
2067
2068 /*
2069 * Make sure planes won't keep trying to pump pixels to us,
2070 * or we might hang the display.
2071 */
2072 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2073 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2074 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2075
2076 /* Don't disable pipe A or pipe A PLLs if needed */
2077 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2078 return;
2079
702e7a56 2080 reg = PIPECONF(cpu_transcoder);
b24e7179 2081 val = I915_READ(reg);
00d70b15
CW
2082 if ((val & PIPECONF_ENABLE) == 0)
2083 return;
2084
2085 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2086 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2087}
2088
d74362c9
KP
2089/*
2090 * Plane regs are double buffered, going from enabled->disabled needs a
2091 * trigger in order to latch. The display address reg provides this.
2092 */
1dba99f4
VS
2093void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2094 enum plane plane)
d74362c9 2095{
3d13ef2e
DL
2096 struct drm_device *dev = dev_priv->dev;
2097 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2098
2099 I915_WRITE(reg, I915_READ(reg));
2100 POSTING_READ(reg);
d74362c9
KP
2101}
2102
b24e7179 2103/**
262ca2b0 2104 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
b24e7179
JB
2105 * @dev_priv: i915 private structure
2106 * @plane: plane to enable
2107 * @pipe: pipe being fed
2108 *
2109 * Enable @plane on @pipe, making sure that @pipe is running first.
2110 */
262ca2b0
MR
2111static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2112 enum plane plane, enum pipe pipe)
b24e7179 2113{
33c3b0d1 2114 struct drm_device *dev = dev_priv->dev;
939c2fe8
VS
2115 struct intel_crtc *intel_crtc =
2116 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2117 int reg;
2118 u32 val;
2119
2120 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2121 assert_pipe_enabled(dev_priv, pipe);
2122
98ec7739
VS
2123 if (intel_crtc->primary_enabled)
2124 return;
0037f71c 2125
4c445e0e 2126 intel_crtc->primary_enabled = true;
939c2fe8 2127
b24e7179
JB
2128 reg = DSPCNTR(plane);
2129 val = I915_READ(reg);
10efa932 2130 WARN_ON(val & DISPLAY_PLANE_ENABLE);
00d70b15
CW
2131
2132 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1dba99f4 2133 intel_flush_primary_plane(dev_priv, plane);
33c3b0d1
VS
2134
2135 /*
2136 * BDW signals flip done immediately if the plane
2137 * is disabled, even if the plane enable is already
2138 * armed to occur at the next vblank :(
2139 */
2140 if (IS_BROADWELL(dev))
2141 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2142}
2143
b24e7179 2144/**
262ca2b0 2145 * intel_disable_primary_hw_plane - disable the primary hardware plane
b24e7179
JB
2146 * @dev_priv: i915 private structure
2147 * @plane: plane to disable
2148 * @pipe: pipe consuming the data
2149 *
2150 * Disable @plane; should be an independent operation.
2151 */
262ca2b0
MR
2152static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2153 enum plane plane, enum pipe pipe)
b24e7179 2154{
939c2fe8
VS
2155 struct intel_crtc *intel_crtc =
2156 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2157 int reg;
2158 u32 val;
2159
98ec7739
VS
2160 if (!intel_crtc->primary_enabled)
2161 return;
0037f71c 2162
4c445e0e 2163 intel_crtc->primary_enabled = false;
939c2fe8 2164
b24e7179
JB
2165 reg = DSPCNTR(plane);
2166 val = I915_READ(reg);
10efa932 2167 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
00d70b15
CW
2168
2169 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1dba99f4 2170 intel_flush_primary_plane(dev_priv, plane);
b24e7179
JB
2171}
2172
693db184
CW
2173static bool need_vtd_wa(struct drm_device *dev)
2174{
2175#ifdef CONFIG_INTEL_IOMMU
2176 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2177 return true;
2178#endif
2179 return false;
2180}
2181
a57ce0b2
JB
2182static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2183{
2184 int tile_height;
2185
2186 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2187 return ALIGN(height, tile_height);
2188}
2189
127bd2ac 2190int
48b956c5 2191intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2192 struct drm_i915_gem_object *obj,
a4872ba6 2193 struct intel_engine_cs *pipelined)
6b95a207 2194{
ce453d81 2195 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2196 u32 alignment;
2197 int ret;
2198
05394f39 2199 switch (obj->tiling_mode) {
6b95a207 2200 case I915_TILING_NONE:
534843da
CW
2201 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2202 alignment = 128 * 1024;
a6c45cf0 2203 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2204 alignment = 4 * 1024;
2205 else
2206 alignment = 64 * 1024;
6b95a207
KH
2207 break;
2208 case I915_TILING_X:
2209 /* pin() will align the object as required by fence */
2210 alignment = 0;
2211 break;
2212 case I915_TILING_Y:
80075d49 2213 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2214 return -EINVAL;
2215 default:
2216 BUG();
2217 }
2218
693db184
CW
2219 /* Note that the w/a also requires 64 PTE of padding following the
2220 * bo. We currently fill all unused PTE with the shadow page and so
2221 * we should always have valid PTE following the scanout preventing
2222 * the VT-d warning.
2223 */
2224 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2225 alignment = 256 * 1024;
2226
ce453d81 2227 dev_priv->mm.interruptible = false;
2da3b9b9 2228 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2229 if (ret)
ce453d81 2230 goto err_interruptible;
6b95a207
KH
2231
2232 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2233 * fence, whereas 965+ only requires a fence if using
2234 * framebuffer compression. For simplicity, we always install
2235 * a fence as the cost is not that onerous.
2236 */
06d98131 2237 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2238 if (ret)
2239 goto err_unpin;
1690e1eb 2240
9a5a53b3 2241 i915_gem_object_pin_fence(obj);
6b95a207 2242
ce453d81 2243 dev_priv->mm.interruptible = true;
6b95a207 2244 return 0;
48b956c5
CW
2245
2246err_unpin:
cc98b413 2247 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2248err_interruptible:
2249 dev_priv->mm.interruptible = true;
48b956c5 2250 return ret;
6b95a207
KH
2251}
2252
1690e1eb
CW
2253void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2254{
2255 i915_gem_object_unpin_fence(obj);
cc98b413 2256 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2257}
2258
c2c75131
DV
2259/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2260 * is assumed to be a power-of-two. */
bc752862
CW
2261unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2262 unsigned int tiling_mode,
2263 unsigned int cpp,
2264 unsigned int pitch)
c2c75131 2265{
bc752862
CW
2266 if (tiling_mode != I915_TILING_NONE) {
2267 unsigned int tile_rows, tiles;
c2c75131 2268
bc752862
CW
2269 tile_rows = *y / 8;
2270 *y %= 8;
c2c75131 2271
bc752862
CW
2272 tiles = *x / (512/cpp);
2273 *x %= 512/cpp;
2274
2275 return tile_rows * pitch * 8 + tiles * 4096;
2276 } else {
2277 unsigned int offset;
2278
2279 offset = *y * pitch + *x * cpp;
2280 *y = 0;
2281 *x = (offset & 4095) / cpp;
2282 return offset & -4096;
2283 }
c2c75131
DV
2284}
2285
46f297fb
JB
2286int intel_format_to_fourcc(int format)
2287{
2288 switch (format) {
2289 case DISPPLANE_8BPP:
2290 return DRM_FORMAT_C8;
2291 case DISPPLANE_BGRX555:
2292 return DRM_FORMAT_XRGB1555;
2293 case DISPPLANE_BGRX565:
2294 return DRM_FORMAT_RGB565;
2295 default:
2296 case DISPPLANE_BGRX888:
2297 return DRM_FORMAT_XRGB8888;
2298 case DISPPLANE_RGBX888:
2299 return DRM_FORMAT_XBGR8888;
2300 case DISPPLANE_BGRX101010:
2301 return DRM_FORMAT_XRGB2101010;
2302 case DISPPLANE_RGBX101010:
2303 return DRM_FORMAT_XBGR2101010;
2304 }
2305}
2306
484b41dd 2307static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2308 struct intel_plane_config *plane_config)
2309{
2310 struct drm_device *dev = crtc->base.dev;
2311 struct drm_i915_gem_object *obj = NULL;
2312 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2313 u32 base = plane_config->base;
2314
ff2652ea
CW
2315 if (plane_config->size == 0)
2316 return false;
2317
46f297fb
JB
2318 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2319 plane_config->size);
2320 if (!obj)
484b41dd 2321 return false;
46f297fb
JB
2322
2323 if (plane_config->tiled) {
2324 obj->tiling_mode = I915_TILING_X;
66e514c1 2325 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2326 }
2327
66e514c1
DA
2328 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2329 mode_cmd.width = crtc->base.primary->fb->width;
2330 mode_cmd.height = crtc->base.primary->fb->height;
2331 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2332
2333 mutex_lock(&dev->struct_mutex);
2334
66e514c1 2335 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2336 &mode_cmd, obj)) {
46f297fb
JB
2337 DRM_DEBUG_KMS("intel fb init failed\n");
2338 goto out_unref_obj;
2339 }
2340
a071fa00 2341 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2342 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2343
2344 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2345 return true;
46f297fb
JB
2346
2347out_unref_obj:
2348 drm_gem_object_unreference(&obj->base);
2349 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2350 return false;
2351}
2352
2353static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2354 struct intel_plane_config *plane_config)
2355{
2356 struct drm_device *dev = intel_crtc->base.dev;
2357 struct drm_crtc *c;
2358 struct intel_crtc *i;
2359 struct intel_framebuffer *fb;
2360
66e514c1 2361 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2362 return;
2363
2364 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2365 return;
2366
66e514c1
DA
2367 kfree(intel_crtc->base.primary->fb);
2368 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2369
2370 /*
2371 * Failed to alloc the obj, check to see if we should share
2372 * an fb with another CRTC instead
2373 */
70e1e0ec 2374 for_each_crtc(dev, c) {
484b41dd
JB
2375 i = to_intel_crtc(c);
2376
2377 if (c == &intel_crtc->base)
2378 continue;
2379
66e514c1 2380 if (!i->active || !c->primary->fb)
484b41dd
JB
2381 continue;
2382
66e514c1 2383 fb = to_intel_framebuffer(c->primary->fb);
484b41dd 2384 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
66e514c1
DA
2385 drm_framebuffer_reference(c->primary->fb);
2386 intel_crtc->base.primary->fb = c->primary->fb;
a071fa00 2387 fb->obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2388 break;
2389 }
2390 }
46f297fb
JB
2391}
2392
29b9bde6
DV
2393static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2394 struct drm_framebuffer *fb,
2395 int x, int y)
81255565
JB
2396{
2397 struct drm_device *dev = crtc->dev;
2398 struct drm_i915_private *dev_priv = dev->dev_private;
2399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2400 struct intel_framebuffer *intel_fb;
05394f39 2401 struct drm_i915_gem_object *obj;
81255565 2402 int plane = intel_crtc->plane;
e506a0c6 2403 unsigned long linear_offset;
81255565 2404 u32 dspcntr;
5eddb70b 2405 u32 reg;
81255565 2406
81255565
JB
2407 intel_fb = to_intel_framebuffer(fb);
2408 obj = intel_fb->obj;
81255565 2409
5eddb70b
CW
2410 reg = DSPCNTR(plane);
2411 dspcntr = I915_READ(reg);
81255565
JB
2412 /* Mask out pixel format bits in case we change it */
2413 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2414 switch (fb->pixel_format) {
2415 case DRM_FORMAT_C8:
81255565
JB
2416 dspcntr |= DISPPLANE_8BPP;
2417 break;
57779d06
VS
2418 case DRM_FORMAT_XRGB1555:
2419 case DRM_FORMAT_ARGB1555:
2420 dspcntr |= DISPPLANE_BGRX555;
81255565 2421 break;
57779d06
VS
2422 case DRM_FORMAT_RGB565:
2423 dspcntr |= DISPPLANE_BGRX565;
2424 break;
2425 case DRM_FORMAT_XRGB8888:
2426 case DRM_FORMAT_ARGB8888:
2427 dspcntr |= DISPPLANE_BGRX888;
2428 break;
2429 case DRM_FORMAT_XBGR8888:
2430 case DRM_FORMAT_ABGR8888:
2431 dspcntr |= DISPPLANE_RGBX888;
2432 break;
2433 case DRM_FORMAT_XRGB2101010:
2434 case DRM_FORMAT_ARGB2101010:
2435 dspcntr |= DISPPLANE_BGRX101010;
2436 break;
2437 case DRM_FORMAT_XBGR2101010:
2438 case DRM_FORMAT_ABGR2101010:
2439 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2440 break;
2441 default:
baba133a 2442 BUG();
81255565 2443 }
57779d06 2444
a6c45cf0 2445 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2446 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2447 dspcntr |= DISPPLANE_TILED;
2448 else
2449 dspcntr &= ~DISPPLANE_TILED;
2450 }
2451
de1aa629
VS
2452 if (IS_G4X(dev))
2453 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2454
5eddb70b 2455 I915_WRITE(reg, dspcntr);
81255565 2456
e506a0c6 2457 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2458
c2c75131
DV
2459 if (INTEL_INFO(dev)->gen >= 4) {
2460 intel_crtc->dspaddr_offset =
bc752862
CW
2461 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2462 fb->bits_per_pixel / 8,
2463 fb->pitches[0]);
c2c75131
DV
2464 linear_offset -= intel_crtc->dspaddr_offset;
2465 } else {
e506a0c6 2466 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2467 }
e506a0c6 2468
f343c5f6
BW
2469 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2470 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2471 fb->pitches[0]);
01f2c773 2472 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2473 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2474 I915_WRITE(DSPSURF(plane),
2475 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2476 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2477 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2478 } else
f343c5f6 2479 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2480 POSTING_READ(reg);
17638cd6
JB
2481}
2482
29b9bde6
DV
2483static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2484 struct drm_framebuffer *fb,
2485 int x, int y)
17638cd6
JB
2486{
2487 struct drm_device *dev = crtc->dev;
2488 struct drm_i915_private *dev_priv = dev->dev_private;
2489 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2490 struct intel_framebuffer *intel_fb;
2491 struct drm_i915_gem_object *obj;
2492 int plane = intel_crtc->plane;
e506a0c6 2493 unsigned long linear_offset;
17638cd6
JB
2494 u32 dspcntr;
2495 u32 reg;
2496
17638cd6
JB
2497 intel_fb = to_intel_framebuffer(fb);
2498 obj = intel_fb->obj;
2499
2500 reg = DSPCNTR(plane);
2501 dspcntr = I915_READ(reg);
2502 /* Mask out pixel format bits in case we change it */
2503 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2504 switch (fb->pixel_format) {
2505 case DRM_FORMAT_C8:
17638cd6
JB
2506 dspcntr |= DISPPLANE_8BPP;
2507 break;
57779d06
VS
2508 case DRM_FORMAT_RGB565:
2509 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2510 break;
57779d06
VS
2511 case DRM_FORMAT_XRGB8888:
2512 case DRM_FORMAT_ARGB8888:
2513 dspcntr |= DISPPLANE_BGRX888;
2514 break;
2515 case DRM_FORMAT_XBGR8888:
2516 case DRM_FORMAT_ABGR8888:
2517 dspcntr |= DISPPLANE_RGBX888;
2518 break;
2519 case DRM_FORMAT_XRGB2101010:
2520 case DRM_FORMAT_ARGB2101010:
2521 dspcntr |= DISPPLANE_BGRX101010;
2522 break;
2523 case DRM_FORMAT_XBGR2101010:
2524 case DRM_FORMAT_ABGR2101010:
2525 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2526 break;
2527 default:
baba133a 2528 BUG();
17638cd6
JB
2529 }
2530
2531 if (obj->tiling_mode != I915_TILING_NONE)
2532 dspcntr |= DISPPLANE_TILED;
2533 else
2534 dspcntr &= ~DISPPLANE_TILED;
2535
b42c6009 2536 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1f5d76db
PZ
2537 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2538 else
2539 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6
JB
2540
2541 I915_WRITE(reg, dspcntr);
2542
e506a0c6 2543 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2544 intel_crtc->dspaddr_offset =
bc752862
CW
2545 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2546 fb->bits_per_pixel / 8,
2547 fb->pitches[0]);
c2c75131 2548 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2549
f343c5f6
BW
2550 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2551 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2552 fb->pitches[0]);
01f2c773 2553 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2554 I915_WRITE(DSPSURF(plane),
2555 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2556 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2557 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2558 } else {
2559 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2560 I915_WRITE(DSPLINOFF(plane), linear_offset);
2561 }
17638cd6 2562 POSTING_READ(reg);
17638cd6
JB
2563}
2564
2565/* Assume fb object is pinned & idle & fenced and just update base pointers */
2566static int
2567intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2568 int x, int y, enum mode_set_atomic state)
2569{
2570 struct drm_device *dev = crtc->dev;
2571 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2572
6b8e6ed0
CW
2573 if (dev_priv->display.disable_fbc)
2574 dev_priv->display.disable_fbc(dev);
cc36513c 2575 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2576
29b9bde6
DV
2577 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2578
2579 return 0;
81255565
JB
2580}
2581
96a02917
VS
2582void intel_display_handle_reset(struct drm_device *dev)
2583{
2584 struct drm_i915_private *dev_priv = dev->dev_private;
2585 struct drm_crtc *crtc;
2586
2587 /*
2588 * Flips in the rings have been nuked by the reset,
2589 * so complete all pending flips so that user space
2590 * will get its events and not get stuck.
2591 *
2592 * Also update the base address of all primary
2593 * planes to the the last fb to make sure we're
2594 * showing the correct fb after a reset.
2595 *
2596 * Need to make two loops over the crtcs so that we
2597 * don't try to grab a crtc mutex before the
2598 * pending_flip_queue really got woken up.
2599 */
2600
70e1e0ec 2601 for_each_crtc(dev, crtc) {
96a02917
VS
2602 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2603 enum plane plane = intel_crtc->plane;
2604
2605 intel_prepare_page_flip(dev, plane);
2606 intel_finish_page_flip_plane(dev, plane);
2607 }
2608
70e1e0ec 2609 for_each_crtc(dev, crtc) {
96a02917
VS
2610 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2611
51fd371b 2612 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2613 /*
2614 * FIXME: Once we have proper support for primary planes (and
2615 * disabling them without disabling the entire crtc) allow again
66e514c1 2616 * a NULL crtc->primary->fb.
947fdaad 2617 */
f4510a27 2618 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2619 dev_priv->display.update_primary_plane(crtc,
66e514c1 2620 crtc->primary->fb,
262ca2b0
MR
2621 crtc->x,
2622 crtc->y);
51fd371b 2623 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2624 }
2625}
2626
14667a4b
CW
2627static int
2628intel_finish_fb(struct drm_framebuffer *old_fb)
2629{
2630 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2631 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2632 bool was_interruptible = dev_priv->mm.interruptible;
2633 int ret;
2634
14667a4b
CW
2635 /* Big Hammer, we also need to ensure that any pending
2636 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2637 * current scanout is retired before unpinning the old
2638 * framebuffer.
2639 *
2640 * This should only fail upon a hung GPU, in which case we
2641 * can safely continue.
2642 */
2643 dev_priv->mm.interruptible = false;
2644 ret = i915_gem_object_finish_gpu(obj);
2645 dev_priv->mm.interruptible = was_interruptible;
2646
2647 return ret;
2648}
2649
7d5e3799
CW
2650static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2651{
2652 struct drm_device *dev = crtc->dev;
2653 struct drm_i915_private *dev_priv = dev->dev_private;
2654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2655 unsigned long flags;
2656 bool pending;
2657
2658 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2659 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2660 return false;
2661
2662 spin_lock_irqsave(&dev->event_lock, flags);
2663 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2664 spin_unlock_irqrestore(&dev->event_lock, flags);
2665
2666 return pending;
2667}
2668
5c3b82e2 2669static int
3c4fdcfb 2670intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2671 struct drm_framebuffer *fb)
79e53945
JB
2672{
2673 struct drm_device *dev = crtc->dev;
6b8e6ed0 2674 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2675 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2676 enum pipe pipe = intel_crtc->pipe;
94352cf9 2677 struct drm_framebuffer *old_fb;
a071fa00 2678 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
91565c85 2679 struct drm_i915_gem_object *old_obj;
5c3b82e2 2680 int ret;
79e53945 2681
7d5e3799
CW
2682 if (intel_crtc_has_pending_flip(crtc)) {
2683 DRM_ERROR("pipe is still busy with an old pageflip\n");
2684 return -EBUSY;
2685 }
2686
79e53945 2687 /* no fb bound */
94352cf9 2688 if (!fb) {
a5071c2f 2689 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2690 return 0;
2691 }
2692
7eb552ae 2693 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2694 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2695 plane_name(intel_crtc->plane),
2696 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2697 return -EINVAL;
79e53945
JB
2698 }
2699
a071fa00 2700 old_fb = crtc->primary->fb;
91565c85 2701 old_obj = old_fb ? to_intel_framebuffer(old_fb)->obj : NULL;
a071fa00 2702
5c3b82e2 2703 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2704 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2705 if (ret == 0)
91565c85 2706 i915_gem_track_fb(old_obj, obj,
a071fa00 2707 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2708 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2709 if (ret != 0) {
a5071c2f 2710 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2711 return ret;
2712 }
79e53945 2713
bb2043de
DL
2714 /*
2715 * Update pipe size and adjust fitter if needed: the reason for this is
2716 * that in compute_mode_changes we check the native mode (not the pfit
2717 * mode) to see if we can flip rather than do a full mode set. In the
2718 * fastboot case, we'll flip, but if we don't update the pipesrc and
2719 * pfit state, we'll end up with a big fb scanned out into the wrong
2720 * sized surface.
2721 *
2722 * To fix this properly, we need to hoist the checks up into
2723 * compute_mode_changes (or above), check the actual pfit state and
2724 * whether the platform allows pfit disable with pipe active, and only
2725 * then update the pipesrc and pfit state, even on the flip path.
2726 */
d330a953 2727 if (i915.fastboot) {
d7bf63f2
DL
2728 const struct drm_display_mode *adjusted_mode =
2729 &intel_crtc->config.adjusted_mode;
2730
4d6a3e63 2731 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2732 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2733 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2734 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2735 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2736 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2737 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2738 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2739 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2740 }
0637d60d
JB
2741 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2742 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2743 }
2744
29b9bde6 2745 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2746
f99d7069
DV
2747 if (intel_crtc->active)
2748 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2749
f4510a27 2750 crtc->primary->fb = fb;
6c4c86f5
DV
2751 crtc->x = x;
2752 crtc->y = y;
94352cf9 2753
b7f1de28 2754 if (old_fb) {
d7697eea
DV
2755 if (intel_crtc->active && old_fb != fb)
2756 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2757 mutex_lock(&dev->struct_mutex);
1690e1eb 2758 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
8ac36ec1 2759 mutex_unlock(&dev->struct_mutex);
b7f1de28 2760 }
652c393a 2761
8ac36ec1 2762 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2763 intel_update_fbc(dev);
5c3b82e2 2764 mutex_unlock(&dev->struct_mutex);
79e53945 2765
5c3b82e2 2766 return 0;
79e53945
JB
2767}
2768
5e84e1a4
ZW
2769static void intel_fdi_normal_train(struct drm_crtc *crtc)
2770{
2771 struct drm_device *dev = crtc->dev;
2772 struct drm_i915_private *dev_priv = dev->dev_private;
2773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2774 int pipe = intel_crtc->pipe;
2775 u32 reg, temp;
2776
2777 /* enable normal train */
2778 reg = FDI_TX_CTL(pipe);
2779 temp = I915_READ(reg);
61e499bf 2780 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2781 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2782 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2783 } else {
2784 temp &= ~FDI_LINK_TRAIN_NONE;
2785 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2786 }
5e84e1a4
ZW
2787 I915_WRITE(reg, temp);
2788
2789 reg = FDI_RX_CTL(pipe);
2790 temp = I915_READ(reg);
2791 if (HAS_PCH_CPT(dev)) {
2792 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2793 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2794 } else {
2795 temp &= ~FDI_LINK_TRAIN_NONE;
2796 temp |= FDI_LINK_TRAIN_NONE;
2797 }
2798 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2799
2800 /* wait one idle pattern time */
2801 POSTING_READ(reg);
2802 udelay(1000);
357555c0
JB
2803
2804 /* IVB wants error correction enabled */
2805 if (IS_IVYBRIDGE(dev))
2806 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2807 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2808}
2809
1fbc0d78 2810static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2811{
1fbc0d78
DV
2812 return crtc->base.enabled && crtc->active &&
2813 crtc->config.has_pch_encoder;
1e833f40
DV
2814}
2815
01a415fd
DV
2816static void ivb_modeset_global_resources(struct drm_device *dev)
2817{
2818 struct drm_i915_private *dev_priv = dev->dev_private;
2819 struct intel_crtc *pipe_B_crtc =
2820 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2821 struct intel_crtc *pipe_C_crtc =
2822 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2823 uint32_t temp;
2824
1e833f40
DV
2825 /*
2826 * When everything is off disable fdi C so that we could enable fdi B
2827 * with all lanes. Note that we don't care about enabled pipes without
2828 * an enabled pch encoder.
2829 */
2830 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2831 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2832 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2833 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2834
2835 temp = I915_READ(SOUTH_CHICKEN1);
2836 temp &= ~FDI_BC_BIFURCATION_SELECT;
2837 DRM_DEBUG_KMS("disabling fdi C rx\n");
2838 I915_WRITE(SOUTH_CHICKEN1, temp);
2839 }
2840}
2841
8db9d77b
ZW
2842/* The FDI link training functions for ILK/Ibexpeak. */
2843static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2844{
2845 struct drm_device *dev = crtc->dev;
2846 struct drm_i915_private *dev_priv = dev->dev_private;
2847 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2848 int pipe = intel_crtc->pipe;
5eddb70b 2849 u32 reg, temp, tries;
8db9d77b 2850
1c8562f6 2851 /* FDI needs bits from pipe first */
0fc932b8 2852 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2853
e1a44743
AJ
2854 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2855 for train result */
5eddb70b
CW
2856 reg = FDI_RX_IMR(pipe);
2857 temp = I915_READ(reg);
e1a44743
AJ
2858 temp &= ~FDI_RX_SYMBOL_LOCK;
2859 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2860 I915_WRITE(reg, temp);
2861 I915_READ(reg);
e1a44743
AJ
2862 udelay(150);
2863
8db9d77b 2864 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2865 reg = FDI_TX_CTL(pipe);
2866 temp = I915_READ(reg);
627eb5a3
DV
2867 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2868 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2869 temp &= ~FDI_LINK_TRAIN_NONE;
2870 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2871 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2872
5eddb70b
CW
2873 reg = FDI_RX_CTL(pipe);
2874 temp = I915_READ(reg);
8db9d77b
ZW
2875 temp &= ~FDI_LINK_TRAIN_NONE;
2876 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2877 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2878
2879 POSTING_READ(reg);
8db9d77b
ZW
2880 udelay(150);
2881
5b2adf89 2882 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2883 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2884 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2885 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2886
5eddb70b 2887 reg = FDI_RX_IIR(pipe);
e1a44743 2888 for (tries = 0; tries < 5; tries++) {
5eddb70b 2889 temp = I915_READ(reg);
8db9d77b
ZW
2890 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2891
2892 if ((temp & FDI_RX_BIT_LOCK)) {
2893 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2894 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2895 break;
2896 }
8db9d77b 2897 }
e1a44743 2898 if (tries == 5)
5eddb70b 2899 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2900
2901 /* Train 2 */
5eddb70b
CW
2902 reg = FDI_TX_CTL(pipe);
2903 temp = I915_READ(reg);
8db9d77b
ZW
2904 temp &= ~FDI_LINK_TRAIN_NONE;
2905 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2906 I915_WRITE(reg, temp);
8db9d77b 2907
5eddb70b
CW
2908 reg = FDI_RX_CTL(pipe);
2909 temp = I915_READ(reg);
8db9d77b
ZW
2910 temp &= ~FDI_LINK_TRAIN_NONE;
2911 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2912 I915_WRITE(reg, temp);
8db9d77b 2913
5eddb70b
CW
2914 POSTING_READ(reg);
2915 udelay(150);
8db9d77b 2916
5eddb70b 2917 reg = FDI_RX_IIR(pipe);
e1a44743 2918 for (tries = 0; tries < 5; tries++) {
5eddb70b 2919 temp = I915_READ(reg);
8db9d77b
ZW
2920 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2921
2922 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2923 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2924 DRM_DEBUG_KMS("FDI train 2 done.\n");
2925 break;
2926 }
8db9d77b 2927 }
e1a44743 2928 if (tries == 5)
5eddb70b 2929 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2930
2931 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2932
8db9d77b
ZW
2933}
2934
0206e353 2935static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2936 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2937 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2938 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2939 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2940};
2941
2942/* The FDI link training functions for SNB/Cougarpoint. */
2943static void gen6_fdi_link_train(struct drm_crtc *crtc)
2944{
2945 struct drm_device *dev = crtc->dev;
2946 struct drm_i915_private *dev_priv = dev->dev_private;
2947 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2948 int pipe = intel_crtc->pipe;
fa37d39e 2949 u32 reg, temp, i, retry;
8db9d77b 2950
e1a44743
AJ
2951 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2952 for train result */
5eddb70b
CW
2953 reg = FDI_RX_IMR(pipe);
2954 temp = I915_READ(reg);
e1a44743
AJ
2955 temp &= ~FDI_RX_SYMBOL_LOCK;
2956 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2957 I915_WRITE(reg, temp);
2958
2959 POSTING_READ(reg);
e1a44743
AJ
2960 udelay(150);
2961
8db9d77b 2962 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2963 reg = FDI_TX_CTL(pipe);
2964 temp = I915_READ(reg);
627eb5a3
DV
2965 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2966 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2967 temp &= ~FDI_LINK_TRAIN_NONE;
2968 temp |= FDI_LINK_TRAIN_PATTERN_1;
2969 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2970 /* SNB-B */
2971 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2972 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2973
d74cf324
DV
2974 I915_WRITE(FDI_RX_MISC(pipe),
2975 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2976
5eddb70b
CW
2977 reg = FDI_RX_CTL(pipe);
2978 temp = I915_READ(reg);
8db9d77b
ZW
2979 if (HAS_PCH_CPT(dev)) {
2980 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2981 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2982 } else {
2983 temp &= ~FDI_LINK_TRAIN_NONE;
2984 temp |= FDI_LINK_TRAIN_PATTERN_1;
2985 }
5eddb70b
CW
2986 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2987
2988 POSTING_READ(reg);
8db9d77b
ZW
2989 udelay(150);
2990
0206e353 2991 for (i = 0; i < 4; i++) {
5eddb70b
CW
2992 reg = FDI_TX_CTL(pipe);
2993 temp = I915_READ(reg);
8db9d77b
ZW
2994 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2995 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2996 I915_WRITE(reg, temp);
2997
2998 POSTING_READ(reg);
8db9d77b
ZW
2999 udelay(500);
3000
fa37d39e
SP
3001 for (retry = 0; retry < 5; retry++) {
3002 reg = FDI_RX_IIR(pipe);
3003 temp = I915_READ(reg);
3004 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3005 if (temp & FDI_RX_BIT_LOCK) {
3006 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3007 DRM_DEBUG_KMS("FDI train 1 done.\n");
3008 break;
3009 }
3010 udelay(50);
8db9d77b 3011 }
fa37d39e
SP
3012 if (retry < 5)
3013 break;
8db9d77b
ZW
3014 }
3015 if (i == 4)
5eddb70b 3016 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3017
3018 /* Train 2 */
5eddb70b
CW
3019 reg = FDI_TX_CTL(pipe);
3020 temp = I915_READ(reg);
8db9d77b
ZW
3021 temp &= ~FDI_LINK_TRAIN_NONE;
3022 temp |= FDI_LINK_TRAIN_PATTERN_2;
3023 if (IS_GEN6(dev)) {
3024 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3025 /* SNB-B */
3026 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3027 }
5eddb70b 3028 I915_WRITE(reg, temp);
8db9d77b 3029
5eddb70b
CW
3030 reg = FDI_RX_CTL(pipe);
3031 temp = I915_READ(reg);
8db9d77b
ZW
3032 if (HAS_PCH_CPT(dev)) {
3033 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3034 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3035 } else {
3036 temp &= ~FDI_LINK_TRAIN_NONE;
3037 temp |= FDI_LINK_TRAIN_PATTERN_2;
3038 }
5eddb70b
CW
3039 I915_WRITE(reg, temp);
3040
3041 POSTING_READ(reg);
8db9d77b
ZW
3042 udelay(150);
3043
0206e353 3044 for (i = 0; i < 4; i++) {
5eddb70b
CW
3045 reg = FDI_TX_CTL(pipe);
3046 temp = I915_READ(reg);
8db9d77b
ZW
3047 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3048 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3049 I915_WRITE(reg, temp);
3050
3051 POSTING_READ(reg);
8db9d77b
ZW
3052 udelay(500);
3053
fa37d39e
SP
3054 for (retry = 0; retry < 5; retry++) {
3055 reg = FDI_RX_IIR(pipe);
3056 temp = I915_READ(reg);
3057 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3058 if (temp & FDI_RX_SYMBOL_LOCK) {
3059 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3060 DRM_DEBUG_KMS("FDI train 2 done.\n");
3061 break;
3062 }
3063 udelay(50);
8db9d77b 3064 }
fa37d39e
SP
3065 if (retry < 5)
3066 break;
8db9d77b
ZW
3067 }
3068 if (i == 4)
5eddb70b 3069 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3070
3071 DRM_DEBUG_KMS("FDI train done.\n");
3072}
3073
357555c0
JB
3074/* Manual link training for Ivy Bridge A0 parts */
3075static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3076{
3077 struct drm_device *dev = crtc->dev;
3078 struct drm_i915_private *dev_priv = dev->dev_private;
3079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3080 int pipe = intel_crtc->pipe;
139ccd3f 3081 u32 reg, temp, i, j;
357555c0
JB
3082
3083 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3084 for train result */
3085 reg = FDI_RX_IMR(pipe);
3086 temp = I915_READ(reg);
3087 temp &= ~FDI_RX_SYMBOL_LOCK;
3088 temp &= ~FDI_RX_BIT_LOCK;
3089 I915_WRITE(reg, temp);
3090
3091 POSTING_READ(reg);
3092 udelay(150);
3093
01a415fd
DV
3094 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3095 I915_READ(FDI_RX_IIR(pipe)));
3096
139ccd3f
JB
3097 /* Try each vswing and preemphasis setting twice before moving on */
3098 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3099 /* disable first in case we need to retry */
3100 reg = FDI_TX_CTL(pipe);
3101 temp = I915_READ(reg);
3102 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3103 temp &= ~FDI_TX_ENABLE;
3104 I915_WRITE(reg, temp);
357555c0 3105
139ccd3f
JB
3106 reg = FDI_RX_CTL(pipe);
3107 temp = I915_READ(reg);
3108 temp &= ~FDI_LINK_TRAIN_AUTO;
3109 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3110 temp &= ~FDI_RX_ENABLE;
3111 I915_WRITE(reg, temp);
357555c0 3112
139ccd3f 3113 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3114 reg = FDI_TX_CTL(pipe);
3115 temp = I915_READ(reg);
139ccd3f
JB
3116 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3117 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3118 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3119 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3120 temp |= snb_b_fdi_train_param[j/2];
3121 temp |= FDI_COMPOSITE_SYNC;
3122 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3123
139ccd3f
JB
3124 I915_WRITE(FDI_RX_MISC(pipe),
3125 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3126
139ccd3f 3127 reg = FDI_RX_CTL(pipe);
357555c0 3128 temp = I915_READ(reg);
139ccd3f
JB
3129 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3130 temp |= FDI_COMPOSITE_SYNC;
3131 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3132
139ccd3f
JB
3133 POSTING_READ(reg);
3134 udelay(1); /* should be 0.5us */
357555c0 3135
139ccd3f
JB
3136 for (i = 0; i < 4; i++) {
3137 reg = FDI_RX_IIR(pipe);
3138 temp = I915_READ(reg);
3139 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3140
139ccd3f
JB
3141 if (temp & FDI_RX_BIT_LOCK ||
3142 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3143 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3144 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3145 i);
3146 break;
3147 }
3148 udelay(1); /* should be 0.5us */
3149 }
3150 if (i == 4) {
3151 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3152 continue;
3153 }
357555c0 3154
139ccd3f 3155 /* Train 2 */
357555c0
JB
3156 reg = FDI_TX_CTL(pipe);
3157 temp = I915_READ(reg);
139ccd3f
JB
3158 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3159 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3160 I915_WRITE(reg, temp);
3161
3162 reg = FDI_RX_CTL(pipe);
3163 temp = I915_READ(reg);
3164 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3165 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3166 I915_WRITE(reg, temp);
3167
3168 POSTING_READ(reg);
139ccd3f 3169 udelay(2); /* should be 1.5us */
357555c0 3170
139ccd3f
JB
3171 for (i = 0; i < 4; i++) {
3172 reg = FDI_RX_IIR(pipe);
3173 temp = I915_READ(reg);
3174 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3175
139ccd3f
JB
3176 if (temp & FDI_RX_SYMBOL_LOCK ||
3177 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3178 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3179 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3180 i);
3181 goto train_done;
3182 }
3183 udelay(2); /* should be 1.5us */
357555c0 3184 }
139ccd3f
JB
3185 if (i == 4)
3186 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3187 }
357555c0 3188
139ccd3f 3189train_done:
357555c0
JB
3190 DRM_DEBUG_KMS("FDI train done.\n");
3191}
3192
88cefb6c 3193static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3194{
88cefb6c 3195 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3196 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3197 int pipe = intel_crtc->pipe;
5eddb70b 3198 u32 reg, temp;
79e53945 3199
c64e311e 3200
c98e9dcf 3201 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3202 reg = FDI_RX_CTL(pipe);
3203 temp = I915_READ(reg);
627eb5a3
DV
3204 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3205 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3206 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3207 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3208
3209 POSTING_READ(reg);
c98e9dcf
JB
3210 udelay(200);
3211
3212 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3213 temp = I915_READ(reg);
3214 I915_WRITE(reg, temp | FDI_PCDCLK);
3215
3216 POSTING_READ(reg);
c98e9dcf
JB
3217 udelay(200);
3218
20749730
PZ
3219 /* Enable CPU FDI TX PLL, always on for Ironlake */
3220 reg = FDI_TX_CTL(pipe);
3221 temp = I915_READ(reg);
3222 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3223 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3224
20749730
PZ
3225 POSTING_READ(reg);
3226 udelay(100);
6be4a607 3227 }
0e23b99d
JB
3228}
3229
88cefb6c
DV
3230static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3231{
3232 struct drm_device *dev = intel_crtc->base.dev;
3233 struct drm_i915_private *dev_priv = dev->dev_private;
3234 int pipe = intel_crtc->pipe;
3235 u32 reg, temp;
3236
3237 /* Switch from PCDclk to Rawclk */
3238 reg = FDI_RX_CTL(pipe);
3239 temp = I915_READ(reg);
3240 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3241
3242 /* Disable CPU FDI TX PLL */
3243 reg = FDI_TX_CTL(pipe);
3244 temp = I915_READ(reg);
3245 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3246
3247 POSTING_READ(reg);
3248 udelay(100);
3249
3250 reg = FDI_RX_CTL(pipe);
3251 temp = I915_READ(reg);
3252 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3253
3254 /* Wait for the clocks to turn off. */
3255 POSTING_READ(reg);
3256 udelay(100);
3257}
3258
0fc932b8
JB
3259static void ironlake_fdi_disable(struct drm_crtc *crtc)
3260{
3261 struct drm_device *dev = crtc->dev;
3262 struct drm_i915_private *dev_priv = dev->dev_private;
3263 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3264 int pipe = intel_crtc->pipe;
3265 u32 reg, temp;
3266
3267 /* disable CPU FDI tx and PCH FDI rx */
3268 reg = FDI_TX_CTL(pipe);
3269 temp = I915_READ(reg);
3270 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3271 POSTING_READ(reg);
3272
3273 reg = FDI_RX_CTL(pipe);
3274 temp = I915_READ(reg);
3275 temp &= ~(0x7 << 16);
dfd07d72 3276 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3277 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3278
3279 POSTING_READ(reg);
3280 udelay(100);
3281
3282 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3283 if (HAS_PCH_IBX(dev))
6f06ce18 3284 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3285
3286 /* still set train pattern 1 */
3287 reg = FDI_TX_CTL(pipe);
3288 temp = I915_READ(reg);
3289 temp &= ~FDI_LINK_TRAIN_NONE;
3290 temp |= FDI_LINK_TRAIN_PATTERN_1;
3291 I915_WRITE(reg, temp);
3292
3293 reg = FDI_RX_CTL(pipe);
3294 temp = I915_READ(reg);
3295 if (HAS_PCH_CPT(dev)) {
3296 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3297 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3298 } else {
3299 temp &= ~FDI_LINK_TRAIN_NONE;
3300 temp |= FDI_LINK_TRAIN_PATTERN_1;
3301 }
3302 /* BPC in FDI rx is consistent with that in PIPECONF */
3303 temp &= ~(0x07 << 16);
dfd07d72 3304 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3305 I915_WRITE(reg, temp);
3306
3307 POSTING_READ(reg);
3308 udelay(100);
3309}
3310
5dce5b93
CW
3311bool intel_has_pending_fb_unpin(struct drm_device *dev)
3312{
3313 struct intel_crtc *crtc;
3314
3315 /* Note that we don't need to be called with mode_config.lock here
3316 * as our list of CRTC objects is static for the lifetime of the
3317 * device and so cannot disappear as we iterate. Similarly, we can
3318 * happily treat the predicates as racy, atomic checks as userspace
3319 * cannot claim and pin a new fb without at least acquring the
3320 * struct_mutex and so serialising with us.
3321 */
d3fcc808 3322 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3323 if (atomic_read(&crtc->unpin_work_count) == 0)
3324 continue;
3325
3326 if (crtc->unpin_work)
3327 intel_wait_for_vblank(dev, crtc->pipe);
3328
3329 return true;
3330 }
3331
3332 return false;
3333}
3334
46a55d30 3335void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3336{
0f91128d 3337 struct drm_device *dev = crtc->dev;
5bb61643 3338 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3339
f4510a27 3340 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3341 return;
3342
2c10d571
DV
3343 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3344
eed6d67d
DV
3345 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3346 !intel_crtc_has_pending_flip(crtc),
3347 60*HZ) == 0);
5bb61643 3348
0f91128d 3349 mutex_lock(&dev->struct_mutex);
f4510a27 3350 intel_finish_fb(crtc->primary->fb);
0f91128d 3351 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3352}
3353
e615efe4
ED
3354/* Program iCLKIP clock to the desired frequency */
3355static void lpt_program_iclkip(struct drm_crtc *crtc)
3356{
3357 struct drm_device *dev = crtc->dev;
3358 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3359 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3360 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3361 u32 temp;
3362
09153000
DV
3363 mutex_lock(&dev_priv->dpio_lock);
3364
e615efe4
ED
3365 /* It is necessary to ungate the pixclk gate prior to programming
3366 * the divisors, and gate it back when it is done.
3367 */
3368 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3369
3370 /* Disable SSCCTL */
3371 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3372 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3373 SBI_SSCCTL_DISABLE,
3374 SBI_ICLK);
e615efe4
ED
3375
3376 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3377 if (clock == 20000) {
e615efe4
ED
3378 auxdiv = 1;
3379 divsel = 0x41;
3380 phaseinc = 0x20;
3381 } else {
3382 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3383 * but the adjusted_mode->crtc_clock in in KHz. To get the
3384 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3385 * convert the virtual clock precision to KHz here for higher
3386 * precision.
3387 */
3388 u32 iclk_virtual_root_freq = 172800 * 1000;
3389 u32 iclk_pi_range = 64;
3390 u32 desired_divisor, msb_divisor_value, pi_value;
3391
12d7ceed 3392 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3393 msb_divisor_value = desired_divisor / iclk_pi_range;
3394 pi_value = desired_divisor % iclk_pi_range;
3395
3396 auxdiv = 0;
3397 divsel = msb_divisor_value - 2;
3398 phaseinc = pi_value;
3399 }
3400
3401 /* This should not happen with any sane values */
3402 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3403 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3404 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3405 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3406
3407 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3408 clock,
e615efe4
ED
3409 auxdiv,
3410 divsel,
3411 phasedir,
3412 phaseinc);
3413
3414 /* Program SSCDIVINTPHASE6 */
988d6ee8 3415 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3416 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3417 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3418 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3419 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3420 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3421 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3422 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3423
3424 /* Program SSCAUXDIV */
988d6ee8 3425 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3426 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3427 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3428 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3429
3430 /* Enable modulator and associated divider */
988d6ee8 3431 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3432 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3433 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3434
3435 /* Wait for initialization time */
3436 udelay(24);
3437
3438 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3439
3440 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3441}
3442
275f01b2
DV
3443static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3444 enum pipe pch_transcoder)
3445{
3446 struct drm_device *dev = crtc->base.dev;
3447 struct drm_i915_private *dev_priv = dev->dev_private;
3448 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3449
3450 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3451 I915_READ(HTOTAL(cpu_transcoder)));
3452 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3453 I915_READ(HBLANK(cpu_transcoder)));
3454 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3455 I915_READ(HSYNC(cpu_transcoder)));
3456
3457 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3458 I915_READ(VTOTAL(cpu_transcoder)));
3459 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3460 I915_READ(VBLANK(cpu_transcoder)));
3461 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3462 I915_READ(VSYNC(cpu_transcoder)));
3463 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3464 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3465}
3466
1fbc0d78
DV
3467static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3468{
3469 struct drm_i915_private *dev_priv = dev->dev_private;
3470 uint32_t temp;
3471
3472 temp = I915_READ(SOUTH_CHICKEN1);
3473 if (temp & FDI_BC_BIFURCATION_SELECT)
3474 return;
3475
3476 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3477 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3478
3479 temp |= FDI_BC_BIFURCATION_SELECT;
3480 DRM_DEBUG_KMS("enabling fdi C rx\n");
3481 I915_WRITE(SOUTH_CHICKEN1, temp);
3482 POSTING_READ(SOUTH_CHICKEN1);
3483}
3484
3485static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3486{
3487 struct drm_device *dev = intel_crtc->base.dev;
3488 struct drm_i915_private *dev_priv = dev->dev_private;
3489
3490 switch (intel_crtc->pipe) {
3491 case PIPE_A:
3492 break;
3493 case PIPE_B:
3494 if (intel_crtc->config.fdi_lanes > 2)
3495 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3496 else
3497 cpt_enable_fdi_bc_bifurcation(dev);
3498
3499 break;
3500 case PIPE_C:
3501 cpt_enable_fdi_bc_bifurcation(dev);
3502
3503 break;
3504 default:
3505 BUG();
3506 }
3507}
3508
f67a559d
JB
3509/*
3510 * Enable PCH resources required for PCH ports:
3511 * - PCH PLLs
3512 * - FDI training & RX/TX
3513 * - update transcoder timings
3514 * - DP transcoding bits
3515 * - transcoder
3516 */
3517static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3518{
3519 struct drm_device *dev = crtc->dev;
3520 struct drm_i915_private *dev_priv = dev->dev_private;
3521 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3522 int pipe = intel_crtc->pipe;
ee7b9f93 3523 u32 reg, temp;
2c07245f 3524
ab9412ba 3525 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3526
1fbc0d78
DV
3527 if (IS_IVYBRIDGE(dev))
3528 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3529
cd986abb
DV
3530 /* Write the TU size bits before fdi link training, so that error
3531 * detection works. */
3532 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3533 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3534
c98e9dcf 3535 /* For PCH output, training FDI link */
674cf967 3536 dev_priv->display.fdi_link_train(crtc);
2c07245f 3537
3ad8a208
DV
3538 /* We need to program the right clock selection before writing the pixel
3539 * mutliplier into the DPLL. */
303b81e0 3540 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3541 u32 sel;
4b645f14 3542
c98e9dcf 3543 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3544 temp |= TRANS_DPLL_ENABLE(pipe);
3545 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3546 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3547 temp |= sel;
3548 else
3549 temp &= ~sel;
c98e9dcf 3550 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3551 }
5eddb70b 3552
3ad8a208
DV
3553 /* XXX: pch pll's can be enabled any time before we enable the PCH
3554 * transcoder, and we actually should do this to not upset any PCH
3555 * transcoder that already use the clock when we share it.
3556 *
3557 * Note that enable_shared_dpll tries to do the right thing, but
3558 * get_shared_dpll unconditionally resets the pll - we need that to have
3559 * the right LVDS enable sequence. */
85b3894f 3560 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3561
d9b6cb56
JB
3562 /* set transcoder timing, panel must allow it */
3563 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3564 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3565
303b81e0 3566 intel_fdi_normal_train(crtc);
5e84e1a4 3567
c98e9dcf
JB
3568 /* For PCH DP, enable TRANS_DP_CTL */
3569 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3570 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3571 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3572 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3573 reg = TRANS_DP_CTL(pipe);
3574 temp = I915_READ(reg);
3575 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3576 TRANS_DP_SYNC_MASK |
3577 TRANS_DP_BPC_MASK);
5eddb70b
CW
3578 temp |= (TRANS_DP_OUTPUT_ENABLE |
3579 TRANS_DP_ENH_FRAMING);
9325c9f0 3580 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3581
3582 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3583 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3584 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3585 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3586
3587 switch (intel_trans_dp_port_sel(crtc)) {
3588 case PCH_DP_B:
5eddb70b 3589 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3590 break;
3591 case PCH_DP_C:
5eddb70b 3592 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3593 break;
3594 case PCH_DP_D:
5eddb70b 3595 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3596 break;
3597 default:
e95d41e1 3598 BUG();
32f9d658 3599 }
2c07245f 3600
5eddb70b 3601 I915_WRITE(reg, temp);
6be4a607 3602 }
b52eb4dc 3603
b8a4f404 3604 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3605}
3606
1507e5bd
PZ
3607static void lpt_pch_enable(struct drm_crtc *crtc)
3608{
3609 struct drm_device *dev = crtc->dev;
3610 struct drm_i915_private *dev_priv = dev->dev_private;
3611 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3612 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3613
ab9412ba 3614 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3615
8c52b5e8 3616 lpt_program_iclkip(crtc);
1507e5bd 3617
0540e488 3618 /* Set transcoder timing. */
275f01b2 3619 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3620
937bb610 3621 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3622}
3623
e2b78267 3624static void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3625{
e2b78267 3626 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3627
3628 if (pll == NULL)
3629 return;
3630
3631 if (pll->refcount == 0) {
46edb027 3632 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3633 return;
3634 }
3635
f4a091c7
DV
3636 if (--pll->refcount == 0) {
3637 WARN_ON(pll->on);
3638 WARN_ON(pll->active);
3639 }
3640
a43f6e0f 3641 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3642}
3643
b89a1d39 3644static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3645{
e2b78267
DV
3646 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3647 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3648 enum intel_dpll_id i;
ee7b9f93 3649
ee7b9f93 3650 if (pll) {
46edb027
DV
3651 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3652 crtc->base.base.id, pll->name);
e2b78267 3653 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3654 }
3655
98b6bd99
DV
3656 if (HAS_PCH_IBX(dev_priv->dev)) {
3657 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3658 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3659 pll = &dev_priv->shared_dplls[i];
98b6bd99 3660
46edb027
DV
3661 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3662 crtc->base.base.id, pll->name);
98b6bd99 3663
f2a69f44
DV
3664 WARN_ON(pll->refcount);
3665
98b6bd99
DV
3666 goto found;
3667 }
3668
e72f9fbf
DV
3669 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3670 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3671
3672 /* Only want to check enabled timings first */
3673 if (pll->refcount == 0)
3674 continue;
3675
b89a1d39
DV
3676 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3677 sizeof(pll->hw_state)) == 0) {
46edb027 3678 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3679 crtc->base.base.id,
46edb027 3680 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3681
3682 goto found;
3683 }
3684 }
3685
3686 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3687 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3688 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3689 if (pll->refcount == 0) {
46edb027
DV
3690 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3691 crtc->base.base.id, pll->name);
ee7b9f93
JB
3692 goto found;
3693 }
3694 }
3695
3696 return NULL;
3697
3698found:
f2a69f44
DV
3699 if (pll->refcount == 0)
3700 pll->hw_state = crtc->config.dpll_hw_state;
3701
a43f6e0f 3702 crtc->config.shared_dpll = i;
46edb027
DV
3703 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3704 pipe_name(crtc->pipe));
ee7b9f93 3705
cdbd2316 3706 pll->refcount++;
e04c7350 3707
ee7b9f93
JB
3708 return pll;
3709}
3710
a1520318 3711static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3712{
3713 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3714 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3715 u32 temp;
3716
3717 temp = I915_READ(dslreg);
3718 udelay(500);
3719 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3720 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3721 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3722 }
3723}
3724
b074cec8
JB
3725static void ironlake_pfit_enable(struct intel_crtc *crtc)
3726{
3727 struct drm_device *dev = crtc->base.dev;
3728 struct drm_i915_private *dev_priv = dev->dev_private;
3729 int pipe = crtc->pipe;
3730
fd4daa9c 3731 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3732 /* Force use of hard-coded filter coefficients
3733 * as some pre-programmed values are broken,
3734 * e.g. x201.
3735 */
3736 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3737 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3738 PF_PIPE_SEL_IVB(pipe));
3739 else
3740 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3741 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3742 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3743 }
3744}
3745
bb53d4ae
VS
3746static void intel_enable_planes(struct drm_crtc *crtc)
3747{
3748 struct drm_device *dev = crtc->dev;
3749 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3750 struct drm_plane *plane;
bb53d4ae
VS
3751 struct intel_plane *intel_plane;
3752
af2b653b
MR
3753 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3754 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3755 if (intel_plane->pipe == pipe)
3756 intel_plane_restore(&intel_plane->base);
af2b653b 3757 }
bb53d4ae
VS
3758}
3759
3760static void intel_disable_planes(struct drm_crtc *crtc)
3761{
3762 struct drm_device *dev = crtc->dev;
3763 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3764 struct drm_plane *plane;
bb53d4ae
VS
3765 struct intel_plane *intel_plane;
3766
af2b653b
MR
3767 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3768 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3769 if (intel_plane->pipe == pipe)
3770 intel_plane_disable(&intel_plane->base);
af2b653b 3771 }
bb53d4ae
VS
3772}
3773
20bc8673 3774void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3775{
cea165c3
VS
3776 struct drm_device *dev = crtc->base.dev;
3777 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3778
3779 if (!crtc->config.ips_enabled)
3780 return;
3781
cea165c3
VS
3782 /* We can only enable IPS after we enable a plane and wait for a vblank */
3783 intel_wait_for_vblank(dev, crtc->pipe);
3784
d77e4531 3785 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3786 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3787 mutex_lock(&dev_priv->rps.hw_lock);
3788 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3789 mutex_unlock(&dev_priv->rps.hw_lock);
3790 /* Quoting Art Runyan: "its not safe to expect any particular
3791 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3792 * mailbox." Moreover, the mailbox may return a bogus state,
3793 * so we need to just enable it and continue on.
2a114cc1
BW
3794 */
3795 } else {
3796 I915_WRITE(IPS_CTL, IPS_ENABLE);
3797 /* The bit only becomes 1 in the next vblank, so this wait here
3798 * is essentially intel_wait_for_vblank. If we don't have this
3799 * and don't wait for vblanks until the end of crtc_enable, then
3800 * the HW state readout code will complain that the expected
3801 * IPS_CTL value is not the one we read. */
3802 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3803 DRM_ERROR("Timed out waiting for IPS enable\n");
3804 }
d77e4531
PZ
3805}
3806
20bc8673 3807void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3808{
3809 struct drm_device *dev = crtc->base.dev;
3810 struct drm_i915_private *dev_priv = dev->dev_private;
3811
3812 if (!crtc->config.ips_enabled)
3813 return;
3814
3815 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3816 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3817 mutex_lock(&dev_priv->rps.hw_lock);
3818 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3819 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3820 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3821 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3822 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3823 } else {
2a114cc1 3824 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3825 POSTING_READ(IPS_CTL);
3826 }
d77e4531
PZ
3827
3828 /* We need to wait for a vblank before we can disable the plane. */
3829 intel_wait_for_vblank(dev, crtc->pipe);
3830}
3831
3832/** Loads the palette/gamma unit for the CRTC with the prepared values */
3833static void intel_crtc_load_lut(struct drm_crtc *crtc)
3834{
3835 struct drm_device *dev = crtc->dev;
3836 struct drm_i915_private *dev_priv = dev->dev_private;
3837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3838 enum pipe pipe = intel_crtc->pipe;
3839 int palreg = PALETTE(pipe);
3840 int i;
3841 bool reenable_ips = false;
3842
3843 /* The clocks have to be on to load the palette. */
3844 if (!crtc->enabled || !intel_crtc->active)
3845 return;
3846
3847 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3848 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3849 assert_dsi_pll_enabled(dev_priv);
3850 else
3851 assert_pll_enabled(dev_priv, pipe);
3852 }
3853
3854 /* use legacy palette for Ironlake */
3855 if (HAS_PCH_SPLIT(dev))
3856 palreg = LGC_PALETTE(pipe);
3857
3858 /* Workaround : Do not read or write the pipe palette/gamma data while
3859 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3860 */
41e6fc4c 3861 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3862 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3863 GAMMA_MODE_MODE_SPLIT)) {
3864 hsw_disable_ips(intel_crtc);
3865 reenable_ips = true;
3866 }
3867
3868 for (i = 0; i < 256; i++) {
3869 I915_WRITE(palreg + 4 * i,
3870 (intel_crtc->lut_r[i] << 16) |
3871 (intel_crtc->lut_g[i] << 8) |
3872 intel_crtc->lut_b[i]);
3873 }
3874
3875 if (reenable_ips)
3876 hsw_enable_ips(intel_crtc);
3877}
3878
d3eedb1a
VS
3879static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3880{
3881 if (!enable && intel_crtc->overlay) {
3882 struct drm_device *dev = intel_crtc->base.dev;
3883 struct drm_i915_private *dev_priv = dev->dev_private;
3884
3885 mutex_lock(&dev->struct_mutex);
3886 dev_priv->mm.interruptible = false;
3887 (void) intel_overlay_switch_off(intel_crtc->overlay);
3888 dev_priv->mm.interruptible = true;
3889 mutex_unlock(&dev->struct_mutex);
3890 }
3891
3892 /* Let userspace switch the overlay on again. In most cases userspace
3893 * has to recompute where to put it anyway.
3894 */
3895}
3896
d3eedb1a 3897static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3898{
3899 struct drm_device *dev = crtc->dev;
3900 struct drm_i915_private *dev_priv = dev->dev_private;
3901 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3902 int pipe = intel_crtc->pipe;
3903 int plane = intel_crtc->plane;
3904
f98551ae
VS
3905 drm_vblank_on(dev, pipe);
3906
a5c4d7bc
VS
3907 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3908 intel_enable_planes(crtc);
3909 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3910 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3911
3912 hsw_enable_ips(intel_crtc);
3913
3914 mutex_lock(&dev->struct_mutex);
3915 intel_update_fbc(dev);
3916 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3917
3918 /*
3919 * FIXME: Once we grow proper nuclear flip support out of this we need
3920 * to compute the mask of flip planes precisely. For the time being
3921 * consider this a flip from a NULL plane.
3922 */
3923 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3924}
3925
d3eedb1a 3926static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3927{
3928 struct drm_device *dev = crtc->dev;
3929 struct drm_i915_private *dev_priv = dev->dev_private;
3930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3931 int pipe = intel_crtc->pipe;
3932 int plane = intel_crtc->plane;
3933
3934 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3935
3936 if (dev_priv->fbc.plane == plane)
3937 intel_disable_fbc(dev);
3938
3939 hsw_disable_ips(intel_crtc);
3940
d3eedb1a 3941 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3942 intel_crtc_update_cursor(crtc, false);
3943 intel_disable_planes(crtc);
3944 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
f98551ae 3945
f99d7069
DV
3946 /*
3947 * FIXME: Once we grow proper nuclear flip support out of this we need
3948 * to compute the mask of flip planes precisely. For the time being
3949 * consider this a flip to a NULL plane.
3950 */
3951 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3952
f98551ae 3953 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
3954}
3955
f67a559d
JB
3956static void ironlake_crtc_enable(struct drm_crtc *crtc)
3957{
3958 struct drm_device *dev = crtc->dev;
3959 struct drm_i915_private *dev_priv = dev->dev_private;
3960 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3961 struct intel_encoder *encoder;
f67a559d 3962 int pipe = intel_crtc->pipe;
29407aab 3963 enum plane plane = intel_crtc->plane;
f67a559d 3964
08a48469
DV
3965 WARN_ON(!crtc->enabled);
3966
f67a559d
JB
3967 if (intel_crtc->active)
3968 return;
3969
b14b1055
DV
3970 if (intel_crtc->config.has_pch_encoder)
3971 intel_prepare_shared_dpll(intel_crtc);
3972
29407aab
DV
3973 if (intel_crtc->config.has_dp_encoder)
3974 intel_dp_set_m_n(intel_crtc);
3975
3976 intel_set_pipe_timings(intel_crtc);
3977
3978 if (intel_crtc->config.has_pch_encoder) {
3979 intel_cpu_transcoder_set_m_n(intel_crtc,
3980 &intel_crtc->config.fdi_m_n);
3981 }
3982
3983 ironlake_set_pipeconf(crtc);
3984
3985 /* Set up the display plane register */
3986 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3987 POSTING_READ(DSPCNTR(plane));
3988
3989 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3990 crtc->x, crtc->y);
3991
f67a559d 3992 intel_crtc->active = true;
8664281b
PZ
3993
3994 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3995 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3996
f6736a1a 3997 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
3998 if (encoder->pre_enable)
3999 encoder->pre_enable(encoder);
f67a559d 4000
5bfe2ac0 4001 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4002 /* Note: FDI PLL enabling _must_ be done before we enable the
4003 * cpu pipes, hence this is separate from all the other fdi/pch
4004 * enabling. */
88cefb6c 4005 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4006 } else {
4007 assert_fdi_tx_disabled(dev_priv, pipe);
4008 assert_fdi_rx_disabled(dev_priv, pipe);
4009 }
f67a559d 4010
b074cec8 4011 ironlake_pfit_enable(intel_crtc);
f67a559d 4012
9c54c0dd
JB
4013 /*
4014 * On ILK+ LUT must be loaded before the pipe is running but with
4015 * clocks enabled
4016 */
4017 intel_crtc_load_lut(crtc);
4018
f37fcc2a 4019 intel_update_watermarks(crtc);
e1fdc473 4020 intel_enable_pipe(intel_crtc);
f67a559d 4021
5bfe2ac0 4022 if (intel_crtc->config.has_pch_encoder)
f67a559d 4023 ironlake_pch_enable(crtc);
c98e9dcf 4024
fa5c73b1
DV
4025 for_each_encoder_on_crtc(dev, crtc, encoder)
4026 encoder->enable(encoder);
61b77ddd
DV
4027
4028 if (HAS_PCH_CPT(dev))
a1520318 4029 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4030
d3eedb1a 4031 intel_crtc_enable_planes(crtc);
6be4a607
JB
4032}
4033
42db64ef
PZ
4034/* IPS only exists on ULT machines and is tied to pipe A. */
4035static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4036{
f5adf94e 4037 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4038}
4039
e4916946
PZ
4040/*
4041 * This implements the workaround described in the "notes" section of the mode
4042 * set sequence documentation. When going from no pipes or single pipe to
4043 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4044 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4045 */
4046static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4047{
4048 struct drm_device *dev = crtc->base.dev;
4049 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4050
4051 /* We want to get the other_active_crtc only if there's only 1 other
4052 * active crtc. */
d3fcc808 4053 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4054 if (!crtc_it->active || crtc_it == crtc)
4055 continue;
4056
4057 if (other_active_crtc)
4058 return;
4059
4060 other_active_crtc = crtc_it;
4061 }
4062 if (!other_active_crtc)
4063 return;
4064
4065 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4066 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4067}
4068
4f771f10
PZ
4069static void haswell_crtc_enable(struct drm_crtc *crtc)
4070{
4071 struct drm_device *dev = crtc->dev;
4072 struct drm_i915_private *dev_priv = dev->dev_private;
4073 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4074 struct intel_encoder *encoder;
4075 int pipe = intel_crtc->pipe;
229fca97 4076 enum plane plane = intel_crtc->plane;
4f771f10
PZ
4077
4078 WARN_ON(!crtc->enabled);
4079
4080 if (intel_crtc->active)
4081 return;
4082
229fca97
DV
4083 if (intel_crtc->config.has_dp_encoder)
4084 intel_dp_set_m_n(intel_crtc);
4085
4086 intel_set_pipe_timings(intel_crtc);
4087
4088 if (intel_crtc->config.has_pch_encoder) {
4089 intel_cpu_transcoder_set_m_n(intel_crtc,
4090 &intel_crtc->config.fdi_m_n);
4091 }
4092
4093 haswell_set_pipeconf(crtc);
4094
4095 intel_set_pipe_csc(crtc);
4096
4097 /* Set up the display plane register */
4098 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4099 POSTING_READ(DSPCNTR(plane));
4100
4101 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4102 crtc->x, crtc->y);
4103
4f771f10 4104 intel_crtc->active = true;
8664281b
PZ
4105
4106 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4107 if (intel_crtc->config.has_pch_encoder)
4108 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4109
5bfe2ac0 4110 if (intel_crtc->config.has_pch_encoder)
04945641 4111 dev_priv->display.fdi_link_train(crtc);
4f771f10
PZ
4112
4113 for_each_encoder_on_crtc(dev, crtc, encoder)
4114 if (encoder->pre_enable)
4115 encoder->pre_enable(encoder);
4116
1f544388 4117 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4118
b074cec8 4119 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4120
4121 /*
4122 * On ILK+ LUT must be loaded before the pipe is running but with
4123 * clocks enabled
4124 */
4125 intel_crtc_load_lut(crtc);
4126
1f544388 4127 intel_ddi_set_pipe_settings(crtc);
8228c251 4128 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4129
f37fcc2a 4130 intel_update_watermarks(crtc);
e1fdc473 4131 intel_enable_pipe(intel_crtc);
42db64ef 4132
5bfe2ac0 4133 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4134 lpt_pch_enable(crtc);
4f771f10 4135
8807e55b 4136 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4137 encoder->enable(encoder);
8807e55b
JN
4138 intel_opregion_notify_encoder(encoder, true);
4139 }
4f771f10 4140
e4916946
PZ
4141 /* If we change the relative order between pipe/planes enabling, we need
4142 * to change the workaround. */
4143 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4144 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4145}
4146
3f8dce3a
DV
4147static void ironlake_pfit_disable(struct intel_crtc *crtc)
4148{
4149 struct drm_device *dev = crtc->base.dev;
4150 struct drm_i915_private *dev_priv = dev->dev_private;
4151 int pipe = crtc->pipe;
4152
4153 /* To avoid upsetting the power well on haswell only disable the pfit if
4154 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4155 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4156 I915_WRITE(PF_CTL(pipe), 0);
4157 I915_WRITE(PF_WIN_POS(pipe), 0);
4158 I915_WRITE(PF_WIN_SZ(pipe), 0);
4159 }
4160}
4161
6be4a607
JB
4162static void ironlake_crtc_disable(struct drm_crtc *crtc)
4163{
4164 struct drm_device *dev = crtc->dev;
4165 struct drm_i915_private *dev_priv = dev->dev_private;
4166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4167 struct intel_encoder *encoder;
6be4a607 4168 int pipe = intel_crtc->pipe;
5eddb70b 4169 u32 reg, temp;
b52eb4dc 4170
f7abfe8b
CW
4171 if (!intel_crtc->active)
4172 return;
4173
d3eedb1a 4174 intel_crtc_disable_planes(crtc);
a5c4d7bc 4175
ea9d758d
DV
4176 for_each_encoder_on_crtc(dev, crtc, encoder)
4177 encoder->disable(encoder);
4178
d925c59a
DV
4179 if (intel_crtc->config.has_pch_encoder)
4180 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4181
b24e7179 4182 intel_disable_pipe(dev_priv, pipe);
32f9d658 4183
3f8dce3a 4184 ironlake_pfit_disable(intel_crtc);
2c07245f 4185
bf49ec8c
DV
4186 for_each_encoder_on_crtc(dev, crtc, encoder)
4187 if (encoder->post_disable)
4188 encoder->post_disable(encoder);
2c07245f 4189
d925c59a
DV
4190 if (intel_crtc->config.has_pch_encoder) {
4191 ironlake_fdi_disable(crtc);
913d8d11 4192
d925c59a
DV
4193 ironlake_disable_pch_transcoder(dev_priv, pipe);
4194 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4195
d925c59a
DV
4196 if (HAS_PCH_CPT(dev)) {
4197 /* disable TRANS_DP_CTL */
4198 reg = TRANS_DP_CTL(pipe);
4199 temp = I915_READ(reg);
4200 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4201 TRANS_DP_PORT_SEL_MASK);
4202 temp |= TRANS_DP_PORT_SEL_NONE;
4203 I915_WRITE(reg, temp);
4204
4205 /* disable DPLL_SEL */
4206 temp = I915_READ(PCH_DPLL_SEL);
11887397 4207 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4208 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4209 }
e3421a18 4210
d925c59a 4211 /* disable PCH DPLL */
e72f9fbf 4212 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4213
d925c59a
DV
4214 ironlake_fdi_pll_disable(intel_crtc);
4215 }
6b383a7f 4216
f7abfe8b 4217 intel_crtc->active = false;
46ba614c 4218 intel_update_watermarks(crtc);
d1ebd816
BW
4219
4220 mutex_lock(&dev->struct_mutex);
6b383a7f 4221 intel_update_fbc(dev);
d1ebd816 4222 mutex_unlock(&dev->struct_mutex);
6be4a607 4223}
1b3c7a47 4224
4f771f10 4225static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4226{
4f771f10
PZ
4227 struct drm_device *dev = crtc->dev;
4228 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4229 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4230 struct intel_encoder *encoder;
4231 int pipe = intel_crtc->pipe;
3b117c8f 4232 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4233
4f771f10
PZ
4234 if (!intel_crtc->active)
4235 return;
4236
d3eedb1a 4237 intel_crtc_disable_planes(crtc);
dda9a66a 4238
8807e55b
JN
4239 for_each_encoder_on_crtc(dev, crtc, encoder) {
4240 intel_opregion_notify_encoder(encoder, false);
4f771f10 4241 encoder->disable(encoder);
8807e55b 4242 }
4f771f10 4243
8664281b
PZ
4244 if (intel_crtc->config.has_pch_encoder)
4245 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4246 intel_disable_pipe(dev_priv, pipe);
4247
ad80a810 4248 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4249
3f8dce3a 4250 ironlake_pfit_disable(intel_crtc);
4f771f10 4251
1f544388 4252 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10
PZ
4253
4254 for_each_encoder_on_crtc(dev, crtc, encoder)
4255 if (encoder->post_disable)
4256 encoder->post_disable(encoder);
4257
88adfff1 4258 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4259 lpt_disable_pch_transcoder(dev_priv);
8664281b 4260 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4261 intel_ddi_fdi_disable(crtc);
83616634 4262 }
4f771f10
PZ
4263
4264 intel_crtc->active = false;
46ba614c 4265 intel_update_watermarks(crtc);
4f771f10
PZ
4266
4267 mutex_lock(&dev->struct_mutex);
4268 intel_update_fbc(dev);
4269 mutex_unlock(&dev->struct_mutex);
4270}
4271
ee7b9f93
JB
4272static void ironlake_crtc_off(struct drm_crtc *crtc)
4273{
4274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4275 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4276}
4277
6441ab5f
PZ
4278static void haswell_crtc_off(struct drm_crtc *crtc)
4279{
4280 intel_ddi_put_crtc_pll(crtc);
4281}
4282
2dd24552
JB
4283static void i9xx_pfit_enable(struct intel_crtc *crtc)
4284{
4285 struct drm_device *dev = crtc->base.dev;
4286 struct drm_i915_private *dev_priv = dev->dev_private;
4287 struct intel_crtc_config *pipe_config = &crtc->config;
4288
328d8e82 4289 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4290 return;
4291
2dd24552 4292 /*
c0b03411
DV
4293 * The panel fitter should only be adjusted whilst the pipe is disabled,
4294 * according to register description and PRM.
2dd24552 4295 */
c0b03411
DV
4296 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4297 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4298
b074cec8
JB
4299 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4300 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4301
4302 /* Border color in case we don't scale up to the full screen. Black by
4303 * default, change to something else for debugging. */
4304 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4305}
4306
77d22dca
ID
4307#define for_each_power_domain(domain, mask) \
4308 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4309 if ((1 << (domain)) & (mask))
4310
319be8ae
ID
4311enum intel_display_power_domain
4312intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4313{
4314 struct drm_device *dev = intel_encoder->base.dev;
4315 struct intel_digital_port *intel_dig_port;
4316
4317 switch (intel_encoder->type) {
4318 case INTEL_OUTPUT_UNKNOWN:
4319 /* Only DDI platforms should ever use this output type */
4320 WARN_ON_ONCE(!HAS_DDI(dev));
4321 case INTEL_OUTPUT_DISPLAYPORT:
4322 case INTEL_OUTPUT_HDMI:
4323 case INTEL_OUTPUT_EDP:
4324 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4325 switch (intel_dig_port->port) {
4326 case PORT_A:
4327 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4328 case PORT_B:
4329 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4330 case PORT_C:
4331 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4332 case PORT_D:
4333 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4334 default:
4335 WARN_ON_ONCE(1);
4336 return POWER_DOMAIN_PORT_OTHER;
4337 }
4338 case INTEL_OUTPUT_ANALOG:
4339 return POWER_DOMAIN_PORT_CRT;
4340 case INTEL_OUTPUT_DSI:
4341 return POWER_DOMAIN_PORT_DSI;
4342 default:
4343 return POWER_DOMAIN_PORT_OTHER;
4344 }
4345}
4346
4347static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4348{
319be8ae
ID
4349 struct drm_device *dev = crtc->dev;
4350 struct intel_encoder *intel_encoder;
4351 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4352 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4353 unsigned long mask;
4354 enum transcoder transcoder;
4355
4356 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4357
4358 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4359 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4360 if (intel_crtc->config.pch_pfit.enabled ||
4361 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4362 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4363
319be8ae
ID
4364 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4365 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4366
77d22dca
ID
4367 return mask;
4368}
4369
4370void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4371 bool enable)
4372{
4373 if (dev_priv->power_domains.init_power_on == enable)
4374 return;
4375
4376 if (enable)
4377 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4378 else
4379 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4380
4381 dev_priv->power_domains.init_power_on = enable;
4382}
4383
4384static void modeset_update_crtc_power_domains(struct drm_device *dev)
4385{
4386 struct drm_i915_private *dev_priv = dev->dev_private;
4387 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4388 struct intel_crtc *crtc;
4389
4390 /*
4391 * First get all needed power domains, then put all unneeded, to avoid
4392 * any unnecessary toggling of the power wells.
4393 */
d3fcc808 4394 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4395 enum intel_display_power_domain domain;
4396
4397 if (!crtc->base.enabled)
4398 continue;
4399
319be8ae 4400 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4401
4402 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4403 intel_display_power_get(dev_priv, domain);
4404 }
4405
d3fcc808 4406 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4407 enum intel_display_power_domain domain;
4408
4409 for_each_power_domain(domain, crtc->enabled_power_domains)
4410 intel_display_power_put(dev_priv, domain);
4411
4412 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4413 }
4414
4415 intel_display_set_init_power(dev_priv, false);
4416}
4417
dfcab17e 4418/* returns HPLL frequency in kHz */
f8bf63fd 4419static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4420{
586f49dc 4421 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4422
586f49dc
JB
4423 /* Obtain SKU information */
4424 mutex_lock(&dev_priv->dpio_lock);
4425 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4426 CCK_FUSE_HPLL_FREQ_MASK;
4427 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4428
dfcab17e 4429 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4430}
4431
f8bf63fd
VS
4432static void vlv_update_cdclk(struct drm_device *dev)
4433{
4434 struct drm_i915_private *dev_priv = dev->dev_private;
4435
4436 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4437 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4438 dev_priv->vlv_cdclk_freq);
4439
4440 /*
4441 * Program the gmbus_freq based on the cdclk frequency.
4442 * BSpec erroneously claims we should aim for 4MHz, but
4443 * in fact 1MHz is the correct frequency.
4444 */
4445 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4446}
4447
30a970c6
JB
4448/* Adjust CDclk dividers to allow high res or save power if possible */
4449static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4450{
4451 struct drm_i915_private *dev_priv = dev->dev_private;
4452 u32 val, cmd;
4453
d197b7d3 4454 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4455
dfcab17e 4456 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4457 cmd = 2;
dfcab17e 4458 else if (cdclk == 266667)
30a970c6
JB
4459 cmd = 1;
4460 else
4461 cmd = 0;
4462
4463 mutex_lock(&dev_priv->rps.hw_lock);
4464 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4465 val &= ~DSPFREQGUAR_MASK;
4466 val |= (cmd << DSPFREQGUAR_SHIFT);
4467 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4468 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4469 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4470 50)) {
4471 DRM_ERROR("timed out waiting for CDclk change\n");
4472 }
4473 mutex_unlock(&dev_priv->rps.hw_lock);
4474
dfcab17e 4475 if (cdclk == 400000) {
30a970c6
JB
4476 u32 divider, vco;
4477
4478 vco = valleyview_get_vco(dev_priv);
dfcab17e 4479 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4480
4481 mutex_lock(&dev_priv->dpio_lock);
4482 /* adjust cdclk divider */
4483 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4484 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4485 val |= divider;
4486 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4487
4488 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4489 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4490 50))
4491 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4492 mutex_unlock(&dev_priv->dpio_lock);
4493 }
4494
4495 mutex_lock(&dev_priv->dpio_lock);
4496 /* adjust self-refresh exit latency value */
4497 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4498 val &= ~0x7f;
4499
4500 /*
4501 * For high bandwidth configs, we set a higher latency in the bunit
4502 * so that the core display fetch happens in time to avoid underruns.
4503 */
dfcab17e 4504 if (cdclk == 400000)
30a970c6
JB
4505 val |= 4500 / 250; /* 4.5 usec */
4506 else
4507 val |= 3000 / 250; /* 3.0 usec */
4508 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4509 mutex_unlock(&dev_priv->dpio_lock);
4510
f8bf63fd 4511 vlv_update_cdclk(dev);
30a970c6
JB
4512}
4513
30a970c6
JB
4514static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4515 int max_pixclk)
4516{
29dc7ef3
VS
4517 int vco = valleyview_get_vco(dev_priv);
4518 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4519
30a970c6
JB
4520 /*
4521 * Really only a few cases to deal with, as only 4 CDclks are supported:
4522 * 200MHz
4523 * 267MHz
29dc7ef3 4524 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4525 * 400MHz
4526 * So we check to see whether we're above 90% of the lower bin and
4527 * adjust if needed.
e37c67a1
VS
4528 *
4529 * We seem to get an unstable or solid color picture at 200MHz.
4530 * Not sure what's wrong. For now use 200MHz only when all pipes
4531 * are off.
30a970c6 4532 */
29dc7ef3 4533 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4534 return 400000;
4535 else if (max_pixclk > 266667*9/10)
29dc7ef3 4536 return freq_320;
e37c67a1 4537 else if (max_pixclk > 0)
dfcab17e 4538 return 266667;
e37c67a1
VS
4539 else
4540 return 200000;
30a970c6
JB
4541}
4542
2f2d7aa1
VS
4543/* compute the max pixel clock for new configuration */
4544static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4545{
4546 struct drm_device *dev = dev_priv->dev;
4547 struct intel_crtc *intel_crtc;
4548 int max_pixclk = 0;
4549
d3fcc808 4550 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4551 if (intel_crtc->new_enabled)
30a970c6 4552 max_pixclk = max(max_pixclk,
2f2d7aa1 4553 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4554 }
4555
4556 return max_pixclk;
4557}
4558
4559static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4560 unsigned *prepare_pipes)
30a970c6
JB
4561{
4562 struct drm_i915_private *dev_priv = dev->dev_private;
4563 struct intel_crtc *intel_crtc;
2f2d7aa1 4564 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4565
d60c4473
ID
4566 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4567 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4568 return;
4569
2f2d7aa1 4570 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4571 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4572 if (intel_crtc->base.enabled)
4573 *prepare_pipes |= (1 << intel_crtc->pipe);
4574}
4575
4576static void valleyview_modeset_global_resources(struct drm_device *dev)
4577{
4578 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4579 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4580 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4581
d60c4473 4582 if (req_cdclk != dev_priv->vlv_cdclk_freq)
30a970c6 4583 valleyview_set_cdclk(dev, req_cdclk);
77961eb9 4584 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4585}
4586
89b667f8
JB
4587static void valleyview_crtc_enable(struct drm_crtc *crtc)
4588{
4589 struct drm_device *dev = crtc->dev;
5b18e57c 4590 struct drm_i915_private *dev_priv = dev->dev_private;
89b667f8
JB
4591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4592 struct intel_encoder *encoder;
4593 int pipe = intel_crtc->pipe;
5b18e57c 4594 int plane = intel_crtc->plane;
23538ef1 4595 bool is_dsi;
5b18e57c 4596 u32 dspcntr;
89b667f8
JB
4597
4598 WARN_ON(!crtc->enabled);
4599
4600 if (intel_crtc->active)
4601 return;
4602
8525a235
SK
4603 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4604
4605 if (!is_dsi && !IS_CHERRYVIEW(dev))
4606 vlv_prepare_pll(intel_crtc);
bdd4b6a6 4607
5b18e57c
DV
4608 /* Set up the display plane register */
4609 dspcntr = DISPPLANE_GAMMA_ENABLE;
4610
4611 if (intel_crtc->config.has_dp_encoder)
4612 intel_dp_set_m_n(intel_crtc);
4613
4614 intel_set_pipe_timings(intel_crtc);
4615
4616 /* pipesrc and dspsize control the size that is scaled from,
4617 * which should always be the user's requested size.
4618 */
4619 I915_WRITE(DSPSIZE(plane),
4620 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4621 (intel_crtc->config.pipe_src_w - 1));
4622 I915_WRITE(DSPPOS(plane), 0);
4623
4624 i9xx_set_pipeconf(intel_crtc);
4625
4626 I915_WRITE(DSPCNTR(plane), dspcntr);
4627 POSTING_READ(DSPCNTR(plane));
4628
4629 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4630 crtc->x, crtc->y);
4631
89b667f8 4632 intel_crtc->active = true;
89b667f8 4633
4a3436e8
VS
4634 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4635
89b667f8
JB
4636 for_each_encoder_on_crtc(dev, crtc, encoder)
4637 if (encoder->pre_pll_enable)
4638 encoder->pre_pll_enable(encoder);
4639
9d556c99
CML
4640 if (!is_dsi) {
4641 if (IS_CHERRYVIEW(dev))
4642 chv_enable_pll(intel_crtc);
4643 else
4644 vlv_enable_pll(intel_crtc);
4645 }
89b667f8
JB
4646
4647 for_each_encoder_on_crtc(dev, crtc, encoder)
4648 if (encoder->pre_enable)
4649 encoder->pre_enable(encoder);
4650
2dd24552
JB
4651 i9xx_pfit_enable(intel_crtc);
4652
63cbb074
VS
4653 intel_crtc_load_lut(crtc);
4654
f37fcc2a 4655 intel_update_watermarks(crtc);
e1fdc473 4656 intel_enable_pipe(intel_crtc);
be6a6f8e 4657
5004945f
JN
4658 for_each_encoder_on_crtc(dev, crtc, encoder)
4659 encoder->enable(encoder);
9ab0460b
VS
4660
4661 intel_crtc_enable_planes(crtc);
d40d9187 4662
56b80e1f
VS
4663 /* Underruns don't raise interrupts, so check manually. */
4664 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4665}
4666
f13c2ef3
DV
4667static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4668{
4669 struct drm_device *dev = crtc->base.dev;
4670 struct drm_i915_private *dev_priv = dev->dev_private;
4671
4672 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4673 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4674}
4675
0b8765c6 4676static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4677{
4678 struct drm_device *dev = crtc->dev;
5b18e57c 4679 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 4680 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4681 struct intel_encoder *encoder;
79e53945 4682 int pipe = intel_crtc->pipe;
5b18e57c
DV
4683 int plane = intel_crtc->plane;
4684 u32 dspcntr;
79e53945 4685
08a48469
DV
4686 WARN_ON(!crtc->enabled);
4687
f7abfe8b
CW
4688 if (intel_crtc->active)
4689 return;
4690
f13c2ef3
DV
4691 i9xx_set_pll_dividers(intel_crtc);
4692
5b18e57c
DV
4693 /* Set up the display plane register */
4694 dspcntr = DISPPLANE_GAMMA_ENABLE;
4695
4696 if (pipe == 0)
4697 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4698 else
4699 dspcntr |= DISPPLANE_SEL_PIPE_B;
4700
4701 if (intel_crtc->config.has_dp_encoder)
4702 intel_dp_set_m_n(intel_crtc);
4703
4704 intel_set_pipe_timings(intel_crtc);
4705
4706 /* pipesrc and dspsize control the size that is scaled from,
4707 * which should always be the user's requested size.
4708 */
4709 I915_WRITE(DSPSIZE(plane),
4710 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4711 (intel_crtc->config.pipe_src_w - 1));
4712 I915_WRITE(DSPPOS(plane), 0);
4713
4714 i9xx_set_pipeconf(intel_crtc);
4715
4716 I915_WRITE(DSPCNTR(plane), dspcntr);
4717 POSTING_READ(DSPCNTR(plane));
4718
4719 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4720 crtc->x, crtc->y);
4721
f7abfe8b 4722 intel_crtc->active = true;
6b383a7f 4723
4a3436e8
VS
4724 if (!IS_GEN2(dev))
4725 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4726
9d6d9f19
MK
4727 for_each_encoder_on_crtc(dev, crtc, encoder)
4728 if (encoder->pre_enable)
4729 encoder->pre_enable(encoder);
4730
f6736a1a
DV
4731 i9xx_enable_pll(intel_crtc);
4732
2dd24552
JB
4733 i9xx_pfit_enable(intel_crtc);
4734
63cbb074
VS
4735 intel_crtc_load_lut(crtc);
4736
f37fcc2a 4737 intel_update_watermarks(crtc);
e1fdc473 4738 intel_enable_pipe(intel_crtc);
be6a6f8e 4739
fa5c73b1
DV
4740 for_each_encoder_on_crtc(dev, crtc, encoder)
4741 encoder->enable(encoder);
9ab0460b
VS
4742
4743 intel_crtc_enable_planes(crtc);
d40d9187 4744
4a3436e8
VS
4745 /*
4746 * Gen2 reports pipe underruns whenever all planes are disabled.
4747 * So don't enable underrun reporting before at least some planes
4748 * are enabled.
4749 * FIXME: Need to fix the logic to work when we turn off all planes
4750 * but leave the pipe running.
4751 */
4752 if (IS_GEN2(dev))
4753 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4754
56b80e1f
VS
4755 /* Underruns don't raise interrupts, so check manually. */
4756 i9xx_check_fifo_underruns(dev);
0b8765c6 4757}
79e53945 4758
87476d63
DV
4759static void i9xx_pfit_disable(struct intel_crtc *crtc)
4760{
4761 struct drm_device *dev = crtc->base.dev;
4762 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4763
328d8e82
DV
4764 if (!crtc->config.gmch_pfit.control)
4765 return;
87476d63 4766
328d8e82 4767 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4768
328d8e82
DV
4769 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4770 I915_READ(PFIT_CONTROL));
4771 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4772}
4773
0b8765c6
JB
4774static void i9xx_crtc_disable(struct drm_crtc *crtc)
4775{
4776 struct drm_device *dev = crtc->dev;
4777 struct drm_i915_private *dev_priv = dev->dev_private;
4778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4779 struct intel_encoder *encoder;
0b8765c6 4780 int pipe = intel_crtc->pipe;
ef9c3aee 4781
f7abfe8b
CW
4782 if (!intel_crtc->active)
4783 return;
4784
4a3436e8
VS
4785 /*
4786 * Gen2 reports pipe underruns whenever all planes are disabled.
4787 * So diasble underrun reporting before all the planes get disabled.
4788 * FIXME: Need to fix the logic to work when we turn off all planes
4789 * but leave the pipe running.
4790 */
4791 if (IS_GEN2(dev))
4792 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4793
564ed191
ID
4794 /*
4795 * Vblank time updates from the shadow to live plane control register
4796 * are blocked if the memory self-refresh mode is active at that
4797 * moment. So to make sure the plane gets truly disabled, disable
4798 * first the self-refresh mode. The self-refresh enable bit in turn
4799 * will be checked/applied by the HW only at the next frame start
4800 * event which is after the vblank start event, so we need to have a
4801 * wait-for-vblank between disabling the plane and the pipe.
4802 */
4803 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4804 intel_crtc_disable_planes(crtc);
4805
ea9d758d
DV
4806 for_each_encoder_on_crtc(dev, crtc, encoder)
4807 encoder->disable(encoder);
4808
6304cd91
VS
4809 /*
4810 * On gen2 planes are double buffered but the pipe isn't, so we must
4811 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4812 * We also need to wait on all gmch platforms because of the
4813 * self-refresh mode constraint explained above.
6304cd91 4814 */
564ed191 4815 intel_wait_for_vblank(dev, pipe);
6304cd91 4816
b24e7179 4817 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4818
87476d63 4819 i9xx_pfit_disable(intel_crtc);
24a1f16d 4820
89b667f8
JB
4821 for_each_encoder_on_crtc(dev, crtc, encoder)
4822 if (encoder->post_disable)
4823 encoder->post_disable(encoder);
4824
076ed3b2
CML
4825 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4826 if (IS_CHERRYVIEW(dev))
4827 chv_disable_pll(dev_priv, pipe);
4828 else if (IS_VALLEYVIEW(dev))
4829 vlv_disable_pll(dev_priv, pipe);
4830 else
4831 i9xx_disable_pll(dev_priv, pipe);
4832 }
0b8765c6 4833
4a3436e8
VS
4834 if (!IS_GEN2(dev))
4835 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4836
f7abfe8b 4837 intel_crtc->active = false;
46ba614c 4838 intel_update_watermarks(crtc);
f37fcc2a 4839
efa9624e 4840 mutex_lock(&dev->struct_mutex);
6b383a7f 4841 intel_update_fbc(dev);
efa9624e 4842 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4843}
4844
ee7b9f93
JB
4845static void i9xx_crtc_off(struct drm_crtc *crtc)
4846{
4847}
4848
976f8a20
DV
4849static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4850 bool enabled)
2c07245f
ZW
4851{
4852 struct drm_device *dev = crtc->dev;
4853 struct drm_i915_master_private *master_priv;
4854 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4855 int pipe = intel_crtc->pipe;
79e53945
JB
4856
4857 if (!dev->primary->master)
4858 return;
4859
4860 master_priv = dev->primary->master->driver_priv;
4861 if (!master_priv->sarea_priv)
4862 return;
4863
79e53945
JB
4864 switch (pipe) {
4865 case 0:
4866 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4867 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4868 break;
4869 case 1:
4870 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4871 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4872 break;
4873 default:
9db4a9c7 4874 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4875 break;
4876 }
79e53945
JB
4877}
4878
976f8a20
DV
4879/**
4880 * Sets the power management mode of the pipe and plane.
4881 */
4882void intel_crtc_update_dpms(struct drm_crtc *crtc)
4883{
4884 struct drm_device *dev = crtc->dev;
4885 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
976f8a20 4887 struct intel_encoder *intel_encoder;
0e572fe7
DV
4888 enum intel_display_power_domain domain;
4889 unsigned long domains;
976f8a20
DV
4890 bool enable = false;
4891
4892 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4893 enable |= intel_encoder->connectors_active;
4894
0e572fe7
DV
4895 if (enable) {
4896 if (!intel_crtc->active) {
4897 /*
4898 * FIXME: DDI plls and relevant code isn't converted
4899 * yet, so do runtime PM for DPMS only for all other
4900 * platforms for now.
4901 */
4902 if (!HAS_DDI(dev)) {
4903 domains = get_crtc_power_domains(crtc);
4904 for_each_power_domain(domain, domains)
4905 intel_display_power_get(dev_priv, domain);
4906 intel_crtc->enabled_power_domains = domains;
4907 }
4908
4909 dev_priv->display.crtc_enable(crtc);
4910 }
4911 } else {
4912 if (intel_crtc->active) {
4913 dev_priv->display.crtc_disable(crtc);
4914
4915 if (!HAS_DDI(dev)) {
4916 domains = intel_crtc->enabled_power_domains;
4917 for_each_power_domain(domain, domains)
4918 intel_display_power_put(dev_priv, domain);
4919 intel_crtc->enabled_power_domains = 0;
4920 }
4921 }
4922 }
976f8a20
DV
4923
4924 intel_crtc_update_sarea(crtc, enable);
4925}
4926
cdd59983
CW
4927static void intel_crtc_disable(struct drm_crtc *crtc)
4928{
cdd59983 4929 struct drm_device *dev = crtc->dev;
976f8a20 4930 struct drm_connector *connector;
ee7b9f93 4931 struct drm_i915_private *dev_priv = dev->dev_private;
a071fa00
DV
4932 struct drm_i915_gem_object *old_obj;
4933 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4934
976f8a20
DV
4935 /* crtc should still be enabled when we disable it. */
4936 WARN_ON(!crtc->enabled);
4937
4938 dev_priv->display.crtc_disable(crtc);
4939 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4940 dev_priv->display.off(crtc);
4941
931872fc 4942 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
a071fa00
DV
4943 assert_cursor_disabled(dev_priv, pipe);
4944 assert_pipe_disabled(dev->dev_private, pipe);
cdd59983 4945
f4510a27 4946 if (crtc->primary->fb) {
a071fa00 4947 old_obj = to_intel_framebuffer(crtc->primary->fb)->obj;
cdd59983 4948 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4949 intel_unpin_fb_obj(old_obj);
4950 i915_gem_track_fb(old_obj, NULL,
4951 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4952 mutex_unlock(&dev->struct_mutex);
f4510a27 4953 crtc->primary->fb = NULL;
976f8a20
DV
4954 }
4955
4956 /* Update computed state. */
4957 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4958 if (!connector->encoder || !connector->encoder->crtc)
4959 continue;
4960
4961 if (connector->encoder->crtc != crtc)
4962 continue;
4963
4964 connector->dpms = DRM_MODE_DPMS_OFF;
4965 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
4966 }
4967}
4968
ea5b213a 4969void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 4970{
4ef69c7a 4971 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 4972
ea5b213a
CW
4973 drm_encoder_cleanup(encoder);
4974 kfree(intel_encoder);
7e7d76c3
JB
4975}
4976
9237329d 4977/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
4978 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4979 * state of the entire output pipe. */
9237329d 4980static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 4981{
5ab432ef
DV
4982 if (mode == DRM_MODE_DPMS_ON) {
4983 encoder->connectors_active = true;
4984
b2cabb0e 4985 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
4986 } else {
4987 encoder->connectors_active = false;
4988
b2cabb0e 4989 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 4990 }
79e53945
JB
4991}
4992
0a91ca29
DV
4993/* Cross check the actual hw state with our own modeset state tracking (and it's
4994 * internal consistency). */
b980514c 4995static void intel_connector_check_state(struct intel_connector *connector)
79e53945 4996{
0a91ca29
DV
4997 if (connector->get_hw_state(connector)) {
4998 struct intel_encoder *encoder = connector->encoder;
4999 struct drm_crtc *crtc;
5000 bool encoder_enabled;
5001 enum pipe pipe;
5002
5003 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5004 connector->base.base.id,
c23cc417 5005 connector->base.name);
0a91ca29
DV
5006
5007 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5008 "wrong connector dpms state\n");
5009 WARN(connector->base.encoder != &encoder->base,
5010 "active connector not linked to encoder\n");
5011 WARN(!encoder->connectors_active,
5012 "encoder->connectors_active not set\n");
5013
5014 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5015 WARN(!encoder_enabled, "encoder not enabled\n");
5016 if (WARN_ON(!encoder->base.crtc))
5017 return;
5018
5019 crtc = encoder->base.crtc;
5020
5021 WARN(!crtc->enabled, "crtc not enabled\n");
5022 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5023 WARN(pipe != to_intel_crtc(crtc)->pipe,
5024 "encoder active on the wrong pipe\n");
5025 }
79e53945
JB
5026}
5027
5ab432ef
DV
5028/* Even simpler default implementation, if there's really no special case to
5029 * consider. */
5030void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5031{
5ab432ef
DV
5032 /* All the simple cases only support two dpms states. */
5033 if (mode != DRM_MODE_DPMS_ON)
5034 mode = DRM_MODE_DPMS_OFF;
d4270e57 5035
5ab432ef
DV
5036 if (mode == connector->dpms)
5037 return;
5038
5039 connector->dpms = mode;
5040
5041 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5042 if (connector->encoder)
5043 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5044
b980514c 5045 intel_modeset_check_state(connector->dev);
79e53945
JB
5046}
5047
f0947c37
DV
5048/* Simple connector->get_hw_state implementation for encoders that support only
5049 * one connector and no cloning and hence the encoder state determines the state
5050 * of the connector. */
5051bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5052{
24929352 5053 enum pipe pipe = 0;
f0947c37 5054 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5055
f0947c37 5056 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5057}
5058
1857e1da
DV
5059static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5060 struct intel_crtc_config *pipe_config)
5061{
5062 struct drm_i915_private *dev_priv = dev->dev_private;
5063 struct intel_crtc *pipe_B_crtc =
5064 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5065
5066 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5067 pipe_name(pipe), pipe_config->fdi_lanes);
5068 if (pipe_config->fdi_lanes > 4) {
5069 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5070 pipe_name(pipe), pipe_config->fdi_lanes);
5071 return false;
5072 }
5073
bafb6553 5074 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5075 if (pipe_config->fdi_lanes > 2) {
5076 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5077 pipe_config->fdi_lanes);
5078 return false;
5079 } else {
5080 return true;
5081 }
5082 }
5083
5084 if (INTEL_INFO(dev)->num_pipes == 2)
5085 return true;
5086
5087 /* Ivybridge 3 pipe is really complicated */
5088 switch (pipe) {
5089 case PIPE_A:
5090 return true;
5091 case PIPE_B:
5092 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5093 pipe_config->fdi_lanes > 2) {
5094 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5095 pipe_name(pipe), pipe_config->fdi_lanes);
5096 return false;
5097 }
5098 return true;
5099 case PIPE_C:
1e833f40 5100 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5101 pipe_B_crtc->config.fdi_lanes <= 2) {
5102 if (pipe_config->fdi_lanes > 2) {
5103 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5104 pipe_name(pipe), pipe_config->fdi_lanes);
5105 return false;
5106 }
5107 } else {
5108 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5109 return false;
5110 }
5111 return true;
5112 default:
5113 BUG();
5114 }
5115}
5116
e29c22c0
DV
5117#define RETRY 1
5118static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5119 struct intel_crtc_config *pipe_config)
877d48d5 5120{
1857e1da 5121 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5122 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5123 int lane, link_bw, fdi_dotclock;
e29c22c0 5124 bool setup_ok, needs_recompute = false;
877d48d5 5125
e29c22c0 5126retry:
877d48d5
DV
5127 /* FDI is a binary signal running at ~2.7GHz, encoding
5128 * each output octet as 10 bits. The actual frequency
5129 * is stored as a divider into a 100MHz clock, and the
5130 * mode pixel clock is stored in units of 1KHz.
5131 * Hence the bw of each lane in terms of the mode signal
5132 * is:
5133 */
5134 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5135
241bfc38 5136 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5137
2bd89a07 5138 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5139 pipe_config->pipe_bpp);
5140
5141 pipe_config->fdi_lanes = lane;
5142
2bd89a07 5143 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5144 link_bw, &pipe_config->fdi_m_n);
1857e1da 5145
e29c22c0
DV
5146 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5147 intel_crtc->pipe, pipe_config);
5148 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5149 pipe_config->pipe_bpp -= 2*3;
5150 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5151 pipe_config->pipe_bpp);
5152 needs_recompute = true;
5153 pipe_config->bw_constrained = true;
5154
5155 goto retry;
5156 }
5157
5158 if (needs_recompute)
5159 return RETRY;
5160
5161 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5162}
5163
42db64ef
PZ
5164static void hsw_compute_ips_config(struct intel_crtc *crtc,
5165 struct intel_crtc_config *pipe_config)
5166{
d330a953 5167 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5168 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5169 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5170}
5171
a43f6e0f 5172static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5173 struct intel_crtc_config *pipe_config)
79e53945 5174{
a43f6e0f 5175 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5176 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5177
ad3a4479 5178 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5179 if (INTEL_INFO(dev)->gen < 4) {
5180 struct drm_i915_private *dev_priv = dev->dev_private;
5181 int clock_limit =
5182 dev_priv->display.get_display_clock_speed(dev);
5183
5184 /*
5185 * Enable pixel doubling when the dot clock
5186 * is > 90% of the (display) core speed.
5187 *
b397c96b
VS
5188 * GDG double wide on either pipe,
5189 * otherwise pipe A only.
cf532bb2 5190 */
b397c96b 5191 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5192 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5193 clock_limit *= 2;
cf532bb2 5194 pipe_config->double_wide = true;
ad3a4479
VS
5195 }
5196
241bfc38 5197 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5198 return -EINVAL;
2c07245f 5199 }
89749350 5200
1d1d0e27
VS
5201 /*
5202 * Pipe horizontal size must be even in:
5203 * - DVO ganged mode
5204 * - LVDS dual channel mode
5205 * - Double wide pipe
5206 */
5207 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5208 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5209 pipe_config->pipe_src_w &= ~1;
5210
8693a824
DL
5211 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5212 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5213 */
5214 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5215 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5216 return -EINVAL;
44f46b42 5217
bd080ee5 5218 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5219 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5220 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5221 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5222 * for lvds. */
5223 pipe_config->pipe_bpp = 8*3;
5224 }
5225
f5adf94e 5226 if (HAS_IPS(dev))
a43f6e0f
DV
5227 hsw_compute_ips_config(crtc, pipe_config);
5228
5229 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
5230 * clock survives for now. */
5231 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5232 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5233
877d48d5 5234 if (pipe_config->has_pch_encoder)
a43f6e0f 5235 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5236
e29c22c0 5237 return 0;
79e53945
JB
5238}
5239
25eb05fc
JB
5240static int valleyview_get_display_clock_speed(struct drm_device *dev)
5241{
d197b7d3
VS
5242 struct drm_i915_private *dev_priv = dev->dev_private;
5243 int vco = valleyview_get_vco(dev_priv);
5244 u32 val;
5245 int divider;
5246
5247 mutex_lock(&dev_priv->dpio_lock);
5248 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5249 mutex_unlock(&dev_priv->dpio_lock);
5250
5251 divider = val & DISPLAY_FREQUENCY_VALUES;
5252
7d007f40
VS
5253 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5254 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5255 "cdclk change in progress\n");
5256
d197b7d3 5257 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5258}
5259
e70236a8
JB
5260static int i945_get_display_clock_speed(struct drm_device *dev)
5261{
5262 return 400000;
5263}
79e53945 5264
e70236a8 5265static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5266{
e70236a8
JB
5267 return 333000;
5268}
79e53945 5269
e70236a8
JB
5270static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5271{
5272 return 200000;
5273}
79e53945 5274
257a7ffc
DV
5275static int pnv_get_display_clock_speed(struct drm_device *dev)
5276{
5277 u16 gcfgc = 0;
5278
5279 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5280
5281 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5282 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5283 return 267000;
5284 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5285 return 333000;
5286 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5287 return 444000;
5288 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5289 return 200000;
5290 default:
5291 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5292 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5293 return 133000;
5294 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5295 return 167000;
5296 }
5297}
5298
e70236a8
JB
5299static int i915gm_get_display_clock_speed(struct drm_device *dev)
5300{
5301 u16 gcfgc = 0;
79e53945 5302
e70236a8
JB
5303 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5304
5305 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5306 return 133000;
5307 else {
5308 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5309 case GC_DISPLAY_CLOCK_333_MHZ:
5310 return 333000;
5311 default:
5312 case GC_DISPLAY_CLOCK_190_200_MHZ:
5313 return 190000;
79e53945 5314 }
e70236a8
JB
5315 }
5316}
5317
5318static int i865_get_display_clock_speed(struct drm_device *dev)
5319{
5320 return 266000;
5321}
5322
5323static int i855_get_display_clock_speed(struct drm_device *dev)
5324{
5325 u16 hpllcc = 0;
5326 /* Assume that the hardware is in the high speed state. This
5327 * should be the default.
5328 */
5329 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5330 case GC_CLOCK_133_200:
5331 case GC_CLOCK_100_200:
5332 return 200000;
5333 case GC_CLOCK_166_250:
5334 return 250000;
5335 case GC_CLOCK_100_133:
79e53945 5336 return 133000;
e70236a8 5337 }
79e53945 5338
e70236a8
JB
5339 /* Shouldn't happen */
5340 return 0;
5341}
79e53945 5342
e70236a8
JB
5343static int i830_get_display_clock_speed(struct drm_device *dev)
5344{
5345 return 133000;
79e53945
JB
5346}
5347
2c07245f 5348static void
a65851af 5349intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5350{
a65851af
VS
5351 while (*num > DATA_LINK_M_N_MASK ||
5352 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5353 *num >>= 1;
5354 *den >>= 1;
5355 }
5356}
5357
a65851af
VS
5358static void compute_m_n(unsigned int m, unsigned int n,
5359 uint32_t *ret_m, uint32_t *ret_n)
5360{
5361 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5362 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5363 intel_reduce_m_n_ratio(ret_m, ret_n);
5364}
5365
e69d0bc1
DV
5366void
5367intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5368 int pixel_clock, int link_clock,
5369 struct intel_link_m_n *m_n)
2c07245f 5370{
e69d0bc1 5371 m_n->tu = 64;
a65851af
VS
5372
5373 compute_m_n(bits_per_pixel * pixel_clock,
5374 link_clock * nlanes * 8,
5375 &m_n->gmch_m, &m_n->gmch_n);
5376
5377 compute_m_n(pixel_clock, link_clock,
5378 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5379}
5380
a7615030
CW
5381static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5382{
d330a953
JN
5383 if (i915.panel_use_ssc >= 0)
5384 return i915.panel_use_ssc != 0;
41aa3448 5385 return dev_priv->vbt.lvds_use_ssc
435793df 5386 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5387}
5388
c65d77d8
JB
5389static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5390{
5391 struct drm_device *dev = crtc->dev;
5392 struct drm_i915_private *dev_priv = dev->dev_private;
5393 int refclk;
5394
a0c4da24 5395 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5396 refclk = 100000;
a0c4da24 5397 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5398 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5399 refclk = dev_priv->vbt.lvds_ssc_freq;
5400 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5401 } else if (!IS_GEN2(dev)) {
5402 refclk = 96000;
5403 } else {
5404 refclk = 48000;
5405 }
5406
5407 return refclk;
5408}
5409
7429e9d4 5410static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5411{
7df00d7a 5412 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5413}
f47709a9 5414
7429e9d4
DV
5415static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5416{
5417 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5418}
5419
f47709a9 5420static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5421 intel_clock_t *reduced_clock)
5422{
f47709a9 5423 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5424 u32 fp, fp2 = 0;
5425
5426 if (IS_PINEVIEW(dev)) {
7429e9d4 5427 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5428 if (reduced_clock)
7429e9d4 5429 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5430 } else {
7429e9d4 5431 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5432 if (reduced_clock)
7429e9d4 5433 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5434 }
5435
8bcc2795 5436 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5437
f47709a9
DV
5438 crtc->lowfreq_avail = false;
5439 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5440 reduced_clock && i915.powersave) {
8bcc2795 5441 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5442 crtc->lowfreq_avail = true;
a7516a05 5443 } else {
8bcc2795 5444 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5445 }
5446}
5447
5e69f97f
CML
5448static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5449 pipe)
89b667f8
JB
5450{
5451 u32 reg_val;
5452
5453 /*
5454 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5455 * and set it to a reasonable value instead.
5456 */
ab3c759a 5457 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5458 reg_val &= 0xffffff00;
5459 reg_val |= 0x00000030;
ab3c759a 5460 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5461
ab3c759a 5462 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5463 reg_val &= 0x8cffffff;
5464 reg_val = 0x8c000000;
ab3c759a 5465 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5466
ab3c759a 5467 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5468 reg_val &= 0xffffff00;
ab3c759a 5469 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5470
ab3c759a 5471 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5472 reg_val &= 0x00ffffff;
5473 reg_val |= 0xb0000000;
ab3c759a 5474 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5475}
5476
b551842d
DV
5477static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5478 struct intel_link_m_n *m_n)
5479{
5480 struct drm_device *dev = crtc->base.dev;
5481 struct drm_i915_private *dev_priv = dev->dev_private;
5482 int pipe = crtc->pipe;
5483
e3b95f1e
DV
5484 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5485 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5486 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5487 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5488}
5489
5490static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5491 struct intel_link_m_n *m_n)
5492{
5493 struct drm_device *dev = crtc->base.dev;
5494 struct drm_i915_private *dev_priv = dev->dev_private;
5495 int pipe = crtc->pipe;
5496 enum transcoder transcoder = crtc->config.cpu_transcoder;
5497
5498 if (INTEL_INFO(dev)->gen >= 5) {
5499 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5500 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5501 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5502 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5503 } else {
e3b95f1e
DV
5504 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5505 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5506 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5507 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5508 }
5509}
5510
03afc4a2
DV
5511static void intel_dp_set_m_n(struct intel_crtc *crtc)
5512{
5513 if (crtc->config.has_pch_encoder)
5514 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5515 else
5516 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5517}
5518
f47709a9 5519static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5520{
5521 u32 dpll, dpll_md;
5522
5523 /*
5524 * Enable DPIO clock input. We should never disable the reference
5525 * clock for pipe B, since VGA hotplug / manual detection depends
5526 * on it.
5527 */
5528 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5529 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5530 /* We should never disable this, set it here for state tracking */
5531 if (crtc->pipe == PIPE_B)
5532 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5533 dpll |= DPLL_VCO_ENABLE;
5534 crtc->config.dpll_hw_state.dpll = dpll;
5535
5536 dpll_md = (crtc->config.pixel_multiplier - 1)
5537 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5538 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5539}
5540
5541static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5542{
f47709a9 5543 struct drm_device *dev = crtc->base.dev;
a0c4da24 5544 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5545 int pipe = crtc->pipe;
bdd4b6a6 5546 u32 mdiv;
a0c4da24 5547 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5548 u32 coreclk, reg_val;
a0c4da24 5549
09153000
DV
5550 mutex_lock(&dev_priv->dpio_lock);
5551
f47709a9
DV
5552 bestn = crtc->config.dpll.n;
5553 bestm1 = crtc->config.dpll.m1;
5554 bestm2 = crtc->config.dpll.m2;
5555 bestp1 = crtc->config.dpll.p1;
5556 bestp2 = crtc->config.dpll.p2;
a0c4da24 5557
89b667f8
JB
5558 /* See eDP HDMI DPIO driver vbios notes doc */
5559
5560 /* PLL B needs special handling */
bdd4b6a6 5561 if (pipe == PIPE_B)
5e69f97f 5562 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5563
5564 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5565 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5566
5567 /* Disable target IRef on PLL */
ab3c759a 5568 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5569 reg_val &= 0x00ffffff;
ab3c759a 5570 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5571
5572 /* Disable fast lock */
ab3c759a 5573 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5574
5575 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5576 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5577 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5578 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5579 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5580
5581 /*
5582 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5583 * but we don't support that).
5584 * Note: don't use the DAC post divider as it seems unstable.
5585 */
5586 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5587 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5588
a0c4da24 5589 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5590 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5591
89b667f8 5592 /* Set HBR and RBR LPF coefficients */
ff9a6750 5593 if (crtc->config.port_clock == 162000 ||
99750bd4 5594 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5595 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5596 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5597 0x009f0003);
89b667f8 5598 else
ab3c759a 5599 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5600 0x00d0000f);
5601
5602 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5603 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5604 /* Use SSC source */
bdd4b6a6 5605 if (pipe == PIPE_A)
ab3c759a 5606 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5607 0x0df40000);
5608 else
ab3c759a 5609 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5610 0x0df70000);
5611 } else { /* HDMI or VGA */
5612 /* Use bend source */
bdd4b6a6 5613 if (pipe == PIPE_A)
ab3c759a 5614 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5615 0x0df70000);
5616 else
ab3c759a 5617 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5618 0x0df40000);
5619 }
a0c4da24 5620
ab3c759a 5621 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5622 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5623 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5624 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5625 coreclk |= 0x01000000;
ab3c759a 5626 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5627
ab3c759a 5628 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5629 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5630}
5631
9d556c99
CML
5632static void chv_update_pll(struct intel_crtc *crtc)
5633{
5634 struct drm_device *dev = crtc->base.dev;
5635 struct drm_i915_private *dev_priv = dev->dev_private;
5636 int pipe = crtc->pipe;
5637 int dpll_reg = DPLL(crtc->pipe);
5638 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5639 u32 loopfilter, intcoeff;
9d556c99
CML
5640 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5641 int refclk;
5642
a11b0703
VS
5643 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5644 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5645 DPLL_VCO_ENABLE;
5646 if (pipe != PIPE_A)
5647 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5648
5649 crtc->config.dpll_hw_state.dpll_md =
5650 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
9d556c99
CML
5651
5652 bestn = crtc->config.dpll.n;
5653 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5654 bestm1 = crtc->config.dpll.m1;
5655 bestm2 = crtc->config.dpll.m2 >> 22;
5656 bestp1 = crtc->config.dpll.p1;
5657 bestp2 = crtc->config.dpll.p2;
5658
5659 /*
5660 * Enable Refclk and SSC
5661 */
a11b0703
VS
5662 I915_WRITE(dpll_reg,
5663 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5664
5665 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5666
9d556c99
CML
5667 /* p1 and p2 divider */
5668 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5669 5 << DPIO_CHV_S1_DIV_SHIFT |
5670 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5671 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5672 1 << DPIO_CHV_K_DIV_SHIFT);
5673
5674 /* Feedback post-divider - m2 */
5675 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5676
5677 /* Feedback refclk divider - n and m1 */
5678 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5679 DPIO_CHV_M1_DIV_BY_2 |
5680 1 << DPIO_CHV_N_DIV_SHIFT);
5681
5682 /* M2 fraction division */
5683 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5684
5685 /* M2 fraction division enable */
5686 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5687 DPIO_CHV_FRAC_DIV_EN |
5688 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5689
5690 /* Loop filter */
5691 refclk = i9xx_get_refclk(&crtc->base, 0);
5692 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5693 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5694 if (refclk == 100000)
5695 intcoeff = 11;
5696 else if (refclk == 38400)
5697 intcoeff = 10;
5698 else
5699 intcoeff = 9;
5700 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5701 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5702
5703 /* AFC Recal */
5704 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5705 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5706 DPIO_AFC_RECAL);
5707
5708 mutex_unlock(&dev_priv->dpio_lock);
5709}
5710
f47709a9
DV
5711static void i9xx_update_pll(struct intel_crtc *crtc,
5712 intel_clock_t *reduced_clock,
eb1cbe48
DV
5713 int num_connectors)
5714{
f47709a9 5715 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5716 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5717 u32 dpll;
5718 bool is_sdvo;
f47709a9 5719 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5720
f47709a9 5721 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5722
f47709a9
DV
5723 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5724 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5725
5726 dpll = DPLL_VGA_MODE_DIS;
5727
f47709a9 5728 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5729 dpll |= DPLLB_MODE_LVDS;
5730 else
5731 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5732
ef1b460d 5733 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5734 dpll |= (crtc->config.pixel_multiplier - 1)
5735 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5736 }
198a037f
DV
5737
5738 if (is_sdvo)
4a33e48d 5739 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5740
f47709a9 5741 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5742 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5743
5744 /* compute bitmask from p1 value */
5745 if (IS_PINEVIEW(dev))
5746 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5747 else {
5748 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5749 if (IS_G4X(dev) && reduced_clock)
5750 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5751 }
5752 switch (clock->p2) {
5753 case 5:
5754 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5755 break;
5756 case 7:
5757 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5758 break;
5759 case 10:
5760 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5761 break;
5762 case 14:
5763 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5764 break;
5765 }
5766 if (INTEL_INFO(dev)->gen >= 4)
5767 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5768
09ede541 5769 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5770 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5771 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5772 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5773 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5774 else
5775 dpll |= PLL_REF_INPUT_DREFCLK;
5776
5777 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5778 crtc->config.dpll_hw_state.dpll = dpll;
5779
eb1cbe48 5780 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5781 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5782 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5783 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5784 }
5785}
5786
f47709a9 5787static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5788 intel_clock_t *reduced_clock,
eb1cbe48
DV
5789 int num_connectors)
5790{
f47709a9 5791 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5792 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5793 u32 dpll;
f47709a9 5794 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5795
f47709a9 5796 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5797
eb1cbe48
DV
5798 dpll = DPLL_VGA_MODE_DIS;
5799
f47709a9 5800 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5801 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5802 } else {
5803 if (clock->p1 == 2)
5804 dpll |= PLL_P1_DIVIDE_BY_TWO;
5805 else
5806 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5807 if (clock->p2 == 4)
5808 dpll |= PLL_P2_DIVIDE_BY_4;
5809 }
5810
4a33e48d
DV
5811 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5812 dpll |= DPLL_DVO_2X_MODE;
5813
f47709a9 5814 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5815 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5816 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5817 else
5818 dpll |= PLL_REF_INPUT_DREFCLK;
5819
5820 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5821 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5822}
5823
8a654f3b 5824static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5825{
5826 struct drm_device *dev = intel_crtc->base.dev;
5827 struct drm_i915_private *dev_priv = dev->dev_private;
5828 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5829 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5830 struct drm_display_mode *adjusted_mode =
5831 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5832 uint32_t crtc_vtotal, crtc_vblank_end;
5833 int vsyncshift = 0;
4d8a62ea
DV
5834
5835 /* We need to be careful not to changed the adjusted mode, for otherwise
5836 * the hw state checker will get angry at the mismatch. */
5837 crtc_vtotal = adjusted_mode->crtc_vtotal;
5838 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5839
609aeaca 5840 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5841 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5842 crtc_vtotal -= 1;
5843 crtc_vblank_end -= 1;
609aeaca
VS
5844
5845 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5846 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5847 else
5848 vsyncshift = adjusted_mode->crtc_hsync_start -
5849 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5850 if (vsyncshift < 0)
5851 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5852 }
5853
5854 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5855 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5856
fe2b8f9d 5857 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5858 (adjusted_mode->crtc_hdisplay - 1) |
5859 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5860 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5861 (adjusted_mode->crtc_hblank_start - 1) |
5862 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5863 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5864 (adjusted_mode->crtc_hsync_start - 1) |
5865 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5866
fe2b8f9d 5867 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5868 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5869 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5870 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5871 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5872 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5873 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5874 (adjusted_mode->crtc_vsync_start - 1) |
5875 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5876
b5e508d4
PZ
5877 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5878 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5879 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5880 * bits. */
5881 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5882 (pipe == PIPE_B || pipe == PIPE_C))
5883 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5884
b0e77b9c
PZ
5885 /* pipesrc controls the size that is scaled from, which should
5886 * always be the user's requested size.
5887 */
5888 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5889 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5890 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5891}
5892
1bd1bd80
DV
5893static void intel_get_pipe_timings(struct intel_crtc *crtc,
5894 struct intel_crtc_config *pipe_config)
5895{
5896 struct drm_device *dev = crtc->base.dev;
5897 struct drm_i915_private *dev_priv = dev->dev_private;
5898 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5899 uint32_t tmp;
5900
5901 tmp = I915_READ(HTOTAL(cpu_transcoder));
5902 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5903 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5904 tmp = I915_READ(HBLANK(cpu_transcoder));
5905 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5906 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5907 tmp = I915_READ(HSYNC(cpu_transcoder));
5908 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5909 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5910
5911 tmp = I915_READ(VTOTAL(cpu_transcoder));
5912 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5913 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5914 tmp = I915_READ(VBLANK(cpu_transcoder));
5915 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5916 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5917 tmp = I915_READ(VSYNC(cpu_transcoder));
5918 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5919 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5920
5921 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5922 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5923 pipe_config->adjusted_mode.crtc_vtotal += 1;
5924 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5925 }
5926
5927 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5928 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5929 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5930
5931 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5932 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
5933}
5934
f6a83288
DV
5935void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5936 struct intel_crtc_config *pipe_config)
babea61d 5937{
f6a83288
DV
5938 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5939 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5940 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5941 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 5942
f6a83288
DV
5943 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5944 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5945 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5946 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 5947
f6a83288 5948 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 5949
f6a83288
DV
5950 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5951 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
5952}
5953
84b046f3
DV
5954static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5955{
5956 struct drm_device *dev = intel_crtc->base.dev;
5957 struct drm_i915_private *dev_priv = dev->dev_private;
5958 uint32_t pipeconf;
5959
9f11a9e4 5960 pipeconf = 0;
84b046f3 5961
67c72a12
DV
5962 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5963 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5964 pipeconf |= PIPECONF_ENABLE;
5965
cf532bb2
VS
5966 if (intel_crtc->config.double_wide)
5967 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 5968
ff9ce46e
DV
5969 /* only g4x and later have fancy bpc/dither controls */
5970 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
5971 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5972 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5973 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 5974 PIPECONF_DITHER_TYPE_SP;
84b046f3 5975
ff9ce46e
DV
5976 switch (intel_crtc->config.pipe_bpp) {
5977 case 18:
5978 pipeconf |= PIPECONF_6BPC;
5979 break;
5980 case 24:
5981 pipeconf |= PIPECONF_8BPC;
5982 break;
5983 case 30:
5984 pipeconf |= PIPECONF_10BPC;
5985 break;
5986 default:
5987 /* Case prevented by intel_choose_pipe_bpp_dither. */
5988 BUG();
84b046f3
DV
5989 }
5990 }
5991
5992 if (HAS_PIPE_CXSR(dev)) {
5993 if (intel_crtc->lowfreq_avail) {
5994 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5995 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5996 } else {
5997 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
5998 }
5999 }
6000
efc2cfff
VS
6001 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6002 if (INTEL_INFO(dev)->gen < 4 ||
6003 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6004 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6005 else
6006 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6007 } else
84b046f3
DV
6008 pipeconf |= PIPECONF_PROGRESSIVE;
6009
9f11a9e4
DV
6010 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6011 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6012
84b046f3
DV
6013 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6014 POSTING_READ(PIPECONF(intel_crtc->pipe));
6015}
6016
f564048e 6017static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6018 int x, int y,
94352cf9 6019 struct drm_framebuffer *fb)
79e53945
JB
6020{
6021 struct drm_device *dev = crtc->dev;
6022 struct drm_i915_private *dev_priv = dev->dev_private;
6023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6024 int refclk, num_connectors = 0;
652c393a 6025 intel_clock_t clock, reduced_clock;
a16af721 6026 bool ok, has_reduced_clock = false;
e9fd1c02 6027 bool is_lvds = false, is_dsi = false;
5eddb70b 6028 struct intel_encoder *encoder;
d4906093 6029 const intel_limit_t *limit;
79e53945 6030
6c2b7c12 6031 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6032 switch (encoder->type) {
79e53945
JB
6033 case INTEL_OUTPUT_LVDS:
6034 is_lvds = true;
6035 break;
e9fd1c02
JN
6036 case INTEL_OUTPUT_DSI:
6037 is_dsi = true;
6038 break;
79e53945 6039 }
43565a06 6040
c751ce4f 6041 num_connectors++;
79e53945
JB
6042 }
6043
f2335330 6044 if (is_dsi)
5b18e57c 6045 return 0;
f2335330
JN
6046
6047 if (!intel_crtc->config.clock_set) {
6048 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6049
e9fd1c02
JN
6050 /*
6051 * Returns a set of divisors for the desired target clock with
6052 * the given refclk, or FALSE. The returned values represent
6053 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6054 * 2) / p1 / p2.
6055 */
6056 limit = intel_limit(crtc, refclk);
6057 ok = dev_priv->display.find_dpll(limit, crtc,
6058 intel_crtc->config.port_clock,
6059 refclk, NULL, &clock);
f2335330 6060 if (!ok) {
e9fd1c02
JN
6061 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6062 return -EINVAL;
6063 }
79e53945 6064
f2335330
JN
6065 if (is_lvds && dev_priv->lvds_downclock_avail) {
6066 /*
6067 * Ensure we match the reduced clock's P to the target
6068 * clock. If the clocks don't match, we can't switch
6069 * the display clock by using the FP0/FP1. In such case
6070 * we will disable the LVDS downclock feature.
6071 */
6072 has_reduced_clock =
6073 dev_priv->display.find_dpll(limit, crtc,
6074 dev_priv->lvds_downclock,
6075 refclk, &clock,
6076 &reduced_clock);
6077 }
6078 /* Compat-code for transition, will disappear. */
f47709a9
DV
6079 intel_crtc->config.dpll.n = clock.n;
6080 intel_crtc->config.dpll.m1 = clock.m1;
6081 intel_crtc->config.dpll.m2 = clock.m2;
6082 intel_crtc->config.dpll.p1 = clock.p1;
6083 intel_crtc->config.dpll.p2 = clock.p2;
6084 }
7026d4ac 6085
e9fd1c02 6086 if (IS_GEN2(dev)) {
8a654f3b 6087 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6088 has_reduced_clock ? &reduced_clock : NULL,
6089 num_connectors);
9d556c99
CML
6090 } else if (IS_CHERRYVIEW(dev)) {
6091 chv_update_pll(intel_crtc);
e9fd1c02 6092 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6093 vlv_update_pll(intel_crtc);
e9fd1c02 6094 } else {
f47709a9 6095 i9xx_update_pll(intel_crtc,
eb1cbe48 6096 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6097 num_connectors);
e9fd1c02 6098 }
79e53945 6099
c8f7a0db 6100 return 0;
f564048e
EA
6101}
6102
2fa2fe9a
DV
6103static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6104 struct intel_crtc_config *pipe_config)
6105{
6106 struct drm_device *dev = crtc->base.dev;
6107 struct drm_i915_private *dev_priv = dev->dev_private;
6108 uint32_t tmp;
6109
dc9e7dec
VS
6110 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6111 return;
6112
2fa2fe9a 6113 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6114 if (!(tmp & PFIT_ENABLE))
6115 return;
2fa2fe9a 6116
06922821 6117 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6118 if (INTEL_INFO(dev)->gen < 4) {
6119 if (crtc->pipe != PIPE_B)
6120 return;
2fa2fe9a
DV
6121 } else {
6122 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6123 return;
6124 }
6125
06922821 6126 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6127 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6128 if (INTEL_INFO(dev)->gen < 5)
6129 pipe_config->gmch_pfit.lvds_border_bits =
6130 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6131}
6132
acbec814
JB
6133static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6134 struct intel_crtc_config *pipe_config)
6135{
6136 struct drm_device *dev = crtc->base.dev;
6137 struct drm_i915_private *dev_priv = dev->dev_private;
6138 int pipe = pipe_config->cpu_transcoder;
6139 intel_clock_t clock;
6140 u32 mdiv;
662c6ecb 6141 int refclk = 100000;
acbec814
JB
6142
6143 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6144 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6145 mutex_unlock(&dev_priv->dpio_lock);
6146
6147 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6148 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6149 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6150 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6151 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6152
f646628b 6153 vlv_clock(refclk, &clock);
acbec814 6154
f646628b
VS
6155 /* clock.dot is the fast clock */
6156 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6157}
6158
1ad292b5
JB
6159static void i9xx_get_plane_config(struct intel_crtc *crtc,
6160 struct intel_plane_config *plane_config)
6161{
6162 struct drm_device *dev = crtc->base.dev;
6163 struct drm_i915_private *dev_priv = dev->dev_private;
6164 u32 val, base, offset;
6165 int pipe = crtc->pipe, plane = crtc->plane;
6166 int fourcc, pixel_format;
6167 int aligned_height;
6168
66e514c1
DA
6169 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6170 if (!crtc->base.primary->fb) {
1ad292b5
JB
6171 DRM_DEBUG_KMS("failed to alloc fb\n");
6172 return;
6173 }
6174
6175 val = I915_READ(DSPCNTR(plane));
6176
6177 if (INTEL_INFO(dev)->gen >= 4)
6178 if (val & DISPPLANE_TILED)
6179 plane_config->tiled = true;
6180
6181 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6182 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6183 crtc->base.primary->fb->pixel_format = fourcc;
6184 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6185 drm_format_plane_cpp(fourcc, 0) * 8;
6186
6187 if (INTEL_INFO(dev)->gen >= 4) {
6188 if (plane_config->tiled)
6189 offset = I915_READ(DSPTILEOFF(plane));
6190 else
6191 offset = I915_READ(DSPLINOFF(plane));
6192 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6193 } else {
6194 base = I915_READ(DSPADDR(plane));
6195 }
6196 plane_config->base = base;
6197
6198 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6199 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6200 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6201
6202 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 6203 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
1ad292b5 6204
66e514c1 6205 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6206 plane_config->tiled);
6207
1267a26b
FF
6208 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6209 aligned_height);
1ad292b5
JB
6210
6211 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6212 pipe, plane, crtc->base.primary->fb->width,
6213 crtc->base.primary->fb->height,
6214 crtc->base.primary->fb->bits_per_pixel, base,
6215 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6216 plane_config->size);
6217
6218}
6219
70b23a98
VS
6220static void chv_crtc_clock_get(struct intel_crtc *crtc,
6221 struct intel_crtc_config *pipe_config)
6222{
6223 struct drm_device *dev = crtc->base.dev;
6224 struct drm_i915_private *dev_priv = dev->dev_private;
6225 int pipe = pipe_config->cpu_transcoder;
6226 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6227 intel_clock_t clock;
6228 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6229 int refclk = 100000;
6230
6231 mutex_lock(&dev_priv->dpio_lock);
6232 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6233 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6234 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6235 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6236 mutex_unlock(&dev_priv->dpio_lock);
6237
6238 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6239 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6240 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6241 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6242 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6243
6244 chv_clock(refclk, &clock);
6245
6246 /* clock.dot is the fast clock */
6247 pipe_config->port_clock = clock.dot / 5;
6248}
6249
0e8ffe1b
DV
6250static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6251 struct intel_crtc_config *pipe_config)
6252{
6253 struct drm_device *dev = crtc->base.dev;
6254 struct drm_i915_private *dev_priv = dev->dev_private;
6255 uint32_t tmp;
6256
b5482bd0
ID
6257 if (!intel_display_power_enabled(dev_priv,
6258 POWER_DOMAIN_PIPE(crtc->pipe)))
6259 return false;
6260
e143a21c 6261 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6262 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6263
0e8ffe1b
DV
6264 tmp = I915_READ(PIPECONF(crtc->pipe));
6265 if (!(tmp & PIPECONF_ENABLE))
6266 return false;
6267
42571aef
VS
6268 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6269 switch (tmp & PIPECONF_BPC_MASK) {
6270 case PIPECONF_6BPC:
6271 pipe_config->pipe_bpp = 18;
6272 break;
6273 case PIPECONF_8BPC:
6274 pipe_config->pipe_bpp = 24;
6275 break;
6276 case PIPECONF_10BPC:
6277 pipe_config->pipe_bpp = 30;
6278 break;
6279 default:
6280 break;
6281 }
6282 }
6283
b5a9fa09
DV
6284 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6285 pipe_config->limited_color_range = true;
6286
282740f7
VS
6287 if (INTEL_INFO(dev)->gen < 4)
6288 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6289
1bd1bd80
DV
6290 intel_get_pipe_timings(crtc, pipe_config);
6291
2fa2fe9a
DV
6292 i9xx_get_pfit_config(crtc, pipe_config);
6293
6c49f241
DV
6294 if (INTEL_INFO(dev)->gen >= 4) {
6295 tmp = I915_READ(DPLL_MD(crtc->pipe));
6296 pipe_config->pixel_multiplier =
6297 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6298 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6299 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6300 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6301 tmp = I915_READ(DPLL(crtc->pipe));
6302 pipe_config->pixel_multiplier =
6303 ((tmp & SDVO_MULTIPLIER_MASK)
6304 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6305 } else {
6306 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6307 * port and will be fixed up in the encoder->get_config
6308 * function. */
6309 pipe_config->pixel_multiplier = 1;
6310 }
8bcc2795
DV
6311 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6312 if (!IS_VALLEYVIEW(dev)) {
6313 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6314 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6315 } else {
6316 /* Mask out read-only status bits. */
6317 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6318 DPLL_PORTC_READY_MASK |
6319 DPLL_PORTB_READY_MASK);
8bcc2795 6320 }
6c49f241 6321
70b23a98
VS
6322 if (IS_CHERRYVIEW(dev))
6323 chv_crtc_clock_get(crtc, pipe_config);
6324 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6325 vlv_crtc_clock_get(crtc, pipe_config);
6326 else
6327 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6328
0e8ffe1b
DV
6329 return true;
6330}
6331
dde86e2d 6332static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6333{
6334 struct drm_i915_private *dev_priv = dev->dev_private;
6335 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 6336 struct intel_encoder *encoder;
74cfd7ac 6337 u32 val, final;
13d83a67 6338 bool has_lvds = false;
199e5d79 6339 bool has_cpu_edp = false;
199e5d79 6340 bool has_panel = false;
99eb6a01
KP
6341 bool has_ck505 = false;
6342 bool can_ssc = false;
13d83a67
JB
6343
6344 /* We need to take the global config into account */
199e5d79
KP
6345 list_for_each_entry(encoder, &mode_config->encoder_list,
6346 base.head) {
6347 switch (encoder->type) {
6348 case INTEL_OUTPUT_LVDS:
6349 has_panel = true;
6350 has_lvds = true;
6351 break;
6352 case INTEL_OUTPUT_EDP:
6353 has_panel = true;
2de6905f 6354 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6355 has_cpu_edp = true;
6356 break;
13d83a67
JB
6357 }
6358 }
6359
99eb6a01 6360 if (HAS_PCH_IBX(dev)) {
41aa3448 6361 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6362 can_ssc = has_ck505;
6363 } else {
6364 has_ck505 = false;
6365 can_ssc = true;
6366 }
6367
2de6905f
ID
6368 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6369 has_panel, has_lvds, has_ck505);
13d83a67
JB
6370
6371 /* Ironlake: try to setup display ref clock before DPLL
6372 * enabling. This is only under driver's control after
6373 * PCH B stepping, previous chipset stepping should be
6374 * ignoring this setting.
6375 */
74cfd7ac
CW
6376 val = I915_READ(PCH_DREF_CONTROL);
6377
6378 /* As we must carefully and slowly disable/enable each source in turn,
6379 * compute the final state we want first and check if we need to
6380 * make any changes at all.
6381 */
6382 final = val;
6383 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6384 if (has_ck505)
6385 final |= DREF_NONSPREAD_CK505_ENABLE;
6386 else
6387 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6388
6389 final &= ~DREF_SSC_SOURCE_MASK;
6390 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6391 final &= ~DREF_SSC1_ENABLE;
6392
6393 if (has_panel) {
6394 final |= DREF_SSC_SOURCE_ENABLE;
6395
6396 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6397 final |= DREF_SSC1_ENABLE;
6398
6399 if (has_cpu_edp) {
6400 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6401 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6402 else
6403 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6404 } else
6405 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6406 } else {
6407 final |= DREF_SSC_SOURCE_DISABLE;
6408 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6409 }
6410
6411 if (final == val)
6412 return;
6413
13d83a67 6414 /* Always enable nonspread source */
74cfd7ac 6415 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6416
99eb6a01 6417 if (has_ck505)
74cfd7ac 6418 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6419 else
74cfd7ac 6420 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6421
199e5d79 6422 if (has_panel) {
74cfd7ac
CW
6423 val &= ~DREF_SSC_SOURCE_MASK;
6424 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6425
199e5d79 6426 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6427 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6428 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6429 val |= DREF_SSC1_ENABLE;
e77166b5 6430 } else
74cfd7ac 6431 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6432
6433 /* Get SSC going before enabling the outputs */
74cfd7ac 6434 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6435 POSTING_READ(PCH_DREF_CONTROL);
6436 udelay(200);
6437
74cfd7ac 6438 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6439
6440 /* Enable CPU source on CPU attached eDP */
199e5d79 6441 if (has_cpu_edp) {
99eb6a01 6442 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6443 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6444 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6445 } else
74cfd7ac 6446 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6447 } else
74cfd7ac 6448 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6449
74cfd7ac 6450 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6451 POSTING_READ(PCH_DREF_CONTROL);
6452 udelay(200);
6453 } else {
6454 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6455
74cfd7ac 6456 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6457
6458 /* Turn off CPU output */
74cfd7ac 6459 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6460
74cfd7ac 6461 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6462 POSTING_READ(PCH_DREF_CONTROL);
6463 udelay(200);
6464
6465 /* Turn off the SSC source */
74cfd7ac
CW
6466 val &= ~DREF_SSC_SOURCE_MASK;
6467 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6468
6469 /* Turn off SSC1 */
74cfd7ac 6470 val &= ~DREF_SSC1_ENABLE;
199e5d79 6471
74cfd7ac 6472 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6473 POSTING_READ(PCH_DREF_CONTROL);
6474 udelay(200);
6475 }
74cfd7ac
CW
6476
6477 BUG_ON(val != final);
13d83a67
JB
6478}
6479
f31f2d55 6480static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6481{
f31f2d55 6482 uint32_t tmp;
dde86e2d 6483
0ff066a9
PZ
6484 tmp = I915_READ(SOUTH_CHICKEN2);
6485 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6486 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6487
0ff066a9
PZ
6488 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6489 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6490 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6491
0ff066a9
PZ
6492 tmp = I915_READ(SOUTH_CHICKEN2);
6493 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6494 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6495
0ff066a9
PZ
6496 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6497 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6498 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6499}
6500
6501/* WaMPhyProgramming:hsw */
6502static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6503{
6504 uint32_t tmp;
dde86e2d
PZ
6505
6506 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6507 tmp &= ~(0xFF << 24);
6508 tmp |= (0x12 << 24);
6509 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6510
dde86e2d
PZ
6511 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6512 tmp |= (1 << 11);
6513 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6514
6515 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6516 tmp |= (1 << 11);
6517 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6518
dde86e2d
PZ
6519 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6520 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6521 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6522
6523 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6524 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6525 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6526
0ff066a9
PZ
6527 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6528 tmp &= ~(7 << 13);
6529 tmp |= (5 << 13);
6530 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6531
0ff066a9
PZ
6532 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6533 tmp &= ~(7 << 13);
6534 tmp |= (5 << 13);
6535 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6536
6537 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6538 tmp &= ~0xFF;
6539 tmp |= 0x1C;
6540 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6541
6542 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6543 tmp &= ~0xFF;
6544 tmp |= 0x1C;
6545 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6546
6547 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6548 tmp &= ~(0xFF << 16);
6549 tmp |= (0x1C << 16);
6550 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6551
6552 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6553 tmp &= ~(0xFF << 16);
6554 tmp |= (0x1C << 16);
6555 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6556
0ff066a9
PZ
6557 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6558 tmp |= (1 << 27);
6559 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6560
0ff066a9
PZ
6561 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6562 tmp |= (1 << 27);
6563 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6564
0ff066a9
PZ
6565 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6566 tmp &= ~(0xF << 28);
6567 tmp |= (4 << 28);
6568 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6569
0ff066a9
PZ
6570 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6571 tmp &= ~(0xF << 28);
6572 tmp |= (4 << 28);
6573 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6574}
6575
2fa86a1f
PZ
6576/* Implements 3 different sequences from BSpec chapter "Display iCLK
6577 * Programming" based on the parameters passed:
6578 * - Sequence to enable CLKOUT_DP
6579 * - Sequence to enable CLKOUT_DP without spread
6580 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6581 */
6582static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6583 bool with_fdi)
f31f2d55
PZ
6584{
6585 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6586 uint32_t reg, tmp;
6587
6588 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6589 with_spread = true;
6590 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6591 with_fdi, "LP PCH doesn't have FDI\n"))
6592 with_fdi = false;
f31f2d55
PZ
6593
6594 mutex_lock(&dev_priv->dpio_lock);
6595
6596 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6597 tmp &= ~SBI_SSCCTL_DISABLE;
6598 tmp |= SBI_SSCCTL_PATHALT;
6599 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6600
6601 udelay(24);
6602
2fa86a1f
PZ
6603 if (with_spread) {
6604 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6605 tmp &= ~SBI_SSCCTL_PATHALT;
6606 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6607
2fa86a1f
PZ
6608 if (with_fdi) {
6609 lpt_reset_fdi_mphy(dev_priv);
6610 lpt_program_fdi_mphy(dev_priv);
6611 }
6612 }
dde86e2d 6613
2fa86a1f
PZ
6614 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6615 SBI_GEN0 : SBI_DBUFF0;
6616 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6617 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6618 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6619
6620 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6621}
6622
47701c3b
PZ
6623/* Sequence to disable CLKOUT_DP */
6624static void lpt_disable_clkout_dp(struct drm_device *dev)
6625{
6626 struct drm_i915_private *dev_priv = dev->dev_private;
6627 uint32_t reg, tmp;
6628
6629 mutex_lock(&dev_priv->dpio_lock);
6630
6631 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6632 SBI_GEN0 : SBI_DBUFF0;
6633 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6634 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6635 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6636
6637 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6638 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6639 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6640 tmp |= SBI_SSCCTL_PATHALT;
6641 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6642 udelay(32);
6643 }
6644 tmp |= SBI_SSCCTL_DISABLE;
6645 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6646 }
6647
6648 mutex_unlock(&dev_priv->dpio_lock);
6649}
6650
bf8fa3d3
PZ
6651static void lpt_init_pch_refclk(struct drm_device *dev)
6652{
6653 struct drm_mode_config *mode_config = &dev->mode_config;
6654 struct intel_encoder *encoder;
6655 bool has_vga = false;
6656
6657 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6658 switch (encoder->type) {
6659 case INTEL_OUTPUT_ANALOG:
6660 has_vga = true;
6661 break;
6662 }
6663 }
6664
47701c3b
PZ
6665 if (has_vga)
6666 lpt_enable_clkout_dp(dev, true, true);
6667 else
6668 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6669}
6670
dde86e2d
PZ
6671/*
6672 * Initialize reference clocks when the driver loads
6673 */
6674void intel_init_pch_refclk(struct drm_device *dev)
6675{
6676 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6677 ironlake_init_pch_refclk(dev);
6678 else if (HAS_PCH_LPT(dev))
6679 lpt_init_pch_refclk(dev);
6680}
6681
d9d444cb
JB
6682static int ironlake_get_refclk(struct drm_crtc *crtc)
6683{
6684 struct drm_device *dev = crtc->dev;
6685 struct drm_i915_private *dev_priv = dev->dev_private;
6686 struct intel_encoder *encoder;
d9d444cb
JB
6687 int num_connectors = 0;
6688 bool is_lvds = false;
6689
6c2b7c12 6690 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6691 switch (encoder->type) {
6692 case INTEL_OUTPUT_LVDS:
6693 is_lvds = true;
6694 break;
d9d444cb
JB
6695 }
6696 num_connectors++;
6697 }
6698
6699 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6700 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6701 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6702 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6703 }
6704
6705 return 120000;
6706}
6707
6ff93609 6708static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6709{
c8203565 6710 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6711 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6712 int pipe = intel_crtc->pipe;
c8203565
PZ
6713 uint32_t val;
6714
78114071 6715 val = 0;
c8203565 6716
965e0c48 6717 switch (intel_crtc->config.pipe_bpp) {
c8203565 6718 case 18:
dfd07d72 6719 val |= PIPECONF_6BPC;
c8203565
PZ
6720 break;
6721 case 24:
dfd07d72 6722 val |= PIPECONF_8BPC;
c8203565
PZ
6723 break;
6724 case 30:
dfd07d72 6725 val |= PIPECONF_10BPC;
c8203565
PZ
6726 break;
6727 case 36:
dfd07d72 6728 val |= PIPECONF_12BPC;
c8203565
PZ
6729 break;
6730 default:
cc769b62
PZ
6731 /* Case prevented by intel_choose_pipe_bpp_dither. */
6732 BUG();
c8203565
PZ
6733 }
6734
d8b32247 6735 if (intel_crtc->config.dither)
c8203565
PZ
6736 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6737
6ff93609 6738 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6739 val |= PIPECONF_INTERLACED_ILK;
6740 else
6741 val |= PIPECONF_PROGRESSIVE;
6742
50f3b016 6743 if (intel_crtc->config.limited_color_range)
3685a8f3 6744 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6745
c8203565
PZ
6746 I915_WRITE(PIPECONF(pipe), val);
6747 POSTING_READ(PIPECONF(pipe));
6748}
6749
86d3efce
VS
6750/*
6751 * Set up the pipe CSC unit.
6752 *
6753 * Currently only full range RGB to limited range RGB conversion
6754 * is supported, but eventually this should handle various
6755 * RGB<->YCbCr scenarios as well.
6756 */
50f3b016 6757static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6758{
6759 struct drm_device *dev = crtc->dev;
6760 struct drm_i915_private *dev_priv = dev->dev_private;
6761 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6762 int pipe = intel_crtc->pipe;
6763 uint16_t coeff = 0x7800; /* 1.0 */
6764
6765 /*
6766 * TODO: Check what kind of values actually come out of the pipe
6767 * with these coeff/postoff values and adjust to get the best
6768 * accuracy. Perhaps we even need to take the bpc value into
6769 * consideration.
6770 */
6771
50f3b016 6772 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6773 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6774
6775 /*
6776 * GY/GU and RY/RU should be the other way around according
6777 * to BSpec, but reality doesn't agree. Just set them up in
6778 * a way that results in the correct picture.
6779 */
6780 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6781 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6782
6783 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6784 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6785
6786 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6787 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6788
6789 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6790 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6791 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6792
6793 if (INTEL_INFO(dev)->gen > 6) {
6794 uint16_t postoff = 0;
6795
50f3b016 6796 if (intel_crtc->config.limited_color_range)
32cf0cb0 6797 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6798
6799 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6800 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6801 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6802
6803 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6804 } else {
6805 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6806
50f3b016 6807 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6808 mode |= CSC_BLACK_SCREEN_OFFSET;
6809
6810 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6811 }
6812}
6813
6ff93609 6814static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6815{
756f85cf
PZ
6816 struct drm_device *dev = crtc->dev;
6817 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6818 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6819 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6820 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6821 uint32_t val;
6822
3eff4faa 6823 val = 0;
ee2b0b38 6824
756f85cf 6825 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6826 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6827
6ff93609 6828 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6829 val |= PIPECONF_INTERLACED_ILK;
6830 else
6831 val |= PIPECONF_PROGRESSIVE;
6832
702e7a56
PZ
6833 I915_WRITE(PIPECONF(cpu_transcoder), val);
6834 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6835
6836 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6837 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6838
6839 if (IS_BROADWELL(dev)) {
6840 val = 0;
6841
6842 switch (intel_crtc->config.pipe_bpp) {
6843 case 18:
6844 val |= PIPEMISC_DITHER_6_BPC;
6845 break;
6846 case 24:
6847 val |= PIPEMISC_DITHER_8_BPC;
6848 break;
6849 case 30:
6850 val |= PIPEMISC_DITHER_10_BPC;
6851 break;
6852 case 36:
6853 val |= PIPEMISC_DITHER_12_BPC;
6854 break;
6855 default:
6856 /* Case prevented by pipe_config_set_bpp. */
6857 BUG();
6858 }
6859
6860 if (intel_crtc->config.dither)
6861 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6862
6863 I915_WRITE(PIPEMISC(pipe), val);
6864 }
ee2b0b38
PZ
6865}
6866
6591c6e4 6867static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6868 intel_clock_t *clock,
6869 bool *has_reduced_clock,
6870 intel_clock_t *reduced_clock)
6871{
6872 struct drm_device *dev = crtc->dev;
6873 struct drm_i915_private *dev_priv = dev->dev_private;
6874 struct intel_encoder *intel_encoder;
6875 int refclk;
d4906093 6876 const intel_limit_t *limit;
a16af721 6877 bool ret, is_lvds = false;
79e53945 6878
6591c6e4
PZ
6879 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6880 switch (intel_encoder->type) {
79e53945
JB
6881 case INTEL_OUTPUT_LVDS:
6882 is_lvds = true;
6883 break;
79e53945
JB
6884 }
6885 }
6886
d9d444cb 6887 refclk = ironlake_get_refclk(crtc);
79e53945 6888
d4906093
ML
6889 /*
6890 * Returns a set of divisors for the desired target clock with the given
6891 * refclk, or FALSE. The returned values represent the clock equation:
6892 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6893 */
1b894b59 6894 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6895 ret = dev_priv->display.find_dpll(limit, crtc,
6896 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6897 refclk, NULL, clock);
6591c6e4
PZ
6898 if (!ret)
6899 return false;
cda4b7d3 6900
ddc9003c 6901 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6902 /*
6903 * Ensure we match the reduced clock's P to the target clock.
6904 * If the clocks don't match, we can't switch the display clock
6905 * by using the FP0/FP1. In such case we will disable the LVDS
6906 * downclock feature.
6907 */
ee9300bb
DV
6908 *has_reduced_clock =
6909 dev_priv->display.find_dpll(limit, crtc,
6910 dev_priv->lvds_downclock,
6911 refclk, clock,
6912 reduced_clock);
652c393a 6913 }
61e9653f 6914
6591c6e4
PZ
6915 return true;
6916}
6917
d4b1931c
PZ
6918int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6919{
6920 /*
6921 * Account for spread spectrum to avoid
6922 * oversubscribing the link. Max center spread
6923 * is 2.5%; use 5% for safety's sake.
6924 */
6925 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6926 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6927}
6928
7429e9d4 6929static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6930{
7429e9d4 6931 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
6932}
6933
de13a2e3 6934static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 6935 u32 *fp,
9a7c7890 6936 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 6937{
de13a2e3 6938 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
6939 struct drm_device *dev = crtc->dev;
6940 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
6941 struct intel_encoder *intel_encoder;
6942 uint32_t dpll;
6cc5f341 6943 int factor, num_connectors = 0;
09ede541 6944 bool is_lvds = false, is_sdvo = false;
79e53945 6945
de13a2e3
PZ
6946 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6947 switch (intel_encoder->type) {
79e53945
JB
6948 case INTEL_OUTPUT_LVDS:
6949 is_lvds = true;
6950 break;
6951 case INTEL_OUTPUT_SDVO:
7d57382e 6952 case INTEL_OUTPUT_HDMI:
79e53945 6953 is_sdvo = true;
79e53945 6954 break;
79e53945 6955 }
43565a06 6956
c751ce4f 6957 num_connectors++;
79e53945 6958 }
79e53945 6959
c1858123 6960 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
6961 factor = 21;
6962 if (is_lvds) {
6963 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 6964 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 6965 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 6966 factor = 25;
09ede541 6967 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 6968 factor = 20;
c1858123 6969
7429e9d4 6970 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 6971 *fp |= FP_CB_TUNE;
2c07245f 6972
9a7c7890
DV
6973 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6974 *fp2 |= FP_CB_TUNE;
6975
5eddb70b 6976 dpll = 0;
2c07245f 6977
a07d6787
EA
6978 if (is_lvds)
6979 dpll |= DPLLB_MODE_LVDS;
6980 else
6981 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 6982
ef1b460d
DV
6983 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6984 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
6985
6986 if (is_sdvo)
4a33e48d 6987 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 6988 if (intel_crtc->config.has_dp_encoder)
4a33e48d 6989 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 6990
a07d6787 6991 /* compute bitmask from p1 value */
7429e9d4 6992 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 6993 /* also FPA1 */
7429e9d4 6994 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 6995
7429e9d4 6996 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
6997 case 5:
6998 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6999 break;
7000 case 7:
7001 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7002 break;
7003 case 10:
7004 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7005 break;
7006 case 14:
7007 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7008 break;
79e53945
JB
7009 }
7010
b4c09f3b 7011 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7012 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7013 else
7014 dpll |= PLL_REF_INPUT_DREFCLK;
7015
959e16d6 7016 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7017}
7018
7019static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7020 int x, int y,
7021 struct drm_framebuffer *fb)
7022{
7023 struct drm_device *dev = crtc->dev;
de13a2e3 7024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7025 int num_connectors = 0;
7026 intel_clock_t clock, reduced_clock;
cbbab5bd 7027 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7028 bool ok, has_reduced_clock = false;
8b47047b 7029 bool is_lvds = false;
de13a2e3 7030 struct intel_encoder *encoder;
e2b78267 7031 struct intel_shared_dpll *pll;
de13a2e3
PZ
7032
7033 for_each_encoder_on_crtc(dev, crtc, encoder) {
7034 switch (encoder->type) {
7035 case INTEL_OUTPUT_LVDS:
7036 is_lvds = true;
7037 break;
de13a2e3
PZ
7038 }
7039
7040 num_connectors++;
a07d6787 7041 }
79e53945 7042
5dc5298b
PZ
7043 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7044 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7045
ff9a6750 7046 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7047 &has_reduced_clock, &reduced_clock);
ee9300bb 7048 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7049 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7050 return -EINVAL;
79e53945 7051 }
f47709a9
DV
7052 /* Compat-code for transition, will disappear. */
7053 if (!intel_crtc->config.clock_set) {
7054 intel_crtc->config.dpll.n = clock.n;
7055 intel_crtc->config.dpll.m1 = clock.m1;
7056 intel_crtc->config.dpll.m2 = clock.m2;
7057 intel_crtc->config.dpll.p1 = clock.p1;
7058 intel_crtc->config.dpll.p2 = clock.p2;
7059 }
79e53945 7060
5dc5298b 7061 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7062 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7063 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7064 if (has_reduced_clock)
7429e9d4 7065 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7066
7429e9d4 7067 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7068 &fp, &reduced_clock,
7069 has_reduced_clock ? &fp2 : NULL);
7070
959e16d6 7071 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7072 intel_crtc->config.dpll_hw_state.fp0 = fp;
7073 if (has_reduced_clock)
7074 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7075 else
7076 intel_crtc->config.dpll_hw_state.fp1 = fp;
7077
b89a1d39 7078 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7079 if (pll == NULL) {
84f44ce7 7080 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7081 pipe_name(intel_crtc->pipe));
4b645f14
JB
7082 return -EINVAL;
7083 }
ee7b9f93 7084 } else
e72f9fbf 7085 intel_put_shared_dpll(intel_crtc);
79e53945 7086
d330a953 7087 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7088 intel_crtc->lowfreq_avail = true;
7089 else
7090 intel_crtc->lowfreq_avail = false;
e2b78267 7091
c8f7a0db 7092 return 0;
79e53945
JB
7093}
7094
eb14cb74
VS
7095static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7096 struct intel_link_m_n *m_n)
7097{
7098 struct drm_device *dev = crtc->base.dev;
7099 struct drm_i915_private *dev_priv = dev->dev_private;
7100 enum pipe pipe = crtc->pipe;
7101
7102 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7103 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7104 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7105 & ~TU_SIZE_MASK;
7106 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7107 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7108 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7109}
7110
7111static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7112 enum transcoder transcoder,
7113 struct intel_link_m_n *m_n)
72419203
DV
7114{
7115 struct drm_device *dev = crtc->base.dev;
7116 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7117 enum pipe pipe = crtc->pipe;
72419203 7118
eb14cb74
VS
7119 if (INTEL_INFO(dev)->gen >= 5) {
7120 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7121 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7122 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7123 & ~TU_SIZE_MASK;
7124 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7125 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7126 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7127 } else {
7128 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7129 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7130 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7131 & ~TU_SIZE_MASK;
7132 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7133 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7134 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7135 }
7136}
7137
7138void intel_dp_get_m_n(struct intel_crtc *crtc,
7139 struct intel_crtc_config *pipe_config)
7140{
7141 if (crtc->config.has_pch_encoder)
7142 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7143 else
7144 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7145 &pipe_config->dp_m_n);
7146}
72419203 7147
eb14cb74
VS
7148static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7149 struct intel_crtc_config *pipe_config)
7150{
7151 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7152 &pipe_config->fdi_m_n);
72419203
DV
7153}
7154
2fa2fe9a
DV
7155static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7156 struct intel_crtc_config *pipe_config)
7157{
7158 struct drm_device *dev = crtc->base.dev;
7159 struct drm_i915_private *dev_priv = dev->dev_private;
7160 uint32_t tmp;
7161
7162 tmp = I915_READ(PF_CTL(crtc->pipe));
7163
7164 if (tmp & PF_ENABLE) {
fd4daa9c 7165 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7166 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7167 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7168
7169 /* We currently do not free assignements of panel fitters on
7170 * ivb/hsw (since we don't use the higher upscaling modes which
7171 * differentiates them) so just WARN about this case for now. */
7172 if (IS_GEN7(dev)) {
7173 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7174 PF_PIPE_SEL_IVB(crtc->pipe));
7175 }
2fa2fe9a 7176 }
79e53945
JB
7177}
7178
4c6baa59
JB
7179static void ironlake_get_plane_config(struct intel_crtc *crtc,
7180 struct intel_plane_config *plane_config)
7181{
7182 struct drm_device *dev = crtc->base.dev;
7183 struct drm_i915_private *dev_priv = dev->dev_private;
7184 u32 val, base, offset;
7185 int pipe = crtc->pipe, plane = crtc->plane;
7186 int fourcc, pixel_format;
7187 int aligned_height;
7188
66e514c1
DA
7189 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7190 if (!crtc->base.primary->fb) {
4c6baa59
JB
7191 DRM_DEBUG_KMS("failed to alloc fb\n");
7192 return;
7193 }
7194
7195 val = I915_READ(DSPCNTR(plane));
7196
7197 if (INTEL_INFO(dev)->gen >= 4)
7198 if (val & DISPPLANE_TILED)
7199 plane_config->tiled = true;
7200
7201 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7202 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7203 crtc->base.primary->fb->pixel_format = fourcc;
7204 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7205 drm_format_plane_cpp(fourcc, 0) * 8;
7206
7207 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7208 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7209 offset = I915_READ(DSPOFFSET(plane));
7210 } else {
7211 if (plane_config->tiled)
7212 offset = I915_READ(DSPTILEOFF(plane));
7213 else
7214 offset = I915_READ(DSPLINOFF(plane));
7215 }
7216 plane_config->base = base;
7217
7218 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7219 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7220 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7221
7222 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 7223 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
4c6baa59 7224
66e514c1 7225 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7226 plane_config->tiled);
7227
1267a26b
FF
7228 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7229 aligned_height);
4c6baa59
JB
7230
7231 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7232 pipe, plane, crtc->base.primary->fb->width,
7233 crtc->base.primary->fb->height,
7234 crtc->base.primary->fb->bits_per_pixel, base,
7235 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7236 plane_config->size);
7237}
7238
0e8ffe1b
DV
7239static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7240 struct intel_crtc_config *pipe_config)
7241{
7242 struct drm_device *dev = crtc->base.dev;
7243 struct drm_i915_private *dev_priv = dev->dev_private;
7244 uint32_t tmp;
7245
e143a21c 7246 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7247 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7248
0e8ffe1b
DV
7249 tmp = I915_READ(PIPECONF(crtc->pipe));
7250 if (!(tmp & PIPECONF_ENABLE))
7251 return false;
7252
42571aef
VS
7253 switch (tmp & PIPECONF_BPC_MASK) {
7254 case PIPECONF_6BPC:
7255 pipe_config->pipe_bpp = 18;
7256 break;
7257 case PIPECONF_8BPC:
7258 pipe_config->pipe_bpp = 24;
7259 break;
7260 case PIPECONF_10BPC:
7261 pipe_config->pipe_bpp = 30;
7262 break;
7263 case PIPECONF_12BPC:
7264 pipe_config->pipe_bpp = 36;
7265 break;
7266 default:
7267 break;
7268 }
7269
b5a9fa09
DV
7270 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7271 pipe_config->limited_color_range = true;
7272
ab9412ba 7273 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7274 struct intel_shared_dpll *pll;
7275
88adfff1
DV
7276 pipe_config->has_pch_encoder = true;
7277
627eb5a3
DV
7278 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7279 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7280 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7281
7282 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7283
c0d43d62 7284 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7285 pipe_config->shared_dpll =
7286 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7287 } else {
7288 tmp = I915_READ(PCH_DPLL_SEL);
7289 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7290 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7291 else
7292 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7293 }
66e985c0
DV
7294
7295 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7296
7297 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7298 &pipe_config->dpll_hw_state));
c93f54cf
DV
7299
7300 tmp = pipe_config->dpll_hw_state.dpll;
7301 pipe_config->pixel_multiplier =
7302 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7303 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7304
7305 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7306 } else {
7307 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7308 }
7309
1bd1bd80
DV
7310 intel_get_pipe_timings(crtc, pipe_config);
7311
2fa2fe9a
DV
7312 ironlake_get_pfit_config(crtc, pipe_config);
7313
0e8ffe1b
DV
7314 return true;
7315}
7316
be256dc7
PZ
7317static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7318{
7319 struct drm_device *dev = dev_priv->dev;
7320 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
7321 struct intel_crtc *crtc;
be256dc7 7322
d3fcc808 7323 for_each_intel_crtc(dev, crtc)
798183c5 7324 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7325 pipe_name(crtc->pipe));
7326
7327 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7328 WARN(plls->spll_refcount, "SPLL enabled\n");
7329 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
7330 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
7331 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7332 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7333 "CPU PWM1 enabled\n");
7334 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7335 "CPU PWM2 enabled\n");
7336 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7337 "PCH PWM1 enabled\n");
7338 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7339 "Utility pin enabled\n");
7340 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7341
9926ada1
PZ
7342 /*
7343 * In theory we can still leave IRQs enabled, as long as only the HPD
7344 * interrupts remain enabled. We used to check for that, but since it's
7345 * gen-specific and since we only disable LCPLL after we fully disable
7346 * the interrupts, the check below should be enough.
7347 */
7348 WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
be256dc7
PZ
7349}
7350
3c4c9b81
PZ
7351static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7352{
7353 struct drm_device *dev = dev_priv->dev;
7354
7355 if (IS_HASWELL(dev)) {
7356 mutex_lock(&dev_priv->rps.hw_lock);
7357 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7358 val))
7359 DRM_ERROR("Failed to disable D_COMP\n");
7360 mutex_unlock(&dev_priv->rps.hw_lock);
7361 } else {
7362 I915_WRITE(D_COMP, val);
7363 }
7364 POSTING_READ(D_COMP);
be256dc7
PZ
7365}
7366
7367/*
7368 * This function implements pieces of two sequences from BSpec:
7369 * - Sequence for display software to disable LCPLL
7370 * - Sequence for display software to allow package C8+
7371 * The steps implemented here are just the steps that actually touch the LCPLL
7372 * register. Callers should take care of disabling all the display engine
7373 * functions, doing the mode unset, fixing interrupts, etc.
7374 */
6ff58d53
PZ
7375static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7376 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7377{
7378 uint32_t val;
7379
7380 assert_can_disable_lcpll(dev_priv);
7381
7382 val = I915_READ(LCPLL_CTL);
7383
7384 if (switch_to_fclk) {
7385 val |= LCPLL_CD_SOURCE_FCLK;
7386 I915_WRITE(LCPLL_CTL, val);
7387
7388 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7389 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7390 DRM_ERROR("Switching to FCLK failed\n");
7391
7392 val = I915_READ(LCPLL_CTL);
7393 }
7394
7395 val |= LCPLL_PLL_DISABLE;
7396 I915_WRITE(LCPLL_CTL, val);
7397 POSTING_READ(LCPLL_CTL);
7398
7399 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7400 DRM_ERROR("LCPLL still locked\n");
7401
7402 val = I915_READ(D_COMP);
7403 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7404 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7405 ndelay(100);
7406
7407 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
7408 DRM_ERROR("D_COMP RCOMP still in progress\n");
7409
7410 if (allow_power_down) {
7411 val = I915_READ(LCPLL_CTL);
7412 val |= LCPLL_POWER_DOWN_ALLOW;
7413 I915_WRITE(LCPLL_CTL, val);
7414 POSTING_READ(LCPLL_CTL);
7415 }
7416}
7417
7418/*
7419 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7420 * source.
7421 */
6ff58d53 7422static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7423{
7424 uint32_t val;
a8a8bd54 7425 unsigned long irqflags;
be256dc7
PZ
7426
7427 val = I915_READ(LCPLL_CTL);
7428
7429 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7430 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7431 return;
7432
a8a8bd54
PZ
7433 /*
7434 * Make sure we're not on PC8 state before disabling PC8, otherwise
7435 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7436 *
7437 * The other problem is that hsw_restore_lcpll() is called as part of
7438 * the runtime PM resume sequence, so we can't just call
7439 * gen6_gt_force_wake_get() because that function calls
7440 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7441 * while we are on the resume sequence. So to solve this problem we have
7442 * to call special forcewake code that doesn't touch runtime PM and
7443 * doesn't enable the forcewake delayed work.
7444 */
7445 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7446 if (dev_priv->uncore.forcewake_count++ == 0)
7447 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7448 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7449
be256dc7
PZ
7450 if (val & LCPLL_POWER_DOWN_ALLOW) {
7451 val &= ~LCPLL_POWER_DOWN_ALLOW;
7452 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7453 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7454 }
7455
7456 val = I915_READ(D_COMP);
7457 val |= D_COMP_COMP_FORCE;
7458 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7459 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7460
7461 val = I915_READ(LCPLL_CTL);
7462 val &= ~LCPLL_PLL_DISABLE;
7463 I915_WRITE(LCPLL_CTL, val);
7464
7465 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7466 DRM_ERROR("LCPLL not locked yet\n");
7467
7468 if (val & LCPLL_CD_SOURCE_FCLK) {
7469 val = I915_READ(LCPLL_CTL);
7470 val &= ~LCPLL_CD_SOURCE_FCLK;
7471 I915_WRITE(LCPLL_CTL, val);
7472
7473 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7474 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7475 DRM_ERROR("Switching back to LCPLL failed\n");
7476 }
215733fa 7477
a8a8bd54
PZ
7478 /* See the big comment above. */
7479 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7480 if (--dev_priv->uncore.forcewake_count == 0)
7481 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7482 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7483}
7484
765dab67
PZ
7485/*
7486 * Package states C8 and deeper are really deep PC states that can only be
7487 * reached when all the devices on the system allow it, so even if the graphics
7488 * device allows PC8+, it doesn't mean the system will actually get to these
7489 * states. Our driver only allows PC8+ when going into runtime PM.
7490 *
7491 * The requirements for PC8+ are that all the outputs are disabled, the power
7492 * well is disabled and most interrupts are disabled, and these are also
7493 * requirements for runtime PM. When these conditions are met, we manually do
7494 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7495 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7496 * hang the machine.
7497 *
7498 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7499 * the state of some registers, so when we come back from PC8+ we need to
7500 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7501 * need to take care of the registers kept by RC6. Notice that this happens even
7502 * if we don't put the device in PCI D3 state (which is what currently happens
7503 * because of the runtime PM support).
7504 *
7505 * For more, read "Display Sequences for Package C8" on the hardware
7506 * documentation.
7507 */
a14cb6fc 7508void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7509{
c67a470b
PZ
7510 struct drm_device *dev = dev_priv->dev;
7511 uint32_t val;
7512
c67a470b
PZ
7513 DRM_DEBUG_KMS("Enabling package C8+\n");
7514
c67a470b
PZ
7515 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7516 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7517 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7518 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7519 }
7520
7521 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7522 hsw_disable_lcpll(dev_priv, true, true);
7523}
7524
a14cb6fc 7525void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7526{
7527 struct drm_device *dev = dev_priv->dev;
7528 uint32_t val;
7529
c67a470b
PZ
7530 DRM_DEBUG_KMS("Disabling package C8+\n");
7531
7532 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7533 lpt_init_pch_refclk(dev);
7534
7535 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7536 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7537 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7538 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7539 }
7540
7541 intel_prepare_ddi(dev);
c67a470b
PZ
7542}
7543
9a952a0d
PZ
7544static void snb_modeset_global_resources(struct drm_device *dev)
7545{
7546 modeset_update_crtc_power_domains(dev);
7547}
7548
4f074129
ID
7549static void haswell_modeset_global_resources(struct drm_device *dev)
7550{
da723569 7551 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7552}
7553
09b4ddf9 7554static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7555 int x, int y,
7556 struct drm_framebuffer *fb)
7557{
09b4ddf9 7558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7559
566b734a 7560 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7561 return -EINVAL;
566b734a 7562 intel_ddi_pll_enable(intel_crtc);
6441ab5f 7563
644cef34
DV
7564 intel_crtc->lowfreq_avail = false;
7565
c8f7a0db 7566 return 0;
79e53945
JB
7567}
7568
0e8ffe1b
DV
7569static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7570 struct intel_crtc_config *pipe_config)
7571{
7572 struct drm_device *dev = crtc->base.dev;
7573 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7574 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7575 uint32_t tmp;
7576
b5482bd0
ID
7577 if (!intel_display_power_enabled(dev_priv,
7578 POWER_DOMAIN_PIPE(crtc->pipe)))
7579 return false;
7580
e143a21c 7581 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7582 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7583
eccb140b
DV
7584 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7585 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7586 enum pipe trans_edp_pipe;
7587 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7588 default:
7589 WARN(1, "unknown pipe linked to edp transcoder\n");
7590 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7591 case TRANS_DDI_EDP_INPUT_A_ON:
7592 trans_edp_pipe = PIPE_A;
7593 break;
7594 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7595 trans_edp_pipe = PIPE_B;
7596 break;
7597 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7598 trans_edp_pipe = PIPE_C;
7599 break;
7600 }
7601
7602 if (trans_edp_pipe == crtc->pipe)
7603 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7604 }
7605
da7e29bd 7606 if (!intel_display_power_enabled(dev_priv,
eccb140b 7607 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7608 return false;
7609
eccb140b 7610 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7611 if (!(tmp & PIPECONF_ENABLE))
7612 return false;
7613
88adfff1 7614 /*
f196e6be 7615 * Haswell has only FDI/PCH transcoder A. It is which is connected to
88adfff1
DV
7616 * DDI E. So just check whether this pipe is wired to DDI E and whether
7617 * the PCH transcoder is on.
7618 */
eccb140b 7619 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
88adfff1 7620 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
ab9412ba 7621 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
88adfff1
DV
7622 pipe_config->has_pch_encoder = true;
7623
627eb5a3
DV
7624 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7625 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7626 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7627
7628 ironlake_get_fdi_m_n_config(crtc, pipe_config);
627eb5a3
DV
7629 }
7630
1bd1bd80
DV
7631 intel_get_pipe_timings(crtc, pipe_config);
7632
2fa2fe9a 7633 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7634 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7635 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7636
e59150dc
JB
7637 if (IS_HASWELL(dev))
7638 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7639 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7640
6c49f241
DV
7641 pipe_config->pixel_multiplier = 1;
7642
0e8ffe1b
DV
7643 return true;
7644}
7645
1a91510d
JN
7646static struct {
7647 int clock;
7648 u32 config;
7649} hdmi_audio_clock[] = {
7650 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7651 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7652 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7653 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7654 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7655 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7656 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7657 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7658 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7659 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7660};
7661
7662/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7663static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7664{
7665 int i;
7666
7667 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7668 if (mode->clock == hdmi_audio_clock[i].clock)
7669 break;
7670 }
7671
7672 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7673 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7674 i = 1;
7675 }
7676
7677 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7678 hdmi_audio_clock[i].clock,
7679 hdmi_audio_clock[i].config);
7680
7681 return hdmi_audio_clock[i].config;
7682}
7683
3a9627f4
WF
7684static bool intel_eld_uptodate(struct drm_connector *connector,
7685 int reg_eldv, uint32_t bits_eldv,
7686 int reg_elda, uint32_t bits_elda,
7687 int reg_edid)
7688{
7689 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7690 uint8_t *eld = connector->eld;
7691 uint32_t i;
7692
7693 i = I915_READ(reg_eldv);
7694 i &= bits_eldv;
7695
7696 if (!eld[0])
7697 return !i;
7698
7699 if (!i)
7700 return false;
7701
7702 i = I915_READ(reg_elda);
7703 i &= ~bits_elda;
7704 I915_WRITE(reg_elda, i);
7705
7706 for (i = 0; i < eld[2]; i++)
7707 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7708 return false;
7709
7710 return true;
7711}
7712
e0dac65e 7713static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7714 struct drm_crtc *crtc,
7715 struct drm_display_mode *mode)
e0dac65e
WF
7716{
7717 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7718 uint8_t *eld = connector->eld;
7719 uint32_t eldv;
7720 uint32_t len;
7721 uint32_t i;
7722
7723 i = I915_READ(G4X_AUD_VID_DID);
7724
7725 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7726 eldv = G4X_ELDV_DEVCL_DEVBLC;
7727 else
7728 eldv = G4X_ELDV_DEVCTG;
7729
3a9627f4
WF
7730 if (intel_eld_uptodate(connector,
7731 G4X_AUD_CNTL_ST, eldv,
7732 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7733 G4X_HDMIW_HDMIEDID))
7734 return;
7735
e0dac65e
WF
7736 i = I915_READ(G4X_AUD_CNTL_ST);
7737 i &= ~(eldv | G4X_ELD_ADDR);
7738 len = (i >> 9) & 0x1f; /* ELD buffer size */
7739 I915_WRITE(G4X_AUD_CNTL_ST, i);
7740
7741 if (!eld[0])
7742 return;
7743
7744 len = min_t(uint8_t, eld[2], len);
7745 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7746 for (i = 0; i < len; i++)
7747 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7748
7749 i = I915_READ(G4X_AUD_CNTL_ST);
7750 i |= eldv;
7751 I915_WRITE(G4X_AUD_CNTL_ST, i);
7752}
7753
83358c85 7754static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7755 struct drm_crtc *crtc,
7756 struct drm_display_mode *mode)
83358c85
WX
7757{
7758 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7759 uint8_t *eld = connector->eld;
83358c85
WX
7760 uint32_t eldv;
7761 uint32_t i;
7762 int len;
7763 int pipe = to_intel_crtc(crtc)->pipe;
7764 int tmp;
7765
7766 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7767 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7768 int aud_config = HSW_AUD_CFG(pipe);
7769 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7770
83358c85
WX
7771 /* Audio output enable */
7772 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7773 tmp = I915_READ(aud_cntrl_st2);
7774 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7775 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7776 POSTING_READ(aud_cntrl_st2);
83358c85 7777
c7905792 7778 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7779
7780 /* Set ELD valid state */
7781 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7782 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7783 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7784 I915_WRITE(aud_cntrl_st2, tmp);
7785 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7786 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7787
7788 /* Enable HDMI mode */
7789 tmp = I915_READ(aud_config);
7e7cb34f 7790 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7791 /* clear N_programing_enable and N_value_index */
7792 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7793 I915_WRITE(aud_config, tmp);
7794
7795 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7796
7797 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7798
7799 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7800 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7801 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7802 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7803 } else {
7804 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7805 }
83358c85
WX
7806
7807 if (intel_eld_uptodate(connector,
7808 aud_cntrl_st2, eldv,
7809 aud_cntl_st, IBX_ELD_ADDRESS,
7810 hdmiw_hdmiedid))
7811 return;
7812
7813 i = I915_READ(aud_cntrl_st2);
7814 i &= ~eldv;
7815 I915_WRITE(aud_cntrl_st2, i);
7816
7817 if (!eld[0])
7818 return;
7819
7820 i = I915_READ(aud_cntl_st);
7821 i &= ~IBX_ELD_ADDRESS;
7822 I915_WRITE(aud_cntl_st, i);
7823 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7824 DRM_DEBUG_DRIVER("port num:%d\n", i);
7825
7826 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7827 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7828 for (i = 0; i < len; i++)
7829 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7830
7831 i = I915_READ(aud_cntrl_st2);
7832 i |= eldv;
7833 I915_WRITE(aud_cntrl_st2, i);
7834
7835}
7836
e0dac65e 7837static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7838 struct drm_crtc *crtc,
7839 struct drm_display_mode *mode)
e0dac65e
WF
7840{
7841 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7842 uint8_t *eld = connector->eld;
7843 uint32_t eldv;
7844 uint32_t i;
7845 int len;
7846 int hdmiw_hdmiedid;
b6daa025 7847 int aud_config;
e0dac65e
WF
7848 int aud_cntl_st;
7849 int aud_cntrl_st2;
9b138a83 7850 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7851
b3f33cbf 7852 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7853 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7854 aud_config = IBX_AUD_CFG(pipe);
7855 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7856 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7857 } else if (IS_VALLEYVIEW(connector->dev)) {
7858 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7859 aud_config = VLV_AUD_CFG(pipe);
7860 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7861 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7862 } else {
9b138a83
WX
7863 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7864 aud_config = CPT_AUD_CFG(pipe);
7865 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 7866 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
7867 }
7868
9b138a83 7869 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 7870
9ca2fe73
ML
7871 if (IS_VALLEYVIEW(connector->dev)) {
7872 struct intel_encoder *intel_encoder;
7873 struct intel_digital_port *intel_dig_port;
7874
7875 intel_encoder = intel_attached_encoder(connector);
7876 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7877 i = intel_dig_port->port;
7878 } else {
7879 i = I915_READ(aud_cntl_st);
7880 i = (i >> 29) & DIP_PORT_SEL_MASK;
7881 /* DIP_Port_Select, 0x1 = PortB */
7882 }
7883
e0dac65e
WF
7884 if (!i) {
7885 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7886 /* operate blindly on all ports */
1202b4c6
WF
7887 eldv = IBX_ELD_VALIDB;
7888 eldv |= IBX_ELD_VALIDB << 4;
7889 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 7890 } else {
2582a850 7891 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 7892 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
7893 }
7894
3a9627f4
WF
7895 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7896 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7897 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 7898 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7899 } else {
7900 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7901 }
e0dac65e 7902
3a9627f4
WF
7903 if (intel_eld_uptodate(connector,
7904 aud_cntrl_st2, eldv,
7905 aud_cntl_st, IBX_ELD_ADDRESS,
7906 hdmiw_hdmiedid))
7907 return;
7908
e0dac65e
WF
7909 i = I915_READ(aud_cntrl_st2);
7910 i &= ~eldv;
7911 I915_WRITE(aud_cntrl_st2, i);
7912
7913 if (!eld[0])
7914 return;
7915
e0dac65e 7916 i = I915_READ(aud_cntl_st);
1202b4c6 7917 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
7918 I915_WRITE(aud_cntl_st, i);
7919
7920 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7921 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7922 for (i = 0; i < len; i++)
7923 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7924
7925 i = I915_READ(aud_cntrl_st2);
7926 i |= eldv;
7927 I915_WRITE(aud_cntrl_st2, i);
7928}
7929
7930void intel_write_eld(struct drm_encoder *encoder,
7931 struct drm_display_mode *mode)
7932{
7933 struct drm_crtc *crtc = encoder->crtc;
7934 struct drm_connector *connector;
7935 struct drm_device *dev = encoder->dev;
7936 struct drm_i915_private *dev_priv = dev->dev_private;
7937
7938 connector = drm_select_eld(encoder, mode);
7939 if (!connector)
7940 return;
7941
7942 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7943 connector->base.id,
c23cc417 7944 connector->name,
e0dac65e 7945 connector->encoder->base.id,
8e329a03 7946 connector->encoder->name);
e0dac65e
WF
7947
7948 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7949
7950 if (dev_priv->display.write_eld)
34427052 7951 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
7952}
7953
560b85bb
CW
7954static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7955{
7956 struct drm_device *dev = crtc->dev;
7957 struct drm_i915_private *dev_priv = dev->dev_private;
7958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4b0e333e 7959 uint32_t cntl;
560b85bb 7960
4b0e333e 7961 if (base != intel_crtc->cursor_base) {
560b85bb
CW
7962 /* On these chipsets we can only modify the base whilst
7963 * the cursor is disabled.
7964 */
4b0e333e
CW
7965 if (intel_crtc->cursor_cntl) {
7966 I915_WRITE(_CURACNTR, 0);
7967 POSTING_READ(_CURACNTR);
7968 intel_crtc->cursor_cntl = 0;
7969 }
7970
9db4a9c7 7971 I915_WRITE(_CURABASE, base);
4b0e333e
CW
7972 POSTING_READ(_CURABASE);
7973 }
560b85bb 7974
4b0e333e
CW
7975 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7976 cntl = 0;
7977 if (base)
7978 cntl = (CURSOR_ENABLE |
560b85bb 7979 CURSOR_GAMMA_ENABLE |
4b0e333e
CW
7980 CURSOR_FORMAT_ARGB);
7981 if (intel_crtc->cursor_cntl != cntl) {
7982 I915_WRITE(_CURACNTR, cntl);
7983 POSTING_READ(_CURACNTR);
7984 intel_crtc->cursor_cntl = cntl;
7985 }
560b85bb
CW
7986}
7987
7988static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7989{
7990 struct drm_device *dev = crtc->dev;
7991 struct drm_i915_private *dev_priv = dev->dev_private;
7992 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7993 int pipe = intel_crtc->pipe;
4b0e333e 7994 uint32_t cntl;
4726e0b0 7995
4b0e333e
CW
7996 cntl = 0;
7997 if (base) {
7998 cntl = MCURSOR_GAMMA_ENABLE;
7999 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8000 case 64:
8001 cntl |= CURSOR_MODE_64_ARGB_AX;
8002 break;
8003 case 128:
8004 cntl |= CURSOR_MODE_128_ARGB_AX;
8005 break;
8006 case 256:
8007 cntl |= CURSOR_MODE_256_ARGB_AX;
8008 break;
8009 default:
8010 WARN_ON(1);
8011 return;
560b85bb 8012 }
4b0e333e
CW
8013 cntl |= pipe << 28; /* Connect to correct pipe */
8014 }
8015 if (intel_crtc->cursor_cntl != cntl) {
9db4a9c7 8016 I915_WRITE(CURCNTR(pipe), cntl);
4b0e333e
CW
8017 POSTING_READ(CURCNTR(pipe));
8018 intel_crtc->cursor_cntl = cntl;
560b85bb 8019 }
4b0e333e 8020
560b85bb 8021 /* and commit changes on next vblank */
9db4a9c7 8022 I915_WRITE(CURBASE(pipe), base);
b2ea8ef5 8023 POSTING_READ(CURBASE(pipe));
560b85bb
CW
8024}
8025
65a21cd6
JB
8026static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8027{
8028 struct drm_device *dev = crtc->dev;
8029 struct drm_i915_private *dev_priv = dev->dev_private;
8030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8031 int pipe = intel_crtc->pipe;
4b0e333e
CW
8032 uint32_t cntl;
8033
8034 cntl = 0;
8035 if (base) {
8036 cntl = MCURSOR_GAMMA_ENABLE;
8037 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8038 case 64:
8039 cntl |= CURSOR_MODE_64_ARGB_AX;
8040 break;
8041 case 128:
8042 cntl |= CURSOR_MODE_128_ARGB_AX;
8043 break;
8044 case 256:
8045 cntl |= CURSOR_MODE_256_ARGB_AX;
8046 break;
8047 default:
8048 WARN_ON(1);
8049 return;
65a21cd6 8050 }
4b0e333e
CW
8051 }
8052 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8053 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8054
4b0e333e
CW
8055 if (intel_crtc->cursor_cntl != cntl) {
8056 I915_WRITE(CURCNTR(pipe), cntl);
8057 POSTING_READ(CURCNTR(pipe));
8058 intel_crtc->cursor_cntl = cntl;
65a21cd6 8059 }
4b0e333e 8060
65a21cd6 8061 /* and commit changes on next vblank */
5efb3e28
VS
8062 I915_WRITE(CURBASE(pipe), base);
8063 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8064}
8065
cda4b7d3 8066/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8067static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8068 bool on)
cda4b7d3
CW
8069{
8070 struct drm_device *dev = crtc->dev;
8071 struct drm_i915_private *dev_priv = dev->dev_private;
8072 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8073 int pipe = intel_crtc->pipe;
3d7d6510
MR
8074 int x = crtc->cursor_x;
8075 int y = crtc->cursor_y;
d6e4db15 8076 u32 base = 0, pos = 0;
cda4b7d3 8077
d6e4db15 8078 if (on)
cda4b7d3 8079 base = intel_crtc->cursor_addr;
cda4b7d3 8080
d6e4db15
VS
8081 if (x >= intel_crtc->config.pipe_src_w)
8082 base = 0;
8083
8084 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8085 base = 0;
8086
8087 if (x < 0) {
efc9064e 8088 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8089 base = 0;
8090
8091 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8092 x = -x;
8093 }
8094 pos |= x << CURSOR_X_SHIFT;
8095
8096 if (y < 0) {
efc9064e 8097 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8098 base = 0;
8099
8100 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8101 y = -y;
8102 }
8103 pos |= y << CURSOR_Y_SHIFT;
8104
4b0e333e 8105 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8106 return;
8107
5efb3e28
VS
8108 I915_WRITE(CURPOS(pipe), pos);
8109
8110 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
65a21cd6 8111 ivb_update_cursor(crtc, base);
5efb3e28
VS
8112 else if (IS_845G(dev) || IS_I865G(dev))
8113 i845_update_cursor(crtc, base);
8114 else
8115 i9xx_update_cursor(crtc, base);
4b0e333e 8116 intel_crtc->cursor_base = base;
cda4b7d3
CW
8117}
8118
e3287951
MR
8119/*
8120 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8121 *
8122 * Note that the object's reference will be consumed if the update fails. If
8123 * the update succeeds, the reference of the old object (if any) will be
8124 * consumed.
8125 */
8126static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8127 struct drm_i915_gem_object *obj,
8128 uint32_t width, uint32_t height)
79e53945
JB
8129{
8130 struct drm_device *dev = crtc->dev;
8131 struct drm_i915_private *dev_priv = dev->dev_private;
8132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8133 enum pipe pipe = intel_crtc->pipe;
64f962e3 8134 unsigned old_width;
cda4b7d3 8135 uint32_t addr;
3f8bc370 8136 int ret;
79e53945 8137
79e53945 8138 /* if we want to turn off the cursor ignore width and height */
e3287951 8139 if (!obj) {
28c97730 8140 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8141 addr = 0;
05394f39 8142 obj = NULL;
5004417d 8143 mutex_lock(&dev->struct_mutex);
3f8bc370 8144 goto finish;
79e53945
JB
8145 }
8146
4726e0b0
SK
8147 /* Check for which cursor types we support */
8148 if (!((width == 64 && height == 64) ||
8149 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8150 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8151 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8152 return -EINVAL;
8153 }
8154
05394f39 8155 if (obj->base.size < width * height * 4) {
e3287951 8156 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8157 ret = -ENOMEM;
8158 goto fail;
79e53945
JB
8159 }
8160
71acb5eb 8161 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8162 mutex_lock(&dev->struct_mutex);
3d13ef2e 8163 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8164 unsigned alignment;
8165
d9e86c0e 8166 if (obj->tiling_mode) {
3b25b31f 8167 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8168 ret = -EINVAL;
8169 goto fail_locked;
8170 }
8171
693db184
CW
8172 /* Note that the w/a also requires 2 PTE of padding following
8173 * the bo. We currently fill all unused PTE with the shadow
8174 * page and so we should always have valid PTE following the
8175 * cursor preventing the VT-d warning.
8176 */
8177 alignment = 0;
8178 if (need_vtd_wa(dev))
8179 alignment = 64*1024;
8180
8181 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8182 if (ret) {
3b25b31f 8183 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8184 goto fail_locked;
e7b526bb
CW
8185 }
8186
d9e86c0e
CW
8187 ret = i915_gem_object_put_fence(obj);
8188 if (ret) {
3b25b31f 8189 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8190 goto fail_unpin;
8191 }
8192
f343c5f6 8193 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8194 } else {
6eeefaf3 8195 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8196 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8197 if (ret) {
3b25b31f 8198 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8199 goto fail_locked;
71acb5eb 8200 }
00731155 8201 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8202 }
8203
a6c45cf0 8204 if (IS_GEN2(dev))
14b60391
JB
8205 I915_WRITE(CURSIZE, (height << 12) | width);
8206
3f8bc370 8207 finish:
3f8bc370 8208 if (intel_crtc->cursor_bo) {
00731155 8209 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8210 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8211 }
80824003 8212
a071fa00
DV
8213 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8214 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8215 mutex_unlock(&dev->struct_mutex);
3f8bc370 8216
64f962e3
CW
8217 old_width = intel_crtc->cursor_width;
8218
3f8bc370 8219 intel_crtc->cursor_addr = addr;
05394f39 8220 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8221 intel_crtc->cursor_width = width;
8222 intel_crtc->cursor_height = height;
8223
64f962e3
CW
8224 if (intel_crtc->active) {
8225 if (old_width != width)
8226 intel_update_watermarks(crtc);
f2f5f771 8227 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8228 }
3f8bc370 8229
f99d7069
DV
8230 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8231
79e53945 8232 return 0;
e7b526bb 8233fail_unpin:
cc98b413 8234 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8235fail_locked:
34b8686e 8236 mutex_unlock(&dev->struct_mutex);
bc9025bd 8237fail:
05394f39 8238 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8239 return ret;
79e53945
JB
8240}
8241
79e53945 8242static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8243 u16 *blue, uint32_t start, uint32_t size)
79e53945 8244{
7203425a 8245 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8246 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8247
7203425a 8248 for (i = start; i < end; i++) {
79e53945
JB
8249 intel_crtc->lut_r[i] = red[i] >> 8;
8250 intel_crtc->lut_g[i] = green[i] >> 8;
8251 intel_crtc->lut_b[i] = blue[i] >> 8;
8252 }
8253
8254 intel_crtc_load_lut(crtc);
8255}
8256
79e53945
JB
8257/* VESA 640x480x72Hz mode to set on the pipe */
8258static struct drm_display_mode load_detect_mode = {
8259 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8260 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8261};
8262
a8bb6818
DV
8263struct drm_framebuffer *
8264__intel_framebuffer_create(struct drm_device *dev,
8265 struct drm_mode_fb_cmd2 *mode_cmd,
8266 struct drm_i915_gem_object *obj)
d2dff872
CW
8267{
8268 struct intel_framebuffer *intel_fb;
8269 int ret;
8270
8271 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8272 if (!intel_fb) {
8273 drm_gem_object_unreference_unlocked(&obj->base);
8274 return ERR_PTR(-ENOMEM);
8275 }
8276
8277 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8278 if (ret)
8279 goto err;
d2dff872
CW
8280
8281 return &intel_fb->base;
dd4916c5
DV
8282err:
8283 drm_gem_object_unreference_unlocked(&obj->base);
8284 kfree(intel_fb);
8285
8286 return ERR_PTR(ret);
d2dff872
CW
8287}
8288
b5ea642a 8289static struct drm_framebuffer *
a8bb6818
DV
8290intel_framebuffer_create(struct drm_device *dev,
8291 struct drm_mode_fb_cmd2 *mode_cmd,
8292 struct drm_i915_gem_object *obj)
8293{
8294 struct drm_framebuffer *fb;
8295 int ret;
8296
8297 ret = i915_mutex_lock_interruptible(dev);
8298 if (ret)
8299 return ERR_PTR(ret);
8300 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8301 mutex_unlock(&dev->struct_mutex);
8302
8303 return fb;
8304}
8305
d2dff872
CW
8306static u32
8307intel_framebuffer_pitch_for_width(int width, int bpp)
8308{
8309 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8310 return ALIGN(pitch, 64);
8311}
8312
8313static u32
8314intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8315{
8316 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8317 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8318}
8319
8320static struct drm_framebuffer *
8321intel_framebuffer_create_for_mode(struct drm_device *dev,
8322 struct drm_display_mode *mode,
8323 int depth, int bpp)
8324{
8325 struct drm_i915_gem_object *obj;
0fed39bd 8326 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8327
8328 obj = i915_gem_alloc_object(dev,
8329 intel_framebuffer_size_for_mode(mode, bpp));
8330 if (obj == NULL)
8331 return ERR_PTR(-ENOMEM);
8332
8333 mode_cmd.width = mode->hdisplay;
8334 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8335 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8336 bpp);
5ca0c34a 8337 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8338
8339 return intel_framebuffer_create(dev, &mode_cmd, obj);
8340}
8341
8342static struct drm_framebuffer *
8343mode_fits_in_fbdev(struct drm_device *dev,
8344 struct drm_display_mode *mode)
8345{
4520f53a 8346#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8347 struct drm_i915_private *dev_priv = dev->dev_private;
8348 struct drm_i915_gem_object *obj;
8349 struct drm_framebuffer *fb;
8350
4c0e5528 8351 if (!dev_priv->fbdev)
d2dff872
CW
8352 return NULL;
8353
4c0e5528 8354 if (!dev_priv->fbdev->fb)
d2dff872
CW
8355 return NULL;
8356
4c0e5528
DV
8357 obj = dev_priv->fbdev->fb->obj;
8358 BUG_ON(!obj);
8359
8bcd4553 8360 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8361 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8362 fb->bits_per_pixel))
d2dff872
CW
8363 return NULL;
8364
01f2c773 8365 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8366 return NULL;
8367
8368 return fb;
4520f53a
DV
8369#else
8370 return NULL;
8371#endif
d2dff872
CW
8372}
8373
d2434ab7 8374bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8375 struct drm_display_mode *mode,
51fd371b
RC
8376 struct intel_load_detect_pipe *old,
8377 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8378{
8379 struct intel_crtc *intel_crtc;
d2434ab7
DV
8380 struct intel_encoder *intel_encoder =
8381 intel_attached_encoder(connector);
79e53945 8382 struct drm_crtc *possible_crtc;
4ef69c7a 8383 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8384 struct drm_crtc *crtc = NULL;
8385 struct drm_device *dev = encoder->dev;
94352cf9 8386 struct drm_framebuffer *fb;
51fd371b
RC
8387 struct drm_mode_config *config = &dev->mode_config;
8388 int ret, i = -1;
79e53945 8389
d2dff872 8390 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8391 connector->base.id, connector->name,
8e329a03 8392 encoder->base.id, encoder->name);
d2dff872 8393
51fd371b
RC
8394 drm_modeset_acquire_init(ctx, 0);
8395
8396retry:
8397 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8398 if (ret)
8399 goto fail_unlock;
6e9f798d 8400
79e53945
JB
8401 /*
8402 * Algorithm gets a little messy:
7a5e4805 8403 *
79e53945
JB
8404 * - if the connector already has an assigned crtc, use it (but make
8405 * sure it's on first)
7a5e4805 8406 *
79e53945
JB
8407 * - try to find the first unused crtc that can drive this connector,
8408 * and use that if we find one
79e53945
JB
8409 */
8410
8411 /* See if we already have a CRTC for this connector */
8412 if (encoder->crtc) {
8413 crtc = encoder->crtc;
8261b191 8414
51fd371b
RC
8415 ret = drm_modeset_lock(&crtc->mutex, ctx);
8416 if (ret)
8417 goto fail_unlock;
7b24056b 8418
24218aac 8419 old->dpms_mode = connector->dpms;
8261b191
CW
8420 old->load_detect_temp = false;
8421
8422 /* Make sure the crtc and connector are running */
24218aac
DV
8423 if (connector->dpms != DRM_MODE_DPMS_ON)
8424 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8425
7173188d 8426 return true;
79e53945
JB
8427 }
8428
8429 /* Find an unused one (if possible) */
70e1e0ec 8430 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8431 i++;
8432 if (!(encoder->possible_crtcs & (1 << i)))
8433 continue;
8434 if (!possible_crtc->enabled) {
8435 crtc = possible_crtc;
8436 break;
8437 }
79e53945
JB
8438 }
8439
8440 /*
8441 * If we didn't find an unused CRTC, don't use any.
8442 */
8443 if (!crtc) {
7173188d 8444 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8445 goto fail_unlock;
79e53945
JB
8446 }
8447
51fd371b
RC
8448 ret = drm_modeset_lock(&crtc->mutex, ctx);
8449 if (ret)
8450 goto fail_unlock;
fc303101
DV
8451 intel_encoder->new_crtc = to_intel_crtc(crtc);
8452 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8453
8454 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8455 intel_crtc->new_enabled = true;
8456 intel_crtc->new_config = &intel_crtc->config;
24218aac 8457 old->dpms_mode = connector->dpms;
8261b191 8458 old->load_detect_temp = true;
d2dff872 8459 old->release_fb = NULL;
79e53945 8460
6492711d
CW
8461 if (!mode)
8462 mode = &load_detect_mode;
79e53945 8463
d2dff872
CW
8464 /* We need a framebuffer large enough to accommodate all accesses
8465 * that the plane may generate whilst we perform load detection.
8466 * We can not rely on the fbcon either being present (we get called
8467 * during its initialisation to detect all boot displays, or it may
8468 * not even exist) or that it is large enough to satisfy the
8469 * requested mode.
8470 */
94352cf9
DV
8471 fb = mode_fits_in_fbdev(dev, mode);
8472 if (fb == NULL) {
d2dff872 8473 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8474 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8475 old->release_fb = fb;
d2dff872
CW
8476 } else
8477 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8478 if (IS_ERR(fb)) {
d2dff872 8479 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8480 goto fail;
79e53945 8481 }
79e53945 8482
c0c36b94 8483 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8484 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8485 if (old->release_fb)
8486 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8487 goto fail;
79e53945 8488 }
7173188d 8489
79e53945 8490 /* let the connector get through one full cycle before testing */
9d0498a2 8491 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8492 return true;
412b61d8
VS
8493
8494 fail:
8495 intel_crtc->new_enabled = crtc->enabled;
8496 if (intel_crtc->new_enabled)
8497 intel_crtc->new_config = &intel_crtc->config;
8498 else
8499 intel_crtc->new_config = NULL;
51fd371b
RC
8500fail_unlock:
8501 if (ret == -EDEADLK) {
8502 drm_modeset_backoff(ctx);
8503 goto retry;
8504 }
8505
8506 drm_modeset_drop_locks(ctx);
8507 drm_modeset_acquire_fini(ctx);
6e9f798d 8508
412b61d8 8509 return false;
79e53945
JB
8510}
8511
d2434ab7 8512void intel_release_load_detect_pipe(struct drm_connector *connector,
51fd371b
RC
8513 struct intel_load_detect_pipe *old,
8514 struct drm_modeset_acquire_ctx *ctx)
79e53945 8515{
d2434ab7
DV
8516 struct intel_encoder *intel_encoder =
8517 intel_attached_encoder(connector);
4ef69c7a 8518 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8519 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8520 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8521
d2dff872 8522 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8523 connector->base.id, connector->name,
8e329a03 8524 encoder->base.id, encoder->name);
d2dff872 8525
8261b191 8526 if (old->load_detect_temp) {
fc303101
DV
8527 to_intel_connector(connector)->new_encoder = NULL;
8528 intel_encoder->new_crtc = NULL;
412b61d8
VS
8529 intel_crtc->new_enabled = false;
8530 intel_crtc->new_config = NULL;
fc303101 8531 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8532
36206361
DV
8533 if (old->release_fb) {
8534 drm_framebuffer_unregister_private(old->release_fb);
8535 drm_framebuffer_unreference(old->release_fb);
8536 }
d2dff872 8537
51fd371b 8538 goto unlock;
0622a53c 8539 return;
79e53945
JB
8540 }
8541
c751ce4f 8542 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8543 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8544 connector->funcs->dpms(connector, old->dpms_mode);
7b24056b 8545
51fd371b
RC
8546unlock:
8547 drm_modeset_drop_locks(ctx);
8548 drm_modeset_acquire_fini(ctx);
79e53945
JB
8549}
8550
da4a1efa
VS
8551static int i9xx_pll_refclk(struct drm_device *dev,
8552 const struct intel_crtc_config *pipe_config)
8553{
8554 struct drm_i915_private *dev_priv = dev->dev_private;
8555 u32 dpll = pipe_config->dpll_hw_state.dpll;
8556
8557 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8558 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8559 else if (HAS_PCH_SPLIT(dev))
8560 return 120000;
8561 else if (!IS_GEN2(dev))
8562 return 96000;
8563 else
8564 return 48000;
8565}
8566
79e53945 8567/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8568static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8569 struct intel_crtc_config *pipe_config)
79e53945 8570{
f1f644dc 8571 struct drm_device *dev = crtc->base.dev;
79e53945 8572 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8573 int pipe = pipe_config->cpu_transcoder;
293623f7 8574 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8575 u32 fp;
8576 intel_clock_t clock;
da4a1efa 8577 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8578
8579 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8580 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8581 else
293623f7 8582 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8583
8584 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8585 if (IS_PINEVIEW(dev)) {
8586 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8587 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8588 } else {
8589 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8590 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8591 }
8592
a6c45cf0 8593 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8594 if (IS_PINEVIEW(dev))
8595 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8596 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8597 else
8598 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8599 DPLL_FPA01_P1_POST_DIV_SHIFT);
8600
8601 switch (dpll & DPLL_MODE_MASK) {
8602 case DPLLB_MODE_DAC_SERIAL:
8603 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8604 5 : 10;
8605 break;
8606 case DPLLB_MODE_LVDS:
8607 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8608 7 : 14;
8609 break;
8610 default:
28c97730 8611 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8612 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8613 return;
79e53945
JB
8614 }
8615
ac58c3f0 8616 if (IS_PINEVIEW(dev))
da4a1efa 8617 pineview_clock(refclk, &clock);
ac58c3f0 8618 else
da4a1efa 8619 i9xx_clock(refclk, &clock);
79e53945 8620 } else {
0fb58223 8621 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8622 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8623
8624 if (is_lvds) {
8625 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8626 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8627
8628 if (lvds & LVDS_CLKB_POWER_UP)
8629 clock.p2 = 7;
8630 else
8631 clock.p2 = 14;
79e53945
JB
8632 } else {
8633 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8634 clock.p1 = 2;
8635 else {
8636 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8637 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8638 }
8639 if (dpll & PLL_P2_DIVIDE_BY_4)
8640 clock.p2 = 4;
8641 else
8642 clock.p2 = 2;
79e53945 8643 }
da4a1efa
VS
8644
8645 i9xx_clock(refclk, &clock);
79e53945
JB
8646 }
8647
18442d08
VS
8648 /*
8649 * This value includes pixel_multiplier. We will use
241bfc38 8650 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8651 * encoder's get_config() function.
8652 */
8653 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8654}
8655
6878da05
VS
8656int intel_dotclock_calculate(int link_freq,
8657 const struct intel_link_m_n *m_n)
f1f644dc 8658{
f1f644dc
JB
8659 /*
8660 * The calculation for the data clock is:
1041a02f 8661 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8662 * But we want to avoid losing precison if possible, so:
1041a02f 8663 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8664 *
8665 * and the link clock is simpler:
1041a02f 8666 * link_clock = (m * link_clock) / n
f1f644dc
JB
8667 */
8668
6878da05
VS
8669 if (!m_n->link_n)
8670 return 0;
f1f644dc 8671
6878da05
VS
8672 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8673}
f1f644dc 8674
18442d08
VS
8675static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8676 struct intel_crtc_config *pipe_config)
6878da05
VS
8677{
8678 struct drm_device *dev = crtc->base.dev;
79e53945 8679
18442d08
VS
8680 /* read out port_clock from the DPLL */
8681 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8682
f1f644dc 8683 /*
18442d08 8684 * This value does not include pixel_multiplier.
241bfc38 8685 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8686 * agree once we know their relationship in the encoder's
8687 * get_config() function.
79e53945 8688 */
241bfc38 8689 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8690 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8691 &pipe_config->fdi_m_n);
79e53945
JB
8692}
8693
8694/** Returns the currently programmed mode of the given pipe. */
8695struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8696 struct drm_crtc *crtc)
8697{
548f245b 8698 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8699 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8700 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8701 struct drm_display_mode *mode;
f1f644dc 8702 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8703 int htot = I915_READ(HTOTAL(cpu_transcoder));
8704 int hsync = I915_READ(HSYNC(cpu_transcoder));
8705 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8706 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8707 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8708
8709 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8710 if (!mode)
8711 return NULL;
8712
f1f644dc
JB
8713 /*
8714 * Construct a pipe_config sufficient for getting the clock info
8715 * back out of crtc_clock_get.
8716 *
8717 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8718 * to use a real value here instead.
8719 */
293623f7 8720 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8721 pipe_config.pixel_multiplier = 1;
293623f7
VS
8722 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8723 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8724 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8725 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8726
773ae034 8727 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8728 mode->hdisplay = (htot & 0xffff) + 1;
8729 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8730 mode->hsync_start = (hsync & 0xffff) + 1;
8731 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8732 mode->vdisplay = (vtot & 0xffff) + 1;
8733 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8734 mode->vsync_start = (vsync & 0xffff) + 1;
8735 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8736
8737 drm_mode_set_name(mode);
79e53945
JB
8738
8739 return mode;
8740}
8741
cc36513c
DV
8742static void intel_increase_pllclock(struct drm_device *dev,
8743 enum pipe pipe)
652c393a 8744{
fbee40df 8745 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8746 int dpll_reg = DPLL(pipe);
8747 int dpll;
652c393a 8748
bad720ff 8749 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8750 return;
8751
8752 if (!dev_priv->lvds_downclock_avail)
8753 return;
8754
dbdc6479 8755 dpll = I915_READ(dpll_reg);
652c393a 8756 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8757 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8758
8ac5a6d5 8759 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8760
8761 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8762 I915_WRITE(dpll_reg, dpll);
9d0498a2 8763 intel_wait_for_vblank(dev, pipe);
dbdc6479 8764
652c393a
JB
8765 dpll = I915_READ(dpll_reg);
8766 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8767 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8768 }
652c393a
JB
8769}
8770
8771static void intel_decrease_pllclock(struct drm_crtc *crtc)
8772{
8773 struct drm_device *dev = crtc->dev;
fbee40df 8774 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8776
bad720ff 8777 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8778 return;
8779
8780 if (!dev_priv->lvds_downclock_avail)
8781 return;
8782
8783 /*
8784 * Since this is called by a timer, we should never get here in
8785 * the manual case.
8786 */
8787 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8788 int pipe = intel_crtc->pipe;
8789 int dpll_reg = DPLL(pipe);
8790 int dpll;
f6e5b160 8791
44d98a61 8792 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8793
8ac5a6d5 8794 assert_panel_unlocked(dev_priv, pipe);
652c393a 8795
dc257cf1 8796 dpll = I915_READ(dpll_reg);
652c393a
JB
8797 dpll |= DISPLAY_RATE_SELECT_FPA1;
8798 I915_WRITE(dpll_reg, dpll);
9d0498a2 8799 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8800 dpll = I915_READ(dpll_reg);
8801 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8802 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8803 }
8804
8805}
8806
f047e395
CW
8807void intel_mark_busy(struct drm_device *dev)
8808{
c67a470b
PZ
8809 struct drm_i915_private *dev_priv = dev->dev_private;
8810
f62a0076
CW
8811 if (dev_priv->mm.busy)
8812 return;
8813
43694d69 8814 intel_runtime_pm_get(dev_priv);
c67a470b 8815 i915_update_gfx_val(dev_priv);
f62a0076 8816 dev_priv->mm.busy = true;
f047e395
CW
8817}
8818
8819void intel_mark_idle(struct drm_device *dev)
652c393a 8820{
c67a470b 8821 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8822 struct drm_crtc *crtc;
652c393a 8823
f62a0076
CW
8824 if (!dev_priv->mm.busy)
8825 return;
8826
8827 dev_priv->mm.busy = false;
8828
d330a953 8829 if (!i915.powersave)
bb4cdd53 8830 goto out;
652c393a 8831
70e1e0ec 8832 for_each_crtc(dev, crtc) {
f4510a27 8833 if (!crtc->primary->fb)
652c393a
JB
8834 continue;
8835
725a5b54 8836 intel_decrease_pllclock(crtc);
652c393a 8837 }
b29c19b6 8838
3d13ef2e 8839 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8840 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8841
8842out:
43694d69 8843 intel_runtime_pm_put(dev_priv);
652c393a
JB
8844}
8845
7c8f8a70 8846
f99d7069
DV
8847/**
8848 * intel_mark_fb_busy - mark given planes as busy
8849 * @dev: DRM device
8850 * @frontbuffer_bits: bits for the affected planes
8851 * @ring: optional ring for asynchronous commands
8852 *
8853 * This function gets called every time the screen contents change. It can be
8854 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8855 */
8856static void intel_mark_fb_busy(struct drm_device *dev,
8857 unsigned frontbuffer_bits,
8858 struct intel_engine_cs *ring)
652c393a 8859{
cc36513c 8860 enum pipe pipe;
652c393a 8861
d330a953 8862 if (!i915.powersave)
acb87dfb
CW
8863 return;
8864
cc36513c 8865 for_each_pipe(pipe) {
f99d7069 8866 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
8867 continue;
8868
cc36513c 8869 intel_increase_pllclock(dev, pipe);
c65355bb
CW
8870 if (ring && intel_fbc_enabled(dev))
8871 ring->fbc_dirty = true;
652c393a
JB
8872 }
8873}
8874
f99d7069
DV
8875/**
8876 * intel_fb_obj_invalidate - invalidate frontbuffer object
8877 * @obj: GEM object to invalidate
8878 * @ring: set for asynchronous rendering
8879 *
8880 * This function gets called every time rendering on the given object starts and
8881 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8882 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8883 * until the rendering completes or a flip on this frontbuffer plane is
8884 * scheduled.
8885 */
8886void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8887 struct intel_engine_cs *ring)
8888{
8889 struct drm_device *dev = obj->base.dev;
8890 struct drm_i915_private *dev_priv = dev->dev_private;
8891
8892 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8893
8894 if (!obj->frontbuffer_bits)
8895 return;
8896
8897 if (ring) {
8898 mutex_lock(&dev_priv->fb_tracking.lock);
8899 dev_priv->fb_tracking.busy_bits
8900 |= obj->frontbuffer_bits;
8901 dev_priv->fb_tracking.flip_bits
8902 &= ~obj->frontbuffer_bits;
8903 mutex_unlock(&dev_priv->fb_tracking.lock);
8904 }
8905
8906 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8907
8908 intel_edp_psr_exit(dev);
8909}
8910
8911/**
8912 * intel_frontbuffer_flush - flush frontbuffer
8913 * @dev: DRM device
8914 * @frontbuffer_bits: frontbuffer plane tracking bits
8915 *
8916 * This function gets called every time rendering on the given planes has
8917 * completed and frontbuffer caching can be started again. Flushes will get
8918 * delayed if they're blocked by some oustanding asynchronous rendering.
8919 *
8920 * Can be called without any locks held.
8921 */
8922void intel_frontbuffer_flush(struct drm_device *dev,
8923 unsigned frontbuffer_bits)
8924{
8925 struct drm_i915_private *dev_priv = dev->dev_private;
8926
8927 /* Delay flushing when rings are still busy.*/
8928 mutex_lock(&dev_priv->fb_tracking.lock);
8929 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
8930 mutex_unlock(&dev_priv->fb_tracking.lock);
8931
8932 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
8933
8934 intel_edp_psr_exit(dev);
8935}
8936
8937/**
8938 * intel_fb_obj_flush - flush frontbuffer object
8939 * @obj: GEM object to flush
8940 * @retire: set when retiring asynchronous rendering
8941 *
8942 * This function gets called every time rendering on the given object has
8943 * completed and frontbuffer caching can be started again. If @retire is true
8944 * then any delayed flushes will be unblocked.
8945 */
8946void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
8947 bool retire)
8948{
8949 struct drm_device *dev = obj->base.dev;
8950 struct drm_i915_private *dev_priv = dev->dev_private;
8951 unsigned frontbuffer_bits;
8952
8953 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8954
8955 if (!obj->frontbuffer_bits)
8956 return;
8957
8958 frontbuffer_bits = obj->frontbuffer_bits;
8959
8960 if (retire) {
8961 mutex_lock(&dev_priv->fb_tracking.lock);
8962 /* Filter out new bits since rendering started. */
8963 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
8964
8965 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
8966 mutex_unlock(&dev_priv->fb_tracking.lock);
8967 }
8968
8969 intel_frontbuffer_flush(dev, frontbuffer_bits);
8970}
8971
8972/**
8973 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
8974 * @dev: DRM device
8975 * @frontbuffer_bits: frontbuffer plane tracking bits
8976 *
8977 * This function gets called after scheduling a flip on @obj. The actual
8978 * frontbuffer flushing will be delayed until completion is signalled with
8979 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
8980 * flush will be cancelled.
8981 *
8982 * Can be called without any locks held.
8983 */
8984void intel_frontbuffer_flip_prepare(struct drm_device *dev,
8985 unsigned frontbuffer_bits)
8986{
8987 struct drm_i915_private *dev_priv = dev->dev_private;
8988
8989 mutex_lock(&dev_priv->fb_tracking.lock);
8990 dev_priv->fb_tracking.flip_bits
8991 |= frontbuffer_bits;
8992 mutex_unlock(&dev_priv->fb_tracking.lock);
8993}
8994
8995/**
8996 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
8997 * @dev: DRM device
8998 * @frontbuffer_bits: frontbuffer plane tracking bits
8999 *
9000 * This function gets called after the flip has been latched and will complete
9001 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9002 *
9003 * Can be called without any locks held.
9004 */
9005void intel_frontbuffer_flip_complete(struct drm_device *dev,
9006 unsigned frontbuffer_bits)
9007{
9008 struct drm_i915_private *dev_priv = dev->dev_private;
9009
9010 mutex_lock(&dev_priv->fb_tracking.lock);
9011 /* Mask any cancelled flips. */
9012 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9013 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9014 mutex_unlock(&dev_priv->fb_tracking.lock);
9015
9016 intel_frontbuffer_flush(dev, frontbuffer_bits);
9017}
9018
79e53945
JB
9019static void intel_crtc_destroy(struct drm_crtc *crtc)
9020{
9021 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9022 struct drm_device *dev = crtc->dev;
9023 struct intel_unpin_work *work;
9024 unsigned long flags;
9025
9026 spin_lock_irqsave(&dev->event_lock, flags);
9027 work = intel_crtc->unpin_work;
9028 intel_crtc->unpin_work = NULL;
9029 spin_unlock_irqrestore(&dev->event_lock, flags);
9030
9031 if (work) {
9032 cancel_work_sync(&work->work);
9033 kfree(work);
9034 }
79e53945
JB
9035
9036 drm_crtc_cleanup(crtc);
67e77c5a 9037
79e53945
JB
9038 kfree(intel_crtc);
9039}
9040
6b95a207
KH
9041static void intel_unpin_work_fn(struct work_struct *__work)
9042{
9043 struct intel_unpin_work *work =
9044 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9045 struct drm_device *dev = work->crtc->dev;
f99d7069 9046 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9047
b4a98e57 9048 mutex_lock(&dev->struct_mutex);
1690e1eb 9049 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9050 drm_gem_object_unreference(&work->pending_flip_obj->base);
9051 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9052
b4a98e57
CW
9053 intel_update_fbc(dev);
9054 mutex_unlock(&dev->struct_mutex);
9055
f99d7069
DV
9056 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9057
b4a98e57
CW
9058 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9059 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9060
6b95a207
KH
9061 kfree(work);
9062}
9063
1afe3e9d 9064static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9065 struct drm_crtc *crtc)
6b95a207 9066{
fbee40df 9067 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9068 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9069 struct intel_unpin_work *work;
6b95a207
KH
9070 unsigned long flags;
9071
9072 /* Ignore early vblank irqs */
9073 if (intel_crtc == NULL)
9074 return;
9075
9076 spin_lock_irqsave(&dev->event_lock, flags);
9077 work = intel_crtc->unpin_work;
e7d841ca
CW
9078
9079 /* Ensure we don't miss a work->pending update ... */
9080 smp_rmb();
9081
9082 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9083 spin_unlock_irqrestore(&dev->event_lock, flags);
9084 return;
9085 }
9086
e7d841ca
CW
9087 /* and that the unpin work is consistent wrt ->pending. */
9088 smp_rmb();
9089
6b95a207 9090 intel_crtc->unpin_work = NULL;
6b95a207 9091
45a066eb
RC
9092 if (work->event)
9093 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9094
87b6b101 9095 drm_crtc_vblank_put(crtc);
0af7e4df 9096
6b95a207
KH
9097 spin_unlock_irqrestore(&dev->event_lock, flags);
9098
2c10d571 9099 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9100
9101 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9102
9103 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9104}
9105
1afe3e9d
JB
9106void intel_finish_page_flip(struct drm_device *dev, int pipe)
9107{
fbee40df 9108 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9109 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9110
49b14a5c 9111 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9112}
9113
9114void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9115{
fbee40df 9116 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9117 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9118
49b14a5c 9119 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9120}
9121
75f7f3ec
VS
9122/* Is 'a' after or equal to 'b'? */
9123static bool g4x_flip_count_after_eq(u32 a, u32 b)
9124{
9125 return !((a - b) & 0x80000000);
9126}
9127
9128static bool page_flip_finished(struct intel_crtc *crtc)
9129{
9130 struct drm_device *dev = crtc->base.dev;
9131 struct drm_i915_private *dev_priv = dev->dev_private;
9132
9133 /*
9134 * The relevant registers doen't exist on pre-ctg.
9135 * As the flip done interrupt doesn't trigger for mmio
9136 * flips on gmch platforms, a flip count check isn't
9137 * really needed there. But since ctg has the registers,
9138 * include it in the check anyway.
9139 */
9140 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9141 return true;
9142
9143 /*
9144 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9145 * used the same base address. In that case the mmio flip might
9146 * have completed, but the CS hasn't even executed the flip yet.
9147 *
9148 * A flip count check isn't enough as the CS might have updated
9149 * the base address just after start of vblank, but before we
9150 * managed to process the interrupt. This means we'd complete the
9151 * CS flip too soon.
9152 *
9153 * Combining both checks should get us a good enough result. It may
9154 * still happen that the CS flip has been executed, but has not
9155 * yet actually completed. But in case the base address is the same
9156 * anyway, we don't really care.
9157 */
9158 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9159 crtc->unpin_work->gtt_offset &&
9160 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9161 crtc->unpin_work->flip_count);
9162}
9163
6b95a207
KH
9164void intel_prepare_page_flip(struct drm_device *dev, int plane)
9165{
fbee40df 9166 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9167 struct intel_crtc *intel_crtc =
9168 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9169 unsigned long flags;
9170
e7d841ca
CW
9171 /* NB: An MMIO update of the plane base pointer will also
9172 * generate a page-flip completion irq, i.e. every modeset
9173 * is also accompanied by a spurious intel_prepare_page_flip().
9174 */
6b95a207 9175 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9176 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9177 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9178 spin_unlock_irqrestore(&dev->event_lock, flags);
9179}
9180
eba905b2 9181static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9182{
9183 /* Ensure that the work item is consistent when activating it ... */
9184 smp_wmb();
9185 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9186 /* and that it is marked active as soon as the irq could fire. */
9187 smp_wmb();
9188}
9189
8c9f3aaf
JB
9190static int intel_gen2_queue_flip(struct drm_device *dev,
9191 struct drm_crtc *crtc,
9192 struct drm_framebuffer *fb,
ed8d1975 9193 struct drm_i915_gem_object *obj,
a4872ba6 9194 struct intel_engine_cs *ring,
ed8d1975 9195 uint32_t flags)
8c9f3aaf 9196{
8c9f3aaf 9197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9198 u32 flip_mask;
9199 int ret;
9200
6d90c952 9201 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9202 if (ret)
4fa62c89 9203 return ret;
8c9f3aaf
JB
9204
9205 /* Can't queue multiple flips, so wait for the previous
9206 * one to finish before executing the next.
9207 */
9208 if (intel_crtc->plane)
9209 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9210 else
9211 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9212 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9213 intel_ring_emit(ring, MI_NOOP);
9214 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9215 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9216 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9217 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9218 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9219
9220 intel_mark_page_flip_active(intel_crtc);
09246732 9221 __intel_ring_advance(ring);
83d4092b 9222 return 0;
8c9f3aaf
JB
9223}
9224
9225static int intel_gen3_queue_flip(struct drm_device *dev,
9226 struct drm_crtc *crtc,
9227 struct drm_framebuffer *fb,
ed8d1975 9228 struct drm_i915_gem_object *obj,
a4872ba6 9229 struct intel_engine_cs *ring,
ed8d1975 9230 uint32_t flags)
8c9f3aaf 9231{
8c9f3aaf 9232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9233 u32 flip_mask;
9234 int ret;
9235
6d90c952 9236 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9237 if (ret)
4fa62c89 9238 return ret;
8c9f3aaf
JB
9239
9240 if (intel_crtc->plane)
9241 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9242 else
9243 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9244 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9245 intel_ring_emit(ring, MI_NOOP);
9246 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9247 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9248 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9249 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9250 intel_ring_emit(ring, MI_NOOP);
9251
e7d841ca 9252 intel_mark_page_flip_active(intel_crtc);
09246732 9253 __intel_ring_advance(ring);
83d4092b 9254 return 0;
8c9f3aaf
JB
9255}
9256
9257static int intel_gen4_queue_flip(struct drm_device *dev,
9258 struct drm_crtc *crtc,
9259 struct drm_framebuffer *fb,
ed8d1975 9260 struct drm_i915_gem_object *obj,
a4872ba6 9261 struct intel_engine_cs *ring,
ed8d1975 9262 uint32_t flags)
8c9f3aaf
JB
9263{
9264 struct drm_i915_private *dev_priv = dev->dev_private;
9265 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9266 uint32_t pf, pipesrc;
9267 int ret;
9268
6d90c952 9269 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9270 if (ret)
4fa62c89 9271 return ret;
8c9f3aaf
JB
9272
9273 /* i965+ uses the linear or tiled offsets from the
9274 * Display Registers (which do not change across a page-flip)
9275 * so we need only reprogram the base address.
9276 */
6d90c952
DV
9277 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9278 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9279 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9280 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9281 obj->tiling_mode);
8c9f3aaf
JB
9282
9283 /* XXX Enabling the panel-fitter across page-flip is so far
9284 * untested on non-native modes, so ignore it for now.
9285 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9286 */
9287 pf = 0;
9288 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9289 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9290
9291 intel_mark_page_flip_active(intel_crtc);
09246732 9292 __intel_ring_advance(ring);
83d4092b 9293 return 0;
8c9f3aaf
JB
9294}
9295
9296static int intel_gen6_queue_flip(struct drm_device *dev,
9297 struct drm_crtc *crtc,
9298 struct drm_framebuffer *fb,
ed8d1975 9299 struct drm_i915_gem_object *obj,
a4872ba6 9300 struct intel_engine_cs *ring,
ed8d1975 9301 uint32_t flags)
8c9f3aaf
JB
9302{
9303 struct drm_i915_private *dev_priv = dev->dev_private;
9304 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9305 uint32_t pf, pipesrc;
9306 int ret;
9307
6d90c952 9308 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9309 if (ret)
4fa62c89 9310 return ret;
8c9f3aaf 9311
6d90c952
DV
9312 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9313 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9314 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9315 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9316
dc257cf1
DV
9317 /* Contrary to the suggestions in the documentation,
9318 * "Enable Panel Fitter" does not seem to be required when page
9319 * flipping with a non-native mode, and worse causes a normal
9320 * modeset to fail.
9321 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9322 */
9323 pf = 0;
8c9f3aaf 9324 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9325 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9326
9327 intel_mark_page_flip_active(intel_crtc);
09246732 9328 __intel_ring_advance(ring);
83d4092b 9329 return 0;
8c9f3aaf
JB
9330}
9331
7c9017e5
JB
9332static int intel_gen7_queue_flip(struct drm_device *dev,
9333 struct drm_crtc *crtc,
9334 struct drm_framebuffer *fb,
ed8d1975 9335 struct drm_i915_gem_object *obj,
a4872ba6 9336 struct intel_engine_cs *ring,
ed8d1975 9337 uint32_t flags)
7c9017e5 9338{
7c9017e5 9339 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9340 uint32_t plane_bit = 0;
ffe74d75
CW
9341 int len, ret;
9342
eba905b2 9343 switch (intel_crtc->plane) {
cb05d8de
DV
9344 case PLANE_A:
9345 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9346 break;
9347 case PLANE_B:
9348 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9349 break;
9350 case PLANE_C:
9351 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9352 break;
9353 default:
9354 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9355 return -ENODEV;
cb05d8de
DV
9356 }
9357
ffe74d75 9358 len = 4;
f476828a 9359 if (ring->id == RCS) {
ffe74d75 9360 len += 6;
f476828a
DL
9361 /*
9362 * On Gen 8, SRM is now taking an extra dword to accommodate
9363 * 48bits addresses, and we need a NOOP for the batch size to
9364 * stay even.
9365 */
9366 if (IS_GEN8(dev))
9367 len += 2;
9368 }
ffe74d75 9369
f66fab8e
VS
9370 /*
9371 * BSpec MI_DISPLAY_FLIP for IVB:
9372 * "The full packet must be contained within the same cache line."
9373 *
9374 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9375 * cacheline, if we ever start emitting more commands before
9376 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9377 * then do the cacheline alignment, and finally emit the
9378 * MI_DISPLAY_FLIP.
9379 */
9380 ret = intel_ring_cacheline_align(ring);
9381 if (ret)
4fa62c89 9382 return ret;
f66fab8e 9383
ffe74d75 9384 ret = intel_ring_begin(ring, len);
7c9017e5 9385 if (ret)
4fa62c89 9386 return ret;
7c9017e5 9387
ffe74d75
CW
9388 /* Unmask the flip-done completion message. Note that the bspec says that
9389 * we should do this for both the BCS and RCS, and that we must not unmask
9390 * more than one flip event at any time (or ensure that one flip message
9391 * can be sent by waiting for flip-done prior to queueing new flips).
9392 * Experimentation says that BCS works despite DERRMR masking all
9393 * flip-done completion events and that unmasking all planes at once
9394 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9395 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9396 */
9397 if (ring->id == RCS) {
9398 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9399 intel_ring_emit(ring, DERRMR);
9400 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9401 DERRMR_PIPEB_PRI_FLIP_DONE |
9402 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9403 if (IS_GEN8(dev))
9404 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9405 MI_SRM_LRM_GLOBAL_GTT);
9406 else
9407 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9408 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9409 intel_ring_emit(ring, DERRMR);
9410 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9411 if (IS_GEN8(dev)) {
9412 intel_ring_emit(ring, 0);
9413 intel_ring_emit(ring, MI_NOOP);
9414 }
ffe74d75
CW
9415 }
9416
cb05d8de 9417 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9418 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9419 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9420 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9421
9422 intel_mark_page_flip_active(intel_crtc);
09246732 9423 __intel_ring_advance(ring);
83d4092b 9424 return 0;
7c9017e5
JB
9425}
9426
84c33a64
SG
9427static bool use_mmio_flip(struct intel_engine_cs *ring,
9428 struct drm_i915_gem_object *obj)
9429{
9430 /*
9431 * This is not being used for older platforms, because
9432 * non-availability of flip done interrupt forces us to use
9433 * CS flips. Older platforms derive flip done using some clever
9434 * tricks involving the flip_pending status bits and vblank irqs.
9435 * So using MMIO flips there would disrupt this mechanism.
9436 */
9437
9438 if (INTEL_INFO(ring->dev)->gen < 5)
9439 return false;
9440
9441 if (i915.use_mmio_flip < 0)
9442 return false;
9443 else if (i915.use_mmio_flip > 0)
9444 return true;
9445 else
9446 return ring != obj->ring;
9447}
9448
9449static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9450{
9451 struct drm_device *dev = intel_crtc->base.dev;
9452 struct drm_i915_private *dev_priv = dev->dev_private;
9453 struct intel_framebuffer *intel_fb =
9454 to_intel_framebuffer(intel_crtc->base.primary->fb);
9455 struct drm_i915_gem_object *obj = intel_fb->obj;
9456 u32 dspcntr;
9457 u32 reg;
9458
9459 intel_mark_page_flip_active(intel_crtc);
9460
9461 reg = DSPCNTR(intel_crtc->plane);
9462 dspcntr = I915_READ(reg);
9463
9464 if (INTEL_INFO(dev)->gen >= 4) {
9465 if (obj->tiling_mode != I915_TILING_NONE)
9466 dspcntr |= DISPPLANE_TILED;
9467 else
9468 dspcntr &= ~DISPPLANE_TILED;
9469 }
9470 I915_WRITE(reg, dspcntr);
9471
9472 I915_WRITE(DSPSURF(intel_crtc->plane),
9473 intel_crtc->unpin_work->gtt_offset);
9474 POSTING_READ(DSPSURF(intel_crtc->plane));
9475}
9476
9477static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9478{
9479 struct intel_engine_cs *ring;
9480 int ret;
9481
9482 lockdep_assert_held(&obj->base.dev->struct_mutex);
9483
9484 if (!obj->last_write_seqno)
9485 return 0;
9486
9487 ring = obj->ring;
9488
9489 if (i915_seqno_passed(ring->get_seqno(ring, true),
9490 obj->last_write_seqno))
9491 return 0;
9492
9493 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9494 if (ret)
9495 return ret;
9496
9497 if (WARN_ON(!ring->irq_get(ring)))
9498 return 0;
9499
9500 return 1;
9501}
9502
9503void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9504{
9505 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9506 struct intel_crtc *intel_crtc;
9507 unsigned long irq_flags;
9508 u32 seqno;
9509
9510 seqno = ring->get_seqno(ring, false);
9511
9512 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9513 for_each_intel_crtc(ring->dev, intel_crtc) {
9514 struct intel_mmio_flip *mmio_flip;
9515
9516 mmio_flip = &intel_crtc->mmio_flip;
9517 if (mmio_flip->seqno == 0)
9518 continue;
9519
9520 if (ring->id != mmio_flip->ring_id)
9521 continue;
9522
9523 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9524 intel_do_mmio_flip(intel_crtc);
9525 mmio_flip->seqno = 0;
9526 ring->irq_put(ring);
9527 }
9528 }
9529 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9530}
9531
9532static int intel_queue_mmio_flip(struct drm_device *dev,
9533 struct drm_crtc *crtc,
9534 struct drm_framebuffer *fb,
9535 struct drm_i915_gem_object *obj,
9536 struct intel_engine_cs *ring,
9537 uint32_t flags)
9538{
9539 struct drm_i915_private *dev_priv = dev->dev_private;
9540 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9541 unsigned long irq_flags;
9542 int ret;
9543
9544 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9545 return -EBUSY;
9546
9547 ret = intel_postpone_flip(obj);
9548 if (ret < 0)
9549 return ret;
9550 if (ret == 0) {
9551 intel_do_mmio_flip(intel_crtc);
9552 return 0;
9553 }
9554
9555 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9556 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9557 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9558 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9559
9560 /*
9561 * Double check to catch cases where irq fired before
9562 * mmio flip data was ready
9563 */
9564 intel_notify_mmio_flip(obj->ring);
9565 return 0;
9566}
9567
8c9f3aaf
JB
9568static int intel_default_queue_flip(struct drm_device *dev,
9569 struct drm_crtc *crtc,
9570 struct drm_framebuffer *fb,
ed8d1975 9571 struct drm_i915_gem_object *obj,
a4872ba6 9572 struct intel_engine_cs *ring,
ed8d1975 9573 uint32_t flags)
8c9f3aaf
JB
9574{
9575 return -ENODEV;
9576}
9577
6b95a207
KH
9578static int intel_crtc_page_flip(struct drm_crtc *crtc,
9579 struct drm_framebuffer *fb,
ed8d1975
KP
9580 struct drm_pending_vblank_event *event,
9581 uint32_t page_flip_flags)
6b95a207
KH
9582{
9583 struct drm_device *dev = crtc->dev;
9584 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9585 struct drm_framebuffer *old_fb = crtc->primary->fb;
4a35f83b 9586 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
6b95a207 9587 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9588 enum pipe pipe = intel_crtc->pipe;
6b95a207 9589 struct intel_unpin_work *work;
a4872ba6 9590 struct intel_engine_cs *ring;
8c9f3aaf 9591 unsigned long flags;
52e68630 9592 int ret;
6b95a207 9593
e6a595d2 9594 /* Can't change pixel format via MI display flips. */
f4510a27 9595 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9596 return -EINVAL;
9597
9598 /*
9599 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9600 * Note that pitch changes could also affect these register.
9601 */
9602 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9603 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9604 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9605 return -EINVAL;
9606
f900db47
CW
9607 if (i915_terminally_wedged(&dev_priv->gpu_error))
9608 goto out_hang;
9609
b14c5679 9610 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9611 if (work == NULL)
9612 return -ENOMEM;
9613
6b95a207 9614 work->event = event;
b4a98e57 9615 work->crtc = crtc;
4a35f83b 9616 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
6b95a207
KH
9617 INIT_WORK(&work->work, intel_unpin_work_fn);
9618
87b6b101 9619 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9620 if (ret)
9621 goto free_work;
9622
6b95a207
KH
9623 /* We borrow the event spin lock for protecting unpin_work */
9624 spin_lock_irqsave(&dev->event_lock, flags);
9625 if (intel_crtc->unpin_work) {
9626 spin_unlock_irqrestore(&dev->event_lock, flags);
9627 kfree(work);
87b6b101 9628 drm_crtc_vblank_put(crtc);
468f0b44
CW
9629
9630 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9631 return -EBUSY;
9632 }
9633 intel_crtc->unpin_work = work;
9634 spin_unlock_irqrestore(&dev->event_lock, flags);
9635
b4a98e57
CW
9636 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9637 flush_workqueue(dev_priv->wq);
9638
79158103
CW
9639 ret = i915_mutex_lock_interruptible(dev);
9640 if (ret)
9641 goto cleanup;
6b95a207 9642
75dfca80 9643 /* Reference the objects for the scheduled work. */
05394f39
CW
9644 drm_gem_object_reference(&work->old_fb_obj->base);
9645 drm_gem_object_reference(&obj->base);
6b95a207 9646
f4510a27 9647 crtc->primary->fb = fb;
96b099fd 9648
e1f99ce6 9649 work->pending_flip_obj = obj;
e1f99ce6 9650
4e5359cd
SF
9651 work->enable_stall_check = true;
9652
b4a98e57 9653 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9654 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9655
75f7f3ec 9656 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9657 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9658
4fa62c89
VS
9659 if (IS_VALLEYVIEW(dev)) {
9660 ring = &dev_priv->ring[BCS];
2a92d5bc
CW
9661 } else if (IS_IVYBRIDGE(dev)) {
9662 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9663 } else if (INTEL_INFO(dev)->gen >= 7) {
9664 ring = obj->ring;
9665 if (ring == NULL || ring->id != RCS)
9666 ring = &dev_priv->ring[BCS];
9667 } else {
9668 ring = &dev_priv->ring[RCS];
9669 }
9670
9671 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9672 if (ret)
9673 goto cleanup_pending;
6b95a207 9674
4fa62c89
VS
9675 work->gtt_offset =
9676 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9677
84c33a64
SG
9678 if (use_mmio_flip(ring, obj))
9679 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9680 page_flip_flags);
9681 else
9682 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9683 page_flip_flags);
4fa62c89
VS
9684 if (ret)
9685 goto cleanup_unpin;
9686
a071fa00
DV
9687 i915_gem_track_fb(work->old_fb_obj, obj,
9688 INTEL_FRONTBUFFER_PRIMARY(pipe));
9689
7782de3b 9690 intel_disable_fbc(dev);
f99d7069 9691 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9692 mutex_unlock(&dev->struct_mutex);
9693
e5510fac
JB
9694 trace_i915_flip_request(intel_crtc->plane, obj);
9695
6b95a207 9696 return 0;
96b099fd 9697
4fa62c89
VS
9698cleanup_unpin:
9699 intel_unpin_fb_obj(obj);
8c9f3aaf 9700cleanup_pending:
b4a98e57 9701 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9702 crtc->primary->fb = old_fb;
05394f39
CW
9703 drm_gem_object_unreference(&work->old_fb_obj->base);
9704 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9705 mutex_unlock(&dev->struct_mutex);
9706
79158103 9707cleanup:
96b099fd
CW
9708 spin_lock_irqsave(&dev->event_lock, flags);
9709 intel_crtc->unpin_work = NULL;
9710 spin_unlock_irqrestore(&dev->event_lock, flags);
9711
87b6b101 9712 drm_crtc_vblank_put(crtc);
7317c75e 9713free_work:
96b099fd
CW
9714 kfree(work);
9715
f900db47
CW
9716 if (ret == -EIO) {
9717out_hang:
9718 intel_crtc_wait_for_pending_flips(crtc);
9719 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9720 if (ret == 0 && event)
a071fa00 9721 drm_send_vblank_event(dev, pipe, event);
f900db47 9722 }
96b099fd 9723 return ret;
6b95a207
KH
9724}
9725
f6e5b160 9726static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9727 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9728 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9729};
9730
9a935856
DV
9731/**
9732 * intel_modeset_update_staged_output_state
9733 *
9734 * Updates the staged output configuration state, e.g. after we've read out the
9735 * current hw state.
9736 */
9737static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9738{
7668851f 9739 struct intel_crtc *crtc;
9a935856
DV
9740 struct intel_encoder *encoder;
9741 struct intel_connector *connector;
f6e5b160 9742
9a935856
DV
9743 list_for_each_entry(connector, &dev->mode_config.connector_list,
9744 base.head) {
9745 connector->new_encoder =
9746 to_intel_encoder(connector->base.encoder);
9747 }
f6e5b160 9748
9a935856
DV
9749 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9750 base.head) {
9751 encoder->new_crtc =
9752 to_intel_crtc(encoder->base.crtc);
9753 }
7668851f 9754
d3fcc808 9755 for_each_intel_crtc(dev, crtc) {
7668851f 9756 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9757
9758 if (crtc->new_enabled)
9759 crtc->new_config = &crtc->config;
9760 else
9761 crtc->new_config = NULL;
7668851f 9762 }
f6e5b160
CW
9763}
9764
9a935856
DV
9765/**
9766 * intel_modeset_commit_output_state
9767 *
9768 * This function copies the stage display pipe configuration to the real one.
9769 */
9770static void intel_modeset_commit_output_state(struct drm_device *dev)
9771{
7668851f 9772 struct intel_crtc *crtc;
9a935856
DV
9773 struct intel_encoder *encoder;
9774 struct intel_connector *connector;
f6e5b160 9775
9a935856
DV
9776 list_for_each_entry(connector, &dev->mode_config.connector_list,
9777 base.head) {
9778 connector->base.encoder = &connector->new_encoder->base;
9779 }
f6e5b160 9780
9a935856
DV
9781 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9782 base.head) {
9783 encoder->base.crtc = &encoder->new_crtc->base;
9784 }
7668851f 9785
d3fcc808 9786 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9787 crtc->base.enabled = crtc->new_enabled;
9788 }
9a935856
DV
9789}
9790
050f7aeb 9791static void
eba905b2 9792connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9793 struct intel_crtc_config *pipe_config)
9794{
9795 int bpp = pipe_config->pipe_bpp;
9796
9797 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9798 connector->base.base.id,
c23cc417 9799 connector->base.name);
050f7aeb
DV
9800
9801 /* Don't use an invalid EDID bpc value */
9802 if (connector->base.display_info.bpc &&
9803 connector->base.display_info.bpc * 3 < bpp) {
9804 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9805 bpp, connector->base.display_info.bpc*3);
9806 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9807 }
9808
9809 /* Clamp bpp to 8 on screens without EDID 1.4 */
9810 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9811 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9812 bpp);
9813 pipe_config->pipe_bpp = 24;
9814 }
9815}
9816
4e53c2e0 9817static int
050f7aeb
DV
9818compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9819 struct drm_framebuffer *fb,
9820 struct intel_crtc_config *pipe_config)
4e53c2e0 9821{
050f7aeb
DV
9822 struct drm_device *dev = crtc->base.dev;
9823 struct intel_connector *connector;
4e53c2e0
DV
9824 int bpp;
9825
d42264b1
DV
9826 switch (fb->pixel_format) {
9827 case DRM_FORMAT_C8:
4e53c2e0
DV
9828 bpp = 8*3; /* since we go through a colormap */
9829 break;
d42264b1
DV
9830 case DRM_FORMAT_XRGB1555:
9831 case DRM_FORMAT_ARGB1555:
9832 /* checked in intel_framebuffer_init already */
9833 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9834 return -EINVAL;
9835 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9836 bpp = 6*3; /* min is 18bpp */
9837 break;
d42264b1
DV
9838 case DRM_FORMAT_XBGR8888:
9839 case DRM_FORMAT_ABGR8888:
9840 /* checked in intel_framebuffer_init already */
9841 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9842 return -EINVAL;
9843 case DRM_FORMAT_XRGB8888:
9844 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9845 bpp = 8*3;
9846 break;
d42264b1
DV
9847 case DRM_FORMAT_XRGB2101010:
9848 case DRM_FORMAT_ARGB2101010:
9849 case DRM_FORMAT_XBGR2101010:
9850 case DRM_FORMAT_ABGR2101010:
9851 /* checked in intel_framebuffer_init already */
9852 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9853 return -EINVAL;
4e53c2e0
DV
9854 bpp = 10*3;
9855 break;
baba133a 9856 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9857 default:
9858 DRM_DEBUG_KMS("unsupported depth\n");
9859 return -EINVAL;
9860 }
9861
4e53c2e0
DV
9862 pipe_config->pipe_bpp = bpp;
9863
9864 /* Clamp display bpp to EDID value */
9865 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9866 base.head) {
1b829e05
DV
9867 if (!connector->new_encoder ||
9868 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9869 continue;
9870
050f7aeb 9871 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9872 }
9873
9874 return bpp;
9875}
9876
644db711
DV
9877static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9878{
9879 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9880 "type: 0x%x flags: 0x%x\n",
1342830c 9881 mode->crtc_clock,
644db711
DV
9882 mode->crtc_hdisplay, mode->crtc_hsync_start,
9883 mode->crtc_hsync_end, mode->crtc_htotal,
9884 mode->crtc_vdisplay, mode->crtc_vsync_start,
9885 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9886}
9887
c0b03411
DV
9888static void intel_dump_pipe_config(struct intel_crtc *crtc,
9889 struct intel_crtc_config *pipe_config,
9890 const char *context)
9891{
9892 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9893 context, pipe_name(crtc->pipe));
9894
9895 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9896 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9897 pipe_config->pipe_bpp, pipe_config->dither);
9898 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9899 pipe_config->has_pch_encoder,
9900 pipe_config->fdi_lanes,
9901 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9902 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9903 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9904 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9905 pipe_config->has_dp_encoder,
9906 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9907 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9908 pipe_config->dp_m_n.tu);
c0b03411
DV
9909 DRM_DEBUG_KMS("requested mode:\n");
9910 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9911 DRM_DEBUG_KMS("adjusted mode:\n");
9912 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 9913 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 9914 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
9915 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9916 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
9917 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9918 pipe_config->gmch_pfit.control,
9919 pipe_config->gmch_pfit.pgm_ratios,
9920 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 9921 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 9922 pipe_config->pch_pfit.pos,
fd4daa9c
CW
9923 pipe_config->pch_pfit.size,
9924 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 9925 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 9926 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
9927}
9928
bc079e8b
VS
9929static bool encoders_cloneable(const struct intel_encoder *a,
9930 const struct intel_encoder *b)
accfc0c5 9931{
bc079e8b
VS
9932 /* masks could be asymmetric, so check both ways */
9933 return a == b || (a->cloneable & (1 << b->type) &&
9934 b->cloneable & (1 << a->type));
9935}
9936
9937static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9938 struct intel_encoder *encoder)
9939{
9940 struct drm_device *dev = crtc->base.dev;
9941 struct intel_encoder *source_encoder;
9942
9943 list_for_each_entry(source_encoder,
9944 &dev->mode_config.encoder_list, base.head) {
9945 if (source_encoder->new_crtc != crtc)
9946 continue;
9947
9948 if (!encoders_cloneable(encoder, source_encoder))
9949 return false;
9950 }
9951
9952 return true;
9953}
9954
9955static bool check_encoder_cloning(struct intel_crtc *crtc)
9956{
9957 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
9958 struct intel_encoder *encoder;
9959
bc079e8b
VS
9960 list_for_each_entry(encoder,
9961 &dev->mode_config.encoder_list, base.head) {
9962 if (encoder->new_crtc != crtc)
accfc0c5
DV
9963 continue;
9964
bc079e8b
VS
9965 if (!check_single_encoder_cloning(crtc, encoder))
9966 return false;
accfc0c5
DV
9967 }
9968
bc079e8b 9969 return true;
accfc0c5
DV
9970}
9971
b8cecdf5
DV
9972static struct intel_crtc_config *
9973intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 9974 struct drm_framebuffer *fb,
b8cecdf5 9975 struct drm_display_mode *mode)
ee7b9f93 9976{
7758a113 9977 struct drm_device *dev = crtc->dev;
7758a113 9978 struct intel_encoder *encoder;
b8cecdf5 9979 struct intel_crtc_config *pipe_config;
e29c22c0
DV
9980 int plane_bpp, ret = -EINVAL;
9981 bool retry = true;
ee7b9f93 9982
bc079e8b 9983 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
9984 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9985 return ERR_PTR(-EINVAL);
9986 }
9987
b8cecdf5
DV
9988 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9989 if (!pipe_config)
7758a113
DV
9990 return ERR_PTR(-ENOMEM);
9991
b8cecdf5
DV
9992 drm_mode_copy(&pipe_config->adjusted_mode, mode);
9993 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 9994
e143a21c
DV
9995 pipe_config->cpu_transcoder =
9996 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 9997 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 9998
2960bc9c
ID
9999 /*
10000 * Sanitize sync polarity flags based on requested ones. If neither
10001 * positive or negative polarity is requested, treat this as meaning
10002 * negative polarity.
10003 */
10004 if (!(pipe_config->adjusted_mode.flags &
10005 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10006 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10007
10008 if (!(pipe_config->adjusted_mode.flags &
10009 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10010 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10011
050f7aeb
DV
10012 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10013 * plane pixel format and any sink constraints into account. Returns the
10014 * source plane bpp so that dithering can be selected on mismatches
10015 * after encoders and crtc also have had their say. */
10016 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10017 fb, pipe_config);
4e53c2e0
DV
10018 if (plane_bpp < 0)
10019 goto fail;
10020
e41a56be
VS
10021 /*
10022 * Determine the real pipe dimensions. Note that stereo modes can
10023 * increase the actual pipe size due to the frame doubling and
10024 * insertion of additional space for blanks between the frame. This
10025 * is stored in the crtc timings. We use the requested mode to do this
10026 * computation to clearly distinguish it from the adjusted mode, which
10027 * can be changed by the connectors in the below retry loop.
10028 */
10029 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10030 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10031 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10032
e29c22c0 10033encoder_retry:
ef1b460d 10034 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10035 pipe_config->port_clock = 0;
ef1b460d 10036 pipe_config->pixel_multiplier = 1;
ff9a6750 10037
135c81b8 10038 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10039 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10040
7758a113
DV
10041 /* Pass our mode to the connectors and the CRTC to give them a chance to
10042 * adjust it according to limitations or connector properties, and also
10043 * a chance to reject the mode entirely.
47f1c6c9 10044 */
7758a113
DV
10045 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10046 base.head) {
47f1c6c9 10047
7758a113
DV
10048 if (&encoder->new_crtc->base != crtc)
10049 continue;
7ae89233 10050
efea6e8e
DV
10051 if (!(encoder->compute_config(encoder, pipe_config))) {
10052 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10053 goto fail;
10054 }
ee7b9f93 10055 }
47f1c6c9 10056
ff9a6750
DV
10057 /* Set default port clock if not overwritten by the encoder. Needs to be
10058 * done afterwards in case the encoder adjusts the mode. */
10059 if (!pipe_config->port_clock)
241bfc38
DL
10060 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10061 * pipe_config->pixel_multiplier;
ff9a6750 10062
a43f6e0f 10063 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10064 if (ret < 0) {
7758a113
DV
10065 DRM_DEBUG_KMS("CRTC fixup failed\n");
10066 goto fail;
ee7b9f93 10067 }
e29c22c0
DV
10068
10069 if (ret == RETRY) {
10070 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10071 ret = -EINVAL;
10072 goto fail;
10073 }
10074
10075 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10076 retry = false;
10077 goto encoder_retry;
10078 }
10079
4e53c2e0
DV
10080 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10081 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10082 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10083
b8cecdf5 10084 return pipe_config;
7758a113 10085fail:
b8cecdf5 10086 kfree(pipe_config);
e29c22c0 10087 return ERR_PTR(ret);
ee7b9f93 10088}
47f1c6c9 10089
e2e1ed41
DV
10090/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10091 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10092static void
10093intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10094 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10095{
10096 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10097 struct drm_device *dev = crtc->dev;
10098 struct intel_encoder *encoder;
10099 struct intel_connector *connector;
10100 struct drm_crtc *tmp_crtc;
79e53945 10101
e2e1ed41 10102 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10103
e2e1ed41
DV
10104 /* Check which crtcs have changed outputs connected to them, these need
10105 * to be part of the prepare_pipes mask. We don't (yet) support global
10106 * modeset across multiple crtcs, so modeset_pipes will only have one
10107 * bit set at most. */
10108 list_for_each_entry(connector, &dev->mode_config.connector_list,
10109 base.head) {
10110 if (connector->base.encoder == &connector->new_encoder->base)
10111 continue;
79e53945 10112
e2e1ed41
DV
10113 if (connector->base.encoder) {
10114 tmp_crtc = connector->base.encoder->crtc;
10115
10116 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10117 }
10118
10119 if (connector->new_encoder)
10120 *prepare_pipes |=
10121 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10122 }
10123
e2e1ed41
DV
10124 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10125 base.head) {
10126 if (encoder->base.crtc == &encoder->new_crtc->base)
10127 continue;
10128
10129 if (encoder->base.crtc) {
10130 tmp_crtc = encoder->base.crtc;
10131
10132 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10133 }
10134
10135 if (encoder->new_crtc)
10136 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10137 }
10138
7668851f 10139 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10140 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10141 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10142 continue;
7e7d76c3 10143
7668851f 10144 if (!intel_crtc->new_enabled)
e2e1ed41 10145 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10146 else
10147 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10148 }
10149
e2e1ed41
DV
10150
10151 /* set_mode is also used to update properties on life display pipes. */
10152 intel_crtc = to_intel_crtc(crtc);
7668851f 10153 if (intel_crtc->new_enabled)
e2e1ed41
DV
10154 *prepare_pipes |= 1 << intel_crtc->pipe;
10155
b6c5164d
DV
10156 /*
10157 * For simplicity do a full modeset on any pipe where the output routing
10158 * changed. We could be more clever, but that would require us to be
10159 * more careful with calling the relevant encoder->mode_set functions.
10160 */
e2e1ed41
DV
10161 if (*prepare_pipes)
10162 *modeset_pipes = *prepare_pipes;
10163
10164 /* ... and mask these out. */
10165 *modeset_pipes &= ~(*disable_pipes);
10166 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10167
10168 /*
10169 * HACK: We don't (yet) fully support global modesets. intel_set_config
10170 * obies this rule, but the modeset restore mode of
10171 * intel_modeset_setup_hw_state does not.
10172 */
10173 *modeset_pipes &= 1 << intel_crtc->pipe;
10174 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10175
10176 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10177 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10178}
79e53945 10179
ea9d758d 10180static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10181{
ea9d758d 10182 struct drm_encoder *encoder;
f6e5b160 10183 struct drm_device *dev = crtc->dev;
f6e5b160 10184
ea9d758d
DV
10185 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10186 if (encoder->crtc == crtc)
10187 return true;
10188
10189 return false;
10190}
10191
10192static void
10193intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10194{
10195 struct intel_encoder *intel_encoder;
10196 struct intel_crtc *intel_crtc;
10197 struct drm_connector *connector;
10198
10199 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10200 base.head) {
10201 if (!intel_encoder->base.crtc)
10202 continue;
10203
10204 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10205
10206 if (prepare_pipes & (1 << intel_crtc->pipe))
10207 intel_encoder->connectors_active = false;
10208 }
10209
10210 intel_modeset_commit_output_state(dev);
10211
7668851f 10212 /* Double check state. */
d3fcc808 10213 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10214 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10215 WARN_ON(intel_crtc->new_config &&
10216 intel_crtc->new_config != &intel_crtc->config);
10217 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10218 }
10219
10220 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10221 if (!connector->encoder || !connector->encoder->crtc)
10222 continue;
10223
10224 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10225
10226 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10227 struct drm_property *dpms_property =
10228 dev->mode_config.dpms_property;
10229
ea9d758d 10230 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10231 drm_object_property_set_value(&connector->base,
68d34720
DV
10232 dpms_property,
10233 DRM_MODE_DPMS_ON);
ea9d758d
DV
10234
10235 intel_encoder = to_intel_encoder(connector->encoder);
10236 intel_encoder->connectors_active = true;
10237 }
10238 }
10239
10240}
10241
3bd26263 10242static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10243{
3bd26263 10244 int diff;
f1f644dc
JB
10245
10246 if (clock1 == clock2)
10247 return true;
10248
10249 if (!clock1 || !clock2)
10250 return false;
10251
10252 diff = abs(clock1 - clock2);
10253
10254 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10255 return true;
10256
10257 return false;
10258}
10259
25c5b266
DV
10260#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10261 list_for_each_entry((intel_crtc), \
10262 &(dev)->mode_config.crtc_list, \
10263 base.head) \
0973f18f 10264 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10265
0e8ffe1b 10266static bool
2fa2fe9a
DV
10267intel_pipe_config_compare(struct drm_device *dev,
10268 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10269 struct intel_crtc_config *pipe_config)
10270{
66e985c0
DV
10271#define PIPE_CONF_CHECK_X(name) \
10272 if (current_config->name != pipe_config->name) { \
10273 DRM_ERROR("mismatch in " #name " " \
10274 "(expected 0x%08x, found 0x%08x)\n", \
10275 current_config->name, \
10276 pipe_config->name); \
10277 return false; \
10278 }
10279
08a24034
DV
10280#define PIPE_CONF_CHECK_I(name) \
10281 if (current_config->name != pipe_config->name) { \
10282 DRM_ERROR("mismatch in " #name " " \
10283 "(expected %i, found %i)\n", \
10284 current_config->name, \
10285 pipe_config->name); \
10286 return false; \
88adfff1
DV
10287 }
10288
1bd1bd80
DV
10289#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10290 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10291 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10292 "(expected %i, found %i)\n", \
10293 current_config->name & (mask), \
10294 pipe_config->name & (mask)); \
10295 return false; \
10296 }
10297
5e550656
VS
10298#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10299 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10300 DRM_ERROR("mismatch in " #name " " \
10301 "(expected %i, found %i)\n", \
10302 current_config->name, \
10303 pipe_config->name); \
10304 return false; \
10305 }
10306
bb760063
DV
10307#define PIPE_CONF_QUIRK(quirk) \
10308 ((current_config->quirks | pipe_config->quirks) & (quirk))
10309
eccb140b
DV
10310 PIPE_CONF_CHECK_I(cpu_transcoder);
10311
08a24034
DV
10312 PIPE_CONF_CHECK_I(has_pch_encoder);
10313 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10314 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10315 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10316 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10317 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10318 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10319
eb14cb74
VS
10320 PIPE_CONF_CHECK_I(has_dp_encoder);
10321 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10322 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10323 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10324 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10325 PIPE_CONF_CHECK_I(dp_m_n.tu);
10326
1bd1bd80
DV
10327 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10328 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10329 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10330 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10331 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10332 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10333
10334 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10335 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10336 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10337 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10338 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10339 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10340
c93f54cf 10341 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10342 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10343 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10344 IS_VALLEYVIEW(dev))
10345 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10346
9ed109a7
DV
10347 PIPE_CONF_CHECK_I(has_audio);
10348
1bd1bd80
DV
10349 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10350 DRM_MODE_FLAG_INTERLACE);
10351
bb760063
DV
10352 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10353 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10354 DRM_MODE_FLAG_PHSYNC);
10355 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10356 DRM_MODE_FLAG_NHSYNC);
10357 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10358 DRM_MODE_FLAG_PVSYNC);
10359 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10360 DRM_MODE_FLAG_NVSYNC);
10361 }
045ac3b5 10362
37327abd
VS
10363 PIPE_CONF_CHECK_I(pipe_src_w);
10364 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10365
9953599b
DV
10366 /*
10367 * FIXME: BIOS likes to set up a cloned config with lvds+external
10368 * screen. Since we don't yet re-compute the pipe config when moving
10369 * just the lvds port away to another pipe the sw tracking won't match.
10370 *
10371 * Proper atomic modesets with recomputed global state will fix this.
10372 * Until then just don't check gmch state for inherited modes.
10373 */
10374 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10375 PIPE_CONF_CHECK_I(gmch_pfit.control);
10376 /* pfit ratios are autocomputed by the hw on gen4+ */
10377 if (INTEL_INFO(dev)->gen < 4)
10378 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10379 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10380 }
10381
fd4daa9c
CW
10382 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10383 if (current_config->pch_pfit.enabled) {
10384 PIPE_CONF_CHECK_I(pch_pfit.pos);
10385 PIPE_CONF_CHECK_I(pch_pfit.size);
10386 }
2fa2fe9a 10387
e59150dc
JB
10388 /* BDW+ don't expose a synchronous way to read the state */
10389 if (IS_HASWELL(dev))
10390 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10391
282740f7
VS
10392 PIPE_CONF_CHECK_I(double_wide);
10393
c0d43d62 10394 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10395 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10396 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10397 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10398 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
c0d43d62 10399
42571aef
VS
10400 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10401 PIPE_CONF_CHECK_I(pipe_bpp);
10402
a9a7e98a
JB
10403 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10404 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10405
66e985c0 10406#undef PIPE_CONF_CHECK_X
08a24034 10407#undef PIPE_CONF_CHECK_I
1bd1bd80 10408#undef PIPE_CONF_CHECK_FLAGS
5e550656 10409#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10410#undef PIPE_CONF_QUIRK
88adfff1 10411
0e8ffe1b
DV
10412 return true;
10413}
10414
91d1b4bd
DV
10415static void
10416check_connector_state(struct drm_device *dev)
8af6cf88 10417{
8af6cf88
DV
10418 struct intel_connector *connector;
10419
10420 list_for_each_entry(connector, &dev->mode_config.connector_list,
10421 base.head) {
10422 /* This also checks the encoder/connector hw state with the
10423 * ->get_hw_state callbacks. */
10424 intel_connector_check_state(connector);
10425
10426 WARN(&connector->new_encoder->base != connector->base.encoder,
10427 "connector's staged encoder doesn't match current encoder\n");
10428 }
91d1b4bd
DV
10429}
10430
10431static void
10432check_encoder_state(struct drm_device *dev)
10433{
10434 struct intel_encoder *encoder;
10435 struct intel_connector *connector;
8af6cf88
DV
10436
10437 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10438 base.head) {
10439 bool enabled = false;
10440 bool active = false;
10441 enum pipe pipe, tracked_pipe;
10442
10443 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10444 encoder->base.base.id,
8e329a03 10445 encoder->base.name);
8af6cf88
DV
10446
10447 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10448 "encoder's stage crtc doesn't match current crtc\n");
10449 WARN(encoder->connectors_active && !encoder->base.crtc,
10450 "encoder's active_connectors set, but no crtc\n");
10451
10452 list_for_each_entry(connector, &dev->mode_config.connector_list,
10453 base.head) {
10454 if (connector->base.encoder != &encoder->base)
10455 continue;
10456 enabled = true;
10457 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10458 active = true;
10459 }
10460 WARN(!!encoder->base.crtc != enabled,
10461 "encoder's enabled state mismatch "
10462 "(expected %i, found %i)\n",
10463 !!encoder->base.crtc, enabled);
10464 WARN(active && !encoder->base.crtc,
10465 "active encoder with no crtc\n");
10466
10467 WARN(encoder->connectors_active != active,
10468 "encoder's computed active state doesn't match tracked active state "
10469 "(expected %i, found %i)\n", active, encoder->connectors_active);
10470
10471 active = encoder->get_hw_state(encoder, &pipe);
10472 WARN(active != encoder->connectors_active,
10473 "encoder's hw state doesn't match sw tracking "
10474 "(expected %i, found %i)\n",
10475 encoder->connectors_active, active);
10476
10477 if (!encoder->base.crtc)
10478 continue;
10479
10480 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10481 WARN(active && pipe != tracked_pipe,
10482 "active encoder's pipe doesn't match"
10483 "(expected %i, found %i)\n",
10484 tracked_pipe, pipe);
10485
10486 }
91d1b4bd
DV
10487}
10488
10489static void
10490check_crtc_state(struct drm_device *dev)
10491{
fbee40df 10492 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10493 struct intel_crtc *crtc;
10494 struct intel_encoder *encoder;
10495 struct intel_crtc_config pipe_config;
8af6cf88 10496
d3fcc808 10497 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10498 bool enabled = false;
10499 bool active = false;
10500
045ac3b5
JB
10501 memset(&pipe_config, 0, sizeof(pipe_config));
10502
8af6cf88
DV
10503 DRM_DEBUG_KMS("[CRTC:%d]\n",
10504 crtc->base.base.id);
10505
10506 WARN(crtc->active && !crtc->base.enabled,
10507 "active crtc, but not enabled in sw tracking\n");
10508
10509 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10510 base.head) {
10511 if (encoder->base.crtc != &crtc->base)
10512 continue;
10513 enabled = true;
10514 if (encoder->connectors_active)
10515 active = true;
10516 }
6c49f241 10517
8af6cf88
DV
10518 WARN(active != crtc->active,
10519 "crtc's computed active state doesn't match tracked active state "
10520 "(expected %i, found %i)\n", active, crtc->active);
10521 WARN(enabled != crtc->base.enabled,
10522 "crtc's computed enabled state doesn't match tracked enabled state "
10523 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10524
0e8ffe1b
DV
10525 active = dev_priv->display.get_pipe_config(crtc,
10526 &pipe_config);
d62cf62a
DV
10527
10528 /* hw state is inconsistent with the pipe A quirk */
10529 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10530 active = crtc->active;
10531
6c49f241
DV
10532 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10533 base.head) {
3eaba51c 10534 enum pipe pipe;
6c49f241
DV
10535 if (encoder->base.crtc != &crtc->base)
10536 continue;
1d37b689 10537 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10538 encoder->get_config(encoder, &pipe_config);
10539 }
10540
0e8ffe1b
DV
10541 WARN(crtc->active != active,
10542 "crtc active state doesn't match with hw state "
10543 "(expected %i, found %i)\n", crtc->active, active);
10544
c0b03411
DV
10545 if (active &&
10546 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10547 WARN(1, "pipe state doesn't match!\n");
10548 intel_dump_pipe_config(crtc, &pipe_config,
10549 "[hw state]");
10550 intel_dump_pipe_config(crtc, &crtc->config,
10551 "[sw state]");
10552 }
8af6cf88
DV
10553 }
10554}
10555
91d1b4bd
DV
10556static void
10557check_shared_dpll_state(struct drm_device *dev)
10558{
fbee40df 10559 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10560 struct intel_crtc *crtc;
10561 struct intel_dpll_hw_state dpll_hw_state;
10562 int i;
5358901f
DV
10563
10564 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10565 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10566 int enabled_crtcs = 0, active_crtcs = 0;
10567 bool active;
10568
10569 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10570
10571 DRM_DEBUG_KMS("%s\n", pll->name);
10572
10573 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10574
10575 WARN(pll->active > pll->refcount,
10576 "more active pll users than references: %i vs %i\n",
10577 pll->active, pll->refcount);
10578 WARN(pll->active && !pll->on,
10579 "pll in active use but not on in sw tracking\n");
35c95375
DV
10580 WARN(pll->on && !pll->active,
10581 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10582 WARN(pll->on != active,
10583 "pll on state mismatch (expected %i, found %i)\n",
10584 pll->on, active);
10585
d3fcc808 10586 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10587 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10588 enabled_crtcs++;
10589 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10590 active_crtcs++;
10591 }
10592 WARN(pll->active != active_crtcs,
10593 "pll active crtcs mismatch (expected %i, found %i)\n",
10594 pll->active, active_crtcs);
10595 WARN(pll->refcount != enabled_crtcs,
10596 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10597 pll->refcount, enabled_crtcs);
66e985c0
DV
10598
10599 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10600 sizeof(dpll_hw_state)),
10601 "pll hw state mismatch\n");
5358901f 10602 }
8af6cf88
DV
10603}
10604
91d1b4bd
DV
10605void
10606intel_modeset_check_state(struct drm_device *dev)
10607{
10608 check_connector_state(dev);
10609 check_encoder_state(dev);
10610 check_crtc_state(dev);
10611 check_shared_dpll_state(dev);
10612}
10613
18442d08
VS
10614void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10615 int dotclock)
10616{
10617 /*
10618 * FDI already provided one idea for the dotclock.
10619 * Yell if the encoder disagrees.
10620 */
241bfc38 10621 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10622 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10623 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10624}
10625
80715b2f
VS
10626static void update_scanline_offset(struct intel_crtc *crtc)
10627{
10628 struct drm_device *dev = crtc->base.dev;
10629
10630 /*
10631 * The scanline counter increments at the leading edge of hsync.
10632 *
10633 * On most platforms it starts counting from vtotal-1 on the
10634 * first active line. That means the scanline counter value is
10635 * always one less than what we would expect. Ie. just after
10636 * start of vblank, which also occurs at start of hsync (on the
10637 * last active line), the scanline counter will read vblank_start-1.
10638 *
10639 * On gen2 the scanline counter starts counting from 1 instead
10640 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10641 * to keep the value positive), instead of adding one.
10642 *
10643 * On HSW+ the behaviour of the scanline counter depends on the output
10644 * type. For DP ports it behaves like most other platforms, but on HDMI
10645 * there's an extra 1 line difference. So we need to add two instead of
10646 * one to the value.
10647 */
10648 if (IS_GEN2(dev)) {
10649 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10650 int vtotal;
10651
10652 vtotal = mode->crtc_vtotal;
10653 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10654 vtotal /= 2;
10655
10656 crtc->scanline_offset = vtotal - 1;
10657 } else if (HAS_DDI(dev) &&
10658 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10659 crtc->scanline_offset = 2;
10660 } else
10661 crtc->scanline_offset = 1;
10662}
10663
f30da187
DV
10664static int __intel_set_mode(struct drm_crtc *crtc,
10665 struct drm_display_mode *mode,
10666 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10667{
10668 struct drm_device *dev = crtc->dev;
fbee40df 10669 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10670 struct drm_display_mode *saved_mode;
b8cecdf5 10671 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10672 struct intel_crtc *intel_crtc;
10673 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10674 int ret = 0;
a6778b3c 10675
4b4b9238 10676 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10677 if (!saved_mode)
10678 return -ENOMEM;
a6778b3c 10679
e2e1ed41 10680 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10681 &prepare_pipes, &disable_pipes);
10682
3ac18232 10683 *saved_mode = crtc->mode;
a6778b3c 10684
25c5b266
DV
10685 /* Hack: Because we don't (yet) support global modeset on multiple
10686 * crtcs, we don't keep track of the new mode for more than one crtc.
10687 * Hence simply check whether any bit is set in modeset_pipes in all the
10688 * pieces of code that are not yet converted to deal with mutliple crtcs
10689 * changing their mode at the same time. */
25c5b266 10690 if (modeset_pipes) {
4e53c2e0 10691 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10692 if (IS_ERR(pipe_config)) {
10693 ret = PTR_ERR(pipe_config);
10694 pipe_config = NULL;
10695
3ac18232 10696 goto out;
25c5b266 10697 }
c0b03411
DV
10698 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10699 "[modeset]");
50741abc 10700 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10701 }
a6778b3c 10702
30a970c6
JB
10703 /*
10704 * See if the config requires any additional preparation, e.g.
10705 * to adjust global state with pipes off. We need to do this
10706 * here so we can get the modeset_pipe updated config for the new
10707 * mode set on this crtc. For other crtcs we need to use the
10708 * adjusted_mode bits in the crtc directly.
10709 */
c164f833 10710 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10711 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10712
c164f833
VS
10713 /* may have added more to prepare_pipes than we should */
10714 prepare_pipes &= ~disable_pipes;
10715 }
10716
460da916
DV
10717 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10718 intel_crtc_disable(&intel_crtc->base);
10719
ea9d758d
DV
10720 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10721 if (intel_crtc->base.enabled)
10722 dev_priv->display.crtc_disable(&intel_crtc->base);
10723 }
a6778b3c 10724
6c4c86f5
DV
10725 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10726 * to set it here already despite that we pass it down the callchain.
f6e5b160 10727 */
b8cecdf5 10728 if (modeset_pipes) {
25c5b266 10729 crtc->mode = *mode;
b8cecdf5
DV
10730 /* mode_set/enable/disable functions rely on a correct pipe
10731 * config. */
10732 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10733 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10734
10735 /*
10736 * Calculate and store various constants which
10737 * are later needed by vblank and swap-completion
10738 * timestamping. They are derived from true hwmode.
10739 */
10740 drm_calc_timestamping_constants(crtc,
10741 &pipe_config->adjusted_mode);
b8cecdf5 10742 }
7758a113 10743
ea9d758d
DV
10744 /* Only after disabling all output pipelines that will be changed can we
10745 * update the the output configuration. */
10746 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10747
47fab737
DV
10748 if (dev_priv->display.modeset_global_resources)
10749 dev_priv->display.modeset_global_resources(dev);
10750
a6778b3c
DV
10751 /* Set up the DPLL and any encoders state that needs to adjust or depend
10752 * on the DPLL.
f6e5b160 10753 */
25c5b266 10754 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
4c10794f 10755 struct drm_framebuffer *old_fb;
a071fa00
DV
10756 struct drm_i915_gem_object *old_obj = NULL;
10757 struct drm_i915_gem_object *obj =
10758 to_intel_framebuffer(fb)->obj;
4c10794f
DV
10759
10760 mutex_lock(&dev->struct_mutex);
10761 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10762 obj,
4c10794f
DV
10763 NULL);
10764 if (ret != 0) {
10765 DRM_ERROR("pin & fence failed\n");
10766 mutex_unlock(&dev->struct_mutex);
10767 goto done;
10768 }
10769 old_fb = crtc->primary->fb;
a071fa00
DV
10770 if (old_fb) {
10771 old_obj = to_intel_framebuffer(old_fb)->obj;
10772 intel_unpin_fb_obj(old_obj);
10773 }
10774 i915_gem_track_fb(old_obj, obj,
10775 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10776 mutex_unlock(&dev->struct_mutex);
10777
10778 crtc->primary->fb = fb;
10779 crtc->x = x;
10780 crtc->y = y;
10781
4271b753
DV
10782 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10783 x, y, fb);
c0c36b94
CW
10784 if (ret)
10785 goto done;
a6778b3c
DV
10786 }
10787
10788 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10789 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10790 update_scanline_offset(intel_crtc);
10791
25c5b266 10792 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10793 }
a6778b3c 10794
a6778b3c
DV
10795 /* FIXME: add subpixel order */
10796done:
4b4b9238 10797 if (ret && crtc->enabled)
3ac18232 10798 crtc->mode = *saved_mode;
a6778b3c 10799
3ac18232 10800out:
b8cecdf5 10801 kfree(pipe_config);
3ac18232 10802 kfree(saved_mode);
a6778b3c 10803 return ret;
f6e5b160
CW
10804}
10805
e7457a9a
DL
10806static int intel_set_mode(struct drm_crtc *crtc,
10807 struct drm_display_mode *mode,
10808 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
10809{
10810 int ret;
10811
10812 ret = __intel_set_mode(crtc, mode, x, y, fb);
10813
10814 if (ret == 0)
10815 intel_modeset_check_state(crtc->dev);
10816
10817 return ret;
10818}
10819
c0c36b94
CW
10820void intel_crtc_restore_mode(struct drm_crtc *crtc)
10821{
f4510a27 10822 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
10823}
10824
25c5b266
DV
10825#undef for_each_intel_crtc_masked
10826
d9e55608
DV
10827static void intel_set_config_free(struct intel_set_config *config)
10828{
10829 if (!config)
10830 return;
10831
1aa4b628
DV
10832 kfree(config->save_connector_encoders);
10833 kfree(config->save_encoder_crtcs);
7668851f 10834 kfree(config->save_crtc_enabled);
d9e55608
DV
10835 kfree(config);
10836}
10837
85f9eb71
DV
10838static int intel_set_config_save_state(struct drm_device *dev,
10839 struct intel_set_config *config)
10840{
7668851f 10841 struct drm_crtc *crtc;
85f9eb71
DV
10842 struct drm_encoder *encoder;
10843 struct drm_connector *connector;
10844 int count;
10845
7668851f
VS
10846 config->save_crtc_enabled =
10847 kcalloc(dev->mode_config.num_crtc,
10848 sizeof(bool), GFP_KERNEL);
10849 if (!config->save_crtc_enabled)
10850 return -ENOMEM;
10851
1aa4b628
DV
10852 config->save_encoder_crtcs =
10853 kcalloc(dev->mode_config.num_encoder,
10854 sizeof(struct drm_crtc *), GFP_KERNEL);
10855 if (!config->save_encoder_crtcs)
85f9eb71
DV
10856 return -ENOMEM;
10857
1aa4b628
DV
10858 config->save_connector_encoders =
10859 kcalloc(dev->mode_config.num_connector,
10860 sizeof(struct drm_encoder *), GFP_KERNEL);
10861 if (!config->save_connector_encoders)
85f9eb71
DV
10862 return -ENOMEM;
10863
10864 /* Copy data. Note that driver private data is not affected.
10865 * Should anything bad happen only the expected state is
10866 * restored, not the drivers personal bookkeeping.
10867 */
7668851f 10868 count = 0;
70e1e0ec 10869 for_each_crtc(dev, crtc) {
7668851f
VS
10870 config->save_crtc_enabled[count++] = crtc->enabled;
10871 }
10872
85f9eb71
DV
10873 count = 0;
10874 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 10875 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
10876 }
10877
10878 count = 0;
10879 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 10880 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
10881 }
10882
10883 return 0;
10884}
10885
10886static void intel_set_config_restore_state(struct drm_device *dev,
10887 struct intel_set_config *config)
10888{
7668851f 10889 struct intel_crtc *crtc;
9a935856
DV
10890 struct intel_encoder *encoder;
10891 struct intel_connector *connector;
85f9eb71
DV
10892 int count;
10893
7668851f 10894 count = 0;
d3fcc808 10895 for_each_intel_crtc(dev, crtc) {
7668851f 10896 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
10897
10898 if (crtc->new_enabled)
10899 crtc->new_config = &crtc->config;
10900 else
10901 crtc->new_config = NULL;
7668851f
VS
10902 }
10903
85f9eb71 10904 count = 0;
9a935856
DV
10905 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10906 encoder->new_crtc =
10907 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
10908 }
10909
10910 count = 0;
9a935856
DV
10911 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10912 connector->new_encoder =
10913 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
10914 }
10915}
10916
e3de42b6 10917static bool
2e57f47d 10918is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
10919{
10920 int i;
10921
2e57f47d
CW
10922 if (set->num_connectors == 0)
10923 return false;
10924
10925 if (WARN_ON(set->connectors == NULL))
10926 return false;
10927
10928 for (i = 0; i < set->num_connectors; i++)
10929 if (set->connectors[i]->encoder &&
10930 set->connectors[i]->encoder->crtc == set->crtc &&
10931 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
10932 return true;
10933
10934 return false;
10935}
10936
5e2b584e
DV
10937static void
10938intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10939 struct intel_set_config *config)
10940{
10941
10942 /* We should be able to check here if the fb has the same properties
10943 * and then just flip_or_move it */
2e57f47d
CW
10944 if (is_crtc_connector_off(set)) {
10945 config->mode_changed = true;
f4510a27 10946 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
10947 /*
10948 * If we have no fb, we can only flip as long as the crtc is
10949 * active, otherwise we need a full mode set. The crtc may
10950 * be active if we've only disabled the primary plane, or
10951 * in fastboot situations.
10952 */
f4510a27 10953 if (set->crtc->primary->fb == NULL) {
319d9827
JB
10954 struct intel_crtc *intel_crtc =
10955 to_intel_crtc(set->crtc);
10956
3b150f08 10957 if (intel_crtc->active) {
319d9827
JB
10958 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10959 config->fb_changed = true;
10960 } else {
10961 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10962 config->mode_changed = true;
10963 }
5e2b584e
DV
10964 } else if (set->fb == NULL) {
10965 config->mode_changed = true;
72f4901e 10966 } else if (set->fb->pixel_format !=
f4510a27 10967 set->crtc->primary->fb->pixel_format) {
5e2b584e 10968 config->mode_changed = true;
e3de42b6 10969 } else {
5e2b584e 10970 config->fb_changed = true;
e3de42b6 10971 }
5e2b584e
DV
10972 }
10973
835c5873 10974 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
10975 config->fb_changed = true;
10976
10977 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10978 DRM_DEBUG_KMS("modes are different, full mode set\n");
10979 drm_mode_debug_printmodeline(&set->crtc->mode);
10980 drm_mode_debug_printmodeline(set->mode);
10981 config->mode_changed = true;
10982 }
a1d95703
CW
10983
10984 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10985 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
10986}
10987
2e431051 10988static int
9a935856
DV
10989intel_modeset_stage_output_state(struct drm_device *dev,
10990 struct drm_mode_set *set,
10991 struct intel_set_config *config)
50f56119 10992{
9a935856
DV
10993 struct intel_connector *connector;
10994 struct intel_encoder *encoder;
7668851f 10995 struct intel_crtc *crtc;
f3f08572 10996 int ro;
50f56119 10997
9abdda74 10998 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
10999 * of connectors. For paranoia, double-check this. */
11000 WARN_ON(!set->fb && (set->num_connectors != 0));
11001 WARN_ON(set->fb && (set->num_connectors == 0));
11002
9a935856
DV
11003 list_for_each_entry(connector, &dev->mode_config.connector_list,
11004 base.head) {
11005 /* Otherwise traverse passed in connector list and get encoders
11006 * for them. */
50f56119 11007 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
11008 if (set->connectors[ro] == &connector->base) {
11009 connector->new_encoder = connector->encoder;
50f56119
DV
11010 break;
11011 }
11012 }
11013
9a935856
DV
11014 /* If we disable the crtc, disable all its connectors. Also, if
11015 * the connector is on the changing crtc but not on the new
11016 * connector list, disable it. */
11017 if ((!set->fb || ro == set->num_connectors) &&
11018 connector->base.encoder &&
11019 connector->base.encoder->crtc == set->crtc) {
11020 connector->new_encoder = NULL;
11021
11022 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11023 connector->base.base.id,
c23cc417 11024 connector->base.name);
9a935856
DV
11025 }
11026
11027
11028 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11029 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11030 config->mode_changed = true;
50f56119
DV
11031 }
11032 }
9a935856 11033 /* connector->new_encoder is now updated for all connectors. */
50f56119 11034
9a935856 11035 /* Update crtc of enabled connectors. */
9a935856
DV
11036 list_for_each_entry(connector, &dev->mode_config.connector_list,
11037 base.head) {
7668851f
VS
11038 struct drm_crtc *new_crtc;
11039
9a935856 11040 if (!connector->new_encoder)
50f56119
DV
11041 continue;
11042
9a935856 11043 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11044
11045 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11046 if (set->connectors[ro] == &connector->base)
50f56119
DV
11047 new_crtc = set->crtc;
11048 }
11049
11050 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11051 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11052 new_crtc)) {
5e2b584e 11053 return -EINVAL;
50f56119 11054 }
9a935856
DV
11055 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
11056
11057 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11058 connector->base.base.id,
c23cc417 11059 connector->base.name,
9a935856
DV
11060 new_crtc->base.id);
11061 }
11062
11063 /* Check for any encoders that needs to be disabled. */
11064 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11065 base.head) {
5a65f358 11066 int num_connectors = 0;
9a935856
DV
11067 list_for_each_entry(connector,
11068 &dev->mode_config.connector_list,
11069 base.head) {
11070 if (connector->new_encoder == encoder) {
11071 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11072 num_connectors++;
9a935856
DV
11073 }
11074 }
5a65f358
PZ
11075
11076 if (num_connectors == 0)
11077 encoder->new_crtc = NULL;
11078 else if (num_connectors > 1)
11079 return -EINVAL;
11080
9a935856
DV
11081 /* Only now check for crtc changes so we don't miss encoders
11082 * that will be disabled. */
11083 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11084 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11085 config->mode_changed = true;
50f56119
DV
11086 }
11087 }
9a935856 11088 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 11089
d3fcc808 11090 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11091 crtc->new_enabled = false;
11092
11093 list_for_each_entry(encoder,
11094 &dev->mode_config.encoder_list,
11095 base.head) {
11096 if (encoder->new_crtc == crtc) {
11097 crtc->new_enabled = true;
11098 break;
11099 }
11100 }
11101
11102 if (crtc->new_enabled != crtc->base.enabled) {
11103 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11104 crtc->new_enabled ? "en" : "dis");
11105 config->mode_changed = true;
11106 }
7bd0a8e7
VS
11107
11108 if (crtc->new_enabled)
11109 crtc->new_config = &crtc->config;
11110 else
11111 crtc->new_config = NULL;
7668851f
VS
11112 }
11113
2e431051
DV
11114 return 0;
11115}
11116
7d00a1f5
VS
11117static void disable_crtc_nofb(struct intel_crtc *crtc)
11118{
11119 struct drm_device *dev = crtc->base.dev;
11120 struct intel_encoder *encoder;
11121 struct intel_connector *connector;
11122
11123 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11124 pipe_name(crtc->pipe));
11125
11126 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11127 if (connector->new_encoder &&
11128 connector->new_encoder->new_crtc == crtc)
11129 connector->new_encoder = NULL;
11130 }
11131
11132 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11133 if (encoder->new_crtc == crtc)
11134 encoder->new_crtc = NULL;
11135 }
11136
11137 crtc->new_enabled = false;
7bd0a8e7 11138 crtc->new_config = NULL;
7d00a1f5
VS
11139}
11140
2e431051
DV
11141static int intel_crtc_set_config(struct drm_mode_set *set)
11142{
11143 struct drm_device *dev;
2e431051
DV
11144 struct drm_mode_set save_set;
11145 struct intel_set_config *config;
11146 int ret;
2e431051 11147
8d3e375e
DV
11148 BUG_ON(!set);
11149 BUG_ON(!set->crtc);
11150 BUG_ON(!set->crtc->helper_private);
2e431051 11151
7e53f3a4
DV
11152 /* Enforce sane interface api - has been abused by the fb helper. */
11153 BUG_ON(!set->mode && set->fb);
11154 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11155
2e431051
DV
11156 if (set->fb) {
11157 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11158 set->crtc->base.id, set->fb->base.id,
11159 (int)set->num_connectors, set->x, set->y);
11160 } else {
11161 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11162 }
11163
11164 dev = set->crtc->dev;
11165
11166 ret = -ENOMEM;
11167 config = kzalloc(sizeof(*config), GFP_KERNEL);
11168 if (!config)
11169 goto out_config;
11170
11171 ret = intel_set_config_save_state(dev, config);
11172 if (ret)
11173 goto out_config;
11174
11175 save_set.crtc = set->crtc;
11176 save_set.mode = &set->crtc->mode;
11177 save_set.x = set->crtc->x;
11178 save_set.y = set->crtc->y;
f4510a27 11179 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11180
11181 /* Compute whether we need a full modeset, only an fb base update or no
11182 * change at all. In the future we might also check whether only the
11183 * mode changed, e.g. for LVDS where we only change the panel fitter in
11184 * such cases. */
11185 intel_set_config_compute_mode_changes(set, config);
11186
9a935856 11187 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11188 if (ret)
11189 goto fail;
11190
5e2b584e 11191 if (config->mode_changed) {
c0c36b94
CW
11192 ret = intel_set_mode(set->crtc, set->mode,
11193 set->x, set->y, set->fb);
5e2b584e 11194 } else if (config->fb_changed) {
3b150f08
MR
11195 struct drm_i915_private *dev_priv = dev->dev_private;
11196 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11197
4878cae2
VS
11198 intel_crtc_wait_for_pending_flips(set->crtc);
11199
4f660f49 11200 ret = intel_pipe_set_base(set->crtc,
94352cf9 11201 set->x, set->y, set->fb);
3b150f08
MR
11202
11203 /*
11204 * We need to make sure the primary plane is re-enabled if it
11205 * has previously been turned off.
11206 */
11207 if (!intel_crtc->primary_enabled && ret == 0) {
11208 WARN_ON(!intel_crtc->active);
11209 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11210 intel_crtc->pipe);
11211 }
11212
7ca51a3a
JB
11213 /*
11214 * In the fastboot case this may be our only check of the
11215 * state after boot. It would be better to only do it on
11216 * the first update, but we don't have a nice way of doing that
11217 * (and really, set_config isn't used much for high freq page
11218 * flipping, so increasing its cost here shouldn't be a big
11219 * deal).
11220 */
d330a953 11221 if (i915.fastboot && ret == 0)
7ca51a3a 11222 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11223 }
11224
2d05eae1 11225 if (ret) {
bf67dfeb
DV
11226 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11227 set->crtc->base.id, ret);
50f56119 11228fail:
2d05eae1 11229 intel_set_config_restore_state(dev, config);
50f56119 11230
7d00a1f5
VS
11231 /*
11232 * HACK: if the pipe was on, but we didn't have a framebuffer,
11233 * force the pipe off to avoid oopsing in the modeset code
11234 * due to fb==NULL. This should only happen during boot since
11235 * we don't yet reconstruct the FB from the hardware state.
11236 */
11237 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11238 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11239
2d05eae1
CW
11240 /* Try to restore the config */
11241 if (config->mode_changed &&
11242 intel_set_mode(save_set.crtc, save_set.mode,
11243 save_set.x, save_set.y, save_set.fb))
11244 DRM_ERROR("failed to restore config after modeset failure\n");
11245 }
50f56119 11246
d9e55608
DV
11247out_config:
11248 intel_set_config_free(config);
50f56119
DV
11249 return ret;
11250}
f6e5b160
CW
11251
11252static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11253 .gamma_set = intel_crtc_gamma_set,
50f56119 11254 .set_config = intel_crtc_set_config,
f6e5b160
CW
11255 .destroy = intel_crtc_destroy,
11256 .page_flip = intel_crtc_page_flip,
11257};
11258
79f689aa
PZ
11259static void intel_cpu_pll_init(struct drm_device *dev)
11260{
affa9354 11261 if (HAS_DDI(dev))
79f689aa
PZ
11262 intel_ddi_pll_init(dev);
11263}
11264
5358901f
DV
11265static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11266 struct intel_shared_dpll *pll,
11267 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11268{
5358901f 11269 uint32_t val;
ee7b9f93 11270
5358901f 11271 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11272 hw_state->dpll = val;
11273 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11274 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11275
11276 return val & DPLL_VCO_ENABLE;
11277}
11278
15bdd4cf
DV
11279static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11280 struct intel_shared_dpll *pll)
11281{
11282 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11283 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11284}
11285
e7b903d2
DV
11286static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11287 struct intel_shared_dpll *pll)
11288{
e7b903d2 11289 /* PCH refclock must be enabled first */
89eff4be 11290 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11291
15bdd4cf
DV
11292 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11293
11294 /* Wait for the clocks to stabilize. */
11295 POSTING_READ(PCH_DPLL(pll->id));
11296 udelay(150);
11297
11298 /* The pixel multiplier can only be updated once the
11299 * DPLL is enabled and the clocks are stable.
11300 *
11301 * So write it again.
11302 */
11303 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11304 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11305 udelay(200);
11306}
11307
11308static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11309 struct intel_shared_dpll *pll)
11310{
11311 struct drm_device *dev = dev_priv->dev;
11312 struct intel_crtc *crtc;
e7b903d2
DV
11313
11314 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11315 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11316 if (intel_crtc_to_shared_dpll(crtc) == pll)
11317 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11318 }
11319
15bdd4cf
DV
11320 I915_WRITE(PCH_DPLL(pll->id), 0);
11321 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11322 udelay(200);
11323}
11324
46edb027
DV
11325static char *ibx_pch_dpll_names[] = {
11326 "PCH DPLL A",
11327 "PCH DPLL B",
11328};
11329
7c74ade1 11330static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11331{
e7b903d2 11332 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11333 int i;
11334
7c74ade1 11335 dev_priv->num_shared_dpll = 2;
ee7b9f93 11336
e72f9fbf 11337 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11338 dev_priv->shared_dplls[i].id = i;
11339 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11340 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11341 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11342 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11343 dev_priv->shared_dplls[i].get_hw_state =
11344 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11345 }
11346}
11347
7c74ade1
DV
11348static void intel_shared_dpll_init(struct drm_device *dev)
11349{
e7b903d2 11350 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1
DV
11351
11352 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11353 ibx_pch_dpll_init(dev);
11354 else
11355 dev_priv->num_shared_dpll = 0;
11356
11357 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11358}
11359
465c120c
MR
11360static int
11361intel_primary_plane_disable(struct drm_plane *plane)
11362{
11363 struct drm_device *dev = plane->dev;
11364 struct drm_i915_private *dev_priv = dev->dev_private;
11365 struct intel_plane *intel_plane = to_intel_plane(plane);
11366 struct intel_crtc *intel_crtc;
11367
11368 if (!plane->fb)
11369 return 0;
11370
11371 BUG_ON(!plane->crtc);
11372
11373 intel_crtc = to_intel_crtc(plane->crtc);
11374
11375 /*
11376 * Even though we checked plane->fb above, it's still possible that
11377 * the primary plane has been implicitly disabled because the crtc
11378 * coordinates given weren't visible, or because we detected
11379 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11380 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11381 * In either case, we need to unpin the FB and let the fb pointer get
11382 * updated, but otherwise we don't need to touch the hardware.
11383 */
11384 if (!intel_crtc->primary_enabled)
11385 goto disable_unpin;
11386
11387 intel_crtc_wait_for_pending_flips(plane->crtc);
11388 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11389 intel_plane->pipe);
465c120c 11390disable_unpin:
a071fa00
DV
11391 i915_gem_track_fb(to_intel_framebuffer(plane->fb)->obj, NULL,
11392 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11393 intel_unpin_fb_obj(to_intel_framebuffer(plane->fb)->obj);
11394 plane->fb = NULL;
11395
11396 return 0;
11397}
11398
11399static int
11400intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11401 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11402 unsigned int crtc_w, unsigned int crtc_h,
11403 uint32_t src_x, uint32_t src_y,
11404 uint32_t src_w, uint32_t src_h)
11405{
11406 struct drm_device *dev = crtc->dev;
11407 struct drm_i915_private *dev_priv = dev->dev_private;
11408 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11409 struct intel_plane *intel_plane = to_intel_plane(plane);
a071fa00 11410 struct drm_i915_gem_object *obj, *old_obj = NULL;
465c120c
MR
11411 struct drm_rect dest = {
11412 /* integer pixels */
11413 .x1 = crtc_x,
11414 .y1 = crtc_y,
11415 .x2 = crtc_x + crtc_w,
11416 .y2 = crtc_y + crtc_h,
11417 };
11418 struct drm_rect src = {
11419 /* 16.16 fixed point */
11420 .x1 = src_x,
11421 .y1 = src_y,
11422 .x2 = src_x + src_w,
11423 .y2 = src_y + src_h,
11424 };
11425 const struct drm_rect clip = {
11426 /* integer pixels */
11427 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11428 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11429 };
11430 bool visible;
11431 int ret;
11432
11433 ret = drm_plane_helper_check_update(plane, crtc, fb,
11434 &src, &dest, &clip,
11435 DRM_PLANE_HELPER_NO_SCALING,
11436 DRM_PLANE_HELPER_NO_SCALING,
11437 false, true, &visible);
11438
11439 if (ret)
11440 return ret;
11441
a071fa00
DV
11442 if (plane->fb)
11443 old_obj = to_intel_framebuffer(plane->fb)->obj;
11444 obj = to_intel_framebuffer(fb)->obj;
11445
465c120c
MR
11446 /*
11447 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11448 * updating the fb pointer, and returning without touching the
11449 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11450 * turn on the display with all planes setup as desired.
11451 */
11452 if (!crtc->enabled) {
11453 /*
11454 * If we already called setplane while the crtc was disabled,
11455 * we may have an fb pinned; unpin it.
11456 */
11457 if (plane->fb)
a071fa00
DV
11458 intel_unpin_fb_obj(old_obj);
11459
11460 i915_gem_track_fb(old_obj, obj,
11461 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11462
11463 /* Pin and return without programming hardware */
a071fa00 11464 return intel_pin_and_fence_fb_obj(dev, obj, NULL);
465c120c
MR
11465 }
11466
11467 intel_crtc_wait_for_pending_flips(crtc);
11468
11469 /*
11470 * If clipping results in a non-visible primary plane, we'll disable
11471 * the primary plane. Note that this is a bit different than what
11472 * happens if userspace explicitly disables the plane by passing fb=0
11473 * because plane->fb still gets set and pinned.
11474 */
11475 if (!visible) {
11476 /*
11477 * Try to pin the new fb first so that we can bail out if we
11478 * fail.
11479 */
11480 if (plane->fb != fb) {
a071fa00 11481 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
465c120c
MR
11482 if (ret)
11483 return ret;
11484 }
11485
a071fa00
DV
11486 i915_gem_track_fb(old_obj, obj,
11487 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11488
465c120c
MR
11489 if (intel_crtc->primary_enabled)
11490 intel_disable_primary_hw_plane(dev_priv,
11491 intel_plane->plane,
11492 intel_plane->pipe);
11493
11494
11495 if (plane->fb != fb)
11496 if (plane->fb)
a071fa00 11497 intel_unpin_fb_obj(old_obj);
465c120c
MR
11498
11499 return 0;
11500 }
11501
11502 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11503 if (ret)
11504 return ret;
11505
11506 if (!intel_crtc->primary_enabled)
11507 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11508 intel_crtc->pipe);
11509
11510 return 0;
11511}
11512
3d7d6510
MR
11513/* Common destruction function for both primary and cursor planes */
11514static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11515{
11516 struct intel_plane *intel_plane = to_intel_plane(plane);
11517 drm_plane_cleanup(plane);
11518 kfree(intel_plane);
11519}
11520
11521static const struct drm_plane_funcs intel_primary_plane_funcs = {
11522 .update_plane = intel_primary_plane_setplane,
11523 .disable_plane = intel_primary_plane_disable,
3d7d6510 11524 .destroy = intel_plane_destroy,
465c120c
MR
11525};
11526
11527static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11528 int pipe)
11529{
11530 struct intel_plane *primary;
11531 const uint32_t *intel_primary_formats;
11532 int num_formats;
11533
11534 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11535 if (primary == NULL)
11536 return NULL;
11537
11538 primary->can_scale = false;
11539 primary->max_downscale = 1;
11540 primary->pipe = pipe;
11541 primary->plane = pipe;
11542 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11543 primary->plane = !pipe;
11544
11545 if (INTEL_INFO(dev)->gen <= 3) {
11546 intel_primary_formats = intel_primary_formats_gen2;
11547 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11548 } else {
11549 intel_primary_formats = intel_primary_formats_gen4;
11550 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11551 }
11552
11553 drm_universal_plane_init(dev, &primary->base, 0,
11554 &intel_primary_plane_funcs,
11555 intel_primary_formats, num_formats,
11556 DRM_PLANE_TYPE_PRIMARY);
11557 return &primary->base;
11558}
11559
3d7d6510
MR
11560static int
11561intel_cursor_plane_disable(struct drm_plane *plane)
11562{
11563 if (!plane->fb)
11564 return 0;
11565
11566 BUG_ON(!plane->crtc);
11567
11568 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11569}
11570
11571static int
11572intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11573 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11574 unsigned int crtc_w, unsigned int crtc_h,
11575 uint32_t src_x, uint32_t src_y,
11576 uint32_t src_w, uint32_t src_h)
11577{
11578 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11579 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11580 struct drm_i915_gem_object *obj = intel_fb->obj;
11581 struct drm_rect dest = {
11582 /* integer pixels */
11583 .x1 = crtc_x,
11584 .y1 = crtc_y,
11585 .x2 = crtc_x + crtc_w,
11586 .y2 = crtc_y + crtc_h,
11587 };
11588 struct drm_rect src = {
11589 /* 16.16 fixed point */
11590 .x1 = src_x,
11591 .y1 = src_y,
11592 .x2 = src_x + src_w,
11593 .y2 = src_y + src_h,
11594 };
11595 const struct drm_rect clip = {
11596 /* integer pixels */
11597 .x2 = intel_crtc->config.pipe_src_w,
11598 .y2 = intel_crtc->config.pipe_src_h,
11599 };
11600 bool visible;
11601 int ret;
11602
11603 ret = drm_plane_helper_check_update(plane, crtc, fb,
11604 &src, &dest, &clip,
11605 DRM_PLANE_HELPER_NO_SCALING,
11606 DRM_PLANE_HELPER_NO_SCALING,
11607 true, true, &visible);
11608 if (ret)
11609 return ret;
11610
11611 crtc->cursor_x = crtc_x;
11612 crtc->cursor_y = crtc_y;
11613 if (fb != crtc->cursor->fb) {
11614 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11615 } else {
11616 intel_crtc_update_cursor(crtc, visible);
11617 return 0;
11618 }
11619}
11620static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11621 .update_plane = intel_cursor_plane_update,
11622 .disable_plane = intel_cursor_plane_disable,
11623 .destroy = intel_plane_destroy,
11624};
11625
11626static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11627 int pipe)
11628{
11629 struct intel_plane *cursor;
11630
11631 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11632 if (cursor == NULL)
11633 return NULL;
11634
11635 cursor->can_scale = false;
11636 cursor->max_downscale = 1;
11637 cursor->pipe = pipe;
11638 cursor->plane = pipe;
11639
11640 drm_universal_plane_init(dev, &cursor->base, 0,
11641 &intel_cursor_plane_funcs,
11642 intel_cursor_formats,
11643 ARRAY_SIZE(intel_cursor_formats),
11644 DRM_PLANE_TYPE_CURSOR);
11645 return &cursor->base;
11646}
11647
b358d0a6 11648static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11649{
fbee40df 11650 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11651 struct intel_crtc *intel_crtc;
3d7d6510
MR
11652 struct drm_plane *primary = NULL;
11653 struct drm_plane *cursor = NULL;
465c120c 11654 int i, ret;
79e53945 11655
955382f3 11656 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11657 if (intel_crtc == NULL)
11658 return;
11659
465c120c 11660 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11661 if (!primary)
11662 goto fail;
11663
11664 cursor = intel_cursor_plane_create(dev, pipe);
11665 if (!cursor)
11666 goto fail;
11667
465c120c 11668 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11669 cursor, &intel_crtc_funcs);
11670 if (ret)
11671 goto fail;
79e53945
JB
11672
11673 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11674 for (i = 0; i < 256; i++) {
11675 intel_crtc->lut_r[i] = i;
11676 intel_crtc->lut_g[i] = i;
11677 intel_crtc->lut_b[i] = i;
11678 }
11679
1f1c2e24
VS
11680 /*
11681 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11682 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11683 */
80824003
JB
11684 intel_crtc->pipe = pipe;
11685 intel_crtc->plane = pipe;
3a77c4c4 11686 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11687 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11688 intel_crtc->plane = !pipe;
80824003
JB
11689 }
11690
4b0e333e
CW
11691 intel_crtc->cursor_base = ~0;
11692 intel_crtc->cursor_cntl = ~0;
11693
8d7849db
VS
11694 init_waitqueue_head(&intel_crtc->vbl_wait);
11695
22fd0fab
JB
11696 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11697 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11698 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11699 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11700
79e53945 11701 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11702
11703 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11704 return;
11705
11706fail:
11707 if (primary)
11708 drm_plane_cleanup(primary);
11709 if (cursor)
11710 drm_plane_cleanup(cursor);
11711 kfree(intel_crtc);
79e53945
JB
11712}
11713
752aa88a
JB
11714enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11715{
11716 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11717 struct drm_device *dev = connector->base.dev;
752aa88a 11718
51fd371b 11719 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11720
11721 if (!encoder)
11722 return INVALID_PIPE;
11723
11724 return to_intel_crtc(encoder->crtc)->pipe;
11725}
11726
08d7b3d1 11727int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11728 struct drm_file *file)
08d7b3d1 11729{
08d7b3d1 11730 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
11731 struct drm_mode_object *drmmode_obj;
11732 struct intel_crtc *crtc;
08d7b3d1 11733
1cff8f6b
DV
11734 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11735 return -ENODEV;
08d7b3d1 11736
c05422d5
DV
11737 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
11738 DRM_MODE_OBJECT_CRTC);
08d7b3d1 11739
c05422d5 11740 if (!drmmode_obj) {
08d7b3d1 11741 DRM_ERROR("no such CRTC id\n");
3f2c2057 11742 return -ENOENT;
08d7b3d1
CW
11743 }
11744
c05422d5
DV
11745 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
11746 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 11747
c05422d5 11748 return 0;
08d7b3d1
CW
11749}
11750
66a9278e 11751static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 11752{
66a9278e
DV
11753 struct drm_device *dev = encoder->base.dev;
11754 struct intel_encoder *source_encoder;
79e53945 11755 int index_mask = 0;
79e53945
JB
11756 int entry = 0;
11757
66a9278e
DV
11758 list_for_each_entry(source_encoder,
11759 &dev->mode_config.encoder_list, base.head) {
bc079e8b 11760 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
11761 index_mask |= (1 << entry);
11762
79e53945
JB
11763 entry++;
11764 }
4ef69c7a 11765
79e53945
JB
11766 return index_mask;
11767}
11768
4d302442
CW
11769static bool has_edp_a(struct drm_device *dev)
11770{
11771 struct drm_i915_private *dev_priv = dev->dev_private;
11772
11773 if (!IS_MOBILE(dev))
11774 return false;
11775
11776 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11777 return false;
11778
e3589908 11779 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
11780 return false;
11781
11782 return true;
11783}
11784
ba0fbca4
DL
11785const char *intel_output_name(int output)
11786{
11787 static const char *names[] = {
11788 [INTEL_OUTPUT_UNUSED] = "Unused",
11789 [INTEL_OUTPUT_ANALOG] = "Analog",
11790 [INTEL_OUTPUT_DVO] = "DVO",
11791 [INTEL_OUTPUT_SDVO] = "SDVO",
11792 [INTEL_OUTPUT_LVDS] = "LVDS",
11793 [INTEL_OUTPUT_TVOUT] = "TV",
11794 [INTEL_OUTPUT_HDMI] = "HDMI",
11795 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11796 [INTEL_OUTPUT_EDP] = "eDP",
11797 [INTEL_OUTPUT_DSI] = "DSI",
11798 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11799 };
11800
11801 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11802 return "Invalid";
11803
11804 return names[output];
11805}
11806
84b4e042
JB
11807static bool intel_crt_present(struct drm_device *dev)
11808{
11809 struct drm_i915_private *dev_priv = dev->dev_private;
11810
11811 if (IS_ULT(dev))
11812 return false;
11813
11814 if (IS_CHERRYVIEW(dev))
11815 return false;
11816
11817 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11818 return false;
11819
11820 return true;
11821}
11822
79e53945
JB
11823static void intel_setup_outputs(struct drm_device *dev)
11824{
725e30ad 11825 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 11826 struct intel_encoder *encoder;
cb0953d7 11827 bool dpd_is_edp = false;
79e53945 11828
c9093354 11829 intel_lvds_init(dev);
79e53945 11830
84b4e042 11831 if (intel_crt_present(dev))
79935fca 11832 intel_crt_init(dev);
cb0953d7 11833
affa9354 11834 if (HAS_DDI(dev)) {
0e72a5b5
ED
11835 int found;
11836
11837 /* Haswell uses DDI functions to detect digital outputs */
11838 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11839 /* DDI A only supports eDP */
11840 if (found)
11841 intel_ddi_init(dev, PORT_A);
11842
11843 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11844 * register */
11845 found = I915_READ(SFUSE_STRAP);
11846
11847 if (found & SFUSE_STRAP_DDIB_DETECTED)
11848 intel_ddi_init(dev, PORT_B);
11849 if (found & SFUSE_STRAP_DDIC_DETECTED)
11850 intel_ddi_init(dev, PORT_C);
11851 if (found & SFUSE_STRAP_DDID_DETECTED)
11852 intel_ddi_init(dev, PORT_D);
11853 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 11854 int found;
5d8a7752 11855 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
11856
11857 if (has_edp_a(dev))
11858 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 11859
dc0fa718 11860 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 11861 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 11862 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 11863 if (!found)
e2debe91 11864 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 11865 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 11866 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
11867 }
11868
dc0fa718 11869 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 11870 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 11871
dc0fa718 11872 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 11873 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 11874
5eb08b69 11875 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 11876 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 11877
270b3042 11878 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 11879 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 11880 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
11881 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11882 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11883 PORT_B);
11884 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11885 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11886 }
11887
6f6005a5
JB
11888 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11889 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11890 PORT_C);
11891 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 11892 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 11893 }
19c03924 11894
9418c1f1
VS
11895 if (IS_CHERRYVIEW(dev)) {
11896 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11897 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11898 PORT_D);
11899 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11900 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11901 }
11902 }
11903
3cfca973 11904 intel_dsi_init(dev);
103a196f 11905 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 11906 bool found = false;
7d57382e 11907
e2debe91 11908 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11909 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 11910 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
11911 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11912 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 11913 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 11914 }
27185ae1 11915
e7281eab 11916 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11917 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 11918 }
13520b05
KH
11919
11920 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 11921
e2debe91 11922 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11923 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 11924 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 11925 }
27185ae1 11926
e2debe91 11927 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 11928
b01f2c3a
JB
11929 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11930 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 11931 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 11932 }
e7281eab 11933 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11934 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 11935 }
27185ae1 11936
b01f2c3a 11937 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 11938 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 11939 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 11940 } else if (IS_GEN2(dev))
79e53945
JB
11941 intel_dvo_init(dev);
11942
103a196f 11943 if (SUPPORTS_TV(dev))
79e53945
JB
11944 intel_tv_init(dev);
11945
7c8f8a70
RV
11946 intel_edp_psr_init(dev);
11947
4ef69c7a
CW
11948 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11949 encoder->base.possible_crtcs = encoder->crtc_mask;
11950 encoder->base.possible_clones =
66a9278e 11951 intel_encoder_clones(encoder);
79e53945 11952 }
47356eb6 11953
dde86e2d 11954 intel_init_pch_refclk(dev);
270b3042
DV
11955
11956 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
11957}
11958
11959static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
11960{
60a5ca01 11961 struct drm_device *dev = fb->dev;
79e53945 11962 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 11963
ef2d633e 11964 drm_framebuffer_cleanup(fb);
60a5ca01 11965 mutex_lock(&dev->struct_mutex);
ef2d633e 11966 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
11967 drm_gem_object_unreference(&intel_fb->obj->base);
11968 mutex_unlock(&dev->struct_mutex);
79e53945
JB
11969 kfree(intel_fb);
11970}
11971
11972static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 11973 struct drm_file *file,
79e53945
JB
11974 unsigned int *handle)
11975{
11976 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 11977 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 11978
05394f39 11979 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
11980}
11981
11982static const struct drm_framebuffer_funcs intel_fb_funcs = {
11983 .destroy = intel_user_framebuffer_destroy,
11984 .create_handle = intel_user_framebuffer_create_handle,
11985};
11986
b5ea642a
DV
11987static int intel_framebuffer_init(struct drm_device *dev,
11988 struct intel_framebuffer *intel_fb,
11989 struct drm_mode_fb_cmd2 *mode_cmd,
11990 struct drm_i915_gem_object *obj)
79e53945 11991{
a57ce0b2 11992 int aligned_height;
a35cdaa0 11993 int pitch_limit;
79e53945
JB
11994 int ret;
11995
dd4916c5
DV
11996 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
11997
c16ed4be
CW
11998 if (obj->tiling_mode == I915_TILING_Y) {
11999 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12000 return -EINVAL;
c16ed4be 12001 }
57cd6508 12002
c16ed4be
CW
12003 if (mode_cmd->pitches[0] & 63) {
12004 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12005 mode_cmd->pitches[0]);
57cd6508 12006 return -EINVAL;
c16ed4be 12007 }
57cd6508 12008
a35cdaa0
CW
12009 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12010 pitch_limit = 32*1024;
12011 } else if (INTEL_INFO(dev)->gen >= 4) {
12012 if (obj->tiling_mode)
12013 pitch_limit = 16*1024;
12014 else
12015 pitch_limit = 32*1024;
12016 } else if (INTEL_INFO(dev)->gen >= 3) {
12017 if (obj->tiling_mode)
12018 pitch_limit = 8*1024;
12019 else
12020 pitch_limit = 16*1024;
12021 } else
12022 /* XXX DSPC is limited to 4k tiled */
12023 pitch_limit = 8*1024;
12024
12025 if (mode_cmd->pitches[0] > pitch_limit) {
12026 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12027 obj->tiling_mode ? "tiled" : "linear",
12028 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12029 return -EINVAL;
c16ed4be 12030 }
5d7bd705
VS
12031
12032 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12033 mode_cmd->pitches[0] != obj->stride) {
12034 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12035 mode_cmd->pitches[0], obj->stride);
5d7bd705 12036 return -EINVAL;
c16ed4be 12037 }
5d7bd705 12038
57779d06 12039 /* Reject formats not supported by any plane early. */
308e5bcb 12040 switch (mode_cmd->pixel_format) {
57779d06 12041 case DRM_FORMAT_C8:
04b3924d
VS
12042 case DRM_FORMAT_RGB565:
12043 case DRM_FORMAT_XRGB8888:
12044 case DRM_FORMAT_ARGB8888:
57779d06
VS
12045 break;
12046 case DRM_FORMAT_XRGB1555:
12047 case DRM_FORMAT_ARGB1555:
c16ed4be 12048 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12049 DRM_DEBUG("unsupported pixel format: %s\n",
12050 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12051 return -EINVAL;
c16ed4be 12052 }
57779d06
VS
12053 break;
12054 case DRM_FORMAT_XBGR8888:
12055 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12056 case DRM_FORMAT_XRGB2101010:
12057 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12058 case DRM_FORMAT_XBGR2101010:
12059 case DRM_FORMAT_ABGR2101010:
c16ed4be 12060 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12061 DRM_DEBUG("unsupported pixel format: %s\n",
12062 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12063 return -EINVAL;
c16ed4be 12064 }
b5626747 12065 break;
04b3924d
VS
12066 case DRM_FORMAT_YUYV:
12067 case DRM_FORMAT_UYVY:
12068 case DRM_FORMAT_YVYU:
12069 case DRM_FORMAT_VYUY:
c16ed4be 12070 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12071 DRM_DEBUG("unsupported pixel format: %s\n",
12072 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12073 return -EINVAL;
c16ed4be 12074 }
57cd6508
CW
12075 break;
12076 default:
4ee62c76
VS
12077 DRM_DEBUG("unsupported pixel format: %s\n",
12078 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12079 return -EINVAL;
12080 }
12081
90f9a336
VS
12082 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12083 if (mode_cmd->offsets[0] != 0)
12084 return -EINVAL;
12085
a57ce0b2
JB
12086 aligned_height = intel_align_height(dev, mode_cmd->height,
12087 obj->tiling_mode);
53155c0a
DV
12088 /* FIXME drm helper for size checks (especially planar formats)? */
12089 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12090 return -EINVAL;
12091
c7d73f6a
DV
12092 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12093 intel_fb->obj = obj;
80075d49 12094 intel_fb->obj->framebuffer_references++;
c7d73f6a 12095
79e53945
JB
12096 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12097 if (ret) {
12098 DRM_ERROR("framebuffer init failed %d\n", ret);
12099 return ret;
12100 }
12101
79e53945
JB
12102 return 0;
12103}
12104
79e53945
JB
12105static struct drm_framebuffer *
12106intel_user_framebuffer_create(struct drm_device *dev,
12107 struct drm_file *filp,
308e5bcb 12108 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12109{
05394f39 12110 struct drm_i915_gem_object *obj;
79e53945 12111
308e5bcb
JB
12112 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12113 mode_cmd->handles[0]));
c8725226 12114 if (&obj->base == NULL)
cce13ff7 12115 return ERR_PTR(-ENOENT);
79e53945 12116
d2dff872 12117 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12118}
12119
4520f53a 12120#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12121static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12122{
12123}
12124#endif
12125
79e53945 12126static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12127 .fb_create = intel_user_framebuffer_create,
0632fef6 12128 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12129};
12130
e70236a8
JB
12131/* Set up chip specific display functions */
12132static void intel_init_display(struct drm_device *dev)
12133{
12134 struct drm_i915_private *dev_priv = dev->dev_private;
12135
ee9300bb
DV
12136 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12137 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12138 else if (IS_CHERRYVIEW(dev))
12139 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12140 else if (IS_VALLEYVIEW(dev))
12141 dev_priv->display.find_dpll = vlv_find_best_dpll;
12142 else if (IS_PINEVIEW(dev))
12143 dev_priv->display.find_dpll = pnv_find_best_dpll;
12144 else
12145 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12146
affa9354 12147 if (HAS_DDI(dev)) {
0e8ffe1b 12148 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12149 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12150 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12151 dev_priv->display.crtc_enable = haswell_crtc_enable;
12152 dev_priv->display.crtc_disable = haswell_crtc_disable;
6441ab5f 12153 dev_priv->display.off = haswell_crtc_off;
262ca2b0
MR
12154 dev_priv->display.update_primary_plane =
12155 ironlake_update_primary_plane;
09b4ddf9 12156 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12157 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12158 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12159 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12160 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12161 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12162 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12163 dev_priv->display.update_primary_plane =
12164 ironlake_update_primary_plane;
89b667f8
JB
12165 } else if (IS_VALLEYVIEW(dev)) {
12166 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12167 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12168 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12169 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12170 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12171 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12172 dev_priv->display.update_primary_plane =
12173 i9xx_update_primary_plane;
f564048e 12174 } else {
0e8ffe1b 12175 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12176 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12177 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12178 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12179 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12180 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12181 dev_priv->display.update_primary_plane =
12182 i9xx_update_primary_plane;
f564048e 12183 }
e70236a8 12184
e70236a8 12185 /* Returns the core display clock speed */
25eb05fc
JB
12186 if (IS_VALLEYVIEW(dev))
12187 dev_priv->display.get_display_clock_speed =
12188 valleyview_get_display_clock_speed;
12189 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12190 dev_priv->display.get_display_clock_speed =
12191 i945_get_display_clock_speed;
12192 else if (IS_I915G(dev))
12193 dev_priv->display.get_display_clock_speed =
12194 i915_get_display_clock_speed;
257a7ffc 12195 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12196 dev_priv->display.get_display_clock_speed =
12197 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12198 else if (IS_PINEVIEW(dev))
12199 dev_priv->display.get_display_clock_speed =
12200 pnv_get_display_clock_speed;
e70236a8
JB
12201 else if (IS_I915GM(dev))
12202 dev_priv->display.get_display_clock_speed =
12203 i915gm_get_display_clock_speed;
12204 else if (IS_I865G(dev))
12205 dev_priv->display.get_display_clock_speed =
12206 i865_get_display_clock_speed;
f0f8a9ce 12207 else if (IS_I85X(dev))
e70236a8
JB
12208 dev_priv->display.get_display_clock_speed =
12209 i855_get_display_clock_speed;
12210 else /* 852, 830 */
12211 dev_priv->display.get_display_clock_speed =
12212 i830_get_display_clock_speed;
12213
7f8a8569 12214 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 12215 if (IS_GEN5(dev)) {
674cf967 12216 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 12217 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 12218 } else if (IS_GEN6(dev)) {
674cf967 12219 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 12220 dev_priv->display.write_eld = ironlake_write_eld;
9a952a0d
PZ
12221 dev_priv->display.modeset_global_resources =
12222 snb_modeset_global_resources;
357555c0
JB
12223 } else if (IS_IVYBRIDGE(dev)) {
12224 /* FIXME: detect B0+ stepping and use auto training */
12225 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 12226 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
12227 dev_priv->display.modeset_global_resources =
12228 ivb_modeset_global_resources;
4e0bbc31 12229 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
c82e4d26 12230 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 12231 dev_priv->display.write_eld = haswell_write_eld;
d6dd9eb1
DV
12232 dev_priv->display.modeset_global_resources =
12233 haswell_modeset_global_resources;
a0e63c22 12234 }
6067aaea 12235 } else if (IS_G4X(dev)) {
e0dac65e 12236 dev_priv->display.write_eld = g4x_write_eld;
30a970c6
JB
12237 } else if (IS_VALLEYVIEW(dev)) {
12238 dev_priv->display.modeset_global_resources =
12239 valleyview_modeset_global_resources;
9ca2fe73 12240 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12241 }
8c9f3aaf
JB
12242
12243 /* Default just returns -ENODEV to indicate unsupported */
12244 dev_priv->display.queue_flip = intel_default_queue_flip;
12245
12246 switch (INTEL_INFO(dev)->gen) {
12247 case 2:
12248 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12249 break;
12250
12251 case 3:
12252 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12253 break;
12254
12255 case 4:
12256 case 5:
12257 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12258 break;
12259
12260 case 6:
12261 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12262 break;
7c9017e5 12263 case 7:
4e0bbc31 12264 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12265 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12266 break;
8c9f3aaf 12267 }
7bd688cd
JN
12268
12269 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12270}
12271
b690e96c
JB
12272/*
12273 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12274 * resume, or other times. This quirk makes sure that's the case for
12275 * affected systems.
12276 */
0206e353 12277static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12278{
12279 struct drm_i915_private *dev_priv = dev->dev_private;
12280
12281 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12282 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12283}
12284
435793df
KP
12285/*
12286 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12287 */
12288static void quirk_ssc_force_disable(struct drm_device *dev)
12289{
12290 struct drm_i915_private *dev_priv = dev->dev_private;
12291 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12292 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12293}
12294
4dca20ef 12295/*
5a15ab5b
CE
12296 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12297 * brightness value
4dca20ef
CE
12298 */
12299static void quirk_invert_brightness(struct drm_device *dev)
12300{
12301 struct drm_i915_private *dev_priv = dev->dev_private;
12302 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12303 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12304}
12305
b690e96c
JB
12306struct intel_quirk {
12307 int device;
12308 int subsystem_vendor;
12309 int subsystem_device;
12310 void (*hook)(struct drm_device *dev);
12311};
12312
5f85f176
EE
12313/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12314struct intel_dmi_quirk {
12315 void (*hook)(struct drm_device *dev);
12316 const struct dmi_system_id (*dmi_id_list)[];
12317};
12318
12319static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12320{
12321 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12322 return 1;
12323}
12324
12325static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12326 {
12327 .dmi_id_list = &(const struct dmi_system_id[]) {
12328 {
12329 .callback = intel_dmi_reverse_brightness,
12330 .ident = "NCR Corporation",
12331 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12332 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12333 },
12334 },
12335 { } /* terminating entry */
12336 },
12337 .hook = quirk_invert_brightness,
12338 },
12339};
12340
c43b5634 12341static struct intel_quirk intel_quirks[] = {
b690e96c 12342 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12343 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12344
b690e96c
JB
12345 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12346 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12347
b690e96c
JB
12348 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12349 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12350
435793df
KP
12351 /* Lenovo U160 cannot use SSC on LVDS */
12352 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12353
12354 /* Sony Vaio Y cannot use SSC on LVDS */
12355 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12356
be505f64
AH
12357 /* Acer Aspire 5734Z must invert backlight brightness */
12358 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12359
12360 /* Acer/eMachines G725 */
12361 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12362
12363 /* Acer/eMachines e725 */
12364 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12365
12366 /* Acer/Packard Bell NCL20 */
12367 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12368
12369 /* Acer Aspire 4736Z */
12370 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12371
12372 /* Acer Aspire 5336 */
12373 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
b690e96c
JB
12374};
12375
12376static void intel_init_quirks(struct drm_device *dev)
12377{
12378 struct pci_dev *d = dev->pdev;
12379 int i;
12380
12381 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12382 struct intel_quirk *q = &intel_quirks[i];
12383
12384 if (d->device == q->device &&
12385 (d->subsystem_vendor == q->subsystem_vendor ||
12386 q->subsystem_vendor == PCI_ANY_ID) &&
12387 (d->subsystem_device == q->subsystem_device ||
12388 q->subsystem_device == PCI_ANY_ID))
12389 q->hook(dev);
12390 }
5f85f176
EE
12391 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12392 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12393 intel_dmi_quirks[i].hook(dev);
12394 }
b690e96c
JB
12395}
12396
9cce37f4
JB
12397/* Disable the VGA plane that we never use */
12398static void i915_disable_vga(struct drm_device *dev)
12399{
12400 struct drm_i915_private *dev_priv = dev->dev_private;
12401 u8 sr1;
766aa1c4 12402 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12403
2b37c616 12404 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12405 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12406 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12407 sr1 = inb(VGA_SR_DATA);
12408 outb(sr1 | 1<<5, VGA_SR_DATA);
12409 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12410 udelay(300);
12411
12412 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12413 POSTING_READ(vga_reg);
12414}
12415
f817586c
DV
12416void intel_modeset_init_hw(struct drm_device *dev)
12417{
a8f78b58
ED
12418 intel_prepare_ddi(dev);
12419
f8bf63fd
VS
12420 if (IS_VALLEYVIEW(dev))
12421 vlv_update_cdclk(dev);
12422
f817586c
DV
12423 intel_init_clock_gating(dev);
12424
5382f5f3 12425 intel_reset_dpio(dev);
40e9cf64 12426
8090c6b9 12427 intel_enable_gt_powersave(dev);
f817586c
DV
12428}
12429
7d708ee4
ID
12430void intel_modeset_suspend_hw(struct drm_device *dev)
12431{
12432 intel_suspend_hw(dev);
12433}
12434
79e53945
JB
12435void intel_modeset_init(struct drm_device *dev)
12436{
652c393a 12437 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12438 int sprite, ret;
8cc87b75 12439 enum pipe pipe;
46f297fb 12440 struct intel_crtc *crtc;
79e53945
JB
12441
12442 drm_mode_config_init(dev);
12443
12444 dev->mode_config.min_width = 0;
12445 dev->mode_config.min_height = 0;
12446
019d96cb
DA
12447 dev->mode_config.preferred_depth = 24;
12448 dev->mode_config.prefer_shadow = 1;
12449
e6ecefaa 12450 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12451
b690e96c
JB
12452 intel_init_quirks(dev);
12453
1fa61106
ED
12454 intel_init_pm(dev);
12455
e3c74757
BW
12456 if (INTEL_INFO(dev)->num_pipes == 0)
12457 return;
12458
e70236a8
JB
12459 intel_init_display(dev);
12460
a6c45cf0
CW
12461 if (IS_GEN2(dev)) {
12462 dev->mode_config.max_width = 2048;
12463 dev->mode_config.max_height = 2048;
12464 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12465 dev->mode_config.max_width = 4096;
12466 dev->mode_config.max_height = 4096;
79e53945 12467 } else {
a6c45cf0
CW
12468 dev->mode_config.max_width = 8192;
12469 dev->mode_config.max_height = 8192;
79e53945 12470 }
068be561
DL
12471
12472 if (IS_GEN2(dev)) {
12473 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12474 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12475 } else {
12476 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12477 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12478 }
12479
5d4545ae 12480 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12481
28c97730 12482 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12483 INTEL_INFO(dev)->num_pipes,
12484 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12485
8cc87b75
DL
12486 for_each_pipe(pipe) {
12487 intel_crtc_init(dev, pipe);
1fe47785
DL
12488 for_each_sprite(pipe, sprite) {
12489 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12490 if (ret)
06da8da2 12491 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12492 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12493 }
79e53945
JB
12494 }
12495
f42bb70d 12496 intel_init_dpio(dev);
5382f5f3 12497 intel_reset_dpio(dev);
f42bb70d 12498
79f689aa 12499 intel_cpu_pll_init(dev);
e72f9fbf 12500 intel_shared_dpll_init(dev);
ee7b9f93 12501
9cce37f4
JB
12502 /* Just disable it once at startup */
12503 i915_disable_vga(dev);
79e53945 12504 intel_setup_outputs(dev);
11be49eb
CW
12505
12506 /* Just in case the BIOS is doing something questionable. */
12507 intel_disable_fbc(dev);
fa9fa083 12508
6e9f798d 12509 drm_modeset_lock_all(dev);
fa9fa083 12510 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12511 drm_modeset_unlock_all(dev);
46f297fb 12512
d3fcc808 12513 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12514 if (!crtc->active)
12515 continue;
12516
46f297fb 12517 /*
46f297fb
JB
12518 * Note that reserving the BIOS fb up front prevents us
12519 * from stuffing other stolen allocations like the ring
12520 * on top. This prevents some ugliness at boot time, and
12521 * can even allow for smooth boot transitions if the BIOS
12522 * fb is large enough for the active pipe configuration.
12523 */
12524 if (dev_priv->display.get_plane_config) {
12525 dev_priv->display.get_plane_config(crtc,
12526 &crtc->plane_config);
12527 /*
12528 * If the fb is shared between multiple heads, we'll
12529 * just get the first one.
12530 */
484b41dd 12531 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12532 }
46f297fb 12533 }
2c7111db
CW
12534}
12535
7fad798e
DV
12536static void intel_enable_pipe_a(struct drm_device *dev)
12537{
12538 struct intel_connector *connector;
12539 struct drm_connector *crt = NULL;
12540 struct intel_load_detect_pipe load_detect_temp;
51fd371b 12541 struct drm_modeset_acquire_ctx ctx;
7fad798e
DV
12542
12543 /* We can't just switch on the pipe A, we need to set things up with a
12544 * proper mode and output configuration. As a gross hack, enable pipe A
12545 * by enabling the load detect pipe once. */
12546 list_for_each_entry(connector,
12547 &dev->mode_config.connector_list,
12548 base.head) {
12549 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12550 crt = &connector->base;
12551 break;
12552 }
12553 }
12554
12555 if (!crt)
12556 return;
12557
51fd371b
RC
12558 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12559 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
7fad798e 12560
652c393a 12561
7fad798e
DV
12562}
12563
fa555837
DV
12564static bool
12565intel_check_plane_mapping(struct intel_crtc *crtc)
12566{
7eb552ae
BW
12567 struct drm_device *dev = crtc->base.dev;
12568 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12569 u32 reg, val;
12570
7eb552ae 12571 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12572 return true;
12573
12574 reg = DSPCNTR(!crtc->plane);
12575 val = I915_READ(reg);
12576
12577 if ((val & DISPLAY_PLANE_ENABLE) &&
12578 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12579 return false;
12580
12581 return true;
12582}
12583
24929352
DV
12584static void intel_sanitize_crtc(struct intel_crtc *crtc)
12585{
12586 struct drm_device *dev = crtc->base.dev;
12587 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12588 u32 reg;
24929352 12589
24929352 12590 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12591 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12592 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12593
d3eaf884
VS
12594 /* restore vblank interrupts to correct state */
12595 if (crtc->active)
12596 drm_vblank_on(dev, crtc->pipe);
12597 else
12598 drm_vblank_off(dev, crtc->pipe);
12599
24929352 12600 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12601 * disable the crtc (and hence change the state) if it is wrong. Note
12602 * that gen4+ has a fixed plane -> pipe mapping. */
12603 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12604 struct intel_connector *connector;
12605 bool plane;
12606
24929352
DV
12607 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12608 crtc->base.base.id);
12609
12610 /* Pipe has the wrong plane attached and the plane is active.
12611 * Temporarily change the plane mapping and disable everything
12612 * ... */
12613 plane = crtc->plane;
12614 crtc->plane = !plane;
12615 dev_priv->display.crtc_disable(&crtc->base);
12616 crtc->plane = plane;
12617
12618 /* ... and break all links. */
12619 list_for_each_entry(connector, &dev->mode_config.connector_list,
12620 base.head) {
12621 if (connector->encoder->base.crtc != &crtc->base)
12622 continue;
12623
7f1950fb
EE
12624 connector->base.dpms = DRM_MODE_DPMS_OFF;
12625 connector->base.encoder = NULL;
24929352 12626 }
7f1950fb
EE
12627 /* multiple connectors may have the same encoder:
12628 * handle them and break crtc link separately */
12629 list_for_each_entry(connector, &dev->mode_config.connector_list,
12630 base.head)
12631 if (connector->encoder->base.crtc == &crtc->base) {
12632 connector->encoder->base.crtc = NULL;
12633 connector->encoder->connectors_active = false;
12634 }
24929352
DV
12635
12636 WARN_ON(crtc->active);
12637 crtc->base.enabled = false;
12638 }
24929352 12639
7fad798e
DV
12640 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12641 crtc->pipe == PIPE_A && !crtc->active) {
12642 /* BIOS forgot to enable pipe A, this mostly happens after
12643 * resume. Force-enable the pipe to fix this, the update_dpms
12644 * call below we restore the pipe to the right state, but leave
12645 * the required bits on. */
12646 intel_enable_pipe_a(dev);
12647 }
12648
24929352
DV
12649 /* Adjust the state of the output pipe according to whether we
12650 * have active connectors/encoders. */
12651 intel_crtc_update_dpms(&crtc->base);
12652
12653 if (crtc->active != crtc->base.enabled) {
12654 struct intel_encoder *encoder;
12655
12656 /* This can happen either due to bugs in the get_hw_state
12657 * functions or because the pipe is force-enabled due to the
12658 * pipe A quirk. */
12659 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12660 crtc->base.base.id,
12661 crtc->base.enabled ? "enabled" : "disabled",
12662 crtc->active ? "enabled" : "disabled");
12663
12664 crtc->base.enabled = crtc->active;
12665
12666 /* Because we only establish the connector -> encoder ->
12667 * crtc links if something is active, this means the
12668 * crtc is now deactivated. Break the links. connector
12669 * -> encoder links are only establish when things are
12670 * actually up, hence no need to break them. */
12671 WARN_ON(crtc->active);
12672
12673 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12674 WARN_ON(encoder->connectors_active);
12675 encoder->base.crtc = NULL;
12676 }
12677 }
c5ab3bc0
DV
12678
12679 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12680 /*
12681 * We start out with underrun reporting disabled to avoid races.
12682 * For correct bookkeeping mark this on active crtcs.
12683 *
c5ab3bc0
DV
12684 * Also on gmch platforms we dont have any hardware bits to
12685 * disable the underrun reporting. Which means we need to start
12686 * out with underrun reporting disabled also on inactive pipes,
12687 * since otherwise we'll complain about the garbage we read when
12688 * e.g. coming up after runtime pm.
12689 *
4cc31489
DV
12690 * No protection against concurrent access is required - at
12691 * worst a fifo underrun happens which also sets this to false.
12692 */
12693 crtc->cpu_fifo_underrun_disabled = true;
12694 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12695
12696 update_scanline_offset(crtc);
4cc31489 12697 }
24929352
DV
12698}
12699
12700static void intel_sanitize_encoder(struct intel_encoder *encoder)
12701{
12702 struct intel_connector *connector;
12703 struct drm_device *dev = encoder->base.dev;
12704
12705 /* We need to check both for a crtc link (meaning that the
12706 * encoder is active and trying to read from a pipe) and the
12707 * pipe itself being active. */
12708 bool has_active_crtc = encoder->base.crtc &&
12709 to_intel_crtc(encoder->base.crtc)->active;
12710
12711 if (encoder->connectors_active && !has_active_crtc) {
12712 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12713 encoder->base.base.id,
8e329a03 12714 encoder->base.name);
24929352
DV
12715
12716 /* Connector is active, but has no active pipe. This is
12717 * fallout from our resume register restoring. Disable
12718 * the encoder manually again. */
12719 if (encoder->base.crtc) {
12720 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12721 encoder->base.base.id,
8e329a03 12722 encoder->base.name);
24929352
DV
12723 encoder->disable(encoder);
12724 }
7f1950fb
EE
12725 encoder->base.crtc = NULL;
12726 encoder->connectors_active = false;
24929352
DV
12727
12728 /* Inconsistent output/port/pipe state happens presumably due to
12729 * a bug in one of the get_hw_state functions. Or someplace else
12730 * in our code, like the register restore mess on resume. Clamp
12731 * things to off as a safer default. */
12732 list_for_each_entry(connector,
12733 &dev->mode_config.connector_list,
12734 base.head) {
12735 if (connector->encoder != encoder)
12736 continue;
7f1950fb
EE
12737 connector->base.dpms = DRM_MODE_DPMS_OFF;
12738 connector->base.encoder = NULL;
24929352
DV
12739 }
12740 }
12741 /* Enabled encoders without active connectors will be fixed in
12742 * the crtc fixup. */
12743}
12744
04098753 12745void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
12746{
12747 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 12748 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 12749
04098753
ID
12750 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12751 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12752 i915_disable_vga(dev);
12753 }
12754}
12755
12756void i915_redisable_vga(struct drm_device *dev)
12757{
12758 struct drm_i915_private *dev_priv = dev->dev_private;
12759
8dc8a27c
PZ
12760 /* This function can be called both from intel_modeset_setup_hw_state or
12761 * at a very early point in our resume sequence, where the power well
12762 * structures are not yet restored. Since this function is at a very
12763 * paranoid "someone might have enabled VGA while we were not looking"
12764 * level, just check if the power well is enabled instead of trying to
12765 * follow the "don't touch the power well if we don't need it" policy
12766 * the rest of the driver uses. */
04098753 12767 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
12768 return;
12769
04098753 12770 i915_redisable_vga_power_on(dev);
0fde901f
KM
12771}
12772
98ec7739
VS
12773static bool primary_get_hw_state(struct intel_crtc *crtc)
12774{
12775 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12776
12777 if (!crtc->active)
12778 return false;
12779
12780 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12781}
12782
30e984df 12783static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
12784{
12785 struct drm_i915_private *dev_priv = dev->dev_private;
12786 enum pipe pipe;
24929352
DV
12787 struct intel_crtc *crtc;
12788 struct intel_encoder *encoder;
12789 struct intel_connector *connector;
5358901f 12790 int i;
24929352 12791
d3fcc808 12792 for_each_intel_crtc(dev, crtc) {
88adfff1 12793 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 12794
9953599b
DV
12795 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12796
0e8ffe1b
DV
12797 crtc->active = dev_priv->display.get_pipe_config(crtc,
12798 &crtc->config);
24929352
DV
12799
12800 crtc->base.enabled = crtc->active;
98ec7739 12801 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
12802
12803 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12804 crtc->base.base.id,
12805 crtc->active ? "enabled" : "disabled");
12806 }
12807
5358901f 12808 /* FIXME: Smash this into the new shared dpll infrastructure. */
affa9354 12809 if (HAS_DDI(dev))
6441ab5f
PZ
12810 intel_ddi_setup_hw_pll_state(dev);
12811
5358901f
DV
12812 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12813 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12814
12815 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12816 pll->active = 0;
d3fcc808 12817 for_each_intel_crtc(dev, crtc) {
5358901f
DV
12818 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12819 pll->active++;
12820 }
12821 pll->refcount = pll->active;
12822
35c95375
DV
12823 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12824 pll->name, pll->refcount, pll->on);
5358901f
DV
12825 }
12826
24929352
DV
12827 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12828 base.head) {
12829 pipe = 0;
12830
12831 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
12832 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12833 encoder->base.crtc = &crtc->base;
1d37b689 12834 encoder->get_config(encoder, &crtc->config);
24929352
DV
12835 } else {
12836 encoder->base.crtc = NULL;
12837 }
12838
12839 encoder->connectors_active = false;
6f2bcceb 12840 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 12841 encoder->base.base.id,
8e329a03 12842 encoder->base.name,
24929352 12843 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 12844 pipe_name(pipe));
24929352
DV
12845 }
12846
12847 list_for_each_entry(connector, &dev->mode_config.connector_list,
12848 base.head) {
12849 if (connector->get_hw_state(connector)) {
12850 connector->base.dpms = DRM_MODE_DPMS_ON;
12851 connector->encoder->connectors_active = true;
12852 connector->base.encoder = &connector->encoder->base;
12853 } else {
12854 connector->base.dpms = DRM_MODE_DPMS_OFF;
12855 connector->base.encoder = NULL;
12856 }
12857 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12858 connector->base.base.id,
c23cc417 12859 connector->base.name,
24929352
DV
12860 connector->base.encoder ? "enabled" : "disabled");
12861 }
30e984df
DV
12862}
12863
12864/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12865 * and i915 state tracking structures. */
12866void intel_modeset_setup_hw_state(struct drm_device *dev,
12867 bool force_restore)
12868{
12869 struct drm_i915_private *dev_priv = dev->dev_private;
12870 enum pipe pipe;
30e984df
DV
12871 struct intel_crtc *crtc;
12872 struct intel_encoder *encoder;
35c95375 12873 int i;
30e984df
DV
12874
12875 intel_modeset_readout_hw_state(dev);
24929352 12876
babea61d
JB
12877 /*
12878 * Now that we have the config, copy it to each CRTC struct
12879 * Note that this could go away if we move to using crtc_config
12880 * checking everywhere.
12881 */
d3fcc808 12882 for_each_intel_crtc(dev, crtc) {
d330a953 12883 if (crtc->active && i915.fastboot) {
f6a83288 12884 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
12885 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12886 crtc->base.base.id);
12887 drm_mode_debug_printmodeline(&crtc->base.mode);
12888 }
12889 }
12890
24929352
DV
12891 /* HW state is read out, now we need to sanitize this mess. */
12892 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12893 base.head) {
12894 intel_sanitize_encoder(encoder);
12895 }
12896
12897 for_each_pipe(pipe) {
12898 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12899 intel_sanitize_crtc(crtc);
c0b03411 12900 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 12901 }
9a935856 12902
35c95375
DV
12903 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12904 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12905
12906 if (!pll->on || pll->active)
12907 continue;
12908
12909 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12910
12911 pll->disable(dev_priv, pll);
12912 pll->on = false;
12913 }
12914
96f90c54 12915 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
12916 ilk_wm_get_hw_state(dev);
12917
45e2b5f6 12918 if (force_restore) {
7d0bc1ea
VS
12919 i915_redisable_vga(dev);
12920
f30da187
DV
12921 /*
12922 * We need to use raw interfaces for restoring state to avoid
12923 * checking (bogus) intermediate states.
12924 */
45e2b5f6 12925 for_each_pipe(pipe) {
b5644d05
JB
12926 struct drm_crtc *crtc =
12927 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
12928
12929 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 12930 crtc->primary->fb);
45e2b5f6
DV
12931 }
12932 } else {
12933 intel_modeset_update_staged_output_state(dev);
12934 }
8af6cf88
DV
12935
12936 intel_modeset_check_state(dev);
2c7111db
CW
12937}
12938
12939void intel_modeset_gem_init(struct drm_device *dev)
12940{
484b41dd
JB
12941 struct drm_crtc *c;
12942 struct intel_framebuffer *fb;
12943
ae48434c
ID
12944 mutex_lock(&dev->struct_mutex);
12945 intel_init_gt_powersave(dev);
12946 mutex_unlock(&dev->struct_mutex);
12947
1833b134 12948 intel_modeset_init_hw(dev);
02e792fb
DV
12949
12950 intel_setup_overlay(dev);
484b41dd
JB
12951
12952 /*
12953 * Make sure any fbs we allocated at startup are properly
12954 * pinned & fenced. When we do the allocation it's too early
12955 * for this.
12956 */
12957 mutex_lock(&dev->struct_mutex);
70e1e0ec 12958 for_each_crtc(dev, c) {
66e514c1 12959 if (!c->primary->fb)
484b41dd
JB
12960 continue;
12961
66e514c1 12962 fb = to_intel_framebuffer(c->primary->fb);
484b41dd
JB
12963 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
12964 DRM_ERROR("failed to pin boot fb on pipe %d\n",
12965 to_intel_crtc(c)->pipe);
66e514c1
DA
12966 drm_framebuffer_unreference(c->primary->fb);
12967 c->primary->fb = NULL;
484b41dd
JB
12968 }
12969 }
12970 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12971}
12972
4932e2c3
ID
12973void intel_connector_unregister(struct intel_connector *intel_connector)
12974{
12975 struct drm_connector *connector = &intel_connector->base;
12976
12977 intel_panel_destroy_backlight(connector);
12978 drm_sysfs_connector_remove(connector);
12979}
12980
79e53945
JB
12981void intel_modeset_cleanup(struct drm_device *dev)
12982{
652c393a 12983 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 12984 struct drm_connector *connector;
652c393a 12985
fd0c0642
DV
12986 /*
12987 * Interrupts and polling as the first thing to avoid creating havoc.
12988 * Too much stuff here (turning of rps, connectors, ...) would
12989 * experience fancy races otherwise.
12990 */
12991 drm_irq_uninstall(dev);
12992 cancel_work_sync(&dev_priv->hotplug_work);
12993 /*
12994 * Due to the hpd irq storm handling the hotplug work can re-arm the
12995 * poll handlers. Hence disable polling after hpd handling is shut down.
12996 */
f87ea761 12997 drm_kms_helper_poll_fini(dev);
fd0c0642 12998
652c393a
JB
12999 mutex_lock(&dev->struct_mutex);
13000
723bfd70
JB
13001 intel_unregister_dsm_handler();
13002
973d04f9 13003 intel_disable_fbc(dev);
e70236a8 13004
8090c6b9 13005 intel_disable_gt_powersave(dev);
0cdab21f 13006
930ebb46
DV
13007 ironlake_teardown_rc6(dev);
13008
69341a5e
KH
13009 mutex_unlock(&dev->struct_mutex);
13010
1630fe75
CW
13011 /* flush any delayed tasks or pending work */
13012 flush_scheduled_work();
13013
db31af1d
JN
13014 /* destroy the backlight and sysfs files before encoders/connectors */
13015 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13016 struct intel_connector *intel_connector;
13017
13018 intel_connector = to_intel_connector(connector);
13019 intel_connector->unregister(intel_connector);
db31af1d 13020 }
d9255d57 13021
79e53945 13022 drm_mode_config_cleanup(dev);
4d7bb011
DV
13023
13024 intel_cleanup_overlay(dev);
ae48434c
ID
13025
13026 mutex_lock(&dev->struct_mutex);
13027 intel_cleanup_gt_powersave(dev);
13028 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13029}
13030
f1c79df3
ZW
13031/*
13032 * Return which encoder is currently attached for connector.
13033 */
df0e9248 13034struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13035{
df0e9248
CW
13036 return &intel_attached_encoder(connector)->base;
13037}
f1c79df3 13038
df0e9248
CW
13039void intel_connector_attach_encoder(struct intel_connector *connector,
13040 struct intel_encoder *encoder)
13041{
13042 connector->encoder = encoder;
13043 drm_mode_connector_attach_encoder(&connector->base,
13044 &encoder->base);
79e53945 13045}
28d52043
DA
13046
13047/*
13048 * set vga decode state - true == enable VGA decode
13049 */
13050int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13051{
13052 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13053 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13054 u16 gmch_ctrl;
13055
75fa041d
CW
13056 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13057 DRM_ERROR("failed to read control word\n");
13058 return -EIO;
13059 }
13060
c0cc8a55
CW
13061 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13062 return 0;
13063
28d52043
DA
13064 if (state)
13065 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13066 else
13067 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13068
13069 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13070 DRM_ERROR("failed to write control word\n");
13071 return -EIO;
13072 }
13073
28d52043
DA
13074 return 0;
13075}
c4a1d9e4 13076
c4a1d9e4 13077struct intel_display_error_state {
ff57f1b0
PZ
13078
13079 u32 power_well_driver;
13080
63b66e5b
CW
13081 int num_transcoders;
13082
c4a1d9e4
CW
13083 struct intel_cursor_error_state {
13084 u32 control;
13085 u32 position;
13086 u32 base;
13087 u32 size;
52331309 13088 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13089
13090 struct intel_pipe_error_state {
ddf9c536 13091 bool power_domain_on;
c4a1d9e4 13092 u32 source;
f301b1e1 13093 u32 stat;
52331309 13094 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13095
13096 struct intel_plane_error_state {
13097 u32 control;
13098 u32 stride;
13099 u32 size;
13100 u32 pos;
13101 u32 addr;
13102 u32 surface;
13103 u32 tile_offset;
52331309 13104 } plane[I915_MAX_PIPES];
63b66e5b
CW
13105
13106 struct intel_transcoder_error_state {
ddf9c536 13107 bool power_domain_on;
63b66e5b
CW
13108 enum transcoder cpu_transcoder;
13109
13110 u32 conf;
13111
13112 u32 htotal;
13113 u32 hblank;
13114 u32 hsync;
13115 u32 vtotal;
13116 u32 vblank;
13117 u32 vsync;
13118 } transcoder[4];
c4a1d9e4
CW
13119};
13120
13121struct intel_display_error_state *
13122intel_display_capture_error_state(struct drm_device *dev)
13123{
fbee40df 13124 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13125 struct intel_display_error_state *error;
63b66e5b
CW
13126 int transcoders[] = {
13127 TRANSCODER_A,
13128 TRANSCODER_B,
13129 TRANSCODER_C,
13130 TRANSCODER_EDP,
13131 };
c4a1d9e4
CW
13132 int i;
13133
63b66e5b
CW
13134 if (INTEL_INFO(dev)->num_pipes == 0)
13135 return NULL;
13136
9d1cb914 13137 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13138 if (error == NULL)
13139 return NULL;
13140
190be112 13141 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13142 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13143
52331309 13144 for_each_pipe(i) {
ddf9c536 13145 error->pipe[i].power_domain_on =
bfafe93a
ID
13146 intel_display_power_enabled_unlocked(dev_priv,
13147 POWER_DOMAIN_PIPE(i));
ddf9c536 13148 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13149 continue;
13150
5efb3e28
VS
13151 error->cursor[i].control = I915_READ(CURCNTR(i));
13152 error->cursor[i].position = I915_READ(CURPOS(i));
13153 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13154
13155 error->plane[i].control = I915_READ(DSPCNTR(i));
13156 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13157 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13158 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13159 error->plane[i].pos = I915_READ(DSPPOS(i));
13160 }
ca291363
PZ
13161 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13162 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13163 if (INTEL_INFO(dev)->gen >= 4) {
13164 error->plane[i].surface = I915_READ(DSPSURF(i));
13165 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13166 }
13167
c4a1d9e4 13168 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1
ID
13169
13170 if (!HAS_PCH_SPLIT(dev))
13171 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13172 }
13173
13174 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13175 if (HAS_DDI(dev_priv->dev))
13176 error->num_transcoders++; /* Account for eDP. */
13177
13178 for (i = 0; i < error->num_transcoders; i++) {
13179 enum transcoder cpu_transcoder = transcoders[i];
13180
ddf9c536 13181 error->transcoder[i].power_domain_on =
bfafe93a 13182 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13183 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13184 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13185 continue;
13186
63b66e5b
CW
13187 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13188
13189 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13190 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13191 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13192 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13193 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13194 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13195 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13196 }
13197
13198 return error;
13199}
13200
edc3d884
MK
13201#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13202
c4a1d9e4 13203void
edc3d884 13204intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13205 struct drm_device *dev,
13206 struct intel_display_error_state *error)
13207{
13208 int i;
13209
63b66e5b
CW
13210 if (!error)
13211 return;
13212
edc3d884 13213 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13214 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13215 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13216 error->power_well_driver);
52331309 13217 for_each_pipe(i) {
edc3d884 13218 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13219 err_printf(m, " Power: %s\n",
13220 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13221 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13222 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13223
13224 err_printf(m, "Plane [%d]:\n", i);
13225 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13226 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13227 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13228 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13229 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13230 }
4b71a570 13231 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13232 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13233 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13234 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13235 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13236 }
13237
edc3d884
MK
13238 err_printf(m, "Cursor [%d]:\n", i);
13239 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13240 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13241 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13242 }
63b66e5b
CW
13243
13244 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13245 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13246 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13247 err_printf(m, " Power: %s\n",
13248 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13249 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13250 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13251 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13252 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13253 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13254 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13255 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13256 }
c4a1d9e4 13257}