]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: fix VGA detect on IGDNG
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27#include <linux/i2c.h>
7662c8bd 28#include <linux/kernel.h>
79e53945
JB
29#include "drmP.h"
30#include "intel_drv.h"
31#include "i915_drm.h"
32#include "i915_drv.h"
a4fc5ed6 33#include "intel_dp.h"
79e53945
JB
34
35#include "drm_crtc_helper.h"
36
32f9d658
ZW
37#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
38
79e53945 39bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
7662c8bd 40static void intel_update_watermarks(struct drm_device *dev);
79e53945
JB
41
42typedef struct {
43 /* given values */
44 int n;
45 int m1, m2;
46 int p1, p2;
47 /* derived values */
48 int dot;
49 int vco;
50 int m;
51 int p;
52} intel_clock_t;
53
54typedef struct {
55 int min, max;
56} intel_range_t;
57
58typedef struct {
59 int dot_limit;
60 int p2_slow, p2_fast;
61} intel_p2_t;
62
63#define INTEL_P2_NUM 2
d4906093
ML
64typedef struct intel_limit intel_limit_t;
65struct intel_limit {
79e53945
JB
66 intel_range_t dot, vco, n, m, m1, m2, p, p1;
67 intel_p2_t p2;
d4906093
ML
68 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
69 int, int, intel_clock_t *);
70};
79e53945
JB
71
72#define I8XX_DOT_MIN 25000
73#define I8XX_DOT_MAX 350000
74#define I8XX_VCO_MIN 930000
75#define I8XX_VCO_MAX 1400000
76#define I8XX_N_MIN 3
77#define I8XX_N_MAX 16
78#define I8XX_M_MIN 96
79#define I8XX_M_MAX 140
80#define I8XX_M1_MIN 18
81#define I8XX_M1_MAX 26
82#define I8XX_M2_MIN 6
83#define I8XX_M2_MAX 16
84#define I8XX_P_MIN 4
85#define I8XX_P_MAX 128
86#define I8XX_P1_MIN 2
87#define I8XX_P1_MAX 33
88#define I8XX_P1_LVDS_MIN 1
89#define I8XX_P1_LVDS_MAX 6
90#define I8XX_P2_SLOW 4
91#define I8XX_P2_FAST 2
92#define I8XX_P2_LVDS_SLOW 14
93#define I8XX_P2_LVDS_FAST 14 /* No fast option */
94#define I8XX_P2_SLOW_LIMIT 165000
95
96#define I9XX_DOT_MIN 20000
97#define I9XX_DOT_MAX 400000
98#define I9XX_VCO_MIN 1400000
99#define I9XX_VCO_MAX 2800000
2177832f
SL
100#define IGD_VCO_MIN 1700000
101#define IGD_VCO_MAX 3500000
f3cade5c
KH
102#define I9XX_N_MIN 1
103#define I9XX_N_MAX 6
2177832f
SL
104/* IGD's Ncounter is a ring counter */
105#define IGD_N_MIN 3
106#define IGD_N_MAX 6
79e53945
JB
107#define I9XX_M_MIN 70
108#define I9XX_M_MAX 120
2177832f
SL
109#define IGD_M_MIN 2
110#define IGD_M_MAX 256
79e53945 111#define I9XX_M1_MIN 10
f3cade5c 112#define I9XX_M1_MAX 22
79e53945
JB
113#define I9XX_M2_MIN 5
114#define I9XX_M2_MAX 9
2177832f
SL
115/* IGD M1 is reserved, and must be 0 */
116#define IGD_M1_MIN 0
117#define IGD_M1_MAX 0
118#define IGD_M2_MIN 0
119#define IGD_M2_MAX 254
79e53945
JB
120#define I9XX_P_SDVO_DAC_MIN 5
121#define I9XX_P_SDVO_DAC_MAX 80
122#define I9XX_P_LVDS_MIN 7
123#define I9XX_P_LVDS_MAX 98
2177832f
SL
124#define IGD_P_LVDS_MIN 7
125#define IGD_P_LVDS_MAX 112
79e53945
JB
126#define I9XX_P1_MIN 1
127#define I9XX_P1_MAX 8
128#define I9XX_P2_SDVO_DAC_SLOW 10
129#define I9XX_P2_SDVO_DAC_FAST 5
130#define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
131#define I9XX_P2_LVDS_SLOW 14
132#define I9XX_P2_LVDS_FAST 7
133#define I9XX_P2_LVDS_SLOW_LIMIT 112000
134
044c7c41
ML
135/*The parameter is for SDVO on G4x platform*/
136#define G4X_DOT_SDVO_MIN 25000
137#define G4X_DOT_SDVO_MAX 270000
138#define G4X_VCO_MIN 1750000
139#define G4X_VCO_MAX 3500000
140#define G4X_N_SDVO_MIN 1
141#define G4X_N_SDVO_MAX 4
142#define G4X_M_SDVO_MIN 104
143#define G4X_M_SDVO_MAX 138
144#define G4X_M1_SDVO_MIN 17
145#define G4X_M1_SDVO_MAX 23
146#define G4X_M2_SDVO_MIN 5
147#define G4X_M2_SDVO_MAX 11
148#define G4X_P_SDVO_MIN 10
149#define G4X_P_SDVO_MAX 30
150#define G4X_P1_SDVO_MIN 1
151#define G4X_P1_SDVO_MAX 3
152#define G4X_P2_SDVO_SLOW 10
153#define G4X_P2_SDVO_FAST 10
154#define G4X_P2_SDVO_LIMIT 270000
155
156/*The parameter is for HDMI_DAC on G4x platform*/
157#define G4X_DOT_HDMI_DAC_MIN 22000
158#define G4X_DOT_HDMI_DAC_MAX 400000
159#define G4X_N_HDMI_DAC_MIN 1
160#define G4X_N_HDMI_DAC_MAX 4
161#define G4X_M_HDMI_DAC_MIN 104
162#define G4X_M_HDMI_DAC_MAX 138
163#define G4X_M1_HDMI_DAC_MIN 16
164#define G4X_M1_HDMI_DAC_MAX 23
165#define G4X_M2_HDMI_DAC_MIN 5
166#define G4X_M2_HDMI_DAC_MAX 11
167#define G4X_P_HDMI_DAC_MIN 5
168#define G4X_P_HDMI_DAC_MAX 80
169#define G4X_P1_HDMI_DAC_MIN 1
170#define G4X_P1_HDMI_DAC_MAX 8
171#define G4X_P2_HDMI_DAC_SLOW 10
172#define G4X_P2_HDMI_DAC_FAST 5
173#define G4X_P2_HDMI_DAC_LIMIT 165000
174
175/*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
176#define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
177#define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
178#define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
179#define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
180#define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
181#define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
182#define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
183#define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
184#define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
185#define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
186#define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
187#define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
188#define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
189#define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
190#define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
191#define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
192#define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
193
194/*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
195#define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
196#define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
197#define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
198#define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
199#define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
200#define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
201#define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
202#define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
203#define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
204#define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
205#define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
206#define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
207#define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
208#define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
209#define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
210#define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
211#define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
212
a4fc5ed6
KP
213/*The parameter is for DISPLAY PORT on G4x platform*/
214#define G4X_DOT_DISPLAY_PORT_MIN 161670
215#define G4X_DOT_DISPLAY_PORT_MAX 227000
216#define G4X_N_DISPLAY_PORT_MIN 1
217#define G4X_N_DISPLAY_PORT_MAX 2
218#define G4X_M_DISPLAY_PORT_MIN 97
219#define G4X_M_DISPLAY_PORT_MAX 108
220#define G4X_M1_DISPLAY_PORT_MIN 0x10
221#define G4X_M1_DISPLAY_PORT_MAX 0x12
222#define G4X_M2_DISPLAY_PORT_MIN 0x05
223#define G4X_M2_DISPLAY_PORT_MAX 0x06
224#define G4X_P_DISPLAY_PORT_MIN 10
225#define G4X_P_DISPLAY_PORT_MAX 20
226#define G4X_P1_DISPLAY_PORT_MIN 1
227#define G4X_P1_DISPLAY_PORT_MAX 2
228#define G4X_P2_DISPLAY_PORT_SLOW 10
229#define G4X_P2_DISPLAY_PORT_FAST 10
230#define G4X_P2_DISPLAY_PORT_LIMIT 0
231
2c07245f
ZW
232/* IGDNG */
233/* as we calculate clock using (register_value + 2) for
234 N/M1/M2, so here the range value for them is (actual_value-2).
235 */
236#define IGDNG_DOT_MIN 25000
237#define IGDNG_DOT_MAX 350000
238#define IGDNG_VCO_MIN 1760000
239#define IGDNG_VCO_MAX 3510000
240#define IGDNG_N_MIN 1
241#define IGDNG_N_MAX 5
242#define IGDNG_M_MIN 79
243#define IGDNG_M_MAX 118
244#define IGDNG_M1_MIN 12
245#define IGDNG_M1_MAX 23
246#define IGDNG_M2_MIN 5
247#define IGDNG_M2_MAX 9
248#define IGDNG_P_SDVO_DAC_MIN 5
249#define IGDNG_P_SDVO_DAC_MAX 80
250#define IGDNG_P_LVDS_MIN 28
251#define IGDNG_P_LVDS_MAX 112
252#define IGDNG_P1_MIN 1
253#define IGDNG_P1_MAX 8
254#define IGDNG_P2_SDVO_DAC_SLOW 10
255#define IGDNG_P2_SDVO_DAC_FAST 5
256#define IGDNG_P2_LVDS_SLOW 14 /* single channel */
257#define IGDNG_P2_LVDS_FAST 7 /* double channel */
258#define IGDNG_P2_DOT_LIMIT 225000 /* 225Mhz */
259
d4906093
ML
260static bool
261intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
262 int target, int refclk, intel_clock_t *best_clock);
263static bool
264intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
265 int target, int refclk, intel_clock_t *best_clock);
2c07245f
ZW
266static bool
267intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
268 int target, int refclk, intel_clock_t *best_clock);
79e53945 269
a4fc5ed6
KP
270static bool
271intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
272 int target, int refclk, intel_clock_t *best_clock);
5eb08b69
ZW
273static bool
274intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
275 int target, int refclk, intel_clock_t *best_clock);
a4fc5ed6 276
e4b36699 277static const intel_limit_t intel_limits_i8xx_dvo = {
79e53945
JB
278 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
279 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
280 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
281 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
282 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
283 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
284 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
285 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
286 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
287 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
d4906093 288 .find_pll = intel_find_best_PLL,
e4b36699
KP
289};
290
291static const intel_limit_t intel_limits_i8xx_lvds = {
79e53945
JB
292 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
293 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
294 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
295 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
296 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
297 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
298 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
299 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
300 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
301 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
d4906093 302 .find_pll = intel_find_best_PLL,
e4b36699
KP
303};
304
305static const intel_limit_t intel_limits_i9xx_sdvo = {
79e53945
JB
306 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
307 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
308 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
309 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
310 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
311 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
312 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
313 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
314 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
315 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
d4906093 316 .find_pll = intel_find_best_PLL,
e4b36699
KP
317};
318
319static const intel_limit_t intel_limits_i9xx_lvds = {
79e53945
JB
320 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
321 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
322 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
323 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
324 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
325 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
326 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
327 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
328 /* The single-channel range is 25-112Mhz, and dual-channel
329 * is 80-224Mhz. Prefer single channel as much as possible.
330 */
331 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
332 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
d4906093 333 .find_pll = intel_find_best_PLL,
e4b36699
KP
334};
335
044c7c41 336 /* below parameter and function is for G4X Chipset Family*/
e4b36699 337static const intel_limit_t intel_limits_g4x_sdvo = {
044c7c41
ML
338 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
339 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
340 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
341 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
342 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
343 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
344 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
345 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
346 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
347 .p2_slow = G4X_P2_SDVO_SLOW,
348 .p2_fast = G4X_P2_SDVO_FAST
349 },
d4906093 350 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
351};
352
353static const intel_limit_t intel_limits_g4x_hdmi = {
044c7c41
ML
354 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
355 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
356 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
357 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
358 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
359 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
360 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
361 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
362 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
363 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
364 .p2_fast = G4X_P2_HDMI_DAC_FAST
365 },
d4906093 366 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
367};
368
369static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
044c7c41
ML
370 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
371 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
372 .vco = { .min = G4X_VCO_MIN,
373 .max = G4X_VCO_MAX },
374 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
375 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
376 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
377 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
378 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
379 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
380 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
381 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
382 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
383 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
384 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
385 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
386 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
387 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
388 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
389 },
d4906093 390 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
391};
392
393static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
044c7c41
ML
394 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
395 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
396 .vco = { .min = G4X_VCO_MIN,
397 .max = G4X_VCO_MAX },
398 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
399 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
400 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
401 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
402 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
403 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
404 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
405 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
406 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
407 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
408 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
409 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
410 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
411 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
412 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
413 },
d4906093 414 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
415};
416
417static const intel_limit_t intel_limits_g4x_display_port = {
a4fc5ed6
KP
418 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
419 .max = G4X_DOT_DISPLAY_PORT_MAX },
420 .vco = { .min = G4X_VCO_MIN,
421 .max = G4X_VCO_MAX},
422 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
423 .max = G4X_N_DISPLAY_PORT_MAX },
424 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
425 .max = G4X_M_DISPLAY_PORT_MAX },
426 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
427 .max = G4X_M1_DISPLAY_PORT_MAX },
428 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
429 .max = G4X_M2_DISPLAY_PORT_MAX },
430 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
431 .max = G4X_P_DISPLAY_PORT_MAX },
432 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
433 .max = G4X_P1_DISPLAY_PORT_MAX},
434 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
435 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
436 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
437 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
438};
439
440static const intel_limit_t intel_limits_igd_sdvo = {
2177832f
SL
441 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
442 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
443 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
444 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
445 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
446 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
447 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
448 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
449 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
450 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
6115707b 451 .find_pll = intel_find_best_PLL,
e4b36699
KP
452};
453
454static const intel_limit_t intel_limits_igd_lvds = {
2177832f
SL
455 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
456 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
457 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
458 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
459 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
460 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
461 .p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
462 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
463 /* IGD only supports single-channel mode. */
464 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
465 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
6115707b 466 .find_pll = intel_find_best_PLL,
e4b36699
KP
467};
468
469static const intel_limit_t intel_limits_igdng_sdvo = {
2c07245f
ZW
470 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
471 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
472 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
473 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
474 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
475 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
476 .p = { .min = IGDNG_P_SDVO_DAC_MIN, .max = IGDNG_P_SDVO_DAC_MAX },
477 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
478 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
479 .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
480 .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
481 .find_pll = intel_igdng_find_best_PLL,
e4b36699
KP
482};
483
484static const intel_limit_t intel_limits_igdng_lvds = {
2c07245f
ZW
485 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
486 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
487 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
488 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
489 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
490 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
491 .p = { .min = IGDNG_P_LVDS_MIN, .max = IGDNG_P_LVDS_MAX },
492 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
493 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
494 .p2_slow = IGDNG_P2_LVDS_SLOW,
495 .p2_fast = IGDNG_P2_LVDS_FAST },
496 .find_pll = intel_igdng_find_best_PLL,
79e53945
JB
497};
498
2c07245f
ZW
499static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
500{
501 const intel_limit_t *limit;
502 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 503 limit = &intel_limits_igdng_lvds;
2c07245f 504 else
e4b36699 505 limit = &intel_limits_igdng_sdvo;
2c07245f
ZW
506
507 return limit;
508}
509
044c7c41
ML
510static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
511{
512 struct drm_device *dev = crtc->dev;
513 struct drm_i915_private *dev_priv = dev->dev_private;
514 const intel_limit_t *limit;
515
516 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
517 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
518 LVDS_CLKB_POWER_UP)
519 /* LVDS with dual channel */
e4b36699 520 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
521 else
522 /* LVDS with dual channel */
e4b36699 523 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
524 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
525 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 526 limit = &intel_limits_g4x_hdmi;
044c7c41 527 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 528 limit = &intel_limits_g4x_sdvo;
a4fc5ed6 529 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 530 limit = &intel_limits_g4x_display_port;
044c7c41 531 } else /* The option is for other outputs */
e4b36699 532 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
533
534 return limit;
535}
536
79e53945
JB
537static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
538{
539 struct drm_device *dev = crtc->dev;
540 const intel_limit_t *limit;
541
2c07245f
ZW
542 if (IS_IGDNG(dev))
543 limit = intel_igdng_limit(crtc);
544 else if (IS_G4X(dev)) {
044c7c41 545 limit = intel_g4x_limit(crtc);
2177832f 546 } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
79e53945 547 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 548 limit = &intel_limits_i9xx_lvds;
79e53945 549 else
e4b36699 550 limit = &intel_limits_i9xx_sdvo;
2177832f
SL
551 } else if (IS_IGD(dev)) {
552 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 553 limit = &intel_limits_igd_lvds;
2177832f 554 else
e4b36699 555 limit = &intel_limits_igd_sdvo;
79e53945
JB
556 } else {
557 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 558 limit = &intel_limits_i8xx_lvds;
79e53945 559 else
e4b36699 560 limit = &intel_limits_i8xx_dvo;
79e53945
JB
561 }
562 return limit;
563}
564
2177832f
SL
565/* m1 is reserved as 0 in IGD, n is a ring counter */
566static void igd_clock(int refclk, intel_clock_t *clock)
79e53945 567{
2177832f
SL
568 clock->m = clock->m2 + 2;
569 clock->p = clock->p1 * clock->p2;
570 clock->vco = refclk * clock->m / clock->n;
571 clock->dot = clock->vco / clock->p;
572}
573
574static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
575{
576 if (IS_IGD(dev)) {
577 igd_clock(refclk, clock);
578 return;
579 }
79e53945
JB
580 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
581 clock->p = clock->p1 * clock->p2;
582 clock->vco = refclk * clock->m / (clock->n + 2);
583 clock->dot = clock->vco / clock->p;
584}
585
79e53945
JB
586/**
587 * Returns whether any output on the specified pipe is of the specified type
588 */
589bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
590{
591 struct drm_device *dev = crtc->dev;
592 struct drm_mode_config *mode_config = &dev->mode_config;
593 struct drm_connector *l_entry;
594
595 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
596 if (l_entry->encoder &&
597 l_entry->encoder->crtc == crtc) {
598 struct intel_output *intel_output = to_intel_output(l_entry);
599 if (intel_output->type == type)
600 return true;
601 }
602 }
603 return false;
604}
605
32f9d658
ZW
606struct drm_connector *
607intel_pipe_get_output (struct drm_crtc *crtc)
608{
609 struct drm_device *dev = crtc->dev;
610 struct drm_mode_config *mode_config = &dev->mode_config;
611 struct drm_connector *l_entry, *ret = NULL;
612
613 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
614 if (l_entry->encoder &&
615 l_entry->encoder->crtc == crtc) {
616 ret = l_entry;
617 break;
618 }
619 }
620 return ret;
621}
622
7c04d1d9 623#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
624/**
625 * Returns whether the given set of divisors are valid for a given refclk with
626 * the given connectors.
627 */
628
629static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
630{
631 const intel_limit_t *limit = intel_limit (crtc);
2177832f 632 struct drm_device *dev = crtc->dev;
79e53945
JB
633
634 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
635 INTELPllInvalid ("p1 out of range\n");
636 if (clock->p < limit->p.min || limit->p.max < clock->p)
637 INTELPllInvalid ("p out of range\n");
638 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
639 INTELPllInvalid ("m2 out of range\n");
640 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
641 INTELPllInvalid ("m1 out of range\n");
2177832f 642 if (clock->m1 <= clock->m2 && !IS_IGD(dev))
79e53945
JB
643 INTELPllInvalid ("m1 <= m2\n");
644 if (clock->m < limit->m.min || limit->m.max < clock->m)
645 INTELPllInvalid ("m out of range\n");
646 if (clock->n < limit->n.min || limit->n.max < clock->n)
647 INTELPllInvalid ("n out of range\n");
648 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
649 INTELPllInvalid ("vco out of range\n");
650 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
651 * connector, etc., rather than just a single range.
652 */
653 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
654 INTELPllInvalid ("dot out of range\n");
655
656 return true;
657}
658
d4906093
ML
659static bool
660intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
661 int target, int refclk, intel_clock_t *best_clock)
662
79e53945
JB
663{
664 struct drm_device *dev = crtc->dev;
665 struct drm_i915_private *dev_priv = dev->dev_private;
666 intel_clock_t clock;
79e53945
JB
667 int err = target;
668
669 if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 670 (I915_READ(LVDS)) != 0) {
79e53945
JB
671 /*
672 * For LVDS, if the panel is on, just rely on its current
673 * settings for dual-channel. We haven't figured out how to
674 * reliably set up different single/dual channel state, if we
675 * even can.
676 */
677 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
678 LVDS_CLKB_POWER_UP)
679 clock.p2 = limit->p2.p2_fast;
680 else
681 clock.p2 = limit->p2.p2_slow;
682 } else {
683 if (target < limit->p2.dot_limit)
684 clock.p2 = limit->p2.p2_slow;
685 else
686 clock.p2 = limit->p2.p2_fast;
687 }
688
689 memset (best_clock, 0, sizeof (*best_clock));
690
691 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
2177832f
SL
692 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
693 /* m1 is always 0 in IGD */
694 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
695 break;
79e53945
JB
696 for (clock.n = limit->n.min; clock.n <= limit->n.max;
697 clock.n++) {
698 for (clock.p1 = limit->p1.min;
699 clock.p1 <= limit->p1.max; clock.p1++) {
700 int this_err;
701
2177832f 702 intel_clock(dev, refclk, &clock);
79e53945
JB
703
704 if (!intel_PLL_is_valid(crtc, &clock))
705 continue;
706
707 this_err = abs(clock.dot - target);
708 if (this_err < err) {
709 *best_clock = clock;
710 err = this_err;
711 }
712 }
713 }
714 }
715 }
716
717 return (err != target);
718}
719
d4906093
ML
720static bool
721intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
722 int target, int refclk, intel_clock_t *best_clock)
723{
724 struct drm_device *dev = crtc->dev;
725 struct drm_i915_private *dev_priv = dev->dev_private;
726 intel_clock_t clock;
727 int max_n;
728 bool found;
729 /* approximately equals target * 0.00488 */
730 int err_most = (target >> 8) + (target >> 10);
731 found = false;
732
733 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
734 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
735 LVDS_CLKB_POWER_UP)
736 clock.p2 = limit->p2.p2_fast;
737 else
738 clock.p2 = limit->p2.p2_slow;
739 } else {
740 if (target < limit->p2.dot_limit)
741 clock.p2 = limit->p2.p2_slow;
742 else
743 clock.p2 = limit->p2.p2_fast;
744 }
745
746 memset(best_clock, 0, sizeof(*best_clock));
747 max_n = limit->n.max;
748 /* based on hardware requriment prefer smaller n to precision */
749 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750 /* based on hardware requirment prefere larger m1,m2, p1 */
751 for (clock.m1 = limit->m1.max;
752 clock.m1 >= limit->m1.min; clock.m1--) {
753 for (clock.m2 = limit->m2.max;
754 clock.m2 >= limit->m2.min; clock.m2--) {
755 for (clock.p1 = limit->p1.max;
756 clock.p1 >= limit->p1.min; clock.p1--) {
757 int this_err;
758
2177832f 759 intel_clock(dev, refclk, &clock);
d4906093
ML
760 if (!intel_PLL_is_valid(crtc, &clock))
761 continue;
762 this_err = abs(clock.dot - target) ;
763 if (this_err < err_most) {
764 *best_clock = clock;
765 err_most = this_err;
766 max_n = clock.n;
767 found = true;
768 }
769 }
770 }
771 }
772 }
2c07245f
ZW
773 return found;
774}
775
5eb08b69
ZW
776static bool
777intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
778 int target, int refclk, intel_clock_t *best_clock)
779{
780 struct drm_device *dev = crtc->dev;
781 intel_clock_t clock;
782 if (target < 200000) {
783 clock.n = 1;
784 clock.p1 = 2;
785 clock.p2 = 10;
786 clock.m1 = 12;
787 clock.m2 = 9;
788 } else {
789 clock.n = 2;
790 clock.p1 = 1;
791 clock.p2 = 10;
792 clock.m1 = 14;
793 clock.m2 = 8;
794 }
795 intel_clock(dev, refclk, &clock);
796 memcpy(best_clock, &clock, sizeof(intel_clock_t));
797 return true;
798}
799
2c07245f
ZW
800static bool
801intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
802 int target, int refclk, intel_clock_t *best_clock)
803{
804 struct drm_device *dev = crtc->dev;
805 struct drm_i915_private *dev_priv = dev->dev_private;
806 intel_clock_t clock;
807 int max_n;
808 bool found;
809 int err_most = 47;
810 found = false;
811
32f9d658
ZW
812 /* eDP has only 2 clock choice, no n/m/p setting */
813 if (HAS_eDP)
814 return true;
815
5eb08b69
ZW
816 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
817 return intel_find_pll_igdng_dp(limit, crtc, target,
818 refclk, best_clock);
819
2c07245f
ZW
820 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
821 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
822 LVDS_CLKB_POWER_UP)
823 clock.p2 = limit->p2.p2_fast;
824 else
825 clock.p2 = limit->p2.p2_slow;
826 } else {
827 if (target < limit->p2.dot_limit)
828 clock.p2 = limit->p2.p2_slow;
829 else
830 clock.p2 = limit->p2.p2_fast;
831 }
832
833 memset(best_clock, 0, sizeof(*best_clock));
834 max_n = limit->n.max;
835 /* based on hardware requriment prefer smaller n to precision */
836 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
837 /* based on hardware requirment prefere larger m1,m2, p1 */
838 for (clock.m1 = limit->m1.max;
839 clock.m1 >= limit->m1.min; clock.m1--) {
840 for (clock.m2 = limit->m2.max;
841 clock.m2 >= limit->m2.min; clock.m2--) {
842 for (clock.p1 = limit->p1.max;
843 clock.p1 >= limit->p1.min; clock.p1--) {
844 int this_err;
d4906093 845
2c07245f
ZW
846 intel_clock(dev, refclk, &clock);
847 if (!intel_PLL_is_valid(crtc, &clock))
848 continue;
849 this_err = abs((10000 - (target*10000/clock.dot)));
850 if (this_err < err_most) {
851 *best_clock = clock;
852 err_most = this_err;
853 max_n = clock.n;
854 found = true;
855 /* found on first matching */
856 goto out;
857 }
858 }
859 }
860 }
861 }
862out:
d4906093
ML
863 return found;
864}
865
a4fc5ed6
KP
866/* DisplayPort has only two frequencies, 162MHz and 270MHz */
867static bool
868intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
869 int target, int refclk, intel_clock_t *best_clock)
870{
871 intel_clock_t clock;
872 if (target < 200000) {
a4fc5ed6
KP
873 clock.p1 = 2;
874 clock.p2 = 10;
b3d25495
KP
875 clock.n = 2;
876 clock.m1 = 23;
877 clock.m2 = 8;
a4fc5ed6 878 } else {
a4fc5ed6
KP
879 clock.p1 = 1;
880 clock.p2 = 10;
b3d25495
KP
881 clock.n = 1;
882 clock.m1 = 14;
883 clock.m2 = 2;
a4fc5ed6 884 }
b3d25495
KP
885 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
886 clock.p = (clock.p1 * clock.p2);
887 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
a4fc5ed6
KP
888 memcpy(best_clock, &clock, sizeof(intel_clock_t));
889 return true;
890}
891
79e53945
JB
892void
893intel_wait_for_vblank(struct drm_device *dev)
894{
895 /* Wait for 20ms, i.e. one cycle at 50hz. */
580982d3 896 mdelay(20);
79e53945
JB
897}
898
5c3b82e2 899static int
3c4fdcfb
KH
900intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
901 struct drm_framebuffer *old_fb)
79e53945
JB
902{
903 struct drm_device *dev = crtc->dev;
904 struct drm_i915_private *dev_priv = dev->dev_private;
905 struct drm_i915_master_private *master_priv;
906 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
907 struct intel_framebuffer *intel_fb;
908 struct drm_i915_gem_object *obj_priv;
909 struct drm_gem_object *obj;
910 int pipe = intel_crtc->pipe;
911 unsigned long Start, Offset;
912 int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
913 int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
914 int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
f544847f 915 int dsptileoff = (pipe == 0 ? DSPATILEOFF : DSPBTILEOFF);
79e53945 916 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
3c4fdcfb 917 u32 dspcntr, alignment;
5c3b82e2 918 int ret;
79e53945
JB
919
920 /* no fb bound */
921 if (!crtc->fb) {
922 DRM_DEBUG("No FB bound\n");
5c3b82e2
CW
923 return 0;
924 }
925
926 switch (pipe) {
927 case 0:
928 case 1:
929 break;
930 default:
931 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
932 return -EINVAL;
79e53945
JB
933 }
934
935 intel_fb = to_intel_framebuffer(crtc->fb);
79e53945
JB
936 obj = intel_fb->obj;
937 obj_priv = obj->driver_private;
938
3c4fdcfb
KH
939 switch (obj_priv->tiling_mode) {
940 case I915_TILING_NONE:
941 alignment = 64 * 1024;
942 break;
943 case I915_TILING_X:
2ebed176
CW
944 /* pin() will align the object as required by fence */
945 alignment = 0;
3c4fdcfb
KH
946 break;
947 case I915_TILING_Y:
948 /* FIXME: Is this true? */
949 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
5c3b82e2 950 return -EINVAL;
3c4fdcfb
KH
951 default:
952 BUG();
953 }
954
5c3b82e2 955 mutex_lock(&dev->struct_mutex);
8c4b8c3f 956 ret = i915_gem_object_pin(obj, alignment);
5c3b82e2
CW
957 if (ret != 0) {
958 mutex_unlock(&dev->struct_mutex);
959 return ret;
960 }
79e53945 961
8c4b8c3f 962 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
5c3b82e2 963 if (ret != 0) {
8c4b8c3f 964 i915_gem_object_unpin(obj);
5c3b82e2
CW
965 mutex_unlock(&dev->struct_mutex);
966 return ret;
967 }
79e53945 968
8c4b8c3f
CW
969 /* Pre-i965 needs to install a fence for tiled scan-out */
970 if (!IS_I965G(dev) &&
971 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
972 obj_priv->tiling_mode != I915_TILING_NONE) {
973 ret = i915_gem_object_get_fence_reg(obj);
974 if (ret != 0) {
975 i915_gem_object_unpin(obj);
976 mutex_unlock(&dev->struct_mutex);
977 return ret;
978 }
979 }
980
79e53945 981 dspcntr = I915_READ(dspcntr_reg);
712531bf
JB
982 /* Mask out pixel format bits in case we change it */
983 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
79e53945
JB
984 switch (crtc->fb->bits_per_pixel) {
985 case 8:
986 dspcntr |= DISPPLANE_8BPP;
987 break;
988 case 16:
989 if (crtc->fb->depth == 15)
990 dspcntr |= DISPPLANE_15_16BPP;
991 else
992 dspcntr |= DISPPLANE_16BPP;
993 break;
994 case 24:
995 case 32:
996 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
997 break;
998 default:
999 DRM_ERROR("Unknown color depth\n");
8c4b8c3f 1000 i915_gem_object_unpin(obj);
5c3b82e2
CW
1001 mutex_unlock(&dev->struct_mutex);
1002 return -EINVAL;
79e53945 1003 }
f544847f
JB
1004 if (IS_I965G(dev)) {
1005 if (obj_priv->tiling_mode != I915_TILING_NONE)
1006 dspcntr |= DISPPLANE_TILED;
1007 else
1008 dspcntr &= ~DISPPLANE_TILED;
1009 }
1010
79e53945
JB
1011 I915_WRITE(dspcntr_reg, dspcntr);
1012
5c3b82e2
CW
1013 Start = obj_priv->gtt_offset;
1014 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1015
79e53945 1016 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
5c3b82e2 1017 I915_WRITE(dspstride, crtc->fb->pitch);
79e53945
JB
1018 if (IS_I965G(dev)) {
1019 I915_WRITE(dspbase, Offset);
1020 I915_READ(dspbase);
1021 I915_WRITE(dspsurf, Start);
1022 I915_READ(dspsurf);
f544847f 1023 I915_WRITE(dsptileoff, (y << 16) | x);
79e53945
JB
1024 } else {
1025 I915_WRITE(dspbase, Start + Offset);
1026 I915_READ(dspbase);
1027 }
1028
3c4fdcfb
KH
1029 intel_wait_for_vblank(dev);
1030
1031 if (old_fb) {
1032 intel_fb = to_intel_framebuffer(old_fb);
1033 i915_gem_object_unpin(intel_fb->obj);
1034 }
5c3b82e2 1035 mutex_unlock(&dev->struct_mutex);
79e53945
JB
1036
1037 if (!dev->primary->master)
5c3b82e2 1038 return 0;
79e53945
JB
1039
1040 master_priv = dev->primary->master->driver_priv;
1041 if (!master_priv->sarea_priv)
5c3b82e2 1042 return 0;
79e53945 1043
5c3b82e2 1044 if (pipe) {
79e53945
JB
1045 master_priv->sarea_priv->pipeB_x = x;
1046 master_priv->sarea_priv->pipeB_y = y;
5c3b82e2
CW
1047 } else {
1048 master_priv->sarea_priv->pipeA_x = x;
1049 master_priv->sarea_priv->pipeA_y = y;
79e53945 1050 }
5c3b82e2
CW
1051
1052 return 0;
79e53945
JB
1053}
1054
24f119c7
ZW
1055/* Disable the VGA plane that we never use */
1056static void i915_disable_vga (struct drm_device *dev)
1057{
1058 struct drm_i915_private *dev_priv = dev->dev_private;
1059 u8 sr1;
1060 u32 vga_reg;
1061
1062 if (IS_IGDNG(dev))
1063 vga_reg = CPU_VGACNTRL;
1064 else
1065 vga_reg = VGACNTRL;
1066
1067 if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1068 return;
1069
1070 I915_WRITE8(VGA_SR_INDEX, 1);
1071 sr1 = I915_READ8(VGA_SR_DATA);
1072 I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1073 udelay(100);
1074
1075 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1076}
1077
32f9d658
ZW
1078static void igdng_disable_pll_edp (struct drm_crtc *crtc)
1079{
1080 struct drm_device *dev = crtc->dev;
1081 struct drm_i915_private *dev_priv = dev->dev_private;
1082 u32 dpa_ctl;
1083
1084 DRM_DEBUG("\n");
1085 dpa_ctl = I915_READ(DP_A);
1086 dpa_ctl &= ~DP_PLL_ENABLE;
1087 I915_WRITE(DP_A, dpa_ctl);
1088}
1089
1090static void igdng_enable_pll_edp (struct drm_crtc *crtc)
1091{
1092 struct drm_device *dev = crtc->dev;
1093 struct drm_i915_private *dev_priv = dev->dev_private;
1094 u32 dpa_ctl;
1095
1096 dpa_ctl = I915_READ(DP_A);
1097 dpa_ctl |= DP_PLL_ENABLE;
1098 I915_WRITE(DP_A, dpa_ctl);
1099 udelay(200);
1100}
1101
1102
1103static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
1104{
1105 struct drm_device *dev = crtc->dev;
1106 struct drm_i915_private *dev_priv = dev->dev_private;
1107 u32 dpa_ctl;
1108
1109 DRM_DEBUG("eDP PLL enable for clock %d\n", clock);
1110 dpa_ctl = I915_READ(DP_A);
1111 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1112
1113 if (clock < 200000) {
1114 u32 temp;
1115 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1116 /* workaround for 160Mhz:
1117 1) program 0x4600c bits 15:0 = 0x8124
1118 2) program 0x46010 bit 0 = 1
1119 3) program 0x46034 bit 24 = 1
1120 4) program 0x64000 bit 14 = 1
1121 */
1122 temp = I915_READ(0x4600c);
1123 temp &= 0xffff0000;
1124 I915_WRITE(0x4600c, temp | 0x8124);
1125
1126 temp = I915_READ(0x46010);
1127 I915_WRITE(0x46010, temp | 1);
1128
1129 temp = I915_READ(0x46034);
1130 I915_WRITE(0x46034, temp | (1 << 24));
1131 } else {
1132 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1133 }
1134 I915_WRITE(DP_A, dpa_ctl);
1135
1136 udelay(500);
1137}
1138
2c07245f
ZW
1139static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1140{
1141 struct drm_device *dev = crtc->dev;
1142 struct drm_i915_private *dev_priv = dev->dev_private;
1143 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1144 int pipe = intel_crtc->pipe;
7662c8bd 1145 int plane = intel_crtc->plane;
2c07245f
ZW
1146 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1147 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1148 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1149 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1150 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1151 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1152 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1153 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1154 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1155 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
249c0e64 1156 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
2c07245f
ZW
1157 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1158 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1159 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1160 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1161 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1162 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1163 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1164 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1165 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1166 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1167 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1168 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1169 u32 temp;
249c0e64 1170 int tries = 5, j, n;
79e53945 1171
2c07245f
ZW
1172 /* XXX: When our outputs are all unaware of DPMS modes other than off
1173 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1174 */
1175 switch (mode) {
1176 case DRM_MODE_DPMS_ON:
1177 case DRM_MODE_DPMS_STANDBY:
1178 case DRM_MODE_DPMS_SUSPEND:
1179 DRM_DEBUG("crtc %d dpms on\n", pipe);
32f9d658
ZW
1180 if (HAS_eDP) {
1181 /* enable eDP PLL */
1182 igdng_enable_pll_edp(crtc);
1183 } else {
1184 /* enable PCH DPLL */
1185 temp = I915_READ(pch_dpll_reg);
1186 if ((temp & DPLL_VCO_ENABLE) == 0) {
1187 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1188 I915_READ(pch_dpll_reg);
1189 }
2c07245f 1190
32f9d658
ZW
1191 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1192 temp = I915_READ(fdi_rx_reg);
1193 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1194 FDI_SEL_PCDCLK |
1195 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1196 I915_READ(fdi_rx_reg);
1197 udelay(200);
1198
1199 /* Enable CPU FDI TX PLL, always on for IGDNG */
1200 temp = I915_READ(fdi_tx_reg);
1201 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1202 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1203 I915_READ(fdi_tx_reg);
1204 udelay(100);
1205 }
2c07245f
ZW
1206 }
1207
1208 /* Enable CPU pipe */
1209 temp = I915_READ(pipeconf_reg);
1210 if ((temp & PIPEACONF_ENABLE) == 0) {
1211 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1212 I915_READ(pipeconf_reg);
1213 udelay(100);
1214 }
1215
1216 /* configure and enable CPU plane */
1217 temp = I915_READ(dspcntr_reg);
1218 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1219 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1220 /* Flush the plane changes */
1221 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1222 }
1223
32f9d658
ZW
1224 if (!HAS_eDP) {
1225 /* enable CPU FDI TX and PCH FDI RX */
1226 temp = I915_READ(fdi_tx_reg);
1227 temp |= FDI_TX_ENABLE;
1228 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1229 temp &= ~FDI_LINK_TRAIN_NONE;
1230 temp |= FDI_LINK_TRAIN_PATTERN_1;
1231 I915_WRITE(fdi_tx_reg, temp);
1232 I915_READ(fdi_tx_reg);
2c07245f 1233
32f9d658
ZW
1234 temp = I915_READ(fdi_rx_reg);
1235 temp &= ~FDI_LINK_TRAIN_NONE;
1236 temp |= FDI_LINK_TRAIN_PATTERN_1;
1237 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1238 I915_READ(fdi_rx_reg);
2c07245f 1239
32f9d658 1240 udelay(150);
2c07245f 1241
32f9d658
ZW
1242 /* Train FDI. */
1243 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1244 for train result */
1245 temp = I915_READ(fdi_rx_imr_reg);
1246 temp &= ~FDI_RX_SYMBOL_LOCK;
1247 temp &= ~FDI_RX_BIT_LOCK;
1248 I915_WRITE(fdi_rx_imr_reg, temp);
1249 I915_READ(fdi_rx_imr_reg);
1250 udelay(150);
2c07245f 1251
32f9d658
ZW
1252 temp = I915_READ(fdi_rx_iir_reg);
1253 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
2c07245f 1254
32f9d658
ZW
1255 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1256 for (j = 0; j < tries; j++) {
1257 temp = I915_READ(fdi_rx_iir_reg);
1258 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1259 if (temp & FDI_RX_BIT_LOCK)
1260 break;
1261 udelay(200);
1262 }
1263 if (j != tries)
1264 I915_WRITE(fdi_rx_iir_reg,
1265 temp | FDI_RX_BIT_LOCK);
1266 else
1267 DRM_DEBUG("train 1 fail\n");
1268 } else {
2c07245f
ZW
1269 I915_WRITE(fdi_rx_iir_reg,
1270 temp | FDI_RX_BIT_LOCK);
32f9d658
ZW
1271 DRM_DEBUG("train 1 ok 2!\n");
1272 }
1273 temp = I915_READ(fdi_tx_reg);
1274 temp &= ~FDI_LINK_TRAIN_NONE;
1275 temp |= FDI_LINK_TRAIN_PATTERN_2;
1276 I915_WRITE(fdi_tx_reg, temp);
1277
1278 temp = I915_READ(fdi_rx_reg);
1279 temp &= ~FDI_LINK_TRAIN_NONE;
1280 temp |= FDI_LINK_TRAIN_PATTERN_2;
1281 I915_WRITE(fdi_rx_reg, temp);
2c07245f 1282
32f9d658 1283 udelay(150);
2c07245f 1284
32f9d658
ZW
1285 temp = I915_READ(fdi_rx_iir_reg);
1286 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
2c07245f 1287
32f9d658
ZW
1288 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1289 for (j = 0; j < tries; j++) {
1290 temp = I915_READ(fdi_rx_iir_reg);
1291 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1292 if (temp & FDI_RX_SYMBOL_LOCK)
1293 break;
1294 udelay(200);
1295 }
1296 if (j != tries) {
1297 I915_WRITE(fdi_rx_iir_reg,
1298 temp | FDI_RX_SYMBOL_LOCK);
1299 DRM_DEBUG("train 2 ok 1!\n");
1300 } else
1301 DRM_DEBUG("train 2 fail\n");
1302 } else {
2c07245f
ZW
1303 I915_WRITE(fdi_rx_iir_reg,
1304 temp | FDI_RX_SYMBOL_LOCK);
32f9d658
ZW
1305 DRM_DEBUG("train 2 ok 2!\n");
1306 }
1307 DRM_DEBUG("train done\n");
2c07245f 1308
32f9d658
ZW
1309 /* set transcoder timing */
1310 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1311 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1312 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
2c07245f 1313
32f9d658
ZW
1314 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1315 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1316 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
2c07245f 1317
32f9d658
ZW
1318 /* enable PCH transcoder */
1319 temp = I915_READ(transconf_reg);
1320 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1321 I915_READ(transconf_reg);
2c07245f 1322
32f9d658
ZW
1323 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1324 ;
2c07245f 1325
32f9d658 1326 /* enable normal */
2c07245f 1327
32f9d658
ZW
1328 temp = I915_READ(fdi_tx_reg);
1329 temp &= ~FDI_LINK_TRAIN_NONE;
1330 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1331 FDI_TX_ENHANCE_FRAME_ENABLE);
1332 I915_READ(fdi_tx_reg);
2c07245f 1333
32f9d658
ZW
1334 temp = I915_READ(fdi_rx_reg);
1335 temp &= ~FDI_LINK_TRAIN_NONE;
1336 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1337 FDI_RX_ENHANCE_FRAME_ENABLE);
1338 I915_READ(fdi_rx_reg);
2c07245f 1339
32f9d658
ZW
1340 /* wait one idle pattern time */
1341 udelay(100);
1342
1343 }
2c07245f
ZW
1344
1345 intel_crtc_load_lut(crtc);
1346
1347 break;
1348 case DRM_MODE_DPMS_OFF:
1349 DRM_DEBUG("crtc %d dpms off\n", pipe);
1350
24f119c7 1351 i915_disable_vga(dev);
2c07245f
ZW
1352
1353 /* Disable display plane */
1354 temp = I915_READ(dspcntr_reg);
1355 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1356 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1357 /* Flush the plane changes */
1358 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1359 I915_READ(dspbase_reg);
1360 }
1361
1362 /* disable cpu pipe, disable after all planes disabled */
1363 temp = I915_READ(pipeconf_reg);
1364 if ((temp & PIPEACONF_ENABLE) != 0) {
1365 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1366 I915_READ(pipeconf_reg);
249c0e64 1367 n = 0;
2c07245f 1368 /* wait for cpu pipe off, pipe state */
249c0e64
ZW
1369 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1370 n++;
1371 if (n < 60) {
1372 udelay(500);
1373 continue;
1374 } else {
1375 DRM_DEBUG("pipe %d off delay\n", pipe);
1376 break;
1377 }
1378 }
2c07245f
ZW
1379 } else
1380 DRM_DEBUG("crtc %d is disabled\n", pipe);
1381
32f9d658
ZW
1382 if (HAS_eDP) {
1383 igdng_disable_pll_edp(crtc);
1384 }
1385
2c07245f
ZW
1386 /* disable CPU FDI tx and PCH FDI rx */
1387 temp = I915_READ(fdi_tx_reg);
1388 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1389 I915_READ(fdi_tx_reg);
1390
1391 temp = I915_READ(fdi_rx_reg);
1392 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1393 I915_READ(fdi_rx_reg);
1394
249c0e64
ZW
1395 udelay(100);
1396
2c07245f
ZW
1397 /* still set train pattern 1 */
1398 temp = I915_READ(fdi_tx_reg);
1399 temp &= ~FDI_LINK_TRAIN_NONE;
1400 temp |= FDI_LINK_TRAIN_PATTERN_1;
1401 I915_WRITE(fdi_tx_reg, temp);
1402
1403 temp = I915_READ(fdi_rx_reg);
1404 temp &= ~FDI_LINK_TRAIN_NONE;
1405 temp |= FDI_LINK_TRAIN_PATTERN_1;
1406 I915_WRITE(fdi_rx_reg, temp);
1407
249c0e64
ZW
1408 udelay(100);
1409
2c07245f
ZW
1410 /* disable PCH transcoder */
1411 temp = I915_READ(transconf_reg);
1412 if ((temp & TRANS_ENABLE) != 0) {
1413 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1414 I915_READ(transconf_reg);
249c0e64 1415 n = 0;
2c07245f 1416 /* wait for PCH transcoder off, transcoder state */
249c0e64
ZW
1417 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1418 n++;
1419 if (n < 60) {
1420 udelay(500);
1421 continue;
1422 } else {
1423 DRM_DEBUG("transcoder %d off delay\n", pipe);
1424 break;
1425 }
1426 }
2c07245f
ZW
1427 }
1428
1429 /* disable PCH DPLL */
1430 temp = I915_READ(pch_dpll_reg);
1431 if ((temp & DPLL_VCO_ENABLE) != 0) {
1432 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1433 I915_READ(pch_dpll_reg);
1434 }
1435
1436 temp = I915_READ(fdi_rx_reg);
1437 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1438 temp &= ~FDI_SEL_PCDCLK;
1439 temp &= ~FDI_RX_PLL_ENABLE;
1440 I915_WRITE(fdi_rx_reg, temp);
1441 I915_READ(fdi_rx_reg);
1442 }
1443
249c0e64
ZW
1444 /* Disable CPU FDI TX PLL */
1445 temp = I915_READ(fdi_tx_reg);
1446 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1447 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1448 I915_READ(fdi_tx_reg);
1449 udelay(100);
1450 }
1451
1452 /* Disable PF */
1453 temp = I915_READ(pf_ctl_reg);
1454 if ((temp & PF_ENABLE) != 0) {
1455 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1456 I915_READ(pf_ctl_reg);
1457 }
1458 I915_WRITE(pf_win_size, 0);
1459
2c07245f
ZW
1460 /* Wait for the clocks to turn off. */
1461 udelay(150);
1462 break;
1463 }
1464}
1465
1466static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
79e53945
JB
1467{
1468 struct drm_device *dev = crtc->dev;
79e53945
JB
1469 struct drm_i915_private *dev_priv = dev->dev_private;
1470 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1471 int pipe = intel_crtc->pipe;
1472 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1473 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
1474 int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
1475 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1476 u32 temp;
79e53945
JB
1477
1478 /* XXX: When our outputs are all unaware of DPMS modes other than off
1479 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1480 */
1481 switch (mode) {
1482 case DRM_MODE_DPMS_ON:
1483 case DRM_MODE_DPMS_STANDBY:
1484 case DRM_MODE_DPMS_SUSPEND:
1485 /* Enable the DPLL */
1486 temp = I915_READ(dpll_reg);
1487 if ((temp & DPLL_VCO_ENABLE) == 0) {
1488 I915_WRITE(dpll_reg, temp);
1489 I915_READ(dpll_reg);
1490 /* Wait for the clocks to stabilize. */
1491 udelay(150);
1492 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1493 I915_READ(dpll_reg);
1494 /* Wait for the clocks to stabilize. */
1495 udelay(150);
1496 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1497 I915_READ(dpll_reg);
1498 /* Wait for the clocks to stabilize. */
1499 udelay(150);
1500 }
1501
1502 /* Enable the pipe */
1503 temp = I915_READ(pipeconf_reg);
1504 if ((temp & PIPEACONF_ENABLE) == 0)
1505 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1506
1507 /* Enable the plane */
1508 temp = I915_READ(dspcntr_reg);
1509 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1510 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1511 /* Flush the plane changes */
1512 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1513 }
1514
1515 intel_crtc_load_lut(crtc);
1516
1517 /* Give the overlay scaler a chance to enable if it's on this pipe */
1518 //intel_crtc_dpms_video(crtc, true); TODO
7662c8bd 1519 intel_update_watermarks(dev);
79e53945
JB
1520 break;
1521 case DRM_MODE_DPMS_OFF:
7662c8bd 1522 intel_update_watermarks(dev);
79e53945
JB
1523 /* Give the overlay scaler a chance to disable if it's on this pipe */
1524 //intel_crtc_dpms_video(crtc, FALSE); TODO
1525
1526 /* Disable the VGA plane that we never use */
24f119c7 1527 i915_disable_vga(dev);
79e53945
JB
1528
1529 /* Disable display plane */
1530 temp = I915_READ(dspcntr_reg);
1531 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1532 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1533 /* Flush the plane changes */
1534 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1535 I915_READ(dspbase_reg);
1536 }
1537
1538 if (!IS_I9XX(dev)) {
1539 /* Wait for vblank for the disable to take effect */
1540 intel_wait_for_vblank(dev);
1541 }
1542
1543 /* Next, disable display pipes */
1544 temp = I915_READ(pipeconf_reg);
1545 if ((temp & PIPEACONF_ENABLE) != 0) {
1546 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1547 I915_READ(pipeconf_reg);
1548 }
1549
1550 /* Wait for vblank for the disable to take effect. */
1551 intel_wait_for_vblank(dev);
1552
1553 temp = I915_READ(dpll_reg);
1554 if ((temp & DPLL_VCO_ENABLE) != 0) {
1555 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1556 I915_READ(dpll_reg);
1557 }
1558
1559 /* Wait for the clocks to turn off. */
1560 udelay(150);
1561 break;
1562 }
2c07245f
ZW
1563}
1564
1565/**
1566 * Sets the power management mode of the pipe and plane.
1567 *
1568 * This code should probably grow support for turning the cursor off and back
1569 * on appropriately at the same time as we're turning the pipe off/on.
1570 */
1571static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1572{
1573 struct drm_device *dev = crtc->dev;
1574 struct drm_i915_master_private *master_priv;
1575 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1576 int pipe = intel_crtc->pipe;
1577 bool enabled;
1578
1579 if (IS_IGDNG(dev))
1580 igdng_crtc_dpms(crtc, mode);
1581 else
1582 i9xx_crtc_dpms(crtc, mode);
79e53945
JB
1583
1584 if (!dev->primary->master)
1585 return;
1586
1587 master_priv = dev->primary->master->driver_priv;
1588 if (!master_priv->sarea_priv)
1589 return;
1590
1591 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1592
1593 switch (pipe) {
1594 case 0:
1595 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1596 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1597 break;
1598 case 1:
1599 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1600 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1601 break;
1602 default:
1603 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1604 break;
1605 }
1606
1607 intel_crtc->dpms_mode = mode;
1608}
1609
1610static void intel_crtc_prepare (struct drm_crtc *crtc)
1611{
1612 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1613 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1614}
1615
1616static void intel_crtc_commit (struct drm_crtc *crtc)
1617{
1618 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1619 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1620}
1621
1622void intel_encoder_prepare (struct drm_encoder *encoder)
1623{
1624 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1625 /* lvds has its own version of prepare see intel_lvds_prepare */
1626 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1627}
1628
1629void intel_encoder_commit (struct drm_encoder *encoder)
1630{
1631 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1632 /* lvds has its own version of commit see intel_lvds_commit */
1633 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1634}
1635
1636static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1637 struct drm_display_mode *mode,
1638 struct drm_display_mode *adjusted_mode)
1639{
2c07245f
ZW
1640 struct drm_device *dev = crtc->dev;
1641 if (IS_IGDNG(dev)) {
1642 /* FDI link clock is fixed at 2.7G */
1643 if (mode->clock * 3 > 27000 * 4)
1644 return MODE_CLOCK_HIGH;
1645 }
79e53945
JB
1646 return true;
1647}
1648
1649
1650/** Returns the core display clock speed for i830 - i945 */
1651static int intel_get_core_clock_speed(struct drm_device *dev)
1652{
1653
1654 /* Core clock values taken from the published datasheets.
1655 * The 830 may go up to 166 Mhz, which we should check.
1656 */
1657 if (IS_I945G(dev))
1658 return 400000;
1659 else if (IS_I915G(dev))
1660 return 333000;
2177832f 1661 else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
79e53945
JB
1662 return 200000;
1663 else if (IS_I915GM(dev)) {
1664 u16 gcfgc = 0;
1665
1666 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1667
1668 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1669 return 133000;
1670 else {
1671 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
1672 case GC_DISPLAY_CLOCK_333_MHZ:
1673 return 333000;
1674 default:
1675 case GC_DISPLAY_CLOCK_190_200_MHZ:
1676 return 190000;
1677 }
1678 }
1679 } else if (IS_I865G(dev))
1680 return 266000;
1681 else if (IS_I855(dev)) {
1682 u16 hpllcc = 0;
1683 /* Assume that the hardware is in the high speed state. This
1684 * should be the default.
1685 */
1686 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
1687 case GC_CLOCK_133_200:
1688 case GC_CLOCK_100_200:
1689 return 200000;
1690 case GC_CLOCK_166_250:
1691 return 250000;
1692 case GC_CLOCK_100_133:
1693 return 133000;
1694 }
1695 } else /* 852, 830 */
1696 return 133000;
1697
1698 return 0; /* Silence gcc warning */
1699}
1700
79e53945
JB
1701/**
1702 * Return the pipe currently connected to the panel fitter,
1703 * or -1 if the panel fitter is not present or not in use
1704 */
1705static int intel_panel_fitter_pipe (struct drm_device *dev)
1706{
1707 struct drm_i915_private *dev_priv = dev->dev_private;
1708 u32 pfit_control;
1709
1710 /* i830 doesn't have a panel fitter */
1711 if (IS_I830(dev))
1712 return -1;
1713
1714 pfit_control = I915_READ(PFIT_CONTROL);
1715
1716 /* See if the panel fitter is in use */
1717 if ((pfit_control & PFIT_ENABLE) == 0)
1718 return -1;
1719
1720 /* 965 can place panel fitter on either pipe */
1721 if (IS_I965G(dev))
1722 return (pfit_control >> 29) & 0x3;
1723
1724 /* older chips can only use pipe 1 */
1725 return 1;
1726}
1727
2c07245f
ZW
1728struct fdi_m_n {
1729 u32 tu;
1730 u32 gmch_m;
1731 u32 gmch_n;
1732 u32 link_m;
1733 u32 link_n;
1734};
1735
1736static void
1737fdi_reduce_ratio(u32 *num, u32 *den)
1738{
1739 while (*num > 0xffffff || *den > 0xffffff) {
1740 *num >>= 1;
1741 *den >>= 1;
1742 }
1743}
1744
1745#define DATA_N 0x800000
1746#define LINK_N 0x80000
1747
1748static void
1749igdng_compute_m_n(int bytes_per_pixel, int nlanes,
1750 int pixel_clock, int link_clock,
1751 struct fdi_m_n *m_n)
1752{
1753 u64 temp;
1754
1755 m_n->tu = 64; /* default size */
1756
1757 temp = (u64) DATA_N * pixel_clock;
1758 temp = div_u64(temp, link_clock);
956dba3c 1759 m_n->gmch_m = div_u64(temp * bytes_per_pixel, nlanes);
2c07245f
ZW
1760 m_n->gmch_n = DATA_N;
1761 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
1762
1763 temp = (u64) LINK_N * pixel_clock;
1764 m_n->link_m = div_u64(temp, link_clock);
1765 m_n->link_n = LINK_N;
1766 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
1767}
1768
1769
7662c8bd
SL
1770struct intel_watermark_params {
1771 unsigned long fifo_size;
1772 unsigned long max_wm;
1773 unsigned long default_wm;
1774 unsigned long guard_size;
1775 unsigned long cacheline_size;
1776};
1777
1778/* IGD has different values for various configs */
1779static struct intel_watermark_params igd_display_wm = {
1780 IGD_DISPLAY_FIFO,
1781 IGD_MAX_WM,
1782 IGD_DFT_WM,
1783 IGD_GUARD_WM,
1784 IGD_FIFO_LINE_SIZE
1785};
1786static struct intel_watermark_params igd_display_hplloff_wm = {
1787 IGD_DISPLAY_FIFO,
1788 IGD_MAX_WM,
1789 IGD_DFT_HPLLOFF_WM,
1790 IGD_GUARD_WM,
1791 IGD_FIFO_LINE_SIZE
1792};
1793static struct intel_watermark_params igd_cursor_wm = {
1794 IGD_CURSOR_FIFO,
1795 IGD_CURSOR_MAX_WM,
1796 IGD_CURSOR_DFT_WM,
1797 IGD_CURSOR_GUARD_WM,
1798 IGD_FIFO_LINE_SIZE,
1799};
1800static struct intel_watermark_params igd_cursor_hplloff_wm = {
1801 IGD_CURSOR_FIFO,
1802 IGD_CURSOR_MAX_WM,
1803 IGD_CURSOR_DFT_WM,
1804 IGD_CURSOR_GUARD_WM,
1805 IGD_FIFO_LINE_SIZE
1806};
1807static struct intel_watermark_params i945_wm_info = {
dff33cfc 1808 I945_FIFO_SIZE,
7662c8bd
SL
1809 I915_MAX_WM,
1810 1,
dff33cfc
JB
1811 2,
1812 I915_FIFO_LINE_SIZE
7662c8bd
SL
1813};
1814static struct intel_watermark_params i915_wm_info = {
dff33cfc 1815 I915_FIFO_SIZE,
7662c8bd
SL
1816 I915_MAX_WM,
1817 1,
dff33cfc 1818 2,
7662c8bd
SL
1819 I915_FIFO_LINE_SIZE
1820};
1821static struct intel_watermark_params i855_wm_info = {
1822 I855GM_FIFO_SIZE,
1823 I915_MAX_WM,
1824 1,
dff33cfc 1825 2,
7662c8bd
SL
1826 I830_FIFO_LINE_SIZE
1827};
1828static struct intel_watermark_params i830_wm_info = {
1829 I830_FIFO_SIZE,
1830 I915_MAX_WM,
1831 1,
dff33cfc 1832 2,
7662c8bd
SL
1833 I830_FIFO_LINE_SIZE
1834};
1835
dff33cfc
JB
1836/**
1837 * intel_calculate_wm - calculate watermark level
1838 * @clock_in_khz: pixel clock
1839 * @wm: chip FIFO params
1840 * @pixel_size: display pixel size
1841 * @latency_ns: memory latency for the platform
1842 *
1843 * Calculate the watermark level (the level at which the display plane will
1844 * start fetching from memory again). Each chip has a different display
1845 * FIFO size and allocation, so the caller needs to figure that out and pass
1846 * in the correct intel_watermark_params structure.
1847 *
1848 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1849 * on the pixel size. When it reaches the watermark level, it'll start
1850 * fetching FIFO line sized based chunks from memory until the FIFO fills
1851 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1852 * will occur, and a display engine hang could result.
1853 */
7662c8bd
SL
1854static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1855 struct intel_watermark_params *wm,
1856 int pixel_size,
1857 unsigned long latency_ns)
1858{
390c4dd4 1859 long entries_required, wm_size;
dff33cfc
JB
1860
1861 entries_required = (clock_in_khz * pixel_size * latency_ns) / 1000000;
1862 entries_required /= wm->cacheline_size;
7662c8bd 1863
dff33cfc
JB
1864 DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);
1865
1866 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
1867
1868 DRM_DEBUG("FIFO watermark level: %d\n", wm_size);
7662c8bd 1869
390c4dd4
JB
1870 /* Don't promote wm_size to unsigned... */
1871 if (wm_size > (long)wm->max_wm)
7662c8bd 1872 wm_size = wm->max_wm;
390c4dd4 1873 if (wm_size <= 0)
7662c8bd
SL
1874 wm_size = wm->default_wm;
1875 return wm_size;
1876}
1877
1878struct cxsr_latency {
1879 int is_desktop;
1880 unsigned long fsb_freq;
1881 unsigned long mem_freq;
1882 unsigned long display_sr;
1883 unsigned long display_hpll_disable;
1884 unsigned long cursor_sr;
1885 unsigned long cursor_hpll_disable;
1886};
1887
1888static struct cxsr_latency cxsr_latency_table[] = {
1889 {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
1890 {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
1891 {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
1892
1893 {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
1894 {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
1895 {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
1896
1897 {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
1898 {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
1899 {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
1900
1901 {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
1902 {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
1903 {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
1904
1905 {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
1906 {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
1907 {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
1908
1909 {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
1910 {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
1911 {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
1912};
1913
1914static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
1915 int mem)
1916{
1917 int i;
1918 struct cxsr_latency *latency;
1919
1920 if (fsb == 0 || mem == 0)
1921 return NULL;
1922
1923 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
1924 latency = &cxsr_latency_table[i];
1925 if (is_desktop == latency->is_desktop &&
1926 fsb == latency->fsb_freq && mem == latency->mem_freq)
1927 break;
1928 }
1929 if (i >= ARRAY_SIZE(cxsr_latency_table)) {
1930 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
1931 return NULL;
1932 }
1933 return latency;
1934}
1935
1936static void igd_disable_cxsr(struct drm_device *dev)
1937{
1938 struct drm_i915_private *dev_priv = dev->dev_private;
1939 u32 reg;
1940
1941 /* deactivate cxsr */
1942 reg = I915_READ(DSPFW3);
1943 reg &= ~(IGD_SELF_REFRESH_EN);
1944 I915_WRITE(DSPFW3, reg);
1945 DRM_INFO("Big FIFO is disabled\n");
1946}
1947
1948static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
1949 int pixel_size)
1950{
1951 struct drm_i915_private *dev_priv = dev->dev_private;
1952 u32 reg;
1953 unsigned long wm;
1954 struct cxsr_latency *latency;
1955
1956 latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
1957 dev_priv->mem_freq);
1958 if (!latency) {
1959 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
1960 igd_disable_cxsr(dev);
1961 return;
1962 }
1963
1964 /* Display SR */
1965 wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
1966 latency->display_sr);
1967 reg = I915_READ(DSPFW1);
1968 reg &= 0x7fffff;
1969 reg |= wm << 23;
1970 I915_WRITE(DSPFW1, reg);
1971 DRM_DEBUG("DSPFW1 register is %x\n", reg);
1972
1973 /* cursor SR */
1974 wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
1975 latency->cursor_sr);
1976 reg = I915_READ(DSPFW3);
1977 reg &= ~(0x3f << 24);
1978 reg |= (wm & 0x3f) << 24;
1979 I915_WRITE(DSPFW3, reg);
1980
1981 /* Display HPLL off SR */
1982 wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
1983 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
1984 reg = I915_READ(DSPFW3);
1985 reg &= 0xfffffe00;
1986 reg |= wm & 0x1ff;
1987 I915_WRITE(DSPFW3, reg);
1988
1989 /* cursor HPLL off SR */
1990 wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
1991 latency->cursor_hpll_disable);
1992 reg = I915_READ(DSPFW3);
1993 reg &= ~(0x3f << 16);
1994 reg |= (wm & 0x3f) << 16;
1995 I915_WRITE(DSPFW3, reg);
1996 DRM_DEBUG("DSPFW3 register is %x\n", reg);
1997
1998 /* activate cxsr */
1999 reg = I915_READ(DSPFW3);
2000 reg |= IGD_SELF_REFRESH_EN;
2001 I915_WRITE(DSPFW3, reg);
2002
2003 DRM_INFO("Big FIFO is enabled\n");
2004
2005 return;
2006}
2007
dff33cfc 2008const static int latency_ns = 3000; /* default for non-igd platforms */
7662c8bd 2009
dff33cfc
JB
2010static int intel_get_fifo_size(struct drm_device *dev, int plane)
2011{
2012 struct drm_i915_private *dev_priv = dev->dev_private;
2013 uint32_t dsparb = I915_READ(DSPARB);
2014 int size;
2015
2016 if (IS_I9XX(dev)) {
2017 if (plane == 0)
2018 size = dsparb & 0x7f;
2019 else
2020 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2021 (dsparb & 0x7f);
2022 } else if (IS_I85X(dev)) {
2023 if (plane == 0)
2024 size = dsparb & 0x1ff;
2025 else
2026 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2027 (dsparb & 0x1ff);
2028 size >>= 1; /* Convert to cachelines */
2029 } else {
2030 size = dsparb & 0x7f;
2031 size >>= 1; /* Convert to cachelines */
2032 }
2033
2034 DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2035 size);
2036
2037 return size;
2038}
7662c8bd
SL
2039
2040static void i965_update_wm(struct drm_device *dev)
2041{
2042 struct drm_i915_private *dev_priv = dev->dev_private;
2043
2044 DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
2045
2046 /* 965 has limitations... */
2047 I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
2048 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2049}
2050
2051static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2052 int planeb_clock, int sr_hdisplay, int pixel_size)
2053{
2054 struct drm_i915_private *dev_priv = dev->dev_private;
dff33cfc
JB
2055 uint32_t fwater_lo;
2056 uint32_t fwater_hi;
2057 int total_size, cacheline_size, cwm, srwm = 1;
2058 int planea_wm, planeb_wm;
2059 struct intel_watermark_params planea_params, planeb_params;
7662c8bd
SL
2060 unsigned long line_time_us;
2061 int sr_clock, sr_entries = 0;
2062
dff33cfc 2063 /* Create copies of the base settings for each pipe */
7662c8bd 2064 if (IS_I965GM(dev) || IS_I945GM(dev))
dff33cfc 2065 planea_params = planeb_params = i945_wm_info;
7662c8bd 2066 else if (IS_I9XX(dev))
dff33cfc 2067 planea_params = planeb_params = i915_wm_info;
7662c8bd 2068 else
dff33cfc 2069 planea_params = planeb_params = i855_wm_info;
7662c8bd 2070
dff33cfc
JB
2071 /* Grab a couple of global values before we overwrite them */
2072 total_size = planea_params.fifo_size;
2073 cacheline_size = planea_params.cacheline_size;
7662c8bd 2074
dff33cfc
JB
2075 /* Update per-plane FIFO sizes */
2076 planea_params.fifo_size = intel_get_fifo_size(dev, 0);
2077 planeb_params.fifo_size = intel_get_fifo_size(dev, 1);
7662c8bd 2078
dff33cfc
JB
2079 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2080 pixel_size, latency_ns);
2081 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2082 pixel_size, latency_ns);
2083 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
7662c8bd
SL
2084
2085 /*
2086 * Overlay gets an aggressive default since video jitter is bad.
2087 */
2088 cwm = 2;
2089
dff33cfc 2090 /* Calc sr entries for one plane configs */
2a2430f4 2091 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
dff33cfc
JB
2092 /* self-refresh has much higher latency */
2093 const static int sr_latency_ns = 6000;
2094
7662c8bd 2095 sr_clock = planea_clock ? planea_clock : planeb_clock;
dff33cfc
JB
2096 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2097
2098 /* Use ns/us then divide to preserve precision */
2099 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2100 pixel_size * sr_hdisplay) / 1000;
2101 sr_entries = roundup(sr_entries / cacheline_size, 1);
2102 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2103 srwm = total_size - sr_entries;
2104 if (srwm < 0)
2105 srwm = 1;
2a2430f4
JB
2106 if (IS_I9XX(dev))
2107 I915_WRITE(FW_BLC_SELF, (srwm & 0x3f));
7662c8bd
SL
2108 }
2109
2110 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
dff33cfc 2111 planea_wm, planeb_wm, cwm, srwm);
7662c8bd 2112
dff33cfc
JB
2113 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2114 fwater_hi = (cwm & 0x1f);
2115
2116 /* Set request length to 8 cachelines per fetch */
2117 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2118 fwater_hi = fwater_hi | (1 << 8);
7662c8bd
SL
2119
2120 I915_WRITE(FW_BLC, fwater_lo);
2121 I915_WRITE(FW_BLC2, fwater_hi);
7662c8bd
SL
2122}
2123
2124static void i830_update_wm(struct drm_device *dev, int planea_clock,
2125 int pixel_size)
2126{
2127 struct drm_i915_private *dev_priv = dev->dev_private;
7662c8bd 2128 uint32_t fwater_lo = I915_READ(FW_BLC) & MM_FIFO_WATERMARK;
dff33cfc 2129 int planea_wm;
7662c8bd 2130
dff33cfc 2131 i830_wm_info.fifo_size = intel_get_fifo_size(dev, 0);
7662c8bd 2132
dff33cfc
JB
2133 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2134 pixel_size, latency_ns);
2135 fwater_lo = fwater_lo | planea_wm;
7662c8bd
SL
2136
2137 I915_WRITE(FW_BLC, fwater_lo);
2138}
2139
2140/**
2141 * intel_update_watermarks - update FIFO watermark values based on current modes
2142 *
2143 * Calculate watermark values for the various WM regs based on current mode
2144 * and plane configuration.
2145 *
2146 * There are several cases to deal with here:
2147 * - normal (i.e. non-self-refresh)
2148 * - self-refresh (SR) mode
2149 * - lines are large relative to FIFO size (buffer can hold up to 2)
2150 * - lines are small relative to FIFO size (buffer can hold more than 2
2151 * lines), so need to account for TLB latency
2152 *
2153 * The normal calculation is:
2154 * watermark = dotclock * bytes per pixel * latency
2155 * where latency is platform & configuration dependent (we assume pessimal
2156 * values here).
2157 *
2158 * The SR calculation is:
2159 * watermark = (trunc(latency/line time)+1) * surface width *
2160 * bytes per pixel
2161 * where
2162 * line time = htotal / dotclock
2163 * and latency is assumed to be high, as above.
2164 *
2165 * The final value programmed to the register should always be rounded up,
2166 * and include an extra 2 entries to account for clock crossings.
2167 *
2168 * We don't use the sprite, so we can ignore that. And on Crestline we have
2169 * to set the non-SR watermarks to 8.
2170 */
2171static void intel_update_watermarks(struct drm_device *dev)
2172{
2173 struct drm_crtc *crtc;
2174 struct intel_crtc *intel_crtc;
2175 int sr_hdisplay = 0;
2176 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2177 int enabled = 0, pixel_size = 0;
2178
2179 if (DSPARB_HWCONTROL(dev))
2180 return;
2181
2182 /* Get the clock config from both planes */
2183 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2184 intel_crtc = to_intel_crtc(crtc);
2185 if (crtc->enabled) {
2186 enabled++;
2187 if (intel_crtc->plane == 0) {
2188 DRM_DEBUG("plane A (pipe %d) clock: %d\n",
2189 intel_crtc->pipe, crtc->mode.clock);
2190 planea_clock = crtc->mode.clock;
2191 } else {
2192 DRM_DEBUG("plane B (pipe %d) clock: %d\n",
2193 intel_crtc->pipe, crtc->mode.clock);
2194 planeb_clock = crtc->mode.clock;
2195 }
2196 sr_hdisplay = crtc->mode.hdisplay;
2197 sr_clock = crtc->mode.clock;
2198 if (crtc->fb)
2199 pixel_size = crtc->fb->bits_per_pixel / 8;
2200 else
2201 pixel_size = 4; /* by default */
2202 }
2203 }
2204
2205 if (enabled <= 0)
2206 return;
2207
dff33cfc 2208 /* Single plane configs can enable self refresh */
7662c8bd
SL
2209 if (enabled == 1 && IS_IGD(dev))
2210 igd_enable_cxsr(dev, sr_clock, pixel_size);
2211 else if (IS_IGD(dev))
2212 igd_disable_cxsr(dev);
2213
2214 if (IS_I965G(dev))
2215 i965_update_wm(dev);
2216 else if (IS_I9XX(dev) || IS_MOBILE(dev))
2217 i9xx_update_wm(dev, planea_clock, planeb_clock, sr_hdisplay,
2218 pixel_size);
2219 else
2220 i830_update_wm(dev, planea_clock, pixel_size);
2221}
2222
5c3b82e2
CW
2223static int intel_crtc_mode_set(struct drm_crtc *crtc,
2224 struct drm_display_mode *mode,
2225 struct drm_display_mode *adjusted_mode,
2226 int x, int y,
2227 struct drm_framebuffer *old_fb)
79e53945
JB
2228{
2229 struct drm_device *dev = crtc->dev;
2230 struct drm_i915_private *dev_priv = dev->dev_private;
2231 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2232 int pipe = intel_crtc->pipe;
2233 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2234 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2235 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2236 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
2237 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2238 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2239 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2240 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2241 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2242 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2243 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2244 int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
2245 int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
2246 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
43565a06 2247 int refclk, num_outputs = 0;
79e53945
JB
2248 intel_clock_t clock;
2249 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
2250 bool ok, is_sdvo = false, is_dvo = false;
a4fc5ed6 2251 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
32f9d658 2252 bool is_edp = false;
79e53945
JB
2253 struct drm_mode_config *mode_config = &dev->mode_config;
2254 struct drm_connector *connector;
d4906093 2255 const intel_limit_t *limit;
5c3b82e2 2256 int ret;
2c07245f
ZW
2257 struct fdi_m_n m_n = {0};
2258 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2259 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2260 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2261 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2262 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2263 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2264 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
541998a1 2265 int lvds_reg = LVDS;
2c07245f
ZW
2266 u32 temp;
2267 int sdvo_pixel_multiply;
5eb08b69 2268 int target_clock;
79e53945
JB
2269
2270 drm_vblank_pre_modeset(dev, pipe);
2271
2272 list_for_each_entry(connector, &mode_config->connector_list, head) {
2273 struct intel_output *intel_output = to_intel_output(connector);
2274
2275 if (!connector->encoder || connector->encoder->crtc != crtc)
2276 continue;
2277
2278 switch (intel_output->type) {
2279 case INTEL_OUTPUT_LVDS:
2280 is_lvds = true;
2281 break;
2282 case INTEL_OUTPUT_SDVO:
7d57382e 2283 case INTEL_OUTPUT_HDMI:
79e53945 2284 is_sdvo = true;
e2f0ba97
JB
2285 if (intel_output->needs_tv_clock)
2286 is_tv = true;
79e53945
JB
2287 break;
2288 case INTEL_OUTPUT_DVO:
2289 is_dvo = true;
2290 break;
2291 case INTEL_OUTPUT_TVOUT:
2292 is_tv = true;
2293 break;
2294 case INTEL_OUTPUT_ANALOG:
2295 is_crt = true;
2296 break;
a4fc5ed6
KP
2297 case INTEL_OUTPUT_DISPLAYPORT:
2298 is_dp = true;
2299 break;
32f9d658
ZW
2300 case INTEL_OUTPUT_EDP:
2301 is_edp = true;
2302 break;
79e53945 2303 }
43565a06
KH
2304
2305 num_outputs++;
79e53945
JB
2306 }
2307
43565a06
KH
2308 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2309 refclk = dev_priv->lvds_ssc_freq * 1000;
2310 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
2311 } else if (IS_I9XX(dev)) {
79e53945 2312 refclk = 96000;
2c07245f
ZW
2313 if (IS_IGDNG(dev))
2314 refclk = 120000; /* 120Mhz refclk */
79e53945
JB
2315 } else {
2316 refclk = 48000;
2317 }
a4fc5ed6 2318
79e53945 2319
d4906093
ML
2320 /*
2321 * Returns a set of divisors for the desired target clock with the given
2322 * refclk, or FALSE. The returned values represent the clock equation:
2323 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2324 */
2325 limit = intel_limit(crtc);
2326 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
79e53945
JB
2327 if (!ok) {
2328 DRM_ERROR("Couldn't find PLL settings for mode!\n");
1f803ee5 2329 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 2330 return -EINVAL;
79e53945
JB
2331 }
2332
7026d4ac
ZW
2333 /* SDVO TV has fixed PLL values depend on its clock range,
2334 this mirrors vbios setting. */
2335 if (is_sdvo && is_tv) {
2336 if (adjusted_mode->clock >= 100000
2337 && adjusted_mode->clock < 140500) {
2338 clock.p1 = 2;
2339 clock.p2 = 10;
2340 clock.n = 3;
2341 clock.m1 = 16;
2342 clock.m2 = 8;
2343 } else if (adjusted_mode->clock >= 140500
2344 && adjusted_mode->clock <= 200000) {
2345 clock.p1 = 1;
2346 clock.p2 = 10;
2347 clock.n = 6;
2348 clock.m1 = 12;
2349 clock.m2 = 8;
2350 }
2351 }
2352
2c07245f 2353 /* FDI link */
5eb08b69 2354 if (IS_IGDNG(dev)) {
32f9d658
ZW
2355 int lane, link_bw;
2356 /* eDP doesn't require FDI link, so just set DP M/N
2357 according to current link config */
2358 if (is_edp) {
2359 struct drm_connector *edp;
5eb08b69 2360 target_clock = mode->clock;
32f9d658
ZW
2361 edp = intel_pipe_get_output(crtc);
2362 intel_edp_link_config(to_intel_output(edp),
2363 &lane, &link_bw);
2364 } else {
2365 /* DP over FDI requires target mode clock
2366 instead of link clock */
2367 if (is_dp)
2368 target_clock = mode->clock;
2369 else
2370 target_clock = adjusted_mode->clock;
2371 lane = 4;
2372 link_bw = 270000;
2373 }
2374 igdng_compute_m_n(3, lane, target_clock,
2375 link_bw, &m_n);
5eb08b69 2376 }
2c07245f 2377
2177832f
SL
2378 if (IS_IGD(dev))
2379 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2380 else
2381 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
79e53945 2382
2c07245f
ZW
2383 if (!IS_IGDNG(dev))
2384 dpll = DPLL_VGA_MODE_DIS;
2385
79e53945
JB
2386 if (IS_I9XX(dev)) {
2387 if (is_lvds)
2388 dpll |= DPLLB_MODE_LVDS;
2389 else
2390 dpll |= DPLLB_MODE_DAC_SERIAL;
2391 if (is_sdvo) {
2392 dpll |= DPLL_DVO_HIGH_SPEED;
2c07245f
ZW
2393 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2394 if (IS_I945G(dev) || IS_I945GM(dev))
79e53945 2395 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2c07245f
ZW
2396 else if (IS_IGDNG(dev))
2397 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 2398 }
a4fc5ed6
KP
2399 if (is_dp)
2400 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945
JB
2401
2402 /* compute bitmask from p1 value */
2177832f
SL
2403 if (IS_IGD(dev))
2404 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2c07245f 2405 else {
2177832f 2406 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2c07245f
ZW
2407 /* also FPA1 */
2408 if (IS_IGDNG(dev))
2409 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2410 }
79e53945
JB
2411 switch (clock.p2) {
2412 case 5:
2413 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
2414 break;
2415 case 7:
2416 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
2417 break;
2418 case 10:
2419 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
2420 break;
2421 case 14:
2422 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
2423 break;
2424 }
2c07245f 2425 if (IS_I965G(dev) && !IS_IGDNG(dev))
79e53945
JB
2426 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2427 } else {
2428 if (is_lvds) {
2429 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2430 } else {
2431 if (clock.p1 == 2)
2432 dpll |= PLL_P1_DIVIDE_BY_TWO;
2433 else
2434 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2435 if (clock.p2 == 4)
2436 dpll |= PLL_P2_DIVIDE_BY_4;
2437 }
2438 }
2439
43565a06
KH
2440 if (is_sdvo && is_tv)
2441 dpll |= PLL_REF_INPUT_TVCLKINBC;
2442 else if (is_tv)
79e53945 2443 /* XXX: just matching BIOS for now */
43565a06 2444 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 2445 dpll |= 3;
43565a06
KH
2446 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
2447 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
2448 else
2449 dpll |= PLL_REF_INPUT_DREFCLK;
2450
2451 /* setup pipeconf */
2452 pipeconf = I915_READ(pipeconf_reg);
2453
2454 /* Set up the display plane register */
2455 dspcntr = DISPPLANE_GAMMA_ENABLE;
2456
2c07245f
ZW
2457 /* IGDNG's plane is forced to pipe, bit 24 is to
2458 enable color space conversion */
2459 if (!IS_IGDNG(dev)) {
2460 if (pipe == 0)
2461 dspcntr |= DISPPLANE_SEL_PIPE_A;
2462 else
2463 dspcntr |= DISPPLANE_SEL_PIPE_B;
2464 }
79e53945
JB
2465
2466 if (pipe == 0 && !IS_I965G(dev)) {
2467 /* Enable pixel doubling when the dot clock is > 90% of the (display)
2468 * core speed.
2469 *
2470 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
2471 * pipe == 0 check?
2472 */
2473 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
2474 pipeconf |= PIPEACONF_DOUBLE_WIDE;
2475 else
2476 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
2477 }
2478
2479 dspcntr |= DISPLAY_PLANE_ENABLE;
2480 pipeconf |= PIPEACONF_ENABLE;
2481 dpll |= DPLL_VCO_ENABLE;
2482
2483
2484 /* Disable the panel fitter if it was on our pipe */
2c07245f 2485 if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
79e53945
JB
2486 I915_WRITE(PFIT_CONTROL, 0);
2487
2488 DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
2489 drm_mode_debug_printmodeline(mode);
2490
2c07245f
ZW
2491 /* assign to IGDNG registers */
2492 if (IS_IGDNG(dev)) {
2493 fp_reg = pch_fp_reg;
2494 dpll_reg = pch_dpll_reg;
2495 }
79e53945 2496
32f9d658
ZW
2497 if (is_edp) {
2498 igdng_disable_pll_edp(crtc);
2499 } else if ((dpll & DPLL_VCO_ENABLE)) {
79e53945
JB
2500 I915_WRITE(fp_reg, fp);
2501 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
2502 I915_READ(dpll_reg);
2503 udelay(150);
2504 }
2505
2506 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
2507 * This is an exception to the general rule that mode_set doesn't turn
2508 * things on.
2509 */
2510 if (is_lvds) {
541998a1 2511 u32 lvds;
79e53945 2512
541998a1
ZW
2513 if (IS_IGDNG(dev))
2514 lvds_reg = PCH_LVDS;
2515
2516 lvds = I915_READ(lvds_reg);
79e53945
JB
2517 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
2518 /* Set the B0-B3 data pairs corresponding to whether we're going to
2519 * set the DPLLs for dual-channel mode or not.
2520 */
2521 if (clock.p2 == 7)
2522 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
2523 else
2524 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
2525
2526 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
2527 * appropriately here, but we need to look more thoroughly into how
2528 * panels behave in the two modes.
2529 */
2530
541998a1
ZW
2531 I915_WRITE(lvds_reg, lvds);
2532 I915_READ(lvds_reg);
79e53945 2533 }
a4fc5ed6
KP
2534 if (is_dp)
2535 intel_dp_set_m_n(crtc, mode, adjusted_mode);
79e53945 2536
32f9d658
ZW
2537 if (!is_edp) {
2538 I915_WRITE(fp_reg, fp);
79e53945 2539 I915_WRITE(dpll_reg, dpll);
32f9d658
ZW
2540 I915_READ(dpll_reg);
2541 /* Wait for the clocks to stabilize. */
2542 udelay(150);
2543
2544 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
2545 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2546 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
2547 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
2548 } else {
2549 /* write it again -- the BIOS does, after all */
2550 I915_WRITE(dpll_reg, dpll);
2551 }
2552 I915_READ(dpll_reg);
2553 /* Wait for the clocks to stabilize. */
2554 udelay(150);
79e53945 2555 }
79e53945
JB
2556
2557 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
2558 ((adjusted_mode->crtc_htotal - 1) << 16));
2559 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
2560 ((adjusted_mode->crtc_hblank_end - 1) << 16));
2561 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
2562 ((adjusted_mode->crtc_hsync_end - 1) << 16));
2563 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
2564 ((adjusted_mode->crtc_vtotal - 1) << 16));
2565 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
2566 ((adjusted_mode->crtc_vblank_end - 1) << 16));
2567 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
2568 ((adjusted_mode->crtc_vsync_end - 1) << 16));
2569 /* pipesrc and dspsize control the size that is scaled from, which should
2570 * always be the user's requested size.
2571 */
2c07245f
ZW
2572 if (!IS_IGDNG(dev)) {
2573 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
2574 (mode->hdisplay - 1));
2575 I915_WRITE(dsppos_reg, 0);
2576 }
79e53945 2577 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f
ZW
2578
2579 if (IS_IGDNG(dev)) {
2580 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
2581 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
2582 I915_WRITE(link_m1_reg, m_n.link_m);
2583 I915_WRITE(link_n1_reg, m_n.link_n);
2584
32f9d658
ZW
2585 if (is_edp) {
2586 igdng_set_pll_edp(crtc, adjusted_mode->clock);
2587 } else {
2588 /* enable FDI RX PLL too */
2589 temp = I915_READ(fdi_rx_reg);
2590 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
2591 udelay(200);
2592 }
2c07245f
ZW
2593 }
2594
79e53945
JB
2595 I915_WRITE(pipeconf_reg, pipeconf);
2596 I915_READ(pipeconf_reg);
2597
2598 intel_wait_for_vblank(dev);
2599
2600 I915_WRITE(dspcntr_reg, dspcntr);
2601
2602 /* Flush the plane changes */
5c3b82e2 2603 ret = intel_pipe_set_base(crtc, x, y, old_fb);
7662c8bd
SL
2604
2605 intel_update_watermarks(dev);
2606
79e53945 2607 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 2608
1f803ee5 2609 return ret;
79e53945
JB
2610}
2611
2612/** Loads the palette/gamma unit for the CRTC with the prepared values */
2613void intel_crtc_load_lut(struct drm_crtc *crtc)
2614{
2615 struct drm_device *dev = crtc->dev;
2616 struct drm_i915_private *dev_priv = dev->dev_private;
2617 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2618 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
2619 int i;
2620
2621 /* The clocks have to be on to load the palette. */
2622 if (!crtc->enabled)
2623 return;
2624
2c07245f
ZW
2625 /* use legacy palette for IGDNG */
2626 if (IS_IGDNG(dev))
2627 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
2628 LGC_PALETTE_B;
2629
79e53945
JB
2630 for (i = 0; i < 256; i++) {
2631 I915_WRITE(palreg + 4 * i,
2632 (intel_crtc->lut_r[i] << 16) |
2633 (intel_crtc->lut_g[i] << 8) |
2634 intel_crtc->lut_b[i]);
2635 }
2636}
2637
2638static int intel_crtc_cursor_set(struct drm_crtc *crtc,
2639 struct drm_file *file_priv,
2640 uint32_t handle,
2641 uint32_t width, uint32_t height)
2642{
2643 struct drm_device *dev = crtc->dev;
2644 struct drm_i915_private *dev_priv = dev->dev_private;
2645 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2646 struct drm_gem_object *bo;
2647 struct drm_i915_gem_object *obj_priv;
2648 int pipe = intel_crtc->pipe;
2649 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
2650 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
14b60391 2651 uint32_t temp = I915_READ(control);
79e53945 2652 size_t addr;
3f8bc370 2653 int ret;
79e53945
JB
2654
2655 DRM_DEBUG("\n");
2656
2657 /* if we want to turn off the cursor ignore width and height */
2658 if (!handle) {
2659 DRM_DEBUG("cursor off\n");
14b60391
JB
2660 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
2661 temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
2662 temp |= CURSOR_MODE_DISABLE;
2663 } else {
2664 temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
2665 }
3f8bc370
KH
2666 addr = 0;
2667 bo = NULL;
5004417d 2668 mutex_lock(&dev->struct_mutex);
3f8bc370 2669 goto finish;
79e53945
JB
2670 }
2671
2672 /* Currently we only support 64x64 cursors */
2673 if (width != 64 || height != 64) {
2674 DRM_ERROR("we currently only support 64x64 cursors\n");
2675 return -EINVAL;
2676 }
2677
2678 bo = drm_gem_object_lookup(dev, file_priv, handle);
2679 if (!bo)
2680 return -ENOENT;
2681
2682 obj_priv = bo->driver_private;
2683
2684 if (bo->size < width * height * 4) {
2685 DRM_ERROR("buffer is to small\n");
34b8686e
DA
2686 ret = -ENOMEM;
2687 goto fail;
79e53945
JB
2688 }
2689
71acb5eb 2690 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 2691 mutex_lock(&dev->struct_mutex);
71acb5eb
DA
2692 if (!dev_priv->cursor_needs_physical) {
2693 ret = i915_gem_object_pin(bo, PAGE_SIZE);
2694 if (ret) {
2695 DRM_ERROR("failed to pin cursor bo\n");
7f9872e0 2696 goto fail_locked;
71acb5eb 2697 }
79e53945 2698 addr = obj_priv->gtt_offset;
71acb5eb
DA
2699 } else {
2700 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
2701 if (ret) {
2702 DRM_ERROR("failed to attach phys object\n");
7f9872e0 2703 goto fail_locked;
71acb5eb
DA
2704 }
2705 addr = obj_priv->phys_obj->handle->busaddr;
3f8bc370
KH
2706 }
2707
14b60391
JB
2708 if (!IS_I9XX(dev))
2709 I915_WRITE(CURSIZE, (height << 12) | width);
2710
2711 /* Hooray for CUR*CNTR differences */
2712 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
2713 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
2714 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
2715 temp |= (pipe << 28); /* Connect to correct pipe */
2716 } else {
2717 temp &= ~(CURSOR_FORMAT_MASK);
2718 temp |= CURSOR_ENABLE;
2719 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
2720 }
79e53945 2721
3f8bc370 2722 finish:
79e53945
JB
2723 I915_WRITE(control, temp);
2724 I915_WRITE(base, addr);
2725
3f8bc370 2726 if (intel_crtc->cursor_bo) {
71acb5eb
DA
2727 if (dev_priv->cursor_needs_physical) {
2728 if (intel_crtc->cursor_bo != bo)
2729 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
2730 } else
2731 i915_gem_object_unpin(intel_crtc->cursor_bo);
3f8bc370
KH
2732 drm_gem_object_unreference(intel_crtc->cursor_bo);
2733 }
7f9872e0 2734 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
2735
2736 intel_crtc->cursor_addr = addr;
2737 intel_crtc->cursor_bo = bo;
2738
79e53945 2739 return 0;
34b8686e
DA
2740fail:
2741 mutex_lock(&dev->struct_mutex);
7f9872e0 2742fail_locked:
34b8686e
DA
2743 drm_gem_object_unreference(bo);
2744 mutex_unlock(&dev->struct_mutex);
2745 return ret;
79e53945
JB
2746}
2747
2748static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
2749{
2750 struct drm_device *dev = crtc->dev;
2751 struct drm_i915_private *dev_priv = dev->dev_private;
2752 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2753 int pipe = intel_crtc->pipe;
2754 uint32_t temp = 0;
2755 uint32_t adder;
2756
2757 if (x < 0) {
2245fda8 2758 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
79e53945
JB
2759 x = -x;
2760 }
2761 if (y < 0) {
2245fda8 2762 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
79e53945
JB
2763 y = -y;
2764 }
2765
2245fda8
KP
2766 temp |= x << CURSOR_X_SHIFT;
2767 temp |= y << CURSOR_Y_SHIFT;
79e53945
JB
2768
2769 adder = intel_crtc->cursor_addr;
2770 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
2771 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
2772
2773 return 0;
2774}
2775
2776/** Sets the color ramps on behalf of RandR */
2777void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
2778 u16 blue, int regno)
2779{
2780 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2781
2782 intel_crtc->lut_r[regno] = red >> 8;
2783 intel_crtc->lut_g[regno] = green >> 8;
2784 intel_crtc->lut_b[regno] = blue >> 8;
2785}
2786
2787static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
2788 u16 *blue, uint32_t size)
2789{
2790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2791 int i;
2792
2793 if (size != 256)
2794 return;
2795
2796 for (i = 0; i < 256; i++) {
2797 intel_crtc->lut_r[i] = red[i] >> 8;
2798 intel_crtc->lut_g[i] = green[i] >> 8;
2799 intel_crtc->lut_b[i] = blue[i] >> 8;
2800 }
2801
2802 intel_crtc_load_lut(crtc);
2803}
2804
2805/**
2806 * Get a pipe with a simple mode set on it for doing load-based monitor
2807 * detection.
2808 *
2809 * It will be up to the load-detect code to adjust the pipe as appropriate for
2810 * its requirements. The pipe will be connected to no other outputs.
2811 *
2812 * Currently this code will only succeed if there is a pipe with no outputs
2813 * configured for it. In the future, it could choose to temporarily disable
2814 * some outputs to free up a pipe for its use.
2815 *
2816 * \return crtc, or NULL if no pipes are available.
2817 */
2818
2819/* VESA 640x480x72Hz mode to set on the pipe */
2820static struct drm_display_mode load_detect_mode = {
2821 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
2822 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
2823};
2824
2825struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
2826 struct drm_display_mode *mode,
2827 int *dpms_mode)
2828{
2829 struct intel_crtc *intel_crtc;
2830 struct drm_crtc *possible_crtc;
2831 struct drm_crtc *supported_crtc =NULL;
2832 struct drm_encoder *encoder = &intel_output->enc;
2833 struct drm_crtc *crtc = NULL;
2834 struct drm_device *dev = encoder->dev;
2835 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2836 struct drm_crtc_helper_funcs *crtc_funcs;
2837 int i = -1;
2838
2839 /*
2840 * Algorithm gets a little messy:
2841 * - if the connector already has an assigned crtc, use it (but make
2842 * sure it's on first)
2843 * - try to find the first unused crtc that can drive this connector,
2844 * and use that if we find one
2845 * - if there are no unused crtcs available, try to use the first
2846 * one we found that supports the connector
2847 */
2848
2849 /* See if we already have a CRTC for this connector */
2850 if (encoder->crtc) {
2851 crtc = encoder->crtc;
2852 /* Make sure the crtc and connector are running */
2853 intel_crtc = to_intel_crtc(crtc);
2854 *dpms_mode = intel_crtc->dpms_mode;
2855 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2856 crtc_funcs = crtc->helper_private;
2857 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2858 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2859 }
2860 return crtc;
2861 }
2862
2863 /* Find an unused one (if possible) */
2864 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
2865 i++;
2866 if (!(encoder->possible_crtcs & (1 << i)))
2867 continue;
2868 if (!possible_crtc->enabled) {
2869 crtc = possible_crtc;
2870 break;
2871 }
2872 if (!supported_crtc)
2873 supported_crtc = possible_crtc;
2874 }
2875
2876 /*
2877 * If we didn't find an unused CRTC, don't use any.
2878 */
2879 if (!crtc) {
2880 return NULL;
2881 }
2882
2883 encoder->crtc = crtc;
03d60699 2884 intel_output->base.encoder = encoder;
79e53945
JB
2885 intel_output->load_detect_temp = true;
2886
2887 intel_crtc = to_intel_crtc(crtc);
2888 *dpms_mode = intel_crtc->dpms_mode;
2889
2890 if (!crtc->enabled) {
2891 if (!mode)
2892 mode = &load_detect_mode;
3c4fdcfb 2893 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
79e53945
JB
2894 } else {
2895 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2896 crtc_funcs = crtc->helper_private;
2897 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2898 }
2899
2900 /* Add this connector to the crtc */
2901 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
2902 encoder_funcs->commit(encoder);
2903 }
2904 /* let the connector get through one full cycle before testing */
2905 intel_wait_for_vblank(dev);
2906
2907 return crtc;
2908}
2909
2910void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
2911{
2912 struct drm_encoder *encoder = &intel_output->enc;
2913 struct drm_device *dev = encoder->dev;
2914 struct drm_crtc *crtc = encoder->crtc;
2915 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2916 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2917
2918 if (intel_output->load_detect_temp) {
2919 encoder->crtc = NULL;
03d60699 2920 intel_output->base.encoder = NULL;
79e53945
JB
2921 intel_output->load_detect_temp = false;
2922 crtc->enabled = drm_helper_crtc_in_use(crtc);
2923 drm_helper_disable_unused_functions(dev);
2924 }
2925
2926 /* Switch crtc and output back off if necessary */
2927 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
2928 if (encoder->crtc == crtc)
2929 encoder_funcs->dpms(encoder, dpms_mode);
2930 crtc_funcs->dpms(crtc, dpms_mode);
2931 }
2932}
2933
2934/* Returns the clock of the currently programmed mode of the given pipe. */
2935static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
2936{
2937 struct drm_i915_private *dev_priv = dev->dev_private;
2938 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2939 int pipe = intel_crtc->pipe;
2940 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
2941 u32 fp;
2942 intel_clock_t clock;
2943
2944 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
2945 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
2946 else
2947 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
2948
2949 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
2177832f
SL
2950 if (IS_IGD(dev)) {
2951 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
2952 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
2953 } else {
2954 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
2955 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
2956 }
2957
79e53945 2958 if (IS_I9XX(dev)) {
2177832f
SL
2959 if (IS_IGD(dev))
2960 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
2961 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
2962 else
2963 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
2964 DPLL_FPA01_P1_POST_DIV_SHIFT);
2965
2966 switch (dpll & DPLL_MODE_MASK) {
2967 case DPLLB_MODE_DAC_SERIAL:
2968 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
2969 5 : 10;
2970 break;
2971 case DPLLB_MODE_LVDS:
2972 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
2973 7 : 14;
2974 break;
2975 default:
2976 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
2977 "mode\n", (int)(dpll & DPLL_MODE_MASK));
2978 return 0;
2979 }
2980
2981 /* XXX: Handle the 100Mhz refclk */
2177832f 2982 intel_clock(dev, 96000, &clock);
79e53945
JB
2983 } else {
2984 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
2985
2986 if (is_lvds) {
2987 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
2988 DPLL_FPA01_P1_POST_DIV_SHIFT);
2989 clock.p2 = 14;
2990
2991 if ((dpll & PLL_REF_INPUT_MASK) ==
2992 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
2993 /* XXX: might not be 66MHz */
2177832f 2994 intel_clock(dev, 66000, &clock);
79e53945 2995 } else
2177832f 2996 intel_clock(dev, 48000, &clock);
79e53945
JB
2997 } else {
2998 if (dpll & PLL_P1_DIVIDE_BY_TWO)
2999 clock.p1 = 2;
3000 else {
3001 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3002 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3003 }
3004 if (dpll & PLL_P2_DIVIDE_BY_4)
3005 clock.p2 = 4;
3006 else
3007 clock.p2 = 2;
3008
2177832f 3009 intel_clock(dev, 48000, &clock);
79e53945
JB
3010 }
3011 }
3012
3013 /* XXX: It would be nice to validate the clocks, but we can't reuse
3014 * i830PllIsValid() because it relies on the xf86_config connector
3015 * configuration being accurate, which it isn't necessarily.
3016 */
3017
3018 return clock.dot;
3019}
3020
3021/** Returns the currently programmed mode of the given pipe. */
3022struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3023 struct drm_crtc *crtc)
3024{
3025 struct drm_i915_private *dev_priv = dev->dev_private;
3026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3027 int pipe = intel_crtc->pipe;
3028 struct drm_display_mode *mode;
3029 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3030 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3031 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3032 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3033
3034 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3035 if (!mode)
3036 return NULL;
3037
3038 mode->clock = intel_crtc_clock_get(dev, crtc);
3039 mode->hdisplay = (htot & 0xffff) + 1;
3040 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3041 mode->hsync_start = (hsync & 0xffff) + 1;
3042 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3043 mode->vdisplay = (vtot & 0xffff) + 1;
3044 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3045 mode->vsync_start = (vsync & 0xffff) + 1;
3046 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3047
3048 drm_mode_set_name(mode);
3049 drm_mode_set_crtcinfo(mode, 0);
3050
3051 return mode;
3052}
3053
3054static void intel_crtc_destroy(struct drm_crtc *crtc)
3055{
3056 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3057
7ff14559
DA
3058 if (intel_crtc->mode_set.mode)
3059 drm_mode_destroy(crtc->dev, intel_crtc->mode_set.mode);
79e53945
JB
3060 drm_crtc_cleanup(crtc);
3061 kfree(intel_crtc);
3062}
3063
3064static const struct drm_crtc_helper_funcs intel_helper_funcs = {
3065 .dpms = intel_crtc_dpms,
3066 .mode_fixup = intel_crtc_mode_fixup,
3067 .mode_set = intel_crtc_mode_set,
3068 .mode_set_base = intel_pipe_set_base,
3069 .prepare = intel_crtc_prepare,
3070 .commit = intel_crtc_commit,
3071};
3072
3073static const struct drm_crtc_funcs intel_crtc_funcs = {
3074 .cursor_set = intel_crtc_cursor_set,
3075 .cursor_move = intel_crtc_cursor_move,
3076 .gamma_set = intel_crtc_gamma_set,
3077 .set_config = drm_crtc_helper_set_config,
3078 .destroy = intel_crtc_destroy,
3079};
3080
3081
b358d0a6 3082static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945
JB
3083{
3084 struct intel_crtc *intel_crtc;
3085 int i;
3086
3087 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
3088 if (intel_crtc == NULL)
3089 return;
3090
3091 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
3092
3093 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
3094 intel_crtc->pipe = pipe;
7662c8bd 3095 intel_crtc->plane = pipe;
79e53945
JB
3096 for (i = 0; i < 256; i++) {
3097 intel_crtc->lut_r[i] = i;
3098 intel_crtc->lut_g[i] = i;
3099 intel_crtc->lut_b[i] = i;
3100 }
3101
3102 intel_crtc->cursor_addr = 0;
3103 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
3104 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
3105
3106 intel_crtc->mode_set.crtc = &intel_crtc->base;
3107 intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
3108 intel_crtc->mode_set.num_connectors = 0;
3109
3110 if (i915_fbpercrtc) {
3111
3112
3113
3114 }
3115}
3116
08d7b3d1
CW
3117int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
3118 struct drm_file *file_priv)
3119{
3120 drm_i915_private_t *dev_priv = dev->dev_private;
3121 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
3122 struct drm_crtc *crtc = NULL;
3123 int pipe = -1;
3124
3125 if (!dev_priv) {
3126 DRM_ERROR("called with no initialization\n");
3127 return -EINVAL;
3128 }
3129
3130 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3132 if (crtc->base.id == pipe_from_crtc_id->crtc_id) {
3133 pipe = intel_crtc->pipe;
3134 break;
3135 }
3136 }
3137
3138 if (pipe == -1) {
3139 DRM_ERROR("no such CRTC id\n");
3140 return -EINVAL;
3141 }
3142
3143 pipe_from_crtc_id->pipe = pipe;
3144
3145 return 0;
3146}
3147
79e53945
JB
3148struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
3149{
3150 struct drm_crtc *crtc = NULL;
3151
3152 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3153 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3154 if (intel_crtc->pipe == pipe)
3155 break;
3156 }
3157 return crtc;
3158}
3159
b358d0a6 3160static int intel_connector_clones(struct drm_device *dev, int type_mask)
79e53945
JB
3161{
3162 int index_mask = 0;
3163 struct drm_connector *connector;
3164 int entry = 0;
3165
3166 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3167 struct intel_output *intel_output = to_intel_output(connector);
3168 if (type_mask & (1 << intel_output->type))
3169 index_mask |= (1 << entry);
3170 entry++;
3171 }
3172 return index_mask;
3173}
3174
3175
3176static void intel_setup_outputs(struct drm_device *dev)
3177{
725e30ad 3178 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
3179 struct drm_connector *connector;
3180
3181 intel_crt_init(dev);
3182
3183 /* Set up integrated LVDS */
541998a1 3184 if (IS_MOBILE(dev) && !IS_I830(dev))
79e53945
JB
3185 intel_lvds_init(dev);
3186
2c07245f 3187 if (IS_IGDNG(dev)) {
30ad48b7
ZW
3188 int found;
3189
32f9d658
ZW
3190 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
3191 intel_dp_init(dev, DP_A);
3192
30ad48b7
ZW
3193 if (I915_READ(HDMIB) & PORT_DETECTED) {
3194 /* check SDVOB */
3195 /* found = intel_sdvo_init(dev, HDMIB); */
3196 found = 0;
3197 if (!found)
3198 intel_hdmi_init(dev, HDMIB);
5eb08b69
ZW
3199 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
3200 intel_dp_init(dev, PCH_DP_B);
30ad48b7
ZW
3201 }
3202
3203 if (I915_READ(HDMIC) & PORT_DETECTED)
3204 intel_hdmi_init(dev, HDMIC);
3205
3206 if (I915_READ(HDMID) & PORT_DETECTED)
3207 intel_hdmi_init(dev, HDMID);
3208
5eb08b69
ZW
3209 if (I915_READ(PCH_DP_C) & DP_DETECTED)
3210 intel_dp_init(dev, PCH_DP_C);
3211
3212 if (I915_READ(PCH_DP_D) & DP_DETECTED)
3213 intel_dp_init(dev, PCH_DP_D);
3214
2c07245f 3215 } else if (IS_I9XX(dev)) {
7d57382e 3216 int found;
13520b05 3217 u32 reg;
7d57382e 3218
725e30ad
EA
3219 if (I915_READ(SDVOB) & SDVO_DETECTED) {
3220 found = intel_sdvo_init(dev, SDVOB);
3221 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
3222 intel_hdmi_init(dev, SDVOB);
a4fc5ed6
KP
3223 if (!found && SUPPORTS_INTEGRATED_DP(dev))
3224 intel_dp_init(dev, DP_B);
725e30ad 3225 }
13520b05
KH
3226
3227 /* Before G4X SDVOC doesn't have its own detect register */
3228 if (IS_G4X(dev))
3229 reg = SDVOC;
3230 else
3231 reg = SDVOB;
3232
3233 if (I915_READ(reg) & SDVO_DETECTED) {
725e30ad
EA
3234 found = intel_sdvo_init(dev, SDVOC);
3235 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
3236 intel_hdmi_init(dev, SDVOC);
a4fc5ed6
KP
3237 if (!found && SUPPORTS_INTEGRATED_DP(dev))
3238 intel_dp_init(dev, DP_C);
725e30ad 3239 }
a4fc5ed6
KP
3240 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
3241 intel_dp_init(dev, DP_D);
79e53945
JB
3242 } else
3243 intel_dvo_init(dev);
3244
2c07245f 3245 if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
79e53945
JB
3246 intel_tv_init(dev);
3247
3248 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3249 struct intel_output *intel_output = to_intel_output(connector);
3250 struct drm_encoder *encoder = &intel_output->enc;
3251 int crtc_mask = 0, clone_mask = 0;
3252
3253 /* valid crtcs */
3254 switch(intel_output->type) {
7d57382e
EA
3255 case INTEL_OUTPUT_HDMI:
3256 crtc_mask = ((1 << 0)|
3257 (1 << 1));
3258 clone_mask = ((1 << INTEL_OUTPUT_HDMI));
3259 break;
79e53945
JB
3260 case INTEL_OUTPUT_DVO:
3261 case INTEL_OUTPUT_SDVO:
3262 crtc_mask = ((1 << 0)|
3263 (1 << 1));
3264 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
3265 (1 << INTEL_OUTPUT_DVO) |
3266 (1 << INTEL_OUTPUT_SDVO));
3267 break;
3268 case INTEL_OUTPUT_ANALOG:
3269 crtc_mask = ((1 << 0)|
3270 (1 << 1));
3271 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
3272 (1 << INTEL_OUTPUT_DVO) |
3273 (1 << INTEL_OUTPUT_SDVO));
3274 break;
3275 case INTEL_OUTPUT_LVDS:
3276 crtc_mask = (1 << 1);
3277 clone_mask = (1 << INTEL_OUTPUT_LVDS);
3278 break;
3279 case INTEL_OUTPUT_TVOUT:
3280 crtc_mask = ((1 << 0) |
3281 (1 << 1));
3282 clone_mask = (1 << INTEL_OUTPUT_TVOUT);
3283 break;
a4fc5ed6
KP
3284 case INTEL_OUTPUT_DISPLAYPORT:
3285 crtc_mask = ((1 << 0) |
3286 (1 << 1));
3287 clone_mask = (1 << INTEL_OUTPUT_DISPLAYPORT);
3288 break;
32f9d658
ZW
3289 case INTEL_OUTPUT_EDP:
3290 crtc_mask = (1 << 1);
3291 clone_mask = (1 << INTEL_OUTPUT_EDP);
3292 break;
79e53945
JB
3293 }
3294 encoder->possible_crtcs = crtc_mask;
3295 encoder->possible_clones = intel_connector_clones(dev, clone_mask);
3296 }
3297}
3298
3299static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
3300{
3301 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3302 struct drm_device *dev = fb->dev;
3303
3304 if (fb->fbdev)
3305 intelfb_remove(dev, fb);
3306
3307 drm_framebuffer_cleanup(fb);
3308 mutex_lock(&dev->struct_mutex);
3309 drm_gem_object_unreference(intel_fb->obj);
3310 mutex_unlock(&dev->struct_mutex);
3311
3312 kfree(intel_fb);
3313}
3314
3315static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
3316 struct drm_file *file_priv,
3317 unsigned int *handle)
3318{
3319 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3320 struct drm_gem_object *object = intel_fb->obj;
3321
3322 return drm_gem_handle_create(file_priv, object, handle);
3323}
3324
3325static const struct drm_framebuffer_funcs intel_fb_funcs = {
3326 .destroy = intel_user_framebuffer_destroy,
3327 .create_handle = intel_user_framebuffer_create_handle,
3328};
3329
3330int intel_framebuffer_create(struct drm_device *dev,
3331 struct drm_mode_fb_cmd *mode_cmd,
3332 struct drm_framebuffer **fb,
3333 struct drm_gem_object *obj)
3334{
3335 struct intel_framebuffer *intel_fb;
3336 int ret;
3337
3338 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
3339 if (!intel_fb)
3340 return -ENOMEM;
3341
3342 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
3343 if (ret) {
3344 DRM_ERROR("framebuffer init failed %d\n", ret);
3345 return ret;
3346 }
3347
3348 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
3349
3350 intel_fb->obj = obj;
3351
3352 *fb = &intel_fb->base;
3353
3354 return 0;
3355}
3356
3357
3358static struct drm_framebuffer *
3359intel_user_framebuffer_create(struct drm_device *dev,
3360 struct drm_file *filp,
3361 struct drm_mode_fb_cmd *mode_cmd)
3362{
3363 struct drm_gem_object *obj;
3364 struct drm_framebuffer *fb;
3365 int ret;
3366
3367 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
3368 if (!obj)
3369 return NULL;
3370
3371 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
3372 if (ret) {
496818f0 3373 mutex_lock(&dev->struct_mutex);
79e53945 3374 drm_gem_object_unreference(obj);
496818f0 3375 mutex_unlock(&dev->struct_mutex);
79e53945
JB
3376 return NULL;
3377 }
3378
3379 return fb;
3380}
3381
79e53945 3382static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945
JB
3383 .fb_create = intel_user_framebuffer_create,
3384 .fb_changed = intelfb_probe,
3385};
3386
3387void intel_modeset_init(struct drm_device *dev)
3388{
3389 int num_pipe;
3390 int i;
3391
3392 drm_mode_config_init(dev);
3393
3394 dev->mode_config.min_width = 0;
3395 dev->mode_config.min_height = 0;
3396
3397 dev->mode_config.funcs = (void *)&intel_mode_funcs;
3398
3399 if (IS_I965G(dev)) {
3400 dev->mode_config.max_width = 8192;
3401 dev->mode_config.max_height = 8192;
5e4d6fa7
KP
3402 } else if (IS_I9XX(dev)) {
3403 dev->mode_config.max_width = 4096;
3404 dev->mode_config.max_height = 4096;
79e53945
JB
3405 } else {
3406 dev->mode_config.max_width = 2048;
3407 dev->mode_config.max_height = 2048;
3408 }
3409
3410 /* set memory base */
3411 if (IS_I9XX(dev))
3412 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
3413 else
3414 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
3415
3416 if (IS_MOBILE(dev) || IS_I9XX(dev))
3417 num_pipe = 2;
3418 else
3419 num_pipe = 1;
3420 DRM_DEBUG("%d display pipe%s available.\n",
3421 num_pipe, num_pipe > 1 ? "s" : "");
3422
3423 for (i = 0; i < num_pipe; i++) {
3424 intel_crtc_init(dev, i);
3425 }
3426
3427 intel_setup_outputs(dev);
3428}
3429
3430void intel_modeset_cleanup(struct drm_device *dev)
3431{
3432 drm_mode_config_cleanup(dev);
3433}
3434
3435
3436/* current intel driver doesn't take advantage of encoders
3437 always give back the encoder for the connector
3438*/
3439struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
3440{
3441 struct intel_output *intel_output = to_intel_output(connector);
3442
3443 return &intel_output->enc;
3444}