]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
Merge branch 'drm-intel-fixes' into drm-intel-next
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
23b2f8bb 27#include <linux/cpufreq.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
79e53945
JB
34#include "drmP.h"
35#include "intel_drv.h"
36#include "i915_drm.h"
37#include "i915_drv.h"
e5510fac 38#include "i915_trace.h"
ab2c0672 39#include "drm_dp_helper.h"
79e53945
JB
40
41#include "drm_crtc_helper.h"
42
32f9d658
ZW
43#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44
79e53945 45bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
7662c8bd 46static void intel_update_watermarks(struct drm_device *dev);
3dec0095 47static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 48static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
49
50typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60} intel_clock_t;
61
62typedef struct {
63 int min, max;
64} intel_range_t;
65
66typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69} intel_p2_t;
70
71#define INTEL_P2_NUM 2
d4906093
ML
72typedef struct intel_limit intel_limit_t;
73struct intel_limit {
79e53945
JB
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
d4906093
ML
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *);
78};
79e53945 79
2377b741
JB
80/* FDI */
81#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
d4906093
ML
83static bool
84intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85 int target, int refclk, intel_clock_t *best_clock);
86static bool
87intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
88 int target, int refclk, intel_clock_t *best_clock);
79e53945 89
a4fc5ed6
KP
90static bool
91intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
92 int target, int refclk, intel_clock_t *best_clock);
5eb08b69 93static bool
f2b115e6
AJ
94intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
95 int target, int refclk, intel_clock_t *best_clock);
a4fc5ed6 96
021357ac
CW
97static inline u32 /* units of 100MHz */
98intel_fdi_link_freq(struct drm_device *dev)
99{
8b99e68c
CW
100 if (IS_GEN5(dev)) {
101 struct drm_i915_private *dev_priv = dev->dev_private;
102 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
103 } else
104 return 27;
021357ac
CW
105}
106
e4b36699 107static const intel_limit_t intel_limits_i8xx_dvo = {
273e27ca
EA
108 .dot = { .min = 25000, .max = 350000 },
109 .vco = { .min = 930000, .max = 1400000 },
110 .n = { .min = 3, .max = 16 },
111 .m = { .min = 96, .max = 140 },
112 .m1 = { .min = 18, .max = 26 },
113 .m2 = { .min = 6, .max = 16 },
114 .p = { .min = 4, .max = 128 },
115 .p1 = { .min = 2, .max = 33 },
116 .p2 = { .dot_limit = 165000,
117 .p2_slow = 4, .p2_fast = 2 },
d4906093 118 .find_pll = intel_find_best_PLL,
e4b36699
KP
119};
120
121static const intel_limit_t intel_limits_i8xx_lvds = {
273e27ca
EA
122 .dot = { .min = 25000, .max = 350000 },
123 .vco = { .min = 930000, .max = 1400000 },
124 .n = { .min = 3, .max = 16 },
125 .m = { .min = 96, .max = 140 },
126 .m1 = { .min = 18, .max = 26 },
127 .m2 = { .min = 6, .max = 16 },
128 .p = { .min = 4, .max = 128 },
129 .p1 = { .min = 1, .max = 6 },
130 .p2 = { .dot_limit = 165000,
131 .p2_slow = 14, .p2_fast = 7 },
d4906093 132 .find_pll = intel_find_best_PLL,
e4b36699 133};
273e27ca 134
e4b36699 135static const intel_limit_t intel_limits_i9xx_sdvo = {
273e27ca
EA
136 .dot = { .min = 20000, .max = 400000 },
137 .vco = { .min = 1400000, .max = 2800000 },
138 .n = { .min = 1, .max = 6 },
139 .m = { .min = 70, .max = 120 },
140 .m1 = { .min = 10, .max = 22 },
141 .m2 = { .min = 5, .max = 9 },
142 .p = { .min = 5, .max = 80 },
143 .p1 = { .min = 1, .max = 8 },
144 .p2 = { .dot_limit = 200000,
145 .p2_slow = 10, .p2_fast = 5 },
d4906093 146 .find_pll = intel_find_best_PLL,
e4b36699
KP
147};
148
149static const intel_limit_t intel_limits_i9xx_lvds = {
273e27ca
EA
150 .dot = { .min = 20000, .max = 400000 },
151 .vco = { .min = 1400000, .max = 2800000 },
152 .n = { .min = 1, .max = 6 },
153 .m = { .min = 70, .max = 120 },
154 .m1 = { .min = 10, .max = 22 },
155 .m2 = { .min = 5, .max = 9 },
156 .p = { .min = 7, .max = 98 },
157 .p1 = { .min = 1, .max = 8 },
158 .p2 = { .dot_limit = 112000,
159 .p2_slow = 14, .p2_fast = 7 },
d4906093 160 .find_pll = intel_find_best_PLL,
e4b36699
KP
161};
162
273e27ca 163
e4b36699 164static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
165 .dot = { .min = 25000, .max = 270000 },
166 .vco = { .min = 1750000, .max = 3500000},
167 .n = { .min = 1, .max = 4 },
168 .m = { .min = 104, .max = 138 },
169 .m1 = { .min = 17, .max = 23 },
170 .m2 = { .min = 5, .max = 11 },
171 .p = { .min = 10, .max = 30 },
172 .p1 = { .min = 1, .max = 3},
173 .p2 = { .dot_limit = 270000,
174 .p2_slow = 10,
175 .p2_fast = 10
044c7c41 176 },
d4906093 177 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
178};
179
180static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
181 .dot = { .min = 22000, .max = 400000 },
182 .vco = { .min = 1750000, .max = 3500000},
183 .n = { .min = 1, .max = 4 },
184 .m = { .min = 104, .max = 138 },
185 .m1 = { .min = 16, .max = 23 },
186 .m2 = { .min = 5, .max = 11 },
187 .p = { .min = 5, .max = 80 },
188 .p1 = { .min = 1, .max = 8},
189 .p2 = { .dot_limit = 165000,
190 .p2_slow = 10, .p2_fast = 5 },
d4906093 191 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
192};
193
194static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
195 .dot = { .min = 20000, .max = 115000 },
196 .vco = { .min = 1750000, .max = 3500000 },
197 .n = { .min = 1, .max = 3 },
198 .m = { .min = 104, .max = 138 },
199 .m1 = { .min = 17, .max = 23 },
200 .m2 = { .min = 5, .max = 11 },
201 .p = { .min = 28, .max = 112 },
202 .p1 = { .min = 2, .max = 8 },
203 .p2 = { .dot_limit = 0,
204 .p2_slow = 14, .p2_fast = 14
044c7c41 205 },
d4906093 206 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
207};
208
209static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
210 .dot = { .min = 80000, .max = 224000 },
211 .vco = { .min = 1750000, .max = 3500000 },
212 .n = { .min = 1, .max = 3 },
213 .m = { .min = 104, .max = 138 },
214 .m1 = { .min = 17, .max = 23 },
215 .m2 = { .min = 5, .max = 11 },
216 .p = { .min = 14, .max = 42 },
217 .p1 = { .min = 2, .max = 6 },
218 .p2 = { .dot_limit = 0,
219 .p2_slow = 7, .p2_fast = 7
044c7c41 220 },
d4906093 221 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
222};
223
224static const intel_limit_t intel_limits_g4x_display_port = {
273e27ca
EA
225 .dot = { .min = 161670, .max = 227000 },
226 .vco = { .min = 1750000, .max = 3500000},
227 .n = { .min = 1, .max = 2 },
228 .m = { .min = 97, .max = 108 },
229 .m1 = { .min = 0x10, .max = 0x12 },
230 .m2 = { .min = 0x05, .max = 0x06 },
231 .p = { .min = 10, .max = 20 },
232 .p1 = { .min = 1, .max = 2},
233 .p2 = { .dot_limit = 0,
234 .p2_slow = 10, .p2_fast = 10 },
a4fc5ed6 235 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
236};
237
f2b115e6 238static const intel_limit_t intel_limits_pineview_sdvo = {
273e27ca
EA
239 .dot = { .min = 20000, .max = 400000},
240 .vco = { .min = 1700000, .max = 3500000 },
241 /* Pineview's Ncounter is a ring counter */
242 .n = { .min = 3, .max = 6 },
243 .m = { .min = 2, .max = 256 },
244 /* Pineview only has one combined m divider, which we treat as m2. */
245 .m1 = { .min = 0, .max = 0 },
246 .m2 = { .min = 0, .max = 254 },
247 .p = { .min = 5, .max = 80 },
248 .p1 = { .min = 1, .max = 8 },
249 .p2 = { .dot_limit = 200000,
250 .p2_slow = 10, .p2_fast = 5 },
6115707b 251 .find_pll = intel_find_best_PLL,
e4b36699
KP
252};
253
f2b115e6 254static const intel_limit_t intel_limits_pineview_lvds = {
273e27ca
EA
255 .dot = { .min = 20000, .max = 400000 },
256 .vco = { .min = 1700000, .max = 3500000 },
257 .n = { .min = 3, .max = 6 },
258 .m = { .min = 2, .max = 256 },
259 .m1 = { .min = 0, .max = 0 },
260 .m2 = { .min = 0, .max = 254 },
261 .p = { .min = 7, .max = 112 },
262 .p1 = { .min = 1, .max = 8 },
263 .p2 = { .dot_limit = 112000,
264 .p2_slow = 14, .p2_fast = 14 },
6115707b 265 .find_pll = intel_find_best_PLL,
e4b36699
KP
266};
267
273e27ca
EA
268/* Ironlake / Sandybridge
269 *
270 * We calculate clock using (register_value + 2) for N/M1/M2, so here
271 * the range value for them is (actual_value - 2).
272 */
b91ad0ec 273static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
274 .dot = { .min = 25000, .max = 350000 },
275 .vco = { .min = 1760000, .max = 3510000 },
276 .n = { .min = 1, .max = 5 },
277 .m = { .min = 79, .max = 127 },
278 .m1 = { .min = 12, .max = 22 },
279 .m2 = { .min = 5, .max = 9 },
280 .p = { .min = 5, .max = 80 },
281 .p1 = { .min = 1, .max = 8 },
282 .p2 = { .dot_limit = 225000,
283 .p2_slow = 10, .p2_fast = 5 },
4547668a 284 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
285};
286
b91ad0ec 287static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
288 .dot = { .min = 25000, .max = 350000 },
289 .vco = { .min = 1760000, .max = 3510000 },
290 .n = { .min = 1, .max = 3 },
291 .m = { .min = 79, .max = 118 },
292 .m1 = { .min = 12, .max = 22 },
293 .m2 = { .min = 5, .max = 9 },
294 .p = { .min = 28, .max = 112 },
295 .p1 = { .min = 2, .max = 8 },
296 .p2 = { .dot_limit = 225000,
297 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
298 .find_pll = intel_g4x_find_best_PLL,
299};
300
301static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
302 .dot = { .min = 25000, .max = 350000 },
303 .vco = { .min = 1760000, .max = 3510000 },
304 .n = { .min = 1, .max = 3 },
305 .m = { .min = 79, .max = 127 },
306 .m1 = { .min = 12, .max = 22 },
307 .m2 = { .min = 5, .max = 9 },
308 .p = { .min = 14, .max = 56 },
309 .p1 = { .min = 2, .max = 8 },
310 .p2 = { .dot_limit = 225000,
311 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
312 .find_pll = intel_g4x_find_best_PLL,
313};
314
273e27ca 315/* LVDS 100mhz refclk limits. */
b91ad0ec 316static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 2 },
320 .m = { .min = 79, .max = 126 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2,.max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
327 .find_pll = intel_g4x_find_best_PLL,
328};
329
330static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
331 .dot = { .min = 25000, .max = 350000 },
332 .vco = { .min = 1760000, .max = 3510000 },
333 .n = { .min = 1, .max = 3 },
334 .m = { .min = 79, .max = 126 },
335 .m1 = { .min = 12, .max = 22 },
336 .m2 = { .min = 5, .max = 9 },
337 .p = { .min = 14, .max = 42 },
338 .p1 = { .min = 2,.max = 6 },
339 .p2 = { .dot_limit = 225000,
340 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
341 .find_pll = intel_g4x_find_best_PLL,
342};
343
344static const intel_limit_t intel_limits_ironlake_display_port = {
273e27ca
EA
345 .dot = { .min = 25000, .max = 350000 },
346 .vco = { .min = 1760000, .max = 3510000},
347 .n = { .min = 1, .max = 2 },
348 .m = { .min = 81, .max = 90 },
349 .m1 = { .min = 12, .max = 22 },
350 .m2 = { .min = 5, .max = 9 },
351 .p = { .min = 10, .max = 20 },
352 .p1 = { .min = 1, .max = 2},
353 .p2 = { .dot_limit = 0,
354 .p2_slow = 10, .p2_fast = 10 },
4547668a 355 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
356};
357
1b894b59
CW
358static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
359 int refclk)
2c07245f 360{
b91ad0ec
ZW
361 struct drm_device *dev = crtc->dev;
362 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 363 const intel_limit_t *limit;
b91ad0ec
ZW
364
365 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b91ad0ec
ZW
366 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
367 LVDS_CLKB_POWER_UP) {
368 /* LVDS dual channel */
1b894b59 369 if (refclk == 100000)
b91ad0ec
ZW
370 limit = &intel_limits_ironlake_dual_lvds_100m;
371 else
372 limit = &intel_limits_ironlake_dual_lvds;
373 } else {
1b894b59 374 if (refclk == 100000)
b91ad0ec
ZW
375 limit = &intel_limits_ironlake_single_lvds_100m;
376 else
377 limit = &intel_limits_ironlake_single_lvds;
378 }
379 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
4547668a
ZY
380 HAS_eDP)
381 limit = &intel_limits_ironlake_display_port;
2c07245f 382 else
b91ad0ec 383 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
384
385 return limit;
386}
387
044c7c41
ML
388static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
389{
390 struct drm_device *dev = crtc->dev;
391 struct drm_i915_private *dev_priv = dev->dev_private;
392 const intel_limit_t *limit;
393
394 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
395 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
396 LVDS_CLKB_POWER_UP)
397 /* LVDS with dual channel */
e4b36699 398 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
399 else
400 /* LVDS with dual channel */
e4b36699 401 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
402 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
403 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 404 limit = &intel_limits_g4x_hdmi;
044c7c41 405 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 406 limit = &intel_limits_g4x_sdvo;
a4fc5ed6 407 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 408 limit = &intel_limits_g4x_display_port;
044c7c41 409 } else /* The option is for other outputs */
e4b36699 410 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
411
412 return limit;
413}
414
1b894b59 415static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
416{
417 struct drm_device *dev = crtc->dev;
418 const intel_limit_t *limit;
419
bad720ff 420 if (HAS_PCH_SPLIT(dev))
1b894b59 421 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 422 else if (IS_G4X(dev)) {
044c7c41 423 limit = intel_g4x_limit(crtc);
f2b115e6 424 } else if (IS_PINEVIEW(dev)) {
2177832f 425 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 426 limit = &intel_limits_pineview_lvds;
2177832f 427 else
f2b115e6 428 limit = &intel_limits_pineview_sdvo;
a6c45cf0
CW
429 } else if (!IS_GEN2(dev)) {
430 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431 limit = &intel_limits_i9xx_lvds;
432 else
433 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
434 } else {
435 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 436 limit = &intel_limits_i8xx_lvds;
79e53945 437 else
e4b36699 438 limit = &intel_limits_i8xx_dvo;
79e53945
JB
439 }
440 return limit;
441}
442
f2b115e6
AJ
443/* m1 is reserved as 0 in Pineview, n is a ring counter */
444static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 445{
2177832f
SL
446 clock->m = clock->m2 + 2;
447 clock->p = clock->p1 * clock->p2;
448 clock->vco = refclk * clock->m / clock->n;
449 clock->dot = clock->vco / clock->p;
450}
451
452static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
453{
f2b115e6
AJ
454 if (IS_PINEVIEW(dev)) {
455 pineview_clock(refclk, clock);
2177832f
SL
456 return;
457 }
79e53945
JB
458 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
459 clock->p = clock->p1 * clock->p2;
460 clock->vco = refclk * clock->m / (clock->n + 2);
461 clock->dot = clock->vco / clock->p;
462}
463
79e53945
JB
464/**
465 * Returns whether any output on the specified pipe is of the specified type
466 */
4ef69c7a 467bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 468{
4ef69c7a
CW
469 struct drm_device *dev = crtc->dev;
470 struct drm_mode_config *mode_config = &dev->mode_config;
471 struct intel_encoder *encoder;
472
473 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
474 if (encoder->base.crtc == crtc && encoder->type == type)
475 return true;
476
477 return false;
79e53945
JB
478}
479
7c04d1d9 480#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
481/**
482 * Returns whether the given set of divisors are valid for a given refclk with
483 * the given connectors.
484 */
485
1b894b59
CW
486static bool intel_PLL_is_valid(struct drm_device *dev,
487 const intel_limit_t *limit,
488 const intel_clock_t *clock)
79e53945 489{
79e53945
JB
490 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
491 INTELPllInvalid ("p1 out of range\n");
492 if (clock->p < limit->p.min || limit->p.max < clock->p)
493 INTELPllInvalid ("p out of range\n");
494 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
495 INTELPllInvalid ("m2 out of range\n");
496 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
497 INTELPllInvalid ("m1 out of range\n");
f2b115e6 498 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
79e53945
JB
499 INTELPllInvalid ("m1 <= m2\n");
500 if (clock->m < limit->m.min || limit->m.max < clock->m)
501 INTELPllInvalid ("m out of range\n");
502 if (clock->n < limit->n.min || limit->n.max < clock->n)
503 INTELPllInvalid ("n out of range\n");
504 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
505 INTELPllInvalid ("vco out of range\n");
506 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
507 * connector, etc., rather than just a single range.
508 */
509 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
510 INTELPllInvalid ("dot out of range\n");
511
512 return true;
513}
514
d4906093
ML
515static bool
516intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
517 int target, int refclk, intel_clock_t *best_clock)
518
79e53945
JB
519{
520 struct drm_device *dev = crtc->dev;
521 struct drm_i915_private *dev_priv = dev->dev_private;
522 intel_clock_t clock;
79e53945
JB
523 int err = target;
524
bc5e5718 525 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 526 (I915_READ(LVDS)) != 0) {
79e53945
JB
527 /*
528 * For LVDS, if the panel is on, just rely on its current
529 * settings for dual-channel. We haven't figured out how to
530 * reliably set up different single/dual channel state, if we
531 * even can.
532 */
533 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
534 LVDS_CLKB_POWER_UP)
535 clock.p2 = limit->p2.p2_fast;
536 else
537 clock.p2 = limit->p2.p2_slow;
538 } else {
539 if (target < limit->p2.dot_limit)
540 clock.p2 = limit->p2.p2_slow;
541 else
542 clock.p2 = limit->p2.p2_fast;
543 }
544
545 memset (best_clock, 0, sizeof (*best_clock));
546
42158660
ZY
547 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
548 clock.m1++) {
549 for (clock.m2 = limit->m2.min;
550 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
551 /* m1 is always 0 in Pineview */
552 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
553 break;
554 for (clock.n = limit->n.min;
555 clock.n <= limit->n.max; clock.n++) {
556 for (clock.p1 = limit->p1.min;
557 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
558 int this_err;
559
2177832f 560 intel_clock(dev, refclk, &clock);
1b894b59
CW
561 if (!intel_PLL_is_valid(dev, limit,
562 &clock))
79e53945
JB
563 continue;
564
565 this_err = abs(clock.dot - target);
566 if (this_err < err) {
567 *best_clock = clock;
568 err = this_err;
569 }
570 }
571 }
572 }
573 }
574
575 return (err != target);
576}
577
d4906093
ML
578static bool
579intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
580 int target, int refclk, intel_clock_t *best_clock)
581{
582 struct drm_device *dev = crtc->dev;
583 struct drm_i915_private *dev_priv = dev->dev_private;
584 intel_clock_t clock;
585 int max_n;
586 bool found;
6ba770dc
AJ
587 /* approximately equals target * 0.00585 */
588 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
589 found = false;
590
591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
592 int lvds_reg;
593
c619eed4 594 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
595 lvds_reg = PCH_LVDS;
596 else
597 lvds_reg = LVDS;
598 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
599 LVDS_CLKB_POWER_UP)
600 clock.p2 = limit->p2.p2_fast;
601 else
602 clock.p2 = limit->p2.p2_slow;
603 } else {
604 if (target < limit->p2.dot_limit)
605 clock.p2 = limit->p2.p2_slow;
606 else
607 clock.p2 = limit->p2.p2_fast;
608 }
609
610 memset(best_clock, 0, sizeof(*best_clock));
611 max_n = limit->n.max;
f77f13e2 612 /* based on hardware requirement, prefer smaller n to precision */
d4906093 613 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 614 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
615 for (clock.m1 = limit->m1.max;
616 clock.m1 >= limit->m1.min; clock.m1--) {
617 for (clock.m2 = limit->m2.max;
618 clock.m2 >= limit->m2.min; clock.m2--) {
619 for (clock.p1 = limit->p1.max;
620 clock.p1 >= limit->p1.min; clock.p1--) {
621 int this_err;
622
2177832f 623 intel_clock(dev, refclk, &clock);
1b894b59
CW
624 if (!intel_PLL_is_valid(dev, limit,
625 &clock))
d4906093 626 continue;
1b894b59
CW
627
628 this_err = abs(clock.dot - target);
d4906093
ML
629 if (this_err < err_most) {
630 *best_clock = clock;
631 err_most = this_err;
632 max_n = clock.n;
633 found = true;
634 }
635 }
636 }
637 }
638 }
2c07245f
ZW
639 return found;
640}
641
5eb08b69 642static bool
f2b115e6
AJ
643intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
644 int target, int refclk, intel_clock_t *best_clock)
5eb08b69
ZW
645{
646 struct drm_device *dev = crtc->dev;
647 intel_clock_t clock;
4547668a 648
5eb08b69
ZW
649 if (target < 200000) {
650 clock.n = 1;
651 clock.p1 = 2;
652 clock.p2 = 10;
653 clock.m1 = 12;
654 clock.m2 = 9;
655 } else {
656 clock.n = 2;
657 clock.p1 = 1;
658 clock.p2 = 10;
659 clock.m1 = 14;
660 clock.m2 = 8;
661 }
662 intel_clock(dev, refclk, &clock);
663 memcpy(best_clock, &clock, sizeof(intel_clock_t));
664 return true;
665}
666
a4fc5ed6
KP
667/* DisplayPort has only two frequencies, 162MHz and 270MHz */
668static bool
669intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
670 int target, int refclk, intel_clock_t *best_clock)
671{
5eddb70b
CW
672 intel_clock_t clock;
673 if (target < 200000) {
674 clock.p1 = 2;
675 clock.p2 = 10;
676 clock.n = 2;
677 clock.m1 = 23;
678 clock.m2 = 8;
679 } else {
680 clock.p1 = 1;
681 clock.p2 = 10;
682 clock.n = 1;
683 clock.m1 = 14;
684 clock.m2 = 2;
685 }
686 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
687 clock.p = (clock.p1 * clock.p2);
688 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
689 clock.vco = 0;
690 memcpy(best_clock, &clock, sizeof(intel_clock_t));
691 return true;
a4fc5ed6
KP
692}
693
9d0498a2
JB
694/**
695 * intel_wait_for_vblank - wait for vblank on a given pipe
696 * @dev: drm device
697 * @pipe: pipe to wait for
698 *
699 * Wait for vblank to occur on a given pipe. Needed for various bits of
700 * mode setting code.
701 */
702void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 703{
9d0498a2 704 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 705 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 706
300387c0
CW
707 /* Clear existing vblank status. Note this will clear any other
708 * sticky status fields as well.
709 *
710 * This races with i915_driver_irq_handler() with the result
711 * that either function could miss a vblank event. Here it is not
712 * fatal, as we will either wait upon the next vblank interrupt or
713 * timeout. Generally speaking intel_wait_for_vblank() is only
714 * called during modeset at which time the GPU should be idle and
715 * should *not* be performing page flips and thus not waiting on
716 * vblanks...
717 * Currently, the result of us stealing a vblank from the irq
718 * handler is that a single frame will be skipped during swapbuffers.
719 */
720 I915_WRITE(pipestat_reg,
721 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
722
9d0498a2 723 /* Wait for vblank interrupt bit to set */
481b6af3
CW
724 if (wait_for(I915_READ(pipestat_reg) &
725 PIPE_VBLANK_INTERRUPT_STATUS,
726 50))
9d0498a2
JB
727 DRM_DEBUG_KMS("vblank wait timed out\n");
728}
729
ab7ad7f6
KP
730/*
731 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
732 * @dev: drm device
733 * @pipe: pipe to wait for
734 *
735 * After disabling a pipe, we can't wait for vblank in the usual way,
736 * spinning on the vblank interrupt status bit, since we won't actually
737 * see an interrupt when the pipe is disabled.
738 *
ab7ad7f6
KP
739 * On Gen4 and above:
740 * wait for the pipe register state bit to turn off
741 *
742 * Otherwise:
743 * wait for the display line value to settle (it usually
744 * ends up stopping at the start of the next frame).
58e10eb9 745 *
9d0498a2 746 */
58e10eb9 747void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
748{
749 struct drm_i915_private *dev_priv = dev->dev_private;
ab7ad7f6
KP
750
751 if (INTEL_INFO(dev)->gen >= 4) {
58e10eb9 752 int reg = PIPECONF(pipe);
ab7ad7f6
KP
753
754 /* Wait for the Pipe State to go off */
58e10eb9
CW
755 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
756 100))
ab7ad7f6
KP
757 DRM_DEBUG_KMS("pipe_off wait timed out\n");
758 } else {
759 u32 last_line;
58e10eb9 760 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
761 unsigned long timeout = jiffies + msecs_to_jiffies(100);
762
763 /* Wait for the display line to settle */
764 do {
58e10eb9 765 last_line = I915_READ(reg) & DSL_LINEMASK;
ab7ad7f6 766 mdelay(5);
58e10eb9 767 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
ab7ad7f6
KP
768 time_after(timeout, jiffies));
769 if (time_after(jiffies, timeout))
770 DRM_DEBUG_KMS("pipe_off wait timed out\n");
771 }
79e53945
JB
772}
773
b24e7179
JB
774static const char *state_string(bool enabled)
775{
776 return enabled ? "on" : "off";
777}
778
779/* Only for pre-ILK configs */
780static void assert_pll(struct drm_i915_private *dev_priv,
781 enum pipe pipe, bool state)
782{
783 int reg;
784 u32 val;
785 bool cur_state;
786
787 reg = DPLL(pipe);
788 val = I915_READ(reg);
789 cur_state = !!(val & DPLL_VCO_ENABLE);
790 WARN(cur_state != state,
791 "PLL state assertion failure (expected %s, current %s)\n",
792 state_string(state), state_string(cur_state));
793}
794#define assert_pll_enabled(d, p) assert_pll(d, p, true)
795#define assert_pll_disabled(d, p) assert_pll(d, p, false)
796
040484af
JB
797/* For ILK+ */
798static void assert_pch_pll(struct drm_i915_private *dev_priv,
799 enum pipe pipe, bool state)
800{
801 int reg;
802 u32 val;
803 bool cur_state;
804
805 reg = PCH_DPLL(pipe);
806 val = I915_READ(reg);
807 cur_state = !!(val & DPLL_VCO_ENABLE);
808 WARN(cur_state != state,
809 "PCH PLL state assertion failure (expected %s, current %s)\n",
810 state_string(state), state_string(cur_state));
811}
812#define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
813#define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
814
815static void assert_fdi_tx(struct drm_i915_private *dev_priv,
816 enum pipe pipe, bool state)
817{
818 int reg;
819 u32 val;
820 bool cur_state;
821
822 reg = FDI_TX_CTL(pipe);
823 val = I915_READ(reg);
824 cur_state = !!(val & FDI_TX_ENABLE);
825 WARN(cur_state != state,
826 "FDI TX state assertion failure (expected %s, current %s)\n",
827 state_string(state), state_string(cur_state));
828}
829#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
830#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
831
832static void assert_fdi_rx(struct drm_i915_private *dev_priv,
833 enum pipe pipe, bool state)
834{
835 int reg;
836 u32 val;
837 bool cur_state;
838
839 reg = FDI_RX_CTL(pipe);
840 val = I915_READ(reg);
841 cur_state = !!(val & FDI_RX_ENABLE);
842 WARN(cur_state != state,
843 "FDI RX state assertion failure (expected %s, current %s)\n",
844 state_string(state), state_string(cur_state));
845}
846#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
847#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
848
849static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
850 enum pipe pipe)
851{
852 int reg;
853 u32 val;
854
855 /* ILK FDI PLL is always enabled */
856 if (dev_priv->info->gen == 5)
857 return;
858
859 reg = FDI_TX_CTL(pipe);
860 val = I915_READ(reg);
861 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
862}
863
864static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
865 enum pipe pipe)
866{
867 int reg;
868 u32 val;
869
870 reg = FDI_RX_CTL(pipe);
871 val = I915_READ(reg);
872 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
873}
874
ea0760cf
JB
875static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
876 enum pipe pipe)
877{
878 int pp_reg, lvds_reg;
879 u32 val;
880 enum pipe panel_pipe = PIPE_A;
881 bool locked = locked;
882
883 if (HAS_PCH_SPLIT(dev_priv->dev)) {
884 pp_reg = PCH_PP_CONTROL;
885 lvds_reg = PCH_LVDS;
886 } else {
887 pp_reg = PP_CONTROL;
888 lvds_reg = LVDS;
889 }
890
891 val = I915_READ(pp_reg);
892 if (!(val & PANEL_POWER_ON) ||
893 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
894 locked = false;
895
896 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
897 panel_pipe = PIPE_B;
898
899 WARN(panel_pipe == pipe && locked,
900 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 901 pipe_name(pipe));
ea0760cf
JB
902}
903
63d7bbe9
JB
904static void assert_pipe(struct drm_i915_private *dev_priv,
905 enum pipe pipe, bool state)
b24e7179
JB
906{
907 int reg;
908 u32 val;
63d7bbe9 909 bool cur_state;
b24e7179
JB
910
911 reg = PIPECONF(pipe);
912 val = I915_READ(reg);
63d7bbe9
JB
913 cur_state = !!(val & PIPECONF_ENABLE);
914 WARN(cur_state != state,
915 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 916 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179 917}
63d7bbe9
JB
918#define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
919#define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
b24e7179
JB
920
921static void assert_plane_enabled(struct drm_i915_private *dev_priv,
922 enum plane plane)
923{
924 int reg;
925 u32 val;
926
927 reg = DSPCNTR(plane);
928 val = I915_READ(reg);
929 WARN(!(val & DISPLAY_PLANE_ENABLE),
930 "plane %c assertion failure, should be active but is disabled\n",
9db4a9c7 931 plane_name(plane));
b24e7179
JB
932}
933
934static void assert_planes_disabled(struct drm_i915_private *dev_priv,
935 enum pipe pipe)
936{
937 int reg, i;
938 u32 val;
939 int cur_pipe;
940
19ec1358
JB
941 /* Planes are fixed to pipes on ILK+ */
942 if (HAS_PCH_SPLIT(dev_priv->dev))
943 return;
944
b24e7179
JB
945 /* Need to check both planes against the pipe */
946 for (i = 0; i < 2; i++) {
947 reg = DSPCNTR(i);
948 val = I915_READ(reg);
949 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
950 DISPPLANE_SEL_PIPE_SHIFT;
951 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
952 "plane %c assertion failure, should be off on pipe %c but is still active\n",
953 plane_name(i), pipe_name(pipe));
b24e7179
JB
954 }
955}
956
92f2584a
JB
957static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
958{
959 u32 val;
960 bool enabled;
961
962 val = I915_READ(PCH_DREF_CONTROL);
963 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
964 DREF_SUPERSPREAD_SOURCE_MASK));
965 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
966}
967
968static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
969 enum pipe pipe)
970{
971 int reg;
972 u32 val;
973 bool enabled;
974
975 reg = TRANSCONF(pipe);
976 val = I915_READ(reg);
977 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
978 WARN(enabled,
979 "transcoder assertion failed, should be off on pipe %c but is still active\n",
980 pipe_name(pipe));
92f2584a
JB
981}
982
f0575e92
KP
983static bool dp_pipe_enabled(struct drm_i915_private *dev_priv, enum pipe pipe,
984 int reg, u32 port_sel, u32 val)
985{
986 if ((val & DP_PORT_EN) == 0)
987 return false;
988
989 if (HAS_PCH_CPT(dev_priv->dev)) {
990 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
991 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
992 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
993 return false;
994 } else {
995 if ((val & DP_PIPE_MASK) != (pipe << 30))
996 return false;
997 }
998 return true;
999}
1000
291906f1 1001static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1002 enum pipe pipe, int reg, u32 port_sel)
291906f1 1003{
47a05eca 1004 u32 val = I915_READ(reg);
f0575e92 1005 WARN(dp_pipe_enabled(dev_priv, pipe, reg, port_sel, val),
291906f1 1006 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1007 reg, pipe_name(pipe));
291906f1
JB
1008}
1009
1010static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1011 enum pipe pipe, int reg)
1012{
47a05eca
JB
1013 u32 val = I915_READ(reg);
1014 WARN(HDMI_PIPE_ENABLED(val, pipe),
291906f1 1015 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1016 reg, pipe_name(pipe));
291906f1
JB
1017}
1018
1019static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1020 enum pipe pipe)
1021{
1022 int reg;
1023 u32 val;
291906f1 1024
f0575e92
KP
1025 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1026 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1027 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1028
1029 reg = PCH_ADPA;
1030 val = I915_READ(reg);
47a05eca 1031 WARN(ADPA_PIPE_ENABLED(val, pipe),
291906f1 1032 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1033 pipe_name(pipe));
291906f1
JB
1034
1035 reg = PCH_LVDS;
1036 val = I915_READ(reg);
47a05eca 1037 WARN(LVDS_PIPE_ENABLED(val, pipe),
291906f1 1038 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1039 pipe_name(pipe));
291906f1
JB
1040
1041 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1042 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1043 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1044}
1045
63d7bbe9
JB
1046/**
1047 * intel_enable_pll - enable a PLL
1048 * @dev_priv: i915 private structure
1049 * @pipe: pipe PLL to enable
1050 *
1051 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1052 * make sure the PLL reg is writable first though, since the panel write
1053 * protect mechanism may be enabled.
1054 *
1055 * Note! This is for pre-ILK only.
1056 */
1057static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1058{
1059 int reg;
1060 u32 val;
1061
1062 /* No really, not for ILK+ */
1063 BUG_ON(dev_priv->info->gen >= 5);
1064
1065 /* PLL is protected by panel, make sure we can write it */
1066 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1067 assert_panel_unlocked(dev_priv, pipe);
1068
1069 reg = DPLL(pipe);
1070 val = I915_READ(reg);
1071 val |= DPLL_VCO_ENABLE;
1072
1073 /* We do this three times for luck */
1074 I915_WRITE(reg, val);
1075 POSTING_READ(reg);
1076 udelay(150); /* wait for warmup */
1077 I915_WRITE(reg, val);
1078 POSTING_READ(reg);
1079 udelay(150); /* wait for warmup */
1080 I915_WRITE(reg, val);
1081 POSTING_READ(reg);
1082 udelay(150); /* wait for warmup */
1083}
1084
1085/**
1086 * intel_disable_pll - disable a PLL
1087 * @dev_priv: i915 private structure
1088 * @pipe: pipe PLL to disable
1089 *
1090 * Disable the PLL for @pipe, making sure the pipe is off first.
1091 *
1092 * Note! This is for pre-ILK only.
1093 */
1094static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1095{
1096 int reg;
1097 u32 val;
1098
1099 /* Don't disable pipe A or pipe A PLLs if needed */
1100 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1101 return;
1102
1103 /* Make sure the pipe isn't still relying on us */
1104 assert_pipe_disabled(dev_priv, pipe);
1105
1106 reg = DPLL(pipe);
1107 val = I915_READ(reg);
1108 val &= ~DPLL_VCO_ENABLE;
1109 I915_WRITE(reg, val);
1110 POSTING_READ(reg);
1111}
1112
92f2584a
JB
1113/**
1114 * intel_enable_pch_pll - enable PCH PLL
1115 * @dev_priv: i915 private structure
1116 * @pipe: pipe PLL to enable
1117 *
1118 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1119 * drives the transcoder clock.
1120 */
1121static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1122 enum pipe pipe)
1123{
1124 int reg;
1125 u32 val;
1126
1127 /* PCH only available on ILK+ */
1128 BUG_ON(dev_priv->info->gen < 5);
1129
1130 /* PCH refclock must be enabled first */
1131 assert_pch_refclk_enabled(dev_priv);
1132
1133 reg = PCH_DPLL(pipe);
1134 val = I915_READ(reg);
1135 val |= DPLL_VCO_ENABLE;
1136 I915_WRITE(reg, val);
1137 POSTING_READ(reg);
1138 udelay(200);
1139}
1140
1141static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1142 enum pipe pipe)
1143{
1144 int reg;
1145 u32 val;
1146
1147 /* PCH only available on ILK+ */
1148 BUG_ON(dev_priv->info->gen < 5);
1149
1150 /* Make sure transcoder isn't still depending on us */
1151 assert_transcoder_disabled(dev_priv, pipe);
1152
1153 reg = PCH_DPLL(pipe);
1154 val = I915_READ(reg);
1155 val &= ~DPLL_VCO_ENABLE;
1156 I915_WRITE(reg, val);
1157 POSTING_READ(reg);
1158 udelay(200);
1159}
1160
040484af
JB
1161static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1162 enum pipe pipe)
1163{
1164 int reg;
1165 u32 val;
1166
1167 /* PCH only available on ILK+ */
1168 BUG_ON(dev_priv->info->gen < 5);
1169
1170 /* Make sure PCH DPLL is enabled */
1171 assert_pch_pll_enabled(dev_priv, pipe);
1172
1173 /* FDI must be feeding us bits for PCH ports */
1174 assert_fdi_tx_enabled(dev_priv, pipe);
1175 assert_fdi_rx_enabled(dev_priv, pipe);
1176
1177 reg = TRANSCONF(pipe);
1178 val = I915_READ(reg);
e9bcff5c
JB
1179
1180 if (HAS_PCH_IBX(dev_priv->dev)) {
1181 /*
1182 * make the BPC in transcoder be consistent with
1183 * that in pipeconf reg.
1184 */
1185 val &= ~PIPE_BPC_MASK;
1186 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1187 }
040484af
JB
1188 I915_WRITE(reg, val | TRANS_ENABLE);
1189 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1190 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1191}
1192
1193static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1194 enum pipe pipe)
1195{
1196 int reg;
1197 u32 val;
1198
1199 /* FDI relies on the transcoder */
1200 assert_fdi_tx_disabled(dev_priv, pipe);
1201 assert_fdi_rx_disabled(dev_priv, pipe);
1202
291906f1
JB
1203 /* Ports must be off as well */
1204 assert_pch_ports_disabled(dev_priv, pipe);
1205
040484af
JB
1206 reg = TRANSCONF(pipe);
1207 val = I915_READ(reg);
1208 val &= ~TRANS_ENABLE;
1209 I915_WRITE(reg, val);
1210 /* wait for PCH transcoder off, transcoder state */
1211 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1212 DRM_ERROR("failed to disable transcoder\n");
1213}
1214
b24e7179 1215/**
309cfea8 1216 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1217 * @dev_priv: i915 private structure
1218 * @pipe: pipe to enable
040484af 1219 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1220 *
1221 * Enable @pipe, making sure that various hardware specific requirements
1222 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1223 *
1224 * @pipe should be %PIPE_A or %PIPE_B.
1225 *
1226 * Will wait until the pipe is actually running (i.e. first vblank) before
1227 * returning.
1228 */
040484af
JB
1229static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1230 bool pch_port)
b24e7179
JB
1231{
1232 int reg;
1233 u32 val;
1234
1235 /*
1236 * A pipe without a PLL won't actually be able to drive bits from
1237 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1238 * need the check.
1239 */
1240 if (!HAS_PCH_SPLIT(dev_priv->dev))
1241 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1242 else {
1243 if (pch_port) {
1244 /* if driving the PCH, we need FDI enabled */
1245 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1246 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1247 }
1248 /* FIXME: assert CPU port conditions for SNB+ */
1249 }
b24e7179
JB
1250
1251 reg = PIPECONF(pipe);
1252 val = I915_READ(reg);
00d70b15
CW
1253 if (val & PIPECONF_ENABLE)
1254 return;
1255
1256 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1257 intel_wait_for_vblank(dev_priv->dev, pipe);
1258}
1259
1260/**
309cfea8 1261 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1262 * @dev_priv: i915 private structure
1263 * @pipe: pipe to disable
1264 *
1265 * Disable @pipe, making sure that various hardware specific requirements
1266 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1267 *
1268 * @pipe should be %PIPE_A or %PIPE_B.
1269 *
1270 * Will wait until the pipe has shut down before returning.
1271 */
1272static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1273 enum pipe pipe)
1274{
1275 int reg;
1276 u32 val;
1277
1278 /*
1279 * Make sure planes won't keep trying to pump pixels to us,
1280 * or we might hang the display.
1281 */
1282 assert_planes_disabled(dev_priv, pipe);
1283
1284 /* Don't disable pipe A or pipe A PLLs if needed */
1285 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1286 return;
1287
1288 reg = PIPECONF(pipe);
1289 val = I915_READ(reg);
00d70b15
CW
1290 if ((val & PIPECONF_ENABLE) == 0)
1291 return;
1292
1293 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1294 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1295}
1296
d74362c9
KP
1297/*
1298 * Plane regs are double buffered, going from enabled->disabled needs a
1299 * trigger in order to latch. The display address reg provides this.
1300 */
1301static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1302 enum plane plane)
1303{
1304 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1305 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1306}
1307
b24e7179
JB
1308/**
1309 * intel_enable_plane - enable a display plane on a given pipe
1310 * @dev_priv: i915 private structure
1311 * @plane: plane to enable
1312 * @pipe: pipe being fed
1313 *
1314 * Enable @plane on @pipe, making sure that @pipe is running first.
1315 */
1316static void intel_enable_plane(struct drm_i915_private *dev_priv,
1317 enum plane plane, enum pipe pipe)
1318{
1319 int reg;
1320 u32 val;
1321
1322 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1323 assert_pipe_enabled(dev_priv, pipe);
1324
1325 reg = DSPCNTR(plane);
1326 val = I915_READ(reg);
00d70b15
CW
1327 if (val & DISPLAY_PLANE_ENABLE)
1328 return;
1329
1330 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1331 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1332 intel_wait_for_vblank(dev_priv->dev, pipe);
1333}
1334
b24e7179
JB
1335/**
1336 * intel_disable_plane - disable a display plane
1337 * @dev_priv: i915 private structure
1338 * @plane: plane to disable
1339 * @pipe: pipe consuming the data
1340 *
1341 * Disable @plane; should be an independent operation.
1342 */
1343static void intel_disable_plane(struct drm_i915_private *dev_priv,
1344 enum plane plane, enum pipe pipe)
1345{
1346 int reg;
1347 u32 val;
1348
1349 reg = DSPCNTR(plane);
1350 val = I915_READ(reg);
00d70b15
CW
1351 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1352 return;
1353
1354 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1355 intel_flush_display_plane(dev_priv, plane);
1356 intel_wait_for_vblank(dev_priv->dev, pipe);
1357}
1358
47a05eca 1359static void disable_pch_dp(struct drm_i915_private *dev_priv,
f0575e92 1360 enum pipe pipe, int reg, u32 port_sel)
47a05eca
JB
1361{
1362 u32 val = I915_READ(reg);
f0575e92
KP
1363 if (dp_pipe_enabled(dev_priv, pipe, reg, port_sel, val)) {
1364 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
47a05eca 1365 I915_WRITE(reg, val & ~DP_PORT_EN);
f0575e92 1366 }
47a05eca
JB
1367}
1368
1369static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1370 enum pipe pipe, int reg)
1371{
1372 u32 val = I915_READ(reg);
f0575e92
KP
1373 if (HDMI_PIPE_ENABLED(val, pipe)) {
1374 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1375 reg, pipe);
47a05eca 1376 I915_WRITE(reg, val & ~PORT_ENABLE);
f0575e92 1377 }
47a05eca
JB
1378}
1379
1380/* Disable any ports connected to this transcoder */
1381static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1382 enum pipe pipe)
1383{
1384 u32 reg, val;
1385
1386 val = I915_READ(PCH_PP_CONTROL);
1387 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1388
f0575e92
KP
1389 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1390 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1391 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
47a05eca
JB
1392
1393 reg = PCH_ADPA;
1394 val = I915_READ(reg);
1395 if (ADPA_PIPE_ENABLED(val, pipe))
1396 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1397
1398 reg = PCH_LVDS;
1399 val = I915_READ(reg);
1400 if (LVDS_PIPE_ENABLED(val, pipe)) {
1401 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1402 POSTING_READ(reg);
1403 udelay(100);
1404 }
1405
1406 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1407 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1408 disable_pch_hdmi(dev_priv, pipe, HDMID);
1409}
1410
43a9539f
CW
1411static void i8xx_disable_fbc(struct drm_device *dev)
1412{
1413 struct drm_i915_private *dev_priv = dev->dev_private;
1414 u32 fbc_ctl;
1415
1416 /* Disable compression */
1417 fbc_ctl = I915_READ(FBC_CONTROL);
1418 if ((fbc_ctl & FBC_CTL_EN) == 0)
1419 return;
1420
1421 fbc_ctl &= ~FBC_CTL_EN;
1422 I915_WRITE(FBC_CONTROL, fbc_ctl);
1423
1424 /* Wait for compressing bit to clear */
1425 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1426 DRM_DEBUG_KMS("FBC idle timed out\n");
1427 return;
1428 }
1429
1430 DRM_DEBUG_KMS("disabled FBC\n");
1431}
1432
80824003
JB
1433static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1434{
1435 struct drm_device *dev = crtc->dev;
1436 struct drm_i915_private *dev_priv = dev->dev_private;
1437 struct drm_framebuffer *fb = crtc->fb;
1438 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1439 struct drm_i915_gem_object *obj = intel_fb->obj;
80824003 1440 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
016b9b61 1441 int cfb_pitch;
80824003
JB
1442 int plane, i;
1443 u32 fbc_ctl, fbc_ctl2;
1444
016b9b61
CW
1445 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1446 if (fb->pitch < cfb_pitch)
1447 cfb_pitch = fb->pitch;
80824003
JB
1448
1449 /* FBC_CTL wants 64B units */
016b9b61
CW
1450 cfb_pitch = (cfb_pitch / 64) - 1;
1451 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
80824003
JB
1452
1453 /* Clear old tags */
1454 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1455 I915_WRITE(FBC_TAG + (i * 4), 0);
1456
1457 /* Set it up... */
de568510
CW
1458 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1459 fbc_ctl2 |= plane;
80824003
JB
1460 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1461 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1462
1463 /* enable it... */
1464 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
ee25df2b 1465 if (IS_I945GM(dev))
49677901 1466 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
016b9b61 1467 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
80824003 1468 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
016b9b61 1469 fbc_ctl |= obj->fence_reg;
80824003
JB
1470 I915_WRITE(FBC_CONTROL, fbc_ctl);
1471
016b9b61
CW
1472 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1473 cfb_pitch, crtc->y, intel_crtc->plane);
80824003
JB
1474}
1475
ee5382ae 1476static bool i8xx_fbc_enabled(struct drm_device *dev)
80824003 1477{
80824003
JB
1478 struct drm_i915_private *dev_priv = dev->dev_private;
1479
1480 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1481}
1482
74dff282
JB
1483static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1484{
1485 struct drm_device *dev = crtc->dev;
1486 struct drm_i915_private *dev_priv = dev->dev_private;
1487 struct drm_framebuffer *fb = crtc->fb;
1488 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1489 struct drm_i915_gem_object *obj = intel_fb->obj;
74dff282 1490 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5eddb70b 1491 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
74dff282
JB
1492 unsigned long stall_watermark = 200;
1493 u32 dpfc_ctl;
1494
74dff282 1495 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
016b9b61 1496 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
de568510 1497 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
74dff282 1498
74dff282
JB
1499 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1500 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1501 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1502 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1503
1504 /* enable it... */
1505 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1506
28c97730 1507 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
74dff282
JB
1508}
1509
43a9539f 1510static void g4x_disable_fbc(struct drm_device *dev)
74dff282
JB
1511{
1512 struct drm_i915_private *dev_priv = dev->dev_private;
1513 u32 dpfc_ctl;
1514
1515 /* Disable compression */
1516 dpfc_ctl = I915_READ(DPFC_CONTROL);
bed4a673
CW
1517 if (dpfc_ctl & DPFC_CTL_EN) {
1518 dpfc_ctl &= ~DPFC_CTL_EN;
1519 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
74dff282 1520
bed4a673
CW
1521 DRM_DEBUG_KMS("disabled FBC\n");
1522 }
74dff282
JB
1523}
1524
ee5382ae 1525static bool g4x_fbc_enabled(struct drm_device *dev)
74dff282 1526{
74dff282
JB
1527 struct drm_i915_private *dev_priv = dev->dev_private;
1528
1529 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1530}
1531
4efe0708
JB
1532static void sandybridge_blit_fbc_update(struct drm_device *dev)
1533{
1534 struct drm_i915_private *dev_priv = dev->dev_private;
1535 u32 blt_ecoskpd;
1536
1537 /* Make sure blitter notifies FBC of writes */
fcca7926 1538 gen6_gt_force_wake_get(dev_priv);
4efe0708
JB
1539 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1540 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1541 GEN6_BLITTER_LOCK_SHIFT;
1542 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1543 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1544 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1545 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1546 GEN6_BLITTER_LOCK_SHIFT);
1547 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1548 POSTING_READ(GEN6_BLITTER_ECOSKPD);
fcca7926 1549 gen6_gt_force_wake_put(dev_priv);
4efe0708
JB
1550}
1551
b52eb4dc
ZY
1552static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1553{
1554 struct drm_device *dev = crtc->dev;
1555 struct drm_i915_private *dev_priv = dev->dev_private;
1556 struct drm_framebuffer *fb = crtc->fb;
1557 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1558 struct drm_i915_gem_object *obj = intel_fb->obj;
b52eb4dc 1559 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5eddb70b 1560 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
b52eb4dc
ZY
1561 unsigned long stall_watermark = 200;
1562 u32 dpfc_ctl;
1563
bed4a673 1564 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
b52eb4dc
ZY
1565 dpfc_ctl &= DPFC_RESERVED;
1566 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
9ce9d069
CW
1567 /* Set persistent mode for front-buffer rendering, ala X. */
1568 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
016b9b61 1569 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
de568510 1570 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
b52eb4dc 1571
b52eb4dc
ZY
1572 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1573 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1574 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1575 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
05394f39 1576 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
b52eb4dc 1577 /* enable it... */
bed4a673 1578 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
b52eb4dc 1579
9c04f015
YL
1580 if (IS_GEN6(dev)) {
1581 I915_WRITE(SNB_DPFC_CTL_SA,
016b9b61 1582 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
9c04f015 1583 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
4efe0708 1584 sandybridge_blit_fbc_update(dev);
9c04f015
YL
1585 }
1586
b52eb4dc
ZY
1587 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1588}
1589
43a9539f 1590static void ironlake_disable_fbc(struct drm_device *dev)
b52eb4dc
ZY
1591{
1592 struct drm_i915_private *dev_priv = dev->dev_private;
1593 u32 dpfc_ctl;
1594
1595 /* Disable compression */
1596 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
bed4a673
CW
1597 if (dpfc_ctl & DPFC_CTL_EN) {
1598 dpfc_ctl &= ~DPFC_CTL_EN;
1599 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
b52eb4dc 1600
bed4a673
CW
1601 DRM_DEBUG_KMS("disabled FBC\n");
1602 }
b52eb4dc
ZY
1603}
1604
1605static bool ironlake_fbc_enabled(struct drm_device *dev)
1606{
1607 struct drm_i915_private *dev_priv = dev->dev_private;
1608
1609 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1610}
1611
ee5382ae
AJ
1612bool intel_fbc_enabled(struct drm_device *dev)
1613{
1614 struct drm_i915_private *dev_priv = dev->dev_private;
1615
1616 if (!dev_priv->display.fbc_enabled)
1617 return false;
1618
1619 return dev_priv->display.fbc_enabled(dev);
1620}
1621
1630fe75
CW
1622static void intel_fbc_work_fn(struct work_struct *__work)
1623{
1624 struct intel_fbc_work *work =
1625 container_of(to_delayed_work(__work),
1626 struct intel_fbc_work, work);
1627 struct drm_device *dev = work->crtc->dev;
1628 struct drm_i915_private *dev_priv = dev->dev_private;
1629
1630 mutex_lock(&dev->struct_mutex);
1631 if (work == dev_priv->fbc_work) {
1632 /* Double check that we haven't switched fb without cancelling
1633 * the prior work.
1634 */
016b9b61 1635 if (work->crtc->fb == work->fb) {
1630fe75
CW
1636 dev_priv->display.enable_fbc(work->crtc,
1637 work->interval);
1638
016b9b61
CW
1639 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1640 dev_priv->cfb_fb = work->crtc->fb->base.id;
1641 dev_priv->cfb_y = work->crtc->y;
1642 }
1643
1630fe75
CW
1644 dev_priv->fbc_work = NULL;
1645 }
1646 mutex_unlock(&dev->struct_mutex);
1647
1648 kfree(work);
1649}
1650
1651static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1652{
1653 if (dev_priv->fbc_work == NULL)
1654 return;
1655
1656 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1657
1658 /* Synchronisation is provided by struct_mutex and checking of
1659 * dev_priv->fbc_work, so we can perform the cancellation
1660 * entirely asynchronously.
1661 */
1662 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1663 /* tasklet was killed before being run, clean up */
1664 kfree(dev_priv->fbc_work);
1665
1666 /* Mark the work as no longer wanted so that if it does
1667 * wake-up (because the work was already running and waiting
1668 * for our mutex), it will discover that is no longer
1669 * necessary to run.
1670 */
1671 dev_priv->fbc_work = NULL;
1672}
1673
43a9539f 1674static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
ee5382ae 1675{
1630fe75
CW
1676 struct intel_fbc_work *work;
1677 struct drm_device *dev = crtc->dev;
1678 struct drm_i915_private *dev_priv = dev->dev_private;
ee5382ae
AJ
1679
1680 if (!dev_priv->display.enable_fbc)
1681 return;
1682
1630fe75
CW
1683 intel_cancel_fbc_work(dev_priv);
1684
1685 work = kzalloc(sizeof *work, GFP_KERNEL);
1686 if (work == NULL) {
1687 dev_priv->display.enable_fbc(crtc, interval);
1688 return;
1689 }
1690
1691 work->crtc = crtc;
1692 work->fb = crtc->fb;
1693 work->interval = interval;
1694 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1695
1696 dev_priv->fbc_work = work;
1697
1698 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1699
1700 /* Delay the actual enabling to let pageflipping cease and the
016b9b61
CW
1701 * display to settle before starting the compression. Note that
1702 * this delay also serves a second purpose: it allows for a
1703 * vblank to pass after disabling the FBC before we attempt
1704 * to modify the control registers.
1630fe75
CW
1705 *
1706 * A more complicated solution would involve tracking vblanks
1707 * following the termination of the page-flipping sequence
1708 * and indeed performing the enable as a co-routine and not
1709 * waiting synchronously upon the vblank.
1710 */
1711 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
ee5382ae
AJ
1712}
1713
1714void intel_disable_fbc(struct drm_device *dev)
1715{
1716 struct drm_i915_private *dev_priv = dev->dev_private;
1717
1630fe75
CW
1718 intel_cancel_fbc_work(dev_priv);
1719
ee5382ae
AJ
1720 if (!dev_priv->display.disable_fbc)
1721 return;
1722
1723 dev_priv->display.disable_fbc(dev);
016b9b61 1724 dev_priv->cfb_plane = -1;
ee5382ae
AJ
1725}
1726
80824003
JB
1727/**
1728 * intel_update_fbc - enable/disable FBC as needed
bed4a673 1729 * @dev: the drm_device
80824003
JB
1730 *
1731 * Set up the framebuffer compression hardware at mode set time. We
1732 * enable it if possible:
1733 * - plane A only (on pre-965)
1734 * - no pixel mulitply/line duplication
1735 * - no alpha buffer discard
1736 * - no dual wide
1737 * - framebuffer <= 2048 in width, 1536 in height
1738 *
1739 * We can't assume that any compression will take place (worst case),
1740 * so the compressed buffer has to be the same size as the uncompressed
1741 * one. It also must reside (along with the line length buffer) in
1742 * stolen memory.
1743 *
1744 * We need to enable/disable FBC on a global basis.
1745 */
bed4a673 1746static void intel_update_fbc(struct drm_device *dev)
80824003 1747{
80824003 1748 struct drm_i915_private *dev_priv = dev->dev_private;
bed4a673
CW
1749 struct drm_crtc *crtc = NULL, *tmp_crtc;
1750 struct intel_crtc *intel_crtc;
1751 struct drm_framebuffer *fb;
80824003 1752 struct intel_framebuffer *intel_fb;
05394f39 1753 struct drm_i915_gem_object *obj;
9c928d16
JB
1754
1755 DRM_DEBUG_KMS("\n");
80824003
JB
1756
1757 if (!i915_powersave)
1758 return;
1759
ee5382ae 1760 if (!I915_HAS_FBC(dev))
e70236a8
JB
1761 return;
1762
80824003
JB
1763 /*
1764 * If FBC is already on, we just have to verify that we can
1765 * keep it that way...
1766 * Need to disable if:
9c928d16 1767 * - more than one pipe is active
80824003
JB
1768 * - changing FBC params (stride, fence, mode)
1769 * - new fb is too large to fit in compressed buffer
1770 * - going to an unsupported config (interlace, pixel multiply, etc.)
1771 */
9c928d16 1772 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
d210246a 1773 if (tmp_crtc->enabled && tmp_crtc->fb) {
bed4a673
CW
1774 if (crtc) {
1775 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1776 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1777 goto out_disable;
1778 }
1779 crtc = tmp_crtc;
1780 }
9c928d16 1781 }
bed4a673
CW
1782
1783 if (!crtc || crtc->fb == NULL) {
1784 DRM_DEBUG_KMS("no output, disabling\n");
1785 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
9c928d16
JB
1786 goto out_disable;
1787 }
bed4a673
CW
1788
1789 intel_crtc = to_intel_crtc(crtc);
1790 fb = crtc->fb;
1791 intel_fb = to_intel_framebuffer(fb);
05394f39 1792 obj = intel_fb->obj;
bed4a673 1793
c1a9f047
JB
1794 if (!i915_enable_fbc) {
1795 DRM_DEBUG_KMS("fbc disabled per module param (default off)\n");
1796 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1797 goto out_disable;
1798 }
05394f39 1799 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
28c97730 1800 DRM_DEBUG_KMS("framebuffer too large, disabling "
5eddb70b 1801 "compression\n");
b5e50c3f 1802 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
80824003
JB
1803 goto out_disable;
1804 }
bed4a673
CW
1805 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1806 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
28c97730 1807 DRM_DEBUG_KMS("mode incompatible with compression, "
5eddb70b 1808 "disabling\n");
b5e50c3f 1809 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
80824003
JB
1810 goto out_disable;
1811 }
bed4a673
CW
1812 if ((crtc->mode.hdisplay > 2048) ||
1813 (crtc->mode.vdisplay > 1536)) {
28c97730 1814 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
b5e50c3f 1815 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
80824003
JB
1816 goto out_disable;
1817 }
bed4a673 1818 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
28c97730 1819 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
b5e50c3f 1820 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
80824003
JB
1821 goto out_disable;
1822 }
de568510
CW
1823
1824 /* The use of a CPU fence is mandatory in order to detect writes
1825 * by the CPU to the scanout and trigger updates to the FBC.
1826 */
1827 if (obj->tiling_mode != I915_TILING_X ||
1828 obj->fence_reg == I915_FENCE_REG_NONE) {
1829 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
b5e50c3f 1830 dev_priv->no_fbc_reason = FBC_NOT_TILED;
80824003
JB
1831 goto out_disable;
1832 }
1833
c924b934
JW
1834 /* If the kernel debugger is active, always disable compression */
1835 if (in_dbg_master())
1836 goto out_disable;
1837
016b9b61
CW
1838 /* If the scanout has not changed, don't modify the FBC settings.
1839 * Note that we make the fundamental assumption that the fb->obj
1840 * cannot be unpinned (and have its GTT offset and fence revoked)
1841 * without first being decoupled from the scanout and FBC disabled.
1842 */
1843 if (dev_priv->cfb_plane == intel_crtc->plane &&
1844 dev_priv->cfb_fb == fb->base.id &&
1845 dev_priv->cfb_y == crtc->y)
1846 return;
1847
1848 if (intel_fbc_enabled(dev)) {
1849 /* We update FBC along two paths, after changing fb/crtc
1850 * configuration (modeswitching) and after page-flipping
1851 * finishes. For the latter, we know that not only did
1852 * we disable the FBC at the start of the page-flip
1853 * sequence, but also more than one vblank has passed.
1854 *
1855 * For the former case of modeswitching, it is possible
1856 * to switch between two FBC valid configurations
1857 * instantaneously so we do need to disable the FBC
1858 * before we can modify its control registers. We also
1859 * have to wait for the next vblank for that to take
1860 * effect. However, since we delay enabling FBC we can
1861 * assume that a vblank has passed since disabling and
1862 * that we can safely alter the registers in the deferred
1863 * callback.
1864 *
1865 * In the scenario that we go from a valid to invalid
1866 * and then back to valid FBC configuration we have
1867 * no strict enforcement that a vblank occurred since
1868 * disabling the FBC. However, along all current pipe
1869 * disabling paths we do need to wait for a vblank at
1870 * some point. And we wait before enabling FBC anyway.
1871 */
1872 DRM_DEBUG_KMS("disabling active FBC for update\n");
1873 intel_disable_fbc(dev);
1874 }
1875
bed4a673 1876 intel_enable_fbc(crtc, 500);
80824003
JB
1877 return;
1878
1879out_disable:
80824003 1880 /* Multiple disables should be harmless */
a939406f
CW
1881 if (intel_fbc_enabled(dev)) {
1882 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
ee5382ae 1883 intel_disable_fbc(dev);
a939406f 1884 }
80824003
JB
1885}
1886
127bd2ac 1887int
48b956c5 1888intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1889 struct drm_i915_gem_object *obj,
919926ae 1890 struct intel_ring_buffer *pipelined)
6b95a207 1891{
ce453d81 1892 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1893 u32 alignment;
1894 int ret;
1895
05394f39 1896 switch (obj->tiling_mode) {
6b95a207 1897 case I915_TILING_NONE:
534843da
CW
1898 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1899 alignment = 128 * 1024;
a6c45cf0 1900 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1901 alignment = 4 * 1024;
1902 else
1903 alignment = 64 * 1024;
6b95a207
KH
1904 break;
1905 case I915_TILING_X:
1906 /* pin() will align the object as required by fence */
1907 alignment = 0;
1908 break;
1909 case I915_TILING_Y:
1910 /* FIXME: Is this true? */
1911 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1912 return -EINVAL;
1913 default:
1914 BUG();
1915 }
1916
ce453d81 1917 dev_priv->mm.interruptible = false;
2da3b9b9 1918 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 1919 if (ret)
ce453d81 1920 goto err_interruptible;
6b95a207
KH
1921
1922 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1923 * fence, whereas 965+ only requires a fence if using
1924 * framebuffer compression. For simplicity, we always install
1925 * a fence as the cost is not that onerous.
1926 */
05394f39 1927 if (obj->tiling_mode != I915_TILING_NONE) {
ce453d81 1928 ret = i915_gem_object_get_fence(obj, pipelined);
48b956c5
CW
1929 if (ret)
1930 goto err_unpin;
6b95a207
KH
1931 }
1932
ce453d81 1933 dev_priv->mm.interruptible = true;
6b95a207 1934 return 0;
48b956c5
CW
1935
1936err_unpin:
1937 i915_gem_object_unpin(obj);
ce453d81
CW
1938err_interruptible:
1939 dev_priv->mm.interruptible = true;
48b956c5 1940 return ret;
6b95a207
KH
1941}
1942
17638cd6
JB
1943static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1944 int x, int y)
81255565
JB
1945{
1946 struct drm_device *dev = crtc->dev;
1947 struct drm_i915_private *dev_priv = dev->dev_private;
1948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1949 struct intel_framebuffer *intel_fb;
05394f39 1950 struct drm_i915_gem_object *obj;
81255565
JB
1951 int plane = intel_crtc->plane;
1952 unsigned long Start, Offset;
81255565 1953 u32 dspcntr;
5eddb70b 1954 u32 reg;
81255565
JB
1955
1956 switch (plane) {
1957 case 0:
1958 case 1:
1959 break;
1960 default:
1961 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1962 return -EINVAL;
1963 }
1964
1965 intel_fb = to_intel_framebuffer(fb);
1966 obj = intel_fb->obj;
81255565 1967
5eddb70b
CW
1968 reg = DSPCNTR(plane);
1969 dspcntr = I915_READ(reg);
81255565
JB
1970 /* Mask out pixel format bits in case we change it */
1971 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1972 switch (fb->bits_per_pixel) {
1973 case 8:
1974 dspcntr |= DISPPLANE_8BPP;
1975 break;
1976 case 16:
1977 if (fb->depth == 15)
1978 dspcntr |= DISPPLANE_15_16BPP;
1979 else
1980 dspcntr |= DISPPLANE_16BPP;
1981 break;
1982 case 24:
1983 case 32:
1984 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1985 break;
1986 default:
17638cd6 1987 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
81255565
JB
1988 return -EINVAL;
1989 }
a6c45cf0 1990 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 1991 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
1992 dspcntr |= DISPPLANE_TILED;
1993 else
1994 dspcntr &= ~DISPPLANE_TILED;
1995 }
1996
5eddb70b 1997 I915_WRITE(reg, dspcntr);
81255565 1998
05394f39 1999 Start = obj->gtt_offset;
81255565
JB
2000 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2001
4e6cfefc
CW
2002 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2003 Start, Offset, x, y, fb->pitch);
5eddb70b 2004 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
a6c45cf0 2005 if (INTEL_INFO(dev)->gen >= 4) {
5eddb70b
CW
2006 I915_WRITE(DSPSURF(plane), Start);
2007 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2008 I915_WRITE(DSPADDR(plane), Offset);
2009 } else
2010 I915_WRITE(DSPADDR(plane), Start + Offset);
2011 POSTING_READ(reg);
81255565 2012
17638cd6
JB
2013 return 0;
2014}
2015
2016static int ironlake_update_plane(struct drm_crtc *crtc,
2017 struct drm_framebuffer *fb, int x, int y)
2018{
2019 struct drm_device *dev = crtc->dev;
2020 struct drm_i915_private *dev_priv = dev->dev_private;
2021 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2022 struct intel_framebuffer *intel_fb;
2023 struct drm_i915_gem_object *obj;
2024 int plane = intel_crtc->plane;
2025 unsigned long Start, Offset;
2026 u32 dspcntr;
2027 u32 reg;
2028
2029 switch (plane) {
2030 case 0:
2031 case 1:
2032 break;
2033 default:
2034 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2035 return -EINVAL;
2036 }
2037
2038 intel_fb = to_intel_framebuffer(fb);
2039 obj = intel_fb->obj;
2040
2041 reg = DSPCNTR(plane);
2042 dspcntr = I915_READ(reg);
2043 /* Mask out pixel format bits in case we change it */
2044 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2045 switch (fb->bits_per_pixel) {
2046 case 8:
2047 dspcntr |= DISPPLANE_8BPP;
2048 break;
2049 case 16:
2050 if (fb->depth != 16)
2051 return -EINVAL;
2052
2053 dspcntr |= DISPPLANE_16BPP;
2054 break;
2055 case 24:
2056 case 32:
2057 if (fb->depth == 24)
2058 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2059 else if (fb->depth == 30)
2060 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2061 else
2062 return -EINVAL;
2063 break;
2064 default:
2065 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2066 return -EINVAL;
2067 }
2068
2069 if (obj->tiling_mode != I915_TILING_NONE)
2070 dspcntr |= DISPPLANE_TILED;
2071 else
2072 dspcntr &= ~DISPPLANE_TILED;
2073
2074 /* must disable */
2075 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2076
2077 I915_WRITE(reg, dspcntr);
2078
2079 Start = obj->gtt_offset;
2080 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2081
2082 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2083 Start, Offset, x, y, fb->pitch);
2084 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2085 I915_WRITE(DSPSURF(plane), Start);
2086 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2087 I915_WRITE(DSPADDR(plane), Offset);
2088 POSTING_READ(reg);
2089
2090 return 0;
2091}
2092
2093/* Assume fb object is pinned & idle & fenced and just update base pointers */
2094static int
2095intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2096 int x, int y, enum mode_set_atomic state)
2097{
2098 struct drm_device *dev = crtc->dev;
2099 struct drm_i915_private *dev_priv = dev->dev_private;
2100 int ret;
2101
2102 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2103 if (ret)
2104 return ret;
2105
bed4a673 2106 intel_update_fbc(dev);
3dec0095 2107 intel_increase_pllclock(crtc);
81255565
JB
2108
2109 return 0;
2110}
2111
5c3b82e2 2112static int
3c4fdcfb
KH
2113intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2114 struct drm_framebuffer *old_fb)
79e53945
JB
2115{
2116 struct drm_device *dev = crtc->dev;
79e53945
JB
2117 struct drm_i915_master_private *master_priv;
2118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5c3b82e2 2119 int ret;
79e53945
JB
2120
2121 /* no fb bound */
2122 if (!crtc->fb) {
a5071c2f 2123 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2124 return 0;
2125 }
2126
265db958 2127 switch (intel_crtc->plane) {
5c3b82e2
CW
2128 case 0:
2129 case 1:
2130 break;
2131 default:
a5071c2f 2132 DRM_ERROR("no plane for crtc\n");
5c3b82e2 2133 return -EINVAL;
79e53945
JB
2134 }
2135
5c3b82e2 2136 mutex_lock(&dev->struct_mutex);
265db958
CW
2137 ret = intel_pin_and_fence_fb_obj(dev,
2138 to_intel_framebuffer(crtc->fb)->obj,
919926ae 2139 NULL);
5c3b82e2
CW
2140 if (ret != 0) {
2141 mutex_unlock(&dev->struct_mutex);
a5071c2f 2142 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2143 return ret;
2144 }
79e53945 2145
265db958 2146 if (old_fb) {
e6c3a2a6 2147 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2148 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
265db958 2149
e6c3a2a6 2150 wait_event(dev_priv->pending_flip_queue,
01eec727 2151 atomic_read(&dev_priv->mm.wedged) ||
05394f39 2152 atomic_read(&obj->pending_flip) == 0);
85345517
CW
2153
2154 /* Big Hammer, we also need to ensure that any pending
2155 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2156 * current scanout is retired before unpinning the old
2157 * framebuffer.
01eec727
CW
2158 *
2159 * This should only fail upon a hung GPU, in which case we
2160 * can safely continue.
85345517 2161 */
a8198eea 2162 ret = i915_gem_object_finish_gpu(obj);
01eec727 2163 (void) ret;
265db958
CW
2164 }
2165
21c74a8e
JW
2166 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2167 LEAVE_ATOMIC_MODE_SET);
4e6cfefc 2168 if (ret) {
265db958 2169 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
5c3b82e2 2170 mutex_unlock(&dev->struct_mutex);
a5071c2f 2171 DRM_ERROR("failed to update base address\n");
4e6cfefc 2172 return ret;
79e53945 2173 }
3c4fdcfb 2174
b7f1de28
CW
2175 if (old_fb) {
2176 intel_wait_for_vblank(dev, intel_crtc->pipe);
265db958 2177 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2178 }
652c393a 2179
5c3b82e2 2180 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2181
2182 if (!dev->primary->master)
5c3b82e2 2183 return 0;
79e53945
JB
2184
2185 master_priv = dev->primary->master->driver_priv;
2186 if (!master_priv->sarea_priv)
5c3b82e2 2187 return 0;
79e53945 2188
265db958 2189 if (intel_crtc->pipe) {
79e53945
JB
2190 master_priv->sarea_priv->pipeB_x = x;
2191 master_priv->sarea_priv->pipeB_y = y;
5c3b82e2
CW
2192 } else {
2193 master_priv->sarea_priv->pipeA_x = x;
2194 master_priv->sarea_priv->pipeA_y = y;
79e53945 2195 }
5c3b82e2
CW
2196
2197 return 0;
79e53945
JB
2198}
2199
5eddb70b 2200static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2201{
2202 struct drm_device *dev = crtc->dev;
2203 struct drm_i915_private *dev_priv = dev->dev_private;
2204 u32 dpa_ctl;
2205
28c97730 2206 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2207 dpa_ctl = I915_READ(DP_A);
2208 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2209
2210 if (clock < 200000) {
2211 u32 temp;
2212 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2213 /* workaround for 160Mhz:
2214 1) program 0x4600c bits 15:0 = 0x8124
2215 2) program 0x46010 bit 0 = 1
2216 3) program 0x46034 bit 24 = 1
2217 4) program 0x64000 bit 14 = 1
2218 */
2219 temp = I915_READ(0x4600c);
2220 temp &= 0xffff0000;
2221 I915_WRITE(0x4600c, temp | 0x8124);
2222
2223 temp = I915_READ(0x46010);
2224 I915_WRITE(0x46010, temp | 1);
2225
2226 temp = I915_READ(0x46034);
2227 I915_WRITE(0x46034, temp | (1 << 24));
2228 } else {
2229 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2230 }
2231 I915_WRITE(DP_A, dpa_ctl);
2232
5eddb70b 2233 POSTING_READ(DP_A);
32f9d658
ZW
2234 udelay(500);
2235}
2236
5e84e1a4
ZW
2237static void intel_fdi_normal_train(struct drm_crtc *crtc)
2238{
2239 struct drm_device *dev = crtc->dev;
2240 struct drm_i915_private *dev_priv = dev->dev_private;
2241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2242 int pipe = intel_crtc->pipe;
2243 u32 reg, temp;
2244
2245 /* enable normal train */
2246 reg = FDI_TX_CTL(pipe);
2247 temp = I915_READ(reg);
61e499bf 2248 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2249 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2250 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2251 } else {
2252 temp &= ~FDI_LINK_TRAIN_NONE;
2253 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2254 }
5e84e1a4
ZW
2255 I915_WRITE(reg, temp);
2256
2257 reg = FDI_RX_CTL(pipe);
2258 temp = I915_READ(reg);
2259 if (HAS_PCH_CPT(dev)) {
2260 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2261 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2262 } else {
2263 temp &= ~FDI_LINK_TRAIN_NONE;
2264 temp |= FDI_LINK_TRAIN_NONE;
2265 }
2266 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2267
2268 /* wait one idle pattern time */
2269 POSTING_READ(reg);
2270 udelay(1000);
357555c0
JB
2271
2272 /* IVB wants error correction enabled */
2273 if (IS_IVYBRIDGE(dev))
2274 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2275 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2276}
2277
291427f5
JB
2278static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2279{
2280 struct drm_i915_private *dev_priv = dev->dev_private;
2281 u32 flags = I915_READ(SOUTH_CHICKEN1);
2282
2283 flags |= FDI_PHASE_SYNC_OVR(pipe);
2284 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2285 flags |= FDI_PHASE_SYNC_EN(pipe);
2286 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2287 POSTING_READ(SOUTH_CHICKEN1);
2288}
2289
8db9d77b
ZW
2290/* The FDI link training functions for ILK/Ibexpeak. */
2291static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2292{
2293 struct drm_device *dev = crtc->dev;
2294 struct drm_i915_private *dev_priv = dev->dev_private;
2295 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2296 int pipe = intel_crtc->pipe;
0fc932b8 2297 int plane = intel_crtc->plane;
5eddb70b 2298 u32 reg, temp, tries;
8db9d77b 2299
0fc932b8
JB
2300 /* FDI needs bits from pipe & plane first */
2301 assert_pipe_enabled(dev_priv, pipe);
2302 assert_plane_enabled(dev_priv, plane);
2303
e1a44743
AJ
2304 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2305 for train result */
5eddb70b
CW
2306 reg = FDI_RX_IMR(pipe);
2307 temp = I915_READ(reg);
e1a44743
AJ
2308 temp &= ~FDI_RX_SYMBOL_LOCK;
2309 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2310 I915_WRITE(reg, temp);
2311 I915_READ(reg);
e1a44743
AJ
2312 udelay(150);
2313
8db9d77b 2314 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2315 reg = FDI_TX_CTL(pipe);
2316 temp = I915_READ(reg);
77ffb597
AJ
2317 temp &= ~(7 << 19);
2318 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2319 temp &= ~FDI_LINK_TRAIN_NONE;
2320 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2321 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2322
5eddb70b
CW
2323 reg = FDI_RX_CTL(pipe);
2324 temp = I915_READ(reg);
8db9d77b
ZW
2325 temp &= ~FDI_LINK_TRAIN_NONE;
2326 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2327 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2328
2329 POSTING_READ(reg);
8db9d77b
ZW
2330 udelay(150);
2331
5b2adf89 2332 /* Ironlake workaround, enable clock pointer after FDI enable*/
6f06ce18
JB
2333 if (HAS_PCH_IBX(dev)) {
2334 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2335 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2336 FDI_RX_PHASE_SYNC_POINTER_EN);
2337 }
5b2adf89 2338
5eddb70b 2339 reg = FDI_RX_IIR(pipe);
e1a44743 2340 for (tries = 0; tries < 5; tries++) {
5eddb70b 2341 temp = I915_READ(reg);
8db9d77b
ZW
2342 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2343
2344 if ((temp & FDI_RX_BIT_LOCK)) {
2345 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2346 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2347 break;
2348 }
8db9d77b 2349 }
e1a44743 2350 if (tries == 5)
5eddb70b 2351 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2352
2353 /* Train 2 */
5eddb70b
CW
2354 reg = FDI_TX_CTL(pipe);
2355 temp = I915_READ(reg);
8db9d77b
ZW
2356 temp &= ~FDI_LINK_TRAIN_NONE;
2357 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2358 I915_WRITE(reg, temp);
8db9d77b 2359
5eddb70b
CW
2360 reg = FDI_RX_CTL(pipe);
2361 temp = I915_READ(reg);
8db9d77b
ZW
2362 temp &= ~FDI_LINK_TRAIN_NONE;
2363 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2364 I915_WRITE(reg, temp);
8db9d77b 2365
5eddb70b
CW
2366 POSTING_READ(reg);
2367 udelay(150);
8db9d77b 2368
5eddb70b 2369 reg = FDI_RX_IIR(pipe);
e1a44743 2370 for (tries = 0; tries < 5; tries++) {
5eddb70b 2371 temp = I915_READ(reg);
8db9d77b
ZW
2372 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2373
2374 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2375 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2376 DRM_DEBUG_KMS("FDI train 2 done.\n");
2377 break;
2378 }
8db9d77b 2379 }
e1a44743 2380 if (tries == 5)
5eddb70b 2381 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2382
2383 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2384
8db9d77b
ZW
2385}
2386
311bd68e 2387static const int snb_b_fdi_train_param [] = {
8db9d77b
ZW
2388 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2389 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2390 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2391 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2392};
2393
2394/* The FDI link training functions for SNB/Cougarpoint. */
2395static void gen6_fdi_link_train(struct drm_crtc *crtc)
2396{
2397 struct drm_device *dev = crtc->dev;
2398 struct drm_i915_private *dev_priv = dev->dev_private;
2399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2400 int pipe = intel_crtc->pipe;
5eddb70b 2401 u32 reg, temp, i;
8db9d77b 2402
e1a44743
AJ
2403 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2404 for train result */
5eddb70b
CW
2405 reg = FDI_RX_IMR(pipe);
2406 temp = I915_READ(reg);
e1a44743
AJ
2407 temp &= ~FDI_RX_SYMBOL_LOCK;
2408 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2409 I915_WRITE(reg, temp);
2410
2411 POSTING_READ(reg);
e1a44743
AJ
2412 udelay(150);
2413
8db9d77b 2414 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2415 reg = FDI_TX_CTL(pipe);
2416 temp = I915_READ(reg);
77ffb597
AJ
2417 temp &= ~(7 << 19);
2418 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2419 temp &= ~FDI_LINK_TRAIN_NONE;
2420 temp |= FDI_LINK_TRAIN_PATTERN_1;
2421 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2422 /* SNB-B */
2423 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2424 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2425
5eddb70b
CW
2426 reg = FDI_RX_CTL(pipe);
2427 temp = I915_READ(reg);
8db9d77b
ZW
2428 if (HAS_PCH_CPT(dev)) {
2429 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2430 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2431 } else {
2432 temp &= ~FDI_LINK_TRAIN_NONE;
2433 temp |= FDI_LINK_TRAIN_PATTERN_1;
2434 }
5eddb70b
CW
2435 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2436
2437 POSTING_READ(reg);
8db9d77b
ZW
2438 udelay(150);
2439
291427f5
JB
2440 if (HAS_PCH_CPT(dev))
2441 cpt_phase_pointer_enable(dev, pipe);
2442
8db9d77b 2443 for (i = 0; i < 4; i++ ) {
5eddb70b
CW
2444 reg = FDI_TX_CTL(pipe);
2445 temp = I915_READ(reg);
8db9d77b
ZW
2446 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2447 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2448 I915_WRITE(reg, temp);
2449
2450 POSTING_READ(reg);
8db9d77b
ZW
2451 udelay(500);
2452
5eddb70b
CW
2453 reg = FDI_RX_IIR(pipe);
2454 temp = I915_READ(reg);
8db9d77b
ZW
2455 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2456
2457 if (temp & FDI_RX_BIT_LOCK) {
5eddb70b 2458 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2459 DRM_DEBUG_KMS("FDI train 1 done.\n");
2460 break;
2461 }
2462 }
2463 if (i == 4)
5eddb70b 2464 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2465
2466 /* Train 2 */
5eddb70b
CW
2467 reg = FDI_TX_CTL(pipe);
2468 temp = I915_READ(reg);
8db9d77b
ZW
2469 temp &= ~FDI_LINK_TRAIN_NONE;
2470 temp |= FDI_LINK_TRAIN_PATTERN_2;
2471 if (IS_GEN6(dev)) {
2472 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2473 /* SNB-B */
2474 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2475 }
5eddb70b 2476 I915_WRITE(reg, temp);
8db9d77b 2477
5eddb70b
CW
2478 reg = FDI_RX_CTL(pipe);
2479 temp = I915_READ(reg);
8db9d77b
ZW
2480 if (HAS_PCH_CPT(dev)) {
2481 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2482 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2483 } else {
2484 temp &= ~FDI_LINK_TRAIN_NONE;
2485 temp |= FDI_LINK_TRAIN_PATTERN_2;
2486 }
5eddb70b
CW
2487 I915_WRITE(reg, temp);
2488
2489 POSTING_READ(reg);
8db9d77b
ZW
2490 udelay(150);
2491
2492 for (i = 0; i < 4; i++ ) {
5eddb70b
CW
2493 reg = FDI_TX_CTL(pipe);
2494 temp = I915_READ(reg);
8db9d77b
ZW
2495 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2496 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2497 I915_WRITE(reg, temp);
2498
2499 POSTING_READ(reg);
8db9d77b
ZW
2500 udelay(500);
2501
5eddb70b
CW
2502 reg = FDI_RX_IIR(pipe);
2503 temp = I915_READ(reg);
8db9d77b
ZW
2504 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2505
2506 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2507 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2508 DRM_DEBUG_KMS("FDI train 2 done.\n");
2509 break;
2510 }
2511 }
2512 if (i == 4)
5eddb70b 2513 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2514
2515 DRM_DEBUG_KMS("FDI train done.\n");
2516}
2517
357555c0
JB
2518/* Manual link training for Ivy Bridge A0 parts */
2519static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2520{
2521 struct drm_device *dev = crtc->dev;
2522 struct drm_i915_private *dev_priv = dev->dev_private;
2523 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2524 int pipe = intel_crtc->pipe;
2525 u32 reg, temp, i;
2526
2527 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2528 for train result */
2529 reg = FDI_RX_IMR(pipe);
2530 temp = I915_READ(reg);
2531 temp &= ~FDI_RX_SYMBOL_LOCK;
2532 temp &= ~FDI_RX_BIT_LOCK;
2533 I915_WRITE(reg, temp);
2534
2535 POSTING_READ(reg);
2536 udelay(150);
2537
2538 /* enable CPU FDI TX and PCH FDI RX */
2539 reg = FDI_TX_CTL(pipe);
2540 temp = I915_READ(reg);
2541 temp &= ~(7 << 19);
2542 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2543 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2544 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2545 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2546 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2547 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2548
2549 reg = FDI_RX_CTL(pipe);
2550 temp = I915_READ(reg);
2551 temp &= ~FDI_LINK_TRAIN_AUTO;
2552 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2553 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2554 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2555
2556 POSTING_READ(reg);
2557 udelay(150);
2558
291427f5
JB
2559 if (HAS_PCH_CPT(dev))
2560 cpt_phase_pointer_enable(dev, pipe);
2561
357555c0
JB
2562 for (i = 0; i < 4; i++ ) {
2563 reg = FDI_TX_CTL(pipe);
2564 temp = I915_READ(reg);
2565 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2566 temp |= snb_b_fdi_train_param[i];
2567 I915_WRITE(reg, temp);
2568
2569 POSTING_READ(reg);
2570 udelay(500);
2571
2572 reg = FDI_RX_IIR(pipe);
2573 temp = I915_READ(reg);
2574 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2575
2576 if (temp & FDI_RX_BIT_LOCK ||
2577 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2578 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2579 DRM_DEBUG_KMS("FDI train 1 done.\n");
2580 break;
2581 }
2582 }
2583 if (i == 4)
2584 DRM_ERROR("FDI train 1 fail!\n");
2585
2586 /* Train 2 */
2587 reg = FDI_TX_CTL(pipe);
2588 temp = I915_READ(reg);
2589 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2590 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2591 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2592 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2593 I915_WRITE(reg, temp);
2594
2595 reg = FDI_RX_CTL(pipe);
2596 temp = I915_READ(reg);
2597 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2598 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2599 I915_WRITE(reg, temp);
2600
2601 POSTING_READ(reg);
2602 udelay(150);
2603
2604 for (i = 0; i < 4; i++ ) {
2605 reg = FDI_TX_CTL(pipe);
2606 temp = I915_READ(reg);
2607 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2608 temp |= snb_b_fdi_train_param[i];
2609 I915_WRITE(reg, temp);
2610
2611 POSTING_READ(reg);
2612 udelay(500);
2613
2614 reg = FDI_RX_IIR(pipe);
2615 temp = I915_READ(reg);
2616 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2617
2618 if (temp & FDI_RX_SYMBOL_LOCK) {
2619 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2620 DRM_DEBUG_KMS("FDI train 2 done.\n");
2621 break;
2622 }
2623 }
2624 if (i == 4)
2625 DRM_ERROR("FDI train 2 fail!\n");
2626
2627 DRM_DEBUG_KMS("FDI train done.\n");
2628}
2629
2630static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2c07245f
ZW
2631{
2632 struct drm_device *dev = crtc->dev;
2633 struct drm_i915_private *dev_priv = dev->dev_private;
2634 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2635 int pipe = intel_crtc->pipe;
5eddb70b 2636 u32 reg, temp;
79e53945 2637
c64e311e 2638 /* Write the TU size bits so error detection works */
5eddb70b
CW
2639 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2640 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
c64e311e 2641
c98e9dcf 2642 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2643 reg = FDI_RX_CTL(pipe);
2644 temp = I915_READ(reg);
2645 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2646 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2647 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2648 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2649
2650 POSTING_READ(reg);
c98e9dcf
JB
2651 udelay(200);
2652
2653 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2654 temp = I915_READ(reg);
2655 I915_WRITE(reg, temp | FDI_PCDCLK);
2656
2657 POSTING_READ(reg);
c98e9dcf
JB
2658 udelay(200);
2659
2660 /* Enable CPU FDI TX PLL, always on for Ironlake */
5eddb70b
CW
2661 reg = FDI_TX_CTL(pipe);
2662 temp = I915_READ(reg);
c98e9dcf 2663 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5eddb70b
CW
2664 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2665
2666 POSTING_READ(reg);
c98e9dcf 2667 udelay(100);
6be4a607 2668 }
0e23b99d
JB
2669}
2670
291427f5
JB
2671static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2672{
2673 struct drm_i915_private *dev_priv = dev->dev_private;
2674 u32 flags = I915_READ(SOUTH_CHICKEN1);
2675
2676 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2677 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2678 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2679 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2680 POSTING_READ(SOUTH_CHICKEN1);
2681}
0fc932b8
JB
2682static void ironlake_fdi_disable(struct drm_crtc *crtc)
2683{
2684 struct drm_device *dev = crtc->dev;
2685 struct drm_i915_private *dev_priv = dev->dev_private;
2686 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2687 int pipe = intel_crtc->pipe;
2688 u32 reg, temp;
2689
2690 /* disable CPU FDI tx and PCH FDI rx */
2691 reg = FDI_TX_CTL(pipe);
2692 temp = I915_READ(reg);
2693 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2694 POSTING_READ(reg);
2695
2696 reg = FDI_RX_CTL(pipe);
2697 temp = I915_READ(reg);
2698 temp &= ~(0x7 << 16);
2699 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2700 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2701
2702 POSTING_READ(reg);
2703 udelay(100);
2704
2705 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2706 if (HAS_PCH_IBX(dev)) {
2707 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
2708 I915_WRITE(FDI_RX_CHICKEN(pipe),
2709 I915_READ(FDI_RX_CHICKEN(pipe) &
6f06ce18 2710 ~FDI_RX_PHASE_SYNC_POINTER_EN));
291427f5
JB
2711 } else if (HAS_PCH_CPT(dev)) {
2712 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2713 }
0fc932b8
JB
2714
2715 /* still set train pattern 1 */
2716 reg = FDI_TX_CTL(pipe);
2717 temp = I915_READ(reg);
2718 temp &= ~FDI_LINK_TRAIN_NONE;
2719 temp |= FDI_LINK_TRAIN_PATTERN_1;
2720 I915_WRITE(reg, temp);
2721
2722 reg = FDI_RX_CTL(pipe);
2723 temp = I915_READ(reg);
2724 if (HAS_PCH_CPT(dev)) {
2725 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2726 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2727 } else {
2728 temp &= ~FDI_LINK_TRAIN_NONE;
2729 temp |= FDI_LINK_TRAIN_PATTERN_1;
2730 }
2731 /* BPC in FDI rx is consistent with that in PIPECONF */
2732 temp &= ~(0x07 << 16);
2733 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2734 I915_WRITE(reg, temp);
2735
2736 POSTING_READ(reg);
2737 udelay(100);
2738}
2739
6b383a7f
CW
2740/*
2741 * When we disable a pipe, we need to clear any pending scanline wait events
2742 * to avoid hanging the ring, which we assume we are waiting on.
2743 */
2744static void intel_clear_scanline_wait(struct drm_device *dev)
2745{
2746 struct drm_i915_private *dev_priv = dev->dev_private;
8168bd48 2747 struct intel_ring_buffer *ring;
6b383a7f
CW
2748 u32 tmp;
2749
2750 if (IS_GEN2(dev))
2751 /* Can't break the hang on i8xx */
2752 return;
2753
1ec14ad3 2754 ring = LP_RING(dev_priv);
8168bd48
CW
2755 tmp = I915_READ_CTL(ring);
2756 if (tmp & RING_WAIT)
2757 I915_WRITE_CTL(ring, tmp);
6b383a7f
CW
2758}
2759
e6c3a2a6
CW
2760static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2761{
05394f39 2762 struct drm_i915_gem_object *obj;
e6c3a2a6
CW
2763 struct drm_i915_private *dev_priv;
2764
2765 if (crtc->fb == NULL)
2766 return;
2767
05394f39 2768 obj = to_intel_framebuffer(crtc->fb)->obj;
e6c3a2a6
CW
2769 dev_priv = crtc->dev->dev_private;
2770 wait_event(dev_priv->pending_flip_queue,
05394f39 2771 atomic_read(&obj->pending_flip) == 0);
e6c3a2a6
CW
2772}
2773
040484af
JB
2774static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2775{
2776 struct drm_device *dev = crtc->dev;
2777 struct drm_mode_config *mode_config = &dev->mode_config;
2778 struct intel_encoder *encoder;
2779
2780 /*
2781 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2782 * must be driven by its own crtc; no sharing is possible.
2783 */
2784 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2785 if (encoder->base.crtc != crtc)
2786 continue;
2787
2788 switch (encoder->type) {
2789 case INTEL_OUTPUT_EDP:
2790 if (!intel_encoder_is_pch_edp(&encoder->base))
2791 return false;
2792 continue;
2793 }
2794 }
2795
2796 return true;
2797}
2798
f67a559d
JB
2799/*
2800 * Enable PCH resources required for PCH ports:
2801 * - PCH PLLs
2802 * - FDI training & RX/TX
2803 * - update transcoder timings
2804 * - DP transcoding bits
2805 * - transcoder
2806 */
2807static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
2808{
2809 struct drm_device *dev = crtc->dev;
2810 struct drm_i915_private *dev_priv = dev->dev_private;
2811 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2812 int pipe = intel_crtc->pipe;
5eddb70b 2813 u32 reg, temp;
2c07245f 2814
c98e9dcf 2815 /* For PCH output, training FDI link */
674cf967 2816 dev_priv->display.fdi_link_train(crtc);
2c07245f 2817
92f2584a 2818 intel_enable_pch_pll(dev_priv, pipe);
8db9d77b 2819
c98e9dcf
JB
2820 if (HAS_PCH_CPT(dev)) {
2821 /* Be sure PCH DPLL SEL is set */
2822 temp = I915_READ(PCH_DPLL_SEL);
5eddb70b 2823 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
c98e9dcf 2824 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
5eddb70b 2825 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
c98e9dcf
JB
2826 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2827 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 2828 }
5eddb70b 2829
d9b6cb56
JB
2830 /* set transcoder timing, panel must allow it */
2831 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
2832 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2833 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2834 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 2835
5eddb70b
CW
2836 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2837 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2838 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
8db9d77b 2839
5e84e1a4
ZW
2840 intel_fdi_normal_train(crtc);
2841
c98e9dcf
JB
2842 /* For PCH DP, enable TRANS_DP_CTL */
2843 if (HAS_PCH_CPT(dev) &&
2844 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
9325c9f0 2845 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
2846 reg = TRANS_DP_CTL(pipe);
2847 temp = I915_READ(reg);
2848 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
2849 TRANS_DP_SYNC_MASK |
2850 TRANS_DP_BPC_MASK);
5eddb70b
CW
2851 temp |= (TRANS_DP_OUTPUT_ENABLE |
2852 TRANS_DP_ENH_FRAMING);
9325c9f0 2853 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
2854
2855 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 2856 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 2857 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 2858 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
2859
2860 switch (intel_trans_dp_port_sel(crtc)) {
2861 case PCH_DP_B:
5eddb70b 2862 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
2863 break;
2864 case PCH_DP_C:
5eddb70b 2865 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
2866 break;
2867 case PCH_DP_D:
5eddb70b 2868 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
2869 break;
2870 default:
2871 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
5eddb70b 2872 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 2873 break;
32f9d658 2874 }
2c07245f 2875
5eddb70b 2876 I915_WRITE(reg, temp);
6be4a607 2877 }
b52eb4dc 2878
040484af 2879 intel_enable_transcoder(dev_priv, pipe);
f67a559d
JB
2880}
2881
2882static void ironlake_crtc_enable(struct drm_crtc *crtc)
2883{
2884 struct drm_device *dev = crtc->dev;
2885 struct drm_i915_private *dev_priv = dev->dev_private;
2886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2887 int pipe = intel_crtc->pipe;
2888 int plane = intel_crtc->plane;
2889 u32 temp;
2890 bool is_pch_port;
2891
2892 if (intel_crtc->active)
2893 return;
2894
2895 intel_crtc->active = true;
2896 intel_update_watermarks(dev);
2897
2898 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2899 temp = I915_READ(PCH_LVDS);
2900 if ((temp & LVDS_PORT_EN) == 0)
2901 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2902 }
2903
2904 is_pch_port = intel_crtc_driving_pch(crtc);
2905
2906 if (is_pch_port)
357555c0 2907 ironlake_fdi_pll_enable(crtc);
f67a559d
JB
2908 else
2909 ironlake_fdi_disable(crtc);
2910
2911 /* Enable panel fitting for LVDS */
2912 if (dev_priv->pch_pf_size &&
2913 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2914 /* Force use of hard-coded filter coefficients
2915 * as some pre-programmed values are broken,
2916 * e.g. x201.
2917 */
9db4a9c7
JB
2918 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2919 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2920 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
2921 }
2922
9c54c0dd
JB
2923 /*
2924 * On ILK+ LUT must be loaded before the pipe is running but with
2925 * clocks enabled
2926 */
2927 intel_crtc_load_lut(crtc);
2928
f67a559d
JB
2929 intel_enable_pipe(dev_priv, pipe, is_pch_port);
2930 intel_enable_plane(dev_priv, plane, pipe);
2931
2932 if (is_pch_port)
2933 ironlake_pch_enable(crtc);
c98e9dcf 2934
d1ebd816 2935 mutex_lock(&dev->struct_mutex);
bed4a673 2936 intel_update_fbc(dev);
d1ebd816
BW
2937 mutex_unlock(&dev->struct_mutex);
2938
6b383a7f 2939 intel_crtc_update_cursor(crtc, true);
6be4a607
JB
2940}
2941
2942static void ironlake_crtc_disable(struct drm_crtc *crtc)
2943{
2944 struct drm_device *dev = crtc->dev;
2945 struct drm_i915_private *dev_priv = dev->dev_private;
2946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2947 int pipe = intel_crtc->pipe;
2948 int plane = intel_crtc->plane;
5eddb70b 2949 u32 reg, temp;
b52eb4dc 2950
f7abfe8b
CW
2951 if (!intel_crtc->active)
2952 return;
2953
e6c3a2a6 2954 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 2955 drm_vblank_off(dev, pipe);
6b383a7f 2956 intel_crtc_update_cursor(crtc, false);
5eddb70b 2957
b24e7179 2958 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 2959
973d04f9
CW
2960 if (dev_priv->cfb_plane == plane)
2961 intel_disable_fbc(dev);
2c07245f 2962
b24e7179 2963 intel_disable_pipe(dev_priv, pipe);
32f9d658 2964
6be4a607 2965 /* Disable PF */
9db4a9c7
JB
2966 I915_WRITE(PF_CTL(pipe), 0);
2967 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 2968
0fc932b8 2969 ironlake_fdi_disable(crtc);
2c07245f 2970
47a05eca
JB
2971 /* This is a horrible layering violation; we should be doing this in
2972 * the connector/encoder ->prepare instead, but we don't always have
2973 * enough information there about the config to know whether it will
2974 * actually be necessary or just cause undesired flicker.
2975 */
2976 intel_disable_pch_ports(dev_priv, pipe);
249c0e64 2977
040484af 2978 intel_disable_transcoder(dev_priv, pipe);
913d8d11 2979
6be4a607
JB
2980 if (HAS_PCH_CPT(dev)) {
2981 /* disable TRANS_DP_CTL */
5eddb70b
CW
2982 reg = TRANS_DP_CTL(pipe);
2983 temp = I915_READ(reg);
2984 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 2985 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 2986 I915_WRITE(reg, temp);
6be4a607
JB
2987
2988 /* disable DPLL_SEL */
2989 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
2990 switch (pipe) {
2991 case 0:
2992 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2993 break;
2994 case 1:
6be4a607 2995 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
2996 break;
2997 case 2:
2998 /* FIXME: manage transcoder PLLs? */
2999 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3000 break;
3001 default:
3002 BUG(); /* wtf */
3003 }
6be4a607 3004 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3005 }
e3421a18 3006
6be4a607 3007 /* disable PCH DPLL */
92f2584a 3008 intel_disable_pch_pll(dev_priv, pipe);
8db9d77b 3009
6be4a607 3010 /* Switch from PCDclk to Rawclk */
5eddb70b
CW
3011 reg = FDI_RX_CTL(pipe);
3012 temp = I915_READ(reg);
3013 I915_WRITE(reg, temp & ~FDI_PCDCLK);
8db9d77b 3014
6be4a607 3015 /* Disable CPU FDI TX PLL */
5eddb70b
CW
3016 reg = FDI_TX_CTL(pipe);
3017 temp = I915_READ(reg);
3018 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3019
3020 POSTING_READ(reg);
6be4a607 3021 udelay(100);
8db9d77b 3022
5eddb70b
CW
3023 reg = FDI_RX_CTL(pipe);
3024 temp = I915_READ(reg);
3025 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2c07245f 3026
6be4a607 3027 /* Wait for the clocks to turn off. */
5eddb70b 3028 POSTING_READ(reg);
6be4a607 3029 udelay(100);
6b383a7f 3030
f7abfe8b 3031 intel_crtc->active = false;
6b383a7f 3032 intel_update_watermarks(dev);
d1ebd816
BW
3033
3034 mutex_lock(&dev->struct_mutex);
6b383a7f
CW
3035 intel_update_fbc(dev);
3036 intel_clear_scanline_wait(dev);
d1ebd816 3037 mutex_unlock(&dev->struct_mutex);
6be4a607 3038}
1b3c7a47 3039
6be4a607
JB
3040static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3041{
3042 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3043 int pipe = intel_crtc->pipe;
3044 int plane = intel_crtc->plane;
8db9d77b 3045
6be4a607
JB
3046 /* XXX: When our outputs are all unaware of DPMS modes other than off
3047 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3048 */
3049 switch (mode) {
3050 case DRM_MODE_DPMS_ON:
3051 case DRM_MODE_DPMS_STANDBY:
3052 case DRM_MODE_DPMS_SUSPEND:
3053 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3054 ironlake_crtc_enable(crtc);
3055 break;
1b3c7a47 3056
6be4a607
JB
3057 case DRM_MODE_DPMS_OFF:
3058 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3059 ironlake_crtc_disable(crtc);
2c07245f
ZW
3060 break;
3061 }
3062}
3063
02e792fb
DV
3064static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3065{
02e792fb 3066 if (!enable && intel_crtc->overlay) {
23f09ce3 3067 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3068 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3069
23f09ce3 3070 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3071 dev_priv->mm.interruptible = false;
3072 (void) intel_overlay_switch_off(intel_crtc->overlay);
3073 dev_priv->mm.interruptible = true;
23f09ce3 3074 mutex_unlock(&dev->struct_mutex);
02e792fb 3075 }
02e792fb 3076
5dcdbcb0
CW
3077 /* Let userspace switch the overlay on again. In most cases userspace
3078 * has to recompute where to put it anyway.
3079 */
02e792fb
DV
3080}
3081
0b8765c6 3082static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3083{
3084 struct drm_device *dev = crtc->dev;
79e53945
JB
3085 struct drm_i915_private *dev_priv = dev->dev_private;
3086 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3087 int pipe = intel_crtc->pipe;
80824003 3088 int plane = intel_crtc->plane;
79e53945 3089
f7abfe8b
CW
3090 if (intel_crtc->active)
3091 return;
3092
3093 intel_crtc->active = true;
6b383a7f
CW
3094 intel_update_watermarks(dev);
3095
63d7bbe9 3096 intel_enable_pll(dev_priv, pipe);
040484af 3097 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3098 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3099
0b8765c6 3100 intel_crtc_load_lut(crtc);
bed4a673 3101 intel_update_fbc(dev);
79e53945 3102
0b8765c6
JB
3103 /* Give the overlay scaler a chance to enable if it's on this pipe */
3104 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3105 intel_crtc_update_cursor(crtc, true);
0b8765c6 3106}
79e53945 3107
0b8765c6
JB
3108static void i9xx_crtc_disable(struct drm_crtc *crtc)
3109{
3110 struct drm_device *dev = crtc->dev;
3111 struct drm_i915_private *dev_priv = dev->dev_private;
3112 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3113 int pipe = intel_crtc->pipe;
3114 int plane = intel_crtc->plane;
b690e96c 3115
f7abfe8b
CW
3116 if (!intel_crtc->active)
3117 return;
3118
0b8765c6 3119 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3120 intel_crtc_wait_for_pending_flips(crtc);
3121 drm_vblank_off(dev, pipe);
0b8765c6 3122 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3123 intel_crtc_update_cursor(crtc, false);
0b8765c6 3124
973d04f9
CW
3125 if (dev_priv->cfb_plane == plane)
3126 intel_disable_fbc(dev);
79e53945 3127
b24e7179 3128 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3129 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3130 intel_disable_pll(dev_priv, pipe);
0b8765c6 3131
f7abfe8b 3132 intel_crtc->active = false;
6b383a7f
CW
3133 intel_update_fbc(dev);
3134 intel_update_watermarks(dev);
3135 intel_clear_scanline_wait(dev);
0b8765c6
JB
3136}
3137
3138static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3139{
3140 /* XXX: When our outputs are all unaware of DPMS modes other than off
3141 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3142 */
3143 switch (mode) {
3144 case DRM_MODE_DPMS_ON:
3145 case DRM_MODE_DPMS_STANDBY:
3146 case DRM_MODE_DPMS_SUSPEND:
3147 i9xx_crtc_enable(crtc);
3148 break;
3149 case DRM_MODE_DPMS_OFF:
3150 i9xx_crtc_disable(crtc);
79e53945
JB
3151 break;
3152 }
2c07245f
ZW
3153}
3154
3155/**
3156 * Sets the power management mode of the pipe and plane.
2c07245f
ZW
3157 */
3158static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3159{
3160 struct drm_device *dev = crtc->dev;
e70236a8 3161 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f
ZW
3162 struct drm_i915_master_private *master_priv;
3163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3164 int pipe = intel_crtc->pipe;
3165 bool enabled;
3166
032d2a0d
CW
3167 if (intel_crtc->dpms_mode == mode)
3168 return;
3169
65655d4a 3170 intel_crtc->dpms_mode = mode;
debcaddc 3171
e70236a8 3172 dev_priv->display.dpms(crtc, mode);
79e53945
JB
3173
3174 if (!dev->primary->master)
3175 return;
3176
3177 master_priv = dev->primary->master->driver_priv;
3178 if (!master_priv->sarea_priv)
3179 return;
3180
3181 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3182
3183 switch (pipe) {
3184 case 0:
3185 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3186 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3187 break;
3188 case 1:
3189 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3190 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3191 break;
3192 default:
9db4a9c7 3193 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3194 break;
3195 }
79e53945
JB
3196}
3197
cdd59983
CW
3198static void intel_crtc_disable(struct drm_crtc *crtc)
3199{
3200 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3201 struct drm_device *dev = crtc->dev;
3202
3203 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3204
3205 if (crtc->fb) {
3206 mutex_lock(&dev->struct_mutex);
3207 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3208 mutex_unlock(&dev->struct_mutex);
3209 }
3210}
3211
7e7d76c3
JB
3212/* Prepare for a mode set.
3213 *
3214 * Note we could be a lot smarter here. We need to figure out which outputs
3215 * will be enabled, which disabled (in short, how the config will changes)
3216 * and perform the minimum necessary steps to accomplish that, e.g. updating
3217 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3218 * panel fitting is in the proper state, etc.
3219 */
3220static void i9xx_crtc_prepare(struct drm_crtc *crtc)
79e53945 3221{
7e7d76c3 3222 i9xx_crtc_disable(crtc);
79e53945
JB
3223}
3224
7e7d76c3 3225static void i9xx_crtc_commit(struct drm_crtc *crtc)
79e53945 3226{
7e7d76c3 3227 i9xx_crtc_enable(crtc);
7e7d76c3
JB
3228}
3229
3230static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3231{
7e7d76c3 3232 ironlake_crtc_disable(crtc);
7e7d76c3
JB
3233}
3234
3235static void ironlake_crtc_commit(struct drm_crtc *crtc)
3236{
7e7d76c3 3237 ironlake_crtc_enable(crtc);
79e53945
JB
3238}
3239
3240void intel_encoder_prepare (struct drm_encoder *encoder)
3241{
3242 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3243 /* lvds has its own version of prepare see intel_lvds_prepare */
3244 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3245}
3246
3247void intel_encoder_commit (struct drm_encoder *encoder)
3248{
3249 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3250 /* lvds has its own version of commit see intel_lvds_commit */
3251 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3252}
3253
ea5b213a
CW
3254void intel_encoder_destroy(struct drm_encoder *encoder)
3255{
4ef69c7a 3256 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3257
ea5b213a
CW
3258 drm_encoder_cleanup(encoder);
3259 kfree(intel_encoder);
3260}
3261
79e53945
JB
3262static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3263 struct drm_display_mode *mode,
3264 struct drm_display_mode *adjusted_mode)
3265{
2c07245f 3266 struct drm_device *dev = crtc->dev;
89749350 3267
bad720ff 3268 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3269 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3270 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3271 return false;
2c07245f 3272 }
89749350
CW
3273
3274 /* XXX some encoders set the crtcinfo, others don't.
3275 * Obviously we need some form of conflict resolution here...
3276 */
3277 if (adjusted_mode->crtc_htotal == 0)
3278 drm_mode_set_crtcinfo(adjusted_mode, 0);
3279
79e53945
JB
3280 return true;
3281}
3282
e70236a8
JB
3283static int i945_get_display_clock_speed(struct drm_device *dev)
3284{
3285 return 400000;
3286}
79e53945 3287
e70236a8 3288static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3289{
e70236a8
JB
3290 return 333000;
3291}
79e53945 3292
e70236a8
JB
3293static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3294{
3295 return 200000;
3296}
79e53945 3297
e70236a8
JB
3298static int i915gm_get_display_clock_speed(struct drm_device *dev)
3299{
3300 u16 gcfgc = 0;
79e53945 3301
e70236a8
JB
3302 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3303
3304 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3305 return 133000;
3306 else {
3307 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3308 case GC_DISPLAY_CLOCK_333_MHZ:
3309 return 333000;
3310 default:
3311 case GC_DISPLAY_CLOCK_190_200_MHZ:
3312 return 190000;
79e53945 3313 }
e70236a8
JB
3314 }
3315}
3316
3317static int i865_get_display_clock_speed(struct drm_device *dev)
3318{
3319 return 266000;
3320}
3321
3322static int i855_get_display_clock_speed(struct drm_device *dev)
3323{
3324 u16 hpllcc = 0;
3325 /* Assume that the hardware is in the high speed state. This
3326 * should be the default.
3327 */
3328 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3329 case GC_CLOCK_133_200:
3330 case GC_CLOCK_100_200:
3331 return 200000;
3332 case GC_CLOCK_166_250:
3333 return 250000;
3334 case GC_CLOCK_100_133:
79e53945 3335 return 133000;
e70236a8 3336 }
79e53945 3337
e70236a8
JB
3338 /* Shouldn't happen */
3339 return 0;
3340}
79e53945 3341
e70236a8
JB
3342static int i830_get_display_clock_speed(struct drm_device *dev)
3343{
3344 return 133000;
79e53945
JB
3345}
3346
2c07245f
ZW
3347struct fdi_m_n {
3348 u32 tu;
3349 u32 gmch_m;
3350 u32 gmch_n;
3351 u32 link_m;
3352 u32 link_n;
3353};
3354
3355static void
3356fdi_reduce_ratio(u32 *num, u32 *den)
3357{
3358 while (*num > 0xffffff || *den > 0xffffff) {
3359 *num >>= 1;
3360 *den >>= 1;
3361 }
3362}
3363
2c07245f 3364static void
f2b115e6
AJ
3365ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3366 int link_clock, struct fdi_m_n *m_n)
2c07245f 3367{
2c07245f
ZW
3368 m_n->tu = 64; /* default size */
3369
22ed1113
CW
3370 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3371 m_n->gmch_m = bits_per_pixel * pixel_clock;
3372 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
3373 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3374
22ed1113
CW
3375 m_n->link_m = pixel_clock;
3376 m_n->link_n = link_clock;
2c07245f
ZW
3377 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3378}
3379
3380
7662c8bd
SL
3381struct intel_watermark_params {
3382 unsigned long fifo_size;
3383 unsigned long max_wm;
3384 unsigned long default_wm;
3385 unsigned long guard_size;
3386 unsigned long cacheline_size;
3387};
3388
f2b115e6 3389/* Pineview has different values for various configs */
d210246a 3390static const struct intel_watermark_params pineview_display_wm = {
f2b115e6
AJ
3391 PINEVIEW_DISPLAY_FIFO,
3392 PINEVIEW_MAX_WM,
3393 PINEVIEW_DFT_WM,
3394 PINEVIEW_GUARD_WM,
3395 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3396};
d210246a 3397static const struct intel_watermark_params pineview_display_hplloff_wm = {
f2b115e6
AJ
3398 PINEVIEW_DISPLAY_FIFO,
3399 PINEVIEW_MAX_WM,
3400 PINEVIEW_DFT_HPLLOFF_WM,
3401 PINEVIEW_GUARD_WM,
3402 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3403};
d210246a 3404static const struct intel_watermark_params pineview_cursor_wm = {
f2b115e6
AJ
3405 PINEVIEW_CURSOR_FIFO,
3406 PINEVIEW_CURSOR_MAX_WM,
3407 PINEVIEW_CURSOR_DFT_WM,
3408 PINEVIEW_CURSOR_GUARD_WM,
3409 PINEVIEW_FIFO_LINE_SIZE,
7662c8bd 3410};
d210246a 3411static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
f2b115e6
AJ
3412 PINEVIEW_CURSOR_FIFO,
3413 PINEVIEW_CURSOR_MAX_WM,
3414 PINEVIEW_CURSOR_DFT_WM,
3415 PINEVIEW_CURSOR_GUARD_WM,
3416 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3417};
d210246a 3418static const struct intel_watermark_params g4x_wm_info = {
0e442c60
JB
3419 G4X_FIFO_SIZE,
3420 G4X_MAX_WM,
3421 G4X_MAX_WM,
3422 2,
3423 G4X_FIFO_LINE_SIZE,
3424};
d210246a 3425static const struct intel_watermark_params g4x_cursor_wm_info = {
4fe5e611
ZY
3426 I965_CURSOR_FIFO,
3427 I965_CURSOR_MAX_WM,
3428 I965_CURSOR_DFT_WM,
3429 2,
3430 G4X_FIFO_LINE_SIZE,
3431};
d210246a 3432static const struct intel_watermark_params i965_cursor_wm_info = {
4fe5e611
ZY
3433 I965_CURSOR_FIFO,
3434 I965_CURSOR_MAX_WM,
3435 I965_CURSOR_DFT_WM,
3436 2,
3437 I915_FIFO_LINE_SIZE,
3438};
d210246a 3439static const struct intel_watermark_params i945_wm_info = {
dff33cfc 3440 I945_FIFO_SIZE,
7662c8bd
SL
3441 I915_MAX_WM,
3442 1,
dff33cfc
JB
3443 2,
3444 I915_FIFO_LINE_SIZE
7662c8bd 3445};
d210246a 3446static const struct intel_watermark_params i915_wm_info = {
dff33cfc 3447 I915_FIFO_SIZE,
7662c8bd
SL
3448 I915_MAX_WM,
3449 1,
dff33cfc 3450 2,
7662c8bd
SL
3451 I915_FIFO_LINE_SIZE
3452};
d210246a 3453static const struct intel_watermark_params i855_wm_info = {
7662c8bd
SL
3454 I855GM_FIFO_SIZE,
3455 I915_MAX_WM,
3456 1,
dff33cfc 3457 2,
7662c8bd
SL
3458 I830_FIFO_LINE_SIZE
3459};
d210246a 3460static const struct intel_watermark_params i830_wm_info = {
7662c8bd
SL
3461 I830_FIFO_SIZE,
3462 I915_MAX_WM,
3463 1,
dff33cfc 3464 2,
7662c8bd
SL
3465 I830_FIFO_LINE_SIZE
3466};
3467
d210246a 3468static const struct intel_watermark_params ironlake_display_wm_info = {
7f8a8569
ZW
3469 ILK_DISPLAY_FIFO,
3470 ILK_DISPLAY_MAXWM,
3471 ILK_DISPLAY_DFTWM,
3472 2,
3473 ILK_FIFO_LINE_SIZE
3474};
d210246a 3475static const struct intel_watermark_params ironlake_cursor_wm_info = {
c936f44d
ZY
3476 ILK_CURSOR_FIFO,
3477 ILK_CURSOR_MAXWM,
3478 ILK_CURSOR_DFTWM,
3479 2,
3480 ILK_FIFO_LINE_SIZE
3481};
d210246a 3482static const struct intel_watermark_params ironlake_display_srwm_info = {
7f8a8569
ZW
3483 ILK_DISPLAY_SR_FIFO,
3484 ILK_DISPLAY_MAX_SRWM,
3485 ILK_DISPLAY_DFT_SRWM,
3486 2,
3487 ILK_FIFO_LINE_SIZE
3488};
d210246a 3489static const struct intel_watermark_params ironlake_cursor_srwm_info = {
7f8a8569
ZW
3490 ILK_CURSOR_SR_FIFO,
3491 ILK_CURSOR_MAX_SRWM,
3492 ILK_CURSOR_DFT_SRWM,
3493 2,
3494 ILK_FIFO_LINE_SIZE
3495};
3496
d210246a 3497static const struct intel_watermark_params sandybridge_display_wm_info = {
1398261a
YL
3498 SNB_DISPLAY_FIFO,
3499 SNB_DISPLAY_MAXWM,
3500 SNB_DISPLAY_DFTWM,
3501 2,
3502 SNB_FIFO_LINE_SIZE
3503};
d210246a 3504static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1398261a
YL
3505 SNB_CURSOR_FIFO,
3506 SNB_CURSOR_MAXWM,
3507 SNB_CURSOR_DFTWM,
3508 2,
3509 SNB_FIFO_LINE_SIZE
3510};
d210246a 3511static const struct intel_watermark_params sandybridge_display_srwm_info = {
1398261a
YL
3512 SNB_DISPLAY_SR_FIFO,
3513 SNB_DISPLAY_MAX_SRWM,
3514 SNB_DISPLAY_DFT_SRWM,
3515 2,
3516 SNB_FIFO_LINE_SIZE
3517};
d210246a 3518static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1398261a
YL
3519 SNB_CURSOR_SR_FIFO,
3520 SNB_CURSOR_MAX_SRWM,
3521 SNB_CURSOR_DFT_SRWM,
3522 2,
3523 SNB_FIFO_LINE_SIZE
3524};
3525
3526
dff33cfc
JB
3527/**
3528 * intel_calculate_wm - calculate watermark level
3529 * @clock_in_khz: pixel clock
3530 * @wm: chip FIFO params
3531 * @pixel_size: display pixel size
3532 * @latency_ns: memory latency for the platform
3533 *
3534 * Calculate the watermark level (the level at which the display plane will
3535 * start fetching from memory again). Each chip has a different display
3536 * FIFO size and allocation, so the caller needs to figure that out and pass
3537 * in the correct intel_watermark_params structure.
3538 *
3539 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3540 * on the pixel size. When it reaches the watermark level, it'll start
3541 * fetching FIFO line sized based chunks from memory until the FIFO fills
3542 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3543 * will occur, and a display engine hang could result.
3544 */
7662c8bd 3545static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
d210246a
CW
3546 const struct intel_watermark_params *wm,
3547 int fifo_size,
7662c8bd
SL
3548 int pixel_size,
3549 unsigned long latency_ns)
3550{
390c4dd4 3551 long entries_required, wm_size;
dff33cfc 3552
d660467c
JB
3553 /*
3554 * Note: we need to make sure we don't overflow for various clock &
3555 * latency values.
3556 * clocks go from a few thousand to several hundred thousand.
3557 * latency is usually a few thousand
3558 */
3559 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3560 1000;
8de9b311 3561 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
7662c8bd 3562
bbb0aef5 3563 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
dff33cfc 3564
d210246a 3565 wm_size = fifo_size - (entries_required + wm->guard_size);
dff33cfc 3566
bbb0aef5 3567 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
7662c8bd 3568
390c4dd4
JB
3569 /* Don't promote wm_size to unsigned... */
3570 if (wm_size > (long)wm->max_wm)
7662c8bd 3571 wm_size = wm->max_wm;
c3add4b6 3572 if (wm_size <= 0)
7662c8bd
SL
3573 wm_size = wm->default_wm;
3574 return wm_size;
3575}
3576
3577struct cxsr_latency {
3578 int is_desktop;
95534263 3579 int is_ddr3;
7662c8bd
SL
3580 unsigned long fsb_freq;
3581 unsigned long mem_freq;
3582 unsigned long display_sr;
3583 unsigned long display_hpll_disable;
3584 unsigned long cursor_sr;
3585 unsigned long cursor_hpll_disable;
3586};
3587
403c89ff 3588static const struct cxsr_latency cxsr_latency_table[] = {
95534263
LP
3589 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3590 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3591 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3592 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3593 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3594
3595 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3596 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3597 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3598 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3599 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3600
3601 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3602 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3603 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3604 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3605 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3606
3607 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3608 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3609 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3610 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3611 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3612
3613 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3614 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3615 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3616 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3617 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3618
3619 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3620 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3621 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3622 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3623 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
7662c8bd
SL
3624};
3625
403c89ff
CW
3626static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3627 int is_ddr3,
3628 int fsb,
3629 int mem)
7662c8bd 3630{
403c89ff 3631 const struct cxsr_latency *latency;
7662c8bd 3632 int i;
7662c8bd
SL
3633
3634 if (fsb == 0 || mem == 0)
3635 return NULL;
3636
3637 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3638 latency = &cxsr_latency_table[i];
3639 if (is_desktop == latency->is_desktop &&
95534263 3640 is_ddr3 == latency->is_ddr3 &&
decbbcda
JSR
3641 fsb == latency->fsb_freq && mem == latency->mem_freq)
3642 return latency;
7662c8bd 3643 }
decbbcda 3644
28c97730 3645 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
decbbcda
JSR
3646
3647 return NULL;
7662c8bd
SL
3648}
3649
f2b115e6 3650static void pineview_disable_cxsr(struct drm_device *dev)
7662c8bd
SL
3651{
3652 struct drm_i915_private *dev_priv = dev->dev_private;
7662c8bd
SL
3653
3654 /* deactivate cxsr */
3e33d94d 3655 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
7662c8bd
SL
3656}
3657
bcc24fb4
JB
3658/*
3659 * Latency for FIFO fetches is dependent on several factors:
3660 * - memory configuration (speed, channels)
3661 * - chipset
3662 * - current MCH state
3663 * It can be fairly high in some situations, so here we assume a fairly
3664 * pessimal value. It's a tradeoff between extra memory fetches (if we
3665 * set this value too high, the FIFO will fetch frequently to stay full)
3666 * and power consumption (set it too low to save power and we might see
3667 * FIFO underruns and display "flicker").
3668 *
3669 * A value of 5us seems to be a good balance; safe for very low end
3670 * platforms but not overly aggressive on lower latency configs.
3671 */
69e302a9 3672static const int latency_ns = 5000;
7662c8bd 3673
e70236a8 3674static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
dff33cfc
JB
3675{
3676 struct drm_i915_private *dev_priv = dev->dev_private;
3677 uint32_t dsparb = I915_READ(DSPARB);
3678 int size;
3679
8de9b311
CW
3680 size = dsparb & 0x7f;
3681 if (plane)
3682 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
dff33cfc 3683
28c97730 3684 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3685 plane ? "B" : "A", size);
dff33cfc
JB
3686
3687 return size;
3688}
7662c8bd 3689
e70236a8
JB
3690static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3691{
3692 struct drm_i915_private *dev_priv = dev->dev_private;
3693 uint32_t dsparb = I915_READ(DSPARB);
3694 int size;
3695
8de9b311
CW
3696 size = dsparb & 0x1ff;
3697 if (plane)
3698 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
e70236a8 3699 size >>= 1; /* Convert to cachelines */
dff33cfc 3700
28c97730 3701 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3702 plane ? "B" : "A", size);
dff33cfc
JB
3703
3704 return size;
3705}
7662c8bd 3706
e70236a8
JB
3707static int i845_get_fifo_size(struct drm_device *dev, int plane)
3708{
3709 struct drm_i915_private *dev_priv = dev->dev_private;
3710 uint32_t dsparb = I915_READ(DSPARB);
3711 int size;
3712
3713 size = dsparb & 0x7f;
3714 size >>= 2; /* Convert to cachelines */
3715
28c97730 3716 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b
CW
3717 plane ? "B" : "A",
3718 size);
e70236a8
JB
3719
3720 return size;
3721}
3722
3723static int i830_get_fifo_size(struct drm_device *dev, int plane)
3724{
3725 struct drm_i915_private *dev_priv = dev->dev_private;
3726 uint32_t dsparb = I915_READ(DSPARB);
3727 int size;
3728
3729 size = dsparb & 0x7f;
3730 size >>= 1; /* Convert to cachelines */
3731
28c97730 3732 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3733 plane ? "B" : "A", size);
e70236a8
JB
3734
3735 return size;
3736}
3737
d210246a
CW
3738static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3739{
3740 struct drm_crtc *crtc, *enabled = NULL;
3741
3742 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3743 if (crtc->enabled && crtc->fb) {
3744 if (enabled)
3745 return NULL;
3746 enabled = crtc;
3747 }
3748 }
3749
3750 return enabled;
3751}
3752
3753static void pineview_update_wm(struct drm_device *dev)
d4294342
ZY
3754{
3755 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a 3756 struct drm_crtc *crtc;
403c89ff 3757 const struct cxsr_latency *latency;
d4294342
ZY
3758 u32 reg;
3759 unsigned long wm;
d4294342 3760
403c89ff 3761 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
95534263 3762 dev_priv->fsb_freq, dev_priv->mem_freq);
d4294342
ZY
3763 if (!latency) {
3764 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3765 pineview_disable_cxsr(dev);
3766 return;
3767 }
3768
d210246a
CW
3769 crtc = single_enabled_crtc(dev);
3770 if (crtc) {
3771 int clock = crtc->mode.clock;
3772 int pixel_size = crtc->fb->bits_per_pixel / 8;
d4294342
ZY
3773
3774 /* Display SR */
d210246a
CW
3775 wm = intel_calculate_wm(clock, &pineview_display_wm,
3776 pineview_display_wm.fifo_size,
d4294342
ZY
3777 pixel_size, latency->display_sr);
3778 reg = I915_READ(DSPFW1);
3779 reg &= ~DSPFW_SR_MASK;
3780 reg |= wm << DSPFW_SR_SHIFT;
3781 I915_WRITE(DSPFW1, reg);
3782 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3783
3784 /* cursor SR */
d210246a
CW
3785 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3786 pineview_display_wm.fifo_size,
d4294342
ZY
3787 pixel_size, latency->cursor_sr);
3788 reg = I915_READ(DSPFW3);
3789 reg &= ~DSPFW_CURSOR_SR_MASK;
3790 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3791 I915_WRITE(DSPFW3, reg);
3792
3793 /* Display HPLL off SR */
d210246a
CW
3794 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3795 pineview_display_hplloff_wm.fifo_size,
d4294342
ZY
3796 pixel_size, latency->display_hpll_disable);
3797 reg = I915_READ(DSPFW3);
3798 reg &= ~DSPFW_HPLL_SR_MASK;
3799 reg |= wm & DSPFW_HPLL_SR_MASK;
3800 I915_WRITE(DSPFW3, reg);
3801
3802 /* cursor HPLL off SR */
d210246a
CW
3803 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3804 pineview_display_hplloff_wm.fifo_size,
d4294342
ZY
3805 pixel_size, latency->cursor_hpll_disable);
3806 reg = I915_READ(DSPFW3);
3807 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3808 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3809 I915_WRITE(DSPFW3, reg);
3810 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3811
3812 /* activate cxsr */
3e33d94d
CW
3813 I915_WRITE(DSPFW3,
3814 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
d4294342
ZY
3815 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3816 } else {
3817 pineview_disable_cxsr(dev);
3818 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3819 }
3820}
3821
417ae147
CW
3822static bool g4x_compute_wm0(struct drm_device *dev,
3823 int plane,
3824 const struct intel_watermark_params *display,
3825 int display_latency_ns,
3826 const struct intel_watermark_params *cursor,
3827 int cursor_latency_ns,
3828 int *plane_wm,
3829 int *cursor_wm)
3830{
3831 struct drm_crtc *crtc;
3832 int htotal, hdisplay, clock, pixel_size;
3833 int line_time_us, line_count;
3834 int entries, tlb_miss;
3835
3836 crtc = intel_get_crtc_for_plane(dev, plane);
5c72d064
CW
3837 if (crtc->fb == NULL || !crtc->enabled) {
3838 *cursor_wm = cursor->guard_size;
3839 *plane_wm = display->guard_size;
417ae147 3840 return false;
5c72d064 3841 }
417ae147
CW
3842
3843 htotal = crtc->mode.htotal;
3844 hdisplay = crtc->mode.hdisplay;
3845 clock = crtc->mode.clock;
3846 pixel_size = crtc->fb->bits_per_pixel / 8;
3847
3848 /* Use the small buffer method to calculate plane watermark */
3849 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3850 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3851 if (tlb_miss > 0)
3852 entries += tlb_miss;
3853 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3854 *plane_wm = entries + display->guard_size;
3855 if (*plane_wm > (int)display->max_wm)
3856 *plane_wm = display->max_wm;
3857
3858 /* Use the large buffer method to calculate cursor watermark */
3859 line_time_us = ((htotal * 1000) / clock);
3860 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3861 entries = line_count * 64 * pixel_size;
3862 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3863 if (tlb_miss > 0)
3864 entries += tlb_miss;
3865 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3866 *cursor_wm = entries + cursor->guard_size;
3867 if (*cursor_wm > (int)cursor->max_wm)
3868 *cursor_wm = (int)cursor->max_wm;
3869
3870 return true;
3871}
3872
3873/*
3874 * Check the wm result.
3875 *
3876 * If any calculated watermark values is larger than the maximum value that
3877 * can be programmed into the associated watermark register, that watermark
3878 * must be disabled.
3879 */
3880static bool g4x_check_srwm(struct drm_device *dev,
3881 int display_wm, int cursor_wm,
3882 const struct intel_watermark_params *display,
3883 const struct intel_watermark_params *cursor)
652c393a 3884{
417ae147
CW
3885 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3886 display_wm, cursor_wm);
652c393a 3887
417ae147 3888 if (display_wm > display->max_wm) {
bbb0aef5 3889 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
417ae147
CW
3890 display_wm, display->max_wm);
3891 return false;
3892 }
0e442c60 3893
417ae147 3894 if (cursor_wm > cursor->max_wm) {
bbb0aef5 3895 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
417ae147
CW
3896 cursor_wm, cursor->max_wm);
3897 return false;
3898 }
0e442c60 3899
417ae147
CW
3900 if (!(display_wm || cursor_wm)) {
3901 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3902 return false;
3903 }
0e442c60 3904
417ae147
CW
3905 return true;
3906}
0e442c60 3907
417ae147 3908static bool g4x_compute_srwm(struct drm_device *dev,
d210246a
CW
3909 int plane,
3910 int latency_ns,
417ae147
CW
3911 const struct intel_watermark_params *display,
3912 const struct intel_watermark_params *cursor,
3913 int *display_wm, int *cursor_wm)
3914{
d210246a
CW
3915 struct drm_crtc *crtc;
3916 int hdisplay, htotal, pixel_size, clock;
417ae147
CW
3917 unsigned long line_time_us;
3918 int line_count, line_size;
3919 int small, large;
3920 int entries;
0e442c60 3921
417ae147
CW
3922 if (!latency_ns) {
3923 *display_wm = *cursor_wm = 0;
3924 return false;
3925 }
0e442c60 3926
d210246a
CW
3927 crtc = intel_get_crtc_for_plane(dev, plane);
3928 hdisplay = crtc->mode.hdisplay;
3929 htotal = crtc->mode.htotal;
3930 clock = crtc->mode.clock;
3931 pixel_size = crtc->fb->bits_per_pixel / 8;
3932
417ae147
CW
3933 line_time_us = (htotal * 1000) / clock;
3934 line_count = (latency_ns / line_time_us + 1000) / 1000;
3935 line_size = hdisplay * pixel_size;
0e442c60 3936
417ae147
CW
3937 /* Use the minimum of the small and large buffer method for primary */
3938 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3939 large = line_count * line_size;
0e442c60 3940
417ae147
CW
3941 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3942 *display_wm = entries + display->guard_size;
4fe5e611 3943
417ae147
CW
3944 /* calculate the self-refresh watermark for display cursor */
3945 entries = line_count * pixel_size * 64;
3946 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3947 *cursor_wm = entries + cursor->guard_size;
4fe5e611 3948
417ae147
CW
3949 return g4x_check_srwm(dev,
3950 *display_wm, *cursor_wm,
3951 display, cursor);
3952}
4fe5e611 3953
7ccb4a53 3954#define single_plane_enabled(mask) is_power_of_2(mask)
d210246a
CW
3955
3956static void g4x_update_wm(struct drm_device *dev)
417ae147
CW
3957{
3958 static const int sr_latency_ns = 12000;
3959 struct drm_i915_private *dev_priv = dev->dev_private;
3960 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
d210246a
CW
3961 int plane_sr, cursor_sr;
3962 unsigned int enabled = 0;
417ae147
CW
3963
3964 if (g4x_compute_wm0(dev, 0,
3965 &g4x_wm_info, latency_ns,
3966 &g4x_cursor_wm_info, latency_ns,
3967 &planea_wm, &cursora_wm))
d210246a 3968 enabled |= 1;
417ae147
CW
3969
3970 if (g4x_compute_wm0(dev, 1,
3971 &g4x_wm_info, latency_ns,
3972 &g4x_cursor_wm_info, latency_ns,
3973 &planeb_wm, &cursorb_wm))
d210246a 3974 enabled |= 2;
417ae147
CW
3975
3976 plane_sr = cursor_sr = 0;
d210246a
CW
3977 if (single_plane_enabled(enabled) &&
3978 g4x_compute_srwm(dev, ffs(enabled) - 1,
3979 sr_latency_ns,
417ae147
CW
3980 &g4x_wm_info,
3981 &g4x_cursor_wm_info,
3982 &plane_sr, &cursor_sr))
0e442c60 3983 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
417ae147
CW
3984 else
3985 I915_WRITE(FW_BLC_SELF,
3986 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
0e442c60 3987
308977ac
CW
3988 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3989 planea_wm, cursora_wm,
3990 planeb_wm, cursorb_wm,
3991 plane_sr, cursor_sr);
0e442c60 3992
417ae147
CW
3993 I915_WRITE(DSPFW1,
3994 (plane_sr << DSPFW_SR_SHIFT) |
0e442c60 3995 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
417ae147
CW
3996 (planeb_wm << DSPFW_PLANEB_SHIFT) |
3997 planea_wm);
3998 I915_WRITE(DSPFW2,
3999 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
0e442c60
JB
4000 (cursora_wm << DSPFW_CURSORA_SHIFT));
4001 /* HPLL off in SR has some issues on G4x... disable it */
417ae147
CW
4002 I915_WRITE(DSPFW3,
4003 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
0e442c60 4004 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
652c393a
JB
4005}
4006
d210246a 4007static void i965_update_wm(struct drm_device *dev)
7662c8bd
SL
4008{
4009 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4010 struct drm_crtc *crtc;
4011 int srwm = 1;
4fe5e611 4012 int cursor_sr = 16;
1dc7546d
JB
4013
4014 /* Calc sr entries for one plane configs */
d210246a
CW
4015 crtc = single_enabled_crtc(dev);
4016 if (crtc) {
1dc7546d 4017 /* self-refresh has much higher latency */
69e302a9 4018 static const int sr_latency_ns = 12000;
d210246a
CW
4019 int clock = crtc->mode.clock;
4020 int htotal = crtc->mode.htotal;
4021 int hdisplay = crtc->mode.hdisplay;
4022 int pixel_size = crtc->fb->bits_per_pixel / 8;
4023 unsigned long line_time_us;
4024 int entries;
1dc7546d 4025
d210246a 4026 line_time_us = ((htotal * 1000) / clock);
1dc7546d
JB
4027
4028 /* Use ns/us then divide to preserve precision */
d210246a
CW
4029 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4030 pixel_size * hdisplay;
4031 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
d210246a 4032 srwm = I965_FIFO_SIZE - entries;
1dc7546d
JB
4033 if (srwm < 0)
4034 srwm = 1;
1b07e04e 4035 srwm &= 0x1ff;
308977ac
CW
4036 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4037 entries, srwm);
4fe5e611 4038
d210246a 4039 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
5eddb70b 4040 pixel_size * 64;
d210246a 4041 entries = DIV_ROUND_UP(entries,
8de9b311 4042 i965_cursor_wm_info.cacheline_size);
4fe5e611 4043 cursor_sr = i965_cursor_wm_info.fifo_size -
d210246a 4044 (entries + i965_cursor_wm_info.guard_size);
4fe5e611
ZY
4045
4046 if (cursor_sr > i965_cursor_wm_info.max_wm)
4047 cursor_sr = i965_cursor_wm_info.max_wm;
4048
4049 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4050 "cursor %d\n", srwm, cursor_sr);
4051
a6c45cf0 4052 if (IS_CRESTLINE(dev))
adcdbc66 4053 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
33c5fd12
DJ
4054 } else {
4055 /* Turn off self refresh if both pipes are enabled */
a6c45cf0 4056 if (IS_CRESTLINE(dev))
adcdbc66
JB
4057 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4058 & ~FW_BLC_SELF_EN);
1dc7546d 4059 }
7662c8bd 4060
1dc7546d
JB
4061 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4062 srwm);
7662c8bd
SL
4063
4064 /* 965 has limitations... */
417ae147
CW
4065 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4066 (8 << 16) | (8 << 8) | (8 << 0));
7662c8bd 4067 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4fe5e611
ZY
4068 /* update cursor SR watermark */
4069 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
7662c8bd
SL
4070}
4071
d210246a 4072static void i9xx_update_wm(struct drm_device *dev)
7662c8bd
SL
4073{
4074 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a 4075 const struct intel_watermark_params *wm_info;
dff33cfc
JB
4076 uint32_t fwater_lo;
4077 uint32_t fwater_hi;
d210246a
CW
4078 int cwm, srwm = 1;
4079 int fifo_size;
dff33cfc 4080 int planea_wm, planeb_wm;
d210246a 4081 struct drm_crtc *crtc, *enabled = NULL;
7662c8bd 4082
72557b4f 4083 if (IS_I945GM(dev))
d210246a 4084 wm_info = &i945_wm_info;
a6c45cf0 4085 else if (!IS_GEN2(dev))
d210246a 4086 wm_info = &i915_wm_info;
7662c8bd 4087 else
d210246a
CW
4088 wm_info = &i855_wm_info;
4089
4090 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4091 crtc = intel_get_crtc_for_plane(dev, 0);
4092 if (crtc->enabled && crtc->fb) {
4093 planea_wm = intel_calculate_wm(crtc->mode.clock,
4094 wm_info, fifo_size,
4095 crtc->fb->bits_per_pixel / 8,
4096 latency_ns);
4097 enabled = crtc;
4098 } else
4099 planea_wm = fifo_size - wm_info->guard_size;
4100
4101 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4102 crtc = intel_get_crtc_for_plane(dev, 1);
4103 if (crtc->enabled && crtc->fb) {
4104 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4105 wm_info, fifo_size,
4106 crtc->fb->bits_per_pixel / 8,
4107 latency_ns);
4108 if (enabled == NULL)
4109 enabled = crtc;
4110 else
4111 enabled = NULL;
4112 } else
4113 planeb_wm = fifo_size - wm_info->guard_size;
7662c8bd 4114
28c97730 4115 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
7662c8bd
SL
4116
4117 /*
4118 * Overlay gets an aggressive default since video jitter is bad.
4119 */
4120 cwm = 2;
4121
18b2190c
AL
4122 /* Play safe and disable self-refresh before adjusting watermarks. */
4123 if (IS_I945G(dev) || IS_I945GM(dev))
4124 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4125 else if (IS_I915GM(dev))
4126 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4127
dff33cfc 4128 /* Calc sr entries for one plane configs */
d210246a 4129 if (HAS_FW_BLC(dev) && enabled) {
dff33cfc 4130 /* self-refresh has much higher latency */
69e302a9 4131 static const int sr_latency_ns = 6000;
d210246a
CW
4132 int clock = enabled->mode.clock;
4133 int htotal = enabled->mode.htotal;
4134 int hdisplay = enabled->mode.hdisplay;
4135 int pixel_size = enabled->fb->bits_per_pixel / 8;
4136 unsigned long line_time_us;
4137 int entries;
dff33cfc 4138
d210246a 4139 line_time_us = (htotal * 1000) / clock;
dff33cfc
JB
4140
4141 /* Use ns/us then divide to preserve precision */
d210246a
CW
4142 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4143 pixel_size * hdisplay;
4144 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4145 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4146 srwm = wm_info->fifo_size - entries;
dff33cfc
JB
4147 if (srwm < 0)
4148 srwm = 1;
ee980b80
LP
4149
4150 if (IS_I945G(dev) || IS_I945GM(dev))
18b2190c
AL
4151 I915_WRITE(FW_BLC_SELF,
4152 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4153 else if (IS_I915GM(dev))
ee980b80 4154 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
7662c8bd
SL
4155 }
4156
28c97730 4157 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
5eddb70b 4158 planea_wm, planeb_wm, cwm, srwm);
7662c8bd 4159
dff33cfc
JB
4160 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4161 fwater_hi = (cwm & 0x1f);
4162
4163 /* Set request length to 8 cachelines per fetch */
4164 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4165 fwater_hi = fwater_hi | (1 << 8);
7662c8bd
SL
4166
4167 I915_WRITE(FW_BLC, fwater_lo);
4168 I915_WRITE(FW_BLC2, fwater_hi);
18b2190c 4169
d210246a
CW
4170 if (HAS_FW_BLC(dev)) {
4171 if (enabled) {
4172 if (IS_I945G(dev) || IS_I945GM(dev))
4173 I915_WRITE(FW_BLC_SELF,
4174 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4175 else if (IS_I915GM(dev))
4176 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4177 DRM_DEBUG_KMS("memory self refresh enabled\n");
4178 } else
4179 DRM_DEBUG_KMS("memory self refresh disabled\n");
4180 }
7662c8bd
SL
4181}
4182
d210246a 4183static void i830_update_wm(struct drm_device *dev)
7662c8bd
SL
4184{
4185 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4186 struct drm_crtc *crtc;
4187 uint32_t fwater_lo;
dff33cfc 4188 int planea_wm;
7662c8bd 4189
d210246a
CW
4190 crtc = single_enabled_crtc(dev);
4191 if (crtc == NULL)
4192 return;
7662c8bd 4193
d210246a
CW
4194 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4195 dev_priv->display.get_fifo_size(dev, 0),
4196 crtc->fb->bits_per_pixel / 8,
4197 latency_ns);
4198 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
f3601326
JB
4199 fwater_lo |= (3<<8) | planea_wm;
4200
28c97730 4201 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
7662c8bd
SL
4202
4203 I915_WRITE(FW_BLC, fwater_lo);
4204}
4205
7f8a8569 4206#define ILK_LP0_PLANE_LATENCY 700
c936f44d 4207#define ILK_LP0_CURSOR_LATENCY 1300
7f8a8569 4208
1398261a
YL
4209/*
4210 * Check the wm result.
4211 *
4212 * If any calculated watermark values is larger than the maximum value that
4213 * can be programmed into the associated watermark register, that watermark
4214 * must be disabled.
1398261a 4215 */
b79d4990
JB
4216static bool ironlake_check_srwm(struct drm_device *dev, int level,
4217 int fbc_wm, int display_wm, int cursor_wm,
4218 const struct intel_watermark_params *display,
4219 const struct intel_watermark_params *cursor)
1398261a
YL
4220{
4221 struct drm_i915_private *dev_priv = dev->dev_private;
4222
4223 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4224 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4225
4226 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4227 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4228 fbc_wm, SNB_FBC_MAX_SRWM, level);
1398261a
YL
4229
4230 /* fbc has it's own way to disable FBC WM */
4231 I915_WRITE(DISP_ARB_CTL,
4232 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4233 return false;
4234 }
4235
b79d4990 4236 if (display_wm > display->max_wm) {
1398261a 4237 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4238 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1398261a
YL
4239 return false;
4240 }
4241
b79d4990 4242 if (cursor_wm > cursor->max_wm) {
1398261a 4243 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4244 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1398261a
YL
4245 return false;
4246 }
4247
4248 if (!(fbc_wm || display_wm || cursor_wm)) {
4249 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4250 return false;
4251 }
4252
4253 return true;
4254}
4255
4256/*
4257 * Compute watermark values of WM[1-3],
4258 */
d210246a
CW
4259static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4260 int latency_ns,
b79d4990
JB
4261 const struct intel_watermark_params *display,
4262 const struct intel_watermark_params *cursor,
4263 int *fbc_wm, int *display_wm, int *cursor_wm)
1398261a 4264{
d210246a 4265 struct drm_crtc *crtc;
1398261a 4266 unsigned long line_time_us;
d210246a 4267 int hdisplay, htotal, pixel_size, clock;
b79d4990 4268 int line_count, line_size;
1398261a
YL
4269 int small, large;
4270 int entries;
1398261a
YL
4271
4272 if (!latency_ns) {
4273 *fbc_wm = *display_wm = *cursor_wm = 0;
4274 return false;
4275 }
4276
d210246a
CW
4277 crtc = intel_get_crtc_for_plane(dev, plane);
4278 hdisplay = crtc->mode.hdisplay;
4279 htotal = crtc->mode.htotal;
4280 clock = crtc->mode.clock;
4281 pixel_size = crtc->fb->bits_per_pixel / 8;
4282
1398261a
YL
4283 line_time_us = (htotal * 1000) / clock;
4284 line_count = (latency_ns / line_time_us + 1000) / 1000;
4285 line_size = hdisplay * pixel_size;
4286
4287 /* Use the minimum of the small and large buffer method for primary */
4288 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4289 large = line_count * line_size;
4290
b79d4990
JB
4291 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4292 *display_wm = entries + display->guard_size;
1398261a
YL
4293
4294 /*
b79d4990 4295 * Spec says:
1398261a
YL
4296 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4297 */
4298 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4299
4300 /* calculate the self-refresh watermark for display cursor */
4301 entries = line_count * pixel_size * 64;
b79d4990
JB
4302 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4303 *cursor_wm = entries + cursor->guard_size;
1398261a 4304
b79d4990
JB
4305 return ironlake_check_srwm(dev, level,
4306 *fbc_wm, *display_wm, *cursor_wm,
4307 display, cursor);
4308}
4309
d210246a 4310static void ironlake_update_wm(struct drm_device *dev)
b79d4990
JB
4311{
4312 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4313 int fbc_wm, plane_wm, cursor_wm;
4314 unsigned int enabled;
b79d4990
JB
4315
4316 enabled = 0;
9f405100
CW
4317 if (g4x_compute_wm0(dev, 0,
4318 &ironlake_display_wm_info,
4319 ILK_LP0_PLANE_LATENCY,
4320 &ironlake_cursor_wm_info,
4321 ILK_LP0_CURSOR_LATENCY,
4322 &plane_wm, &cursor_wm)) {
b79d4990
JB
4323 I915_WRITE(WM0_PIPEA_ILK,
4324 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4325 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4326 " plane %d, " "cursor: %d\n",
4327 plane_wm, cursor_wm);
d210246a 4328 enabled |= 1;
b79d4990
JB
4329 }
4330
9f405100
CW
4331 if (g4x_compute_wm0(dev, 1,
4332 &ironlake_display_wm_info,
4333 ILK_LP0_PLANE_LATENCY,
4334 &ironlake_cursor_wm_info,
4335 ILK_LP0_CURSOR_LATENCY,
4336 &plane_wm, &cursor_wm)) {
b79d4990
JB
4337 I915_WRITE(WM0_PIPEB_ILK,
4338 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4339 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4340 " plane %d, cursor: %d\n",
4341 plane_wm, cursor_wm);
d210246a 4342 enabled |= 2;
b79d4990
JB
4343 }
4344
4345 /*
4346 * Calculate and update the self-refresh watermark only when one
4347 * display plane is used.
4348 */
4349 I915_WRITE(WM3_LP_ILK, 0);
4350 I915_WRITE(WM2_LP_ILK, 0);
4351 I915_WRITE(WM1_LP_ILK, 0);
4352
d210246a 4353 if (!single_plane_enabled(enabled))
b79d4990 4354 return;
d210246a 4355 enabled = ffs(enabled) - 1;
b79d4990
JB
4356
4357 /* WM1 */
d210246a
CW
4358 if (!ironlake_compute_srwm(dev, 1, enabled,
4359 ILK_READ_WM1_LATENCY() * 500,
b79d4990
JB
4360 &ironlake_display_srwm_info,
4361 &ironlake_cursor_srwm_info,
4362 &fbc_wm, &plane_wm, &cursor_wm))
4363 return;
4364
4365 I915_WRITE(WM1_LP_ILK,
4366 WM1_LP_SR_EN |
4367 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4368 (fbc_wm << WM1_LP_FBC_SHIFT) |
4369 (plane_wm << WM1_LP_SR_SHIFT) |
4370 cursor_wm);
4371
4372 /* WM2 */
d210246a
CW
4373 if (!ironlake_compute_srwm(dev, 2, enabled,
4374 ILK_READ_WM2_LATENCY() * 500,
b79d4990
JB
4375 &ironlake_display_srwm_info,
4376 &ironlake_cursor_srwm_info,
4377 &fbc_wm, &plane_wm, &cursor_wm))
4378 return;
4379
4380 I915_WRITE(WM2_LP_ILK,
4381 WM2_LP_EN |
4382 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4383 (fbc_wm << WM1_LP_FBC_SHIFT) |
4384 (plane_wm << WM1_LP_SR_SHIFT) |
4385 cursor_wm);
4386
4387 /*
4388 * WM3 is unsupported on ILK, probably because we don't have latency
4389 * data for that power state
4390 */
1398261a
YL
4391}
4392
d210246a 4393static void sandybridge_update_wm(struct drm_device *dev)
1398261a
YL
4394{
4395 struct drm_i915_private *dev_priv = dev->dev_private;
a0fa62d3 4396 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
d210246a
CW
4397 int fbc_wm, plane_wm, cursor_wm;
4398 unsigned int enabled;
1398261a
YL
4399
4400 enabled = 0;
9f405100
CW
4401 if (g4x_compute_wm0(dev, 0,
4402 &sandybridge_display_wm_info, latency,
4403 &sandybridge_cursor_wm_info, latency,
4404 &plane_wm, &cursor_wm)) {
1398261a
YL
4405 I915_WRITE(WM0_PIPEA_ILK,
4406 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4407 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4408 " plane %d, " "cursor: %d\n",
4409 plane_wm, cursor_wm);
d210246a 4410 enabled |= 1;
1398261a
YL
4411 }
4412
9f405100
CW
4413 if (g4x_compute_wm0(dev, 1,
4414 &sandybridge_display_wm_info, latency,
4415 &sandybridge_cursor_wm_info, latency,
4416 &plane_wm, &cursor_wm)) {
1398261a
YL
4417 I915_WRITE(WM0_PIPEB_ILK,
4418 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4419 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4420 " plane %d, cursor: %d\n",
4421 plane_wm, cursor_wm);
d210246a 4422 enabled |= 2;
1398261a
YL
4423 }
4424
4425 /*
4426 * Calculate and update the self-refresh watermark only when one
4427 * display plane is used.
4428 *
4429 * SNB support 3 levels of watermark.
4430 *
4431 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4432 * and disabled in the descending order
4433 *
4434 */
4435 I915_WRITE(WM3_LP_ILK, 0);
4436 I915_WRITE(WM2_LP_ILK, 0);
4437 I915_WRITE(WM1_LP_ILK, 0);
4438
d210246a 4439 if (!single_plane_enabled(enabled))
1398261a 4440 return;
d210246a 4441 enabled = ffs(enabled) - 1;
1398261a
YL
4442
4443 /* WM1 */
d210246a
CW
4444 if (!ironlake_compute_srwm(dev, 1, enabled,
4445 SNB_READ_WM1_LATENCY() * 500,
b79d4990
JB
4446 &sandybridge_display_srwm_info,
4447 &sandybridge_cursor_srwm_info,
4448 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4449 return;
4450
4451 I915_WRITE(WM1_LP_ILK,
4452 WM1_LP_SR_EN |
4453 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4454 (fbc_wm << WM1_LP_FBC_SHIFT) |
4455 (plane_wm << WM1_LP_SR_SHIFT) |
4456 cursor_wm);
4457
4458 /* WM2 */
d210246a
CW
4459 if (!ironlake_compute_srwm(dev, 2, enabled,
4460 SNB_READ_WM2_LATENCY() * 500,
b79d4990
JB
4461 &sandybridge_display_srwm_info,
4462 &sandybridge_cursor_srwm_info,
4463 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4464 return;
4465
4466 I915_WRITE(WM2_LP_ILK,
4467 WM2_LP_EN |
4468 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4469 (fbc_wm << WM1_LP_FBC_SHIFT) |
4470 (plane_wm << WM1_LP_SR_SHIFT) |
4471 cursor_wm);
4472
4473 /* WM3 */
d210246a
CW
4474 if (!ironlake_compute_srwm(dev, 3, enabled,
4475 SNB_READ_WM3_LATENCY() * 500,
b79d4990
JB
4476 &sandybridge_display_srwm_info,
4477 &sandybridge_cursor_srwm_info,
4478 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4479 return;
4480
4481 I915_WRITE(WM3_LP_ILK,
4482 WM3_LP_EN |
4483 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4484 (fbc_wm << WM1_LP_FBC_SHIFT) |
4485 (plane_wm << WM1_LP_SR_SHIFT) |
4486 cursor_wm);
4487}
4488
7662c8bd
SL
4489/**
4490 * intel_update_watermarks - update FIFO watermark values based on current modes
4491 *
4492 * Calculate watermark values for the various WM regs based on current mode
4493 * and plane configuration.
4494 *
4495 * There are several cases to deal with here:
4496 * - normal (i.e. non-self-refresh)
4497 * - self-refresh (SR) mode
4498 * - lines are large relative to FIFO size (buffer can hold up to 2)
4499 * - lines are small relative to FIFO size (buffer can hold more than 2
4500 * lines), so need to account for TLB latency
4501 *
4502 * The normal calculation is:
4503 * watermark = dotclock * bytes per pixel * latency
4504 * where latency is platform & configuration dependent (we assume pessimal
4505 * values here).
4506 *
4507 * The SR calculation is:
4508 * watermark = (trunc(latency/line time)+1) * surface width *
4509 * bytes per pixel
4510 * where
4511 * line time = htotal / dotclock
fa143215 4512 * surface width = hdisplay for normal plane and 64 for cursor
7662c8bd
SL
4513 * and latency is assumed to be high, as above.
4514 *
4515 * The final value programmed to the register should always be rounded up,
4516 * and include an extra 2 entries to account for clock crossings.
4517 *
4518 * We don't use the sprite, so we can ignore that. And on Crestline we have
4519 * to set the non-SR watermarks to 8.
5eddb70b 4520 */
7662c8bd
SL
4521static void intel_update_watermarks(struct drm_device *dev)
4522{
e70236a8 4523 struct drm_i915_private *dev_priv = dev->dev_private;
7662c8bd 4524
d210246a
CW
4525 if (dev_priv->display.update_wm)
4526 dev_priv->display.update_wm(dev);
7662c8bd
SL
4527}
4528
a7615030
CW
4529static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4530{
435793df
KP
4531 return dev_priv->lvds_use_ssc && i915_panel_use_ssc
4532 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
4533}
4534
5a354204
JB
4535/**
4536 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4537 * @crtc: CRTC structure
4538 *
4539 * A pipe may be connected to one or more outputs. Based on the depth of the
4540 * attached framebuffer, choose a good color depth to use on the pipe.
4541 *
4542 * If possible, match the pipe depth to the fb depth. In some cases, this
4543 * isn't ideal, because the connected output supports a lesser or restricted
4544 * set of depths. Resolve that here:
4545 * LVDS typically supports only 6bpc, so clamp down in that case
4546 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4547 * Displays may support a restricted set as well, check EDID and clamp as
4548 * appropriate.
4549 *
4550 * RETURNS:
4551 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4552 * true if they don't match).
4553 */
4554static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4555 unsigned int *pipe_bpp)
4556{
4557 struct drm_device *dev = crtc->dev;
4558 struct drm_i915_private *dev_priv = dev->dev_private;
4559 struct drm_encoder *encoder;
4560 struct drm_connector *connector;
4561 unsigned int display_bpc = UINT_MAX, bpc;
4562
4563 /* Walk the encoders & connectors on this crtc, get min bpc */
4564 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4565 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4566
4567 if (encoder->crtc != crtc)
4568 continue;
4569
4570 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4571 unsigned int lvds_bpc;
4572
4573 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4574 LVDS_A3_POWER_UP)
4575 lvds_bpc = 8;
4576 else
4577 lvds_bpc = 6;
4578
4579 if (lvds_bpc < display_bpc) {
4580 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4581 display_bpc = lvds_bpc;
4582 }
4583 continue;
4584 }
4585
4586 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4587 /* Use VBT settings if we have an eDP panel */
4588 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4589
4590 if (edp_bpc < display_bpc) {
4591 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4592 display_bpc = edp_bpc;
4593 }
4594 continue;
4595 }
4596
4597 /* Not one of the known troublemakers, check the EDID */
4598 list_for_each_entry(connector, &dev->mode_config.connector_list,
4599 head) {
4600 if (connector->encoder != encoder)
4601 continue;
4602
4603 if (connector->display_info.bpc < display_bpc) {
4604 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4605 display_bpc = connector->display_info.bpc;
4606 }
4607 }
4608
4609 /*
4610 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4611 * through, clamp it down. (Note: >12bpc will be caught below.)
4612 */
4613 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4614 if (display_bpc > 8 && display_bpc < 12) {
4615 DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
4616 display_bpc = 12;
4617 } else {
4618 DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
4619 display_bpc = 8;
4620 }
4621 }
4622 }
4623
4624 /*
4625 * We could just drive the pipe at the highest bpc all the time and
4626 * enable dithering as needed, but that costs bandwidth. So choose
4627 * the minimum value that expresses the full color range of the fb but
4628 * also stays within the max display bpc discovered above.
4629 */
4630
4631 switch (crtc->fb->depth) {
4632 case 8:
4633 bpc = 8; /* since we go through a colormap */
4634 break;
4635 case 15:
4636 case 16:
4637 bpc = 6; /* min is 18bpp */
4638 break;
4639 case 24:
4640 bpc = min((unsigned int)8, display_bpc);
4641 break;
4642 case 30:
4643 bpc = min((unsigned int)10, display_bpc);
4644 break;
4645 case 48:
4646 bpc = min((unsigned int)12, display_bpc);
4647 break;
4648 default:
4649 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4650 bpc = min((unsigned int)8, display_bpc);
4651 break;
4652 }
4653
4654 DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
4655 bpc, display_bpc);
4656
4657 *pipe_bpp = bpc * 3;
4658
4659 return display_bpc != bpc;
4660}
4661
f564048e
EA
4662static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4663 struct drm_display_mode *mode,
4664 struct drm_display_mode *adjusted_mode,
4665 int x, int y,
4666 struct drm_framebuffer *old_fb)
79e53945
JB
4667{
4668 struct drm_device *dev = crtc->dev;
4669 struct drm_i915_private *dev_priv = dev->dev_private;
4670 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4671 int pipe = intel_crtc->pipe;
80824003 4672 int plane = intel_crtc->plane;
c751ce4f 4673 int refclk, num_connectors = 0;
652c393a 4674 intel_clock_t clock, reduced_clock;
5eddb70b 4675 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
652c393a 4676 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
a4fc5ed6 4677 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
79e53945 4678 struct drm_mode_config *mode_config = &dev->mode_config;
5eddb70b 4679 struct intel_encoder *encoder;
d4906093 4680 const intel_limit_t *limit;
5c3b82e2 4681 int ret;
fae14981 4682 u32 temp;
aa9b500d 4683 u32 lvds_sync = 0;
79e53945 4684
5eddb70b
CW
4685 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4686 if (encoder->base.crtc != crtc)
79e53945
JB
4687 continue;
4688
5eddb70b 4689 switch (encoder->type) {
79e53945
JB
4690 case INTEL_OUTPUT_LVDS:
4691 is_lvds = true;
4692 break;
4693 case INTEL_OUTPUT_SDVO:
7d57382e 4694 case INTEL_OUTPUT_HDMI:
79e53945 4695 is_sdvo = true;
5eddb70b 4696 if (encoder->needs_tv_clock)
e2f0ba97 4697 is_tv = true;
79e53945
JB
4698 break;
4699 case INTEL_OUTPUT_DVO:
4700 is_dvo = true;
4701 break;
4702 case INTEL_OUTPUT_TVOUT:
4703 is_tv = true;
4704 break;
4705 case INTEL_OUTPUT_ANALOG:
4706 is_crt = true;
4707 break;
a4fc5ed6
KP
4708 case INTEL_OUTPUT_DISPLAYPORT:
4709 is_dp = true;
4710 break;
79e53945 4711 }
43565a06 4712
c751ce4f 4713 num_connectors++;
79e53945
JB
4714 }
4715
a7615030 4716 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
43565a06 4717 refclk = dev_priv->lvds_ssc_freq * 1000;
28c97730 4718 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5eddb70b 4719 refclk / 1000);
a6c45cf0 4720 } else if (!IS_GEN2(dev)) {
79e53945
JB
4721 refclk = 96000;
4722 } else {
4723 refclk = 48000;
4724 }
4725
d4906093
ML
4726 /*
4727 * Returns a set of divisors for the desired target clock with the given
4728 * refclk, or FALSE. The returned values represent the clock equation:
4729 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4730 */
1b894b59 4731 limit = intel_limit(crtc, refclk);
d4906093 4732 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
79e53945
JB
4733 if (!ok) {
4734 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4735 return -EINVAL;
79e53945
JB
4736 }
4737
cda4b7d3 4738 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4739 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4740
ddc9003c
ZY
4741 if (is_lvds && dev_priv->lvds_downclock_avail) {
4742 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
4743 dev_priv->lvds_downclock,
4744 refclk,
4745 &reduced_clock);
18f9ed12
ZY
4746 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4747 /*
4748 * If the different P is found, it means that we can't
4749 * switch the display clock by using the FP0/FP1.
4750 * In such case we will disable the LVDS downclock
4751 * feature.
4752 */
4753 DRM_DEBUG_KMS("Different P is found for "
5eddb70b 4754 "LVDS clock/downclock\n");
18f9ed12
ZY
4755 has_reduced_clock = 0;
4756 }
652c393a 4757 }
7026d4ac
ZW
4758 /* SDVO TV has fixed PLL values depend on its clock range,
4759 this mirrors vbios setting. */
4760 if (is_sdvo && is_tv) {
4761 if (adjusted_mode->clock >= 100000
5eddb70b 4762 && adjusted_mode->clock < 140500) {
7026d4ac
ZW
4763 clock.p1 = 2;
4764 clock.p2 = 10;
4765 clock.n = 3;
4766 clock.m1 = 16;
4767 clock.m2 = 8;
4768 } else if (adjusted_mode->clock >= 140500
5eddb70b 4769 && adjusted_mode->clock <= 200000) {
7026d4ac
ZW
4770 clock.p1 = 1;
4771 clock.p2 = 10;
4772 clock.n = 6;
4773 clock.m1 = 12;
4774 clock.m2 = 8;
4775 }
4776 }
4777
f2b115e6 4778 if (IS_PINEVIEW(dev)) {
2177832f 4779 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
652c393a
JB
4780 if (has_reduced_clock)
4781 fp2 = (1 << reduced_clock.n) << 16 |
4782 reduced_clock.m1 << 8 | reduced_clock.m2;
4783 } else {
2177832f 4784 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
652c393a
JB
4785 if (has_reduced_clock)
4786 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4787 reduced_clock.m2;
4788 }
79e53945 4789
929c77fb 4790 dpll = DPLL_VGA_MODE_DIS;
2c07245f 4791
a6c45cf0 4792 if (!IS_GEN2(dev)) {
79e53945
JB
4793 if (is_lvds)
4794 dpll |= DPLLB_MODE_LVDS;
4795 else
4796 dpll |= DPLLB_MODE_DAC_SERIAL;
4797 if (is_sdvo) {
6c9547ff
CW
4798 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4799 if (pixel_multiplier > 1) {
4800 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4801 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
6c9547ff 4802 }
79e53945 4803 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 4804 }
929c77fb 4805 if (is_dp)
a4fc5ed6 4806 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945
JB
4807
4808 /* compute bitmask from p1 value */
f2b115e6
AJ
4809 if (IS_PINEVIEW(dev))
4810 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
2c07245f 4811 else {
2177832f 4812 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
652c393a
JB
4813 if (IS_G4X(dev) && has_reduced_clock)
4814 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2c07245f 4815 }
79e53945
JB
4816 switch (clock.p2) {
4817 case 5:
4818 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4819 break;
4820 case 7:
4821 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4822 break;
4823 case 10:
4824 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4825 break;
4826 case 14:
4827 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4828 break;
4829 }
929c77fb 4830 if (INTEL_INFO(dev)->gen >= 4)
79e53945
JB
4831 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4832 } else {
4833 if (is_lvds) {
4834 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4835 } else {
4836 if (clock.p1 == 2)
4837 dpll |= PLL_P1_DIVIDE_BY_TWO;
4838 else
4839 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4840 if (clock.p2 == 4)
4841 dpll |= PLL_P2_DIVIDE_BY_4;
4842 }
4843 }
4844
43565a06
KH
4845 if (is_sdvo && is_tv)
4846 dpll |= PLL_REF_INPUT_TVCLKINBC;
4847 else if (is_tv)
79e53945 4848 /* XXX: just matching BIOS for now */
43565a06 4849 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 4850 dpll |= 3;
a7615030 4851 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 4852 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
4853 else
4854 dpll |= PLL_REF_INPUT_DREFCLK;
4855
4856 /* setup pipeconf */
5eddb70b 4857 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
4858
4859 /* Set up the display plane register */
4860 dspcntr = DISPPLANE_GAMMA_ENABLE;
4861
f2b115e6 4862 /* Ironlake's plane is forced to pipe, bit 24 is to
2c07245f 4863 enable color space conversion */
929c77fb
EA
4864 if (pipe == 0)
4865 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4866 else
4867 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 4868
a6c45cf0 4869 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
4870 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4871 * core speed.
4872 *
4873 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4874 * pipe == 0 check?
4875 */
e70236a8
JB
4876 if (mode->clock >
4877 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 4878 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 4879 else
5eddb70b 4880 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
4881 }
4882
929c77fb 4883 dpll |= DPLL_VCO_ENABLE;
8d86dc6a 4884
28c97730 4885 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
4886 drm_mode_debug_printmodeline(mode);
4887
fae14981
EA
4888 I915_WRITE(FP0(pipe), fp);
4889 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5eddb70b 4890
fae14981 4891 POSTING_READ(DPLL(pipe));
c713bb08 4892 udelay(150);
8db9d77b 4893
79e53945
JB
4894 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4895 * This is an exception to the general rule that mode_set doesn't turn
4896 * things on.
4897 */
4898 if (is_lvds) {
fae14981 4899 temp = I915_READ(LVDS);
5eddb70b 4900 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
b3b095b3 4901 if (pipe == 1) {
929c77fb 4902 temp |= LVDS_PIPEB_SELECT;
b3b095b3 4903 } else {
929c77fb 4904 temp &= ~LVDS_PIPEB_SELECT;
b3b095b3 4905 }
a3e17eb8 4906 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 4907 temp |= dev_priv->lvds_border_bits;
79e53945
JB
4908 /* Set the B0-B3 data pairs corresponding to whether we're going to
4909 * set the DPLLs for dual-channel mode or not.
4910 */
4911 if (clock.p2 == 7)
5eddb70b 4912 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 4913 else
5eddb70b 4914 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
4915
4916 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4917 * appropriately here, but we need to look more thoroughly into how
4918 * panels behave in the two modes.
4919 */
929c77fb
EA
4920 /* set the dithering flag on LVDS as needed */
4921 if (INTEL_INFO(dev)->gen >= 4) {
434ed097 4922 if (dev_priv->lvds_dither)
5eddb70b 4923 temp |= LVDS_ENABLE_DITHER;
434ed097 4924 else
5eddb70b 4925 temp &= ~LVDS_ENABLE_DITHER;
898822ce 4926 }
aa9b500d
BF
4927 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4928 lvds_sync |= LVDS_HSYNC_POLARITY;
4929 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4930 lvds_sync |= LVDS_VSYNC_POLARITY;
4931 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4932 != lvds_sync) {
4933 char flags[2] = "-+";
4934 DRM_INFO("Changing LVDS panel from "
4935 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4936 flags[!(temp & LVDS_HSYNC_POLARITY)],
4937 flags[!(temp & LVDS_VSYNC_POLARITY)],
4938 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4939 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4940 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4941 temp |= lvds_sync;
4942 }
fae14981 4943 I915_WRITE(LVDS, temp);
79e53945 4944 }
434ed097 4945
929c77fb 4946 if (is_dp) {
a4fc5ed6 4947 intel_dp_set_m_n(crtc, mode, adjusted_mode);
434ed097
JB
4948 }
4949
fae14981 4950 I915_WRITE(DPLL(pipe), dpll);
5eddb70b 4951
c713bb08 4952 /* Wait for the clocks to stabilize. */
fae14981 4953 POSTING_READ(DPLL(pipe));
c713bb08 4954 udelay(150);
32f9d658 4955
c713bb08
EA
4956 if (INTEL_INFO(dev)->gen >= 4) {
4957 temp = 0;
4958 if (is_sdvo) {
4959 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4960 if (temp > 1)
4961 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4962 else
4963 temp = 0;
32f9d658 4964 }
c713bb08
EA
4965 I915_WRITE(DPLL_MD(pipe), temp);
4966 } else {
4967 /* The pixel multiplier can only be updated once the
4968 * DPLL is enabled and the clocks are stable.
4969 *
4970 * So write it again.
4971 */
fae14981 4972 I915_WRITE(DPLL(pipe), dpll);
79e53945 4973 }
79e53945 4974
5eddb70b 4975 intel_crtc->lowfreq_avail = false;
652c393a 4976 if (is_lvds && has_reduced_clock && i915_powersave) {
fae14981 4977 I915_WRITE(FP1(pipe), fp2);
652c393a
JB
4978 intel_crtc->lowfreq_avail = true;
4979 if (HAS_PIPE_CXSR(dev)) {
28c97730 4980 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a
JB
4981 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4982 }
4983 } else {
fae14981 4984 I915_WRITE(FP1(pipe), fp);
652c393a 4985 if (HAS_PIPE_CXSR(dev)) {
28c97730 4986 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
4987 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4988 }
4989 }
4990
734b4157
KH
4991 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4992 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4993 /* the chip adds 2 halflines automatically */
4994 adjusted_mode->crtc_vdisplay -= 1;
4995 adjusted_mode->crtc_vtotal -= 1;
4996 adjusted_mode->crtc_vblank_start -= 1;
4997 adjusted_mode->crtc_vblank_end -= 1;
4998 adjusted_mode->crtc_vsync_end -= 1;
4999 adjusted_mode->crtc_vsync_start -= 1;
5000 } else
5001 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5002
5eddb70b
CW
5003 I915_WRITE(HTOTAL(pipe),
5004 (adjusted_mode->crtc_hdisplay - 1) |
79e53945 5005 ((adjusted_mode->crtc_htotal - 1) << 16));
5eddb70b
CW
5006 I915_WRITE(HBLANK(pipe),
5007 (adjusted_mode->crtc_hblank_start - 1) |
79e53945 5008 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5eddb70b
CW
5009 I915_WRITE(HSYNC(pipe),
5010 (adjusted_mode->crtc_hsync_start - 1) |
79e53945 5011 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5eddb70b
CW
5012
5013 I915_WRITE(VTOTAL(pipe),
5014 (adjusted_mode->crtc_vdisplay - 1) |
79e53945 5015 ((adjusted_mode->crtc_vtotal - 1) << 16));
5eddb70b
CW
5016 I915_WRITE(VBLANK(pipe),
5017 (adjusted_mode->crtc_vblank_start - 1) |
79e53945 5018 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5eddb70b
CW
5019 I915_WRITE(VSYNC(pipe),
5020 (adjusted_mode->crtc_vsync_start - 1) |
79e53945 5021 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5eddb70b
CW
5022
5023 /* pipesrc and dspsize control the size that is scaled from,
5024 * which should always be the user's requested size.
79e53945 5025 */
929c77fb
EA
5026 I915_WRITE(DSPSIZE(plane),
5027 ((mode->vdisplay - 1) << 16) |
5028 (mode->hdisplay - 1));
5029 I915_WRITE(DSPPOS(plane), 0);
5eddb70b
CW
5030 I915_WRITE(PIPESRC(pipe),
5031 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f 5032
f564048e
EA
5033 I915_WRITE(PIPECONF(pipe), pipeconf);
5034 POSTING_READ(PIPECONF(pipe));
929c77fb 5035 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
5036
5037 intel_wait_for_vblank(dev, pipe);
5038
f564048e
EA
5039 I915_WRITE(DSPCNTR(plane), dspcntr);
5040 POSTING_READ(DSPCNTR(plane));
284d9529 5041 intel_enable_plane(dev_priv, plane, pipe);
f564048e
EA
5042
5043 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5044
5045 intel_update_watermarks(dev);
5046
f564048e
EA
5047 return ret;
5048}
5049
5050static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5051 struct drm_display_mode *mode,
5052 struct drm_display_mode *adjusted_mode,
5053 int x, int y,
5054 struct drm_framebuffer *old_fb)
79e53945
JB
5055{
5056 struct drm_device *dev = crtc->dev;
5057 struct drm_i915_private *dev_priv = dev->dev_private;
5058 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5059 int pipe = intel_crtc->pipe;
80824003 5060 int plane = intel_crtc->plane;
c751ce4f 5061 int refclk, num_connectors = 0;
652c393a 5062 intel_clock_t clock, reduced_clock;
5eddb70b 5063 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
a07d6787 5064 bool ok, has_reduced_clock = false, is_sdvo = false;
a4fc5ed6 5065 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
8e647a27 5066 struct intel_encoder *has_edp_encoder = NULL;
79e53945 5067 struct drm_mode_config *mode_config = &dev->mode_config;
5eddb70b 5068 struct intel_encoder *encoder;
d4906093 5069 const intel_limit_t *limit;
5c3b82e2 5070 int ret;
2c07245f 5071 struct fdi_m_n m_n = {0};
fae14981 5072 u32 temp;
aa9b500d 5073 u32 lvds_sync = 0;
5a354204
JB
5074 int target_clock, pixel_multiplier, lane, link_bw, factor;
5075 unsigned int pipe_bpp;
5076 bool dither;
79e53945 5077
5eddb70b
CW
5078 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5079 if (encoder->base.crtc != crtc)
79e53945
JB
5080 continue;
5081
5eddb70b 5082 switch (encoder->type) {
79e53945
JB
5083 case INTEL_OUTPUT_LVDS:
5084 is_lvds = true;
5085 break;
5086 case INTEL_OUTPUT_SDVO:
7d57382e 5087 case INTEL_OUTPUT_HDMI:
79e53945 5088 is_sdvo = true;
5eddb70b 5089 if (encoder->needs_tv_clock)
e2f0ba97 5090 is_tv = true;
79e53945 5091 break;
79e53945
JB
5092 case INTEL_OUTPUT_TVOUT:
5093 is_tv = true;
5094 break;
5095 case INTEL_OUTPUT_ANALOG:
5096 is_crt = true;
5097 break;
a4fc5ed6
KP
5098 case INTEL_OUTPUT_DISPLAYPORT:
5099 is_dp = true;
5100 break;
32f9d658 5101 case INTEL_OUTPUT_EDP:
5eddb70b 5102 has_edp_encoder = encoder;
32f9d658 5103 break;
79e53945 5104 }
43565a06 5105
c751ce4f 5106 num_connectors++;
79e53945
JB
5107 }
5108
a7615030 5109 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
43565a06 5110 refclk = dev_priv->lvds_ssc_freq * 1000;
28c97730 5111 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5eddb70b 5112 refclk / 1000);
a07d6787 5113 } else {
79e53945 5114 refclk = 96000;
8febb297
EA
5115 if (!has_edp_encoder ||
5116 intel_encoder_is_pch_edp(&has_edp_encoder->base))
2c07245f 5117 refclk = 120000; /* 120Mhz refclk */
79e53945
JB
5118 }
5119
d4906093
ML
5120 /*
5121 * Returns a set of divisors for the desired target clock with the given
5122 * refclk, or FALSE. The returned values represent the clock equation:
5123 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5124 */
1b894b59 5125 limit = intel_limit(crtc, refclk);
d4906093 5126 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
79e53945
JB
5127 if (!ok) {
5128 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 5129 return -EINVAL;
79e53945
JB
5130 }
5131
cda4b7d3 5132 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 5133 intel_crtc_update_cursor(crtc, true);
cda4b7d3 5134
ddc9003c
ZY
5135 if (is_lvds && dev_priv->lvds_downclock_avail) {
5136 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
5137 dev_priv->lvds_downclock,
5138 refclk,
5139 &reduced_clock);
18f9ed12
ZY
5140 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5141 /*
5142 * If the different P is found, it means that we can't
5143 * switch the display clock by using the FP0/FP1.
5144 * In such case we will disable the LVDS downclock
5145 * feature.
5146 */
5147 DRM_DEBUG_KMS("Different P is found for "
5eddb70b 5148 "LVDS clock/downclock\n");
18f9ed12
ZY
5149 has_reduced_clock = 0;
5150 }
652c393a 5151 }
7026d4ac
ZW
5152 /* SDVO TV has fixed PLL values depend on its clock range,
5153 this mirrors vbios setting. */
5154 if (is_sdvo && is_tv) {
5155 if (adjusted_mode->clock >= 100000
5eddb70b 5156 && adjusted_mode->clock < 140500) {
7026d4ac
ZW
5157 clock.p1 = 2;
5158 clock.p2 = 10;
5159 clock.n = 3;
5160 clock.m1 = 16;
5161 clock.m2 = 8;
5162 } else if (adjusted_mode->clock >= 140500
5eddb70b 5163 && adjusted_mode->clock <= 200000) {
7026d4ac
ZW
5164 clock.p1 = 1;
5165 clock.p2 = 10;
5166 clock.n = 6;
5167 clock.m1 = 12;
5168 clock.m2 = 8;
5169 }
5170 }
5171
2c07245f 5172 /* FDI link */
8febb297
EA
5173 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5174 lane = 0;
5175 /* CPU eDP doesn't require FDI link, so just set DP M/N
5176 according to current link config */
5177 if (has_edp_encoder &&
5178 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5179 target_clock = mode->clock;
5180 intel_edp_link_config(has_edp_encoder,
5181 &lane, &link_bw);
5182 } else {
5183 /* [e]DP over FDI requires target mode clock
5184 instead of link clock */
5185 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5eb08b69 5186 target_clock = mode->clock;
8febb297
EA
5187 else
5188 target_clock = adjusted_mode->clock;
5189
5190 /* FDI is a binary signal running at ~2.7GHz, encoding
5191 * each output octet as 10 bits. The actual frequency
5192 * is stored as a divider into a 100MHz clock, and the
5193 * mode pixel clock is stored in units of 1KHz.
5194 * Hence the bw of each lane in terms of the mode signal
5195 * is:
5196 */
5197 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5198 }
58a27471 5199
8febb297
EA
5200 /* determine panel color depth */
5201 temp = I915_READ(PIPECONF(pipe));
5202 temp &= ~PIPE_BPC_MASK;
5a354204
JB
5203 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
5204 switch (pipe_bpp) {
5205 case 18:
5206 temp |= PIPE_6BPC;
8febb297 5207 break;
5a354204
JB
5208 case 24:
5209 temp |= PIPE_8BPC;
8febb297 5210 break;
5a354204
JB
5211 case 30:
5212 temp |= PIPE_10BPC;
8febb297 5213 break;
5a354204
JB
5214 case 36:
5215 temp |= PIPE_12BPC;
8febb297
EA
5216 break;
5217 default:
5a354204
JB
5218 WARN(1, "intel_choose_pipe_bpp returned invalid value\n");
5219 temp |= PIPE_8BPC;
5220 pipe_bpp = 24;
5221 break;
8febb297 5222 }
77ffb597 5223
5a354204
JB
5224 intel_crtc->bpp = pipe_bpp;
5225 I915_WRITE(PIPECONF(pipe), temp);
5226
8febb297
EA
5227 if (!lane) {
5228 /*
5229 * Account for spread spectrum to avoid
5230 * oversubscribing the link. Max center spread
5231 * is 2.5%; use 5% for safety's sake.
5232 */
5a354204 5233 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
8febb297 5234 lane = bps / (link_bw * 8) + 1;
5eb08b69 5235 }
2c07245f 5236
8febb297
EA
5237 intel_crtc->fdi_lanes = lane;
5238
5239 if (pixel_multiplier > 1)
5240 link_bw *= pixel_multiplier;
5a354204
JB
5241 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5242 &m_n);
8febb297 5243
c038e51e
ZW
5244 /* Ironlake: try to setup display ref clock before DPLL
5245 * enabling. This is only under driver's control after
5246 * PCH B stepping, previous chipset stepping should be
5247 * ignoring this setting.
5248 */
8febb297
EA
5249 temp = I915_READ(PCH_DREF_CONTROL);
5250 /* Always enable nonspread source */
5251 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5252 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5253 temp &= ~DREF_SSC_SOURCE_MASK;
5254 temp |= DREF_SSC_SOURCE_ENABLE;
5255 I915_WRITE(PCH_DREF_CONTROL, temp);
5256
5257 POSTING_READ(PCH_DREF_CONTROL);
5258 udelay(200);
fc9a2228 5259
8febb297
EA
5260 if (has_edp_encoder) {
5261 if (intel_panel_use_ssc(dev_priv)) {
5262 temp |= DREF_SSC1_ENABLE;
fc9a2228 5263 I915_WRITE(PCH_DREF_CONTROL, temp);
8febb297 5264
fc9a2228
CW
5265 POSTING_READ(PCH_DREF_CONTROL);
5266 udelay(200);
5267 }
8febb297
EA
5268 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5269
5270 /* Enable CPU source on CPU attached eDP */
5271 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5272 if (intel_panel_use_ssc(dev_priv))
5273 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5274 else
5275 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5276 } else {
5277 /* Enable SSC on PCH eDP if needed */
5278 if (intel_panel_use_ssc(dev_priv)) {
5279 DRM_ERROR("enabling SSC on PCH\n");
5280 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
5281 }
5282 }
5283 I915_WRITE(PCH_DREF_CONTROL, temp);
5284 POSTING_READ(PCH_DREF_CONTROL);
5285 udelay(200);
fc9a2228 5286 }
c038e51e 5287
a07d6787
EA
5288 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5289 if (has_reduced_clock)
5290 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5291 reduced_clock.m2;
79e53945 5292
c1858123 5293 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
5294 factor = 21;
5295 if (is_lvds) {
5296 if ((intel_panel_use_ssc(dev_priv) &&
5297 dev_priv->lvds_ssc_freq == 100) ||
5298 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5299 factor = 25;
5300 } else if (is_sdvo && is_tv)
5301 factor = 20;
c1858123 5302
cb0e0931 5303 if (clock.m < factor * clock.n)
8febb297 5304 fp |= FP_CB_TUNE;
2c07245f 5305
5eddb70b 5306 dpll = 0;
2c07245f 5307
a07d6787
EA
5308 if (is_lvds)
5309 dpll |= DPLLB_MODE_LVDS;
5310 else
5311 dpll |= DPLLB_MODE_DAC_SERIAL;
5312 if (is_sdvo) {
5313 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5314 if (pixel_multiplier > 1) {
5315 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 5316 }
a07d6787
EA
5317 dpll |= DPLL_DVO_HIGH_SPEED;
5318 }
5319 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5320 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 5321
a07d6787
EA
5322 /* compute bitmask from p1 value */
5323 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5324 /* also FPA1 */
5325 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5326
5327 switch (clock.p2) {
5328 case 5:
5329 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5330 break;
5331 case 7:
5332 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5333 break;
5334 case 10:
5335 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5336 break;
5337 case 14:
5338 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5339 break;
79e53945
JB
5340 }
5341
43565a06
KH
5342 if (is_sdvo && is_tv)
5343 dpll |= PLL_REF_INPUT_TVCLKINBC;
5344 else if (is_tv)
79e53945 5345 /* XXX: just matching BIOS for now */
43565a06 5346 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5347 dpll |= 3;
a7615030 5348 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5349 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5350 else
5351 dpll |= PLL_REF_INPUT_DREFCLK;
5352
5353 /* setup pipeconf */
5eddb70b 5354 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
5355
5356 /* Set up the display plane register */
5357 dspcntr = DISPPLANE_GAMMA_ENABLE;
5358
28c97730 5359 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
5360 drm_mode_debug_printmodeline(mode);
5361
5c5313c8
JB
5362 /* PCH eDP needs FDI, but CPU eDP does not */
5363 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
fae14981
EA
5364 I915_WRITE(PCH_FP0(pipe), fp);
5365 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5eddb70b 5366
fae14981 5367 POSTING_READ(PCH_DPLL(pipe));
79e53945
JB
5368 udelay(150);
5369 }
5370
8db9d77b
ZW
5371 /* enable transcoder DPLL */
5372 if (HAS_PCH_CPT(dev)) {
5373 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
5374 switch (pipe) {
5375 case 0:
5eddb70b 5376 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
9db4a9c7
JB
5377 break;
5378 case 1:
5eddb70b 5379 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
9db4a9c7
JB
5380 break;
5381 case 2:
5382 /* FIXME: manage transcoder PLLs? */
5383 temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
5384 break;
5385 default:
5386 BUG();
32f9d658 5387 }
8db9d77b 5388 I915_WRITE(PCH_DPLL_SEL, temp);
5eddb70b
CW
5389
5390 POSTING_READ(PCH_DPLL_SEL);
8db9d77b
ZW
5391 udelay(150);
5392 }
5393
79e53945
JB
5394 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5395 * This is an exception to the general rule that mode_set doesn't turn
5396 * things on.
5397 */
5398 if (is_lvds) {
fae14981 5399 temp = I915_READ(PCH_LVDS);
5eddb70b 5400 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
b3b095b3
ZW
5401 if (pipe == 1) {
5402 if (HAS_PCH_CPT(dev))
5eddb70b 5403 temp |= PORT_TRANS_B_SEL_CPT;
b3b095b3 5404 else
5eddb70b 5405 temp |= LVDS_PIPEB_SELECT;
b3b095b3
ZW
5406 } else {
5407 if (HAS_PCH_CPT(dev))
5eddb70b 5408 temp &= ~PORT_TRANS_SEL_MASK;
b3b095b3 5409 else
5eddb70b 5410 temp &= ~LVDS_PIPEB_SELECT;
b3b095b3 5411 }
a3e17eb8 5412 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5413 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5414 /* Set the B0-B3 data pairs corresponding to whether we're going to
5415 * set the DPLLs for dual-channel mode or not.
5416 */
5417 if (clock.p2 == 7)
5eddb70b 5418 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5419 else
5eddb70b 5420 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5421
5422 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5423 * appropriately here, but we need to look more thoroughly into how
5424 * panels behave in the two modes.
5425 */
aa9b500d
BF
5426 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5427 lvds_sync |= LVDS_HSYNC_POLARITY;
5428 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5429 lvds_sync |= LVDS_VSYNC_POLARITY;
5430 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5431 != lvds_sync) {
5432 char flags[2] = "-+";
5433 DRM_INFO("Changing LVDS panel from "
5434 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5435 flags[!(temp & LVDS_HSYNC_POLARITY)],
5436 flags[!(temp & LVDS_VSYNC_POLARITY)],
5437 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5438 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5439 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5440 temp |= lvds_sync;
5441 }
fae14981 5442 I915_WRITE(PCH_LVDS, temp);
79e53945 5443 }
434ed097 5444
8febb297
EA
5445 pipeconf &= ~PIPECONF_DITHER_EN;
5446 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5a354204 5447 if ((is_lvds && dev_priv->lvds_dither) || dither) {
8febb297
EA
5448 pipeconf |= PIPECONF_DITHER_EN;
5449 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
434ed097 5450 }
5c5313c8 5451 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
a4fc5ed6 5452 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5453 } else {
8db9d77b 5454 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5455 I915_WRITE(TRANSDATA_M1(pipe), 0);
5456 I915_WRITE(TRANSDATA_N1(pipe), 0);
5457 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5458 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5459 }
79e53945 5460
8febb297
EA
5461 if (!has_edp_encoder ||
5462 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
fae14981 5463 I915_WRITE(PCH_DPLL(pipe), dpll);
5eddb70b 5464
32f9d658 5465 /* Wait for the clocks to stabilize. */
fae14981 5466 POSTING_READ(PCH_DPLL(pipe));
32f9d658
ZW
5467 udelay(150);
5468
8febb297
EA
5469 /* The pixel multiplier can only be updated once the
5470 * DPLL is enabled and the clocks are stable.
5471 *
5472 * So write it again.
5473 */
fae14981 5474 I915_WRITE(PCH_DPLL(pipe), dpll);
79e53945 5475 }
79e53945 5476
5eddb70b 5477 intel_crtc->lowfreq_avail = false;
652c393a 5478 if (is_lvds && has_reduced_clock && i915_powersave) {
fae14981 5479 I915_WRITE(PCH_FP1(pipe), fp2);
652c393a
JB
5480 intel_crtc->lowfreq_avail = true;
5481 if (HAS_PIPE_CXSR(dev)) {
28c97730 5482 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a
JB
5483 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5484 }
5485 } else {
fae14981 5486 I915_WRITE(PCH_FP1(pipe), fp);
652c393a 5487 if (HAS_PIPE_CXSR(dev)) {
28c97730 5488 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
5489 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5490 }
5491 }
5492
734b4157
KH
5493 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5494 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5495 /* the chip adds 2 halflines automatically */
5496 adjusted_mode->crtc_vdisplay -= 1;
5497 adjusted_mode->crtc_vtotal -= 1;
5498 adjusted_mode->crtc_vblank_start -= 1;
5499 adjusted_mode->crtc_vblank_end -= 1;
5500 adjusted_mode->crtc_vsync_end -= 1;
5501 adjusted_mode->crtc_vsync_start -= 1;
5502 } else
5503 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5504
5eddb70b
CW
5505 I915_WRITE(HTOTAL(pipe),
5506 (adjusted_mode->crtc_hdisplay - 1) |
79e53945 5507 ((adjusted_mode->crtc_htotal - 1) << 16));
5eddb70b
CW
5508 I915_WRITE(HBLANK(pipe),
5509 (adjusted_mode->crtc_hblank_start - 1) |
79e53945 5510 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5eddb70b
CW
5511 I915_WRITE(HSYNC(pipe),
5512 (adjusted_mode->crtc_hsync_start - 1) |
79e53945 5513 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5eddb70b
CW
5514
5515 I915_WRITE(VTOTAL(pipe),
5516 (adjusted_mode->crtc_vdisplay - 1) |
79e53945 5517 ((adjusted_mode->crtc_vtotal - 1) << 16));
5eddb70b
CW
5518 I915_WRITE(VBLANK(pipe),
5519 (adjusted_mode->crtc_vblank_start - 1) |
79e53945 5520 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5eddb70b
CW
5521 I915_WRITE(VSYNC(pipe),
5522 (adjusted_mode->crtc_vsync_start - 1) |
79e53945 5523 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5eddb70b 5524
8febb297
EA
5525 /* pipesrc controls the size that is scaled from, which should
5526 * always be the user's requested size.
79e53945 5527 */
5eddb70b
CW
5528 I915_WRITE(PIPESRC(pipe),
5529 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f 5530
8febb297
EA
5531 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5532 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5533 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5534 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
2c07245f 5535
8febb297
EA
5536 if (has_edp_encoder &&
5537 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5538 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f
ZW
5539 }
5540
5eddb70b
CW
5541 I915_WRITE(PIPECONF(pipe), pipeconf);
5542 POSTING_READ(PIPECONF(pipe));
79e53945 5543
9d0498a2 5544 intel_wait_for_vblank(dev, pipe);
79e53945 5545
f00a3ddf 5546 if (IS_GEN5(dev)) {
553bd149
ZW
5547 /* enable address swizzle for tiling buffer */
5548 temp = I915_READ(DISP_ARB_CTL);
5549 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5550 }
5551
5eddb70b 5552 I915_WRITE(DSPCNTR(plane), dspcntr);
b24e7179 5553 POSTING_READ(DSPCNTR(plane));
79e53945 5554
5c3b82e2 5555 ret = intel_pipe_set_base(crtc, x, y, old_fb);
7662c8bd
SL
5556
5557 intel_update_watermarks(dev);
5558
1f803ee5 5559 return ret;
79e53945
JB
5560}
5561
f564048e
EA
5562static int intel_crtc_mode_set(struct drm_crtc *crtc,
5563 struct drm_display_mode *mode,
5564 struct drm_display_mode *adjusted_mode,
5565 int x, int y,
5566 struct drm_framebuffer *old_fb)
5567{
5568 struct drm_device *dev = crtc->dev;
5569 struct drm_i915_private *dev_priv = dev->dev_private;
0b701d27
EA
5570 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5571 int pipe = intel_crtc->pipe;
f564048e
EA
5572 int ret;
5573
0b701d27 5574 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5575
f564048e
EA
5576 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5577 x, y, old_fb);
7662c8bd 5578
79e53945 5579 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5580
120eced9
KP
5581 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
5582
1f803ee5 5583 return ret;
79e53945
JB
5584}
5585
5586/** Loads the palette/gamma unit for the CRTC with the prepared values */
5587void intel_crtc_load_lut(struct drm_crtc *crtc)
5588{
5589 struct drm_device *dev = crtc->dev;
5590 struct drm_i915_private *dev_priv = dev->dev_private;
5591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 5592 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
5593 int i;
5594
5595 /* The clocks have to be on to load the palette. */
5596 if (!crtc->enabled)
5597 return;
5598
f2b115e6 5599 /* use legacy palette for Ironlake */
bad720ff 5600 if (HAS_PCH_SPLIT(dev))
9db4a9c7 5601 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 5602
79e53945
JB
5603 for (i = 0; i < 256; i++) {
5604 I915_WRITE(palreg + 4 * i,
5605 (intel_crtc->lut_r[i] << 16) |
5606 (intel_crtc->lut_g[i] << 8) |
5607 intel_crtc->lut_b[i]);
5608 }
5609}
5610
560b85bb
CW
5611static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5612{
5613 struct drm_device *dev = crtc->dev;
5614 struct drm_i915_private *dev_priv = dev->dev_private;
5615 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5616 bool visible = base != 0;
5617 u32 cntl;
5618
5619 if (intel_crtc->cursor_visible == visible)
5620 return;
5621
9db4a9c7 5622 cntl = I915_READ(_CURACNTR);
560b85bb
CW
5623 if (visible) {
5624 /* On these chipsets we can only modify the base whilst
5625 * the cursor is disabled.
5626 */
9db4a9c7 5627 I915_WRITE(_CURABASE, base);
560b85bb
CW
5628
5629 cntl &= ~(CURSOR_FORMAT_MASK);
5630 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5631 cntl |= CURSOR_ENABLE |
5632 CURSOR_GAMMA_ENABLE |
5633 CURSOR_FORMAT_ARGB;
5634 } else
5635 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 5636 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
5637
5638 intel_crtc->cursor_visible = visible;
5639}
5640
5641static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5642{
5643 struct drm_device *dev = crtc->dev;
5644 struct drm_i915_private *dev_priv = dev->dev_private;
5645 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5646 int pipe = intel_crtc->pipe;
5647 bool visible = base != 0;
5648
5649 if (intel_crtc->cursor_visible != visible) {
548f245b 5650 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
5651 if (base) {
5652 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5653 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5654 cntl |= pipe << 28; /* Connect to correct pipe */
5655 } else {
5656 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5657 cntl |= CURSOR_MODE_DISABLE;
5658 }
9db4a9c7 5659 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
5660
5661 intel_crtc->cursor_visible = visible;
5662 }
5663 /* and commit changes on next vblank */
9db4a9c7 5664 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
5665}
5666
cda4b7d3 5667/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
5668static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5669 bool on)
cda4b7d3
CW
5670{
5671 struct drm_device *dev = crtc->dev;
5672 struct drm_i915_private *dev_priv = dev->dev_private;
5673 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5674 int pipe = intel_crtc->pipe;
5675 int x = intel_crtc->cursor_x;
5676 int y = intel_crtc->cursor_y;
560b85bb 5677 u32 base, pos;
cda4b7d3
CW
5678 bool visible;
5679
5680 pos = 0;
5681
6b383a7f 5682 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
5683 base = intel_crtc->cursor_addr;
5684 if (x > (int) crtc->fb->width)
5685 base = 0;
5686
5687 if (y > (int) crtc->fb->height)
5688 base = 0;
5689 } else
5690 base = 0;
5691
5692 if (x < 0) {
5693 if (x + intel_crtc->cursor_width < 0)
5694 base = 0;
5695
5696 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5697 x = -x;
5698 }
5699 pos |= x << CURSOR_X_SHIFT;
5700
5701 if (y < 0) {
5702 if (y + intel_crtc->cursor_height < 0)
5703 base = 0;
5704
5705 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5706 y = -y;
5707 }
5708 pos |= y << CURSOR_Y_SHIFT;
5709
5710 visible = base != 0;
560b85bb 5711 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
5712 return;
5713
9db4a9c7 5714 I915_WRITE(CURPOS(pipe), pos);
560b85bb
CW
5715 if (IS_845G(dev) || IS_I865G(dev))
5716 i845_update_cursor(crtc, base);
5717 else
5718 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
5719
5720 if (visible)
5721 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5722}
5723
79e53945 5724static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 5725 struct drm_file *file,
79e53945
JB
5726 uint32_t handle,
5727 uint32_t width, uint32_t height)
5728{
5729 struct drm_device *dev = crtc->dev;
5730 struct drm_i915_private *dev_priv = dev->dev_private;
5731 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 5732 struct drm_i915_gem_object *obj;
cda4b7d3 5733 uint32_t addr;
3f8bc370 5734 int ret;
79e53945 5735
28c97730 5736 DRM_DEBUG_KMS("\n");
79e53945
JB
5737
5738 /* if we want to turn off the cursor ignore width and height */
5739 if (!handle) {
28c97730 5740 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 5741 addr = 0;
05394f39 5742 obj = NULL;
5004417d 5743 mutex_lock(&dev->struct_mutex);
3f8bc370 5744 goto finish;
79e53945
JB
5745 }
5746
5747 /* Currently we only support 64x64 cursors */
5748 if (width != 64 || height != 64) {
5749 DRM_ERROR("we currently only support 64x64 cursors\n");
5750 return -EINVAL;
5751 }
5752
05394f39 5753 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 5754 if (&obj->base == NULL)
79e53945
JB
5755 return -ENOENT;
5756
05394f39 5757 if (obj->base.size < width * height * 4) {
79e53945 5758 DRM_ERROR("buffer is to small\n");
34b8686e
DA
5759 ret = -ENOMEM;
5760 goto fail;
79e53945
JB
5761 }
5762
71acb5eb 5763 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 5764 mutex_lock(&dev->struct_mutex);
b295d1b6 5765 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
5766 if (obj->tiling_mode) {
5767 DRM_ERROR("cursor cannot be tiled\n");
5768 ret = -EINVAL;
5769 goto fail_locked;
5770 }
5771
2da3b9b9 5772 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
5773 if (ret) {
5774 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 5775 goto fail_locked;
e7b526bb
CW
5776 }
5777
d9e86c0e
CW
5778 ret = i915_gem_object_put_fence(obj);
5779 if (ret) {
2da3b9b9 5780 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
5781 goto fail_unpin;
5782 }
5783
05394f39 5784 addr = obj->gtt_offset;
71acb5eb 5785 } else {
6eeefaf3 5786 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 5787 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
5788 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5789 align);
71acb5eb
DA
5790 if (ret) {
5791 DRM_ERROR("failed to attach phys object\n");
7f9872e0 5792 goto fail_locked;
71acb5eb 5793 }
05394f39 5794 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
5795 }
5796
a6c45cf0 5797 if (IS_GEN2(dev))
14b60391
JB
5798 I915_WRITE(CURSIZE, (height << 12) | width);
5799
3f8bc370 5800 finish:
3f8bc370 5801 if (intel_crtc->cursor_bo) {
b295d1b6 5802 if (dev_priv->info->cursor_needs_physical) {
05394f39 5803 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
5804 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5805 } else
5806 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 5807 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 5808 }
80824003 5809
7f9872e0 5810 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
5811
5812 intel_crtc->cursor_addr = addr;
05394f39 5813 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
5814 intel_crtc->cursor_width = width;
5815 intel_crtc->cursor_height = height;
5816
6b383a7f 5817 intel_crtc_update_cursor(crtc, true);
3f8bc370 5818
79e53945 5819 return 0;
e7b526bb 5820fail_unpin:
05394f39 5821 i915_gem_object_unpin(obj);
7f9872e0 5822fail_locked:
34b8686e 5823 mutex_unlock(&dev->struct_mutex);
bc9025bd 5824fail:
05394f39 5825 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 5826 return ret;
79e53945
JB
5827}
5828
5829static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5830{
79e53945 5831 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 5832
cda4b7d3
CW
5833 intel_crtc->cursor_x = x;
5834 intel_crtc->cursor_y = y;
652c393a 5835
6b383a7f 5836 intel_crtc_update_cursor(crtc, true);
79e53945
JB
5837
5838 return 0;
5839}
5840
5841/** Sets the color ramps on behalf of RandR */
5842void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5843 u16 blue, int regno)
5844{
5845 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5846
5847 intel_crtc->lut_r[regno] = red >> 8;
5848 intel_crtc->lut_g[regno] = green >> 8;
5849 intel_crtc->lut_b[regno] = blue >> 8;
5850}
5851
b8c00ac5
DA
5852void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5853 u16 *blue, int regno)
5854{
5855 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5856
5857 *red = intel_crtc->lut_r[regno] << 8;
5858 *green = intel_crtc->lut_g[regno] << 8;
5859 *blue = intel_crtc->lut_b[regno] << 8;
5860}
5861
79e53945 5862static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 5863 u16 *blue, uint32_t start, uint32_t size)
79e53945 5864{
7203425a 5865 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 5866 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 5867
7203425a 5868 for (i = start; i < end; i++) {
79e53945
JB
5869 intel_crtc->lut_r[i] = red[i] >> 8;
5870 intel_crtc->lut_g[i] = green[i] >> 8;
5871 intel_crtc->lut_b[i] = blue[i] >> 8;
5872 }
5873
5874 intel_crtc_load_lut(crtc);
5875}
5876
5877/**
5878 * Get a pipe with a simple mode set on it for doing load-based monitor
5879 * detection.
5880 *
5881 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 5882 * its requirements. The pipe will be connected to no other encoders.
79e53945 5883 *
c751ce4f 5884 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
5885 * configured for it. In the future, it could choose to temporarily disable
5886 * some outputs to free up a pipe for its use.
5887 *
5888 * \return crtc, or NULL if no pipes are available.
5889 */
5890
5891/* VESA 640x480x72Hz mode to set on the pipe */
5892static struct drm_display_mode load_detect_mode = {
5893 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5894 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5895};
5896
d2dff872
CW
5897static struct drm_framebuffer *
5898intel_framebuffer_create(struct drm_device *dev,
5899 struct drm_mode_fb_cmd *mode_cmd,
5900 struct drm_i915_gem_object *obj)
5901{
5902 struct intel_framebuffer *intel_fb;
5903 int ret;
5904
5905 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5906 if (!intel_fb) {
5907 drm_gem_object_unreference_unlocked(&obj->base);
5908 return ERR_PTR(-ENOMEM);
5909 }
5910
5911 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5912 if (ret) {
5913 drm_gem_object_unreference_unlocked(&obj->base);
5914 kfree(intel_fb);
5915 return ERR_PTR(ret);
5916 }
5917
5918 return &intel_fb->base;
5919}
5920
5921static u32
5922intel_framebuffer_pitch_for_width(int width, int bpp)
5923{
5924 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5925 return ALIGN(pitch, 64);
5926}
5927
5928static u32
5929intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5930{
5931 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5932 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5933}
5934
5935static struct drm_framebuffer *
5936intel_framebuffer_create_for_mode(struct drm_device *dev,
5937 struct drm_display_mode *mode,
5938 int depth, int bpp)
5939{
5940 struct drm_i915_gem_object *obj;
5941 struct drm_mode_fb_cmd mode_cmd;
5942
5943 obj = i915_gem_alloc_object(dev,
5944 intel_framebuffer_size_for_mode(mode, bpp));
5945 if (obj == NULL)
5946 return ERR_PTR(-ENOMEM);
5947
5948 mode_cmd.width = mode->hdisplay;
5949 mode_cmd.height = mode->vdisplay;
5950 mode_cmd.depth = depth;
5951 mode_cmd.bpp = bpp;
5952 mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
5953
5954 return intel_framebuffer_create(dev, &mode_cmd, obj);
5955}
5956
5957static struct drm_framebuffer *
5958mode_fits_in_fbdev(struct drm_device *dev,
5959 struct drm_display_mode *mode)
5960{
5961 struct drm_i915_private *dev_priv = dev->dev_private;
5962 struct drm_i915_gem_object *obj;
5963 struct drm_framebuffer *fb;
5964
5965 if (dev_priv->fbdev == NULL)
5966 return NULL;
5967
5968 obj = dev_priv->fbdev->ifb.obj;
5969 if (obj == NULL)
5970 return NULL;
5971
5972 fb = &dev_priv->fbdev->ifb.base;
5973 if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
5974 fb->bits_per_pixel))
5975 return NULL;
5976
5977 if (obj->base.size < mode->vdisplay * fb->pitch)
5978 return NULL;
5979
5980 return fb;
5981}
5982
7173188d
CW
5983bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5984 struct drm_connector *connector,
5985 struct drm_display_mode *mode,
8261b191 5986 struct intel_load_detect_pipe *old)
79e53945
JB
5987{
5988 struct intel_crtc *intel_crtc;
5989 struct drm_crtc *possible_crtc;
4ef69c7a 5990 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
5991 struct drm_crtc *crtc = NULL;
5992 struct drm_device *dev = encoder->dev;
d2dff872 5993 struct drm_framebuffer *old_fb;
79e53945
JB
5994 int i = -1;
5995
d2dff872
CW
5996 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5997 connector->base.id, drm_get_connector_name(connector),
5998 encoder->base.id, drm_get_encoder_name(encoder));
5999
79e53945
JB
6000 /*
6001 * Algorithm gets a little messy:
7a5e4805 6002 *
79e53945
JB
6003 * - if the connector already has an assigned crtc, use it (but make
6004 * sure it's on first)
7a5e4805 6005 *
79e53945
JB
6006 * - try to find the first unused crtc that can drive this connector,
6007 * and use that if we find one
79e53945
JB
6008 */
6009
6010 /* See if we already have a CRTC for this connector */
6011 if (encoder->crtc) {
6012 crtc = encoder->crtc;
8261b191 6013
79e53945 6014 intel_crtc = to_intel_crtc(crtc);
8261b191
CW
6015 old->dpms_mode = intel_crtc->dpms_mode;
6016 old->load_detect_temp = false;
6017
6018 /* Make sure the crtc and connector are running */
79e53945 6019 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6492711d
CW
6020 struct drm_encoder_helper_funcs *encoder_funcs;
6021 struct drm_crtc_helper_funcs *crtc_funcs;
6022
79e53945
JB
6023 crtc_funcs = crtc->helper_private;
6024 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6492711d
CW
6025
6026 encoder_funcs = encoder->helper_private;
79e53945
JB
6027 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6028 }
8261b191 6029
7173188d 6030 return true;
79e53945
JB
6031 }
6032
6033 /* Find an unused one (if possible) */
6034 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6035 i++;
6036 if (!(encoder->possible_crtcs & (1 << i)))
6037 continue;
6038 if (!possible_crtc->enabled) {
6039 crtc = possible_crtc;
6040 break;
6041 }
79e53945
JB
6042 }
6043
6044 /*
6045 * If we didn't find an unused CRTC, don't use any.
6046 */
6047 if (!crtc) {
7173188d
CW
6048 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6049 return false;
79e53945
JB
6050 }
6051
6052 encoder->crtc = crtc;
c1c43977 6053 connector->encoder = encoder;
79e53945
JB
6054
6055 intel_crtc = to_intel_crtc(crtc);
8261b191
CW
6056 old->dpms_mode = intel_crtc->dpms_mode;
6057 old->load_detect_temp = true;
d2dff872 6058 old->release_fb = NULL;
79e53945 6059
6492711d
CW
6060 if (!mode)
6061 mode = &load_detect_mode;
79e53945 6062
d2dff872
CW
6063 old_fb = crtc->fb;
6064
6065 /* We need a framebuffer large enough to accommodate all accesses
6066 * that the plane may generate whilst we perform load detection.
6067 * We can not rely on the fbcon either being present (we get called
6068 * during its initialisation to detect all boot displays, or it may
6069 * not even exist) or that it is large enough to satisfy the
6070 * requested mode.
6071 */
6072 crtc->fb = mode_fits_in_fbdev(dev, mode);
6073 if (crtc->fb == NULL) {
6074 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6075 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6076 old->release_fb = crtc->fb;
6077 } else
6078 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6079 if (IS_ERR(crtc->fb)) {
6080 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6081 crtc->fb = old_fb;
6082 return false;
79e53945 6083 }
79e53945 6084
d2dff872 6085 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6492711d 6086 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
6087 if (old->release_fb)
6088 old->release_fb->funcs->destroy(old->release_fb);
6089 crtc->fb = old_fb;
6492711d 6090 return false;
79e53945 6091 }
7173188d 6092
79e53945 6093 /* let the connector get through one full cycle before testing */
9d0498a2 6094 intel_wait_for_vblank(dev, intel_crtc->pipe);
79e53945 6095
7173188d 6096 return true;
79e53945
JB
6097}
6098
c1c43977 6099void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
8261b191
CW
6100 struct drm_connector *connector,
6101 struct intel_load_detect_pipe *old)
79e53945 6102{
4ef69c7a 6103 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6104 struct drm_device *dev = encoder->dev;
6105 struct drm_crtc *crtc = encoder->crtc;
6106 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6107 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6108
d2dff872
CW
6109 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6110 connector->base.id, drm_get_connector_name(connector),
6111 encoder->base.id, drm_get_encoder_name(encoder));
6112
8261b191 6113 if (old->load_detect_temp) {
c1c43977 6114 connector->encoder = NULL;
79e53945 6115 drm_helper_disable_unused_functions(dev);
d2dff872
CW
6116
6117 if (old->release_fb)
6118 old->release_fb->funcs->destroy(old->release_fb);
6119
0622a53c 6120 return;
79e53945
JB
6121 }
6122
c751ce4f 6123 /* Switch crtc and encoder back off if necessary */
0622a53c
CW
6124 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6125 encoder_funcs->dpms(encoder, old->dpms_mode);
8261b191 6126 crtc_funcs->dpms(crtc, old->dpms_mode);
79e53945
JB
6127 }
6128}
6129
6130/* Returns the clock of the currently programmed mode of the given pipe. */
6131static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6132{
6133 struct drm_i915_private *dev_priv = dev->dev_private;
6134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6135 int pipe = intel_crtc->pipe;
548f245b 6136 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
6137 u32 fp;
6138 intel_clock_t clock;
6139
6140 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 6141 fp = I915_READ(FP0(pipe));
79e53945 6142 else
39adb7a5 6143 fp = I915_READ(FP1(pipe));
79e53945
JB
6144
6145 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
6146 if (IS_PINEVIEW(dev)) {
6147 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6148 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
6149 } else {
6150 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6151 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6152 }
6153
a6c45cf0 6154 if (!IS_GEN2(dev)) {
f2b115e6
AJ
6155 if (IS_PINEVIEW(dev))
6156 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6157 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
6158 else
6159 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
6160 DPLL_FPA01_P1_POST_DIV_SHIFT);
6161
6162 switch (dpll & DPLL_MODE_MASK) {
6163 case DPLLB_MODE_DAC_SERIAL:
6164 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6165 5 : 10;
6166 break;
6167 case DPLLB_MODE_LVDS:
6168 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6169 7 : 14;
6170 break;
6171 default:
28c97730 6172 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6173 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6174 return 0;
6175 }
6176
6177 /* XXX: Handle the 100Mhz refclk */
2177832f 6178 intel_clock(dev, 96000, &clock);
79e53945
JB
6179 } else {
6180 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6181
6182 if (is_lvds) {
6183 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6184 DPLL_FPA01_P1_POST_DIV_SHIFT);
6185 clock.p2 = 14;
6186
6187 if ((dpll & PLL_REF_INPUT_MASK) ==
6188 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6189 /* XXX: might not be 66MHz */
2177832f 6190 intel_clock(dev, 66000, &clock);
79e53945 6191 } else
2177832f 6192 intel_clock(dev, 48000, &clock);
79e53945
JB
6193 } else {
6194 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6195 clock.p1 = 2;
6196 else {
6197 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6198 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6199 }
6200 if (dpll & PLL_P2_DIVIDE_BY_4)
6201 clock.p2 = 4;
6202 else
6203 clock.p2 = 2;
6204
2177832f 6205 intel_clock(dev, 48000, &clock);
79e53945
JB
6206 }
6207 }
6208
6209 /* XXX: It would be nice to validate the clocks, but we can't reuse
6210 * i830PllIsValid() because it relies on the xf86_config connector
6211 * configuration being accurate, which it isn't necessarily.
6212 */
6213
6214 return clock.dot;
6215}
6216
6217/** Returns the currently programmed mode of the given pipe. */
6218struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6219 struct drm_crtc *crtc)
6220{
548f245b 6221 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
6222 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6223 int pipe = intel_crtc->pipe;
6224 struct drm_display_mode *mode;
548f245b
JB
6225 int htot = I915_READ(HTOTAL(pipe));
6226 int hsync = I915_READ(HSYNC(pipe));
6227 int vtot = I915_READ(VTOTAL(pipe));
6228 int vsync = I915_READ(VSYNC(pipe));
79e53945
JB
6229
6230 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6231 if (!mode)
6232 return NULL;
6233
6234 mode->clock = intel_crtc_clock_get(dev, crtc);
6235 mode->hdisplay = (htot & 0xffff) + 1;
6236 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6237 mode->hsync_start = (hsync & 0xffff) + 1;
6238 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6239 mode->vdisplay = (vtot & 0xffff) + 1;
6240 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6241 mode->vsync_start = (vsync & 0xffff) + 1;
6242 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6243
6244 drm_mode_set_name(mode);
6245 drm_mode_set_crtcinfo(mode, 0);
6246
6247 return mode;
6248}
6249
652c393a
JB
6250#define GPU_IDLE_TIMEOUT 500 /* ms */
6251
6252/* When this timer fires, we've been idle for awhile */
6253static void intel_gpu_idle_timer(unsigned long arg)
6254{
6255 struct drm_device *dev = (struct drm_device *)arg;
6256 drm_i915_private_t *dev_priv = dev->dev_private;
6257
ff7ea4c0
CW
6258 if (!list_empty(&dev_priv->mm.active_list)) {
6259 /* Still processing requests, so just re-arm the timer. */
6260 mod_timer(&dev_priv->idle_timer, jiffies +
6261 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6262 return;
6263 }
652c393a 6264
ff7ea4c0 6265 dev_priv->busy = false;
01dfba93 6266 queue_work(dev_priv->wq, &dev_priv->idle_work);
652c393a
JB
6267}
6268
652c393a
JB
6269#define CRTC_IDLE_TIMEOUT 1000 /* ms */
6270
6271static void intel_crtc_idle_timer(unsigned long arg)
6272{
6273 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6274 struct drm_crtc *crtc = &intel_crtc->base;
6275 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
ff7ea4c0 6276 struct intel_framebuffer *intel_fb;
652c393a 6277
ff7ea4c0
CW
6278 intel_fb = to_intel_framebuffer(crtc->fb);
6279 if (intel_fb && intel_fb->obj->active) {
6280 /* The framebuffer is still being accessed by the GPU. */
6281 mod_timer(&intel_crtc->idle_timer, jiffies +
6282 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6283 return;
6284 }
652c393a 6285
ff7ea4c0 6286 intel_crtc->busy = false;
01dfba93 6287 queue_work(dev_priv->wq, &dev_priv->idle_work);
652c393a
JB
6288}
6289
3dec0095 6290static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6291{
6292 struct drm_device *dev = crtc->dev;
6293 drm_i915_private_t *dev_priv = dev->dev_private;
6294 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6295 int pipe = intel_crtc->pipe;
dbdc6479
JB
6296 int dpll_reg = DPLL(pipe);
6297 int dpll;
652c393a 6298
bad720ff 6299 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6300 return;
6301
6302 if (!dev_priv->lvds_downclock_avail)
6303 return;
6304
dbdc6479 6305 dpll = I915_READ(dpll_reg);
652c393a 6306 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6307 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a
JB
6308
6309 /* Unlock panel regs */
dbdc6479
JB
6310 I915_WRITE(PP_CONTROL,
6311 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
652c393a
JB
6312
6313 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6314 I915_WRITE(dpll_reg, dpll);
9d0498a2 6315 intel_wait_for_vblank(dev, pipe);
dbdc6479 6316
652c393a
JB
6317 dpll = I915_READ(dpll_reg);
6318 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6319 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a
JB
6320
6321 /* ...and lock them again */
6322 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6323 }
6324
6325 /* Schedule downclock */
3dec0095
DV
6326 mod_timer(&intel_crtc->idle_timer, jiffies +
6327 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
652c393a
JB
6328}
6329
6330static void intel_decrease_pllclock(struct drm_crtc *crtc)
6331{
6332 struct drm_device *dev = crtc->dev;
6333 drm_i915_private_t *dev_priv = dev->dev_private;
6334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6335 int pipe = intel_crtc->pipe;
9db4a9c7 6336 int dpll_reg = DPLL(pipe);
652c393a
JB
6337 int dpll = I915_READ(dpll_reg);
6338
bad720ff 6339 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6340 return;
6341
6342 if (!dev_priv->lvds_downclock_avail)
6343 return;
6344
6345 /*
6346 * Since this is called by a timer, we should never get here in
6347 * the manual case.
6348 */
6349 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
44d98a61 6350 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a
JB
6351
6352 /* Unlock panel regs */
4a655f04
JB
6353 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6354 PANEL_UNLOCK_REGS);
652c393a
JB
6355
6356 dpll |= DISPLAY_RATE_SELECT_FPA1;
6357 I915_WRITE(dpll_reg, dpll);
9d0498a2 6358 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6359 dpll = I915_READ(dpll_reg);
6360 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6361 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6362
6363 /* ...and lock them again */
6364 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6365 }
6366
6367}
6368
6369/**
6370 * intel_idle_update - adjust clocks for idleness
6371 * @work: work struct
6372 *
6373 * Either the GPU or display (or both) went idle. Check the busy status
6374 * here and adjust the CRTC and GPU clocks as necessary.
6375 */
6376static void intel_idle_update(struct work_struct *work)
6377{
6378 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6379 idle_work);
6380 struct drm_device *dev = dev_priv->dev;
6381 struct drm_crtc *crtc;
6382 struct intel_crtc *intel_crtc;
6383
6384 if (!i915_powersave)
6385 return;
6386
6387 mutex_lock(&dev->struct_mutex);
6388
7648fa99
JB
6389 i915_update_gfx_val(dev_priv);
6390
652c393a
JB
6391 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6392 /* Skip inactive CRTCs */
6393 if (!crtc->fb)
6394 continue;
6395
6396 intel_crtc = to_intel_crtc(crtc);
6397 if (!intel_crtc->busy)
6398 intel_decrease_pllclock(crtc);
6399 }
6400
45ac22c8 6401
652c393a
JB
6402 mutex_unlock(&dev->struct_mutex);
6403}
6404
6405/**
6406 * intel_mark_busy - mark the GPU and possibly the display busy
6407 * @dev: drm device
6408 * @obj: object we're operating on
6409 *
6410 * Callers can use this function to indicate that the GPU is busy processing
6411 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6412 * buffer), we'll also mark the display as busy, so we know to increase its
6413 * clock frequency.
6414 */
05394f39 6415void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
652c393a
JB
6416{
6417 drm_i915_private_t *dev_priv = dev->dev_private;
6418 struct drm_crtc *crtc = NULL;
6419 struct intel_framebuffer *intel_fb;
6420 struct intel_crtc *intel_crtc;
6421
5e17ee74
ZW
6422 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6423 return;
6424
18b2190c 6425 if (!dev_priv->busy)
28cf798f 6426 dev_priv->busy = true;
18b2190c 6427 else
28cf798f
CW
6428 mod_timer(&dev_priv->idle_timer, jiffies +
6429 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
652c393a
JB
6430
6431 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6432 if (!crtc->fb)
6433 continue;
6434
6435 intel_crtc = to_intel_crtc(crtc);
6436 intel_fb = to_intel_framebuffer(crtc->fb);
6437 if (intel_fb->obj == obj) {
6438 if (!intel_crtc->busy) {
6439 /* Non-busy -> busy, upclock */
3dec0095 6440 intel_increase_pllclock(crtc);
652c393a
JB
6441 intel_crtc->busy = true;
6442 } else {
6443 /* Busy -> busy, put off timer */
6444 mod_timer(&intel_crtc->idle_timer, jiffies +
6445 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6446 }
6447 }
6448 }
6449}
6450
79e53945
JB
6451static void intel_crtc_destroy(struct drm_crtc *crtc)
6452{
6453 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
6454 struct drm_device *dev = crtc->dev;
6455 struct intel_unpin_work *work;
6456 unsigned long flags;
6457
6458 spin_lock_irqsave(&dev->event_lock, flags);
6459 work = intel_crtc->unpin_work;
6460 intel_crtc->unpin_work = NULL;
6461 spin_unlock_irqrestore(&dev->event_lock, flags);
6462
6463 if (work) {
6464 cancel_work_sync(&work->work);
6465 kfree(work);
6466 }
79e53945
JB
6467
6468 drm_crtc_cleanup(crtc);
67e77c5a 6469
79e53945
JB
6470 kfree(intel_crtc);
6471}
6472
6b95a207
KH
6473static void intel_unpin_work_fn(struct work_struct *__work)
6474{
6475 struct intel_unpin_work *work =
6476 container_of(__work, struct intel_unpin_work, work);
6477
6478 mutex_lock(&work->dev->struct_mutex);
b1b87f6b 6479 i915_gem_object_unpin(work->old_fb_obj);
05394f39
CW
6480 drm_gem_object_unreference(&work->pending_flip_obj->base);
6481 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 6482
7782de3b 6483 intel_update_fbc(work->dev);
6b95a207
KH
6484 mutex_unlock(&work->dev->struct_mutex);
6485 kfree(work);
6486}
6487
1afe3e9d 6488static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 6489 struct drm_crtc *crtc)
6b95a207
KH
6490{
6491 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
6492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6493 struct intel_unpin_work *work;
05394f39 6494 struct drm_i915_gem_object *obj;
6b95a207 6495 struct drm_pending_vblank_event *e;
49b14a5c 6496 struct timeval tnow, tvbl;
6b95a207
KH
6497 unsigned long flags;
6498
6499 /* Ignore early vblank irqs */
6500 if (intel_crtc == NULL)
6501 return;
6502
49b14a5c
MK
6503 do_gettimeofday(&tnow);
6504
6b95a207
KH
6505 spin_lock_irqsave(&dev->event_lock, flags);
6506 work = intel_crtc->unpin_work;
6507 if (work == NULL || !work->pending) {
6508 spin_unlock_irqrestore(&dev->event_lock, flags);
6509 return;
6510 }
6511
6512 intel_crtc->unpin_work = NULL;
6b95a207
KH
6513
6514 if (work->event) {
6515 e = work->event;
49b14a5c 6516 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
0af7e4df
MK
6517
6518 /* Called before vblank count and timestamps have
6519 * been updated for the vblank interval of flip
6520 * completion? Need to increment vblank count and
6521 * add one videorefresh duration to returned timestamp
49b14a5c
MK
6522 * to account for this. We assume this happened if we
6523 * get called over 0.9 frame durations after the last
6524 * timestamped vblank.
6525 *
6526 * This calculation can not be used with vrefresh rates
6527 * below 5Hz (10Hz to be on the safe side) without
6528 * promoting to 64 integers.
0af7e4df 6529 */
49b14a5c
MK
6530 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6531 9 * crtc->framedur_ns) {
0af7e4df 6532 e->event.sequence++;
49b14a5c
MK
6533 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6534 crtc->framedur_ns);
0af7e4df
MK
6535 }
6536
49b14a5c
MK
6537 e->event.tv_sec = tvbl.tv_sec;
6538 e->event.tv_usec = tvbl.tv_usec;
0af7e4df 6539
6b95a207
KH
6540 list_add_tail(&e->base.link,
6541 &e->base.file_priv->event_list);
6542 wake_up_interruptible(&e->base.file_priv->event_wait);
6543 }
6544
0af7e4df
MK
6545 drm_vblank_put(dev, intel_crtc->pipe);
6546
6b95a207
KH
6547 spin_unlock_irqrestore(&dev->event_lock, flags);
6548
05394f39 6549 obj = work->old_fb_obj;
d9e86c0e 6550
e59f2bac 6551 atomic_clear_mask(1 << intel_crtc->plane,
05394f39
CW
6552 &obj->pending_flip.counter);
6553 if (atomic_read(&obj->pending_flip) == 0)
f787a5f5 6554 wake_up(&dev_priv->pending_flip_queue);
d9e86c0e 6555
6b95a207 6556 schedule_work(&work->work);
e5510fac
JB
6557
6558 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
6559}
6560
1afe3e9d
JB
6561void intel_finish_page_flip(struct drm_device *dev, int pipe)
6562{
6563 drm_i915_private_t *dev_priv = dev->dev_private;
6564 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6565
49b14a5c 6566 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6567}
6568
6569void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6570{
6571 drm_i915_private_t *dev_priv = dev->dev_private;
6572 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6573
49b14a5c 6574 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6575}
6576
6b95a207
KH
6577void intel_prepare_page_flip(struct drm_device *dev, int plane)
6578{
6579 drm_i915_private_t *dev_priv = dev->dev_private;
6580 struct intel_crtc *intel_crtc =
6581 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6582 unsigned long flags;
6583
6584 spin_lock_irqsave(&dev->event_lock, flags);
de3f440f 6585 if (intel_crtc->unpin_work) {
4e5359cd
SF
6586 if ((++intel_crtc->unpin_work->pending) > 1)
6587 DRM_ERROR("Prepared flip multiple times\n");
de3f440f
JB
6588 } else {
6589 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6590 }
6b95a207
KH
6591 spin_unlock_irqrestore(&dev->event_lock, flags);
6592}
6593
8c9f3aaf
JB
6594static int intel_gen2_queue_flip(struct drm_device *dev,
6595 struct drm_crtc *crtc,
6596 struct drm_framebuffer *fb,
6597 struct drm_i915_gem_object *obj)
6598{
6599 struct drm_i915_private *dev_priv = dev->dev_private;
6600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6601 unsigned long offset;
6602 u32 flip_mask;
6603 int ret;
6604
6605 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6606 if (ret)
6607 goto out;
6608
6609 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6610 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6611
6612 ret = BEGIN_LP_RING(6);
6613 if (ret)
6614 goto out;
6615
6616 /* Can't queue multiple flips, so wait for the previous
6617 * one to finish before executing the next.
6618 */
6619 if (intel_crtc->plane)
6620 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6621 else
6622 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6623 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6624 OUT_RING(MI_NOOP);
6625 OUT_RING(MI_DISPLAY_FLIP |
6626 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6627 OUT_RING(fb->pitch);
6628 OUT_RING(obj->gtt_offset + offset);
6629 OUT_RING(MI_NOOP);
6630 ADVANCE_LP_RING();
6631out:
6632 return ret;
6633}
6634
6635static int intel_gen3_queue_flip(struct drm_device *dev,
6636 struct drm_crtc *crtc,
6637 struct drm_framebuffer *fb,
6638 struct drm_i915_gem_object *obj)
6639{
6640 struct drm_i915_private *dev_priv = dev->dev_private;
6641 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6642 unsigned long offset;
6643 u32 flip_mask;
6644 int ret;
6645
6646 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6647 if (ret)
6648 goto out;
6649
6650 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6651 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6652
6653 ret = BEGIN_LP_RING(6);
6654 if (ret)
6655 goto out;
6656
6657 if (intel_crtc->plane)
6658 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6659 else
6660 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6661 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6662 OUT_RING(MI_NOOP);
6663 OUT_RING(MI_DISPLAY_FLIP_I915 |
6664 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6665 OUT_RING(fb->pitch);
6666 OUT_RING(obj->gtt_offset + offset);
6667 OUT_RING(MI_NOOP);
6668
6669 ADVANCE_LP_RING();
6670out:
6671 return ret;
6672}
6673
6674static int intel_gen4_queue_flip(struct drm_device *dev,
6675 struct drm_crtc *crtc,
6676 struct drm_framebuffer *fb,
6677 struct drm_i915_gem_object *obj)
6678{
6679 struct drm_i915_private *dev_priv = dev->dev_private;
6680 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6681 uint32_t pf, pipesrc;
6682 int ret;
6683
6684 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6685 if (ret)
6686 goto out;
6687
6688 ret = BEGIN_LP_RING(4);
6689 if (ret)
6690 goto out;
6691
6692 /* i965+ uses the linear or tiled offsets from the
6693 * Display Registers (which do not change across a page-flip)
6694 * so we need only reprogram the base address.
6695 */
6696 OUT_RING(MI_DISPLAY_FLIP |
6697 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6698 OUT_RING(fb->pitch);
6699 OUT_RING(obj->gtt_offset | obj->tiling_mode);
6700
6701 /* XXX Enabling the panel-fitter across page-flip is so far
6702 * untested on non-native modes, so ignore it for now.
6703 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6704 */
6705 pf = 0;
6706 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6707 OUT_RING(pf | pipesrc);
6708 ADVANCE_LP_RING();
6709out:
6710 return ret;
6711}
6712
6713static int intel_gen6_queue_flip(struct drm_device *dev,
6714 struct drm_crtc *crtc,
6715 struct drm_framebuffer *fb,
6716 struct drm_i915_gem_object *obj)
6717{
6718 struct drm_i915_private *dev_priv = dev->dev_private;
6719 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6720 uint32_t pf, pipesrc;
6721 int ret;
6722
6723 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6724 if (ret)
6725 goto out;
6726
6727 ret = BEGIN_LP_RING(4);
6728 if (ret)
6729 goto out;
6730
6731 OUT_RING(MI_DISPLAY_FLIP |
6732 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6733 OUT_RING(fb->pitch | obj->tiling_mode);
6734 OUT_RING(obj->gtt_offset);
6735
6736 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6737 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6738 OUT_RING(pf | pipesrc);
6739 ADVANCE_LP_RING();
6740out:
6741 return ret;
6742}
6743
7c9017e5
JB
6744/*
6745 * On gen7 we currently use the blit ring because (in early silicon at least)
6746 * the render ring doesn't give us interrpts for page flip completion, which
6747 * means clients will hang after the first flip is queued. Fortunately the
6748 * blit ring generates interrupts properly, so use it instead.
6749 */
6750static int intel_gen7_queue_flip(struct drm_device *dev,
6751 struct drm_crtc *crtc,
6752 struct drm_framebuffer *fb,
6753 struct drm_i915_gem_object *obj)
6754{
6755 struct drm_i915_private *dev_priv = dev->dev_private;
6756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6757 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6758 int ret;
6759
6760 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6761 if (ret)
6762 goto out;
6763
6764 ret = intel_ring_begin(ring, 4);
6765 if (ret)
6766 goto out;
6767
6768 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
6769 intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
6770 intel_ring_emit(ring, (obj->gtt_offset));
6771 intel_ring_emit(ring, (MI_NOOP));
6772 intel_ring_advance(ring);
6773out:
6774 return ret;
6775}
6776
8c9f3aaf
JB
6777static int intel_default_queue_flip(struct drm_device *dev,
6778 struct drm_crtc *crtc,
6779 struct drm_framebuffer *fb,
6780 struct drm_i915_gem_object *obj)
6781{
6782 return -ENODEV;
6783}
6784
6b95a207
KH
6785static int intel_crtc_page_flip(struct drm_crtc *crtc,
6786 struct drm_framebuffer *fb,
6787 struct drm_pending_vblank_event *event)
6788{
6789 struct drm_device *dev = crtc->dev;
6790 struct drm_i915_private *dev_priv = dev->dev_private;
6791 struct intel_framebuffer *intel_fb;
05394f39 6792 struct drm_i915_gem_object *obj;
6b95a207
KH
6793 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6794 struct intel_unpin_work *work;
8c9f3aaf 6795 unsigned long flags;
52e68630 6796 int ret;
6b95a207
KH
6797
6798 work = kzalloc(sizeof *work, GFP_KERNEL);
6799 if (work == NULL)
6800 return -ENOMEM;
6801
6b95a207
KH
6802 work->event = event;
6803 work->dev = crtc->dev;
6804 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 6805 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
6806 INIT_WORK(&work->work, intel_unpin_work_fn);
6807
6808 /* We borrow the event spin lock for protecting unpin_work */
6809 spin_lock_irqsave(&dev->event_lock, flags);
6810 if (intel_crtc->unpin_work) {
6811 spin_unlock_irqrestore(&dev->event_lock, flags);
6812 kfree(work);
468f0b44
CW
6813
6814 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
6815 return -EBUSY;
6816 }
6817 intel_crtc->unpin_work = work;
6818 spin_unlock_irqrestore(&dev->event_lock, flags);
6819
6820 intel_fb = to_intel_framebuffer(fb);
6821 obj = intel_fb->obj;
6822
468f0b44 6823 mutex_lock(&dev->struct_mutex);
6b95a207 6824
75dfca80 6825 /* Reference the objects for the scheduled work. */
05394f39
CW
6826 drm_gem_object_reference(&work->old_fb_obj->base);
6827 drm_gem_object_reference(&obj->base);
6b95a207
KH
6828
6829 crtc->fb = fb;
96b099fd
CW
6830
6831 ret = drm_vblank_get(dev, intel_crtc->pipe);
6832 if (ret)
6833 goto cleanup_objs;
6834
e1f99ce6 6835 work->pending_flip_obj = obj;
e1f99ce6 6836
4e5359cd
SF
6837 work->enable_stall_check = true;
6838
e1f99ce6
CW
6839 /* Block clients from rendering to the new back buffer until
6840 * the flip occurs and the object is no longer visible.
6841 */
05394f39 6842 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
e1f99ce6 6843
8c9f3aaf
JB
6844 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6845 if (ret)
6846 goto cleanup_pending;
6b95a207 6847
7782de3b 6848 intel_disable_fbc(dev);
6b95a207
KH
6849 mutex_unlock(&dev->struct_mutex);
6850
e5510fac
JB
6851 trace_i915_flip_request(intel_crtc->plane, obj);
6852
6b95a207 6853 return 0;
96b099fd 6854
8c9f3aaf
JB
6855cleanup_pending:
6856 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
96b099fd 6857cleanup_objs:
05394f39
CW
6858 drm_gem_object_unreference(&work->old_fb_obj->base);
6859 drm_gem_object_unreference(&obj->base);
96b099fd
CW
6860 mutex_unlock(&dev->struct_mutex);
6861
6862 spin_lock_irqsave(&dev->event_lock, flags);
6863 intel_crtc->unpin_work = NULL;
6864 spin_unlock_irqrestore(&dev->event_lock, flags);
6865
6866 kfree(work);
6867
6868 return ret;
6b95a207
KH
6869}
6870
47f1c6c9
CW
6871static void intel_sanitize_modesetting(struct drm_device *dev,
6872 int pipe, int plane)
6873{
6874 struct drm_i915_private *dev_priv = dev->dev_private;
6875 u32 reg, val;
6876
6877 if (HAS_PCH_SPLIT(dev))
6878 return;
6879
6880 /* Who knows what state these registers were left in by the BIOS or
6881 * grub?
6882 *
6883 * If we leave the registers in a conflicting state (e.g. with the
6884 * display plane reading from the other pipe than the one we intend
6885 * to use) then when we attempt to teardown the active mode, we will
6886 * not disable the pipes and planes in the correct order -- leaving
6887 * a plane reading from a disabled pipe and possibly leading to
6888 * undefined behaviour.
6889 */
6890
6891 reg = DSPCNTR(plane);
6892 val = I915_READ(reg);
6893
6894 if ((val & DISPLAY_PLANE_ENABLE) == 0)
6895 return;
6896 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6897 return;
6898
6899 /* This display plane is active and attached to the other CPU pipe. */
6900 pipe = !pipe;
6901
6902 /* Disable the plane and wait for it to stop reading from the pipe. */
b24e7179
JB
6903 intel_disable_plane(dev_priv, plane, pipe);
6904 intel_disable_pipe(dev_priv, pipe);
47f1c6c9 6905}
79e53945 6906
f6e5b160
CW
6907static void intel_crtc_reset(struct drm_crtc *crtc)
6908{
6909 struct drm_device *dev = crtc->dev;
6910 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6911
6912 /* Reset flags back to the 'unknown' status so that they
6913 * will be correctly set on the initial modeset.
6914 */
6915 intel_crtc->dpms_mode = -1;
6916
6917 /* We need to fix up any BIOS configuration that conflicts with
6918 * our expectations.
6919 */
6920 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6921}
6922
6923static struct drm_crtc_helper_funcs intel_helper_funcs = {
6924 .dpms = intel_crtc_dpms,
6925 .mode_fixup = intel_crtc_mode_fixup,
6926 .mode_set = intel_crtc_mode_set,
6927 .mode_set_base = intel_pipe_set_base,
6928 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6929 .load_lut = intel_crtc_load_lut,
6930 .disable = intel_crtc_disable,
6931};
6932
6933static const struct drm_crtc_funcs intel_crtc_funcs = {
6934 .reset = intel_crtc_reset,
6935 .cursor_set = intel_crtc_cursor_set,
6936 .cursor_move = intel_crtc_cursor_move,
6937 .gamma_set = intel_crtc_gamma_set,
6938 .set_config = drm_crtc_helper_set_config,
6939 .destroy = intel_crtc_destroy,
6940 .page_flip = intel_crtc_page_flip,
6941};
6942
b358d0a6 6943static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 6944{
22fd0fab 6945 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
6946 struct intel_crtc *intel_crtc;
6947 int i;
6948
6949 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6950 if (intel_crtc == NULL)
6951 return;
6952
6953 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6954
6955 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
6956 for (i = 0; i < 256; i++) {
6957 intel_crtc->lut_r[i] = i;
6958 intel_crtc->lut_g[i] = i;
6959 intel_crtc->lut_b[i] = i;
6960 }
6961
80824003
JB
6962 /* Swap pipes & planes for FBC on pre-965 */
6963 intel_crtc->pipe = pipe;
6964 intel_crtc->plane = pipe;
e2e767ab 6965 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 6966 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 6967 intel_crtc->plane = !pipe;
80824003
JB
6968 }
6969
22fd0fab
JB
6970 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6971 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6972 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6973 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6974
5d1d0cc8 6975 intel_crtc_reset(&intel_crtc->base);
04dbff52 6976 intel_crtc->active = true; /* force the pipe off on setup_init_config */
5a354204 6977 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3
JB
6978
6979 if (HAS_PCH_SPLIT(dev)) {
6980 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6981 intel_helper_funcs.commit = ironlake_crtc_commit;
6982 } else {
6983 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6984 intel_helper_funcs.commit = i9xx_crtc_commit;
6985 }
6986
79e53945
JB
6987 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6988
652c393a
JB
6989 intel_crtc->busy = false;
6990
6991 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6992 (unsigned long)intel_crtc);
79e53945
JB
6993}
6994
08d7b3d1 6995int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 6996 struct drm_file *file)
08d7b3d1
CW
6997{
6998 drm_i915_private_t *dev_priv = dev->dev_private;
6999 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
7000 struct drm_mode_object *drmmode_obj;
7001 struct intel_crtc *crtc;
08d7b3d1
CW
7002
7003 if (!dev_priv) {
7004 DRM_ERROR("called with no initialization\n");
7005 return -EINVAL;
7006 }
7007
c05422d5
DV
7008 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7009 DRM_MODE_OBJECT_CRTC);
08d7b3d1 7010
c05422d5 7011 if (!drmmode_obj) {
08d7b3d1
CW
7012 DRM_ERROR("no such CRTC id\n");
7013 return -EINVAL;
7014 }
7015
c05422d5
DV
7016 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7017 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 7018
c05422d5 7019 return 0;
08d7b3d1
CW
7020}
7021
c5e4df33 7022static int intel_encoder_clones(struct drm_device *dev, int type_mask)
79e53945 7023{
4ef69c7a 7024 struct intel_encoder *encoder;
79e53945 7025 int index_mask = 0;
79e53945
JB
7026 int entry = 0;
7027
4ef69c7a
CW
7028 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7029 if (type_mask & encoder->clone_mask)
79e53945
JB
7030 index_mask |= (1 << entry);
7031 entry++;
7032 }
4ef69c7a 7033
79e53945
JB
7034 return index_mask;
7035}
7036
4d302442
CW
7037static bool has_edp_a(struct drm_device *dev)
7038{
7039 struct drm_i915_private *dev_priv = dev->dev_private;
7040
7041 if (!IS_MOBILE(dev))
7042 return false;
7043
7044 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7045 return false;
7046
7047 if (IS_GEN5(dev) &&
7048 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7049 return false;
7050
7051 return true;
7052}
7053
79e53945
JB
7054static void intel_setup_outputs(struct drm_device *dev)
7055{
725e30ad 7056 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 7057 struct intel_encoder *encoder;
cb0953d7 7058 bool dpd_is_edp = false;
c5d1b51d 7059 bool has_lvds = false;
79e53945 7060
541998a1 7061 if (IS_MOBILE(dev) && !IS_I830(dev))
c5d1b51d
CW
7062 has_lvds = intel_lvds_init(dev);
7063 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7064 /* disable the panel fitter on everything but LVDS */
7065 I915_WRITE(PFIT_CONTROL, 0);
7066 }
79e53945 7067
bad720ff 7068 if (HAS_PCH_SPLIT(dev)) {
cb0953d7 7069 dpd_is_edp = intel_dpd_is_edp(dev);
30ad48b7 7070
4d302442 7071 if (has_edp_a(dev))
32f9d658
ZW
7072 intel_dp_init(dev, DP_A);
7073
cb0953d7
AJ
7074 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7075 intel_dp_init(dev, PCH_DP_D);
7076 }
7077
7078 intel_crt_init(dev);
7079
7080 if (HAS_PCH_SPLIT(dev)) {
7081 int found;
7082
30ad48b7 7083 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca
ZY
7084 /* PCH SDVOB multiplex with HDMIB */
7085 found = intel_sdvo_init(dev, PCH_SDVOB);
30ad48b7
ZW
7086 if (!found)
7087 intel_hdmi_init(dev, HDMIB);
5eb08b69
ZW
7088 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7089 intel_dp_init(dev, PCH_DP_B);
30ad48b7
ZW
7090 }
7091
7092 if (I915_READ(HDMIC) & PORT_DETECTED)
7093 intel_hdmi_init(dev, HDMIC);
7094
7095 if (I915_READ(HDMID) & PORT_DETECTED)
7096 intel_hdmi_init(dev, HDMID);
7097
5eb08b69
ZW
7098 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7099 intel_dp_init(dev, PCH_DP_C);
7100
cb0953d7 7101 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5eb08b69
ZW
7102 intel_dp_init(dev, PCH_DP_D);
7103
103a196f 7104 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 7105 bool found = false;
7d57382e 7106
725e30ad 7107 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 7108 DRM_DEBUG_KMS("probing SDVOB\n");
725e30ad 7109 found = intel_sdvo_init(dev, SDVOB);
b01f2c3a
JB
7110 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7111 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
725e30ad 7112 intel_hdmi_init(dev, SDVOB);
b01f2c3a 7113 }
27185ae1 7114
b01f2c3a
JB
7115 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7116 DRM_DEBUG_KMS("probing DP_B\n");
a4fc5ed6 7117 intel_dp_init(dev, DP_B);
b01f2c3a 7118 }
725e30ad 7119 }
13520b05
KH
7120
7121 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 7122
b01f2c3a
JB
7123 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7124 DRM_DEBUG_KMS("probing SDVOC\n");
725e30ad 7125 found = intel_sdvo_init(dev, SDVOC);
b01f2c3a 7126 }
27185ae1
ML
7127
7128 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7129
b01f2c3a
JB
7130 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7131 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
725e30ad 7132 intel_hdmi_init(dev, SDVOC);
b01f2c3a
JB
7133 }
7134 if (SUPPORTS_INTEGRATED_DP(dev)) {
7135 DRM_DEBUG_KMS("probing DP_C\n");
a4fc5ed6 7136 intel_dp_init(dev, DP_C);
b01f2c3a 7137 }
725e30ad 7138 }
27185ae1 7139
b01f2c3a
JB
7140 if (SUPPORTS_INTEGRATED_DP(dev) &&
7141 (I915_READ(DP_D) & DP_DETECTED)) {
7142 DRM_DEBUG_KMS("probing DP_D\n");
a4fc5ed6 7143 intel_dp_init(dev, DP_D);
b01f2c3a 7144 }
bad720ff 7145 } else if (IS_GEN2(dev))
79e53945
JB
7146 intel_dvo_init(dev);
7147
103a196f 7148 if (SUPPORTS_TV(dev))
79e53945
JB
7149 intel_tv_init(dev);
7150
4ef69c7a
CW
7151 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7152 encoder->base.possible_crtcs = encoder->crtc_mask;
7153 encoder->base.possible_clones =
7154 intel_encoder_clones(dev, encoder->clone_mask);
79e53945 7155 }
47356eb6
CW
7156
7157 intel_panel_setup_backlight(dev);
2c7111db
CW
7158
7159 /* disable all the possible outputs/crtcs before entering KMS mode */
7160 drm_helper_disable_unused_functions(dev);
79e53945
JB
7161}
7162
7163static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7164{
7165 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
7166
7167 drm_framebuffer_cleanup(fb);
05394f39 7168 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
7169
7170 kfree(intel_fb);
7171}
7172
7173static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 7174 struct drm_file *file,
79e53945
JB
7175 unsigned int *handle)
7176{
7177 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 7178 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 7179
05394f39 7180 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
7181}
7182
7183static const struct drm_framebuffer_funcs intel_fb_funcs = {
7184 .destroy = intel_user_framebuffer_destroy,
7185 .create_handle = intel_user_framebuffer_create_handle,
7186};
7187
38651674
DA
7188int intel_framebuffer_init(struct drm_device *dev,
7189 struct intel_framebuffer *intel_fb,
7190 struct drm_mode_fb_cmd *mode_cmd,
05394f39 7191 struct drm_i915_gem_object *obj)
79e53945 7192{
79e53945
JB
7193 int ret;
7194
05394f39 7195 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
7196 return -EINVAL;
7197
7198 if (mode_cmd->pitch & 63)
7199 return -EINVAL;
7200
7201 switch (mode_cmd->bpp) {
7202 case 8:
7203 case 16:
b5626747
JB
7204 /* Only pre-ILK can handle 5:5:5 */
7205 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7206 return -EINVAL;
7207 break;
7208
57cd6508
CW
7209 case 24:
7210 case 32:
7211 break;
7212 default:
7213 return -EINVAL;
7214 }
7215
79e53945
JB
7216 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7217 if (ret) {
7218 DRM_ERROR("framebuffer init failed %d\n", ret);
7219 return ret;
7220 }
7221
7222 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 7223 intel_fb->obj = obj;
79e53945
JB
7224 return 0;
7225}
7226
79e53945
JB
7227static struct drm_framebuffer *
7228intel_user_framebuffer_create(struct drm_device *dev,
7229 struct drm_file *filp,
7230 struct drm_mode_fb_cmd *mode_cmd)
7231{
05394f39 7232 struct drm_i915_gem_object *obj;
79e53945 7233
05394f39 7234 obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
c8725226 7235 if (&obj->base == NULL)
cce13ff7 7236 return ERR_PTR(-ENOENT);
79e53945 7237
d2dff872 7238 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
7239}
7240
79e53945 7241static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 7242 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 7243 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
7244};
7245
05394f39 7246static struct drm_i915_gem_object *
aa40d6bb 7247intel_alloc_context_page(struct drm_device *dev)
9ea8d059 7248{
05394f39 7249 struct drm_i915_gem_object *ctx;
9ea8d059
CW
7250 int ret;
7251
2c34b850
BW
7252 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7253
aa40d6bb
ZN
7254 ctx = i915_gem_alloc_object(dev, 4096);
7255 if (!ctx) {
9ea8d059
CW
7256 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7257 return NULL;
7258 }
7259
75e9e915 7260 ret = i915_gem_object_pin(ctx, 4096, true);
9ea8d059
CW
7261 if (ret) {
7262 DRM_ERROR("failed to pin power context: %d\n", ret);
7263 goto err_unref;
7264 }
7265
aa40d6bb 7266 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
9ea8d059
CW
7267 if (ret) {
7268 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7269 goto err_unpin;
7270 }
9ea8d059 7271
aa40d6bb 7272 return ctx;
9ea8d059
CW
7273
7274err_unpin:
aa40d6bb 7275 i915_gem_object_unpin(ctx);
9ea8d059 7276err_unref:
05394f39 7277 drm_gem_object_unreference(&ctx->base);
9ea8d059
CW
7278 mutex_unlock(&dev->struct_mutex);
7279 return NULL;
7280}
7281
7648fa99
JB
7282bool ironlake_set_drps(struct drm_device *dev, u8 val)
7283{
7284 struct drm_i915_private *dev_priv = dev->dev_private;
7285 u16 rgvswctl;
7286
7287 rgvswctl = I915_READ16(MEMSWCTL);
7288 if (rgvswctl & MEMCTL_CMD_STS) {
7289 DRM_DEBUG("gpu busy, RCS change rejected\n");
7290 return false; /* still busy with another command */
7291 }
7292
7293 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7294 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7295 I915_WRITE16(MEMSWCTL, rgvswctl);
7296 POSTING_READ16(MEMSWCTL);
7297
7298 rgvswctl |= MEMCTL_CMD_STS;
7299 I915_WRITE16(MEMSWCTL, rgvswctl);
7300
7301 return true;
7302}
7303
f97108d1
JB
7304void ironlake_enable_drps(struct drm_device *dev)
7305{
7306 struct drm_i915_private *dev_priv = dev->dev_private;
7648fa99 7307 u32 rgvmodectl = I915_READ(MEMMODECTL);
f97108d1 7308 u8 fmax, fmin, fstart, vstart;
f97108d1 7309
ea056c14
JB
7310 /* Enable temp reporting */
7311 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7312 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7313
f97108d1
JB
7314 /* 100ms RC evaluation intervals */
7315 I915_WRITE(RCUPEI, 100000);
7316 I915_WRITE(RCDNEI, 100000);
7317
7318 /* Set max/min thresholds to 90ms and 80ms respectively */
7319 I915_WRITE(RCBMAXAVG, 90000);
7320 I915_WRITE(RCBMINAVG, 80000);
7321
7322 I915_WRITE(MEMIHYST, 1);
7323
7324 /* Set up min, max, and cur for interrupt handling */
7325 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7326 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7327 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7328 MEMMODE_FSTART_SHIFT;
7648fa99 7329
f97108d1
JB
7330 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7331 PXVFREQ_PX_SHIFT;
7332
80dbf4b7 7333 dev_priv->fmax = fmax; /* IPS callback will increase this */
7648fa99
JB
7334 dev_priv->fstart = fstart;
7335
80dbf4b7 7336 dev_priv->max_delay = fstart;
f97108d1
JB
7337 dev_priv->min_delay = fmin;
7338 dev_priv->cur_delay = fstart;
7339
80dbf4b7
JB
7340 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7341 fmax, fmin, fstart);
7648fa99 7342
f97108d1
JB
7343 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7344
7345 /*
7346 * Interrupts will be enabled in ironlake_irq_postinstall
7347 */
7348
7349 I915_WRITE(VIDSTART, vstart);
7350 POSTING_READ(VIDSTART);
7351
7352 rgvmodectl |= MEMMODE_SWMODE_EN;
7353 I915_WRITE(MEMMODECTL, rgvmodectl);
7354
481b6af3 7355 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
913d8d11 7356 DRM_ERROR("stuck trying to change perf mode\n");
f97108d1
JB
7357 msleep(1);
7358
7648fa99 7359 ironlake_set_drps(dev, fstart);
f97108d1 7360
7648fa99
JB
7361 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7362 I915_READ(0x112e0);
7363 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7364 dev_priv->last_count2 = I915_READ(0x112f4);
7365 getrawmonotonic(&dev_priv->last_time2);
f97108d1
JB
7366}
7367
7368void ironlake_disable_drps(struct drm_device *dev)
7369{
7370 struct drm_i915_private *dev_priv = dev->dev_private;
7648fa99 7371 u16 rgvswctl = I915_READ16(MEMSWCTL);
f97108d1
JB
7372
7373 /* Ack interrupts, disable EFC interrupt */
7374 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7375 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7376 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7377 I915_WRITE(DEIIR, DE_PCU_EVENT);
7378 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7379
7380 /* Go back to the starting frequency */
7648fa99 7381 ironlake_set_drps(dev, dev_priv->fstart);
f97108d1
JB
7382 msleep(1);
7383 rgvswctl |= MEMCTL_CMD_STS;
7384 I915_WRITE(MEMSWCTL, rgvswctl);
7385 msleep(1);
7386
7387}
7388
3b8d8d91
JB
7389void gen6_set_rps(struct drm_device *dev, u8 val)
7390{
7391 struct drm_i915_private *dev_priv = dev->dev_private;
7392 u32 swreq;
7393
7394 swreq = (val & 0x3ff) << 25;
7395 I915_WRITE(GEN6_RPNSWREQ, swreq);
7396}
7397
7398void gen6_disable_rps(struct drm_device *dev)
7399{
7400 struct drm_i915_private *dev_priv = dev->dev_private;
7401
7402 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7403 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7404 I915_WRITE(GEN6_PMIER, 0);
4912d041
BW
7405
7406 spin_lock_irq(&dev_priv->rps_lock);
7407 dev_priv->pm_iir = 0;
7408 spin_unlock_irq(&dev_priv->rps_lock);
7409
3b8d8d91
JB
7410 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7411}
7412
7648fa99
JB
7413static unsigned long intel_pxfreq(u32 vidfreq)
7414{
7415 unsigned long freq;
7416 int div = (vidfreq & 0x3f0000) >> 16;
7417 int post = (vidfreq & 0x3000) >> 12;
7418 int pre = (vidfreq & 0x7);
7419
7420 if (!pre)
7421 return 0;
7422
7423 freq = ((div * 133333) / ((1<<post) * pre));
7424
7425 return freq;
7426}
7427
7428void intel_init_emon(struct drm_device *dev)
7429{
7430 struct drm_i915_private *dev_priv = dev->dev_private;
7431 u32 lcfuse;
7432 u8 pxw[16];
7433 int i;
7434
7435 /* Disable to program */
7436 I915_WRITE(ECR, 0);
7437 POSTING_READ(ECR);
7438
7439 /* Program energy weights for various events */
7440 I915_WRITE(SDEW, 0x15040d00);
7441 I915_WRITE(CSIEW0, 0x007f0000);
7442 I915_WRITE(CSIEW1, 0x1e220004);
7443 I915_WRITE(CSIEW2, 0x04000004);
7444
7445 for (i = 0; i < 5; i++)
7446 I915_WRITE(PEW + (i * 4), 0);
7447 for (i = 0; i < 3; i++)
7448 I915_WRITE(DEW + (i * 4), 0);
7449
7450 /* Program P-state weights to account for frequency power adjustment */
7451 for (i = 0; i < 16; i++) {
7452 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7453 unsigned long freq = intel_pxfreq(pxvidfreq);
7454 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7455 PXVFREQ_PX_SHIFT;
7456 unsigned long val;
7457
7458 val = vid * vid;
7459 val *= (freq / 1000);
7460 val *= 255;
7461 val /= (127*127*900);
7462 if (val > 0xff)
7463 DRM_ERROR("bad pxval: %ld\n", val);
7464 pxw[i] = val;
7465 }
7466 /* Render standby states get 0 weight */
7467 pxw[14] = 0;
7468 pxw[15] = 0;
7469
7470 for (i = 0; i < 4; i++) {
7471 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7472 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7473 I915_WRITE(PXW + (i * 4), val);
7474 }
7475
7476 /* Adjust magic regs to magic values (more experimental results) */
7477 I915_WRITE(OGW0, 0);
7478 I915_WRITE(OGW1, 0);
7479 I915_WRITE(EG0, 0x00007f00);
7480 I915_WRITE(EG1, 0x0000000e);
7481 I915_WRITE(EG2, 0x000e0000);
7482 I915_WRITE(EG3, 0x68000300);
7483 I915_WRITE(EG4, 0x42000000);
7484 I915_WRITE(EG5, 0x00140031);
7485 I915_WRITE(EG6, 0);
7486 I915_WRITE(EG7, 0);
7487
7488 for (i = 0; i < 8; i++)
7489 I915_WRITE(PXWL + (i * 4), 0);
7490
7491 /* Enable PMON + select events */
7492 I915_WRITE(ECR, 0x80000019);
7493
7494 lcfuse = I915_READ(LCFUSE02);
7495
7496 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7497}
7498
3b8d8d91 7499void gen6_enable_rps(struct drm_i915_private *dev_priv)
8fd26859 7500{
a6044e23
JB
7501 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7502 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7df8721b 7503 u32 pcu_mbox, rc6_mask = 0;
a6044e23 7504 int cur_freq, min_freq, max_freq;
8fd26859
CW
7505 int i;
7506
7507 /* Here begins a magic sequence of register writes to enable
7508 * auto-downclocking.
7509 *
7510 * Perhaps there might be some value in exposing these to
7511 * userspace...
7512 */
7513 I915_WRITE(GEN6_RC_STATE, 0);
d1ebd816 7514 mutex_lock(&dev_priv->dev->struct_mutex);
fcca7926 7515 gen6_gt_force_wake_get(dev_priv);
8fd26859 7516
3b8d8d91 7517 /* disable the counters and set deterministic thresholds */
8fd26859
CW
7518 I915_WRITE(GEN6_RC_CONTROL, 0);
7519
7520 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7521 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7522 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7523 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7524 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7525
7526 for (i = 0; i < I915_NUM_RINGS; i++)
7527 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7528
7529 I915_WRITE(GEN6_RC_SLEEP, 0);
7530 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7531 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7532 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7533 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7534
7df8721b
JB
7535 if (i915_enable_rc6)
7536 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7537 GEN6_RC_CTL_RC6_ENABLE;
7538
8fd26859 7539 I915_WRITE(GEN6_RC_CONTROL,
7df8721b 7540 rc6_mask |
9c3d2f7f 7541 GEN6_RC_CTL_EI_MODE(1) |
8fd26859
CW
7542 GEN6_RC_CTL_HW_ENABLE);
7543
3b8d8d91 7544 I915_WRITE(GEN6_RPNSWREQ,
8fd26859
CW
7545 GEN6_FREQUENCY(10) |
7546 GEN6_OFFSET(0) |
7547 GEN6_AGGRESSIVE_TURBO);
7548 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7549 GEN6_FREQUENCY(12));
7550
7551 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7552 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7553 18 << 24 |
7554 6 << 16);
ccab5c82
JB
7555 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7556 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8fd26859 7557 I915_WRITE(GEN6_RP_UP_EI, 100000);
ccab5c82 7558 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8fd26859
CW
7559 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7560 I915_WRITE(GEN6_RP_CONTROL,
7561 GEN6_RP_MEDIA_TURBO |
7562 GEN6_RP_USE_NORMAL_FREQ |
7563 GEN6_RP_MEDIA_IS_GFX |
7564 GEN6_RP_ENABLE |
ccab5c82
JB
7565 GEN6_RP_UP_BUSY_AVG |
7566 GEN6_RP_DOWN_IDLE_CONT);
8fd26859
CW
7567
7568 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7569 500))
7570 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7571
7572 I915_WRITE(GEN6_PCODE_DATA, 0);
7573 I915_WRITE(GEN6_PCODE_MAILBOX,
7574 GEN6_PCODE_READY |
7575 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7576 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7577 500))
7578 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7579
a6044e23
JB
7580 min_freq = (rp_state_cap & 0xff0000) >> 16;
7581 max_freq = rp_state_cap & 0xff;
7582 cur_freq = (gt_perf_status & 0xff00) >> 8;
7583
7584 /* Check for overclock support */
7585 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7586 500))
7587 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7588 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7589 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7590 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7591 500))
7592 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7593 if (pcu_mbox & (1<<31)) { /* OC supported */
7594 max_freq = pcu_mbox & 0xff;
e281fcaa 7595 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
a6044e23
JB
7596 }
7597
7598 /* In units of 100MHz */
7599 dev_priv->max_delay = max_freq;
7600 dev_priv->min_delay = min_freq;
7601 dev_priv->cur_delay = cur_freq;
7602
8fd26859
CW
7603 /* requires MSI enabled */
7604 I915_WRITE(GEN6_PMIER,
7605 GEN6_PM_MBOX_EVENT |
7606 GEN6_PM_THERMAL_EVENT |
7607 GEN6_PM_RP_DOWN_TIMEOUT |
7608 GEN6_PM_RP_UP_THRESHOLD |
7609 GEN6_PM_RP_DOWN_THRESHOLD |
7610 GEN6_PM_RP_UP_EI_EXPIRED |
7611 GEN6_PM_RP_DOWN_EI_EXPIRED);
4912d041
BW
7612 spin_lock_irq(&dev_priv->rps_lock);
7613 WARN_ON(dev_priv->pm_iir != 0);
3b8d8d91 7614 I915_WRITE(GEN6_PMIMR, 0);
4912d041 7615 spin_unlock_irq(&dev_priv->rps_lock);
3b8d8d91
JB
7616 /* enable all PM interrupts */
7617 I915_WRITE(GEN6_PMINTRMSK, 0);
8fd26859 7618
fcca7926 7619 gen6_gt_force_wake_put(dev_priv);
d1ebd816 7620 mutex_unlock(&dev_priv->dev->struct_mutex);
8fd26859
CW
7621}
7622
23b2f8bb
JB
7623void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7624{
7625 int min_freq = 15;
7626 int gpu_freq, ia_freq, max_ia_freq;
7627 int scaling_factor = 180;
7628
7629 max_ia_freq = cpufreq_quick_get_max(0);
7630 /*
7631 * Default to measured freq if none found, PCU will ensure we don't go
7632 * over
7633 */
7634 if (!max_ia_freq)
7635 max_ia_freq = tsc_khz;
7636
7637 /* Convert from kHz to MHz */
7638 max_ia_freq /= 1000;
7639
7640 mutex_lock(&dev_priv->dev->struct_mutex);
7641
7642 /*
7643 * For each potential GPU frequency, load a ring frequency we'd like
7644 * to use for memory access. We do this by specifying the IA frequency
7645 * the PCU should use as a reference to determine the ring frequency.
7646 */
7647 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
7648 gpu_freq--) {
7649 int diff = dev_priv->max_delay - gpu_freq;
7650
7651 /*
7652 * For GPU frequencies less than 750MHz, just use the lowest
7653 * ring freq.
7654 */
7655 if (gpu_freq < min_freq)
7656 ia_freq = 800;
7657 else
7658 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7659 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7660
7661 I915_WRITE(GEN6_PCODE_DATA,
7662 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
7663 gpu_freq);
7664 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
7665 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7666 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
7667 GEN6_PCODE_READY) == 0, 10)) {
7668 DRM_ERROR("pcode write of freq table timed out\n");
7669 continue;
7670 }
7671 }
7672
7673 mutex_unlock(&dev_priv->dev->struct_mutex);
7674}
7675
6067aaea
JB
7676static void ironlake_init_clock_gating(struct drm_device *dev)
7677{
7678 struct drm_i915_private *dev_priv = dev->dev_private;
7679 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7680
7681 /* Required for FBC */
7682 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7683 DPFCRUNIT_CLOCK_GATE_DISABLE |
7684 DPFDUNIT_CLOCK_GATE_DISABLE;
7685 /* Required for CxSR */
7686 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7687
7688 I915_WRITE(PCH_3DCGDIS0,
7689 MARIUNIT_CLOCK_GATE_DISABLE |
7690 SVSMUNIT_CLOCK_GATE_DISABLE);
7691 I915_WRITE(PCH_3DCGDIS1,
7692 VFMUNIT_CLOCK_GATE_DISABLE);
7693
7694 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7695
6067aaea
JB
7696 /*
7697 * According to the spec the following bits should be set in
7698 * order to enable memory self-refresh
7699 * The bit 22/21 of 0x42004
7700 * The bit 5 of 0x42020
7701 * The bit 15 of 0x45000
7702 */
7703 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7704 (I915_READ(ILK_DISPLAY_CHICKEN2) |
7705 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7706 I915_WRITE(ILK_DSPCLK_GATE,
7707 (I915_READ(ILK_DSPCLK_GATE) |
7708 ILK_DPARB_CLK_GATE));
7709 I915_WRITE(DISP_ARB_CTL,
7710 (I915_READ(DISP_ARB_CTL) |
7711 DISP_FBC_WM_DIS));
7712 I915_WRITE(WM3_LP_ILK, 0);
7713 I915_WRITE(WM2_LP_ILK, 0);
7714 I915_WRITE(WM1_LP_ILK, 0);
7715
7716 /*
7717 * Based on the document from hardware guys the following bits
7718 * should be set unconditionally in order to enable FBC.
7719 * The bit 22 of 0x42000
7720 * The bit 22 of 0x42004
7721 * The bit 7,8,9 of 0x42020.
7722 */
7723 if (IS_IRONLAKE_M(dev)) {
7724 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7725 I915_READ(ILK_DISPLAY_CHICKEN1) |
7726 ILK_FBCQ_DIS);
7727 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7728 I915_READ(ILK_DISPLAY_CHICKEN2) |
7729 ILK_DPARB_GATE);
7730 I915_WRITE(ILK_DSPCLK_GATE,
7731 I915_READ(ILK_DSPCLK_GATE) |
7732 ILK_DPFC_DIS1 |
7733 ILK_DPFC_DIS2 |
7734 ILK_CLK_FBC);
7735 }
7736
7737 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7738 I915_READ(ILK_DISPLAY_CHICKEN2) |
7739 ILK_ELPIN_409_SELECT);
7740 I915_WRITE(_3D_CHICKEN2,
7741 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7742 _3D_CHICKEN2_WM_READ_PIPELINED);
8fd26859
CW
7743}
7744
6067aaea 7745static void gen6_init_clock_gating(struct drm_device *dev)
652c393a
JB
7746{
7747 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 7748 int pipe;
6067aaea
JB
7749 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7750
7751 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
652c393a 7752
6067aaea
JB
7753 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7754 I915_READ(ILK_DISPLAY_CHICKEN2) |
7755 ILK_ELPIN_409_SELECT);
8956c8bb 7756
6067aaea
JB
7757 I915_WRITE(WM3_LP_ILK, 0);
7758 I915_WRITE(WM2_LP_ILK, 0);
7759 I915_WRITE(WM1_LP_ILK, 0);
652c393a
JB
7760
7761 /*
6067aaea
JB
7762 * According to the spec the following bits should be
7763 * set in order to enable memory self-refresh and fbc:
7764 * The bit21 and bit22 of 0x42000
7765 * The bit21 and bit22 of 0x42004
7766 * The bit5 and bit7 of 0x42020
7767 * The bit14 of 0x70180
7768 * The bit14 of 0x71180
652c393a 7769 */
6067aaea
JB
7770 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7771 I915_READ(ILK_DISPLAY_CHICKEN1) |
7772 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7773 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7774 I915_READ(ILK_DISPLAY_CHICKEN2) |
7775 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7776 I915_WRITE(ILK_DSPCLK_GATE,
7777 I915_READ(ILK_DSPCLK_GATE) |
7778 ILK_DPARB_CLK_GATE |
7779 ILK_DPFD_CLK_GATE);
8956c8bb 7780
d74362c9 7781 for_each_pipe(pipe) {
6067aaea
JB
7782 I915_WRITE(DSPCNTR(pipe),
7783 I915_READ(DSPCNTR(pipe)) |
7784 DISPPLANE_TRICKLE_FEED_DISABLE);
d74362c9
KP
7785 intel_flush_display_plane(dev_priv, pipe);
7786 }
6067aaea 7787}
8956c8bb 7788
28963a3e
JB
7789static void ivybridge_init_clock_gating(struct drm_device *dev)
7790{
7791 struct drm_i915_private *dev_priv = dev->dev_private;
7792 int pipe;
7793 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7f8a8569 7794
28963a3e 7795 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
382b0936 7796
28963a3e
JB
7797 I915_WRITE(WM3_LP_ILK, 0);
7798 I915_WRITE(WM2_LP_ILK, 0);
7799 I915_WRITE(WM1_LP_ILK, 0);
de6e2eaf 7800
28963a3e 7801 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
67e92af0 7802
d74362c9 7803 for_each_pipe(pipe) {
28963a3e
JB
7804 I915_WRITE(DSPCNTR(pipe),
7805 I915_READ(DSPCNTR(pipe)) |
7806 DISPPLANE_TRICKLE_FEED_DISABLE);
d74362c9
KP
7807 intel_flush_display_plane(dev_priv, pipe);
7808 }
28963a3e
JB
7809}
7810
6067aaea
JB
7811static void g4x_init_clock_gating(struct drm_device *dev)
7812{
7813 struct drm_i915_private *dev_priv = dev->dev_private;
7814 uint32_t dspclk_gate;
8fd26859 7815
6067aaea
JB
7816 I915_WRITE(RENCLK_GATE_D1, 0);
7817 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7818 GS_UNIT_CLOCK_GATE_DISABLE |
7819 CL_UNIT_CLOCK_GATE_DISABLE);
7820 I915_WRITE(RAMCLK_GATE_D, 0);
7821 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7822 OVRUNIT_CLOCK_GATE_DISABLE |
7823 OVCUNIT_CLOCK_GATE_DISABLE;
7824 if (IS_GM45(dev))
7825 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7826 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7827}
1398261a 7828
6067aaea
JB
7829static void crestline_init_clock_gating(struct drm_device *dev)
7830{
7831 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 7832
6067aaea
JB
7833 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7834 I915_WRITE(RENCLK_GATE_D2, 0);
7835 I915_WRITE(DSPCLK_GATE_D, 0);
7836 I915_WRITE(RAMCLK_GATE_D, 0);
7837 I915_WRITE16(DEUC, 0);
7838}
652c393a 7839
6067aaea
JB
7840static void broadwater_init_clock_gating(struct drm_device *dev)
7841{
7842 struct drm_i915_private *dev_priv = dev->dev_private;
7843
7844 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7845 I965_RCC_CLOCK_GATE_DISABLE |
7846 I965_RCPB_CLOCK_GATE_DISABLE |
7847 I965_ISC_CLOCK_GATE_DISABLE |
7848 I965_FBC_CLOCK_GATE_DISABLE);
7849 I915_WRITE(RENCLK_GATE_D2, 0);
7850}
7851
7852static void gen3_init_clock_gating(struct drm_device *dev)
7853{
7854 struct drm_i915_private *dev_priv = dev->dev_private;
7855 u32 dstate = I915_READ(D_STATE);
7856
7857 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7858 DSTATE_DOT_CLOCK_GATING;
7859 I915_WRITE(D_STATE, dstate);
7860}
7861
7862static void i85x_init_clock_gating(struct drm_device *dev)
7863{
7864 struct drm_i915_private *dev_priv = dev->dev_private;
7865
7866 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7867}
7868
7869static void i830_init_clock_gating(struct drm_device *dev)
7870{
7871 struct drm_i915_private *dev_priv = dev->dev_private;
7872
7873 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
652c393a
JB
7874}
7875
645c62a5
JB
7876static void ibx_init_clock_gating(struct drm_device *dev)
7877{
7878 struct drm_i915_private *dev_priv = dev->dev_private;
7879
7880 /*
7881 * On Ibex Peak and Cougar Point, we need to disable clock
7882 * gating for the panel power sequencer or it will fail to
7883 * start up when no ports are active.
7884 */
7885 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7886}
7887
7888static void cpt_init_clock_gating(struct drm_device *dev)
7889{
7890 struct drm_i915_private *dev_priv = dev->dev_private;
3bcf603f 7891 int pipe;
645c62a5
JB
7892
7893 /*
7894 * On Ibex Peak and Cougar Point, we need to disable clock
7895 * gating for the panel power sequencer or it will fail to
7896 * start up when no ports are active.
7897 */
7898 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7899 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7900 DPLS_EDP_PPS_FIX_DIS);
3bcf603f
JB
7901 /* Without this, mode sets may fail silently on FDI */
7902 for_each_pipe(pipe)
7903 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
652c393a
JB
7904}
7905
ac668088 7906static void ironlake_teardown_rc6(struct drm_device *dev)
0cdab21f
CW
7907{
7908 struct drm_i915_private *dev_priv = dev->dev_private;
7909
7910 if (dev_priv->renderctx) {
ac668088
CW
7911 i915_gem_object_unpin(dev_priv->renderctx);
7912 drm_gem_object_unreference(&dev_priv->renderctx->base);
0cdab21f
CW
7913 dev_priv->renderctx = NULL;
7914 }
7915
7916 if (dev_priv->pwrctx) {
ac668088
CW
7917 i915_gem_object_unpin(dev_priv->pwrctx);
7918 drm_gem_object_unreference(&dev_priv->pwrctx->base);
7919 dev_priv->pwrctx = NULL;
7920 }
7921}
7922
7923static void ironlake_disable_rc6(struct drm_device *dev)
7924{
7925 struct drm_i915_private *dev_priv = dev->dev_private;
7926
7927 if (I915_READ(PWRCTXA)) {
7928 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7929 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
7930 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
7931 50);
0cdab21f
CW
7932
7933 I915_WRITE(PWRCTXA, 0);
7934 POSTING_READ(PWRCTXA);
7935
ac668088
CW
7936 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7937 POSTING_READ(RSTDBYCTL);
0cdab21f 7938 }
ac668088 7939
99507307 7940 ironlake_teardown_rc6(dev);
0cdab21f
CW
7941}
7942
ac668088 7943static int ironlake_setup_rc6(struct drm_device *dev)
d5bb081b
JB
7944{
7945 struct drm_i915_private *dev_priv = dev->dev_private;
7946
ac668088
CW
7947 if (dev_priv->renderctx == NULL)
7948 dev_priv->renderctx = intel_alloc_context_page(dev);
7949 if (!dev_priv->renderctx)
7950 return -ENOMEM;
7951
7952 if (dev_priv->pwrctx == NULL)
7953 dev_priv->pwrctx = intel_alloc_context_page(dev);
7954 if (!dev_priv->pwrctx) {
7955 ironlake_teardown_rc6(dev);
7956 return -ENOMEM;
7957 }
7958
7959 return 0;
d5bb081b
JB
7960}
7961
7962void ironlake_enable_rc6(struct drm_device *dev)
7963{
7964 struct drm_i915_private *dev_priv = dev->dev_private;
7965 int ret;
7966
ac668088
CW
7967 /* rc6 disabled by default due to repeated reports of hanging during
7968 * boot and resume.
7969 */
7970 if (!i915_enable_rc6)
7971 return;
7972
2c34b850 7973 mutex_lock(&dev->struct_mutex);
ac668088 7974 ret = ironlake_setup_rc6(dev);
2c34b850
BW
7975 if (ret) {
7976 mutex_unlock(&dev->struct_mutex);
ac668088 7977 return;
2c34b850 7978 }
ac668088 7979
d5bb081b
JB
7980 /*
7981 * GPU can automatically power down the render unit if given a page
7982 * to save state.
7983 */
7984 ret = BEGIN_LP_RING(6);
7985 if (ret) {
ac668088 7986 ironlake_teardown_rc6(dev);
2c34b850 7987 mutex_unlock(&dev->struct_mutex);
d5bb081b
JB
7988 return;
7989 }
ac668088 7990
d5bb081b
JB
7991 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
7992 OUT_RING(MI_SET_CONTEXT);
7993 OUT_RING(dev_priv->renderctx->gtt_offset |
7994 MI_MM_SPACE_GTT |
7995 MI_SAVE_EXT_STATE_EN |
7996 MI_RESTORE_EXT_STATE_EN |
7997 MI_RESTORE_INHIBIT);
7998 OUT_RING(MI_SUSPEND_FLUSH);
7999 OUT_RING(MI_NOOP);
8000 OUT_RING(MI_FLUSH);
8001 ADVANCE_LP_RING();
8002
4a246cfc
BW
8003 /*
8004 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8005 * does an implicit flush, combined with MI_FLUSH above, it should be
8006 * safe to assume that renderctx is valid
8007 */
8008 ret = intel_wait_ring_idle(LP_RING(dev_priv));
8009 if (ret) {
8010 DRM_ERROR("failed to enable ironlake power power savings\n");
8011 ironlake_teardown_rc6(dev);
8012 mutex_unlock(&dev->struct_mutex);
8013 return;
8014 }
8015
d5bb081b
JB
8016 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8017 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2c34b850 8018 mutex_unlock(&dev->struct_mutex);
d5bb081b
JB
8019}
8020
645c62a5
JB
8021void intel_init_clock_gating(struct drm_device *dev)
8022{
8023 struct drm_i915_private *dev_priv = dev->dev_private;
8024
8025 dev_priv->display.init_clock_gating(dev);
8026
8027 if (dev_priv->display.init_pch_clock_gating)
8028 dev_priv->display.init_pch_clock_gating(dev);
8029}
ac668088 8030
e70236a8
JB
8031/* Set up chip specific display functions */
8032static void intel_init_display(struct drm_device *dev)
8033{
8034 struct drm_i915_private *dev_priv = dev->dev_private;
8035
8036 /* We always want a DPMS function */
f564048e 8037 if (HAS_PCH_SPLIT(dev)) {
f2b115e6 8038 dev_priv->display.dpms = ironlake_crtc_dpms;
f564048e 8039 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
17638cd6 8040 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 8041 } else {
e70236a8 8042 dev_priv->display.dpms = i9xx_crtc_dpms;
f564048e 8043 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
17638cd6 8044 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 8045 }
e70236a8 8046
ee5382ae 8047 if (I915_HAS_FBC(dev)) {
9c04f015 8048 if (HAS_PCH_SPLIT(dev)) {
b52eb4dc
ZY
8049 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8050 dev_priv->display.enable_fbc = ironlake_enable_fbc;
8051 dev_priv->display.disable_fbc = ironlake_disable_fbc;
8052 } else if (IS_GM45(dev)) {
74dff282
JB
8053 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8054 dev_priv->display.enable_fbc = g4x_enable_fbc;
8055 dev_priv->display.disable_fbc = g4x_disable_fbc;
a6c45cf0 8056 } else if (IS_CRESTLINE(dev)) {
e70236a8
JB
8057 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8058 dev_priv->display.enable_fbc = i8xx_enable_fbc;
8059 dev_priv->display.disable_fbc = i8xx_disable_fbc;
8060 }
74dff282 8061 /* 855GM needs testing */
e70236a8
JB
8062 }
8063
8064 /* Returns the core display clock speed */
f2b115e6 8065 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
e70236a8
JB
8066 dev_priv->display.get_display_clock_speed =
8067 i945_get_display_clock_speed;
8068 else if (IS_I915G(dev))
8069 dev_priv->display.get_display_clock_speed =
8070 i915_get_display_clock_speed;
f2b115e6 8071 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
8072 dev_priv->display.get_display_clock_speed =
8073 i9xx_misc_get_display_clock_speed;
8074 else if (IS_I915GM(dev))
8075 dev_priv->display.get_display_clock_speed =
8076 i915gm_get_display_clock_speed;
8077 else if (IS_I865G(dev))
8078 dev_priv->display.get_display_clock_speed =
8079 i865_get_display_clock_speed;
f0f8a9ce 8080 else if (IS_I85X(dev))
e70236a8
JB
8081 dev_priv->display.get_display_clock_speed =
8082 i855_get_display_clock_speed;
8083 else /* 852, 830 */
8084 dev_priv->display.get_display_clock_speed =
8085 i830_get_display_clock_speed;
8086
8087 /* For FIFO watermark updates */
7f8a8569 8088 if (HAS_PCH_SPLIT(dev)) {
645c62a5
JB
8089 if (HAS_PCH_IBX(dev))
8090 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8091 else if (HAS_PCH_CPT(dev))
8092 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8093
f00a3ddf 8094 if (IS_GEN5(dev)) {
7f8a8569
ZW
8095 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8096 dev_priv->display.update_wm = ironlake_update_wm;
8097 else {
8098 DRM_DEBUG_KMS("Failed to get proper latency. "
8099 "Disable CxSR\n");
8100 dev_priv->display.update_wm = NULL;
1398261a 8101 }
674cf967 8102 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
6067aaea 8103 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
1398261a
YL
8104 } else if (IS_GEN6(dev)) {
8105 if (SNB_READ_WM0_LATENCY()) {
8106 dev_priv->display.update_wm = sandybridge_update_wm;
8107 } else {
8108 DRM_DEBUG_KMS("Failed to read display plane latency. "
8109 "Disable CxSR\n");
8110 dev_priv->display.update_wm = NULL;
7f8a8569 8111 }
674cf967 8112 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
6067aaea 8113 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
357555c0
JB
8114 } else if (IS_IVYBRIDGE(dev)) {
8115 /* FIXME: detect B0+ stepping and use auto training */
8116 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
fe100d4d
JB
8117 if (SNB_READ_WM0_LATENCY()) {
8118 dev_priv->display.update_wm = sandybridge_update_wm;
8119 } else {
8120 DRM_DEBUG_KMS("Failed to read display plane latency. "
8121 "Disable CxSR\n");
8122 dev_priv->display.update_wm = NULL;
8123 }
28963a3e 8124 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6067aaea 8125
7f8a8569
ZW
8126 } else
8127 dev_priv->display.update_wm = NULL;
8128 } else if (IS_PINEVIEW(dev)) {
d4294342 8129 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
95534263 8130 dev_priv->is_ddr3,
d4294342
ZY
8131 dev_priv->fsb_freq,
8132 dev_priv->mem_freq)) {
8133 DRM_INFO("failed to find known CxSR latency "
95534263 8134 "(found ddr%s fsb freq %d, mem freq %d), "
d4294342 8135 "disabling CxSR\n",
95534263 8136 (dev_priv->is_ddr3 == 1) ? "3": "2",
d4294342
ZY
8137 dev_priv->fsb_freq, dev_priv->mem_freq);
8138 /* Disable CxSR and never update its watermark again */
8139 pineview_disable_cxsr(dev);
8140 dev_priv->display.update_wm = NULL;
8141 } else
8142 dev_priv->display.update_wm = pineview_update_wm;
95e0ee92 8143 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6067aaea 8144 } else if (IS_G4X(dev)) {
e70236a8 8145 dev_priv->display.update_wm = g4x_update_wm;
6067aaea
JB
8146 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8147 } else if (IS_GEN4(dev)) {
e70236a8 8148 dev_priv->display.update_wm = i965_update_wm;
6067aaea
JB
8149 if (IS_CRESTLINE(dev))
8150 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8151 else if (IS_BROADWATER(dev))
8152 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8153 } else if (IS_GEN3(dev)) {
e70236a8
JB
8154 dev_priv->display.update_wm = i9xx_update_wm;
8155 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6067aaea
JB
8156 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8157 } else if (IS_I865G(dev)) {
8158 dev_priv->display.update_wm = i830_update_wm;
8159 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8160 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8f4695ed
AJ
8161 } else if (IS_I85X(dev)) {
8162 dev_priv->display.update_wm = i9xx_update_wm;
8163 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6067aaea 8164 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
e70236a8 8165 } else {
8f4695ed 8166 dev_priv->display.update_wm = i830_update_wm;
6067aaea 8167 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8f4695ed 8168 if (IS_845G(dev))
e70236a8
JB
8169 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8170 else
8171 dev_priv->display.get_fifo_size = i830_get_fifo_size;
e70236a8 8172 }
8c9f3aaf
JB
8173
8174 /* Default just returns -ENODEV to indicate unsupported */
8175 dev_priv->display.queue_flip = intel_default_queue_flip;
8176
8177 switch (INTEL_INFO(dev)->gen) {
8178 case 2:
8179 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8180 break;
8181
8182 case 3:
8183 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8184 break;
8185
8186 case 4:
8187 case 5:
8188 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8189 break;
8190
8191 case 6:
8192 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8193 break;
7c9017e5
JB
8194 case 7:
8195 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8196 break;
8c9f3aaf 8197 }
e70236a8
JB
8198}
8199
b690e96c
JB
8200/*
8201 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8202 * resume, or other times. This quirk makes sure that's the case for
8203 * affected systems.
8204 */
8205static void quirk_pipea_force (struct drm_device *dev)
8206{
8207 struct drm_i915_private *dev_priv = dev->dev_private;
8208
8209 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8210 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8211}
8212
435793df
KP
8213/*
8214 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8215 */
8216static void quirk_ssc_force_disable(struct drm_device *dev)
8217{
8218 struct drm_i915_private *dev_priv = dev->dev_private;
8219 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8220}
8221
b690e96c
JB
8222struct intel_quirk {
8223 int device;
8224 int subsystem_vendor;
8225 int subsystem_device;
8226 void (*hook)(struct drm_device *dev);
8227};
8228
8229struct intel_quirk intel_quirks[] = {
8230 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8231 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8232 /* HP Mini needs pipe A force quirk (LP: #322104) */
8233 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
8234
8235 /* Thinkpad R31 needs pipe A force quirk */
8236 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8237 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8238 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8239
8240 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8241 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
8242 /* ThinkPad X40 needs pipe A force quirk */
8243
8244 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8245 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8246
8247 /* 855 & before need to leave pipe A & dpll A up */
8248 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8249 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
8250
8251 /* Lenovo U160 cannot use SSC on LVDS */
8252 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
8253
8254 /* Sony Vaio Y cannot use SSC on LVDS */
8255 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
b690e96c
JB
8256};
8257
8258static void intel_init_quirks(struct drm_device *dev)
8259{
8260 struct pci_dev *d = dev->pdev;
8261 int i;
8262
8263 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8264 struct intel_quirk *q = &intel_quirks[i];
8265
8266 if (d->device == q->device &&
8267 (d->subsystem_vendor == q->subsystem_vendor ||
8268 q->subsystem_vendor == PCI_ANY_ID) &&
8269 (d->subsystem_device == q->subsystem_device ||
8270 q->subsystem_device == PCI_ANY_ID))
8271 q->hook(dev);
8272 }
8273}
8274
9cce37f4
JB
8275/* Disable the VGA plane that we never use */
8276static void i915_disable_vga(struct drm_device *dev)
8277{
8278 struct drm_i915_private *dev_priv = dev->dev_private;
8279 u8 sr1;
8280 u32 vga_reg;
8281
8282 if (HAS_PCH_SPLIT(dev))
8283 vga_reg = CPU_VGACNTRL;
8284 else
8285 vga_reg = VGACNTRL;
8286
8287 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8288 outb(1, VGA_SR_INDEX);
8289 sr1 = inb(VGA_SR_DATA);
8290 outb(sr1 | 1<<5, VGA_SR_DATA);
8291 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8292 udelay(300);
8293
8294 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8295 POSTING_READ(vga_reg);
8296}
8297
79e53945
JB
8298void intel_modeset_init(struct drm_device *dev)
8299{
652c393a 8300 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
8301 int i;
8302
8303 drm_mode_config_init(dev);
8304
8305 dev->mode_config.min_width = 0;
8306 dev->mode_config.min_height = 0;
8307
8308 dev->mode_config.funcs = (void *)&intel_mode_funcs;
8309
b690e96c
JB
8310 intel_init_quirks(dev);
8311
e70236a8
JB
8312 intel_init_display(dev);
8313
a6c45cf0
CW
8314 if (IS_GEN2(dev)) {
8315 dev->mode_config.max_width = 2048;
8316 dev->mode_config.max_height = 2048;
8317 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
8318 dev->mode_config.max_width = 4096;
8319 dev->mode_config.max_height = 4096;
79e53945 8320 } else {
a6c45cf0
CW
8321 dev->mode_config.max_width = 8192;
8322 dev->mode_config.max_height = 8192;
79e53945 8323 }
35c3047a 8324 dev->mode_config.fb_base = dev->agp->base;
79e53945 8325
28c97730 8326 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 8327 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 8328
a3524f1b 8329 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945
JB
8330 intel_crtc_init(dev, i);
8331 }
8332
9cce37f4
JB
8333 /* Just disable it once at startup */
8334 i915_disable_vga(dev);
79e53945 8335 intel_setup_outputs(dev);
652c393a 8336
645c62a5 8337 intel_init_clock_gating(dev);
9cce37f4 8338
7648fa99 8339 if (IS_IRONLAKE_M(dev)) {
f97108d1 8340 ironlake_enable_drps(dev);
7648fa99
JB
8341 intel_init_emon(dev);
8342 }
f97108d1 8343
1c70c0ce 8344 if (IS_GEN6(dev) || IS_GEN7(dev)) {
3b8d8d91 8345 gen6_enable_rps(dev_priv);
23b2f8bb
JB
8346 gen6_update_ring_freq(dev_priv);
8347 }
3b8d8d91 8348
652c393a
JB
8349 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8350 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8351 (unsigned long)dev);
2c7111db
CW
8352}
8353
8354void intel_modeset_gem_init(struct drm_device *dev)
8355{
8356 if (IS_IRONLAKE_M(dev))
8357 ironlake_enable_rc6(dev);
02e792fb
DV
8358
8359 intel_setup_overlay(dev);
79e53945
JB
8360}
8361
8362void intel_modeset_cleanup(struct drm_device *dev)
8363{
652c393a
JB
8364 struct drm_i915_private *dev_priv = dev->dev_private;
8365 struct drm_crtc *crtc;
8366 struct intel_crtc *intel_crtc;
8367
f87ea761 8368 drm_kms_helper_poll_fini(dev);
652c393a
JB
8369 mutex_lock(&dev->struct_mutex);
8370
723bfd70
JB
8371 intel_unregister_dsm_handler();
8372
8373
652c393a
JB
8374 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8375 /* Skip inactive CRTCs */
8376 if (!crtc->fb)
8377 continue;
8378
8379 intel_crtc = to_intel_crtc(crtc);
3dec0095 8380 intel_increase_pllclock(crtc);
652c393a
JB
8381 }
8382
973d04f9 8383 intel_disable_fbc(dev);
e70236a8 8384
f97108d1
JB
8385 if (IS_IRONLAKE_M(dev))
8386 ironlake_disable_drps(dev);
1c70c0ce 8387 if (IS_GEN6(dev) || IS_GEN7(dev))
3b8d8d91 8388 gen6_disable_rps(dev);
f97108d1 8389
d5bb081b
JB
8390 if (IS_IRONLAKE_M(dev))
8391 ironlake_disable_rc6(dev);
0cdab21f 8392
69341a5e
KH
8393 mutex_unlock(&dev->struct_mutex);
8394
6c0d9350
DV
8395 /* Disable the irq before mode object teardown, for the irq might
8396 * enqueue unpin/hotplug work. */
8397 drm_irq_uninstall(dev);
8398 cancel_work_sync(&dev_priv->hotplug_work);
8399
1630fe75
CW
8400 /* flush any delayed tasks or pending work */
8401 flush_scheduled_work();
8402
3dec0095
DV
8403 /* Shut off idle work before the crtcs get freed. */
8404 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8405 intel_crtc = to_intel_crtc(crtc);
8406 del_timer_sync(&intel_crtc->idle_timer);
8407 }
8408 del_timer_sync(&dev_priv->idle_timer);
8409 cancel_work_sync(&dev_priv->idle_work);
8410
79e53945
JB
8411 drm_mode_config_cleanup(dev);
8412}
8413
f1c79df3
ZW
8414/*
8415 * Return which encoder is currently attached for connector.
8416 */
df0e9248 8417struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 8418{
df0e9248
CW
8419 return &intel_attached_encoder(connector)->base;
8420}
f1c79df3 8421
df0e9248
CW
8422void intel_connector_attach_encoder(struct intel_connector *connector,
8423 struct intel_encoder *encoder)
8424{
8425 connector->encoder = encoder;
8426 drm_mode_connector_attach_encoder(&connector->base,
8427 &encoder->base);
79e53945 8428}
28d52043
DA
8429
8430/*
8431 * set vga decode state - true == enable VGA decode
8432 */
8433int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8434{
8435 struct drm_i915_private *dev_priv = dev->dev_private;
8436 u16 gmch_ctrl;
8437
8438 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8439 if (state)
8440 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8441 else
8442 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8443 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8444 return 0;
8445}
c4a1d9e4
CW
8446
8447#ifdef CONFIG_DEBUG_FS
8448#include <linux/seq_file.h>
8449
8450struct intel_display_error_state {
8451 struct intel_cursor_error_state {
8452 u32 control;
8453 u32 position;
8454 u32 base;
8455 u32 size;
8456 } cursor[2];
8457
8458 struct intel_pipe_error_state {
8459 u32 conf;
8460 u32 source;
8461
8462 u32 htotal;
8463 u32 hblank;
8464 u32 hsync;
8465 u32 vtotal;
8466 u32 vblank;
8467 u32 vsync;
8468 } pipe[2];
8469
8470 struct intel_plane_error_state {
8471 u32 control;
8472 u32 stride;
8473 u32 size;
8474 u32 pos;
8475 u32 addr;
8476 u32 surface;
8477 u32 tile_offset;
8478 } plane[2];
8479};
8480
8481struct intel_display_error_state *
8482intel_display_capture_error_state(struct drm_device *dev)
8483{
8484 drm_i915_private_t *dev_priv = dev->dev_private;
8485 struct intel_display_error_state *error;
8486 int i;
8487
8488 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8489 if (error == NULL)
8490 return NULL;
8491
8492 for (i = 0; i < 2; i++) {
8493 error->cursor[i].control = I915_READ(CURCNTR(i));
8494 error->cursor[i].position = I915_READ(CURPOS(i));
8495 error->cursor[i].base = I915_READ(CURBASE(i));
8496
8497 error->plane[i].control = I915_READ(DSPCNTR(i));
8498 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8499 error->plane[i].size = I915_READ(DSPSIZE(i));
8500 error->plane[i].pos= I915_READ(DSPPOS(i));
8501 error->plane[i].addr = I915_READ(DSPADDR(i));
8502 if (INTEL_INFO(dev)->gen >= 4) {
8503 error->plane[i].surface = I915_READ(DSPSURF(i));
8504 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8505 }
8506
8507 error->pipe[i].conf = I915_READ(PIPECONF(i));
8508 error->pipe[i].source = I915_READ(PIPESRC(i));
8509 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8510 error->pipe[i].hblank = I915_READ(HBLANK(i));
8511 error->pipe[i].hsync = I915_READ(HSYNC(i));
8512 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8513 error->pipe[i].vblank = I915_READ(VBLANK(i));
8514 error->pipe[i].vsync = I915_READ(VSYNC(i));
8515 }
8516
8517 return error;
8518}
8519
8520void
8521intel_display_print_error_state(struct seq_file *m,
8522 struct drm_device *dev,
8523 struct intel_display_error_state *error)
8524{
8525 int i;
8526
8527 for (i = 0; i < 2; i++) {
8528 seq_printf(m, "Pipe [%d]:\n", i);
8529 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8530 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8531 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8532 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8533 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8534 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8535 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8536 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8537
8538 seq_printf(m, "Plane [%d]:\n", i);
8539 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8540 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8541 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8542 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8543 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8544 if (INTEL_INFO(dev)->gen >= 4) {
8545 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8546 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8547 }
8548
8549 seq_printf(m, "Cursor [%d]:\n", i);
8550 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8551 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8552 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8553 }
8554}
8555#endif