]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: split conversion function out into separate function
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void intel_dp_set_m_n(struct intel_crtc *crtc);
95static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab
DV
97static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n);
99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 103
79e53945 104typedef struct {
0206e353 105 int min, max;
79e53945
JB
106} intel_range_t;
107
108typedef struct {
0206e353
AJ
109 int dot_limit;
110 int p2_slow, p2_fast;
79e53945
JB
111} intel_p2_t;
112
d4906093
ML
113typedef struct intel_limit intel_limit_t;
114struct intel_limit {
0206e353
AJ
115 intel_range_t dot, vco, n, m, m1, m2, p, p1;
116 intel_p2_t p2;
d4906093 117};
79e53945 118
d2acd215
DV
119int
120intel_pch_rawclk(struct drm_device *dev)
121{
122 struct drm_i915_private *dev_priv = dev->dev_private;
123
124 WARN_ON(!HAS_PCH_SPLIT(dev));
125
126 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
127}
128
021357ac
CW
129static inline u32 /* units of 100MHz */
130intel_fdi_link_freq(struct drm_device *dev)
131{
8b99e68c
CW
132 if (IS_GEN5(dev)) {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
135 } else
136 return 27;
021357ac
CW
137}
138
5d536e28 139static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 140 .dot = { .min = 25000, .max = 350000 },
9c333719 141 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 142 .n = { .min = 2, .max = 16 },
0206e353
AJ
143 .m = { .min = 96, .max = 140 },
144 .m1 = { .min = 18, .max = 26 },
145 .m2 = { .min = 6, .max = 16 },
146 .p = { .min = 4, .max = 128 },
147 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
148 .p2 = { .dot_limit = 165000,
149 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
150};
151
5d536e28
DV
152static const intel_limit_t intel_limits_i8xx_dvo = {
153 .dot = { .min = 25000, .max = 350000 },
9c333719 154 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 155 .n = { .min = 2, .max = 16 },
5d536e28
DV
156 .m = { .min = 96, .max = 140 },
157 .m1 = { .min = 18, .max = 26 },
158 .m2 = { .min = 6, .max = 16 },
159 .p = { .min = 4, .max = 128 },
160 .p1 = { .min = 2, .max = 33 },
161 .p2 = { .dot_limit = 165000,
162 .p2_slow = 4, .p2_fast = 4 },
163};
164
e4b36699 165static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 166 .dot = { .min = 25000, .max = 350000 },
9c333719 167 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 168 .n = { .min = 2, .max = 16 },
0206e353
AJ
169 .m = { .min = 96, .max = 140 },
170 .m1 = { .min = 18, .max = 26 },
171 .m2 = { .min = 6, .max = 16 },
172 .p = { .min = 4, .max = 128 },
173 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
174 .p2 = { .dot_limit = 165000,
175 .p2_slow = 14, .p2_fast = 7 },
e4b36699 176};
273e27ca 177
e4b36699 178static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
179 .dot = { .min = 20000, .max = 400000 },
180 .vco = { .min = 1400000, .max = 2800000 },
181 .n = { .min = 1, .max = 6 },
182 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
183 .m1 = { .min = 8, .max = 18 },
184 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
185 .p = { .min = 5, .max = 80 },
186 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
187 .p2 = { .dot_limit = 200000,
188 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
189};
190
191static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
192 .dot = { .min = 20000, .max = 400000 },
193 .vco = { .min = 1400000, .max = 2800000 },
194 .n = { .min = 1, .max = 6 },
195 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
196 .m1 = { .min = 8, .max = 18 },
197 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
198 .p = { .min = 7, .max = 98 },
199 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
200 .p2 = { .dot_limit = 112000,
201 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
202};
203
273e27ca 204
e4b36699 205static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
206 .dot = { .min = 25000, .max = 270000 },
207 .vco = { .min = 1750000, .max = 3500000},
208 .n = { .min = 1, .max = 4 },
209 .m = { .min = 104, .max = 138 },
210 .m1 = { .min = 17, .max = 23 },
211 .m2 = { .min = 5, .max = 11 },
212 .p = { .min = 10, .max = 30 },
213 .p1 = { .min = 1, .max = 3},
214 .p2 = { .dot_limit = 270000,
215 .p2_slow = 10,
216 .p2_fast = 10
044c7c41 217 },
e4b36699
KP
218};
219
220static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
221 .dot = { .min = 22000, .max = 400000 },
222 .vco = { .min = 1750000, .max = 3500000},
223 .n = { .min = 1, .max = 4 },
224 .m = { .min = 104, .max = 138 },
225 .m1 = { .min = 16, .max = 23 },
226 .m2 = { .min = 5, .max = 11 },
227 .p = { .min = 5, .max = 80 },
228 .p1 = { .min = 1, .max = 8},
229 .p2 = { .dot_limit = 165000,
230 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
231};
232
233static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
234 .dot = { .min = 20000, .max = 115000 },
235 .vco = { .min = 1750000, .max = 3500000 },
236 .n = { .min = 1, .max = 3 },
237 .m = { .min = 104, .max = 138 },
238 .m1 = { .min = 17, .max = 23 },
239 .m2 = { .min = 5, .max = 11 },
240 .p = { .min = 28, .max = 112 },
241 .p1 = { .min = 2, .max = 8 },
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 14, .p2_fast = 14
044c7c41 244 },
e4b36699
KP
245};
246
247static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
248 .dot = { .min = 80000, .max = 224000 },
249 .vco = { .min = 1750000, .max = 3500000 },
250 .n = { .min = 1, .max = 3 },
251 .m = { .min = 104, .max = 138 },
252 .m1 = { .min = 17, .max = 23 },
253 .m2 = { .min = 5, .max = 11 },
254 .p = { .min = 14, .max = 42 },
255 .p1 = { .min = 2, .max = 6 },
256 .p2 = { .dot_limit = 0,
257 .p2_slow = 7, .p2_fast = 7
044c7c41 258 },
e4b36699
KP
259};
260
f2b115e6 261static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
262 .dot = { .min = 20000, .max = 400000},
263 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 264 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
265 .n = { .min = 3, .max = 6 },
266 .m = { .min = 2, .max = 256 },
273e27ca 267 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 5, .max = 80 },
271 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
272 .p2 = { .dot_limit = 200000,
273 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
274};
275
f2b115e6 276static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
277 .dot = { .min = 20000, .max = 400000 },
278 .vco = { .min = 1700000, .max = 3500000 },
279 .n = { .min = 3, .max = 6 },
280 .m = { .min = 2, .max = 256 },
281 .m1 = { .min = 0, .max = 0 },
282 .m2 = { .min = 0, .max = 254 },
283 .p = { .min = 7, .max = 112 },
284 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
285 .p2 = { .dot_limit = 112000,
286 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
287};
288
273e27ca
EA
289/* Ironlake / Sandybridge
290 *
291 * We calculate clock using (register_value + 2) for N/M1/M2, so here
292 * the range value for them is (actual_value - 2).
293 */
b91ad0ec 294static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
295 .dot = { .min = 25000, .max = 350000 },
296 .vco = { .min = 1760000, .max = 3510000 },
297 .n = { .min = 1, .max = 5 },
298 .m = { .min = 79, .max = 127 },
299 .m1 = { .min = 12, .max = 22 },
300 .m2 = { .min = 5, .max = 9 },
301 .p = { .min = 5, .max = 80 },
302 .p1 = { .min = 1, .max = 8 },
303 .p2 = { .dot_limit = 225000,
304 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
305};
306
b91ad0ec 307static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
308 .dot = { .min = 25000, .max = 350000 },
309 .vco = { .min = 1760000, .max = 3510000 },
310 .n = { .min = 1, .max = 3 },
311 .m = { .min = 79, .max = 118 },
312 .m1 = { .min = 12, .max = 22 },
313 .m2 = { .min = 5, .max = 9 },
314 .p = { .min = 28, .max = 112 },
315 .p1 = { .min = 2, .max = 8 },
316 .p2 = { .dot_limit = 225000,
317 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
318};
319
320static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
331};
332
273e27ca 333/* LVDS 100mhz refclk limits. */
b91ad0ec 334static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 2 },
338 .m = { .min = 79, .max = 126 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 28, .max = 112 },
0206e353 342 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
345};
346
347static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
0206e353 355 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
358};
359
dc730512 360static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
361 /*
362 * These are the data rate limits (measured in fast clocks)
363 * since those are the strictest limits we have. The fast
364 * clock and actual rate limits are more relaxed, so checking
365 * them would make no difference.
366 */
367 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 368 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 369 .n = { .min = 1, .max = 7 },
a0c4da24
JB
370 .m1 = { .min = 2, .max = 3 },
371 .m2 = { .min = 11, .max = 156 },
b99ab663 372 .p1 = { .min = 2, .max = 3 },
5fdc9c49 373 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
374};
375
ef9348c8
CML
376static const intel_limit_t intel_limits_chv = {
377 /*
378 * These are the data rate limits (measured in fast clocks)
379 * since those are the strictest limits we have. The fast
380 * clock and actual rate limits are more relaxed, so checking
381 * them would make no difference.
382 */
383 .dot = { .min = 25000 * 5, .max = 540000 * 5},
384 .vco = { .min = 4860000, .max = 6700000 },
385 .n = { .min = 1, .max = 1 },
386 .m1 = { .min = 2, .max = 2 },
387 .m2 = { .min = 24 << 22, .max = 175 << 22 },
388 .p1 = { .min = 2, .max = 4 },
389 .p2 = { .p2_slow = 1, .p2_fast = 14 },
390};
391
6b4bf1c4
VS
392static void vlv_clock(int refclk, intel_clock_t *clock)
393{
394 clock->m = clock->m1 * clock->m2;
395 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
396 if (WARN_ON(clock->n == 0 || clock->p == 0))
397 return;
fb03ac01
VS
398 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
399 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
400}
401
e0638cdf
PZ
402/**
403 * Returns whether any output on the specified pipe is of the specified type
404 */
405static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
406{
407 struct drm_device *dev = crtc->dev;
408 struct intel_encoder *encoder;
409
410 for_each_encoder_on_crtc(dev, crtc, encoder)
411 if (encoder->type == type)
412 return true;
413
414 return false;
415}
416
1b894b59
CW
417static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
418 int refclk)
2c07245f 419{
b91ad0ec 420 struct drm_device *dev = crtc->dev;
2c07245f 421 const intel_limit_t *limit;
b91ad0ec
ZW
422
423 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 424 if (intel_is_dual_link_lvds(dev)) {
1b894b59 425 if (refclk == 100000)
b91ad0ec
ZW
426 limit = &intel_limits_ironlake_dual_lvds_100m;
427 else
428 limit = &intel_limits_ironlake_dual_lvds;
429 } else {
1b894b59 430 if (refclk == 100000)
b91ad0ec
ZW
431 limit = &intel_limits_ironlake_single_lvds_100m;
432 else
433 limit = &intel_limits_ironlake_single_lvds;
434 }
c6bb3538 435 } else
b91ad0ec 436 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
437
438 return limit;
439}
440
044c7c41
ML
441static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
442{
443 struct drm_device *dev = crtc->dev;
044c7c41
ML
444 const intel_limit_t *limit;
445
446 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 447 if (intel_is_dual_link_lvds(dev))
e4b36699 448 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 449 else
e4b36699 450 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
451 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
452 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 453 limit = &intel_limits_g4x_hdmi;
044c7c41 454 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 455 limit = &intel_limits_g4x_sdvo;
044c7c41 456 } else /* The option is for other outputs */
e4b36699 457 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
458
459 return limit;
460}
461
1b894b59 462static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
463{
464 struct drm_device *dev = crtc->dev;
465 const intel_limit_t *limit;
466
bad720ff 467 if (HAS_PCH_SPLIT(dev))
1b894b59 468 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 469 else if (IS_G4X(dev)) {
044c7c41 470 limit = intel_g4x_limit(crtc);
f2b115e6 471 } else if (IS_PINEVIEW(dev)) {
2177832f 472 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 473 limit = &intel_limits_pineview_lvds;
2177832f 474 else
f2b115e6 475 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
476 } else if (IS_CHERRYVIEW(dev)) {
477 limit = &intel_limits_chv;
a0c4da24 478 } else if (IS_VALLEYVIEW(dev)) {
dc730512 479 limit = &intel_limits_vlv;
a6c45cf0
CW
480 } else if (!IS_GEN2(dev)) {
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482 limit = &intel_limits_i9xx_lvds;
483 else
484 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
485 } else {
486 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 487 limit = &intel_limits_i8xx_lvds;
5d536e28 488 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 489 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
490 else
491 limit = &intel_limits_i8xx_dac;
79e53945
JB
492 }
493 return limit;
494}
495
f2b115e6
AJ
496/* m1 is reserved as 0 in Pineview, n is a ring counter */
497static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 498{
2177832f
SL
499 clock->m = clock->m2 + 2;
500 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
501 if (WARN_ON(clock->n == 0 || clock->p == 0))
502 return;
fb03ac01
VS
503 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
504 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
505}
506
7429e9d4
DV
507static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
508{
509 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
510}
511
ac58c3f0 512static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 513{
7429e9d4 514 clock->m = i9xx_dpll_compute_m(clock);
79e53945 515 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
516 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
517 return;
fb03ac01
VS
518 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
519 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
520}
521
ef9348c8
CML
522static void chv_clock(int refclk, intel_clock_t *clock)
523{
524 clock->m = clock->m1 * clock->m2;
525 clock->p = clock->p1 * clock->p2;
526 if (WARN_ON(clock->n == 0 || clock->p == 0))
527 return;
528 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
529 clock->n << 22);
530 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
531}
532
7c04d1d9 533#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
534/**
535 * Returns whether the given set of divisors are valid for a given refclk with
536 * the given connectors.
537 */
538
1b894b59
CW
539static bool intel_PLL_is_valid(struct drm_device *dev,
540 const intel_limit_t *limit,
541 const intel_clock_t *clock)
79e53945 542{
f01b7962
VS
543 if (clock->n < limit->n.min || limit->n.max < clock->n)
544 INTELPllInvalid("n out of range\n");
79e53945 545 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 546 INTELPllInvalid("p1 out of range\n");
79e53945 547 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 548 INTELPllInvalid("m2 out of range\n");
79e53945 549 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 550 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
551
552 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
553 if (clock->m1 <= clock->m2)
554 INTELPllInvalid("m1 <= m2\n");
555
556 if (!IS_VALLEYVIEW(dev)) {
557 if (clock->p < limit->p.min || limit->p.max < clock->p)
558 INTELPllInvalid("p out of range\n");
559 if (clock->m < limit->m.min || limit->m.max < clock->m)
560 INTELPllInvalid("m out of range\n");
561 }
562
79e53945 563 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 564 INTELPllInvalid("vco out of range\n");
79e53945
JB
565 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
566 * connector, etc., rather than just a single range.
567 */
568 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 569 INTELPllInvalid("dot out of range\n");
79e53945
JB
570
571 return true;
572}
573
d4906093 574static bool
ee9300bb 575i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
576 int target, int refclk, intel_clock_t *match_clock,
577 intel_clock_t *best_clock)
79e53945
JB
578{
579 struct drm_device *dev = crtc->dev;
79e53945 580 intel_clock_t clock;
79e53945
JB
581 int err = target;
582
a210b028 583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 584 /*
a210b028
DV
585 * For LVDS just rely on its current settings for dual-channel.
586 * We haven't figured out how to reliably set up different
587 * single/dual channel state, if we even can.
79e53945 588 */
1974cad0 589 if (intel_is_dual_link_lvds(dev))
79e53945
JB
590 clock.p2 = limit->p2.p2_fast;
591 else
592 clock.p2 = limit->p2.p2_slow;
593 } else {
594 if (target < limit->p2.dot_limit)
595 clock.p2 = limit->p2.p2_slow;
596 else
597 clock.p2 = limit->p2.p2_fast;
598 }
599
0206e353 600 memset(best_clock, 0, sizeof(*best_clock));
79e53945 601
42158660
ZY
602 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
603 clock.m1++) {
604 for (clock.m2 = limit->m2.min;
605 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 606 if (clock.m2 >= clock.m1)
42158660
ZY
607 break;
608 for (clock.n = limit->n.min;
609 clock.n <= limit->n.max; clock.n++) {
610 for (clock.p1 = limit->p1.min;
611 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
612 int this_err;
613
ac58c3f0
DV
614 i9xx_clock(refclk, &clock);
615 if (!intel_PLL_is_valid(dev, limit,
616 &clock))
617 continue;
618 if (match_clock &&
619 clock.p != match_clock->p)
620 continue;
621
622 this_err = abs(clock.dot - target);
623 if (this_err < err) {
624 *best_clock = clock;
625 err = this_err;
626 }
627 }
628 }
629 }
630 }
631
632 return (err != target);
633}
634
635static bool
ee9300bb
DV
636pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
637 int target, int refclk, intel_clock_t *match_clock,
638 intel_clock_t *best_clock)
79e53945
JB
639{
640 struct drm_device *dev = crtc->dev;
79e53945 641 intel_clock_t clock;
79e53945
JB
642 int err = target;
643
a210b028 644 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 645 /*
a210b028
DV
646 * For LVDS just rely on its current settings for dual-channel.
647 * We haven't figured out how to reliably set up different
648 * single/dual channel state, if we even can.
79e53945 649 */
1974cad0 650 if (intel_is_dual_link_lvds(dev))
79e53945
JB
651 clock.p2 = limit->p2.p2_fast;
652 else
653 clock.p2 = limit->p2.p2_slow;
654 } else {
655 if (target < limit->p2.dot_limit)
656 clock.p2 = limit->p2.p2_slow;
657 else
658 clock.p2 = limit->p2.p2_fast;
659 }
660
0206e353 661 memset(best_clock, 0, sizeof(*best_clock));
79e53945 662
42158660
ZY
663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 clock.m1++) {
665 for (clock.m2 = limit->m2.min;
666 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
667 for (clock.n = limit->n.min;
668 clock.n <= limit->n.max; clock.n++) {
669 for (clock.p1 = limit->p1.min;
670 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
671 int this_err;
672
ac58c3f0 673 pineview_clock(refclk, &clock);
1b894b59
CW
674 if (!intel_PLL_is_valid(dev, limit,
675 &clock))
79e53945 676 continue;
cec2f356
SP
677 if (match_clock &&
678 clock.p != match_clock->p)
679 continue;
79e53945
JB
680
681 this_err = abs(clock.dot - target);
682 if (this_err < err) {
683 *best_clock = clock;
684 err = this_err;
685 }
686 }
687 }
688 }
689 }
690
691 return (err != target);
692}
693
d4906093 694static bool
ee9300bb
DV
695g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
696 int target, int refclk, intel_clock_t *match_clock,
697 intel_clock_t *best_clock)
d4906093
ML
698{
699 struct drm_device *dev = crtc->dev;
d4906093
ML
700 intel_clock_t clock;
701 int max_n;
702 bool found;
6ba770dc
AJ
703 /* approximately equals target * 0.00585 */
704 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
705 found = false;
706
707 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 708 if (intel_is_dual_link_lvds(dev))
d4906093
ML
709 clock.p2 = limit->p2.p2_fast;
710 else
711 clock.p2 = limit->p2.p2_slow;
712 } else {
713 if (target < limit->p2.dot_limit)
714 clock.p2 = limit->p2.p2_slow;
715 else
716 clock.p2 = limit->p2.p2_fast;
717 }
718
719 memset(best_clock, 0, sizeof(*best_clock));
720 max_n = limit->n.max;
f77f13e2 721 /* based on hardware requirement, prefer smaller n to precision */
d4906093 722 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 723 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
724 for (clock.m1 = limit->m1.max;
725 clock.m1 >= limit->m1.min; clock.m1--) {
726 for (clock.m2 = limit->m2.max;
727 clock.m2 >= limit->m2.min; clock.m2--) {
728 for (clock.p1 = limit->p1.max;
729 clock.p1 >= limit->p1.min; clock.p1--) {
730 int this_err;
731
ac58c3f0 732 i9xx_clock(refclk, &clock);
1b894b59
CW
733 if (!intel_PLL_is_valid(dev, limit,
734 &clock))
d4906093 735 continue;
1b894b59
CW
736
737 this_err = abs(clock.dot - target);
d4906093
ML
738 if (this_err < err_most) {
739 *best_clock = clock;
740 err_most = this_err;
741 max_n = clock.n;
742 found = true;
743 }
744 }
745 }
746 }
747 }
2c07245f
ZW
748 return found;
749}
750
a0c4da24 751static bool
ee9300bb
DV
752vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
753 int target, int refclk, intel_clock_t *match_clock,
754 intel_clock_t *best_clock)
a0c4da24 755{
f01b7962 756 struct drm_device *dev = crtc->dev;
6b4bf1c4 757 intel_clock_t clock;
69e4f900 758 unsigned int bestppm = 1000000;
27e639bf
VS
759 /* min update 19.2 MHz */
760 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 761 bool found = false;
a0c4da24 762
6b4bf1c4
VS
763 target *= 5; /* fast clock */
764
765 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
766
767 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 768 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 769 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 770 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 771 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 772 clock.p = clock.p1 * clock.p2;
a0c4da24 773 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 774 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
775 unsigned int ppm, diff;
776
6b4bf1c4
VS
777 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
778 refclk * clock.m1);
779
780 vlv_clock(refclk, &clock);
43b0ac53 781
f01b7962
VS
782 if (!intel_PLL_is_valid(dev, limit,
783 &clock))
43b0ac53
VS
784 continue;
785
6b4bf1c4
VS
786 diff = abs(clock.dot - target);
787 ppm = div_u64(1000000ULL * diff, target);
788
789 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 790 bestppm = 0;
6b4bf1c4 791 *best_clock = clock;
49e497ef 792 found = true;
43b0ac53 793 }
6b4bf1c4 794
c686122c 795 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 796 bestppm = ppm;
6b4bf1c4 797 *best_clock = clock;
49e497ef 798 found = true;
a0c4da24
JB
799 }
800 }
801 }
802 }
803 }
a0c4da24 804
49e497ef 805 return found;
a0c4da24 806}
a4fc5ed6 807
ef9348c8
CML
808static bool
809chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812{
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815 uint64_t m2;
816 int found = false;
817
818 memset(best_clock, 0, sizeof(*best_clock));
819
820 /*
821 * Based on hardware doc, the n always set to 1, and m1 always
822 * set to 2. If requires to support 200Mhz refclk, we need to
823 * revisit this because n may not 1 anymore.
824 */
825 clock.n = 1, clock.m1 = 2;
826 target *= 5; /* fast clock */
827
828 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
829 for (clock.p2 = limit->p2.p2_fast;
830 clock.p2 >= limit->p2.p2_slow;
831 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
832
833 clock.p = clock.p1 * clock.p2;
834
835 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
836 clock.n) << 22, refclk * clock.m1);
837
838 if (m2 > INT_MAX/clock.m1)
839 continue;
840
841 clock.m2 = m2;
842
843 chv_clock(refclk, &clock);
844
845 if (!intel_PLL_is_valid(dev, limit, &clock))
846 continue;
847
848 /* based on hardware requirement, prefer bigger p
849 */
850 if (clock.p > best_clock->p) {
851 *best_clock = clock;
852 found = true;
853 }
854 }
855 }
856
857 return found;
858}
859
20ddf665
VS
860bool intel_crtc_active(struct drm_crtc *crtc)
861{
862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
863
864 /* Be paranoid as we can arrive here with only partial
865 * state retrieved from the hardware during setup.
866 *
241bfc38 867 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
868 * as Haswell has gained clock readout/fastboot support.
869 *
66e514c1 870 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
871 * properly reconstruct framebuffers.
872 */
f4510a27 873 return intel_crtc->active && crtc->primary->fb &&
241bfc38 874 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
875}
876
a5c961d1
PZ
877enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
878 enum pipe pipe)
879{
880 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
882
3b117c8f 883 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
884}
885
57e22f4a 886static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
887{
888 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 889 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
890
891 frame = I915_READ(frame_reg);
892
893 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
93937071 894 WARN(1, "vblank wait timed out\n");
a928d536
PZ
895}
896
9d0498a2
JB
897/**
898 * intel_wait_for_vblank - wait for vblank on a given pipe
899 * @dev: drm device
900 * @pipe: pipe to wait for
901 *
902 * Wait for vblank to occur on a given pipe. Needed for various bits of
903 * mode setting code.
904 */
905void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 906{
9d0498a2 907 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 908 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 909
57e22f4a
VS
910 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
911 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
912 return;
913 }
914
300387c0
CW
915 /* Clear existing vblank status. Note this will clear any other
916 * sticky status fields as well.
917 *
918 * This races with i915_driver_irq_handler() with the result
919 * that either function could miss a vblank event. Here it is not
920 * fatal, as we will either wait upon the next vblank interrupt or
921 * timeout. Generally speaking intel_wait_for_vblank() is only
922 * called during modeset at which time the GPU should be idle and
923 * should *not* be performing page flips and thus not waiting on
924 * vblanks...
925 * Currently, the result of us stealing a vblank from the irq
926 * handler is that a single frame will be skipped during swapbuffers.
927 */
928 I915_WRITE(pipestat_reg,
929 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
930
9d0498a2 931 /* Wait for vblank interrupt bit to set */
481b6af3
CW
932 if (wait_for(I915_READ(pipestat_reg) &
933 PIPE_VBLANK_INTERRUPT_STATUS,
934 50))
9d0498a2
JB
935 DRM_DEBUG_KMS("vblank wait timed out\n");
936}
937
fbf49ea2
VS
938static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
939{
940 struct drm_i915_private *dev_priv = dev->dev_private;
941 u32 reg = PIPEDSL(pipe);
942 u32 line1, line2;
943 u32 line_mask;
944
945 if (IS_GEN2(dev))
946 line_mask = DSL_LINEMASK_GEN2;
947 else
948 line_mask = DSL_LINEMASK_GEN3;
949
950 line1 = I915_READ(reg) & line_mask;
951 mdelay(5);
952 line2 = I915_READ(reg) & line_mask;
953
954 return line1 == line2;
955}
956
ab7ad7f6
KP
957/*
958 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
959 * @dev: drm device
960 * @pipe: pipe to wait for
961 *
962 * After disabling a pipe, we can't wait for vblank in the usual way,
963 * spinning on the vblank interrupt status bit, since we won't actually
964 * see an interrupt when the pipe is disabled.
965 *
ab7ad7f6
KP
966 * On Gen4 and above:
967 * wait for the pipe register state bit to turn off
968 *
969 * Otherwise:
970 * wait for the display line value to settle (it usually
971 * ends up stopping at the start of the next frame).
58e10eb9 972 *
9d0498a2 973 */
58e10eb9 974void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
975{
976 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
977 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
978 pipe);
ab7ad7f6
KP
979
980 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 981 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
982
983 /* Wait for the Pipe State to go off */
58e10eb9
CW
984 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
985 100))
284637d9 986 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 987 } else {
ab7ad7f6 988 /* Wait for the display line to settle */
fbf49ea2 989 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 990 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 991 }
79e53945
JB
992}
993
b0ea7d37
DL
994/*
995 * ibx_digital_port_connected - is the specified port connected?
996 * @dev_priv: i915 private structure
997 * @port: the port to test
998 *
999 * Returns true if @port is connected, false otherwise.
1000 */
1001bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1002 struct intel_digital_port *port)
1003{
1004 u32 bit;
1005
c36346e3 1006 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1007 switch (port->port) {
c36346e3
DL
1008 case PORT_B:
1009 bit = SDE_PORTB_HOTPLUG;
1010 break;
1011 case PORT_C:
1012 bit = SDE_PORTC_HOTPLUG;
1013 break;
1014 case PORT_D:
1015 bit = SDE_PORTD_HOTPLUG;
1016 break;
1017 default:
1018 return true;
1019 }
1020 } else {
eba905b2 1021 switch (port->port) {
c36346e3
DL
1022 case PORT_B:
1023 bit = SDE_PORTB_HOTPLUG_CPT;
1024 break;
1025 case PORT_C:
1026 bit = SDE_PORTC_HOTPLUG_CPT;
1027 break;
1028 case PORT_D:
1029 bit = SDE_PORTD_HOTPLUG_CPT;
1030 break;
1031 default:
1032 return true;
1033 }
b0ea7d37
DL
1034 }
1035
1036 return I915_READ(SDEISR) & bit;
1037}
1038
b24e7179
JB
1039static const char *state_string(bool enabled)
1040{
1041 return enabled ? "on" : "off";
1042}
1043
1044/* Only for pre-ILK configs */
55607e8a
DV
1045void assert_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
b24e7179
JB
1047{
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = DPLL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & DPLL_VCO_ENABLE);
1055 WARN(cur_state != state,
1056 "PLL state assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058}
b24e7179 1059
23538ef1
JN
1060/* XXX: the dsi pll is shared between MIPI DSI ports */
1061static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1062{
1063 u32 val;
1064 bool cur_state;
1065
1066 mutex_lock(&dev_priv->dpio_lock);
1067 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1068 mutex_unlock(&dev_priv->dpio_lock);
1069
1070 cur_state = val & DSI_PLL_VCO_EN;
1071 WARN(cur_state != state,
1072 "DSI PLL state assertion failure (expected %s, current %s)\n",
1073 state_string(state), state_string(cur_state));
1074}
1075#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1076#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1077
55607e8a 1078struct intel_shared_dpll *
e2b78267
DV
1079intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1080{
1081 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1082
a43f6e0f 1083 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1084 return NULL;
1085
a43f6e0f 1086 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1087}
1088
040484af 1089/* For ILK+ */
55607e8a
DV
1090void assert_shared_dpll(struct drm_i915_private *dev_priv,
1091 struct intel_shared_dpll *pll,
1092 bool state)
040484af 1093{
040484af 1094 bool cur_state;
5358901f 1095 struct intel_dpll_hw_state hw_state;
040484af 1096
92b27b08 1097 if (WARN (!pll,
46edb027 1098 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1099 return;
ee7b9f93 1100
5358901f 1101 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1102 WARN(cur_state != state,
5358901f
DV
1103 "%s assertion failure (expected %s, current %s)\n",
1104 pll->name, state_string(state), state_string(cur_state));
040484af 1105}
040484af
JB
1106
1107static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1108 enum pipe pipe, bool state)
1109{
1110 int reg;
1111 u32 val;
1112 bool cur_state;
ad80a810
PZ
1113 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1114 pipe);
040484af 1115
affa9354
PZ
1116 if (HAS_DDI(dev_priv->dev)) {
1117 /* DDI does not have a specific FDI_TX register */
ad80a810 1118 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1119 val = I915_READ(reg);
ad80a810 1120 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1121 } else {
1122 reg = FDI_TX_CTL(pipe);
1123 val = I915_READ(reg);
1124 cur_state = !!(val & FDI_TX_ENABLE);
1125 }
040484af
JB
1126 WARN(cur_state != state,
1127 "FDI TX state assertion failure (expected %s, current %s)\n",
1128 state_string(state), state_string(cur_state));
1129}
1130#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1131#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1132
1133static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1134 enum pipe pipe, bool state)
1135{
1136 int reg;
1137 u32 val;
1138 bool cur_state;
1139
d63fa0dc
PZ
1140 reg = FDI_RX_CTL(pipe);
1141 val = I915_READ(reg);
1142 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1143 WARN(cur_state != state,
1144 "FDI RX state assertion failure (expected %s, current %s)\n",
1145 state_string(state), state_string(cur_state));
1146}
1147#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1148#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1149
1150static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1151 enum pipe pipe)
1152{
1153 int reg;
1154 u32 val;
1155
1156 /* ILK FDI PLL is always enabled */
3d13ef2e 1157 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1158 return;
1159
bf507ef7 1160 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1161 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1162 return;
1163
040484af
JB
1164 reg = FDI_TX_CTL(pipe);
1165 val = I915_READ(reg);
1166 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1167}
1168
55607e8a
DV
1169void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1170 enum pipe pipe, bool state)
040484af
JB
1171{
1172 int reg;
1173 u32 val;
55607e8a 1174 bool cur_state;
040484af
JB
1175
1176 reg = FDI_RX_CTL(pipe);
1177 val = I915_READ(reg);
55607e8a
DV
1178 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1179 WARN(cur_state != state,
1180 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1181 state_string(state), state_string(cur_state));
040484af
JB
1182}
1183
ea0760cf
JB
1184static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1185 enum pipe pipe)
1186{
1187 int pp_reg, lvds_reg;
1188 u32 val;
1189 enum pipe panel_pipe = PIPE_A;
0de3b485 1190 bool locked = true;
ea0760cf
JB
1191
1192 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1193 pp_reg = PCH_PP_CONTROL;
1194 lvds_reg = PCH_LVDS;
1195 } else {
1196 pp_reg = PP_CONTROL;
1197 lvds_reg = LVDS;
1198 }
1199
1200 val = I915_READ(pp_reg);
1201 if (!(val & PANEL_POWER_ON) ||
1202 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1203 locked = false;
1204
1205 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1206 panel_pipe = PIPE_B;
1207
1208 WARN(panel_pipe == pipe && locked,
1209 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1210 pipe_name(pipe));
ea0760cf
JB
1211}
1212
93ce0ba6
JN
1213static void assert_cursor(struct drm_i915_private *dev_priv,
1214 enum pipe pipe, bool state)
1215{
1216 struct drm_device *dev = dev_priv->dev;
1217 bool cur_state;
1218
d9d82081 1219 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1220 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1221 else
5efb3e28 1222 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1223
1224 WARN(cur_state != state,
1225 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1226 pipe_name(pipe), state_string(state), state_string(cur_state));
1227}
1228#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1229#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1230
b840d907
JB
1231void assert_pipe(struct drm_i915_private *dev_priv,
1232 enum pipe pipe, bool state)
b24e7179
JB
1233{
1234 int reg;
1235 u32 val;
63d7bbe9 1236 bool cur_state;
702e7a56
PZ
1237 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1238 pipe);
b24e7179 1239
8e636784
DV
1240 /* if we need the pipe A quirk it must be always on */
1241 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1242 state = true;
1243
da7e29bd 1244 if (!intel_display_power_enabled(dev_priv,
b97186f0 1245 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1246 cur_state = false;
1247 } else {
1248 reg = PIPECONF(cpu_transcoder);
1249 val = I915_READ(reg);
1250 cur_state = !!(val & PIPECONF_ENABLE);
1251 }
1252
63d7bbe9
JB
1253 WARN(cur_state != state,
1254 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1255 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1256}
1257
931872fc
CW
1258static void assert_plane(struct drm_i915_private *dev_priv,
1259 enum plane plane, bool state)
b24e7179
JB
1260{
1261 int reg;
1262 u32 val;
931872fc 1263 bool cur_state;
b24e7179
JB
1264
1265 reg = DSPCNTR(plane);
1266 val = I915_READ(reg);
931872fc
CW
1267 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1268 WARN(cur_state != state,
1269 "plane %c assertion failure (expected %s, current %s)\n",
1270 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1271}
1272
931872fc
CW
1273#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1274#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1275
b24e7179
JB
1276static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1277 enum pipe pipe)
1278{
653e1026 1279 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1280 int reg, i;
1281 u32 val;
1282 int cur_pipe;
1283
653e1026
VS
1284 /* Primary planes are fixed to pipes on gen4+ */
1285 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1286 reg = DSPCNTR(pipe);
1287 val = I915_READ(reg);
83f26f16 1288 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1289 "plane %c assertion failure, should be disabled but not\n",
1290 plane_name(pipe));
19ec1358 1291 return;
28c05794 1292 }
19ec1358 1293
b24e7179 1294 /* Need to check both planes against the pipe */
08e2a7de 1295 for_each_pipe(i) {
b24e7179
JB
1296 reg = DSPCNTR(i);
1297 val = I915_READ(reg);
1298 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1299 DISPPLANE_SEL_PIPE_SHIFT;
1300 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1301 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1302 plane_name(i), pipe_name(pipe));
b24e7179
JB
1303 }
1304}
1305
19332d7a
JB
1306static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1307 enum pipe pipe)
1308{
20674eef 1309 struct drm_device *dev = dev_priv->dev;
1fe47785 1310 int reg, sprite;
19332d7a
JB
1311 u32 val;
1312
20674eef 1313 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1314 for_each_sprite(pipe, sprite) {
1315 reg = SPCNTR(pipe, sprite);
20674eef 1316 val = I915_READ(reg);
83f26f16 1317 WARN(val & SP_ENABLE,
20674eef 1318 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1319 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1320 }
1321 } else if (INTEL_INFO(dev)->gen >= 7) {
1322 reg = SPRCTL(pipe);
19332d7a 1323 val = I915_READ(reg);
83f26f16 1324 WARN(val & SPRITE_ENABLE,
06da8da2 1325 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1326 plane_name(pipe), pipe_name(pipe));
1327 } else if (INTEL_INFO(dev)->gen >= 5) {
1328 reg = DVSCNTR(pipe);
19332d7a 1329 val = I915_READ(reg);
83f26f16 1330 WARN(val & DVS_ENABLE,
06da8da2 1331 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1332 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1333 }
1334}
1335
89eff4be 1336static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1337{
1338 u32 val;
1339 bool enabled;
1340
89eff4be 1341 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1342
92f2584a
JB
1343 val = I915_READ(PCH_DREF_CONTROL);
1344 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1345 DREF_SUPERSPREAD_SOURCE_MASK));
1346 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1347}
1348
ab9412ba
DV
1349static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1350 enum pipe pipe)
92f2584a
JB
1351{
1352 int reg;
1353 u32 val;
1354 bool enabled;
1355
ab9412ba 1356 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1357 val = I915_READ(reg);
1358 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1359 WARN(enabled,
1360 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1361 pipe_name(pipe));
92f2584a
JB
1362}
1363
4e634389
KP
1364static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1365 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1366{
1367 if ((val & DP_PORT_EN) == 0)
1368 return false;
1369
1370 if (HAS_PCH_CPT(dev_priv->dev)) {
1371 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1372 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1373 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1374 return false;
44f37d1f
CML
1375 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1376 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1377 return false;
f0575e92
KP
1378 } else {
1379 if ((val & DP_PIPE_MASK) != (pipe << 30))
1380 return false;
1381 }
1382 return true;
1383}
1384
1519b995
KP
1385static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1386 enum pipe pipe, u32 val)
1387{
dc0fa718 1388 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1389 return false;
1390
1391 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1392 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1393 return false;
44f37d1f
CML
1394 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1395 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1396 return false;
1519b995 1397 } else {
dc0fa718 1398 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1399 return false;
1400 }
1401 return true;
1402}
1403
1404static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1405 enum pipe pipe, u32 val)
1406{
1407 if ((val & LVDS_PORT_EN) == 0)
1408 return false;
1409
1410 if (HAS_PCH_CPT(dev_priv->dev)) {
1411 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1412 return false;
1413 } else {
1414 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1415 return false;
1416 }
1417 return true;
1418}
1419
1420static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1421 enum pipe pipe, u32 val)
1422{
1423 if ((val & ADPA_DAC_ENABLE) == 0)
1424 return false;
1425 if (HAS_PCH_CPT(dev_priv->dev)) {
1426 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1427 return false;
1428 } else {
1429 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1430 return false;
1431 }
1432 return true;
1433}
1434
291906f1 1435static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1436 enum pipe pipe, int reg, u32 port_sel)
291906f1 1437{
47a05eca 1438 u32 val = I915_READ(reg);
4e634389 1439 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1440 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1441 reg, pipe_name(pipe));
de9a35ab 1442
75c5da27
DV
1443 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1444 && (val & DP_PIPEB_SELECT),
de9a35ab 1445 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1446}
1447
1448static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1449 enum pipe pipe, int reg)
1450{
47a05eca 1451 u32 val = I915_READ(reg);
b70ad586 1452 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1453 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1454 reg, pipe_name(pipe));
de9a35ab 1455
dc0fa718 1456 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1457 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1458 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1459}
1460
1461static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1462 enum pipe pipe)
1463{
1464 int reg;
1465 u32 val;
291906f1 1466
f0575e92
KP
1467 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1468 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1470
1471 reg = PCH_ADPA;
1472 val = I915_READ(reg);
b70ad586 1473 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1474 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1475 pipe_name(pipe));
291906f1
JB
1476
1477 reg = PCH_LVDS;
1478 val = I915_READ(reg);
b70ad586 1479 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1480 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1481 pipe_name(pipe));
291906f1 1482
e2debe91
PZ
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1486}
1487
40e9cf64
JB
1488static void intel_init_dpio(struct drm_device *dev)
1489{
1490 struct drm_i915_private *dev_priv = dev->dev_private;
1491
1492 if (!IS_VALLEYVIEW(dev))
1493 return;
1494
a09caddd
CML
1495 /*
1496 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1497 * CHV x1 PHY (DP/HDMI D)
1498 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1499 */
1500 if (IS_CHERRYVIEW(dev)) {
1501 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1502 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1503 } else {
1504 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1505 }
5382f5f3
JB
1506}
1507
1508static void intel_reset_dpio(struct drm_device *dev)
1509{
1510 struct drm_i915_private *dev_priv = dev->dev_private;
1511
076ed3b2
CML
1512 if (IS_CHERRYVIEW(dev)) {
1513 enum dpio_phy phy;
1514 u32 val;
1515
1516 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1517 /* Poll for phypwrgood signal */
1518 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1519 PHY_POWERGOOD(phy), 1))
1520 DRM_ERROR("Display PHY %d is not power up\n", phy);
1521
1522 /*
1523 * Deassert common lane reset for PHY.
1524 *
1525 * This should only be done on init and resume from S3
1526 * with both PLLs disabled, or we risk losing DPIO and
1527 * PLL synchronization.
1528 */
1529 val = I915_READ(DISPLAY_PHY_CONTROL);
1530 I915_WRITE(DISPLAY_PHY_CONTROL,
1531 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1532 }
076ed3b2 1533 }
40e9cf64
JB
1534}
1535
426115cf 1536static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1537{
426115cf
DV
1538 struct drm_device *dev = crtc->base.dev;
1539 struct drm_i915_private *dev_priv = dev->dev_private;
1540 int reg = DPLL(crtc->pipe);
1541 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1542
426115cf 1543 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1544
1545 /* No really, not for ILK+ */
1546 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1547
1548 /* PLL is protected by panel, make sure we can write it */
1549 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
426115cf 1550 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1551
426115cf
DV
1552 I915_WRITE(reg, dpll);
1553 POSTING_READ(reg);
1554 udelay(150);
1555
1556 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1557 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1558
1559 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1560 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1561
1562 /* We do this three times for luck */
426115cf 1563 I915_WRITE(reg, dpll);
87442f73
DV
1564 POSTING_READ(reg);
1565 udelay(150); /* wait for warmup */
426115cf 1566 I915_WRITE(reg, dpll);
87442f73
DV
1567 POSTING_READ(reg);
1568 udelay(150); /* wait for warmup */
426115cf 1569 I915_WRITE(reg, dpll);
87442f73
DV
1570 POSTING_READ(reg);
1571 udelay(150); /* wait for warmup */
1572}
1573
9d556c99
CML
1574static void chv_enable_pll(struct intel_crtc *crtc)
1575{
1576 struct drm_device *dev = crtc->base.dev;
1577 struct drm_i915_private *dev_priv = dev->dev_private;
1578 int pipe = crtc->pipe;
1579 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1580 u32 tmp;
1581
1582 assert_pipe_disabled(dev_priv, crtc->pipe);
1583
1584 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1585
1586 mutex_lock(&dev_priv->dpio_lock);
1587
1588 /* Enable back the 10bit clock to display controller */
1589 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1590 tmp |= DPIO_DCLKP_EN;
1591 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1592
1593 /*
1594 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1595 */
1596 udelay(1);
1597
1598 /* Enable PLL */
a11b0703 1599 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1600
1601 /* Check PLL is locked */
a11b0703 1602 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1603 DRM_ERROR("PLL %d failed to lock\n", pipe);
1604
a11b0703
VS
1605 /* not sure when this should be written */
1606 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1607 POSTING_READ(DPLL_MD(pipe));
1608
9d556c99
CML
1609 mutex_unlock(&dev_priv->dpio_lock);
1610}
1611
66e3d5c0 1612static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1613{
66e3d5c0
DV
1614 struct drm_device *dev = crtc->base.dev;
1615 struct drm_i915_private *dev_priv = dev->dev_private;
1616 int reg = DPLL(crtc->pipe);
1617 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1618
66e3d5c0 1619 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1620
63d7bbe9 1621 /* No really, not for ILK+ */
3d13ef2e 1622 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1623
1624 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1625 if (IS_MOBILE(dev) && !IS_I830(dev))
1626 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1627
66e3d5c0
DV
1628 I915_WRITE(reg, dpll);
1629
1630 /* Wait for the clocks to stabilize. */
1631 POSTING_READ(reg);
1632 udelay(150);
1633
1634 if (INTEL_INFO(dev)->gen >= 4) {
1635 I915_WRITE(DPLL_MD(crtc->pipe),
1636 crtc->config.dpll_hw_state.dpll_md);
1637 } else {
1638 /* The pixel multiplier can only be updated once the
1639 * DPLL is enabled and the clocks are stable.
1640 *
1641 * So write it again.
1642 */
1643 I915_WRITE(reg, dpll);
1644 }
63d7bbe9
JB
1645
1646 /* We do this three times for luck */
66e3d5c0 1647 I915_WRITE(reg, dpll);
63d7bbe9
JB
1648 POSTING_READ(reg);
1649 udelay(150); /* wait for warmup */
66e3d5c0 1650 I915_WRITE(reg, dpll);
63d7bbe9
JB
1651 POSTING_READ(reg);
1652 udelay(150); /* wait for warmup */
66e3d5c0 1653 I915_WRITE(reg, dpll);
63d7bbe9
JB
1654 POSTING_READ(reg);
1655 udelay(150); /* wait for warmup */
1656}
1657
1658/**
50b44a44 1659 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1660 * @dev_priv: i915 private structure
1661 * @pipe: pipe PLL to disable
1662 *
1663 * Disable the PLL for @pipe, making sure the pipe is off first.
1664 *
1665 * Note! This is for pre-ILK only.
1666 */
50b44a44 1667static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1668{
63d7bbe9
JB
1669 /* Don't disable pipe A or pipe A PLLs if needed */
1670 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1671 return;
1672
1673 /* Make sure the pipe isn't still relying on us */
1674 assert_pipe_disabled(dev_priv, pipe);
1675
50b44a44
DV
1676 I915_WRITE(DPLL(pipe), 0);
1677 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1678}
1679
f6071166
JB
1680static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1681{
1682 u32 val = 0;
1683
1684 /* Make sure the pipe isn't still relying on us */
1685 assert_pipe_disabled(dev_priv, pipe);
1686
e5cbfbfb
ID
1687 /*
1688 * Leave integrated clock source and reference clock enabled for pipe B.
1689 * The latter is needed for VGA hotplug / manual detection.
1690 */
f6071166 1691 if (pipe == PIPE_B)
e5cbfbfb 1692 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1693 I915_WRITE(DPLL(pipe), val);
1694 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1695
1696}
1697
1698static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1699{
d752048d 1700 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1701 u32 val;
1702
a11b0703
VS
1703 /* Make sure the pipe isn't still relying on us */
1704 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1705
a11b0703
VS
1706 /* Set PLL en = 0 */
1707 val = DPLL_SSC_REF_CLOCK_CHV;
1708 if (pipe != PIPE_A)
1709 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1710 I915_WRITE(DPLL(pipe), val);
1711 POSTING_READ(DPLL(pipe));
d752048d
VS
1712
1713 mutex_lock(&dev_priv->dpio_lock);
1714
1715 /* Disable 10bit clock to display controller */
1716 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1717 val &= ~DPIO_DCLKP_EN;
1718 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1719
61407f6d
VS
1720 /* disable left/right clock distribution */
1721 if (pipe != PIPE_B) {
1722 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1723 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1724 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1725 } else {
1726 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1727 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1728 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1729 }
1730
d752048d 1731 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1732}
1733
e4607fcf
CML
1734void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1735 struct intel_digital_port *dport)
89b667f8
JB
1736{
1737 u32 port_mask;
00fc31b7 1738 int dpll_reg;
89b667f8 1739
e4607fcf
CML
1740 switch (dport->port) {
1741 case PORT_B:
89b667f8 1742 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1743 dpll_reg = DPLL(0);
e4607fcf
CML
1744 break;
1745 case PORT_C:
89b667f8 1746 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1747 dpll_reg = DPLL(0);
1748 break;
1749 case PORT_D:
1750 port_mask = DPLL_PORTD_READY_MASK;
1751 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1752 break;
1753 default:
1754 BUG();
1755 }
89b667f8 1756
00fc31b7 1757 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1758 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1759 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1760}
1761
b14b1055
DV
1762static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1763{
1764 struct drm_device *dev = crtc->base.dev;
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1767
be19f0ff
CW
1768 if (WARN_ON(pll == NULL))
1769 return;
1770
b14b1055
DV
1771 WARN_ON(!pll->refcount);
1772 if (pll->active == 0) {
1773 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1774 WARN_ON(pll->on);
1775 assert_shared_dpll_disabled(dev_priv, pll);
1776
1777 pll->mode_set(dev_priv, pll);
1778 }
1779}
1780
92f2584a 1781/**
85b3894f 1782 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1783 * @dev_priv: i915 private structure
1784 * @pipe: pipe PLL to enable
1785 *
1786 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1787 * drives the transcoder clock.
1788 */
85b3894f 1789static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1790{
3d13ef2e
DL
1791 struct drm_device *dev = crtc->base.dev;
1792 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1793 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1794
87a875bb 1795 if (WARN_ON(pll == NULL))
48da64a8
CW
1796 return;
1797
1798 if (WARN_ON(pll->refcount == 0))
1799 return;
ee7b9f93 1800
46edb027
DV
1801 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1802 pll->name, pll->active, pll->on,
e2b78267 1803 crtc->base.base.id);
92f2584a 1804
cdbd2316
DV
1805 if (pll->active++) {
1806 WARN_ON(!pll->on);
e9d6944e 1807 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1808 return;
1809 }
f4a091c7 1810 WARN_ON(pll->on);
ee7b9f93 1811
bd2bb1b9
PZ
1812 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1813
46edb027 1814 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1815 pll->enable(dev_priv, pll);
ee7b9f93 1816 pll->on = true;
92f2584a
JB
1817}
1818
716c2e55 1819void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1820{
3d13ef2e
DL
1821 struct drm_device *dev = crtc->base.dev;
1822 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1823 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1824
92f2584a 1825 /* PCH only available on ILK+ */
3d13ef2e 1826 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1827 if (WARN_ON(pll == NULL))
ee7b9f93 1828 return;
92f2584a 1829
48da64a8
CW
1830 if (WARN_ON(pll->refcount == 0))
1831 return;
7a419866 1832
46edb027
DV
1833 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1834 pll->name, pll->active, pll->on,
e2b78267 1835 crtc->base.base.id);
7a419866 1836
48da64a8 1837 if (WARN_ON(pll->active == 0)) {
e9d6944e 1838 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1839 return;
1840 }
1841
e9d6944e 1842 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1843 WARN_ON(!pll->on);
cdbd2316 1844 if (--pll->active)
7a419866 1845 return;
ee7b9f93 1846
46edb027 1847 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1848 pll->disable(dev_priv, pll);
ee7b9f93 1849 pll->on = false;
bd2bb1b9
PZ
1850
1851 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1852}
1853
b8a4f404
PZ
1854static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1855 enum pipe pipe)
040484af 1856{
23670b32 1857 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1858 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1859 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1860 uint32_t reg, val, pipeconf_val;
040484af
JB
1861
1862 /* PCH only available on ILK+ */
3d13ef2e 1863 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1864
1865 /* Make sure PCH DPLL is enabled */
e72f9fbf 1866 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1867 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1868
1869 /* FDI must be feeding us bits for PCH ports */
1870 assert_fdi_tx_enabled(dev_priv, pipe);
1871 assert_fdi_rx_enabled(dev_priv, pipe);
1872
23670b32
DV
1873 if (HAS_PCH_CPT(dev)) {
1874 /* Workaround: Set the timing override bit before enabling the
1875 * pch transcoder. */
1876 reg = TRANS_CHICKEN2(pipe);
1877 val = I915_READ(reg);
1878 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1879 I915_WRITE(reg, val);
59c859d6 1880 }
23670b32 1881
ab9412ba 1882 reg = PCH_TRANSCONF(pipe);
040484af 1883 val = I915_READ(reg);
5f7f726d 1884 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1885
1886 if (HAS_PCH_IBX(dev_priv->dev)) {
1887 /*
1888 * make the BPC in transcoder be consistent with
1889 * that in pipeconf reg.
1890 */
dfd07d72
DV
1891 val &= ~PIPECONF_BPC_MASK;
1892 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1893 }
5f7f726d
PZ
1894
1895 val &= ~TRANS_INTERLACE_MASK;
1896 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1897 if (HAS_PCH_IBX(dev_priv->dev) &&
1898 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1899 val |= TRANS_LEGACY_INTERLACED_ILK;
1900 else
1901 val |= TRANS_INTERLACED;
5f7f726d
PZ
1902 else
1903 val |= TRANS_PROGRESSIVE;
1904
040484af
JB
1905 I915_WRITE(reg, val | TRANS_ENABLE);
1906 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1907 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1908}
1909
8fb033d7 1910static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1911 enum transcoder cpu_transcoder)
040484af 1912{
8fb033d7 1913 u32 val, pipeconf_val;
8fb033d7
PZ
1914
1915 /* PCH only available on ILK+ */
3d13ef2e 1916 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1917
8fb033d7 1918 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1919 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1920 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1921
223a6fdf
PZ
1922 /* Workaround: set timing override bit. */
1923 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1924 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1925 I915_WRITE(_TRANSA_CHICKEN2, val);
1926
25f3ef11 1927 val = TRANS_ENABLE;
937bb610 1928 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1929
9a76b1c6
PZ
1930 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1931 PIPECONF_INTERLACED_ILK)
a35f2679 1932 val |= TRANS_INTERLACED;
8fb033d7
PZ
1933 else
1934 val |= TRANS_PROGRESSIVE;
1935
ab9412ba
DV
1936 I915_WRITE(LPT_TRANSCONF, val);
1937 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1938 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1939}
1940
b8a4f404
PZ
1941static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1942 enum pipe pipe)
040484af 1943{
23670b32
DV
1944 struct drm_device *dev = dev_priv->dev;
1945 uint32_t reg, val;
040484af
JB
1946
1947 /* FDI relies on the transcoder */
1948 assert_fdi_tx_disabled(dev_priv, pipe);
1949 assert_fdi_rx_disabled(dev_priv, pipe);
1950
291906f1
JB
1951 /* Ports must be off as well */
1952 assert_pch_ports_disabled(dev_priv, pipe);
1953
ab9412ba 1954 reg = PCH_TRANSCONF(pipe);
040484af
JB
1955 val = I915_READ(reg);
1956 val &= ~TRANS_ENABLE;
1957 I915_WRITE(reg, val);
1958 /* wait for PCH transcoder off, transcoder state */
1959 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1960 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1961
1962 if (!HAS_PCH_IBX(dev)) {
1963 /* Workaround: Clear the timing override chicken bit again. */
1964 reg = TRANS_CHICKEN2(pipe);
1965 val = I915_READ(reg);
1966 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1967 I915_WRITE(reg, val);
1968 }
040484af
JB
1969}
1970
ab4d966c 1971static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1972{
8fb033d7
PZ
1973 u32 val;
1974
ab9412ba 1975 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1976 val &= ~TRANS_ENABLE;
ab9412ba 1977 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1978 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1979 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1980 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1981
1982 /* Workaround: clear timing override bit. */
1983 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1984 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1985 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1986}
1987
b24e7179 1988/**
309cfea8 1989 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1990 * @crtc: crtc responsible for the pipe
b24e7179 1991 *
0372264a 1992 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1993 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1994 */
e1fdc473 1995static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1996{
0372264a
PZ
1997 struct drm_device *dev = crtc->base.dev;
1998 struct drm_i915_private *dev_priv = dev->dev_private;
1999 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2000 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2001 pipe);
1a240d4d 2002 enum pipe pch_transcoder;
b24e7179
JB
2003 int reg;
2004 u32 val;
2005
58c6eaa2 2006 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2007 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2008 assert_sprites_disabled(dev_priv, pipe);
2009
681e5811 2010 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2011 pch_transcoder = TRANSCODER_A;
2012 else
2013 pch_transcoder = pipe;
2014
b24e7179
JB
2015 /*
2016 * A pipe without a PLL won't actually be able to drive bits from
2017 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2018 * need the check.
2019 */
2020 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2021 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2022 assert_dsi_pll_enabled(dev_priv);
2023 else
2024 assert_pll_enabled(dev_priv, pipe);
040484af 2025 else {
30421c4f 2026 if (crtc->config.has_pch_encoder) {
040484af 2027 /* if driving the PCH, we need FDI enabled */
cc391bbb 2028 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2029 assert_fdi_tx_pll_enabled(dev_priv,
2030 (enum pipe) cpu_transcoder);
040484af
JB
2031 }
2032 /* FIXME: assert CPU port conditions for SNB+ */
2033 }
b24e7179 2034
702e7a56 2035 reg = PIPECONF(cpu_transcoder);
b24e7179 2036 val = I915_READ(reg);
7ad25d48
PZ
2037 if (val & PIPECONF_ENABLE) {
2038 WARN_ON(!(pipe == PIPE_A &&
2039 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2040 return;
7ad25d48 2041 }
00d70b15
CW
2042
2043 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2044 POSTING_READ(reg);
b24e7179
JB
2045}
2046
2047/**
309cfea8 2048 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2049 * @dev_priv: i915 private structure
2050 * @pipe: pipe to disable
2051 *
2052 * Disable @pipe, making sure that various hardware specific requirements
2053 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2054 *
2055 * @pipe should be %PIPE_A or %PIPE_B.
2056 *
2057 * Will wait until the pipe has shut down before returning.
2058 */
2059static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2060 enum pipe pipe)
2061{
702e7a56
PZ
2062 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2063 pipe);
b24e7179
JB
2064 int reg;
2065 u32 val;
2066
2067 /*
2068 * Make sure planes won't keep trying to pump pixels to us,
2069 * or we might hang the display.
2070 */
2071 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2072 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2073 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2074
2075 /* Don't disable pipe A or pipe A PLLs if needed */
2076 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2077 return;
2078
702e7a56 2079 reg = PIPECONF(cpu_transcoder);
b24e7179 2080 val = I915_READ(reg);
00d70b15
CW
2081 if ((val & PIPECONF_ENABLE) == 0)
2082 return;
2083
2084 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2085 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2086}
2087
d74362c9
KP
2088/*
2089 * Plane regs are double buffered, going from enabled->disabled needs a
2090 * trigger in order to latch. The display address reg provides this.
2091 */
1dba99f4
VS
2092void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2093 enum plane plane)
d74362c9 2094{
3d13ef2e
DL
2095 struct drm_device *dev = dev_priv->dev;
2096 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2097
2098 I915_WRITE(reg, I915_READ(reg));
2099 POSTING_READ(reg);
d74362c9
KP
2100}
2101
b24e7179 2102/**
262ca2b0 2103 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
b24e7179
JB
2104 * @dev_priv: i915 private structure
2105 * @plane: plane to enable
2106 * @pipe: pipe being fed
2107 *
2108 * Enable @plane on @pipe, making sure that @pipe is running first.
2109 */
262ca2b0
MR
2110static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2111 enum plane plane, enum pipe pipe)
b24e7179 2112{
33c3b0d1 2113 struct drm_device *dev = dev_priv->dev;
939c2fe8
VS
2114 struct intel_crtc *intel_crtc =
2115 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2116 int reg;
2117 u32 val;
2118
2119 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2120 assert_pipe_enabled(dev_priv, pipe);
2121
98ec7739
VS
2122 if (intel_crtc->primary_enabled)
2123 return;
0037f71c 2124
4c445e0e 2125 intel_crtc->primary_enabled = true;
939c2fe8 2126
b24e7179
JB
2127 reg = DSPCNTR(plane);
2128 val = I915_READ(reg);
10efa932 2129 WARN_ON(val & DISPLAY_PLANE_ENABLE);
00d70b15
CW
2130
2131 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1dba99f4 2132 intel_flush_primary_plane(dev_priv, plane);
33c3b0d1
VS
2133
2134 /*
2135 * BDW signals flip done immediately if the plane
2136 * is disabled, even if the plane enable is already
2137 * armed to occur at the next vblank :(
2138 */
2139 if (IS_BROADWELL(dev))
2140 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2141}
2142
b24e7179 2143/**
262ca2b0 2144 * intel_disable_primary_hw_plane - disable the primary hardware plane
b24e7179
JB
2145 * @dev_priv: i915 private structure
2146 * @plane: plane to disable
2147 * @pipe: pipe consuming the data
2148 *
2149 * Disable @plane; should be an independent operation.
2150 */
262ca2b0
MR
2151static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2152 enum plane plane, enum pipe pipe)
b24e7179 2153{
939c2fe8
VS
2154 struct intel_crtc *intel_crtc =
2155 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2156 int reg;
2157 u32 val;
2158
98ec7739
VS
2159 if (!intel_crtc->primary_enabled)
2160 return;
0037f71c 2161
4c445e0e 2162 intel_crtc->primary_enabled = false;
939c2fe8 2163
b24e7179
JB
2164 reg = DSPCNTR(plane);
2165 val = I915_READ(reg);
10efa932 2166 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
00d70b15
CW
2167
2168 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1dba99f4 2169 intel_flush_primary_plane(dev_priv, plane);
b24e7179
JB
2170}
2171
693db184
CW
2172static bool need_vtd_wa(struct drm_device *dev)
2173{
2174#ifdef CONFIG_INTEL_IOMMU
2175 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2176 return true;
2177#endif
2178 return false;
2179}
2180
a57ce0b2
JB
2181static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2182{
2183 int tile_height;
2184
2185 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2186 return ALIGN(height, tile_height);
2187}
2188
127bd2ac 2189int
48b956c5 2190intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2191 struct drm_i915_gem_object *obj,
a4872ba6 2192 struct intel_engine_cs *pipelined)
6b95a207 2193{
ce453d81 2194 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2195 u32 alignment;
2196 int ret;
2197
ebcdd39e
MR
2198 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2199
05394f39 2200 switch (obj->tiling_mode) {
6b95a207 2201 case I915_TILING_NONE:
534843da
CW
2202 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2203 alignment = 128 * 1024;
a6c45cf0 2204 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2205 alignment = 4 * 1024;
2206 else
2207 alignment = 64 * 1024;
6b95a207
KH
2208 break;
2209 case I915_TILING_X:
2210 /* pin() will align the object as required by fence */
2211 alignment = 0;
2212 break;
2213 case I915_TILING_Y:
80075d49 2214 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2215 return -EINVAL;
2216 default:
2217 BUG();
2218 }
2219
693db184
CW
2220 /* Note that the w/a also requires 64 PTE of padding following the
2221 * bo. We currently fill all unused PTE with the shadow page and so
2222 * we should always have valid PTE following the scanout preventing
2223 * the VT-d warning.
2224 */
2225 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2226 alignment = 256 * 1024;
2227
ce453d81 2228 dev_priv->mm.interruptible = false;
2da3b9b9 2229 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2230 if (ret)
ce453d81 2231 goto err_interruptible;
6b95a207
KH
2232
2233 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2234 * fence, whereas 965+ only requires a fence if using
2235 * framebuffer compression. For simplicity, we always install
2236 * a fence as the cost is not that onerous.
2237 */
06d98131 2238 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2239 if (ret)
2240 goto err_unpin;
1690e1eb 2241
9a5a53b3 2242 i915_gem_object_pin_fence(obj);
6b95a207 2243
ce453d81 2244 dev_priv->mm.interruptible = true;
6b95a207 2245 return 0;
48b956c5
CW
2246
2247err_unpin:
cc98b413 2248 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2249err_interruptible:
2250 dev_priv->mm.interruptible = true;
48b956c5 2251 return ret;
6b95a207
KH
2252}
2253
1690e1eb
CW
2254void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2255{
ebcdd39e
MR
2256 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2257
1690e1eb 2258 i915_gem_object_unpin_fence(obj);
cc98b413 2259 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2260}
2261
c2c75131
DV
2262/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2263 * is assumed to be a power-of-two. */
bc752862
CW
2264unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2265 unsigned int tiling_mode,
2266 unsigned int cpp,
2267 unsigned int pitch)
c2c75131 2268{
bc752862
CW
2269 if (tiling_mode != I915_TILING_NONE) {
2270 unsigned int tile_rows, tiles;
c2c75131 2271
bc752862
CW
2272 tile_rows = *y / 8;
2273 *y %= 8;
c2c75131 2274
bc752862
CW
2275 tiles = *x / (512/cpp);
2276 *x %= 512/cpp;
2277
2278 return tile_rows * pitch * 8 + tiles * 4096;
2279 } else {
2280 unsigned int offset;
2281
2282 offset = *y * pitch + *x * cpp;
2283 *y = 0;
2284 *x = (offset & 4095) / cpp;
2285 return offset & -4096;
2286 }
c2c75131
DV
2287}
2288
46f297fb
JB
2289int intel_format_to_fourcc(int format)
2290{
2291 switch (format) {
2292 case DISPPLANE_8BPP:
2293 return DRM_FORMAT_C8;
2294 case DISPPLANE_BGRX555:
2295 return DRM_FORMAT_XRGB1555;
2296 case DISPPLANE_BGRX565:
2297 return DRM_FORMAT_RGB565;
2298 default:
2299 case DISPPLANE_BGRX888:
2300 return DRM_FORMAT_XRGB8888;
2301 case DISPPLANE_RGBX888:
2302 return DRM_FORMAT_XBGR8888;
2303 case DISPPLANE_BGRX101010:
2304 return DRM_FORMAT_XRGB2101010;
2305 case DISPPLANE_RGBX101010:
2306 return DRM_FORMAT_XBGR2101010;
2307 }
2308}
2309
484b41dd 2310static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2311 struct intel_plane_config *plane_config)
2312{
2313 struct drm_device *dev = crtc->base.dev;
2314 struct drm_i915_gem_object *obj = NULL;
2315 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2316 u32 base = plane_config->base;
2317
ff2652ea
CW
2318 if (plane_config->size == 0)
2319 return false;
2320
46f297fb
JB
2321 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2322 plane_config->size);
2323 if (!obj)
484b41dd 2324 return false;
46f297fb
JB
2325
2326 if (plane_config->tiled) {
2327 obj->tiling_mode = I915_TILING_X;
66e514c1 2328 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2329 }
2330
66e514c1
DA
2331 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2332 mode_cmd.width = crtc->base.primary->fb->width;
2333 mode_cmd.height = crtc->base.primary->fb->height;
2334 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2335
2336 mutex_lock(&dev->struct_mutex);
2337
66e514c1 2338 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2339 &mode_cmd, obj)) {
46f297fb
JB
2340 DRM_DEBUG_KMS("intel fb init failed\n");
2341 goto out_unref_obj;
2342 }
2343
a071fa00 2344 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2345 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2346
2347 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2348 return true;
46f297fb
JB
2349
2350out_unref_obj:
2351 drm_gem_object_unreference(&obj->base);
2352 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2353 return false;
2354}
2355
2356static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2357 struct intel_plane_config *plane_config)
2358{
2359 struct drm_device *dev = intel_crtc->base.dev;
2360 struct drm_crtc *c;
2361 struct intel_crtc *i;
2ff8fde1 2362 struct drm_i915_gem_object *obj;
484b41dd 2363
66e514c1 2364 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2365 return;
2366
2367 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2368 return;
2369
66e514c1
DA
2370 kfree(intel_crtc->base.primary->fb);
2371 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2372
2373 /*
2374 * Failed to alloc the obj, check to see if we should share
2375 * an fb with another CRTC instead
2376 */
70e1e0ec 2377 for_each_crtc(dev, c) {
484b41dd
JB
2378 i = to_intel_crtc(c);
2379
2380 if (c == &intel_crtc->base)
2381 continue;
2382
2ff8fde1 2383 if (!i->active)
484b41dd
JB
2384 continue;
2385
2ff8fde1
MR
2386 obj = intel_fb_obj(c->primary->fb);
2387 if (obj == NULL)
484b41dd
JB
2388 continue;
2389
2ff8fde1 2390 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2391 drm_framebuffer_reference(c->primary->fb);
2392 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2393 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2394 break;
2395 }
2396 }
46f297fb
JB
2397}
2398
29b9bde6
DV
2399static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2400 struct drm_framebuffer *fb,
2401 int x, int y)
81255565
JB
2402{
2403 struct drm_device *dev = crtc->dev;
2404 struct drm_i915_private *dev_priv = dev->dev_private;
2405 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2406 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2407 int plane = intel_crtc->plane;
e506a0c6 2408 unsigned long linear_offset;
81255565 2409 u32 dspcntr;
5eddb70b 2410 u32 reg;
81255565 2411
5eddb70b
CW
2412 reg = DSPCNTR(plane);
2413 dspcntr = I915_READ(reg);
81255565
JB
2414 /* Mask out pixel format bits in case we change it */
2415 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2416 switch (fb->pixel_format) {
2417 case DRM_FORMAT_C8:
81255565
JB
2418 dspcntr |= DISPPLANE_8BPP;
2419 break;
57779d06
VS
2420 case DRM_FORMAT_XRGB1555:
2421 case DRM_FORMAT_ARGB1555:
2422 dspcntr |= DISPPLANE_BGRX555;
81255565 2423 break;
57779d06
VS
2424 case DRM_FORMAT_RGB565:
2425 dspcntr |= DISPPLANE_BGRX565;
2426 break;
2427 case DRM_FORMAT_XRGB8888:
2428 case DRM_FORMAT_ARGB8888:
2429 dspcntr |= DISPPLANE_BGRX888;
2430 break;
2431 case DRM_FORMAT_XBGR8888:
2432 case DRM_FORMAT_ABGR8888:
2433 dspcntr |= DISPPLANE_RGBX888;
2434 break;
2435 case DRM_FORMAT_XRGB2101010:
2436 case DRM_FORMAT_ARGB2101010:
2437 dspcntr |= DISPPLANE_BGRX101010;
2438 break;
2439 case DRM_FORMAT_XBGR2101010:
2440 case DRM_FORMAT_ABGR2101010:
2441 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2442 break;
2443 default:
baba133a 2444 BUG();
81255565 2445 }
57779d06 2446
a6c45cf0 2447 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2448 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2449 dspcntr |= DISPPLANE_TILED;
2450 else
2451 dspcntr &= ~DISPPLANE_TILED;
2452 }
2453
de1aa629
VS
2454 if (IS_G4X(dev))
2455 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2456
5eddb70b 2457 I915_WRITE(reg, dspcntr);
81255565 2458
e506a0c6 2459 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2460
c2c75131
DV
2461 if (INTEL_INFO(dev)->gen >= 4) {
2462 intel_crtc->dspaddr_offset =
bc752862
CW
2463 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2464 fb->bits_per_pixel / 8,
2465 fb->pitches[0]);
c2c75131
DV
2466 linear_offset -= intel_crtc->dspaddr_offset;
2467 } else {
e506a0c6 2468 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2469 }
e506a0c6 2470
f343c5f6
BW
2471 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2472 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2473 fb->pitches[0]);
01f2c773 2474 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2475 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2476 I915_WRITE(DSPSURF(plane),
2477 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2478 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2479 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2480 } else
f343c5f6 2481 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2482 POSTING_READ(reg);
17638cd6
JB
2483}
2484
29b9bde6
DV
2485static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2486 struct drm_framebuffer *fb,
2487 int x, int y)
17638cd6
JB
2488{
2489 struct drm_device *dev = crtc->dev;
2490 struct drm_i915_private *dev_priv = dev->dev_private;
2491 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2492 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17638cd6 2493 int plane = intel_crtc->plane;
e506a0c6 2494 unsigned long linear_offset;
17638cd6
JB
2495 u32 dspcntr;
2496 u32 reg;
2497
17638cd6
JB
2498 reg = DSPCNTR(plane);
2499 dspcntr = I915_READ(reg);
2500 /* Mask out pixel format bits in case we change it */
2501 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2502 switch (fb->pixel_format) {
2503 case DRM_FORMAT_C8:
17638cd6
JB
2504 dspcntr |= DISPPLANE_8BPP;
2505 break;
57779d06
VS
2506 case DRM_FORMAT_RGB565:
2507 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2508 break;
57779d06
VS
2509 case DRM_FORMAT_XRGB8888:
2510 case DRM_FORMAT_ARGB8888:
2511 dspcntr |= DISPPLANE_BGRX888;
2512 break;
2513 case DRM_FORMAT_XBGR8888:
2514 case DRM_FORMAT_ABGR8888:
2515 dspcntr |= DISPPLANE_RGBX888;
2516 break;
2517 case DRM_FORMAT_XRGB2101010:
2518 case DRM_FORMAT_ARGB2101010:
2519 dspcntr |= DISPPLANE_BGRX101010;
2520 break;
2521 case DRM_FORMAT_XBGR2101010:
2522 case DRM_FORMAT_ABGR2101010:
2523 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2524 break;
2525 default:
baba133a 2526 BUG();
17638cd6
JB
2527 }
2528
2529 if (obj->tiling_mode != I915_TILING_NONE)
2530 dspcntr |= DISPPLANE_TILED;
2531 else
2532 dspcntr &= ~DISPPLANE_TILED;
2533
b42c6009 2534 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1f5d76db
PZ
2535 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2536 else
2537 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6
JB
2538
2539 I915_WRITE(reg, dspcntr);
2540
e506a0c6 2541 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2542 intel_crtc->dspaddr_offset =
bc752862
CW
2543 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2544 fb->bits_per_pixel / 8,
2545 fb->pitches[0]);
c2c75131 2546 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2547
f343c5f6
BW
2548 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2549 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2550 fb->pitches[0]);
01f2c773 2551 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2552 I915_WRITE(DSPSURF(plane),
2553 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2554 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2555 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2556 } else {
2557 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2558 I915_WRITE(DSPLINOFF(plane), linear_offset);
2559 }
17638cd6 2560 POSTING_READ(reg);
17638cd6
JB
2561}
2562
2563/* Assume fb object is pinned & idle & fenced and just update base pointers */
2564static int
2565intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2566 int x, int y, enum mode_set_atomic state)
2567{
2568 struct drm_device *dev = crtc->dev;
2569 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2570
6b8e6ed0
CW
2571 if (dev_priv->display.disable_fbc)
2572 dev_priv->display.disable_fbc(dev);
cc36513c 2573 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2574
29b9bde6
DV
2575 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2576
2577 return 0;
81255565
JB
2578}
2579
96a02917
VS
2580void intel_display_handle_reset(struct drm_device *dev)
2581{
2582 struct drm_i915_private *dev_priv = dev->dev_private;
2583 struct drm_crtc *crtc;
2584
2585 /*
2586 * Flips in the rings have been nuked by the reset,
2587 * so complete all pending flips so that user space
2588 * will get its events and not get stuck.
2589 *
2590 * Also update the base address of all primary
2591 * planes to the the last fb to make sure we're
2592 * showing the correct fb after a reset.
2593 *
2594 * Need to make two loops over the crtcs so that we
2595 * don't try to grab a crtc mutex before the
2596 * pending_flip_queue really got woken up.
2597 */
2598
70e1e0ec 2599 for_each_crtc(dev, crtc) {
96a02917
VS
2600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2601 enum plane plane = intel_crtc->plane;
2602
2603 intel_prepare_page_flip(dev, plane);
2604 intel_finish_page_flip_plane(dev, plane);
2605 }
2606
70e1e0ec 2607 for_each_crtc(dev, crtc) {
96a02917
VS
2608 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2609
51fd371b 2610 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2611 /*
2612 * FIXME: Once we have proper support for primary planes (and
2613 * disabling them without disabling the entire crtc) allow again
66e514c1 2614 * a NULL crtc->primary->fb.
947fdaad 2615 */
f4510a27 2616 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2617 dev_priv->display.update_primary_plane(crtc,
66e514c1 2618 crtc->primary->fb,
262ca2b0
MR
2619 crtc->x,
2620 crtc->y);
51fd371b 2621 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2622 }
2623}
2624
14667a4b
CW
2625static int
2626intel_finish_fb(struct drm_framebuffer *old_fb)
2627{
2ff8fde1 2628 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2629 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2630 bool was_interruptible = dev_priv->mm.interruptible;
2631 int ret;
2632
14667a4b
CW
2633 /* Big Hammer, we also need to ensure that any pending
2634 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2635 * current scanout is retired before unpinning the old
2636 * framebuffer.
2637 *
2638 * This should only fail upon a hung GPU, in which case we
2639 * can safely continue.
2640 */
2641 dev_priv->mm.interruptible = false;
2642 ret = i915_gem_object_finish_gpu(obj);
2643 dev_priv->mm.interruptible = was_interruptible;
2644
2645 return ret;
2646}
2647
7d5e3799
CW
2648static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2649{
2650 struct drm_device *dev = crtc->dev;
2651 struct drm_i915_private *dev_priv = dev->dev_private;
2652 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2653 unsigned long flags;
2654 bool pending;
2655
2656 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2657 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2658 return false;
2659
2660 spin_lock_irqsave(&dev->event_lock, flags);
2661 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2662 spin_unlock_irqrestore(&dev->event_lock, flags);
2663
2664 return pending;
2665}
2666
5c3b82e2 2667static int
3c4fdcfb 2668intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2669 struct drm_framebuffer *fb)
79e53945
JB
2670{
2671 struct drm_device *dev = crtc->dev;
6b8e6ed0 2672 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2673 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2674 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2675 struct drm_framebuffer *old_fb = crtc->primary->fb;
2676 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2677 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2678 int ret;
79e53945 2679
7d5e3799
CW
2680 if (intel_crtc_has_pending_flip(crtc)) {
2681 DRM_ERROR("pipe is still busy with an old pageflip\n");
2682 return -EBUSY;
2683 }
2684
79e53945 2685 /* no fb bound */
94352cf9 2686 if (!fb) {
a5071c2f 2687 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2688 return 0;
2689 }
2690
7eb552ae 2691 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2692 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2693 plane_name(intel_crtc->plane),
2694 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2695 return -EINVAL;
79e53945
JB
2696 }
2697
5c3b82e2 2698 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2699 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2700 if (ret == 0)
91565c85 2701 i915_gem_track_fb(old_obj, obj,
a071fa00 2702 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2703 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2704 if (ret != 0) {
a5071c2f 2705 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2706 return ret;
2707 }
79e53945 2708
bb2043de
DL
2709 /*
2710 * Update pipe size and adjust fitter if needed: the reason for this is
2711 * that in compute_mode_changes we check the native mode (not the pfit
2712 * mode) to see if we can flip rather than do a full mode set. In the
2713 * fastboot case, we'll flip, but if we don't update the pipesrc and
2714 * pfit state, we'll end up with a big fb scanned out into the wrong
2715 * sized surface.
2716 *
2717 * To fix this properly, we need to hoist the checks up into
2718 * compute_mode_changes (or above), check the actual pfit state and
2719 * whether the platform allows pfit disable with pipe active, and only
2720 * then update the pipesrc and pfit state, even on the flip path.
2721 */
d330a953 2722 if (i915.fastboot) {
d7bf63f2
DL
2723 const struct drm_display_mode *adjusted_mode =
2724 &intel_crtc->config.adjusted_mode;
2725
4d6a3e63 2726 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2727 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2728 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2729 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2730 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2731 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2732 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2733 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2734 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2735 }
0637d60d
JB
2736 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2737 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2738 }
2739
29b9bde6 2740 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2741
f99d7069
DV
2742 if (intel_crtc->active)
2743 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2744
f4510a27 2745 crtc->primary->fb = fb;
6c4c86f5
DV
2746 crtc->x = x;
2747 crtc->y = y;
94352cf9 2748
b7f1de28 2749 if (old_fb) {
d7697eea
DV
2750 if (intel_crtc->active && old_fb != fb)
2751 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2752 mutex_lock(&dev->struct_mutex);
2ff8fde1 2753 intel_unpin_fb_obj(old_obj);
8ac36ec1 2754 mutex_unlock(&dev->struct_mutex);
b7f1de28 2755 }
652c393a 2756
8ac36ec1 2757 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2758 intel_update_fbc(dev);
5c3b82e2 2759 mutex_unlock(&dev->struct_mutex);
79e53945 2760
5c3b82e2 2761 return 0;
79e53945
JB
2762}
2763
5e84e1a4
ZW
2764static void intel_fdi_normal_train(struct drm_crtc *crtc)
2765{
2766 struct drm_device *dev = crtc->dev;
2767 struct drm_i915_private *dev_priv = dev->dev_private;
2768 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2769 int pipe = intel_crtc->pipe;
2770 u32 reg, temp;
2771
2772 /* enable normal train */
2773 reg = FDI_TX_CTL(pipe);
2774 temp = I915_READ(reg);
61e499bf 2775 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2776 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2777 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2778 } else {
2779 temp &= ~FDI_LINK_TRAIN_NONE;
2780 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2781 }
5e84e1a4
ZW
2782 I915_WRITE(reg, temp);
2783
2784 reg = FDI_RX_CTL(pipe);
2785 temp = I915_READ(reg);
2786 if (HAS_PCH_CPT(dev)) {
2787 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2788 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2789 } else {
2790 temp &= ~FDI_LINK_TRAIN_NONE;
2791 temp |= FDI_LINK_TRAIN_NONE;
2792 }
2793 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2794
2795 /* wait one idle pattern time */
2796 POSTING_READ(reg);
2797 udelay(1000);
357555c0
JB
2798
2799 /* IVB wants error correction enabled */
2800 if (IS_IVYBRIDGE(dev))
2801 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2802 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2803}
2804
1fbc0d78 2805static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2806{
1fbc0d78
DV
2807 return crtc->base.enabled && crtc->active &&
2808 crtc->config.has_pch_encoder;
1e833f40
DV
2809}
2810
01a415fd
DV
2811static void ivb_modeset_global_resources(struct drm_device *dev)
2812{
2813 struct drm_i915_private *dev_priv = dev->dev_private;
2814 struct intel_crtc *pipe_B_crtc =
2815 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2816 struct intel_crtc *pipe_C_crtc =
2817 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2818 uint32_t temp;
2819
1e833f40
DV
2820 /*
2821 * When everything is off disable fdi C so that we could enable fdi B
2822 * with all lanes. Note that we don't care about enabled pipes without
2823 * an enabled pch encoder.
2824 */
2825 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2826 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2827 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2828 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2829
2830 temp = I915_READ(SOUTH_CHICKEN1);
2831 temp &= ~FDI_BC_BIFURCATION_SELECT;
2832 DRM_DEBUG_KMS("disabling fdi C rx\n");
2833 I915_WRITE(SOUTH_CHICKEN1, temp);
2834 }
2835}
2836
8db9d77b
ZW
2837/* The FDI link training functions for ILK/Ibexpeak. */
2838static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2839{
2840 struct drm_device *dev = crtc->dev;
2841 struct drm_i915_private *dev_priv = dev->dev_private;
2842 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2843 int pipe = intel_crtc->pipe;
5eddb70b 2844 u32 reg, temp, tries;
8db9d77b 2845
1c8562f6 2846 /* FDI needs bits from pipe first */
0fc932b8 2847 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2848
e1a44743
AJ
2849 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2850 for train result */
5eddb70b
CW
2851 reg = FDI_RX_IMR(pipe);
2852 temp = I915_READ(reg);
e1a44743
AJ
2853 temp &= ~FDI_RX_SYMBOL_LOCK;
2854 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2855 I915_WRITE(reg, temp);
2856 I915_READ(reg);
e1a44743
AJ
2857 udelay(150);
2858
8db9d77b 2859 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2860 reg = FDI_TX_CTL(pipe);
2861 temp = I915_READ(reg);
627eb5a3
DV
2862 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2863 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2864 temp &= ~FDI_LINK_TRAIN_NONE;
2865 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2866 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2867
5eddb70b
CW
2868 reg = FDI_RX_CTL(pipe);
2869 temp = I915_READ(reg);
8db9d77b
ZW
2870 temp &= ~FDI_LINK_TRAIN_NONE;
2871 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2872 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2873
2874 POSTING_READ(reg);
8db9d77b
ZW
2875 udelay(150);
2876
5b2adf89 2877 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2878 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2879 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2880 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2881
5eddb70b 2882 reg = FDI_RX_IIR(pipe);
e1a44743 2883 for (tries = 0; tries < 5; tries++) {
5eddb70b 2884 temp = I915_READ(reg);
8db9d77b
ZW
2885 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2886
2887 if ((temp & FDI_RX_BIT_LOCK)) {
2888 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2889 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2890 break;
2891 }
8db9d77b 2892 }
e1a44743 2893 if (tries == 5)
5eddb70b 2894 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2895
2896 /* Train 2 */
5eddb70b
CW
2897 reg = FDI_TX_CTL(pipe);
2898 temp = I915_READ(reg);
8db9d77b
ZW
2899 temp &= ~FDI_LINK_TRAIN_NONE;
2900 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2901 I915_WRITE(reg, temp);
8db9d77b 2902
5eddb70b
CW
2903 reg = FDI_RX_CTL(pipe);
2904 temp = I915_READ(reg);
8db9d77b
ZW
2905 temp &= ~FDI_LINK_TRAIN_NONE;
2906 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2907 I915_WRITE(reg, temp);
8db9d77b 2908
5eddb70b
CW
2909 POSTING_READ(reg);
2910 udelay(150);
8db9d77b 2911
5eddb70b 2912 reg = FDI_RX_IIR(pipe);
e1a44743 2913 for (tries = 0; tries < 5; tries++) {
5eddb70b 2914 temp = I915_READ(reg);
8db9d77b
ZW
2915 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2916
2917 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2918 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2919 DRM_DEBUG_KMS("FDI train 2 done.\n");
2920 break;
2921 }
8db9d77b 2922 }
e1a44743 2923 if (tries == 5)
5eddb70b 2924 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2925
2926 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2927
8db9d77b
ZW
2928}
2929
0206e353 2930static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2931 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2932 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2933 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2934 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2935};
2936
2937/* The FDI link training functions for SNB/Cougarpoint. */
2938static void gen6_fdi_link_train(struct drm_crtc *crtc)
2939{
2940 struct drm_device *dev = crtc->dev;
2941 struct drm_i915_private *dev_priv = dev->dev_private;
2942 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2943 int pipe = intel_crtc->pipe;
fa37d39e 2944 u32 reg, temp, i, retry;
8db9d77b 2945
e1a44743
AJ
2946 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2947 for train result */
5eddb70b
CW
2948 reg = FDI_RX_IMR(pipe);
2949 temp = I915_READ(reg);
e1a44743
AJ
2950 temp &= ~FDI_RX_SYMBOL_LOCK;
2951 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2952 I915_WRITE(reg, temp);
2953
2954 POSTING_READ(reg);
e1a44743
AJ
2955 udelay(150);
2956
8db9d77b 2957 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2958 reg = FDI_TX_CTL(pipe);
2959 temp = I915_READ(reg);
627eb5a3
DV
2960 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2961 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2962 temp &= ~FDI_LINK_TRAIN_NONE;
2963 temp |= FDI_LINK_TRAIN_PATTERN_1;
2964 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2965 /* SNB-B */
2966 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2967 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2968
d74cf324
DV
2969 I915_WRITE(FDI_RX_MISC(pipe),
2970 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2971
5eddb70b
CW
2972 reg = FDI_RX_CTL(pipe);
2973 temp = I915_READ(reg);
8db9d77b
ZW
2974 if (HAS_PCH_CPT(dev)) {
2975 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2976 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2977 } else {
2978 temp &= ~FDI_LINK_TRAIN_NONE;
2979 temp |= FDI_LINK_TRAIN_PATTERN_1;
2980 }
5eddb70b
CW
2981 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2982
2983 POSTING_READ(reg);
8db9d77b
ZW
2984 udelay(150);
2985
0206e353 2986 for (i = 0; i < 4; i++) {
5eddb70b
CW
2987 reg = FDI_TX_CTL(pipe);
2988 temp = I915_READ(reg);
8db9d77b
ZW
2989 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2990 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2991 I915_WRITE(reg, temp);
2992
2993 POSTING_READ(reg);
8db9d77b
ZW
2994 udelay(500);
2995
fa37d39e
SP
2996 for (retry = 0; retry < 5; retry++) {
2997 reg = FDI_RX_IIR(pipe);
2998 temp = I915_READ(reg);
2999 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3000 if (temp & FDI_RX_BIT_LOCK) {
3001 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3002 DRM_DEBUG_KMS("FDI train 1 done.\n");
3003 break;
3004 }
3005 udelay(50);
8db9d77b 3006 }
fa37d39e
SP
3007 if (retry < 5)
3008 break;
8db9d77b
ZW
3009 }
3010 if (i == 4)
5eddb70b 3011 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3012
3013 /* Train 2 */
5eddb70b
CW
3014 reg = FDI_TX_CTL(pipe);
3015 temp = I915_READ(reg);
8db9d77b
ZW
3016 temp &= ~FDI_LINK_TRAIN_NONE;
3017 temp |= FDI_LINK_TRAIN_PATTERN_2;
3018 if (IS_GEN6(dev)) {
3019 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3020 /* SNB-B */
3021 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3022 }
5eddb70b 3023 I915_WRITE(reg, temp);
8db9d77b 3024
5eddb70b
CW
3025 reg = FDI_RX_CTL(pipe);
3026 temp = I915_READ(reg);
8db9d77b
ZW
3027 if (HAS_PCH_CPT(dev)) {
3028 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3029 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3030 } else {
3031 temp &= ~FDI_LINK_TRAIN_NONE;
3032 temp |= FDI_LINK_TRAIN_PATTERN_2;
3033 }
5eddb70b
CW
3034 I915_WRITE(reg, temp);
3035
3036 POSTING_READ(reg);
8db9d77b
ZW
3037 udelay(150);
3038
0206e353 3039 for (i = 0; i < 4; i++) {
5eddb70b
CW
3040 reg = FDI_TX_CTL(pipe);
3041 temp = I915_READ(reg);
8db9d77b
ZW
3042 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3043 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3044 I915_WRITE(reg, temp);
3045
3046 POSTING_READ(reg);
8db9d77b
ZW
3047 udelay(500);
3048
fa37d39e
SP
3049 for (retry = 0; retry < 5; retry++) {
3050 reg = FDI_RX_IIR(pipe);
3051 temp = I915_READ(reg);
3052 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3053 if (temp & FDI_RX_SYMBOL_LOCK) {
3054 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3055 DRM_DEBUG_KMS("FDI train 2 done.\n");
3056 break;
3057 }
3058 udelay(50);
8db9d77b 3059 }
fa37d39e
SP
3060 if (retry < 5)
3061 break;
8db9d77b
ZW
3062 }
3063 if (i == 4)
5eddb70b 3064 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3065
3066 DRM_DEBUG_KMS("FDI train done.\n");
3067}
3068
357555c0
JB
3069/* Manual link training for Ivy Bridge A0 parts */
3070static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3071{
3072 struct drm_device *dev = crtc->dev;
3073 struct drm_i915_private *dev_priv = dev->dev_private;
3074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3075 int pipe = intel_crtc->pipe;
139ccd3f 3076 u32 reg, temp, i, j;
357555c0
JB
3077
3078 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3079 for train result */
3080 reg = FDI_RX_IMR(pipe);
3081 temp = I915_READ(reg);
3082 temp &= ~FDI_RX_SYMBOL_LOCK;
3083 temp &= ~FDI_RX_BIT_LOCK;
3084 I915_WRITE(reg, temp);
3085
3086 POSTING_READ(reg);
3087 udelay(150);
3088
01a415fd
DV
3089 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3090 I915_READ(FDI_RX_IIR(pipe)));
3091
139ccd3f
JB
3092 /* Try each vswing and preemphasis setting twice before moving on */
3093 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3094 /* disable first in case we need to retry */
3095 reg = FDI_TX_CTL(pipe);
3096 temp = I915_READ(reg);
3097 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3098 temp &= ~FDI_TX_ENABLE;
3099 I915_WRITE(reg, temp);
357555c0 3100
139ccd3f
JB
3101 reg = FDI_RX_CTL(pipe);
3102 temp = I915_READ(reg);
3103 temp &= ~FDI_LINK_TRAIN_AUTO;
3104 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3105 temp &= ~FDI_RX_ENABLE;
3106 I915_WRITE(reg, temp);
357555c0 3107
139ccd3f 3108 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3109 reg = FDI_TX_CTL(pipe);
3110 temp = I915_READ(reg);
139ccd3f
JB
3111 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3112 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3113 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3114 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3115 temp |= snb_b_fdi_train_param[j/2];
3116 temp |= FDI_COMPOSITE_SYNC;
3117 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3118
139ccd3f
JB
3119 I915_WRITE(FDI_RX_MISC(pipe),
3120 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3121
139ccd3f 3122 reg = FDI_RX_CTL(pipe);
357555c0 3123 temp = I915_READ(reg);
139ccd3f
JB
3124 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3125 temp |= FDI_COMPOSITE_SYNC;
3126 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3127
139ccd3f
JB
3128 POSTING_READ(reg);
3129 udelay(1); /* should be 0.5us */
357555c0 3130
139ccd3f
JB
3131 for (i = 0; i < 4; i++) {
3132 reg = FDI_RX_IIR(pipe);
3133 temp = I915_READ(reg);
3134 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3135
139ccd3f
JB
3136 if (temp & FDI_RX_BIT_LOCK ||
3137 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3138 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3139 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3140 i);
3141 break;
3142 }
3143 udelay(1); /* should be 0.5us */
3144 }
3145 if (i == 4) {
3146 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3147 continue;
3148 }
357555c0 3149
139ccd3f 3150 /* Train 2 */
357555c0
JB
3151 reg = FDI_TX_CTL(pipe);
3152 temp = I915_READ(reg);
139ccd3f
JB
3153 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3154 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3155 I915_WRITE(reg, temp);
3156
3157 reg = FDI_RX_CTL(pipe);
3158 temp = I915_READ(reg);
3159 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3160 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3161 I915_WRITE(reg, temp);
3162
3163 POSTING_READ(reg);
139ccd3f 3164 udelay(2); /* should be 1.5us */
357555c0 3165
139ccd3f
JB
3166 for (i = 0; i < 4; i++) {
3167 reg = FDI_RX_IIR(pipe);
3168 temp = I915_READ(reg);
3169 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3170
139ccd3f
JB
3171 if (temp & FDI_RX_SYMBOL_LOCK ||
3172 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3173 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3174 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3175 i);
3176 goto train_done;
3177 }
3178 udelay(2); /* should be 1.5us */
357555c0 3179 }
139ccd3f
JB
3180 if (i == 4)
3181 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3182 }
357555c0 3183
139ccd3f 3184train_done:
357555c0
JB
3185 DRM_DEBUG_KMS("FDI train done.\n");
3186}
3187
88cefb6c 3188static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3189{
88cefb6c 3190 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3191 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3192 int pipe = intel_crtc->pipe;
5eddb70b 3193 u32 reg, temp;
79e53945 3194
c64e311e 3195
c98e9dcf 3196 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3197 reg = FDI_RX_CTL(pipe);
3198 temp = I915_READ(reg);
627eb5a3
DV
3199 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3200 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3201 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3202 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3203
3204 POSTING_READ(reg);
c98e9dcf
JB
3205 udelay(200);
3206
3207 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3208 temp = I915_READ(reg);
3209 I915_WRITE(reg, temp | FDI_PCDCLK);
3210
3211 POSTING_READ(reg);
c98e9dcf
JB
3212 udelay(200);
3213
20749730
PZ
3214 /* Enable CPU FDI TX PLL, always on for Ironlake */
3215 reg = FDI_TX_CTL(pipe);
3216 temp = I915_READ(reg);
3217 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3218 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3219
20749730
PZ
3220 POSTING_READ(reg);
3221 udelay(100);
6be4a607 3222 }
0e23b99d
JB
3223}
3224
88cefb6c
DV
3225static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3226{
3227 struct drm_device *dev = intel_crtc->base.dev;
3228 struct drm_i915_private *dev_priv = dev->dev_private;
3229 int pipe = intel_crtc->pipe;
3230 u32 reg, temp;
3231
3232 /* Switch from PCDclk to Rawclk */
3233 reg = FDI_RX_CTL(pipe);
3234 temp = I915_READ(reg);
3235 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3236
3237 /* Disable CPU FDI TX PLL */
3238 reg = FDI_TX_CTL(pipe);
3239 temp = I915_READ(reg);
3240 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3241
3242 POSTING_READ(reg);
3243 udelay(100);
3244
3245 reg = FDI_RX_CTL(pipe);
3246 temp = I915_READ(reg);
3247 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3248
3249 /* Wait for the clocks to turn off. */
3250 POSTING_READ(reg);
3251 udelay(100);
3252}
3253
0fc932b8
JB
3254static void ironlake_fdi_disable(struct drm_crtc *crtc)
3255{
3256 struct drm_device *dev = crtc->dev;
3257 struct drm_i915_private *dev_priv = dev->dev_private;
3258 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3259 int pipe = intel_crtc->pipe;
3260 u32 reg, temp;
3261
3262 /* disable CPU FDI tx and PCH FDI rx */
3263 reg = FDI_TX_CTL(pipe);
3264 temp = I915_READ(reg);
3265 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3266 POSTING_READ(reg);
3267
3268 reg = FDI_RX_CTL(pipe);
3269 temp = I915_READ(reg);
3270 temp &= ~(0x7 << 16);
dfd07d72 3271 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3272 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3273
3274 POSTING_READ(reg);
3275 udelay(100);
3276
3277 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3278 if (HAS_PCH_IBX(dev))
6f06ce18 3279 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3280
3281 /* still set train pattern 1 */
3282 reg = FDI_TX_CTL(pipe);
3283 temp = I915_READ(reg);
3284 temp &= ~FDI_LINK_TRAIN_NONE;
3285 temp |= FDI_LINK_TRAIN_PATTERN_1;
3286 I915_WRITE(reg, temp);
3287
3288 reg = FDI_RX_CTL(pipe);
3289 temp = I915_READ(reg);
3290 if (HAS_PCH_CPT(dev)) {
3291 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3292 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3293 } else {
3294 temp &= ~FDI_LINK_TRAIN_NONE;
3295 temp |= FDI_LINK_TRAIN_PATTERN_1;
3296 }
3297 /* BPC in FDI rx is consistent with that in PIPECONF */
3298 temp &= ~(0x07 << 16);
dfd07d72 3299 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3300 I915_WRITE(reg, temp);
3301
3302 POSTING_READ(reg);
3303 udelay(100);
3304}
3305
5dce5b93
CW
3306bool intel_has_pending_fb_unpin(struct drm_device *dev)
3307{
3308 struct intel_crtc *crtc;
3309
3310 /* Note that we don't need to be called with mode_config.lock here
3311 * as our list of CRTC objects is static for the lifetime of the
3312 * device and so cannot disappear as we iterate. Similarly, we can
3313 * happily treat the predicates as racy, atomic checks as userspace
3314 * cannot claim and pin a new fb without at least acquring the
3315 * struct_mutex and so serialising with us.
3316 */
d3fcc808 3317 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3318 if (atomic_read(&crtc->unpin_work_count) == 0)
3319 continue;
3320
3321 if (crtc->unpin_work)
3322 intel_wait_for_vblank(dev, crtc->pipe);
3323
3324 return true;
3325 }
3326
3327 return false;
3328}
3329
46a55d30 3330void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3331{
0f91128d 3332 struct drm_device *dev = crtc->dev;
5bb61643 3333 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3334
f4510a27 3335 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3336 return;
3337
2c10d571
DV
3338 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3339
eed6d67d
DV
3340 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3341 !intel_crtc_has_pending_flip(crtc),
3342 60*HZ) == 0);
5bb61643 3343
0f91128d 3344 mutex_lock(&dev->struct_mutex);
f4510a27 3345 intel_finish_fb(crtc->primary->fb);
0f91128d 3346 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3347}
3348
e615efe4
ED
3349/* Program iCLKIP clock to the desired frequency */
3350static void lpt_program_iclkip(struct drm_crtc *crtc)
3351{
3352 struct drm_device *dev = crtc->dev;
3353 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3354 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3355 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3356 u32 temp;
3357
09153000
DV
3358 mutex_lock(&dev_priv->dpio_lock);
3359
e615efe4
ED
3360 /* It is necessary to ungate the pixclk gate prior to programming
3361 * the divisors, and gate it back when it is done.
3362 */
3363 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3364
3365 /* Disable SSCCTL */
3366 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3367 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3368 SBI_SSCCTL_DISABLE,
3369 SBI_ICLK);
e615efe4
ED
3370
3371 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3372 if (clock == 20000) {
e615efe4
ED
3373 auxdiv = 1;
3374 divsel = 0x41;
3375 phaseinc = 0x20;
3376 } else {
3377 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3378 * but the adjusted_mode->crtc_clock in in KHz. To get the
3379 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3380 * convert the virtual clock precision to KHz here for higher
3381 * precision.
3382 */
3383 u32 iclk_virtual_root_freq = 172800 * 1000;
3384 u32 iclk_pi_range = 64;
3385 u32 desired_divisor, msb_divisor_value, pi_value;
3386
12d7ceed 3387 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3388 msb_divisor_value = desired_divisor / iclk_pi_range;
3389 pi_value = desired_divisor % iclk_pi_range;
3390
3391 auxdiv = 0;
3392 divsel = msb_divisor_value - 2;
3393 phaseinc = pi_value;
3394 }
3395
3396 /* This should not happen with any sane values */
3397 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3398 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3399 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3400 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3401
3402 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3403 clock,
e615efe4
ED
3404 auxdiv,
3405 divsel,
3406 phasedir,
3407 phaseinc);
3408
3409 /* Program SSCDIVINTPHASE6 */
988d6ee8 3410 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3411 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3412 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3413 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3414 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3415 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3416 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3417 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3418
3419 /* Program SSCAUXDIV */
988d6ee8 3420 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3421 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3422 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3423 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3424
3425 /* Enable modulator and associated divider */
988d6ee8 3426 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3427 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3428 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3429
3430 /* Wait for initialization time */
3431 udelay(24);
3432
3433 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3434
3435 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3436}
3437
275f01b2
DV
3438static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3439 enum pipe pch_transcoder)
3440{
3441 struct drm_device *dev = crtc->base.dev;
3442 struct drm_i915_private *dev_priv = dev->dev_private;
3443 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3444
3445 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3446 I915_READ(HTOTAL(cpu_transcoder)));
3447 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3448 I915_READ(HBLANK(cpu_transcoder)));
3449 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3450 I915_READ(HSYNC(cpu_transcoder)));
3451
3452 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3453 I915_READ(VTOTAL(cpu_transcoder)));
3454 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3455 I915_READ(VBLANK(cpu_transcoder)));
3456 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3457 I915_READ(VSYNC(cpu_transcoder)));
3458 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3459 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3460}
3461
1fbc0d78
DV
3462static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3463{
3464 struct drm_i915_private *dev_priv = dev->dev_private;
3465 uint32_t temp;
3466
3467 temp = I915_READ(SOUTH_CHICKEN1);
3468 if (temp & FDI_BC_BIFURCATION_SELECT)
3469 return;
3470
3471 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3472 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3473
3474 temp |= FDI_BC_BIFURCATION_SELECT;
3475 DRM_DEBUG_KMS("enabling fdi C rx\n");
3476 I915_WRITE(SOUTH_CHICKEN1, temp);
3477 POSTING_READ(SOUTH_CHICKEN1);
3478}
3479
3480static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3481{
3482 struct drm_device *dev = intel_crtc->base.dev;
3483 struct drm_i915_private *dev_priv = dev->dev_private;
3484
3485 switch (intel_crtc->pipe) {
3486 case PIPE_A:
3487 break;
3488 case PIPE_B:
3489 if (intel_crtc->config.fdi_lanes > 2)
3490 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3491 else
3492 cpt_enable_fdi_bc_bifurcation(dev);
3493
3494 break;
3495 case PIPE_C:
3496 cpt_enable_fdi_bc_bifurcation(dev);
3497
3498 break;
3499 default:
3500 BUG();
3501 }
3502}
3503
f67a559d
JB
3504/*
3505 * Enable PCH resources required for PCH ports:
3506 * - PCH PLLs
3507 * - FDI training & RX/TX
3508 * - update transcoder timings
3509 * - DP transcoding bits
3510 * - transcoder
3511 */
3512static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3513{
3514 struct drm_device *dev = crtc->dev;
3515 struct drm_i915_private *dev_priv = dev->dev_private;
3516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3517 int pipe = intel_crtc->pipe;
ee7b9f93 3518 u32 reg, temp;
2c07245f 3519
ab9412ba 3520 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3521
1fbc0d78
DV
3522 if (IS_IVYBRIDGE(dev))
3523 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3524
cd986abb
DV
3525 /* Write the TU size bits before fdi link training, so that error
3526 * detection works. */
3527 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3528 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3529
c98e9dcf 3530 /* For PCH output, training FDI link */
674cf967 3531 dev_priv->display.fdi_link_train(crtc);
2c07245f 3532
3ad8a208
DV
3533 /* We need to program the right clock selection before writing the pixel
3534 * mutliplier into the DPLL. */
303b81e0 3535 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3536 u32 sel;
4b645f14 3537
c98e9dcf 3538 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3539 temp |= TRANS_DPLL_ENABLE(pipe);
3540 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3541 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3542 temp |= sel;
3543 else
3544 temp &= ~sel;
c98e9dcf 3545 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3546 }
5eddb70b 3547
3ad8a208
DV
3548 /* XXX: pch pll's can be enabled any time before we enable the PCH
3549 * transcoder, and we actually should do this to not upset any PCH
3550 * transcoder that already use the clock when we share it.
3551 *
3552 * Note that enable_shared_dpll tries to do the right thing, but
3553 * get_shared_dpll unconditionally resets the pll - we need that to have
3554 * the right LVDS enable sequence. */
85b3894f 3555 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3556
d9b6cb56
JB
3557 /* set transcoder timing, panel must allow it */
3558 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3559 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3560
303b81e0 3561 intel_fdi_normal_train(crtc);
5e84e1a4 3562
c98e9dcf
JB
3563 /* For PCH DP, enable TRANS_DP_CTL */
3564 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3565 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3566 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3567 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3568 reg = TRANS_DP_CTL(pipe);
3569 temp = I915_READ(reg);
3570 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3571 TRANS_DP_SYNC_MASK |
3572 TRANS_DP_BPC_MASK);
5eddb70b
CW
3573 temp |= (TRANS_DP_OUTPUT_ENABLE |
3574 TRANS_DP_ENH_FRAMING);
9325c9f0 3575 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3576
3577 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3578 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3579 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3580 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3581
3582 switch (intel_trans_dp_port_sel(crtc)) {
3583 case PCH_DP_B:
5eddb70b 3584 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3585 break;
3586 case PCH_DP_C:
5eddb70b 3587 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3588 break;
3589 case PCH_DP_D:
5eddb70b 3590 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3591 break;
3592 default:
e95d41e1 3593 BUG();
32f9d658 3594 }
2c07245f 3595
5eddb70b 3596 I915_WRITE(reg, temp);
6be4a607 3597 }
b52eb4dc 3598
b8a4f404 3599 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3600}
3601
1507e5bd
PZ
3602static void lpt_pch_enable(struct drm_crtc *crtc)
3603{
3604 struct drm_device *dev = crtc->dev;
3605 struct drm_i915_private *dev_priv = dev->dev_private;
3606 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3607 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3608
ab9412ba 3609 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3610
8c52b5e8 3611 lpt_program_iclkip(crtc);
1507e5bd 3612
0540e488 3613 /* Set transcoder timing. */
275f01b2 3614 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3615
937bb610 3616 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3617}
3618
716c2e55 3619void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3620{
e2b78267 3621 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3622
3623 if (pll == NULL)
3624 return;
3625
3626 if (pll->refcount == 0) {
46edb027 3627 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3628 return;
3629 }
3630
f4a091c7
DV
3631 if (--pll->refcount == 0) {
3632 WARN_ON(pll->on);
3633 WARN_ON(pll->active);
3634 }
3635
a43f6e0f 3636 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3637}
3638
716c2e55 3639struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3640{
e2b78267
DV
3641 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3642 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3643 enum intel_dpll_id i;
ee7b9f93 3644
ee7b9f93 3645 if (pll) {
46edb027
DV
3646 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3647 crtc->base.base.id, pll->name);
e2b78267 3648 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3649 }
3650
98b6bd99
DV
3651 if (HAS_PCH_IBX(dev_priv->dev)) {
3652 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3653 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3654 pll = &dev_priv->shared_dplls[i];
98b6bd99 3655
46edb027
DV
3656 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3657 crtc->base.base.id, pll->name);
98b6bd99 3658
f2a69f44
DV
3659 WARN_ON(pll->refcount);
3660
98b6bd99
DV
3661 goto found;
3662 }
3663
e72f9fbf
DV
3664 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3665 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3666
3667 /* Only want to check enabled timings first */
3668 if (pll->refcount == 0)
3669 continue;
3670
b89a1d39
DV
3671 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3672 sizeof(pll->hw_state)) == 0) {
46edb027 3673 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3674 crtc->base.base.id,
46edb027 3675 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3676
3677 goto found;
3678 }
3679 }
3680
3681 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3682 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3683 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3684 if (pll->refcount == 0) {
46edb027
DV
3685 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3686 crtc->base.base.id, pll->name);
ee7b9f93
JB
3687 goto found;
3688 }
3689 }
3690
3691 return NULL;
3692
3693found:
f2a69f44
DV
3694 if (pll->refcount == 0)
3695 pll->hw_state = crtc->config.dpll_hw_state;
3696
a43f6e0f 3697 crtc->config.shared_dpll = i;
46edb027
DV
3698 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3699 pipe_name(crtc->pipe));
ee7b9f93 3700
cdbd2316 3701 pll->refcount++;
e04c7350 3702
ee7b9f93
JB
3703 return pll;
3704}
3705
a1520318 3706static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3707{
3708 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3709 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3710 u32 temp;
3711
3712 temp = I915_READ(dslreg);
3713 udelay(500);
3714 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3715 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3716 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3717 }
3718}
3719
b074cec8
JB
3720static void ironlake_pfit_enable(struct intel_crtc *crtc)
3721{
3722 struct drm_device *dev = crtc->base.dev;
3723 struct drm_i915_private *dev_priv = dev->dev_private;
3724 int pipe = crtc->pipe;
3725
fd4daa9c 3726 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3727 /* Force use of hard-coded filter coefficients
3728 * as some pre-programmed values are broken,
3729 * e.g. x201.
3730 */
3731 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3732 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3733 PF_PIPE_SEL_IVB(pipe));
3734 else
3735 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3736 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3737 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3738 }
3739}
3740
bb53d4ae
VS
3741static void intel_enable_planes(struct drm_crtc *crtc)
3742{
3743 struct drm_device *dev = crtc->dev;
3744 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3745 struct drm_plane *plane;
bb53d4ae
VS
3746 struct intel_plane *intel_plane;
3747
af2b653b
MR
3748 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3749 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3750 if (intel_plane->pipe == pipe)
3751 intel_plane_restore(&intel_plane->base);
af2b653b 3752 }
bb53d4ae
VS
3753}
3754
3755static void intel_disable_planes(struct drm_crtc *crtc)
3756{
3757 struct drm_device *dev = crtc->dev;
3758 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3759 struct drm_plane *plane;
bb53d4ae
VS
3760 struct intel_plane *intel_plane;
3761
af2b653b
MR
3762 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3763 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3764 if (intel_plane->pipe == pipe)
3765 intel_plane_disable(&intel_plane->base);
af2b653b 3766 }
bb53d4ae
VS
3767}
3768
20bc8673 3769void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3770{
cea165c3
VS
3771 struct drm_device *dev = crtc->base.dev;
3772 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3773
3774 if (!crtc->config.ips_enabled)
3775 return;
3776
cea165c3
VS
3777 /* We can only enable IPS after we enable a plane and wait for a vblank */
3778 intel_wait_for_vblank(dev, crtc->pipe);
3779
d77e4531 3780 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3781 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3782 mutex_lock(&dev_priv->rps.hw_lock);
3783 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3784 mutex_unlock(&dev_priv->rps.hw_lock);
3785 /* Quoting Art Runyan: "its not safe to expect any particular
3786 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3787 * mailbox." Moreover, the mailbox may return a bogus state,
3788 * so we need to just enable it and continue on.
2a114cc1
BW
3789 */
3790 } else {
3791 I915_WRITE(IPS_CTL, IPS_ENABLE);
3792 /* The bit only becomes 1 in the next vblank, so this wait here
3793 * is essentially intel_wait_for_vblank. If we don't have this
3794 * and don't wait for vblanks until the end of crtc_enable, then
3795 * the HW state readout code will complain that the expected
3796 * IPS_CTL value is not the one we read. */
3797 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3798 DRM_ERROR("Timed out waiting for IPS enable\n");
3799 }
d77e4531
PZ
3800}
3801
20bc8673 3802void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3803{
3804 struct drm_device *dev = crtc->base.dev;
3805 struct drm_i915_private *dev_priv = dev->dev_private;
3806
3807 if (!crtc->config.ips_enabled)
3808 return;
3809
3810 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3811 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3812 mutex_lock(&dev_priv->rps.hw_lock);
3813 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3814 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3815 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3816 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3817 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3818 } else {
2a114cc1 3819 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3820 POSTING_READ(IPS_CTL);
3821 }
d77e4531
PZ
3822
3823 /* We need to wait for a vblank before we can disable the plane. */
3824 intel_wait_for_vblank(dev, crtc->pipe);
3825}
3826
3827/** Loads the palette/gamma unit for the CRTC with the prepared values */
3828static void intel_crtc_load_lut(struct drm_crtc *crtc)
3829{
3830 struct drm_device *dev = crtc->dev;
3831 struct drm_i915_private *dev_priv = dev->dev_private;
3832 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3833 enum pipe pipe = intel_crtc->pipe;
3834 int palreg = PALETTE(pipe);
3835 int i;
3836 bool reenable_ips = false;
3837
3838 /* The clocks have to be on to load the palette. */
3839 if (!crtc->enabled || !intel_crtc->active)
3840 return;
3841
3842 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3843 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3844 assert_dsi_pll_enabled(dev_priv);
3845 else
3846 assert_pll_enabled(dev_priv, pipe);
3847 }
3848
3849 /* use legacy palette for Ironlake */
3850 if (HAS_PCH_SPLIT(dev))
3851 palreg = LGC_PALETTE(pipe);
3852
3853 /* Workaround : Do not read or write the pipe palette/gamma data while
3854 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3855 */
41e6fc4c 3856 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3857 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3858 GAMMA_MODE_MODE_SPLIT)) {
3859 hsw_disable_ips(intel_crtc);
3860 reenable_ips = true;
3861 }
3862
3863 for (i = 0; i < 256; i++) {
3864 I915_WRITE(palreg + 4 * i,
3865 (intel_crtc->lut_r[i] << 16) |
3866 (intel_crtc->lut_g[i] << 8) |
3867 intel_crtc->lut_b[i]);
3868 }
3869
3870 if (reenable_ips)
3871 hsw_enable_ips(intel_crtc);
3872}
3873
d3eedb1a
VS
3874static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3875{
3876 if (!enable && intel_crtc->overlay) {
3877 struct drm_device *dev = intel_crtc->base.dev;
3878 struct drm_i915_private *dev_priv = dev->dev_private;
3879
3880 mutex_lock(&dev->struct_mutex);
3881 dev_priv->mm.interruptible = false;
3882 (void) intel_overlay_switch_off(intel_crtc->overlay);
3883 dev_priv->mm.interruptible = true;
3884 mutex_unlock(&dev->struct_mutex);
3885 }
3886
3887 /* Let userspace switch the overlay on again. In most cases userspace
3888 * has to recompute where to put it anyway.
3889 */
3890}
3891
d3eedb1a 3892static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3893{
3894 struct drm_device *dev = crtc->dev;
3895 struct drm_i915_private *dev_priv = dev->dev_private;
3896 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3897 int pipe = intel_crtc->pipe;
3898 int plane = intel_crtc->plane;
3899
f98551ae
VS
3900 drm_vblank_on(dev, pipe);
3901
a5c4d7bc
VS
3902 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3903 intel_enable_planes(crtc);
3904 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3905 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3906
3907 hsw_enable_ips(intel_crtc);
3908
3909 mutex_lock(&dev->struct_mutex);
3910 intel_update_fbc(dev);
3911 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3912
3913 /*
3914 * FIXME: Once we grow proper nuclear flip support out of this we need
3915 * to compute the mask of flip planes precisely. For the time being
3916 * consider this a flip from a NULL plane.
3917 */
3918 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3919}
3920
d3eedb1a 3921static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3922{
3923 struct drm_device *dev = crtc->dev;
3924 struct drm_i915_private *dev_priv = dev->dev_private;
3925 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3926 int pipe = intel_crtc->pipe;
3927 int plane = intel_crtc->plane;
3928
3929 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3930
3931 if (dev_priv->fbc.plane == plane)
3932 intel_disable_fbc(dev);
3933
3934 hsw_disable_ips(intel_crtc);
3935
d3eedb1a 3936 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3937 intel_crtc_update_cursor(crtc, false);
3938 intel_disable_planes(crtc);
3939 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
f98551ae 3940
f99d7069
DV
3941 /*
3942 * FIXME: Once we grow proper nuclear flip support out of this we need
3943 * to compute the mask of flip planes precisely. For the time being
3944 * consider this a flip to a NULL plane.
3945 */
3946 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3947
f98551ae 3948 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
3949}
3950
f67a559d
JB
3951static void ironlake_crtc_enable(struct drm_crtc *crtc)
3952{
3953 struct drm_device *dev = crtc->dev;
3954 struct drm_i915_private *dev_priv = dev->dev_private;
3955 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3956 struct intel_encoder *encoder;
f67a559d 3957 int pipe = intel_crtc->pipe;
29407aab 3958 enum plane plane = intel_crtc->plane;
f67a559d 3959
08a48469
DV
3960 WARN_ON(!crtc->enabled);
3961
f67a559d
JB
3962 if (intel_crtc->active)
3963 return;
3964
b14b1055
DV
3965 if (intel_crtc->config.has_pch_encoder)
3966 intel_prepare_shared_dpll(intel_crtc);
3967
29407aab
DV
3968 if (intel_crtc->config.has_dp_encoder)
3969 intel_dp_set_m_n(intel_crtc);
3970
3971 intel_set_pipe_timings(intel_crtc);
3972
3973 if (intel_crtc->config.has_pch_encoder) {
3974 intel_cpu_transcoder_set_m_n(intel_crtc,
3975 &intel_crtc->config.fdi_m_n);
3976 }
3977
3978 ironlake_set_pipeconf(crtc);
3979
3980 /* Set up the display plane register */
3981 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3982 POSTING_READ(DSPCNTR(plane));
3983
3984 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3985 crtc->x, crtc->y);
3986
f67a559d 3987 intel_crtc->active = true;
8664281b
PZ
3988
3989 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3990 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3991
f6736a1a 3992 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
3993 if (encoder->pre_enable)
3994 encoder->pre_enable(encoder);
f67a559d 3995
5bfe2ac0 3996 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
3997 /* Note: FDI PLL enabling _must_ be done before we enable the
3998 * cpu pipes, hence this is separate from all the other fdi/pch
3999 * enabling. */
88cefb6c 4000 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4001 } else {
4002 assert_fdi_tx_disabled(dev_priv, pipe);
4003 assert_fdi_rx_disabled(dev_priv, pipe);
4004 }
f67a559d 4005
b074cec8 4006 ironlake_pfit_enable(intel_crtc);
f67a559d 4007
9c54c0dd
JB
4008 /*
4009 * On ILK+ LUT must be loaded before the pipe is running but with
4010 * clocks enabled
4011 */
4012 intel_crtc_load_lut(crtc);
4013
f37fcc2a 4014 intel_update_watermarks(crtc);
e1fdc473 4015 intel_enable_pipe(intel_crtc);
f67a559d 4016
5bfe2ac0 4017 if (intel_crtc->config.has_pch_encoder)
f67a559d 4018 ironlake_pch_enable(crtc);
c98e9dcf 4019
fa5c73b1
DV
4020 for_each_encoder_on_crtc(dev, crtc, encoder)
4021 encoder->enable(encoder);
61b77ddd
DV
4022
4023 if (HAS_PCH_CPT(dev))
a1520318 4024 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4025
d3eedb1a 4026 intel_crtc_enable_planes(crtc);
6be4a607
JB
4027}
4028
42db64ef
PZ
4029/* IPS only exists on ULT machines and is tied to pipe A. */
4030static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4031{
f5adf94e 4032 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4033}
4034
e4916946
PZ
4035/*
4036 * This implements the workaround described in the "notes" section of the mode
4037 * set sequence documentation. When going from no pipes or single pipe to
4038 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4039 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4040 */
4041static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4042{
4043 struct drm_device *dev = crtc->base.dev;
4044 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4045
4046 /* We want to get the other_active_crtc only if there's only 1 other
4047 * active crtc. */
d3fcc808 4048 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4049 if (!crtc_it->active || crtc_it == crtc)
4050 continue;
4051
4052 if (other_active_crtc)
4053 return;
4054
4055 other_active_crtc = crtc_it;
4056 }
4057 if (!other_active_crtc)
4058 return;
4059
4060 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4061 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4062}
4063
4f771f10
PZ
4064static void haswell_crtc_enable(struct drm_crtc *crtc)
4065{
4066 struct drm_device *dev = crtc->dev;
4067 struct drm_i915_private *dev_priv = dev->dev_private;
4068 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4069 struct intel_encoder *encoder;
4070 int pipe = intel_crtc->pipe;
229fca97 4071 enum plane plane = intel_crtc->plane;
4f771f10
PZ
4072
4073 WARN_ON(!crtc->enabled);
4074
4075 if (intel_crtc->active)
4076 return;
4077
df8ad70c
DV
4078 if (intel_crtc_to_shared_dpll(intel_crtc))
4079 intel_enable_shared_dpll(intel_crtc);
4080
229fca97
DV
4081 if (intel_crtc->config.has_dp_encoder)
4082 intel_dp_set_m_n(intel_crtc);
4083
4084 intel_set_pipe_timings(intel_crtc);
4085
4086 if (intel_crtc->config.has_pch_encoder) {
4087 intel_cpu_transcoder_set_m_n(intel_crtc,
4088 &intel_crtc->config.fdi_m_n);
4089 }
4090
4091 haswell_set_pipeconf(crtc);
4092
4093 intel_set_pipe_csc(crtc);
4094
4095 /* Set up the display plane register */
4096 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4097 POSTING_READ(DSPCNTR(plane));
4098
4099 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4100 crtc->x, crtc->y);
4101
4f771f10 4102 intel_crtc->active = true;
8664281b
PZ
4103
4104 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4f771f10
PZ
4105 for_each_encoder_on_crtc(dev, crtc, encoder)
4106 if (encoder->pre_enable)
4107 encoder->pre_enable(encoder);
4108
4fe9467d
ID
4109 if (intel_crtc->config.has_pch_encoder) {
4110 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4111 dev_priv->display.fdi_link_train(crtc);
4112 }
4113
1f544388 4114 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4115
b074cec8 4116 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4117
4118 /*
4119 * On ILK+ LUT must be loaded before the pipe is running but with
4120 * clocks enabled
4121 */
4122 intel_crtc_load_lut(crtc);
4123
1f544388 4124 intel_ddi_set_pipe_settings(crtc);
8228c251 4125 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4126
f37fcc2a 4127 intel_update_watermarks(crtc);
e1fdc473 4128 intel_enable_pipe(intel_crtc);
42db64ef 4129
5bfe2ac0 4130 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4131 lpt_pch_enable(crtc);
4f771f10 4132
8807e55b 4133 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4134 encoder->enable(encoder);
8807e55b
JN
4135 intel_opregion_notify_encoder(encoder, true);
4136 }
4f771f10 4137
e4916946
PZ
4138 /* If we change the relative order between pipe/planes enabling, we need
4139 * to change the workaround. */
4140 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4141 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4142}
4143
3f8dce3a
DV
4144static void ironlake_pfit_disable(struct intel_crtc *crtc)
4145{
4146 struct drm_device *dev = crtc->base.dev;
4147 struct drm_i915_private *dev_priv = dev->dev_private;
4148 int pipe = crtc->pipe;
4149
4150 /* To avoid upsetting the power well on haswell only disable the pfit if
4151 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4152 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4153 I915_WRITE(PF_CTL(pipe), 0);
4154 I915_WRITE(PF_WIN_POS(pipe), 0);
4155 I915_WRITE(PF_WIN_SZ(pipe), 0);
4156 }
4157}
4158
6be4a607
JB
4159static void ironlake_crtc_disable(struct drm_crtc *crtc)
4160{
4161 struct drm_device *dev = crtc->dev;
4162 struct drm_i915_private *dev_priv = dev->dev_private;
4163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4164 struct intel_encoder *encoder;
6be4a607 4165 int pipe = intel_crtc->pipe;
5eddb70b 4166 u32 reg, temp;
b52eb4dc 4167
f7abfe8b
CW
4168 if (!intel_crtc->active)
4169 return;
4170
d3eedb1a 4171 intel_crtc_disable_planes(crtc);
a5c4d7bc 4172
ea9d758d
DV
4173 for_each_encoder_on_crtc(dev, crtc, encoder)
4174 encoder->disable(encoder);
4175
d925c59a
DV
4176 if (intel_crtc->config.has_pch_encoder)
4177 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4178
b24e7179 4179 intel_disable_pipe(dev_priv, pipe);
32f9d658 4180
3f8dce3a 4181 ironlake_pfit_disable(intel_crtc);
2c07245f 4182
bf49ec8c
DV
4183 for_each_encoder_on_crtc(dev, crtc, encoder)
4184 if (encoder->post_disable)
4185 encoder->post_disable(encoder);
2c07245f 4186
d925c59a
DV
4187 if (intel_crtc->config.has_pch_encoder) {
4188 ironlake_fdi_disable(crtc);
913d8d11 4189
d925c59a
DV
4190 ironlake_disable_pch_transcoder(dev_priv, pipe);
4191 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4192
d925c59a
DV
4193 if (HAS_PCH_CPT(dev)) {
4194 /* disable TRANS_DP_CTL */
4195 reg = TRANS_DP_CTL(pipe);
4196 temp = I915_READ(reg);
4197 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4198 TRANS_DP_PORT_SEL_MASK);
4199 temp |= TRANS_DP_PORT_SEL_NONE;
4200 I915_WRITE(reg, temp);
4201
4202 /* disable DPLL_SEL */
4203 temp = I915_READ(PCH_DPLL_SEL);
11887397 4204 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4205 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4206 }
e3421a18 4207
d925c59a 4208 /* disable PCH DPLL */
e72f9fbf 4209 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4210
d925c59a
DV
4211 ironlake_fdi_pll_disable(intel_crtc);
4212 }
6b383a7f 4213
f7abfe8b 4214 intel_crtc->active = false;
46ba614c 4215 intel_update_watermarks(crtc);
d1ebd816
BW
4216
4217 mutex_lock(&dev->struct_mutex);
6b383a7f 4218 intel_update_fbc(dev);
d1ebd816 4219 mutex_unlock(&dev->struct_mutex);
6be4a607 4220}
1b3c7a47 4221
4f771f10 4222static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4223{
4f771f10
PZ
4224 struct drm_device *dev = crtc->dev;
4225 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4227 struct intel_encoder *encoder;
4228 int pipe = intel_crtc->pipe;
3b117c8f 4229 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4230
4f771f10
PZ
4231 if (!intel_crtc->active)
4232 return;
4233
d3eedb1a 4234 intel_crtc_disable_planes(crtc);
dda9a66a 4235
8807e55b
JN
4236 for_each_encoder_on_crtc(dev, crtc, encoder) {
4237 intel_opregion_notify_encoder(encoder, false);
4f771f10 4238 encoder->disable(encoder);
8807e55b 4239 }
4f771f10 4240
8664281b
PZ
4241 if (intel_crtc->config.has_pch_encoder)
4242 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4243 intel_disable_pipe(dev_priv, pipe);
4244
ad80a810 4245 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4246
3f8dce3a 4247 ironlake_pfit_disable(intel_crtc);
4f771f10 4248
1f544388 4249 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4250
88adfff1 4251 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4252 lpt_disable_pch_transcoder(dev_priv);
8664281b 4253 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4254 intel_ddi_fdi_disable(crtc);
83616634 4255 }
4f771f10 4256
97b040aa
ID
4257 for_each_encoder_on_crtc(dev, crtc, encoder)
4258 if (encoder->post_disable)
4259 encoder->post_disable(encoder);
4260
4f771f10 4261 intel_crtc->active = false;
46ba614c 4262 intel_update_watermarks(crtc);
4f771f10
PZ
4263
4264 mutex_lock(&dev->struct_mutex);
4265 intel_update_fbc(dev);
4266 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4267
4268 if (intel_crtc_to_shared_dpll(intel_crtc))
4269 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4270}
4271
ee7b9f93
JB
4272static void ironlake_crtc_off(struct drm_crtc *crtc)
4273{
4274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4275 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4276}
4277
6441ab5f 4278
2dd24552
JB
4279static void i9xx_pfit_enable(struct intel_crtc *crtc)
4280{
4281 struct drm_device *dev = crtc->base.dev;
4282 struct drm_i915_private *dev_priv = dev->dev_private;
4283 struct intel_crtc_config *pipe_config = &crtc->config;
4284
328d8e82 4285 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4286 return;
4287
2dd24552 4288 /*
c0b03411
DV
4289 * The panel fitter should only be adjusted whilst the pipe is disabled,
4290 * according to register description and PRM.
2dd24552 4291 */
c0b03411
DV
4292 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4293 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4294
b074cec8
JB
4295 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4296 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4297
4298 /* Border color in case we don't scale up to the full screen. Black by
4299 * default, change to something else for debugging. */
4300 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4301}
4302
d05410f9
DA
4303static enum intel_display_power_domain port_to_power_domain(enum port port)
4304{
4305 switch (port) {
4306 case PORT_A:
4307 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4308 case PORT_B:
4309 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4310 case PORT_C:
4311 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4312 case PORT_D:
4313 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4314 default:
4315 WARN_ON_ONCE(1);
4316 return POWER_DOMAIN_PORT_OTHER;
4317 }
4318}
4319
77d22dca
ID
4320#define for_each_power_domain(domain, mask) \
4321 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4322 if ((1 << (domain)) & (mask))
4323
319be8ae
ID
4324enum intel_display_power_domain
4325intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4326{
4327 struct drm_device *dev = intel_encoder->base.dev;
4328 struct intel_digital_port *intel_dig_port;
4329
4330 switch (intel_encoder->type) {
4331 case INTEL_OUTPUT_UNKNOWN:
4332 /* Only DDI platforms should ever use this output type */
4333 WARN_ON_ONCE(!HAS_DDI(dev));
4334 case INTEL_OUTPUT_DISPLAYPORT:
4335 case INTEL_OUTPUT_HDMI:
4336 case INTEL_OUTPUT_EDP:
4337 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4338 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4339 case INTEL_OUTPUT_ANALOG:
4340 return POWER_DOMAIN_PORT_CRT;
4341 case INTEL_OUTPUT_DSI:
4342 return POWER_DOMAIN_PORT_DSI;
4343 default:
4344 return POWER_DOMAIN_PORT_OTHER;
4345 }
4346}
4347
4348static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4349{
319be8ae
ID
4350 struct drm_device *dev = crtc->dev;
4351 struct intel_encoder *intel_encoder;
4352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4353 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4354 unsigned long mask;
4355 enum transcoder transcoder;
4356
4357 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4358
4359 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4360 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4361 if (intel_crtc->config.pch_pfit.enabled ||
4362 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4363 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4364
319be8ae
ID
4365 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4366 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4367
77d22dca
ID
4368 return mask;
4369}
4370
4371void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4372 bool enable)
4373{
4374 if (dev_priv->power_domains.init_power_on == enable)
4375 return;
4376
4377 if (enable)
4378 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4379 else
4380 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4381
4382 dev_priv->power_domains.init_power_on = enable;
4383}
4384
4385static void modeset_update_crtc_power_domains(struct drm_device *dev)
4386{
4387 struct drm_i915_private *dev_priv = dev->dev_private;
4388 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4389 struct intel_crtc *crtc;
4390
4391 /*
4392 * First get all needed power domains, then put all unneeded, to avoid
4393 * any unnecessary toggling of the power wells.
4394 */
d3fcc808 4395 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4396 enum intel_display_power_domain domain;
4397
4398 if (!crtc->base.enabled)
4399 continue;
4400
319be8ae 4401 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4402
4403 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4404 intel_display_power_get(dev_priv, domain);
4405 }
4406
d3fcc808 4407 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4408 enum intel_display_power_domain domain;
4409
4410 for_each_power_domain(domain, crtc->enabled_power_domains)
4411 intel_display_power_put(dev_priv, domain);
4412
4413 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4414 }
4415
4416 intel_display_set_init_power(dev_priv, false);
4417}
4418
dfcab17e 4419/* returns HPLL frequency in kHz */
f8bf63fd 4420static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4421{
586f49dc 4422 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4423
586f49dc
JB
4424 /* Obtain SKU information */
4425 mutex_lock(&dev_priv->dpio_lock);
4426 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4427 CCK_FUSE_HPLL_FREQ_MASK;
4428 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4429
dfcab17e 4430 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4431}
4432
f8bf63fd
VS
4433static void vlv_update_cdclk(struct drm_device *dev)
4434{
4435 struct drm_i915_private *dev_priv = dev->dev_private;
4436
4437 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4438 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4439 dev_priv->vlv_cdclk_freq);
4440
4441 /*
4442 * Program the gmbus_freq based on the cdclk frequency.
4443 * BSpec erroneously claims we should aim for 4MHz, but
4444 * in fact 1MHz is the correct frequency.
4445 */
4446 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
30a970c6
JB
4447}
4448
4449/* Adjust CDclk dividers to allow high res or save power if possible */
4450static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4451{
4452 struct drm_i915_private *dev_priv = dev->dev_private;
4453 u32 val, cmd;
4454
d197b7d3 4455 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4456
dfcab17e 4457 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4458 cmd = 2;
dfcab17e 4459 else if (cdclk == 266667)
30a970c6
JB
4460 cmd = 1;
4461 else
4462 cmd = 0;
4463
4464 mutex_lock(&dev_priv->rps.hw_lock);
4465 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4466 val &= ~DSPFREQGUAR_MASK;
4467 val |= (cmd << DSPFREQGUAR_SHIFT);
4468 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4469 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4470 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4471 50)) {
4472 DRM_ERROR("timed out waiting for CDclk change\n");
4473 }
4474 mutex_unlock(&dev_priv->rps.hw_lock);
4475
dfcab17e 4476 if (cdclk == 400000) {
30a970c6
JB
4477 u32 divider, vco;
4478
4479 vco = valleyview_get_vco(dev_priv);
dfcab17e 4480 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4481
4482 mutex_lock(&dev_priv->dpio_lock);
4483 /* adjust cdclk divider */
4484 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4485 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4486 val |= divider;
4487 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4488
4489 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4490 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4491 50))
4492 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4493 mutex_unlock(&dev_priv->dpio_lock);
4494 }
4495
4496 mutex_lock(&dev_priv->dpio_lock);
4497 /* adjust self-refresh exit latency value */
4498 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4499 val &= ~0x7f;
4500
4501 /*
4502 * For high bandwidth configs, we set a higher latency in the bunit
4503 * so that the core display fetch happens in time to avoid underruns.
4504 */
dfcab17e 4505 if (cdclk == 400000)
30a970c6
JB
4506 val |= 4500 / 250; /* 4.5 usec */
4507 else
4508 val |= 3000 / 250; /* 3.0 usec */
4509 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4510 mutex_unlock(&dev_priv->dpio_lock);
4511
f8bf63fd 4512 vlv_update_cdclk(dev);
30a970c6
JB
4513}
4514
4515static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4516 int max_pixclk)
4517{
29dc7ef3
VS
4518 int vco = valleyview_get_vco(dev_priv);
4519 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4520
30a970c6
JB
4521 /*
4522 * Really only a few cases to deal with, as only 4 CDclks are supported:
4523 * 200MHz
4524 * 267MHz
29dc7ef3 4525 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4526 * 400MHz
4527 * So we check to see whether we're above 90% of the lower bin and
4528 * adjust if needed.
e37c67a1
VS
4529 *
4530 * We seem to get an unstable or solid color picture at 200MHz.
4531 * Not sure what's wrong. For now use 200MHz only when all pipes
4532 * are off.
30a970c6 4533 */
29dc7ef3 4534 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4535 return 400000;
4536 else if (max_pixclk > 266667*9/10)
29dc7ef3 4537 return freq_320;
e37c67a1 4538 else if (max_pixclk > 0)
dfcab17e 4539 return 266667;
e37c67a1
VS
4540 else
4541 return 200000;
30a970c6
JB
4542}
4543
2f2d7aa1
VS
4544/* compute the max pixel clock for new configuration */
4545static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4546{
4547 struct drm_device *dev = dev_priv->dev;
4548 struct intel_crtc *intel_crtc;
4549 int max_pixclk = 0;
4550
d3fcc808 4551 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4552 if (intel_crtc->new_enabled)
30a970c6 4553 max_pixclk = max(max_pixclk,
2f2d7aa1 4554 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4555 }
4556
4557 return max_pixclk;
4558}
4559
4560static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4561 unsigned *prepare_pipes)
30a970c6
JB
4562{
4563 struct drm_i915_private *dev_priv = dev->dev_private;
4564 struct intel_crtc *intel_crtc;
2f2d7aa1 4565 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4566
d60c4473
ID
4567 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4568 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4569 return;
4570
2f2d7aa1 4571 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4572 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4573 if (intel_crtc->base.enabled)
4574 *prepare_pipes |= (1 << intel_crtc->pipe);
4575}
4576
4577static void valleyview_modeset_global_resources(struct drm_device *dev)
4578{
4579 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4580 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4581 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4582
d60c4473 4583 if (req_cdclk != dev_priv->vlv_cdclk_freq)
30a970c6 4584 valleyview_set_cdclk(dev, req_cdclk);
77961eb9 4585 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4586}
4587
89b667f8
JB
4588static void valleyview_crtc_enable(struct drm_crtc *crtc)
4589{
4590 struct drm_device *dev = crtc->dev;
5b18e57c 4591 struct drm_i915_private *dev_priv = dev->dev_private;
89b667f8
JB
4592 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4593 struct intel_encoder *encoder;
4594 int pipe = intel_crtc->pipe;
5b18e57c 4595 int plane = intel_crtc->plane;
23538ef1 4596 bool is_dsi;
5b18e57c 4597 u32 dspcntr;
89b667f8
JB
4598
4599 WARN_ON(!crtc->enabled);
4600
4601 if (intel_crtc->active)
4602 return;
4603
8525a235
SK
4604 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4605
4606 if (!is_dsi && !IS_CHERRYVIEW(dev))
4607 vlv_prepare_pll(intel_crtc);
bdd4b6a6 4608
5b18e57c
DV
4609 /* Set up the display plane register */
4610 dspcntr = DISPPLANE_GAMMA_ENABLE;
4611
4612 if (intel_crtc->config.has_dp_encoder)
4613 intel_dp_set_m_n(intel_crtc);
4614
4615 intel_set_pipe_timings(intel_crtc);
4616
4617 /* pipesrc and dspsize control the size that is scaled from,
4618 * which should always be the user's requested size.
4619 */
4620 I915_WRITE(DSPSIZE(plane),
4621 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4622 (intel_crtc->config.pipe_src_w - 1));
4623 I915_WRITE(DSPPOS(plane), 0);
4624
4625 i9xx_set_pipeconf(intel_crtc);
4626
4627 I915_WRITE(DSPCNTR(plane), dspcntr);
4628 POSTING_READ(DSPCNTR(plane));
4629
4630 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4631 crtc->x, crtc->y);
4632
89b667f8 4633 intel_crtc->active = true;
89b667f8 4634
4a3436e8
VS
4635 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4636
89b667f8
JB
4637 for_each_encoder_on_crtc(dev, crtc, encoder)
4638 if (encoder->pre_pll_enable)
4639 encoder->pre_pll_enable(encoder);
4640
9d556c99
CML
4641 if (!is_dsi) {
4642 if (IS_CHERRYVIEW(dev))
4643 chv_enable_pll(intel_crtc);
4644 else
4645 vlv_enable_pll(intel_crtc);
4646 }
89b667f8
JB
4647
4648 for_each_encoder_on_crtc(dev, crtc, encoder)
4649 if (encoder->pre_enable)
4650 encoder->pre_enable(encoder);
4651
2dd24552
JB
4652 i9xx_pfit_enable(intel_crtc);
4653
63cbb074
VS
4654 intel_crtc_load_lut(crtc);
4655
f37fcc2a 4656 intel_update_watermarks(crtc);
e1fdc473 4657 intel_enable_pipe(intel_crtc);
be6a6f8e 4658
5004945f
JN
4659 for_each_encoder_on_crtc(dev, crtc, encoder)
4660 encoder->enable(encoder);
9ab0460b
VS
4661
4662 intel_crtc_enable_planes(crtc);
d40d9187 4663
56b80e1f
VS
4664 /* Underruns don't raise interrupts, so check manually. */
4665 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4666}
4667
f13c2ef3
DV
4668static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4669{
4670 struct drm_device *dev = crtc->base.dev;
4671 struct drm_i915_private *dev_priv = dev->dev_private;
4672
4673 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4674 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4675}
4676
0b8765c6 4677static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4678{
4679 struct drm_device *dev = crtc->dev;
5b18e57c 4680 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 4681 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4682 struct intel_encoder *encoder;
79e53945 4683 int pipe = intel_crtc->pipe;
5b18e57c
DV
4684 int plane = intel_crtc->plane;
4685 u32 dspcntr;
79e53945 4686
08a48469
DV
4687 WARN_ON(!crtc->enabled);
4688
f7abfe8b
CW
4689 if (intel_crtc->active)
4690 return;
4691
f13c2ef3
DV
4692 i9xx_set_pll_dividers(intel_crtc);
4693
5b18e57c
DV
4694 /* Set up the display plane register */
4695 dspcntr = DISPPLANE_GAMMA_ENABLE;
4696
4697 if (pipe == 0)
4698 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4699 else
4700 dspcntr |= DISPPLANE_SEL_PIPE_B;
4701
4702 if (intel_crtc->config.has_dp_encoder)
4703 intel_dp_set_m_n(intel_crtc);
4704
4705 intel_set_pipe_timings(intel_crtc);
4706
4707 /* pipesrc and dspsize control the size that is scaled from,
4708 * which should always be the user's requested size.
4709 */
4710 I915_WRITE(DSPSIZE(plane),
4711 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4712 (intel_crtc->config.pipe_src_w - 1));
4713 I915_WRITE(DSPPOS(plane), 0);
4714
4715 i9xx_set_pipeconf(intel_crtc);
4716
4717 I915_WRITE(DSPCNTR(plane), dspcntr);
4718 POSTING_READ(DSPCNTR(plane));
4719
4720 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4721 crtc->x, crtc->y);
4722
f7abfe8b 4723 intel_crtc->active = true;
6b383a7f 4724
4a3436e8
VS
4725 if (!IS_GEN2(dev))
4726 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4727
9d6d9f19
MK
4728 for_each_encoder_on_crtc(dev, crtc, encoder)
4729 if (encoder->pre_enable)
4730 encoder->pre_enable(encoder);
4731
f6736a1a
DV
4732 i9xx_enable_pll(intel_crtc);
4733
2dd24552
JB
4734 i9xx_pfit_enable(intel_crtc);
4735
63cbb074
VS
4736 intel_crtc_load_lut(crtc);
4737
f37fcc2a 4738 intel_update_watermarks(crtc);
e1fdc473 4739 intel_enable_pipe(intel_crtc);
be6a6f8e 4740
fa5c73b1
DV
4741 for_each_encoder_on_crtc(dev, crtc, encoder)
4742 encoder->enable(encoder);
9ab0460b
VS
4743
4744 intel_crtc_enable_planes(crtc);
d40d9187 4745
4a3436e8
VS
4746 /*
4747 * Gen2 reports pipe underruns whenever all planes are disabled.
4748 * So don't enable underrun reporting before at least some planes
4749 * are enabled.
4750 * FIXME: Need to fix the logic to work when we turn off all planes
4751 * but leave the pipe running.
4752 */
4753 if (IS_GEN2(dev))
4754 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4755
56b80e1f
VS
4756 /* Underruns don't raise interrupts, so check manually. */
4757 i9xx_check_fifo_underruns(dev);
0b8765c6 4758}
79e53945 4759
87476d63
DV
4760static void i9xx_pfit_disable(struct intel_crtc *crtc)
4761{
4762 struct drm_device *dev = crtc->base.dev;
4763 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4764
328d8e82
DV
4765 if (!crtc->config.gmch_pfit.control)
4766 return;
87476d63 4767
328d8e82 4768 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4769
328d8e82
DV
4770 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4771 I915_READ(PFIT_CONTROL));
4772 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4773}
4774
0b8765c6
JB
4775static void i9xx_crtc_disable(struct drm_crtc *crtc)
4776{
4777 struct drm_device *dev = crtc->dev;
4778 struct drm_i915_private *dev_priv = dev->dev_private;
4779 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4780 struct intel_encoder *encoder;
0b8765c6 4781 int pipe = intel_crtc->pipe;
ef9c3aee 4782
f7abfe8b
CW
4783 if (!intel_crtc->active)
4784 return;
4785
4a3436e8
VS
4786 /*
4787 * Gen2 reports pipe underruns whenever all planes are disabled.
4788 * So diasble underrun reporting before all the planes get disabled.
4789 * FIXME: Need to fix the logic to work when we turn off all planes
4790 * but leave the pipe running.
4791 */
4792 if (IS_GEN2(dev))
4793 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4794
564ed191
ID
4795 /*
4796 * Vblank time updates from the shadow to live plane control register
4797 * are blocked if the memory self-refresh mode is active at that
4798 * moment. So to make sure the plane gets truly disabled, disable
4799 * first the self-refresh mode. The self-refresh enable bit in turn
4800 * will be checked/applied by the HW only at the next frame start
4801 * event which is after the vblank start event, so we need to have a
4802 * wait-for-vblank between disabling the plane and the pipe.
4803 */
4804 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4805 intel_crtc_disable_planes(crtc);
4806
ea9d758d
DV
4807 for_each_encoder_on_crtc(dev, crtc, encoder)
4808 encoder->disable(encoder);
4809
6304cd91
VS
4810 /*
4811 * On gen2 planes are double buffered but the pipe isn't, so we must
4812 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4813 * We also need to wait on all gmch platforms because of the
4814 * self-refresh mode constraint explained above.
6304cd91 4815 */
564ed191 4816 intel_wait_for_vblank(dev, pipe);
6304cd91 4817
b24e7179 4818 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4819
87476d63 4820 i9xx_pfit_disable(intel_crtc);
24a1f16d 4821
89b667f8
JB
4822 for_each_encoder_on_crtc(dev, crtc, encoder)
4823 if (encoder->post_disable)
4824 encoder->post_disable(encoder);
4825
076ed3b2
CML
4826 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4827 if (IS_CHERRYVIEW(dev))
4828 chv_disable_pll(dev_priv, pipe);
4829 else if (IS_VALLEYVIEW(dev))
4830 vlv_disable_pll(dev_priv, pipe);
4831 else
4832 i9xx_disable_pll(dev_priv, pipe);
4833 }
0b8765c6 4834
4a3436e8
VS
4835 if (!IS_GEN2(dev))
4836 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4837
f7abfe8b 4838 intel_crtc->active = false;
46ba614c 4839 intel_update_watermarks(crtc);
f37fcc2a 4840
efa9624e 4841 mutex_lock(&dev->struct_mutex);
6b383a7f 4842 intel_update_fbc(dev);
efa9624e 4843 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4844}
4845
ee7b9f93
JB
4846static void i9xx_crtc_off(struct drm_crtc *crtc)
4847{
4848}
4849
976f8a20
DV
4850static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4851 bool enabled)
2c07245f
ZW
4852{
4853 struct drm_device *dev = crtc->dev;
4854 struct drm_i915_master_private *master_priv;
4855 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4856 int pipe = intel_crtc->pipe;
79e53945
JB
4857
4858 if (!dev->primary->master)
4859 return;
4860
4861 master_priv = dev->primary->master->driver_priv;
4862 if (!master_priv->sarea_priv)
4863 return;
4864
79e53945
JB
4865 switch (pipe) {
4866 case 0:
4867 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4868 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4869 break;
4870 case 1:
4871 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4872 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4873 break;
4874 default:
9db4a9c7 4875 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4876 break;
4877 }
79e53945
JB
4878}
4879
976f8a20
DV
4880/**
4881 * Sets the power management mode of the pipe and plane.
4882 */
4883void intel_crtc_update_dpms(struct drm_crtc *crtc)
4884{
4885 struct drm_device *dev = crtc->dev;
4886 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4887 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
976f8a20 4888 struct intel_encoder *intel_encoder;
0e572fe7
DV
4889 enum intel_display_power_domain domain;
4890 unsigned long domains;
976f8a20
DV
4891 bool enable = false;
4892
4893 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4894 enable |= intel_encoder->connectors_active;
4895
0e572fe7
DV
4896 if (enable) {
4897 if (!intel_crtc->active) {
4898 /*
4899 * FIXME: DDI plls and relevant code isn't converted
4900 * yet, so do runtime PM for DPMS only for all other
4901 * platforms for now.
4902 */
4903 if (!HAS_DDI(dev)) {
4904 domains = get_crtc_power_domains(crtc);
4905 for_each_power_domain(domain, domains)
4906 intel_display_power_get(dev_priv, domain);
4907 intel_crtc->enabled_power_domains = domains;
4908 }
4909
4910 dev_priv->display.crtc_enable(crtc);
4911 }
4912 } else {
4913 if (intel_crtc->active) {
4914 dev_priv->display.crtc_disable(crtc);
4915
4916 if (!HAS_DDI(dev)) {
4917 domains = intel_crtc->enabled_power_domains;
4918 for_each_power_domain(domain, domains)
4919 intel_display_power_put(dev_priv, domain);
4920 intel_crtc->enabled_power_domains = 0;
4921 }
4922 }
4923 }
976f8a20
DV
4924
4925 intel_crtc_update_sarea(crtc, enable);
4926}
4927
cdd59983
CW
4928static void intel_crtc_disable(struct drm_crtc *crtc)
4929{
cdd59983 4930 struct drm_device *dev = crtc->dev;
976f8a20 4931 struct drm_connector *connector;
ee7b9f93 4932 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 4933 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 4934 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4935
976f8a20
DV
4936 /* crtc should still be enabled when we disable it. */
4937 WARN_ON(!crtc->enabled);
4938
4939 dev_priv->display.crtc_disable(crtc);
4940 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4941 dev_priv->display.off(crtc);
4942
931872fc 4943 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
a071fa00
DV
4944 assert_cursor_disabled(dev_priv, pipe);
4945 assert_pipe_disabled(dev->dev_private, pipe);
cdd59983 4946
f4510a27 4947 if (crtc->primary->fb) {
cdd59983 4948 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4949 intel_unpin_fb_obj(old_obj);
4950 i915_gem_track_fb(old_obj, NULL,
4951 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4952 mutex_unlock(&dev->struct_mutex);
f4510a27 4953 crtc->primary->fb = NULL;
976f8a20
DV
4954 }
4955
4956 /* Update computed state. */
4957 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4958 if (!connector->encoder || !connector->encoder->crtc)
4959 continue;
4960
4961 if (connector->encoder->crtc != crtc)
4962 continue;
4963
4964 connector->dpms = DRM_MODE_DPMS_OFF;
4965 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
4966 }
4967}
4968
ea5b213a 4969void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 4970{
4ef69c7a 4971 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 4972
ea5b213a
CW
4973 drm_encoder_cleanup(encoder);
4974 kfree(intel_encoder);
7e7d76c3
JB
4975}
4976
9237329d 4977/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
4978 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4979 * state of the entire output pipe. */
9237329d 4980static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 4981{
5ab432ef
DV
4982 if (mode == DRM_MODE_DPMS_ON) {
4983 encoder->connectors_active = true;
4984
b2cabb0e 4985 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
4986 } else {
4987 encoder->connectors_active = false;
4988
b2cabb0e 4989 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 4990 }
79e53945
JB
4991}
4992
0a91ca29
DV
4993/* Cross check the actual hw state with our own modeset state tracking (and it's
4994 * internal consistency). */
b980514c 4995static void intel_connector_check_state(struct intel_connector *connector)
79e53945 4996{
0a91ca29
DV
4997 if (connector->get_hw_state(connector)) {
4998 struct intel_encoder *encoder = connector->encoder;
4999 struct drm_crtc *crtc;
5000 bool encoder_enabled;
5001 enum pipe pipe;
5002
5003 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5004 connector->base.base.id,
c23cc417 5005 connector->base.name);
0a91ca29
DV
5006
5007 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5008 "wrong connector dpms state\n");
5009 WARN(connector->base.encoder != &encoder->base,
5010 "active connector not linked to encoder\n");
0a91ca29 5011
36cd7444
DA
5012 if (encoder) {
5013 WARN(!encoder->connectors_active,
5014 "encoder->connectors_active not set\n");
5015
5016 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5017 WARN(!encoder_enabled, "encoder not enabled\n");
5018 if (WARN_ON(!encoder->base.crtc))
5019 return;
0a91ca29 5020
36cd7444 5021 crtc = encoder->base.crtc;
0a91ca29 5022
36cd7444
DA
5023 WARN(!crtc->enabled, "crtc not enabled\n");
5024 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5025 WARN(pipe != to_intel_crtc(crtc)->pipe,
5026 "encoder active on the wrong pipe\n");
5027 }
0a91ca29 5028 }
79e53945
JB
5029}
5030
5ab432ef
DV
5031/* Even simpler default implementation, if there's really no special case to
5032 * consider. */
5033void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5034{
5ab432ef
DV
5035 /* All the simple cases only support two dpms states. */
5036 if (mode != DRM_MODE_DPMS_ON)
5037 mode = DRM_MODE_DPMS_OFF;
d4270e57 5038
5ab432ef
DV
5039 if (mode == connector->dpms)
5040 return;
5041
5042 connector->dpms = mode;
5043
5044 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5045 if (connector->encoder)
5046 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5047
b980514c 5048 intel_modeset_check_state(connector->dev);
79e53945
JB
5049}
5050
f0947c37
DV
5051/* Simple connector->get_hw_state implementation for encoders that support only
5052 * one connector and no cloning and hence the encoder state determines the state
5053 * of the connector. */
5054bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5055{
24929352 5056 enum pipe pipe = 0;
f0947c37 5057 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5058
f0947c37 5059 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5060}
5061
1857e1da
DV
5062static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5063 struct intel_crtc_config *pipe_config)
5064{
5065 struct drm_i915_private *dev_priv = dev->dev_private;
5066 struct intel_crtc *pipe_B_crtc =
5067 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5068
5069 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5070 pipe_name(pipe), pipe_config->fdi_lanes);
5071 if (pipe_config->fdi_lanes > 4) {
5072 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5073 pipe_name(pipe), pipe_config->fdi_lanes);
5074 return false;
5075 }
5076
bafb6553 5077 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5078 if (pipe_config->fdi_lanes > 2) {
5079 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5080 pipe_config->fdi_lanes);
5081 return false;
5082 } else {
5083 return true;
5084 }
5085 }
5086
5087 if (INTEL_INFO(dev)->num_pipes == 2)
5088 return true;
5089
5090 /* Ivybridge 3 pipe is really complicated */
5091 switch (pipe) {
5092 case PIPE_A:
5093 return true;
5094 case PIPE_B:
5095 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5096 pipe_config->fdi_lanes > 2) {
5097 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5098 pipe_name(pipe), pipe_config->fdi_lanes);
5099 return false;
5100 }
5101 return true;
5102 case PIPE_C:
1e833f40 5103 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5104 pipe_B_crtc->config.fdi_lanes <= 2) {
5105 if (pipe_config->fdi_lanes > 2) {
5106 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5107 pipe_name(pipe), pipe_config->fdi_lanes);
5108 return false;
5109 }
5110 } else {
5111 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5112 return false;
5113 }
5114 return true;
5115 default:
5116 BUG();
5117 }
5118}
5119
e29c22c0
DV
5120#define RETRY 1
5121static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5122 struct intel_crtc_config *pipe_config)
877d48d5 5123{
1857e1da 5124 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5125 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5126 int lane, link_bw, fdi_dotclock;
e29c22c0 5127 bool setup_ok, needs_recompute = false;
877d48d5 5128
e29c22c0 5129retry:
877d48d5
DV
5130 /* FDI is a binary signal running at ~2.7GHz, encoding
5131 * each output octet as 10 bits. The actual frequency
5132 * is stored as a divider into a 100MHz clock, and the
5133 * mode pixel clock is stored in units of 1KHz.
5134 * Hence the bw of each lane in terms of the mode signal
5135 * is:
5136 */
5137 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5138
241bfc38 5139 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5140
2bd89a07 5141 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5142 pipe_config->pipe_bpp);
5143
5144 pipe_config->fdi_lanes = lane;
5145
2bd89a07 5146 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5147 link_bw, &pipe_config->fdi_m_n);
1857e1da 5148
e29c22c0
DV
5149 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5150 intel_crtc->pipe, pipe_config);
5151 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5152 pipe_config->pipe_bpp -= 2*3;
5153 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5154 pipe_config->pipe_bpp);
5155 needs_recompute = true;
5156 pipe_config->bw_constrained = true;
5157
5158 goto retry;
5159 }
5160
5161 if (needs_recompute)
5162 return RETRY;
5163
5164 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5165}
5166
42db64ef
PZ
5167static void hsw_compute_ips_config(struct intel_crtc *crtc,
5168 struct intel_crtc_config *pipe_config)
5169{
d330a953 5170 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5171 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5172 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5173}
5174
a43f6e0f 5175static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5176 struct intel_crtc_config *pipe_config)
79e53945 5177{
a43f6e0f 5178 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5179 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5180
ad3a4479 5181 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5182 if (INTEL_INFO(dev)->gen < 4) {
5183 struct drm_i915_private *dev_priv = dev->dev_private;
5184 int clock_limit =
5185 dev_priv->display.get_display_clock_speed(dev);
5186
5187 /*
5188 * Enable pixel doubling when the dot clock
5189 * is > 90% of the (display) core speed.
5190 *
b397c96b
VS
5191 * GDG double wide on either pipe,
5192 * otherwise pipe A only.
cf532bb2 5193 */
b397c96b 5194 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5195 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5196 clock_limit *= 2;
cf532bb2 5197 pipe_config->double_wide = true;
ad3a4479
VS
5198 }
5199
241bfc38 5200 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5201 return -EINVAL;
2c07245f 5202 }
89749350 5203
1d1d0e27
VS
5204 /*
5205 * Pipe horizontal size must be even in:
5206 * - DVO ganged mode
5207 * - LVDS dual channel mode
5208 * - Double wide pipe
5209 */
5210 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5211 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5212 pipe_config->pipe_src_w &= ~1;
5213
8693a824
DL
5214 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5215 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5216 */
5217 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5218 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5219 return -EINVAL;
44f46b42 5220
bd080ee5 5221 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5222 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5223 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5224 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5225 * for lvds. */
5226 pipe_config->pipe_bpp = 8*3;
5227 }
5228
f5adf94e 5229 if (HAS_IPS(dev))
a43f6e0f
DV
5230 hsw_compute_ips_config(crtc, pipe_config);
5231
12030431
DV
5232 /*
5233 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5234 * old clock survives for now.
5235 */
5236 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5237 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5238
877d48d5 5239 if (pipe_config->has_pch_encoder)
a43f6e0f 5240 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5241
e29c22c0 5242 return 0;
79e53945
JB
5243}
5244
25eb05fc
JB
5245static int valleyview_get_display_clock_speed(struct drm_device *dev)
5246{
d197b7d3
VS
5247 struct drm_i915_private *dev_priv = dev->dev_private;
5248 int vco = valleyview_get_vco(dev_priv);
5249 u32 val;
5250 int divider;
5251
5252 mutex_lock(&dev_priv->dpio_lock);
5253 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5254 mutex_unlock(&dev_priv->dpio_lock);
5255
5256 divider = val & DISPLAY_FREQUENCY_VALUES;
5257
7d007f40
VS
5258 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5259 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5260 "cdclk change in progress\n");
5261
d197b7d3 5262 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5263}
5264
e70236a8
JB
5265static int i945_get_display_clock_speed(struct drm_device *dev)
5266{
5267 return 400000;
5268}
79e53945 5269
e70236a8 5270static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5271{
e70236a8
JB
5272 return 333000;
5273}
79e53945 5274
e70236a8
JB
5275static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5276{
5277 return 200000;
5278}
79e53945 5279
257a7ffc
DV
5280static int pnv_get_display_clock_speed(struct drm_device *dev)
5281{
5282 u16 gcfgc = 0;
5283
5284 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5285
5286 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5287 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5288 return 267000;
5289 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5290 return 333000;
5291 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5292 return 444000;
5293 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5294 return 200000;
5295 default:
5296 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5297 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5298 return 133000;
5299 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5300 return 167000;
5301 }
5302}
5303
e70236a8
JB
5304static int i915gm_get_display_clock_speed(struct drm_device *dev)
5305{
5306 u16 gcfgc = 0;
79e53945 5307
e70236a8
JB
5308 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5309
5310 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5311 return 133000;
5312 else {
5313 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5314 case GC_DISPLAY_CLOCK_333_MHZ:
5315 return 333000;
5316 default:
5317 case GC_DISPLAY_CLOCK_190_200_MHZ:
5318 return 190000;
79e53945 5319 }
e70236a8
JB
5320 }
5321}
5322
5323static int i865_get_display_clock_speed(struct drm_device *dev)
5324{
5325 return 266000;
5326}
5327
5328static int i855_get_display_clock_speed(struct drm_device *dev)
5329{
5330 u16 hpllcc = 0;
5331 /* Assume that the hardware is in the high speed state. This
5332 * should be the default.
5333 */
5334 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5335 case GC_CLOCK_133_200:
5336 case GC_CLOCK_100_200:
5337 return 200000;
5338 case GC_CLOCK_166_250:
5339 return 250000;
5340 case GC_CLOCK_100_133:
79e53945 5341 return 133000;
e70236a8 5342 }
79e53945 5343
e70236a8
JB
5344 /* Shouldn't happen */
5345 return 0;
5346}
79e53945 5347
e70236a8
JB
5348static int i830_get_display_clock_speed(struct drm_device *dev)
5349{
5350 return 133000;
79e53945
JB
5351}
5352
2c07245f 5353static void
a65851af 5354intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5355{
a65851af
VS
5356 while (*num > DATA_LINK_M_N_MASK ||
5357 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5358 *num >>= 1;
5359 *den >>= 1;
5360 }
5361}
5362
a65851af
VS
5363static void compute_m_n(unsigned int m, unsigned int n,
5364 uint32_t *ret_m, uint32_t *ret_n)
5365{
5366 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5367 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5368 intel_reduce_m_n_ratio(ret_m, ret_n);
5369}
5370
e69d0bc1
DV
5371void
5372intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5373 int pixel_clock, int link_clock,
5374 struct intel_link_m_n *m_n)
2c07245f 5375{
e69d0bc1 5376 m_n->tu = 64;
a65851af
VS
5377
5378 compute_m_n(bits_per_pixel * pixel_clock,
5379 link_clock * nlanes * 8,
5380 &m_n->gmch_m, &m_n->gmch_n);
5381
5382 compute_m_n(pixel_clock, link_clock,
5383 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5384}
5385
a7615030
CW
5386static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5387{
d330a953
JN
5388 if (i915.panel_use_ssc >= 0)
5389 return i915.panel_use_ssc != 0;
41aa3448 5390 return dev_priv->vbt.lvds_use_ssc
435793df 5391 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5392}
5393
c65d77d8
JB
5394static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5395{
5396 struct drm_device *dev = crtc->dev;
5397 struct drm_i915_private *dev_priv = dev->dev_private;
5398 int refclk;
5399
a0c4da24 5400 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5401 refclk = 100000;
a0c4da24 5402 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5403 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5404 refclk = dev_priv->vbt.lvds_ssc_freq;
5405 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5406 } else if (!IS_GEN2(dev)) {
5407 refclk = 96000;
5408 } else {
5409 refclk = 48000;
5410 }
5411
5412 return refclk;
5413}
5414
7429e9d4 5415static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5416{
7df00d7a 5417 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5418}
f47709a9 5419
7429e9d4
DV
5420static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5421{
5422 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5423}
5424
f47709a9 5425static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5426 intel_clock_t *reduced_clock)
5427{
f47709a9 5428 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5429 u32 fp, fp2 = 0;
5430
5431 if (IS_PINEVIEW(dev)) {
7429e9d4 5432 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5433 if (reduced_clock)
7429e9d4 5434 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5435 } else {
7429e9d4 5436 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5437 if (reduced_clock)
7429e9d4 5438 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5439 }
5440
8bcc2795 5441 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5442
f47709a9
DV
5443 crtc->lowfreq_avail = false;
5444 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5445 reduced_clock && i915.powersave) {
8bcc2795 5446 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5447 crtc->lowfreq_avail = true;
a7516a05 5448 } else {
8bcc2795 5449 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5450 }
5451}
5452
5e69f97f
CML
5453static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5454 pipe)
89b667f8
JB
5455{
5456 u32 reg_val;
5457
5458 /*
5459 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5460 * and set it to a reasonable value instead.
5461 */
ab3c759a 5462 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5463 reg_val &= 0xffffff00;
5464 reg_val |= 0x00000030;
ab3c759a 5465 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5466
ab3c759a 5467 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5468 reg_val &= 0x8cffffff;
5469 reg_val = 0x8c000000;
ab3c759a 5470 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5471
ab3c759a 5472 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5473 reg_val &= 0xffffff00;
ab3c759a 5474 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5475
ab3c759a 5476 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5477 reg_val &= 0x00ffffff;
5478 reg_val |= 0xb0000000;
ab3c759a 5479 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5480}
5481
b551842d
DV
5482static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5483 struct intel_link_m_n *m_n)
5484{
5485 struct drm_device *dev = crtc->base.dev;
5486 struct drm_i915_private *dev_priv = dev->dev_private;
5487 int pipe = crtc->pipe;
5488
e3b95f1e
DV
5489 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5490 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5491 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5492 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5493}
5494
5495static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5496 struct intel_link_m_n *m_n)
5497{
5498 struct drm_device *dev = crtc->base.dev;
5499 struct drm_i915_private *dev_priv = dev->dev_private;
5500 int pipe = crtc->pipe;
5501 enum transcoder transcoder = crtc->config.cpu_transcoder;
5502
5503 if (INTEL_INFO(dev)->gen >= 5) {
5504 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5505 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5506 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5507 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5508 } else {
e3b95f1e
DV
5509 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5510 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5511 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5512 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5513 }
5514}
5515
03afc4a2
DV
5516static void intel_dp_set_m_n(struct intel_crtc *crtc)
5517{
5518 if (crtc->config.has_pch_encoder)
5519 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5520 else
5521 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5522}
5523
f47709a9 5524static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5525{
5526 u32 dpll, dpll_md;
5527
5528 /*
5529 * Enable DPIO clock input. We should never disable the reference
5530 * clock for pipe B, since VGA hotplug / manual detection depends
5531 * on it.
5532 */
5533 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5534 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5535 /* We should never disable this, set it here for state tracking */
5536 if (crtc->pipe == PIPE_B)
5537 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5538 dpll |= DPLL_VCO_ENABLE;
5539 crtc->config.dpll_hw_state.dpll = dpll;
5540
5541 dpll_md = (crtc->config.pixel_multiplier - 1)
5542 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5543 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5544}
5545
5546static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5547{
f47709a9 5548 struct drm_device *dev = crtc->base.dev;
a0c4da24 5549 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5550 int pipe = crtc->pipe;
bdd4b6a6 5551 u32 mdiv;
a0c4da24 5552 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5553 u32 coreclk, reg_val;
a0c4da24 5554
09153000
DV
5555 mutex_lock(&dev_priv->dpio_lock);
5556
f47709a9
DV
5557 bestn = crtc->config.dpll.n;
5558 bestm1 = crtc->config.dpll.m1;
5559 bestm2 = crtc->config.dpll.m2;
5560 bestp1 = crtc->config.dpll.p1;
5561 bestp2 = crtc->config.dpll.p2;
a0c4da24 5562
89b667f8
JB
5563 /* See eDP HDMI DPIO driver vbios notes doc */
5564
5565 /* PLL B needs special handling */
bdd4b6a6 5566 if (pipe == PIPE_B)
5e69f97f 5567 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5568
5569 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5570 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5571
5572 /* Disable target IRef on PLL */
ab3c759a 5573 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5574 reg_val &= 0x00ffffff;
ab3c759a 5575 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5576
5577 /* Disable fast lock */
ab3c759a 5578 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5579
5580 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5581 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5582 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5583 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5584 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5585
5586 /*
5587 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5588 * but we don't support that).
5589 * Note: don't use the DAC post divider as it seems unstable.
5590 */
5591 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5592 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5593
a0c4da24 5594 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5595 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5596
89b667f8 5597 /* Set HBR and RBR LPF coefficients */
ff9a6750 5598 if (crtc->config.port_clock == 162000 ||
99750bd4 5599 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5600 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5601 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5602 0x009f0003);
89b667f8 5603 else
ab3c759a 5604 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5605 0x00d0000f);
5606
5607 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5608 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5609 /* Use SSC source */
bdd4b6a6 5610 if (pipe == PIPE_A)
ab3c759a 5611 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5612 0x0df40000);
5613 else
ab3c759a 5614 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5615 0x0df70000);
5616 } else { /* HDMI or VGA */
5617 /* Use bend source */
bdd4b6a6 5618 if (pipe == PIPE_A)
ab3c759a 5619 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5620 0x0df70000);
5621 else
ab3c759a 5622 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5623 0x0df40000);
5624 }
a0c4da24 5625
ab3c759a 5626 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5627 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5628 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5629 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5630 coreclk |= 0x01000000;
ab3c759a 5631 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5632
ab3c759a 5633 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5634 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5635}
5636
9d556c99
CML
5637static void chv_update_pll(struct intel_crtc *crtc)
5638{
5639 struct drm_device *dev = crtc->base.dev;
5640 struct drm_i915_private *dev_priv = dev->dev_private;
5641 int pipe = crtc->pipe;
5642 int dpll_reg = DPLL(crtc->pipe);
5643 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5644 u32 loopfilter, intcoeff;
9d556c99
CML
5645 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5646 int refclk;
5647
a11b0703
VS
5648 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5649 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5650 DPLL_VCO_ENABLE;
5651 if (pipe != PIPE_A)
5652 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5653
5654 crtc->config.dpll_hw_state.dpll_md =
5655 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
9d556c99
CML
5656
5657 bestn = crtc->config.dpll.n;
5658 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5659 bestm1 = crtc->config.dpll.m1;
5660 bestm2 = crtc->config.dpll.m2 >> 22;
5661 bestp1 = crtc->config.dpll.p1;
5662 bestp2 = crtc->config.dpll.p2;
5663
5664 /*
5665 * Enable Refclk and SSC
5666 */
a11b0703
VS
5667 I915_WRITE(dpll_reg,
5668 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5669
5670 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5671
9d556c99
CML
5672 /* p1 and p2 divider */
5673 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5674 5 << DPIO_CHV_S1_DIV_SHIFT |
5675 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5676 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5677 1 << DPIO_CHV_K_DIV_SHIFT);
5678
5679 /* Feedback post-divider - m2 */
5680 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5681
5682 /* Feedback refclk divider - n and m1 */
5683 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5684 DPIO_CHV_M1_DIV_BY_2 |
5685 1 << DPIO_CHV_N_DIV_SHIFT);
5686
5687 /* M2 fraction division */
5688 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5689
5690 /* M2 fraction division enable */
5691 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5692 DPIO_CHV_FRAC_DIV_EN |
5693 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5694
5695 /* Loop filter */
5696 refclk = i9xx_get_refclk(&crtc->base, 0);
5697 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5698 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5699 if (refclk == 100000)
5700 intcoeff = 11;
5701 else if (refclk == 38400)
5702 intcoeff = 10;
5703 else
5704 intcoeff = 9;
5705 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5706 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5707
5708 /* AFC Recal */
5709 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5710 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5711 DPIO_AFC_RECAL);
5712
5713 mutex_unlock(&dev_priv->dpio_lock);
5714}
5715
f47709a9
DV
5716static void i9xx_update_pll(struct intel_crtc *crtc,
5717 intel_clock_t *reduced_clock,
eb1cbe48
DV
5718 int num_connectors)
5719{
f47709a9 5720 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5721 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5722 u32 dpll;
5723 bool is_sdvo;
f47709a9 5724 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5725
f47709a9 5726 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5727
f47709a9
DV
5728 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5729 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5730
5731 dpll = DPLL_VGA_MODE_DIS;
5732
f47709a9 5733 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5734 dpll |= DPLLB_MODE_LVDS;
5735 else
5736 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5737
ef1b460d 5738 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5739 dpll |= (crtc->config.pixel_multiplier - 1)
5740 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5741 }
198a037f
DV
5742
5743 if (is_sdvo)
4a33e48d 5744 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5745
f47709a9 5746 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5747 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5748
5749 /* compute bitmask from p1 value */
5750 if (IS_PINEVIEW(dev))
5751 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5752 else {
5753 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5754 if (IS_G4X(dev) && reduced_clock)
5755 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5756 }
5757 switch (clock->p2) {
5758 case 5:
5759 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5760 break;
5761 case 7:
5762 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5763 break;
5764 case 10:
5765 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5766 break;
5767 case 14:
5768 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5769 break;
5770 }
5771 if (INTEL_INFO(dev)->gen >= 4)
5772 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5773
09ede541 5774 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5775 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5776 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5777 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5778 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5779 else
5780 dpll |= PLL_REF_INPUT_DREFCLK;
5781
5782 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5783 crtc->config.dpll_hw_state.dpll = dpll;
5784
eb1cbe48 5785 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5786 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5787 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5788 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5789 }
5790}
5791
f47709a9 5792static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5793 intel_clock_t *reduced_clock,
eb1cbe48
DV
5794 int num_connectors)
5795{
f47709a9 5796 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5797 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5798 u32 dpll;
f47709a9 5799 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5800
f47709a9 5801 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5802
eb1cbe48
DV
5803 dpll = DPLL_VGA_MODE_DIS;
5804
f47709a9 5805 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5806 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5807 } else {
5808 if (clock->p1 == 2)
5809 dpll |= PLL_P1_DIVIDE_BY_TWO;
5810 else
5811 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5812 if (clock->p2 == 4)
5813 dpll |= PLL_P2_DIVIDE_BY_4;
5814 }
5815
4a33e48d
DV
5816 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5817 dpll |= DPLL_DVO_2X_MODE;
5818
f47709a9 5819 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5820 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5821 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5822 else
5823 dpll |= PLL_REF_INPUT_DREFCLK;
5824
5825 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5826 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5827}
5828
8a654f3b 5829static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5830{
5831 struct drm_device *dev = intel_crtc->base.dev;
5832 struct drm_i915_private *dev_priv = dev->dev_private;
5833 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5834 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5835 struct drm_display_mode *adjusted_mode =
5836 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5837 uint32_t crtc_vtotal, crtc_vblank_end;
5838 int vsyncshift = 0;
4d8a62ea
DV
5839
5840 /* We need to be careful not to changed the adjusted mode, for otherwise
5841 * the hw state checker will get angry at the mismatch. */
5842 crtc_vtotal = adjusted_mode->crtc_vtotal;
5843 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5844
609aeaca 5845 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5846 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5847 crtc_vtotal -= 1;
5848 crtc_vblank_end -= 1;
609aeaca
VS
5849
5850 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5851 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5852 else
5853 vsyncshift = adjusted_mode->crtc_hsync_start -
5854 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5855 if (vsyncshift < 0)
5856 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5857 }
5858
5859 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5860 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5861
fe2b8f9d 5862 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5863 (adjusted_mode->crtc_hdisplay - 1) |
5864 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5865 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5866 (adjusted_mode->crtc_hblank_start - 1) |
5867 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5868 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5869 (adjusted_mode->crtc_hsync_start - 1) |
5870 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5871
fe2b8f9d 5872 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5873 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5874 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5875 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5876 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5877 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5878 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5879 (adjusted_mode->crtc_vsync_start - 1) |
5880 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5881
b5e508d4
PZ
5882 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5883 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5884 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5885 * bits. */
5886 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5887 (pipe == PIPE_B || pipe == PIPE_C))
5888 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5889
b0e77b9c
PZ
5890 /* pipesrc controls the size that is scaled from, which should
5891 * always be the user's requested size.
5892 */
5893 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5894 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5895 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5896}
5897
1bd1bd80
DV
5898static void intel_get_pipe_timings(struct intel_crtc *crtc,
5899 struct intel_crtc_config *pipe_config)
5900{
5901 struct drm_device *dev = crtc->base.dev;
5902 struct drm_i915_private *dev_priv = dev->dev_private;
5903 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5904 uint32_t tmp;
5905
5906 tmp = I915_READ(HTOTAL(cpu_transcoder));
5907 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5908 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5909 tmp = I915_READ(HBLANK(cpu_transcoder));
5910 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5911 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5912 tmp = I915_READ(HSYNC(cpu_transcoder));
5913 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5914 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5915
5916 tmp = I915_READ(VTOTAL(cpu_transcoder));
5917 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5918 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5919 tmp = I915_READ(VBLANK(cpu_transcoder));
5920 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5921 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5922 tmp = I915_READ(VSYNC(cpu_transcoder));
5923 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5924 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5925
5926 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5927 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5928 pipe_config->adjusted_mode.crtc_vtotal += 1;
5929 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5930 }
5931
5932 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5933 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5934 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5935
5936 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5937 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
5938}
5939
f6a83288
DV
5940void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5941 struct intel_crtc_config *pipe_config)
babea61d 5942{
f6a83288
DV
5943 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5944 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5945 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5946 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 5947
f6a83288
DV
5948 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5949 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5950 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5951 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 5952
f6a83288 5953 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 5954
f6a83288
DV
5955 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5956 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
5957}
5958
84b046f3
DV
5959static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5960{
5961 struct drm_device *dev = intel_crtc->base.dev;
5962 struct drm_i915_private *dev_priv = dev->dev_private;
5963 uint32_t pipeconf;
5964
9f11a9e4 5965 pipeconf = 0;
84b046f3 5966
67c72a12
DV
5967 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5968 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5969 pipeconf |= PIPECONF_ENABLE;
5970
cf532bb2
VS
5971 if (intel_crtc->config.double_wide)
5972 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 5973
ff9ce46e
DV
5974 /* only g4x and later have fancy bpc/dither controls */
5975 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
5976 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5977 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5978 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 5979 PIPECONF_DITHER_TYPE_SP;
84b046f3 5980
ff9ce46e
DV
5981 switch (intel_crtc->config.pipe_bpp) {
5982 case 18:
5983 pipeconf |= PIPECONF_6BPC;
5984 break;
5985 case 24:
5986 pipeconf |= PIPECONF_8BPC;
5987 break;
5988 case 30:
5989 pipeconf |= PIPECONF_10BPC;
5990 break;
5991 default:
5992 /* Case prevented by intel_choose_pipe_bpp_dither. */
5993 BUG();
84b046f3
DV
5994 }
5995 }
5996
5997 if (HAS_PIPE_CXSR(dev)) {
5998 if (intel_crtc->lowfreq_avail) {
5999 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6000 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6001 } else {
6002 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6003 }
6004 }
6005
efc2cfff
VS
6006 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6007 if (INTEL_INFO(dev)->gen < 4 ||
6008 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6009 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6010 else
6011 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6012 } else
84b046f3
DV
6013 pipeconf |= PIPECONF_PROGRESSIVE;
6014
9f11a9e4
DV
6015 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6016 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6017
84b046f3
DV
6018 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6019 POSTING_READ(PIPECONF(intel_crtc->pipe));
6020}
6021
f564048e 6022static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6023 int x, int y,
94352cf9 6024 struct drm_framebuffer *fb)
79e53945
JB
6025{
6026 struct drm_device *dev = crtc->dev;
6027 struct drm_i915_private *dev_priv = dev->dev_private;
6028 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6029 int refclk, num_connectors = 0;
652c393a 6030 intel_clock_t clock, reduced_clock;
a16af721 6031 bool ok, has_reduced_clock = false;
e9fd1c02 6032 bool is_lvds = false, is_dsi = false;
5eddb70b 6033 struct intel_encoder *encoder;
d4906093 6034 const intel_limit_t *limit;
79e53945 6035
6c2b7c12 6036 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6037 switch (encoder->type) {
79e53945
JB
6038 case INTEL_OUTPUT_LVDS:
6039 is_lvds = true;
6040 break;
e9fd1c02
JN
6041 case INTEL_OUTPUT_DSI:
6042 is_dsi = true;
6043 break;
79e53945 6044 }
43565a06 6045
c751ce4f 6046 num_connectors++;
79e53945
JB
6047 }
6048
f2335330 6049 if (is_dsi)
5b18e57c 6050 return 0;
f2335330
JN
6051
6052 if (!intel_crtc->config.clock_set) {
6053 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6054
e9fd1c02
JN
6055 /*
6056 * Returns a set of divisors for the desired target clock with
6057 * the given refclk, or FALSE. The returned values represent
6058 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6059 * 2) / p1 / p2.
6060 */
6061 limit = intel_limit(crtc, refclk);
6062 ok = dev_priv->display.find_dpll(limit, crtc,
6063 intel_crtc->config.port_clock,
6064 refclk, NULL, &clock);
f2335330 6065 if (!ok) {
e9fd1c02
JN
6066 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6067 return -EINVAL;
6068 }
79e53945 6069
f2335330
JN
6070 if (is_lvds && dev_priv->lvds_downclock_avail) {
6071 /*
6072 * Ensure we match the reduced clock's P to the target
6073 * clock. If the clocks don't match, we can't switch
6074 * the display clock by using the FP0/FP1. In such case
6075 * we will disable the LVDS downclock feature.
6076 */
6077 has_reduced_clock =
6078 dev_priv->display.find_dpll(limit, crtc,
6079 dev_priv->lvds_downclock,
6080 refclk, &clock,
6081 &reduced_clock);
6082 }
6083 /* Compat-code for transition, will disappear. */
f47709a9
DV
6084 intel_crtc->config.dpll.n = clock.n;
6085 intel_crtc->config.dpll.m1 = clock.m1;
6086 intel_crtc->config.dpll.m2 = clock.m2;
6087 intel_crtc->config.dpll.p1 = clock.p1;
6088 intel_crtc->config.dpll.p2 = clock.p2;
6089 }
7026d4ac 6090
e9fd1c02 6091 if (IS_GEN2(dev)) {
8a654f3b 6092 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6093 has_reduced_clock ? &reduced_clock : NULL,
6094 num_connectors);
9d556c99
CML
6095 } else if (IS_CHERRYVIEW(dev)) {
6096 chv_update_pll(intel_crtc);
e9fd1c02 6097 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6098 vlv_update_pll(intel_crtc);
e9fd1c02 6099 } else {
f47709a9 6100 i9xx_update_pll(intel_crtc,
eb1cbe48 6101 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6102 num_connectors);
e9fd1c02 6103 }
79e53945 6104
c8f7a0db 6105 return 0;
f564048e
EA
6106}
6107
2fa2fe9a
DV
6108static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6109 struct intel_crtc_config *pipe_config)
6110{
6111 struct drm_device *dev = crtc->base.dev;
6112 struct drm_i915_private *dev_priv = dev->dev_private;
6113 uint32_t tmp;
6114
dc9e7dec
VS
6115 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6116 return;
6117
2fa2fe9a 6118 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6119 if (!(tmp & PFIT_ENABLE))
6120 return;
2fa2fe9a 6121
06922821 6122 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6123 if (INTEL_INFO(dev)->gen < 4) {
6124 if (crtc->pipe != PIPE_B)
6125 return;
2fa2fe9a
DV
6126 } else {
6127 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6128 return;
6129 }
6130
06922821 6131 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6132 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6133 if (INTEL_INFO(dev)->gen < 5)
6134 pipe_config->gmch_pfit.lvds_border_bits =
6135 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6136}
6137
acbec814
JB
6138static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6139 struct intel_crtc_config *pipe_config)
6140{
6141 struct drm_device *dev = crtc->base.dev;
6142 struct drm_i915_private *dev_priv = dev->dev_private;
6143 int pipe = pipe_config->cpu_transcoder;
6144 intel_clock_t clock;
6145 u32 mdiv;
662c6ecb 6146 int refclk = 100000;
acbec814
JB
6147
6148 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6149 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6150 mutex_unlock(&dev_priv->dpio_lock);
6151
6152 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6153 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6154 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6155 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6156 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6157
f646628b 6158 vlv_clock(refclk, &clock);
acbec814 6159
f646628b
VS
6160 /* clock.dot is the fast clock */
6161 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6162}
6163
1ad292b5
JB
6164static void i9xx_get_plane_config(struct intel_crtc *crtc,
6165 struct intel_plane_config *plane_config)
6166{
6167 struct drm_device *dev = crtc->base.dev;
6168 struct drm_i915_private *dev_priv = dev->dev_private;
6169 u32 val, base, offset;
6170 int pipe = crtc->pipe, plane = crtc->plane;
6171 int fourcc, pixel_format;
6172 int aligned_height;
6173
66e514c1
DA
6174 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6175 if (!crtc->base.primary->fb) {
1ad292b5
JB
6176 DRM_DEBUG_KMS("failed to alloc fb\n");
6177 return;
6178 }
6179
6180 val = I915_READ(DSPCNTR(plane));
6181
6182 if (INTEL_INFO(dev)->gen >= 4)
6183 if (val & DISPPLANE_TILED)
6184 plane_config->tiled = true;
6185
6186 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6187 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6188 crtc->base.primary->fb->pixel_format = fourcc;
6189 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6190 drm_format_plane_cpp(fourcc, 0) * 8;
6191
6192 if (INTEL_INFO(dev)->gen >= 4) {
6193 if (plane_config->tiled)
6194 offset = I915_READ(DSPTILEOFF(plane));
6195 else
6196 offset = I915_READ(DSPLINOFF(plane));
6197 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6198 } else {
6199 base = I915_READ(DSPADDR(plane));
6200 }
6201 plane_config->base = base;
6202
6203 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6204 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6205 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6206
6207 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 6208 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
1ad292b5 6209
66e514c1 6210 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6211 plane_config->tiled);
6212
1267a26b
FF
6213 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6214 aligned_height);
1ad292b5
JB
6215
6216 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6217 pipe, plane, crtc->base.primary->fb->width,
6218 crtc->base.primary->fb->height,
6219 crtc->base.primary->fb->bits_per_pixel, base,
6220 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6221 plane_config->size);
6222
6223}
6224
70b23a98
VS
6225static void chv_crtc_clock_get(struct intel_crtc *crtc,
6226 struct intel_crtc_config *pipe_config)
6227{
6228 struct drm_device *dev = crtc->base.dev;
6229 struct drm_i915_private *dev_priv = dev->dev_private;
6230 int pipe = pipe_config->cpu_transcoder;
6231 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6232 intel_clock_t clock;
6233 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6234 int refclk = 100000;
6235
6236 mutex_lock(&dev_priv->dpio_lock);
6237 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6238 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6239 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6240 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6241 mutex_unlock(&dev_priv->dpio_lock);
6242
6243 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6244 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6245 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6246 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6247 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6248
6249 chv_clock(refclk, &clock);
6250
6251 /* clock.dot is the fast clock */
6252 pipe_config->port_clock = clock.dot / 5;
6253}
6254
0e8ffe1b
DV
6255static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6256 struct intel_crtc_config *pipe_config)
6257{
6258 struct drm_device *dev = crtc->base.dev;
6259 struct drm_i915_private *dev_priv = dev->dev_private;
6260 uint32_t tmp;
6261
b5482bd0
ID
6262 if (!intel_display_power_enabled(dev_priv,
6263 POWER_DOMAIN_PIPE(crtc->pipe)))
6264 return false;
6265
e143a21c 6266 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6267 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6268
0e8ffe1b
DV
6269 tmp = I915_READ(PIPECONF(crtc->pipe));
6270 if (!(tmp & PIPECONF_ENABLE))
6271 return false;
6272
42571aef
VS
6273 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6274 switch (tmp & PIPECONF_BPC_MASK) {
6275 case PIPECONF_6BPC:
6276 pipe_config->pipe_bpp = 18;
6277 break;
6278 case PIPECONF_8BPC:
6279 pipe_config->pipe_bpp = 24;
6280 break;
6281 case PIPECONF_10BPC:
6282 pipe_config->pipe_bpp = 30;
6283 break;
6284 default:
6285 break;
6286 }
6287 }
6288
b5a9fa09
DV
6289 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6290 pipe_config->limited_color_range = true;
6291
282740f7
VS
6292 if (INTEL_INFO(dev)->gen < 4)
6293 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6294
1bd1bd80
DV
6295 intel_get_pipe_timings(crtc, pipe_config);
6296
2fa2fe9a
DV
6297 i9xx_get_pfit_config(crtc, pipe_config);
6298
6c49f241
DV
6299 if (INTEL_INFO(dev)->gen >= 4) {
6300 tmp = I915_READ(DPLL_MD(crtc->pipe));
6301 pipe_config->pixel_multiplier =
6302 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6303 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6304 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6305 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6306 tmp = I915_READ(DPLL(crtc->pipe));
6307 pipe_config->pixel_multiplier =
6308 ((tmp & SDVO_MULTIPLIER_MASK)
6309 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6310 } else {
6311 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6312 * port and will be fixed up in the encoder->get_config
6313 * function. */
6314 pipe_config->pixel_multiplier = 1;
6315 }
8bcc2795
DV
6316 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6317 if (!IS_VALLEYVIEW(dev)) {
6318 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6319 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6320 } else {
6321 /* Mask out read-only status bits. */
6322 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6323 DPLL_PORTC_READY_MASK |
6324 DPLL_PORTB_READY_MASK);
8bcc2795 6325 }
6c49f241 6326
70b23a98
VS
6327 if (IS_CHERRYVIEW(dev))
6328 chv_crtc_clock_get(crtc, pipe_config);
6329 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6330 vlv_crtc_clock_get(crtc, pipe_config);
6331 else
6332 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6333
0e8ffe1b
DV
6334 return true;
6335}
6336
dde86e2d 6337static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6338{
6339 struct drm_i915_private *dev_priv = dev->dev_private;
6340 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 6341 struct intel_encoder *encoder;
74cfd7ac 6342 u32 val, final;
13d83a67 6343 bool has_lvds = false;
199e5d79 6344 bool has_cpu_edp = false;
199e5d79 6345 bool has_panel = false;
99eb6a01
KP
6346 bool has_ck505 = false;
6347 bool can_ssc = false;
13d83a67
JB
6348
6349 /* We need to take the global config into account */
199e5d79
KP
6350 list_for_each_entry(encoder, &mode_config->encoder_list,
6351 base.head) {
6352 switch (encoder->type) {
6353 case INTEL_OUTPUT_LVDS:
6354 has_panel = true;
6355 has_lvds = true;
6356 break;
6357 case INTEL_OUTPUT_EDP:
6358 has_panel = true;
2de6905f 6359 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6360 has_cpu_edp = true;
6361 break;
13d83a67
JB
6362 }
6363 }
6364
99eb6a01 6365 if (HAS_PCH_IBX(dev)) {
41aa3448 6366 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6367 can_ssc = has_ck505;
6368 } else {
6369 has_ck505 = false;
6370 can_ssc = true;
6371 }
6372
2de6905f
ID
6373 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6374 has_panel, has_lvds, has_ck505);
13d83a67
JB
6375
6376 /* Ironlake: try to setup display ref clock before DPLL
6377 * enabling. This is only under driver's control after
6378 * PCH B stepping, previous chipset stepping should be
6379 * ignoring this setting.
6380 */
74cfd7ac
CW
6381 val = I915_READ(PCH_DREF_CONTROL);
6382
6383 /* As we must carefully and slowly disable/enable each source in turn,
6384 * compute the final state we want first and check if we need to
6385 * make any changes at all.
6386 */
6387 final = val;
6388 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6389 if (has_ck505)
6390 final |= DREF_NONSPREAD_CK505_ENABLE;
6391 else
6392 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6393
6394 final &= ~DREF_SSC_SOURCE_MASK;
6395 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6396 final &= ~DREF_SSC1_ENABLE;
6397
6398 if (has_panel) {
6399 final |= DREF_SSC_SOURCE_ENABLE;
6400
6401 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6402 final |= DREF_SSC1_ENABLE;
6403
6404 if (has_cpu_edp) {
6405 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6406 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6407 else
6408 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6409 } else
6410 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6411 } else {
6412 final |= DREF_SSC_SOURCE_DISABLE;
6413 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6414 }
6415
6416 if (final == val)
6417 return;
6418
13d83a67 6419 /* Always enable nonspread source */
74cfd7ac 6420 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6421
99eb6a01 6422 if (has_ck505)
74cfd7ac 6423 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6424 else
74cfd7ac 6425 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6426
199e5d79 6427 if (has_panel) {
74cfd7ac
CW
6428 val &= ~DREF_SSC_SOURCE_MASK;
6429 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6430
199e5d79 6431 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6432 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6433 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6434 val |= DREF_SSC1_ENABLE;
e77166b5 6435 } else
74cfd7ac 6436 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6437
6438 /* Get SSC going before enabling the outputs */
74cfd7ac 6439 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6440 POSTING_READ(PCH_DREF_CONTROL);
6441 udelay(200);
6442
74cfd7ac 6443 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6444
6445 /* Enable CPU source on CPU attached eDP */
199e5d79 6446 if (has_cpu_edp) {
99eb6a01 6447 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6448 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6449 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6450 } else
74cfd7ac 6451 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6452 } else
74cfd7ac 6453 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6454
74cfd7ac 6455 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6456 POSTING_READ(PCH_DREF_CONTROL);
6457 udelay(200);
6458 } else {
6459 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6460
74cfd7ac 6461 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6462
6463 /* Turn off CPU output */
74cfd7ac 6464 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6465
74cfd7ac 6466 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6467 POSTING_READ(PCH_DREF_CONTROL);
6468 udelay(200);
6469
6470 /* Turn off the SSC source */
74cfd7ac
CW
6471 val &= ~DREF_SSC_SOURCE_MASK;
6472 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6473
6474 /* Turn off SSC1 */
74cfd7ac 6475 val &= ~DREF_SSC1_ENABLE;
199e5d79 6476
74cfd7ac 6477 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6478 POSTING_READ(PCH_DREF_CONTROL);
6479 udelay(200);
6480 }
74cfd7ac
CW
6481
6482 BUG_ON(val != final);
13d83a67
JB
6483}
6484
f31f2d55 6485static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6486{
f31f2d55 6487 uint32_t tmp;
dde86e2d 6488
0ff066a9
PZ
6489 tmp = I915_READ(SOUTH_CHICKEN2);
6490 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6491 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6492
0ff066a9
PZ
6493 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6494 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6495 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6496
0ff066a9
PZ
6497 tmp = I915_READ(SOUTH_CHICKEN2);
6498 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6499 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6500
0ff066a9
PZ
6501 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6502 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6503 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6504}
6505
6506/* WaMPhyProgramming:hsw */
6507static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6508{
6509 uint32_t tmp;
dde86e2d
PZ
6510
6511 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6512 tmp &= ~(0xFF << 24);
6513 tmp |= (0x12 << 24);
6514 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6515
dde86e2d
PZ
6516 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6517 tmp |= (1 << 11);
6518 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6519
6520 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6521 tmp |= (1 << 11);
6522 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6523
dde86e2d
PZ
6524 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6525 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6526 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6527
6528 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6529 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6530 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6531
0ff066a9
PZ
6532 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6533 tmp &= ~(7 << 13);
6534 tmp |= (5 << 13);
6535 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6536
0ff066a9
PZ
6537 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6538 tmp &= ~(7 << 13);
6539 tmp |= (5 << 13);
6540 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6541
6542 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6543 tmp &= ~0xFF;
6544 tmp |= 0x1C;
6545 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6546
6547 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6548 tmp &= ~0xFF;
6549 tmp |= 0x1C;
6550 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6551
6552 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6553 tmp &= ~(0xFF << 16);
6554 tmp |= (0x1C << 16);
6555 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6556
6557 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6558 tmp &= ~(0xFF << 16);
6559 tmp |= (0x1C << 16);
6560 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6561
0ff066a9
PZ
6562 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6563 tmp |= (1 << 27);
6564 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6565
0ff066a9
PZ
6566 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6567 tmp |= (1 << 27);
6568 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6569
0ff066a9
PZ
6570 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6571 tmp &= ~(0xF << 28);
6572 tmp |= (4 << 28);
6573 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6574
0ff066a9
PZ
6575 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6576 tmp &= ~(0xF << 28);
6577 tmp |= (4 << 28);
6578 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6579}
6580
2fa86a1f
PZ
6581/* Implements 3 different sequences from BSpec chapter "Display iCLK
6582 * Programming" based on the parameters passed:
6583 * - Sequence to enable CLKOUT_DP
6584 * - Sequence to enable CLKOUT_DP without spread
6585 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6586 */
6587static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6588 bool with_fdi)
f31f2d55
PZ
6589{
6590 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6591 uint32_t reg, tmp;
6592
6593 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6594 with_spread = true;
6595 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6596 with_fdi, "LP PCH doesn't have FDI\n"))
6597 with_fdi = false;
f31f2d55
PZ
6598
6599 mutex_lock(&dev_priv->dpio_lock);
6600
6601 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6602 tmp &= ~SBI_SSCCTL_DISABLE;
6603 tmp |= SBI_SSCCTL_PATHALT;
6604 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6605
6606 udelay(24);
6607
2fa86a1f
PZ
6608 if (with_spread) {
6609 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6610 tmp &= ~SBI_SSCCTL_PATHALT;
6611 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6612
2fa86a1f
PZ
6613 if (with_fdi) {
6614 lpt_reset_fdi_mphy(dev_priv);
6615 lpt_program_fdi_mphy(dev_priv);
6616 }
6617 }
dde86e2d 6618
2fa86a1f
PZ
6619 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6620 SBI_GEN0 : SBI_DBUFF0;
6621 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6622 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6623 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6624
6625 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6626}
6627
47701c3b
PZ
6628/* Sequence to disable CLKOUT_DP */
6629static void lpt_disable_clkout_dp(struct drm_device *dev)
6630{
6631 struct drm_i915_private *dev_priv = dev->dev_private;
6632 uint32_t reg, tmp;
6633
6634 mutex_lock(&dev_priv->dpio_lock);
6635
6636 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6637 SBI_GEN0 : SBI_DBUFF0;
6638 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6639 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6640 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6641
6642 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6643 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6644 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6645 tmp |= SBI_SSCCTL_PATHALT;
6646 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6647 udelay(32);
6648 }
6649 tmp |= SBI_SSCCTL_DISABLE;
6650 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6651 }
6652
6653 mutex_unlock(&dev_priv->dpio_lock);
6654}
6655
bf8fa3d3
PZ
6656static void lpt_init_pch_refclk(struct drm_device *dev)
6657{
6658 struct drm_mode_config *mode_config = &dev->mode_config;
6659 struct intel_encoder *encoder;
6660 bool has_vga = false;
6661
6662 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6663 switch (encoder->type) {
6664 case INTEL_OUTPUT_ANALOG:
6665 has_vga = true;
6666 break;
6667 }
6668 }
6669
47701c3b
PZ
6670 if (has_vga)
6671 lpt_enable_clkout_dp(dev, true, true);
6672 else
6673 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6674}
6675
dde86e2d
PZ
6676/*
6677 * Initialize reference clocks when the driver loads
6678 */
6679void intel_init_pch_refclk(struct drm_device *dev)
6680{
6681 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6682 ironlake_init_pch_refclk(dev);
6683 else if (HAS_PCH_LPT(dev))
6684 lpt_init_pch_refclk(dev);
6685}
6686
d9d444cb
JB
6687static int ironlake_get_refclk(struct drm_crtc *crtc)
6688{
6689 struct drm_device *dev = crtc->dev;
6690 struct drm_i915_private *dev_priv = dev->dev_private;
6691 struct intel_encoder *encoder;
d9d444cb
JB
6692 int num_connectors = 0;
6693 bool is_lvds = false;
6694
6c2b7c12 6695 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6696 switch (encoder->type) {
6697 case INTEL_OUTPUT_LVDS:
6698 is_lvds = true;
6699 break;
d9d444cb
JB
6700 }
6701 num_connectors++;
6702 }
6703
6704 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6705 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6706 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6707 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6708 }
6709
6710 return 120000;
6711}
6712
6ff93609 6713static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6714{
c8203565 6715 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6716 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6717 int pipe = intel_crtc->pipe;
c8203565
PZ
6718 uint32_t val;
6719
78114071 6720 val = 0;
c8203565 6721
965e0c48 6722 switch (intel_crtc->config.pipe_bpp) {
c8203565 6723 case 18:
dfd07d72 6724 val |= PIPECONF_6BPC;
c8203565
PZ
6725 break;
6726 case 24:
dfd07d72 6727 val |= PIPECONF_8BPC;
c8203565
PZ
6728 break;
6729 case 30:
dfd07d72 6730 val |= PIPECONF_10BPC;
c8203565
PZ
6731 break;
6732 case 36:
dfd07d72 6733 val |= PIPECONF_12BPC;
c8203565
PZ
6734 break;
6735 default:
cc769b62
PZ
6736 /* Case prevented by intel_choose_pipe_bpp_dither. */
6737 BUG();
c8203565
PZ
6738 }
6739
d8b32247 6740 if (intel_crtc->config.dither)
c8203565
PZ
6741 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6742
6ff93609 6743 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6744 val |= PIPECONF_INTERLACED_ILK;
6745 else
6746 val |= PIPECONF_PROGRESSIVE;
6747
50f3b016 6748 if (intel_crtc->config.limited_color_range)
3685a8f3 6749 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6750
c8203565
PZ
6751 I915_WRITE(PIPECONF(pipe), val);
6752 POSTING_READ(PIPECONF(pipe));
6753}
6754
86d3efce
VS
6755/*
6756 * Set up the pipe CSC unit.
6757 *
6758 * Currently only full range RGB to limited range RGB conversion
6759 * is supported, but eventually this should handle various
6760 * RGB<->YCbCr scenarios as well.
6761 */
50f3b016 6762static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6763{
6764 struct drm_device *dev = crtc->dev;
6765 struct drm_i915_private *dev_priv = dev->dev_private;
6766 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6767 int pipe = intel_crtc->pipe;
6768 uint16_t coeff = 0x7800; /* 1.0 */
6769
6770 /*
6771 * TODO: Check what kind of values actually come out of the pipe
6772 * with these coeff/postoff values and adjust to get the best
6773 * accuracy. Perhaps we even need to take the bpc value into
6774 * consideration.
6775 */
6776
50f3b016 6777 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6778 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6779
6780 /*
6781 * GY/GU and RY/RU should be the other way around according
6782 * to BSpec, but reality doesn't agree. Just set them up in
6783 * a way that results in the correct picture.
6784 */
6785 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6786 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6787
6788 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6789 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6790
6791 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6792 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6793
6794 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6795 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6796 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6797
6798 if (INTEL_INFO(dev)->gen > 6) {
6799 uint16_t postoff = 0;
6800
50f3b016 6801 if (intel_crtc->config.limited_color_range)
32cf0cb0 6802 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6803
6804 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6805 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6806 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6807
6808 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6809 } else {
6810 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6811
50f3b016 6812 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6813 mode |= CSC_BLACK_SCREEN_OFFSET;
6814
6815 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6816 }
6817}
6818
6ff93609 6819static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6820{
756f85cf
PZ
6821 struct drm_device *dev = crtc->dev;
6822 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6823 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6824 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6825 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6826 uint32_t val;
6827
3eff4faa 6828 val = 0;
ee2b0b38 6829
756f85cf 6830 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6831 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6832
6ff93609 6833 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6834 val |= PIPECONF_INTERLACED_ILK;
6835 else
6836 val |= PIPECONF_PROGRESSIVE;
6837
702e7a56
PZ
6838 I915_WRITE(PIPECONF(cpu_transcoder), val);
6839 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6840
6841 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6842 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6843
6844 if (IS_BROADWELL(dev)) {
6845 val = 0;
6846
6847 switch (intel_crtc->config.pipe_bpp) {
6848 case 18:
6849 val |= PIPEMISC_DITHER_6_BPC;
6850 break;
6851 case 24:
6852 val |= PIPEMISC_DITHER_8_BPC;
6853 break;
6854 case 30:
6855 val |= PIPEMISC_DITHER_10_BPC;
6856 break;
6857 case 36:
6858 val |= PIPEMISC_DITHER_12_BPC;
6859 break;
6860 default:
6861 /* Case prevented by pipe_config_set_bpp. */
6862 BUG();
6863 }
6864
6865 if (intel_crtc->config.dither)
6866 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6867
6868 I915_WRITE(PIPEMISC(pipe), val);
6869 }
ee2b0b38
PZ
6870}
6871
6591c6e4 6872static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6873 intel_clock_t *clock,
6874 bool *has_reduced_clock,
6875 intel_clock_t *reduced_clock)
6876{
6877 struct drm_device *dev = crtc->dev;
6878 struct drm_i915_private *dev_priv = dev->dev_private;
6879 struct intel_encoder *intel_encoder;
6880 int refclk;
d4906093 6881 const intel_limit_t *limit;
a16af721 6882 bool ret, is_lvds = false;
79e53945 6883
6591c6e4
PZ
6884 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6885 switch (intel_encoder->type) {
79e53945
JB
6886 case INTEL_OUTPUT_LVDS:
6887 is_lvds = true;
6888 break;
79e53945
JB
6889 }
6890 }
6891
d9d444cb 6892 refclk = ironlake_get_refclk(crtc);
79e53945 6893
d4906093
ML
6894 /*
6895 * Returns a set of divisors for the desired target clock with the given
6896 * refclk, or FALSE. The returned values represent the clock equation:
6897 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6898 */
1b894b59 6899 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6900 ret = dev_priv->display.find_dpll(limit, crtc,
6901 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6902 refclk, NULL, clock);
6591c6e4
PZ
6903 if (!ret)
6904 return false;
cda4b7d3 6905
ddc9003c 6906 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6907 /*
6908 * Ensure we match the reduced clock's P to the target clock.
6909 * If the clocks don't match, we can't switch the display clock
6910 * by using the FP0/FP1. In such case we will disable the LVDS
6911 * downclock feature.
6912 */
ee9300bb
DV
6913 *has_reduced_clock =
6914 dev_priv->display.find_dpll(limit, crtc,
6915 dev_priv->lvds_downclock,
6916 refclk, clock,
6917 reduced_clock);
652c393a 6918 }
61e9653f 6919
6591c6e4
PZ
6920 return true;
6921}
6922
d4b1931c
PZ
6923int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6924{
6925 /*
6926 * Account for spread spectrum to avoid
6927 * oversubscribing the link. Max center spread
6928 * is 2.5%; use 5% for safety's sake.
6929 */
6930 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6931 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6932}
6933
7429e9d4 6934static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6935{
7429e9d4 6936 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
6937}
6938
de13a2e3 6939static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 6940 u32 *fp,
9a7c7890 6941 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 6942{
de13a2e3 6943 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
6944 struct drm_device *dev = crtc->dev;
6945 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
6946 struct intel_encoder *intel_encoder;
6947 uint32_t dpll;
6cc5f341 6948 int factor, num_connectors = 0;
09ede541 6949 bool is_lvds = false, is_sdvo = false;
79e53945 6950
de13a2e3
PZ
6951 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6952 switch (intel_encoder->type) {
79e53945
JB
6953 case INTEL_OUTPUT_LVDS:
6954 is_lvds = true;
6955 break;
6956 case INTEL_OUTPUT_SDVO:
7d57382e 6957 case INTEL_OUTPUT_HDMI:
79e53945 6958 is_sdvo = true;
79e53945 6959 break;
79e53945 6960 }
43565a06 6961
c751ce4f 6962 num_connectors++;
79e53945 6963 }
79e53945 6964
c1858123 6965 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
6966 factor = 21;
6967 if (is_lvds) {
6968 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 6969 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 6970 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 6971 factor = 25;
09ede541 6972 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 6973 factor = 20;
c1858123 6974
7429e9d4 6975 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 6976 *fp |= FP_CB_TUNE;
2c07245f 6977
9a7c7890
DV
6978 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6979 *fp2 |= FP_CB_TUNE;
6980
5eddb70b 6981 dpll = 0;
2c07245f 6982
a07d6787
EA
6983 if (is_lvds)
6984 dpll |= DPLLB_MODE_LVDS;
6985 else
6986 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 6987
ef1b460d
DV
6988 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6989 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
6990
6991 if (is_sdvo)
4a33e48d 6992 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 6993 if (intel_crtc->config.has_dp_encoder)
4a33e48d 6994 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 6995
a07d6787 6996 /* compute bitmask from p1 value */
7429e9d4 6997 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 6998 /* also FPA1 */
7429e9d4 6999 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7000
7429e9d4 7001 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7002 case 5:
7003 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7004 break;
7005 case 7:
7006 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7007 break;
7008 case 10:
7009 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7010 break;
7011 case 14:
7012 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7013 break;
79e53945
JB
7014 }
7015
b4c09f3b 7016 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7017 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7018 else
7019 dpll |= PLL_REF_INPUT_DREFCLK;
7020
959e16d6 7021 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7022}
7023
7024static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7025 int x, int y,
7026 struct drm_framebuffer *fb)
7027{
7028 struct drm_device *dev = crtc->dev;
de13a2e3 7029 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7030 int num_connectors = 0;
7031 intel_clock_t clock, reduced_clock;
cbbab5bd 7032 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7033 bool ok, has_reduced_clock = false;
8b47047b 7034 bool is_lvds = false;
de13a2e3 7035 struct intel_encoder *encoder;
e2b78267 7036 struct intel_shared_dpll *pll;
de13a2e3
PZ
7037
7038 for_each_encoder_on_crtc(dev, crtc, encoder) {
7039 switch (encoder->type) {
7040 case INTEL_OUTPUT_LVDS:
7041 is_lvds = true;
7042 break;
de13a2e3
PZ
7043 }
7044
7045 num_connectors++;
a07d6787 7046 }
79e53945 7047
5dc5298b
PZ
7048 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7049 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7050
ff9a6750 7051 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7052 &has_reduced_clock, &reduced_clock);
ee9300bb 7053 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7054 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7055 return -EINVAL;
79e53945 7056 }
f47709a9
DV
7057 /* Compat-code for transition, will disappear. */
7058 if (!intel_crtc->config.clock_set) {
7059 intel_crtc->config.dpll.n = clock.n;
7060 intel_crtc->config.dpll.m1 = clock.m1;
7061 intel_crtc->config.dpll.m2 = clock.m2;
7062 intel_crtc->config.dpll.p1 = clock.p1;
7063 intel_crtc->config.dpll.p2 = clock.p2;
7064 }
79e53945 7065
5dc5298b 7066 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7067 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7068 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7069 if (has_reduced_clock)
7429e9d4 7070 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7071
7429e9d4 7072 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7073 &fp, &reduced_clock,
7074 has_reduced_clock ? &fp2 : NULL);
7075
959e16d6 7076 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7077 intel_crtc->config.dpll_hw_state.fp0 = fp;
7078 if (has_reduced_clock)
7079 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7080 else
7081 intel_crtc->config.dpll_hw_state.fp1 = fp;
7082
b89a1d39 7083 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7084 if (pll == NULL) {
84f44ce7 7085 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7086 pipe_name(intel_crtc->pipe));
4b645f14
JB
7087 return -EINVAL;
7088 }
ee7b9f93 7089 } else
e72f9fbf 7090 intel_put_shared_dpll(intel_crtc);
79e53945 7091
d330a953 7092 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7093 intel_crtc->lowfreq_avail = true;
7094 else
7095 intel_crtc->lowfreq_avail = false;
e2b78267 7096
c8f7a0db 7097 return 0;
79e53945
JB
7098}
7099
eb14cb74
VS
7100static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7101 struct intel_link_m_n *m_n)
7102{
7103 struct drm_device *dev = crtc->base.dev;
7104 struct drm_i915_private *dev_priv = dev->dev_private;
7105 enum pipe pipe = crtc->pipe;
7106
7107 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7108 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7109 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7110 & ~TU_SIZE_MASK;
7111 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7112 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7113 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7114}
7115
7116static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7117 enum transcoder transcoder,
7118 struct intel_link_m_n *m_n)
72419203
DV
7119{
7120 struct drm_device *dev = crtc->base.dev;
7121 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7122 enum pipe pipe = crtc->pipe;
72419203 7123
eb14cb74
VS
7124 if (INTEL_INFO(dev)->gen >= 5) {
7125 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7126 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7127 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7128 & ~TU_SIZE_MASK;
7129 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7130 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7131 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7132 } else {
7133 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7134 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7135 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7136 & ~TU_SIZE_MASK;
7137 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7138 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7139 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7140 }
7141}
7142
7143void intel_dp_get_m_n(struct intel_crtc *crtc,
7144 struct intel_crtc_config *pipe_config)
7145{
7146 if (crtc->config.has_pch_encoder)
7147 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7148 else
7149 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7150 &pipe_config->dp_m_n);
7151}
72419203 7152
eb14cb74
VS
7153static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7154 struct intel_crtc_config *pipe_config)
7155{
7156 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7157 &pipe_config->fdi_m_n);
72419203
DV
7158}
7159
2fa2fe9a
DV
7160static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7161 struct intel_crtc_config *pipe_config)
7162{
7163 struct drm_device *dev = crtc->base.dev;
7164 struct drm_i915_private *dev_priv = dev->dev_private;
7165 uint32_t tmp;
7166
7167 tmp = I915_READ(PF_CTL(crtc->pipe));
7168
7169 if (tmp & PF_ENABLE) {
fd4daa9c 7170 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7171 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7172 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7173
7174 /* We currently do not free assignements of panel fitters on
7175 * ivb/hsw (since we don't use the higher upscaling modes which
7176 * differentiates them) so just WARN about this case for now. */
7177 if (IS_GEN7(dev)) {
7178 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7179 PF_PIPE_SEL_IVB(crtc->pipe));
7180 }
2fa2fe9a 7181 }
79e53945
JB
7182}
7183
4c6baa59
JB
7184static void ironlake_get_plane_config(struct intel_crtc *crtc,
7185 struct intel_plane_config *plane_config)
7186{
7187 struct drm_device *dev = crtc->base.dev;
7188 struct drm_i915_private *dev_priv = dev->dev_private;
7189 u32 val, base, offset;
7190 int pipe = crtc->pipe, plane = crtc->plane;
7191 int fourcc, pixel_format;
7192 int aligned_height;
7193
66e514c1
DA
7194 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7195 if (!crtc->base.primary->fb) {
4c6baa59
JB
7196 DRM_DEBUG_KMS("failed to alloc fb\n");
7197 return;
7198 }
7199
7200 val = I915_READ(DSPCNTR(plane));
7201
7202 if (INTEL_INFO(dev)->gen >= 4)
7203 if (val & DISPPLANE_TILED)
7204 plane_config->tiled = true;
7205
7206 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7207 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7208 crtc->base.primary->fb->pixel_format = fourcc;
7209 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7210 drm_format_plane_cpp(fourcc, 0) * 8;
7211
7212 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7213 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7214 offset = I915_READ(DSPOFFSET(plane));
7215 } else {
7216 if (plane_config->tiled)
7217 offset = I915_READ(DSPTILEOFF(plane));
7218 else
7219 offset = I915_READ(DSPLINOFF(plane));
7220 }
7221 plane_config->base = base;
7222
7223 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7224 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7225 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7226
7227 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 7228 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
4c6baa59 7229
66e514c1 7230 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7231 plane_config->tiled);
7232
1267a26b
FF
7233 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7234 aligned_height);
4c6baa59
JB
7235
7236 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7237 pipe, plane, crtc->base.primary->fb->width,
7238 crtc->base.primary->fb->height,
7239 crtc->base.primary->fb->bits_per_pixel, base,
7240 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7241 plane_config->size);
7242}
7243
0e8ffe1b
DV
7244static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7245 struct intel_crtc_config *pipe_config)
7246{
7247 struct drm_device *dev = crtc->base.dev;
7248 struct drm_i915_private *dev_priv = dev->dev_private;
7249 uint32_t tmp;
7250
930e8c9e
PZ
7251 if (!intel_display_power_enabled(dev_priv,
7252 POWER_DOMAIN_PIPE(crtc->pipe)))
7253 return false;
7254
e143a21c 7255 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7256 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7257
0e8ffe1b
DV
7258 tmp = I915_READ(PIPECONF(crtc->pipe));
7259 if (!(tmp & PIPECONF_ENABLE))
7260 return false;
7261
42571aef
VS
7262 switch (tmp & PIPECONF_BPC_MASK) {
7263 case PIPECONF_6BPC:
7264 pipe_config->pipe_bpp = 18;
7265 break;
7266 case PIPECONF_8BPC:
7267 pipe_config->pipe_bpp = 24;
7268 break;
7269 case PIPECONF_10BPC:
7270 pipe_config->pipe_bpp = 30;
7271 break;
7272 case PIPECONF_12BPC:
7273 pipe_config->pipe_bpp = 36;
7274 break;
7275 default:
7276 break;
7277 }
7278
b5a9fa09
DV
7279 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7280 pipe_config->limited_color_range = true;
7281
ab9412ba 7282 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7283 struct intel_shared_dpll *pll;
7284
88adfff1
DV
7285 pipe_config->has_pch_encoder = true;
7286
627eb5a3
DV
7287 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7288 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7289 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7290
7291 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7292
c0d43d62 7293 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7294 pipe_config->shared_dpll =
7295 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7296 } else {
7297 tmp = I915_READ(PCH_DPLL_SEL);
7298 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7299 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7300 else
7301 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7302 }
66e985c0
DV
7303
7304 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7305
7306 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7307 &pipe_config->dpll_hw_state));
c93f54cf
DV
7308
7309 tmp = pipe_config->dpll_hw_state.dpll;
7310 pipe_config->pixel_multiplier =
7311 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7312 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7313
7314 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7315 } else {
7316 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7317 }
7318
1bd1bd80
DV
7319 intel_get_pipe_timings(crtc, pipe_config);
7320
2fa2fe9a
DV
7321 ironlake_get_pfit_config(crtc, pipe_config);
7322
0e8ffe1b
DV
7323 return true;
7324}
7325
be256dc7
PZ
7326static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7327{
7328 struct drm_device *dev = dev_priv->dev;
be256dc7 7329 struct intel_crtc *crtc;
be256dc7 7330
d3fcc808 7331 for_each_intel_crtc(dev, crtc)
798183c5 7332 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7333 pipe_name(crtc->pipe));
7334
7335 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7336 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7337 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7338 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7339 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7340 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7341 "CPU PWM1 enabled\n");
7342 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7343 "CPU PWM2 enabled\n");
7344 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7345 "PCH PWM1 enabled\n");
7346 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7347 "Utility pin enabled\n");
7348 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7349
9926ada1
PZ
7350 /*
7351 * In theory we can still leave IRQs enabled, as long as only the HPD
7352 * interrupts remain enabled. We used to check for that, but since it's
7353 * gen-specific and since we only disable LCPLL after we fully disable
7354 * the interrupts, the check below should be enough.
7355 */
7356 WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
be256dc7
PZ
7357}
7358
9ccd5aeb
PZ
7359static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7360{
7361 struct drm_device *dev = dev_priv->dev;
7362
7363 if (IS_HASWELL(dev))
7364 return I915_READ(D_COMP_HSW);
7365 else
7366 return I915_READ(D_COMP_BDW);
7367}
7368
3c4c9b81
PZ
7369static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7370{
7371 struct drm_device *dev = dev_priv->dev;
7372
7373 if (IS_HASWELL(dev)) {
7374 mutex_lock(&dev_priv->rps.hw_lock);
7375 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7376 val))
f475dadf 7377 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7378 mutex_unlock(&dev_priv->rps.hw_lock);
7379 } else {
9ccd5aeb
PZ
7380 I915_WRITE(D_COMP_BDW, val);
7381 POSTING_READ(D_COMP_BDW);
3c4c9b81 7382 }
be256dc7
PZ
7383}
7384
7385/*
7386 * This function implements pieces of two sequences from BSpec:
7387 * - Sequence for display software to disable LCPLL
7388 * - Sequence for display software to allow package C8+
7389 * The steps implemented here are just the steps that actually touch the LCPLL
7390 * register. Callers should take care of disabling all the display engine
7391 * functions, doing the mode unset, fixing interrupts, etc.
7392 */
6ff58d53
PZ
7393static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7394 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7395{
7396 uint32_t val;
7397
7398 assert_can_disable_lcpll(dev_priv);
7399
7400 val = I915_READ(LCPLL_CTL);
7401
7402 if (switch_to_fclk) {
7403 val |= LCPLL_CD_SOURCE_FCLK;
7404 I915_WRITE(LCPLL_CTL, val);
7405
7406 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7407 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7408 DRM_ERROR("Switching to FCLK failed\n");
7409
7410 val = I915_READ(LCPLL_CTL);
7411 }
7412
7413 val |= LCPLL_PLL_DISABLE;
7414 I915_WRITE(LCPLL_CTL, val);
7415 POSTING_READ(LCPLL_CTL);
7416
7417 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7418 DRM_ERROR("LCPLL still locked\n");
7419
9ccd5aeb 7420 val = hsw_read_dcomp(dev_priv);
be256dc7 7421 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7422 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7423 ndelay(100);
7424
9ccd5aeb
PZ
7425 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7426 1))
be256dc7
PZ
7427 DRM_ERROR("D_COMP RCOMP still in progress\n");
7428
7429 if (allow_power_down) {
7430 val = I915_READ(LCPLL_CTL);
7431 val |= LCPLL_POWER_DOWN_ALLOW;
7432 I915_WRITE(LCPLL_CTL, val);
7433 POSTING_READ(LCPLL_CTL);
7434 }
7435}
7436
7437/*
7438 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7439 * source.
7440 */
6ff58d53 7441static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7442{
7443 uint32_t val;
a8a8bd54 7444 unsigned long irqflags;
be256dc7
PZ
7445
7446 val = I915_READ(LCPLL_CTL);
7447
7448 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7449 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7450 return;
7451
a8a8bd54
PZ
7452 /*
7453 * Make sure we're not on PC8 state before disabling PC8, otherwise
7454 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7455 *
7456 * The other problem is that hsw_restore_lcpll() is called as part of
7457 * the runtime PM resume sequence, so we can't just call
7458 * gen6_gt_force_wake_get() because that function calls
7459 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7460 * while we are on the resume sequence. So to solve this problem we have
7461 * to call special forcewake code that doesn't touch runtime PM and
7462 * doesn't enable the forcewake delayed work.
7463 */
7464 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7465 if (dev_priv->uncore.forcewake_count++ == 0)
7466 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7467 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7468
be256dc7
PZ
7469 if (val & LCPLL_POWER_DOWN_ALLOW) {
7470 val &= ~LCPLL_POWER_DOWN_ALLOW;
7471 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7472 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7473 }
7474
9ccd5aeb 7475 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7476 val |= D_COMP_COMP_FORCE;
7477 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7478 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7479
7480 val = I915_READ(LCPLL_CTL);
7481 val &= ~LCPLL_PLL_DISABLE;
7482 I915_WRITE(LCPLL_CTL, val);
7483
7484 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7485 DRM_ERROR("LCPLL not locked yet\n");
7486
7487 if (val & LCPLL_CD_SOURCE_FCLK) {
7488 val = I915_READ(LCPLL_CTL);
7489 val &= ~LCPLL_CD_SOURCE_FCLK;
7490 I915_WRITE(LCPLL_CTL, val);
7491
7492 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7493 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7494 DRM_ERROR("Switching back to LCPLL failed\n");
7495 }
215733fa 7496
a8a8bd54
PZ
7497 /* See the big comment above. */
7498 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7499 if (--dev_priv->uncore.forcewake_count == 0)
7500 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7501 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7502}
7503
765dab67
PZ
7504/*
7505 * Package states C8 and deeper are really deep PC states that can only be
7506 * reached when all the devices on the system allow it, so even if the graphics
7507 * device allows PC8+, it doesn't mean the system will actually get to these
7508 * states. Our driver only allows PC8+ when going into runtime PM.
7509 *
7510 * The requirements for PC8+ are that all the outputs are disabled, the power
7511 * well is disabled and most interrupts are disabled, and these are also
7512 * requirements for runtime PM. When these conditions are met, we manually do
7513 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7514 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7515 * hang the machine.
7516 *
7517 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7518 * the state of some registers, so when we come back from PC8+ we need to
7519 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7520 * need to take care of the registers kept by RC6. Notice that this happens even
7521 * if we don't put the device in PCI D3 state (which is what currently happens
7522 * because of the runtime PM support).
7523 *
7524 * For more, read "Display Sequences for Package C8" on the hardware
7525 * documentation.
7526 */
a14cb6fc 7527void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7528{
c67a470b
PZ
7529 struct drm_device *dev = dev_priv->dev;
7530 uint32_t val;
7531
c67a470b
PZ
7532 DRM_DEBUG_KMS("Enabling package C8+\n");
7533
c67a470b
PZ
7534 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7535 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7536 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7537 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7538 }
7539
7540 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7541 hsw_disable_lcpll(dev_priv, true, true);
7542}
7543
a14cb6fc 7544void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7545{
7546 struct drm_device *dev = dev_priv->dev;
7547 uint32_t val;
7548
c67a470b
PZ
7549 DRM_DEBUG_KMS("Disabling package C8+\n");
7550
7551 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7552 lpt_init_pch_refclk(dev);
7553
7554 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7555 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7556 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7557 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7558 }
7559
7560 intel_prepare_ddi(dev);
c67a470b
PZ
7561}
7562
9a952a0d
PZ
7563static void snb_modeset_global_resources(struct drm_device *dev)
7564{
7565 modeset_update_crtc_power_domains(dev);
7566}
7567
4f074129
ID
7568static void haswell_modeset_global_resources(struct drm_device *dev)
7569{
da723569 7570 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7571}
7572
09b4ddf9 7573static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7574 int x, int y,
7575 struct drm_framebuffer *fb)
7576{
09b4ddf9 7577 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7578
566b734a 7579 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f
PZ
7580 return -EINVAL;
7581
644cef34
DV
7582 intel_crtc->lowfreq_avail = false;
7583
c8f7a0db 7584 return 0;
79e53945
JB
7585}
7586
26804afd
DV
7587static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7588 struct intel_crtc_config *pipe_config)
7589{
7590 struct drm_device *dev = crtc->base.dev;
7591 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7592 struct intel_shared_dpll *pll;
26804afd
DV
7593 enum port port;
7594 uint32_t tmp;
7595
7596 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7597
7598 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7599
7600 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9cd86933
DV
7601
7602 switch (pipe_config->ddi_pll_sel) {
7603 case PORT_CLK_SEL_WRPLL1:
7604 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7605 break;
7606 case PORT_CLK_SEL_WRPLL2:
7607 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7608 break;
7609 }
7610
d452c5b6
DV
7611 if (pipe_config->shared_dpll >= 0) {
7612 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7613
7614 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7615 &pipe_config->dpll_hw_state));
7616 }
7617
26804afd
DV
7618 /*
7619 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7620 * DDI E. So just check whether this pipe is wired to DDI E and whether
7621 * the PCH transcoder is on.
7622 */
7623 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7624 pipe_config->has_pch_encoder = true;
7625
7626 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7627 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7628 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7629
7630 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7631 }
7632}
7633
0e8ffe1b
DV
7634static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7635 struct intel_crtc_config *pipe_config)
7636{
7637 struct drm_device *dev = crtc->base.dev;
7638 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7639 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7640 uint32_t tmp;
7641
b5482bd0
ID
7642 if (!intel_display_power_enabled(dev_priv,
7643 POWER_DOMAIN_PIPE(crtc->pipe)))
7644 return false;
7645
e143a21c 7646 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7647 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7648
eccb140b
DV
7649 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7650 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7651 enum pipe trans_edp_pipe;
7652 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7653 default:
7654 WARN(1, "unknown pipe linked to edp transcoder\n");
7655 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7656 case TRANS_DDI_EDP_INPUT_A_ON:
7657 trans_edp_pipe = PIPE_A;
7658 break;
7659 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7660 trans_edp_pipe = PIPE_B;
7661 break;
7662 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7663 trans_edp_pipe = PIPE_C;
7664 break;
7665 }
7666
7667 if (trans_edp_pipe == crtc->pipe)
7668 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7669 }
7670
da7e29bd 7671 if (!intel_display_power_enabled(dev_priv,
eccb140b 7672 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7673 return false;
7674
eccb140b 7675 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7676 if (!(tmp & PIPECONF_ENABLE))
7677 return false;
7678
26804afd 7679 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7680
1bd1bd80
DV
7681 intel_get_pipe_timings(crtc, pipe_config);
7682
2fa2fe9a 7683 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7684 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7685 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7686
e59150dc
JB
7687 if (IS_HASWELL(dev))
7688 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7689 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7690
6c49f241
DV
7691 pipe_config->pixel_multiplier = 1;
7692
0e8ffe1b
DV
7693 return true;
7694}
7695
1a91510d
JN
7696static struct {
7697 int clock;
7698 u32 config;
7699} hdmi_audio_clock[] = {
7700 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7701 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7702 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7703 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7704 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7705 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7706 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7707 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7708 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7709 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7710};
7711
7712/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7713static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7714{
7715 int i;
7716
7717 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7718 if (mode->clock == hdmi_audio_clock[i].clock)
7719 break;
7720 }
7721
7722 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7723 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7724 i = 1;
7725 }
7726
7727 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7728 hdmi_audio_clock[i].clock,
7729 hdmi_audio_clock[i].config);
7730
7731 return hdmi_audio_clock[i].config;
7732}
7733
3a9627f4
WF
7734static bool intel_eld_uptodate(struct drm_connector *connector,
7735 int reg_eldv, uint32_t bits_eldv,
7736 int reg_elda, uint32_t bits_elda,
7737 int reg_edid)
7738{
7739 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7740 uint8_t *eld = connector->eld;
7741 uint32_t i;
7742
7743 i = I915_READ(reg_eldv);
7744 i &= bits_eldv;
7745
7746 if (!eld[0])
7747 return !i;
7748
7749 if (!i)
7750 return false;
7751
7752 i = I915_READ(reg_elda);
7753 i &= ~bits_elda;
7754 I915_WRITE(reg_elda, i);
7755
7756 for (i = 0; i < eld[2]; i++)
7757 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7758 return false;
7759
7760 return true;
7761}
7762
e0dac65e 7763static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7764 struct drm_crtc *crtc,
7765 struct drm_display_mode *mode)
e0dac65e
WF
7766{
7767 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7768 uint8_t *eld = connector->eld;
7769 uint32_t eldv;
7770 uint32_t len;
7771 uint32_t i;
7772
7773 i = I915_READ(G4X_AUD_VID_DID);
7774
7775 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7776 eldv = G4X_ELDV_DEVCL_DEVBLC;
7777 else
7778 eldv = G4X_ELDV_DEVCTG;
7779
3a9627f4
WF
7780 if (intel_eld_uptodate(connector,
7781 G4X_AUD_CNTL_ST, eldv,
7782 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7783 G4X_HDMIW_HDMIEDID))
7784 return;
7785
e0dac65e
WF
7786 i = I915_READ(G4X_AUD_CNTL_ST);
7787 i &= ~(eldv | G4X_ELD_ADDR);
7788 len = (i >> 9) & 0x1f; /* ELD buffer size */
7789 I915_WRITE(G4X_AUD_CNTL_ST, i);
7790
7791 if (!eld[0])
7792 return;
7793
7794 len = min_t(uint8_t, eld[2], len);
7795 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7796 for (i = 0; i < len; i++)
7797 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7798
7799 i = I915_READ(G4X_AUD_CNTL_ST);
7800 i |= eldv;
7801 I915_WRITE(G4X_AUD_CNTL_ST, i);
7802}
7803
83358c85 7804static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7805 struct drm_crtc *crtc,
7806 struct drm_display_mode *mode)
83358c85
WX
7807{
7808 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7809 uint8_t *eld = connector->eld;
83358c85
WX
7810 uint32_t eldv;
7811 uint32_t i;
7812 int len;
7813 int pipe = to_intel_crtc(crtc)->pipe;
7814 int tmp;
7815
7816 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7817 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7818 int aud_config = HSW_AUD_CFG(pipe);
7819 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7820
83358c85
WX
7821 /* Audio output enable */
7822 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7823 tmp = I915_READ(aud_cntrl_st2);
7824 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7825 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7826 POSTING_READ(aud_cntrl_st2);
83358c85 7827
c7905792 7828 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7829
7830 /* Set ELD valid state */
7831 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7832 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7833 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7834 I915_WRITE(aud_cntrl_st2, tmp);
7835 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7836 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7837
7838 /* Enable HDMI mode */
7839 tmp = I915_READ(aud_config);
7e7cb34f 7840 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7841 /* clear N_programing_enable and N_value_index */
7842 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7843 I915_WRITE(aud_config, tmp);
7844
7845 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7846
7847 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7848
7849 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7850 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7851 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7852 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7853 } else {
7854 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7855 }
83358c85
WX
7856
7857 if (intel_eld_uptodate(connector,
7858 aud_cntrl_st2, eldv,
7859 aud_cntl_st, IBX_ELD_ADDRESS,
7860 hdmiw_hdmiedid))
7861 return;
7862
7863 i = I915_READ(aud_cntrl_st2);
7864 i &= ~eldv;
7865 I915_WRITE(aud_cntrl_st2, i);
7866
7867 if (!eld[0])
7868 return;
7869
7870 i = I915_READ(aud_cntl_st);
7871 i &= ~IBX_ELD_ADDRESS;
7872 I915_WRITE(aud_cntl_st, i);
7873 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7874 DRM_DEBUG_DRIVER("port num:%d\n", i);
7875
7876 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7877 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7878 for (i = 0; i < len; i++)
7879 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7880
7881 i = I915_READ(aud_cntrl_st2);
7882 i |= eldv;
7883 I915_WRITE(aud_cntrl_st2, i);
7884
7885}
7886
e0dac65e 7887static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7888 struct drm_crtc *crtc,
7889 struct drm_display_mode *mode)
e0dac65e
WF
7890{
7891 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7892 uint8_t *eld = connector->eld;
7893 uint32_t eldv;
7894 uint32_t i;
7895 int len;
7896 int hdmiw_hdmiedid;
b6daa025 7897 int aud_config;
e0dac65e
WF
7898 int aud_cntl_st;
7899 int aud_cntrl_st2;
9b138a83 7900 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7901
b3f33cbf 7902 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7903 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7904 aud_config = IBX_AUD_CFG(pipe);
7905 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7906 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7907 } else if (IS_VALLEYVIEW(connector->dev)) {
7908 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7909 aud_config = VLV_AUD_CFG(pipe);
7910 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7911 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7912 } else {
9b138a83
WX
7913 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7914 aud_config = CPT_AUD_CFG(pipe);
7915 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 7916 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
7917 }
7918
9b138a83 7919 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 7920
9ca2fe73
ML
7921 if (IS_VALLEYVIEW(connector->dev)) {
7922 struct intel_encoder *intel_encoder;
7923 struct intel_digital_port *intel_dig_port;
7924
7925 intel_encoder = intel_attached_encoder(connector);
7926 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7927 i = intel_dig_port->port;
7928 } else {
7929 i = I915_READ(aud_cntl_st);
7930 i = (i >> 29) & DIP_PORT_SEL_MASK;
7931 /* DIP_Port_Select, 0x1 = PortB */
7932 }
7933
e0dac65e
WF
7934 if (!i) {
7935 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7936 /* operate blindly on all ports */
1202b4c6
WF
7937 eldv = IBX_ELD_VALIDB;
7938 eldv |= IBX_ELD_VALIDB << 4;
7939 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 7940 } else {
2582a850 7941 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 7942 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
7943 }
7944
3a9627f4
WF
7945 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7946 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7947 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 7948 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7949 } else {
7950 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7951 }
e0dac65e 7952
3a9627f4
WF
7953 if (intel_eld_uptodate(connector,
7954 aud_cntrl_st2, eldv,
7955 aud_cntl_st, IBX_ELD_ADDRESS,
7956 hdmiw_hdmiedid))
7957 return;
7958
e0dac65e
WF
7959 i = I915_READ(aud_cntrl_st2);
7960 i &= ~eldv;
7961 I915_WRITE(aud_cntrl_st2, i);
7962
7963 if (!eld[0])
7964 return;
7965
e0dac65e 7966 i = I915_READ(aud_cntl_st);
1202b4c6 7967 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
7968 I915_WRITE(aud_cntl_st, i);
7969
7970 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7971 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7972 for (i = 0; i < len; i++)
7973 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7974
7975 i = I915_READ(aud_cntrl_st2);
7976 i |= eldv;
7977 I915_WRITE(aud_cntrl_st2, i);
7978}
7979
7980void intel_write_eld(struct drm_encoder *encoder,
7981 struct drm_display_mode *mode)
7982{
7983 struct drm_crtc *crtc = encoder->crtc;
7984 struct drm_connector *connector;
7985 struct drm_device *dev = encoder->dev;
7986 struct drm_i915_private *dev_priv = dev->dev_private;
7987
7988 connector = drm_select_eld(encoder, mode);
7989 if (!connector)
7990 return;
7991
7992 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7993 connector->base.id,
c23cc417 7994 connector->name,
e0dac65e 7995 connector->encoder->base.id,
8e329a03 7996 connector->encoder->name);
e0dac65e
WF
7997
7998 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7999
8000 if (dev_priv->display.write_eld)
34427052 8001 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
8002}
8003
560b85bb
CW
8004static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8005{
8006 struct drm_device *dev = crtc->dev;
8007 struct drm_i915_private *dev_priv = dev->dev_private;
8008 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4b0e333e 8009 uint32_t cntl;
560b85bb 8010
4b0e333e 8011 if (base != intel_crtc->cursor_base) {
560b85bb
CW
8012 /* On these chipsets we can only modify the base whilst
8013 * the cursor is disabled.
8014 */
4b0e333e
CW
8015 if (intel_crtc->cursor_cntl) {
8016 I915_WRITE(_CURACNTR, 0);
8017 POSTING_READ(_CURACNTR);
8018 intel_crtc->cursor_cntl = 0;
8019 }
8020
9db4a9c7 8021 I915_WRITE(_CURABASE, base);
4b0e333e
CW
8022 POSTING_READ(_CURABASE);
8023 }
560b85bb 8024
4b0e333e
CW
8025 /* XXX width must be 64, stride 256 => 0x00 << 28 */
8026 cntl = 0;
8027 if (base)
8028 cntl = (CURSOR_ENABLE |
560b85bb 8029 CURSOR_GAMMA_ENABLE |
4b0e333e
CW
8030 CURSOR_FORMAT_ARGB);
8031 if (intel_crtc->cursor_cntl != cntl) {
8032 I915_WRITE(_CURACNTR, cntl);
8033 POSTING_READ(_CURACNTR);
8034 intel_crtc->cursor_cntl = cntl;
8035 }
560b85bb
CW
8036}
8037
8038static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8039{
8040 struct drm_device *dev = crtc->dev;
8041 struct drm_i915_private *dev_priv = dev->dev_private;
8042 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8043 int pipe = intel_crtc->pipe;
4b0e333e 8044 uint32_t cntl;
4726e0b0 8045
4b0e333e
CW
8046 cntl = 0;
8047 if (base) {
8048 cntl = MCURSOR_GAMMA_ENABLE;
8049 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8050 case 64:
8051 cntl |= CURSOR_MODE_64_ARGB_AX;
8052 break;
8053 case 128:
8054 cntl |= CURSOR_MODE_128_ARGB_AX;
8055 break;
8056 case 256:
8057 cntl |= CURSOR_MODE_256_ARGB_AX;
8058 break;
8059 default:
8060 WARN_ON(1);
8061 return;
560b85bb 8062 }
4b0e333e
CW
8063 cntl |= pipe << 28; /* Connect to correct pipe */
8064 }
8065 if (intel_crtc->cursor_cntl != cntl) {
9db4a9c7 8066 I915_WRITE(CURCNTR(pipe), cntl);
4b0e333e
CW
8067 POSTING_READ(CURCNTR(pipe));
8068 intel_crtc->cursor_cntl = cntl;
560b85bb 8069 }
4b0e333e 8070
560b85bb 8071 /* and commit changes on next vblank */
9db4a9c7 8072 I915_WRITE(CURBASE(pipe), base);
b2ea8ef5 8073 POSTING_READ(CURBASE(pipe));
560b85bb
CW
8074}
8075
65a21cd6
JB
8076static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8077{
8078 struct drm_device *dev = crtc->dev;
8079 struct drm_i915_private *dev_priv = dev->dev_private;
8080 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8081 int pipe = intel_crtc->pipe;
4b0e333e
CW
8082 uint32_t cntl;
8083
8084 cntl = 0;
8085 if (base) {
8086 cntl = MCURSOR_GAMMA_ENABLE;
8087 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8088 case 64:
8089 cntl |= CURSOR_MODE_64_ARGB_AX;
8090 break;
8091 case 128:
8092 cntl |= CURSOR_MODE_128_ARGB_AX;
8093 break;
8094 case 256:
8095 cntl |= CURSOR_MODE_256_ARGB_AX;
8096 break;
8097 default:
8098 WARN_ON(1);
8099 return;
65a21cd6 8100 }
4b0e333e
CW
8101 }
8102 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8103 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8104
4b0e333e
CW
8105 if (intel_crtc->cursor_cntl != cntl) {
8106 I915_WRITE(CURCNTR(pipe), cntl);
8107 POSTING_READ(CURCNTR(pipe));
8108 intel_crtc->cursor_cntl = cntl;
65a21cd6 8109 }
4b0e333e 8110
65a21cd6 8111 /* and commit changes on next vblank */
5efb3e28
VS
8112 I915_WRITE(CURBASE(pipe), base);
8113 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8114}
8115
cda4b7d3 8116/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8117static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8118 bool on)
cda4b7d3
CW
8119{
8120 struct drm_device *dev = crtc->dev;
8121 struct drm_i915_private *dev_priv = dev->dev_private;
8122 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8123 int pipe = intel_crtc->pipe;
3d7d6510
MR
8124 int x = crtc->cursor_x;
8125 int y = crtc->cursor_y;
d6e4db15 8126 u32 base = 0, pos = 0;
cda4b7d3 8127
d6e4db15 8128 if (on)
cda4b7d3 8129 base = intel_crtc->cursor_addr;
cda4b7d3 8130
d6e4db15
VS
8131 if (x >= intel_crtc->config.pipe_src_w)
8132 base = 0;
8133
8134 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8135 base = 0;
8136
8137 if (x < 0) {
efc9064e 8138 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8139 base = 0;
8140
8141 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8142 x = -x;
8143 }
8144 pos |= x << CURSOR_X_SHIFT;
8145
8146 if (y < 0) {
efc9064e 8147 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8148 base = 0;
8149
8150 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8151 y = -y;
8152 }
8153 pos |= y << CURSOR_Y_SHIFT;
8154
4b0e333e 8155 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8156 return;
8157
5efb3e28
VS
8158 I915_WRITE(CURPOS(pipe), pos);
8159
8160 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
65a21cd6 8161 ivb_update_cursor(crtc, base);
5efb3e28
VS
8162 else if (IS_845G(dev) || IS_I865G(dev))
8163 i845_update_cursor(crtc, base);
8164 else
8165 i9xx_update_cursor(crtc, base);
4b0e333e 8166 intel_crtc->cursor_base = base;
cda4b7d3
CW
8167}
8168
e3287951
MR
8169/*
8170 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8171 *
8172 * Note that the object's reference will be consumed if the update fails. If
8173 * the update succeeds, the reference of the old object (if any) will be
8174 * consumed.
8175 */
8176static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8177 struct drm_i915_gem_object *obj,
8178 uint32_t width, uint32_t height)
79e53945
JB
8179{
8180 struct drm_device *dev = crtc->dev;
8181 struct drm_i915_private *dev_priv = dev->dev_private;
8182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8183 enum pipe pipe = intel_crtc->pipe;
64f962e3 8184 unsigned old_width;
cda4b7d3 8185 uint32_t addr;
3f8bc370 8186 int ret;
79e53945 8187
79e53945 8188 /* if we want to turn off the cursor ignore width and height */
e3287951 8189 if (!obj) {
28c97730 8190 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8191 addr = 0;
05394f39 8192 obj = NULL;
5004417d 8193 mutex_lock(&dev->struct_mutex);
3f8bc370 8194 goto finish;
79e53945
JB
8195 }
8196
4726e0b0
SK
8197 /* Check for which cursor types we support */
8198 if (!((width == 64 && height == 64) ||
8199 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8200 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8201 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8202 return -EINVAL;
8203 }
8204
05394f39 8205 if (obj->base.size < width * height * 4) {
e3287951 8206 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8207 ret = -ENOMEM;
8208 goto fail;
79e53945
JB
8209 }
8210
71acb5eb 8211 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8212 mutex_lock(&dev->struct_mutex);
3d13ef2e 8213 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8214 unsigned alignment;
8215
d9e86c0e 8216 if (obj->tiling_mode) {
3b25b31f 8217 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8218 ret = -EINVAL;
8219 goto fail_locked;
8220 }
8221
693db184
CW
8222 /* Note that the w/a also requires 2 PTE of padding following
8223 * the bo. We currently fill all unused PTE with the shadow
8224 * page and so we should always have valid PTE following the
8225 * cursor preventing the VT-d warning.
8226 */
8227 alignment = 0;
8228 if (need_vtd_wa(dev))
8229 alignment = 64*1024;
8230
8231 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8232 if (ret) {
3b25b31f 8233 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8234 goto fail_locked;
e7b526bb
CW
8235 }
8236
d9e86c0e
CW
8237 ret = i915_gem_object_put_fence(obj);
8238 if (ret) {
3b25b31f 8239 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8240 goto fail_unpin;
8241 }
8242
f343c5f6 8243 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8244 } else {
6eeefaf3 8245 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8246 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8247 if (ret) {
3b25b31f 8248 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8249 goto fail_locked;
71acb5eb 8250 }
00731155 8251 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8252 }
8253
a6c45cf0 8254 if (IS_GEN2(dev))
14b60391
JB
8255 I915_WRITE(CURSIZE, (height << 12) | width);
8256
3f8bc370 8257 finish:
3f8bc370 8258 if (intel_crtc->cursor_bo) {
00731155 8259 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8260 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8261 }
80824003 8262
a071fa00
DV
8263 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8264 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8265 mutex_unlock(&dev->struct_mutex);
3f8bc370 8266
64f962e3
CW
8267 old_width = intel_crtc->cursor_width;
8268
3f8bc370 8269 intel_crtc->cursor_addr = addr;
05394f39 8270 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8271 intel_crtc->cursor_width = width;
8272 intel_crtc->cursor_height = height;
8273
64f962e3
CW
8274 if (intel_crtc->active) {
8275 if (old_width != width)
8276 intel_update_watermarks(crtc);
f2f5f771 8277 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8278 }
3f8bc370 8279
f99d7069
DV
8280 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8281
79e53945 8282 return 0;
e7b526bb 8283fail_unpin:
cc98b413 8284 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8285fail_locked:
34b8686e 8286 mutex_unlock(&dev->struct_mutex);
bc9025bd 8287fail:
05394f39 8288 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8289 return ret;
79e53945
JB
8290}
8291
79e53945 8292static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8293 u16 *blue, uint32_t start, uint32_t size)
79e53945 8294{
7203425a 8295 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8296 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8297
7203425a 8298 for (i = start; i < end; i++) {
79e53945
JB
8299 intel_crtc->lut_r[i] = red[i] >> 8;
8300 intel_crtc->lut_g[i] = green[i] >> 8;
8301 intel_crtc->lut_b[i] = blue[i] >> 8;
8302 }
8303
8304 intel_crtc_load_lut(crtc);
8305}
8306
79e53945
JB
8307/* VESA 640x480x72Hz mode to set on the pipe */
8308static struct drm_display_mode load_detect_mode = {
8309 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8310 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8311};
8312
a8bb6818
DV
8313struct drm_framebuffer *
8314__intel_framebuffer_create(struct drm_device *dev,
8315 struct drm_mode_fb_cmd2 *mode_cmd,
8316 struct drm_i915_gem_object *obj)
d2dff872
CW
8317{
8318 struct intel_framebuffer *intel_fb;
8319 int ret;
8320
8321 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8322 if (!intel_fb) {
8323 drm_gem_object_unreference_unlocked(&obj->base);
8324 return ERR_PTR(-ENOMEM);
8325 }
8326
8327 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8328 if (ret)
8329 goto err;
d2dff872
CW
8330
8331 return &intel_fb->base;
dd4916c5
DV
8332err:
8333 drm_gem_object_unreference_unlocked(&obj->base);
8334 kfree(intel_fb);
8335
8336 return ERR_PTR(ret);
d2dff872
CW
8337}
8338
b5ea642a 8339static struct drm_framebuffer *
a8bb6818
DV
8340intel_framebuffer_create(struct drm_device *dev,
8341 struct drm_mode_fb_cmd2 *mode_cmd,
8342 struct drm_i915_gem_object *obj)
8343{
8344 struct drm_framebuffer *fb;
8345 int ret;
8346
8347 ret = i915_mutex_lock_interruptible(dev);
8348 if (ret)
8349 return ERR_PTR(ret);
8350 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8351 mutex_unlock(&dev->struct_mutex);
8352
8353 return fb;
8354}
8355
d2dff872
CW
8356static u32
8357intel_framebuffer_pitch_for_width(int width, int bpp)
8358{
8359 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8360 return ALIGN(pitch, 64);
8361}
8362
8363static u32
8364intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8365{
8366 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8367 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8368}
8369
8370static struct drm_framebuffer *
8371intel_framebuffer_create_for_mode(struct drm_device *dev,
8372 struct drm_display_mode *mode,
8373 int depth, int bpp)
8374{
8375 struct drm_i915_gem_object *obj;
0fed39bd 8376 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8377
8378 obj = i915_gem_alloc_object(dev,
8379 intel_framebuffer_size_for_mode(mode, bpp));
8380 if (obj == NULL)
8381 return ERR_PTR(-ENOMEM);
8382
8383 mode_cmd.width = mode->hdisplay;
8384 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8385 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8386 bpp);
5ca0c34a 8387 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8388
8389 return intel_framebuffer_create(dev, &mode_cmd, obj);
8390}
8391
8392static struct drm_framebuffer *
8393mode_fits_in_fbdev(struct drm_device *dev,
8394 struct drm_display_mode *mode)
8395{
4520f53a 8396#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8397 struct drm_i915_private *dev_priv = dev->dev_private;
8398 struct drm_i915_gem_object *obj;
8399 struct drm_framebuffer *fb;
8400
4c0e5528 8401 if (!dev_priv->fbdev)
d2dff872
CW
8402 return NULL;
8403
4c0e5528 8404 if (!dev_priv->fbdev->fb)
d2dff872
CW
8405 return NULL;
8406
4c0e5528
DV
8407 obj = dev_priv->fbdev->fb->obj;
8408 BUG_ON(!obj);
8409
8bcd4553 8410 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8411 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8412 fb->bits_per_pixel))
d2dff872
CW
8413 return NULL;
8414
01f2c773 8415 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8416 return NULL;
8417
8418 return fb;
4520f53a
DV
8419#else
8420 return NULL;
8421#endif
d2dff872
CW
8422}
8423
d2434ab7 8424bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8425 struct drm_display_mode *mode,
51fd371b
RC
8426 struct intel_load_detect_pipe *old,
8427 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8428{
8429 struct intel_crtc *intel_crtc;
d2434ab7
DV
8430 struct intel_encoder *intel_encoder =
8431 intel_attached_encoder(connector);
79e53945 8432 struct drm_crtc *possible_crtc;
4ef69c7a 8433 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8434 struct drm_crtc *crtc = NULL;
8435 struct drm_device *dev = encoder->dev;
94352cf9 8436 struct drm_framebuffer *fb;
51fd371b
RC
8437 struct drm_mode_config *config = &dev->mode_config;
8438 int ret, i = -1;
79e53945 8439
d2dff872 8440 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8441 connector->base.id, connector->name,
8e329a03 8442 encoder->base.id, encoder->name);
d2dff872 8443
51fd371b
RC
8444 drm_modeset_acquire_init(ctx, 0);
8445
8446retry:
8447 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8448 if (ret)
8449 goto fail_unlock;
6e9f798d 8450
79e53945
JB
8451 /*
8452 * Algorithm gets a little messy:
7a5e4805 8453 *
79e53945
JB
8454 * - if the connector already has an assigned crtc, use it (but make
8455 * sure it's on first)
7a5e4805 8456 *
79e53945
JB
8457 * - try to find the first unused crtc that can drive this connector,
8458 * and use that if we find one
79e53945
JB
8459 */
8460
8461 /* See if we already have a CRTC for this connector */
8462 if (encoder->crtc) {
8463 crtc = encoder->crtc;
8261b191 8464
51fd371b
RC
8465 ret = drm_modeset_lock(&crtc->mutex, ctx);
8466 if (ret)
8467 goto fail_unlock;
7b24056b 8468
24218aac 8469 old->dpms_mode = connector->dpms;
8261b191
CW
8470 old->load_detect_temp = false;
8471
8472 /* Make sure the crtc and connector are running */
24218aac
DV
8473 if (connector->dpms != DRM_MODE_DPMS_ON)
8474 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8475
7173188d 8476 return true;
79e53945
JB
8477 }
8478
8479 /* Find an unused one (if possible) */
70e1e0ec 8480 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8481 i++;
8482 if (!(encoder->possible_crtcs & (1 << i)))
8483 continue;
8484 if (!possible_crtc->enabled) {
8485 crtc = possible_crtc;
8486 break;
8487 }
79e53945
JB
8488 }
8489
8490 /*
8491 * If we didn't find an unused CRTC, don't use any.
8492 */
8493 if (!crtc) {
7173188d 8494 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8495 goto fail_unlock;
79e53945
JB
8496 }
8497
51fd371b
RC
8498 ret = drm_modeset_lock(&crtc->mutex, ctx);
8499 if (ret)
8500 goto fail_unlock;
fc303101
DV
8501 intel_encoder->new_crtc = to_intel_crtc(crtc);
8502 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8503
8504 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8505 intel_crtc->new_enabled = true;
8506 intel_crtc->new_config = &intel_crtc->config;
24218aac 8507 old->dpms_mode = connector->dpms;
8261b191 8508 old->load_detect_temp = true;
d2dff872 8509 old->release_fb = NULL;
79e53945 8510
6492711d
CW
8511 if (!mode)
8512 mode = &load_detect_mode;
79e53945 8513
d2dff872
CW
8514 /* We need a framebuffer large enough to accommodate all accesses
8515 * that the plane may generate whilst we perform load detection.
8516 * We can not rely on the fbcon either being present (we get called
8517 * during its initialisation to detect all boot displays, or it may
8518 * not even exist) or that it is large enough to satisfy the
8519 * requested mode.
8520 */
94352cf9
DV
8521 fb = mode_fits_in_fbdev(dev, mode);
8522 if (fb == NULL) {
d2dff872 8523 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8524 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8525 old->release_fb = fb;
d2dff872
CW
8526 } else
8527 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8528 if (IS_ERR(fb)) {
d2dff872 8529 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8530 goto fail;
79e53945 8531 }
79e53945 8532
c0c36b94 8533 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8534 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8535 if (old->release_fb)
8536 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8537 goto fail;
79e53945 8538 }
7173188d 8539
79e53945 8540 /* let the connector get through one full cycle before testing */
9d0498a2 8541 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8542 return true;
412b61d8
VS
8543
8544 fail:
8545 intel_crtc->new_enabled = crtc->enabled;
8546 if (intel_crtc->new_enabled)
8547 intel_crtc->new_config = &intel_crtc->config;
8548 else
8549 intel_crtc->new_config = NULL;
51fd371b
RC
8550fail_unlock:
8551 if (ret == -EDEADLK) {
8552 drm_modeset_backoff(ctx);
8553 goto retry;
8554 }
8555
8556 drm_modeset_drop_locks(ctx);
8557 drm_modeset_acquire_fini(ctx);
6e9f798d 8558
412b61d8 8559 return false;
79e53945
JB
8560}
8561
d2434ab7 8562void intel_release_load_detect_pipe(struct drm_connector *connector,
51fd371b
RC
8563 struct intel_load_detect_pipe *old,
8564 struct drm_modeset_acquire_ctx *ctx)
79e53945 8565{
d2434ab7
DV
8566 struct intel_encoder *intel_encoder =
8567 intel_attached_encoder(connector);
4ef69c7a 8568 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8569 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8570 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8571
d2dff872 8572 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8573 connector->base.id, connector->name,
8e329a03 8574 encoder->base.id, encoder->name);
d2dff872 8575
8261b191 8576 if (old->load_detect_temp) {
fc303101
DV
8577 to_intel_connector(connector)->new_encoder = NULL;
8578 intel_encoder->new_crtc = NULL;
412b61d8
VS
8579 intel_crtc->new_enabled = false;
8580 intel_crtc->new_config = NULL;
fc303101 8581 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8582
36206361
DV
8583 if (old->release_fb) {
8584 drm_framebuffer_unregister_private(old->release_fb);
8585 drm_framebuffer_unreference(old->release_fb);
8586 }
d2dff872 8587
51fd371b 8588 goto unlock;
0622a53c 8589 return;
79e53945
JB
8590 }
8591
c751ce4f 8592 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8593 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8594 connector->funcs->dpms(connector, old->dpms_mode);
7b24056b 8595
51fd371b
RC
8596unlock:
8597 drm_modeset_drop_locks(ctx);
8598 drm_modeset_acquire_fini(ctx);
79e53945
JB
8599}
8600
da4a1efa
VS
8601static int i9xx_pll_refclk(struct drm_device *dev,
8602 const struct intel_crtc_config *pipe_config)
8603{
8604 struct drm_i915_private *dev_priv = dev->dev_private;
8605 u32 dpll = pipe_config->dpll_hw_state.dpll;
8606
8607 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8608 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8609 else if (HAS_PCH_SPLIT(dev))
8610 return 120000;
8611 else if (!IS_GEN2(dev))
8612 return 96000;
8613 else
8614 return 48000;
8615}
8616
79e53945 8617/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8618static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8619 struct intel_crtc_config *pipe_config)
79e53945 8620{
f1f644dc 8621 struct drm_device *dev = crtc->base.dev;
79e53945 8622 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8623 int pipe = pipe_config->cpu_transcoder;
293623f7 8624 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8625 u32 fp;
8626 intel_clock_t clock;
da4a1efa 8627 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8628
8629 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8630 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8631 else
293623f7 8632 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8633
8634 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8635 if (IS_PINEVIEW(dev)) {
8636 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8637 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8638 } else {
8639 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8640 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8641 }
8642
a6c45cf0 8643 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8644 if (IS_PINEVIEW(dev))
8645 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8646 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8647 else
8648 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8649 DPLL_FPA01_P1_POST_DIV_SHIFT);
8650
8651 switch (dpll & DPLL_MODE_MASK) {
8652 case DPLLB_MODE_DAC_SERIAL:
8653 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8654 5 : 10;
8655 break;
8656 case DPLLB_MODE_LVDS:
8657 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8658 7 : 14;
8659 break;
8660 default:
28c97730 8661 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8662 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8663 return;
79e53945
JB
8664 }
8665
ac58c3f0 8666 if (IS_PINEVIEW(dev))
da4a1efa 8667 pineview_clock(refclk, &clock);
ac58c3f0 8668 else
da4a1efa 8669 i9xx_clock(refclk, &clock);
79e53945 8670 } else {
0fb58223 8671 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8672 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8673
8674 if (is_lvds) {
8675 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8676 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8677
8678 if (lvds & LVDS_CLKB_POWER_UP)
8679 clock.p2 = 7;
8680 else
8681 clock.p2 = 14;
79e53945
JB
8682 } else {
8683 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8684 clock.p1 = 2;
8685 else {
8686 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8687 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8688 }
8689 if (dpll & PLL_P2_DIVIDE_BY_4)
8690 clock.p2 = 4;
8691 else
8692 clock.p2 = 2;
79e53945 8693 }
da4a1efa
VS
8694
8695 i9xx_clock(refclk, &clock);
79e53945
JB
8696 }
8697
18442d08
VS
8698 /*
8699 * This value includes pixel_multiplier. We will use
241bfc38 8700 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8701 * encoder's get_config() function.
8702 */
8703 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8704}
8705
6878da05
VS
8706int intel_dotclock_calculate(int link_freq,
8707 const struct intel_link_m_n *m_n)
f1f644dc 8708{
f1f644dc
JB
8709 /*
8710 * The calculation for the data clock is:
1041a02f 8711 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8712 * But we want to avoid losing precison if possible, so:
1041a02f 8713 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8714 *
8715 * and the link clock is simpler:
1041a02f 8716 * link_clock = (m * link_clock) / n
f1f644dc
JB
8717 */
8718
6878da05
VS
8719 if (!m_n->link_n)
8720 return 0;
f1f644dc 8721
6878da05
VS
8722 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8723}
f1f644dc 8724
18442d08
VS
8725static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8726 struct intel_crtc_config *pipe_config)
6878da05
VS
8727{
8728 struct drm_device *dev = crtc->base.dev;
79e53945 8729
18442d08
VS
8730 /* read out port_clock from the DPLL */
8731 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8732
f1f644dc 8733 /*
18442d08 8734 * This value does not include pixel_multiplier.
241bfc38 8735 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8736 * agree once we know their relationship in the encoder's
8737 * get_config() function.
79e53945 8738 */
241bfc38 8739 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8740 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8741 &pipe_config->fdi_m_n);
79e53945
JB
8742}
8743
8744/** Returns the currently programmed mode of the given pipe. */
8745struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8746 struct drm_crtc *crtc)
8747{
548f245b 8748 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8749 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8750 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8751 struct drm_display_mode *mode;
f1f644dc 8752 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8753 int htot = I915_READ(HTOTAL(cpu_transcoder));
8754 int hsync = I915_READ(HSYNC(cpu_transcoder));
8755 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8756 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8757 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8758
8759 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8760 if (!mode)
8761 return NULL;
8762
f1f644dc
JB
8763 /*
8764 * Construct a pipe_config sufficient for getting the clock info
8765 * back out of crtc_clock_get.
8766 *
8767 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8768 * to use a real value here instead.
8769 */
293623f7 8770 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8771 pipe_config.pixel_multiplier = 1;
293623f7
VS
8772 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8773 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8774 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8775 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8776
773ae034 8777 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8778 mode->hdisplay = (htot & 0xffff) + 1;
8779 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8780 mode->hsync_start = (hsync & 0xffff) + 1;
8781 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8782 mode->vdisplay = (vtot & 0xffff) + 1;
8783 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8784 mode->vsync_start = (vsync & 0xffff) + 1;
8785 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8786
8787 drm_mode_set_name(mode);
79e53945
JB
8788
8789 return mode;
8790}
8791
cc36513c
DV
8792static void intel_increase_pllclock(struct drm_device *dev,
8793 enum pipe pipe)
652c393a 8794{
fbee40df 8795 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8796 int dpll_reg = DPLL(pipe);
8797 int dpll;
652c393a 8798
bad720ff 8799 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8800 return;
8801
8802 if (!dev_priv->lvds_downclock_avail)
8803 return;
8804
dbdc6479 8805 dpll = I915_READ(dpll_reg);
652c393a 8806 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8807 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8808
8ac5a6d5 8809 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8810
8811 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8812 I915_WRITE(dpll_reg, dpll);
9d0498a2 8813 intel_wait_for_vblank(dev, pipe);
dbdc6479 8814
652c393a
JB
8815 dpll = I915_READ(dpll_reg);
8816 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8817 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8818 }
652c393a
JB
8819}
8820
8821static void intel_decrease_pllclock(struct drm_crtc *crtc)
8822{
8823 struct drm_device *dev = crtc->dev;
fbee40df 8824 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8825 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8826
bad720ff 8827 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8828 return;
8829
8830 if (!dev_priv->lvds_downclock_avail)
8831 return;
8832
8833 /*
8834 * Since this is called by a timer, we should never get here in
8835 * the manual case.
8836 */
8837 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8838 int pipe = intel_crtc->pipe;
8839 int dpll_reg = DPLL(pipe);
8840 int dpll;
f6e5b160 8841
44d98a61 8842 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8843
8ac5a6d5 8844 assert_panel_unlocked(dev_priv, pipe);
652c393a 8845
dc257cf1 8846 dpll = I915_READ(dpll_reg);
652c393a
JB
8847 dpll |= DISPLAY_RATE_SELECT_FPA1;
8848 I915_WRITE(dpll_reg, dpll);
9d0498a2 8849 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8850 dpll = I915_READ(dpll_reg);
8851 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8852 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8853 }
8854
8855}
8856
f047e395
CW
8857void intel_mark_busy(struct drm_device *dev)
8858{
c67a470b
PZ
8859 struct drm_i915_private *dev_priv = dev->dev_private;
8860
f62a0076
CW
8861 if (dev_priv->mm.busy)
8862 return;
8863
43694d69 8864 intel_runtime_pm_get(dev_priv);
c67a470b 8865 i915_update_gfx_val(dev_priv);
f62a0076 8866 dev_priv->mm.busy = true;
f047e395
CW
8867}
8868
8869void intel_mark_idle(struct drm_device *dev)
652c393a 8870{
c67a470b 8871 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8872 struct drm_crtc *crtc;
652c393a 8873
f62a0076
CW
8874 if (!dev_priv->mm.busy)
8875 return;
8876
8877 dev_priv->mm.busy = false;
8878
d330a953 8879 if (!i915.powersave)
bb4cdd53 8880 goto out;
652c393a 8881
70e1e0ec 8882 for_each_crtc(dev, crtc) {
f4510a27 8883 if (!crtc->primary->fb)
652c393a
JB
8884 continue;
8885
725a5b54 8886 intel_decrease_pllclock(crtc);
652c393a 8887 }
b29c19b6 8888
3d13ef2e 8889 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8890 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8891
8892out:
43694d69 8893 intel_runtime_pm_put(dev_priv);
652c393a
JB
8894}
8895
7c8f8a70 8896
f99d7069
DV
8897/**
8898 * intel_mark_fb_busy - mark given planes as busy
8899 * @dev: DRM device
8900 * @frontbuffer_bits: bits for the affected planes
8901 * @ring: optional ring for asynchronous commands
8902 *
8903 * This function gets called every time the screen contents change. It can be
8904 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8905 */
8906static void intel_mark_fb_busy(struct drm_device *dev,
8907 unsigned frontbuffer_bits,
8908 struct intel_engine_cs *ring)
652c393a 8909{
cc36513c 8910 enum pipe pipe;
652c393a 8911
d330a953 8912 if (!i915.powersave)
acb87dfb
CW
8913 return;
8914
cc36513c 8915 for_each_pipe(pipe) {
f99d7069 8916 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
8917 continue;
8918
cc36513c 8919 intel_increase_pllclock(dev, pipe);
c65355bb
CW
8920 if (ring && intel_fbc_enabled(dev))
8921 ring->fbc_dirty = true;
652c393a
JB
8922 }
8923}
8924
f99d7069
DV
8925/**
8926 * intel_fb_obj_invalidate - invalidate frontbuffer object
8927 * @obj: GEM object to invalidate
8928 * @ring: set for asynchronous rendering
8929 *
8930 * This function gets called every time rendering on the given object starts and
8931 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8932 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8933 * until the rendering completes or a flip on this frontbuffer plane is
8934 * scheduled.
8935 */
8936void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8937 struct intel_engine_cs *ring)
8938{
8939 struct drm_device *dev = obj->base.dev;
8940 struct drm_i915_private *dev_priv = dev->dev_private;
8941
8942 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8943
8944 if (!obj->frontbuffer_bits)
8945 return;
8946
8947 if (ring) {
8948 mutex_lock(&dev_priv->fb_tracking.lock);
8949 dev_priv->fb_tracking.busy_bits
8950 |= obj->frontbuffer_bits;
8951 dev_priv->fb_tracking.flip_bits
8952 &= ~obj->frontbuffer_bits;
8953 mutex_unlock(&dev_priv->fb_tracking.lock);
8954 }
8955
8956 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8957
8958 intel_edp_psr_exit(dev);
8959}
8960
8961/**
8962 * intel_frontbuffer_flush - flush frontbuffer
8963 * @dev: DRM device
8964 * @frontbuffer_bits: frontbuffer plane tracking bits
8965 *
8966 * This function gets called every time rendering on the given planes has
8967 * completed and frontbuffer caching can be started again. Flushes will get
8968 * delayed if they're blocked by some oustanding asynchronous rendering.
8969 *
8970 * Can be called without any locks held.
8971 */
8972void intel_frontbuffer_flush(struct drm_device *dev,
8973 unsigned frontbuffer_bits)
8974{
8975 struct drm_i915_private *dev_priv = dev->dev_private;
8976
8977 /* Delay flushing when rings are still busy.*/
8978 mutex_lock(&dev_priv->fb_tracking.lock);
8979 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
8980 mutex_unlock(&dev_priv->fb_tracking.lock);
8981
8982 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
8983
8984 intel_edp_psr_exit(dev);
8985}
8986
8987/**
8988 * intel_fb_obj_flush - flush frontbuffer object
8989 * @obj: GEM object to flush
8990 * @retire: set when retiring asynchronous rendering
8991 *
8992 * This function gets called every time rendering on the given object has
8993 * completed and frontbuffer caching can be started again. If @retire is true
8994 * then any delayed flushes will be unblocked.
8995 */
8996void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
8997 bool retire)
8998{
8999 struct drm_device *dev = obj->base.dev;
9000 struct drm_i915_private *dev_priv = dev->dev_private;
9001 unsigned frontbuffer_bits;
9002
9003 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9004
9005 if (!obj->frontbuffer_bits)
9006 return;
9007
9008 frontbuffer_bits = obj->frontbuffer_bits;
9009
9010 if (retire) {
9011 mutex_lock(&dev_priv->fb_tracking.lock);
9012 /* Filter out new bits since rendering started. */
9013 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9014
9015 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9016 mutex_unlock(&dev_priv->fb_tracking.lock);
9017 }
9018
9019 intel_frontbuffer_flush(dev, frontbuffer_bits);
9020}
9021
9022/**
9023 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9024 * @dev: DRM device
9025 * @frontbuffer_bits: frontbuffer plane tracking bits
9026 *
9027 * This function gets called after scheduling a flip on @obj. The actual
9028 * frontbuffer flushing will be delayed until completion is signalled with
9029 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9030 * flush will be cancelled.
9031 *
9032 * Can be called without any locks held.
9033 */
9034void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9035 unsigned frontbuffer_bits)
9036{
9037 struct drm_i915_private *dev_priv = dev->dev_private;
9038
9039 mutex_lock(&dev_priv->fb_tracking.lock);
9040 dev_priv->fb_tracking.flip_bits
9041 |= frontbuffer_bits;
9042 mutex_unlock(&dev_priv->fb_tracking.lock);
9043}
9044
9045/**
9046 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9047 * @dev: DRM device
9048 * @frontbuffer_bits: frontbuffer plane tracking bits
9049 *
9050 * This function gets called after the flip has been latched and will complete
9051 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9052 *
9053 * Can be called without any locks held.
9054 */
9055void intel_frontbuffer_flip_complete(struct drm_device *dev,
9056 unsigned frontbuffer_bits)
9057{
9058 struct drm_i915_private *dev_priv = dev->dev_private;
9059
9060 mutex_lock(&dev_priv->fb_tracking.lock);
9061 /* Mask any cancelled flips. */
9062 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9063 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9064 mutex_unlock(&dev_priv->fb_tracking.lock);
9065
9066 intel_frontbuffer_flush(dev, frontbuffer_bits);
9067}
9068
79e53945
JB
9069static void intel_crtc_destroy(struct drm_crtc *crtc)
9070{
9071 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9072 struct drm_device *dev = crtc->dev;
9073 struct intel_unpin_work *work;
9074 unsigned long flags;
9075
9076 spin_lock_irqsave(&dev->event_lock, flags);
9077 work = intel_crtc->unpin_work;
9078 intel_crtc->unpin_work = NULL;
9079 spin_unlock_irqrestore(&dev->event_lock, flags);
9080
9081 if (work) {
9082 cancel_work_sync(&work->work);
9083 kfree(work);
9084 }
79e53945
JB
9085
9086 drm_crtc_cleanup(crtc);
67e77c5a 9087
79e53945
JB
9088 kfree(intel_crtc);
9089}
9090
6b95a207
KH
9091static void intel_unpin_work_fn(struct work_struct *__work)
9092{
9093 struct intel_unpin_work *work =
9094 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9095 struct drm_device *dev = work->crtc->dev;
f99d7069 9096 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9097
b4a98e57 9098 mutex_lock(&dev->struct_mutex);
1690e1eb 9099 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9100 drm_gem_object_unreference(&work->pending_flip_obj->base);
9101 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9102
b4a98e57
CW
9103 intel_update_fbc(dev);
9104 mutex_unlock(&dev->struct_mutex);
9105
f99d7069
DV
9106 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9107
b4a98e57
CW
9108 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9109 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9110
6b95a207
KH
9111 kfree(work);
9112}
9113
1afe3e9d 9114static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9115 struct drm_crtc *crtc)
6b95a207 9116{
fbee40df 9117 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9119 struct intel_unpin_work *work;
6b95a207
KH
9120 unsigned long flags;
9121
9122 /* Ignore early vblank irqs */
9123 if (intel_crtc == NULL)
9124 return;
9125
9126 spin_lock_irqsave(&dev->event_lock, flags);
9127 work = intel_crtc->unpin_work;
e7d841ca
CW
9128
9129 /* Ensure we don't miss a work->pending update ... */
9130 smp_rmb();
9131
9132 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9133 spin_unlock_irqrestore(&dev->event_lock, flags);
9134 return;
9135 }
9136
e7d841ca
CW
9137 /* and that the unpin work is consistent wrt ->pending. */
9138 smp_rmb();
9139
6b95a207 9140 intel_crtc->unpin_work = NULL;
6b95a207 9141
45a066eb
RC
9142 if (work->event)
9143 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9144
87b6b101 9145 drm_crtc_vblank_put(crtc);
0af7e4df 9146
6b95a207
KH
9147 spin_unlock_irqrestore(&dev->event_lock, flags);
9148
2c10d571 9149 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9150
9151 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9152
9153 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9154}
9155
1afe3e9d
JB
9156void intel_finish_page_flip(struct drm_device *dev, int pipe)
9157{
fbee40df 9158 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9159 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9160
49b14a5c 9161 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9162}
9163
9164void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9165{
fbee40df 9166 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9167 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9168
49b14a5c 9169 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9170}
9171
75f7f3ec
VS
9172/* Is 'a' after or equal to 'b'? */
9173static bool g4x_flip_count_after_eq(u32 a, u32 b)
9174{
9175 return !((a - b) & 0x80000000);
9176}
9177
9178static bool page_flip_finished(struct intel_crtc *crtc)
9179{
9180 struct drm_device *dev = crtc->base.dev;
9181 struct drm_i915_private *dev_priv = dev->dev_private;
9182
9183 /*
9184 * The relevant registers doen't exist on pre-ctg.
9185 * As the flip done interrupt doesn't trigger for mmio
9186 * flips on gmch platforms, a flip count check isn't
9187 * really needed there. But since ctg has the registers,
9188 * include it in the check anyway.
9189 */
9190 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9191 return true;
9192
9193 /*
9194 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9195 * used the same base address. In that case the mmio flip might
9196 * have completed, but the CS hasn't even executed the flip yet.
9197 *
9198 * A flip count check isn't enough as the CS might have updated
9199 * the base address just after start of vblank, but before we
9200 * managed to process the interrupt. This means we'd complete the
9201 * CS flip too soon.
9202 *
9203 * Combining both checks should get us a good enough result. It may
9204 * still happen that the CS flip has been executed, but has not
9205 * yet actually completed. But in case the base address is the same
9206 * anyway, we don't really care.
9207 */
9208 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9209 crtc->unpin_work->gtt_offset &&
9210 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9211 crtc->unpin_work->flip_count);
9212}
9213
6b95a207
KH
9214void intel_prepare_page_flip(struct drm_device *dev, int plane)
9215{
fbee40df 9216 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9217 struct intel_crtc *intel_crtc =
9218 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9219 unsigned long flags;
9220
e7d841ca
CW
9221 /* NB: An MMIO update of the plane base pointer will also
9222 * generate a page-flip completion irq, i.e. every modeset
9223 * is also accompanied by a spurious intel_prepare_page_flip().
9224 */
6b95a207 9225 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9226 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9227 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9228 spin_unlock_irqrestore(&dev->event_lock, flags);
9229}
9230
eba905b2 9231static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9232{
9233 /* Ensure that the work item is consistent when activating it ... */
9234 smp_wmb();
9235 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9236 /* and that it is marked active as soon as the irq could fire. */
9237 smp_wmb();
9238}
9239
8c9f3aaf
JB
9240static int intel_gen2_queue_flip(struct drm_device *dev,
9241 struct drm_crtc *crtc,
9242 struct drm_framebuffer *fb,
ed8d1975 9243 struct drm_i915_gem_object *obj,
a4872ba6 9244 struct intel_engine_cs *ring,
ed8d1975 9245 uint32_t flags)
8c9f3aaf 9246{
8c9f3aaf 9247 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9248 u32 flip_mask;
9249 int ret;
9250
6d90c952 9251 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9252 if (ret)
4fa62c89 9253 return ret;
8c9f3aaf
JB
9254
9255 /* Can't queue multiple flips, so wait for the previous
9256 * one to finish before executing the next.
9257 */
9258 if (intel_crtc->plane)
9259 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9260 else
9261 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9262 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9263 intel_ring_emit(ring, MI_NOOP);
9264 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9265 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9266 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9267 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9268 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9269
9270 intel_mark_page_flip_active(intel_crtc);
09246732 9271 __intel_ring_advance(ring);
83d4092b 9272 return 0;
8c9f3aaf
JB
9273}
9274
9275static int intel_gen3_queue_flip(struct drm_device *dev,
9276 struct drm_crtc *crtc,
9277 struct drm_framebuffer *fb,
ed8d1975 9278 struct drm_i915_gem_object *obj,
a4872ba6 9279 struct intel_engine_cs *ring,
ed8d1975 9280 uint32_t flags)
8c9f3aaf 9281{
8c9f3aaf 9282 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9283 u32 flip_mask;
9284 int ret;
9285
6d90c952 9286 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9287 if (ret)
4fa62c89 9288 return ret;
8c9f3aaf
JB
9289
9290 if (intel_crtc->plane)
9291 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9292 else
9293 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9294 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9295 intel_ring_emit(ring, MI_NOOP);
9296 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9297 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9298 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9299 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9300 intel_ring_emit(ring, MI_NOOP);
9301
e7d841ca 9302 intel_mark_page_flip_active(intel_crtc);
09246732 9303 __intel_ring_advance(ring);
83d4092b 9304 return 0;
8c9f3aaf
JB
9305}
9306
9307static int intel_gen4_queue_flip(struct drm_device *dev,
9308 struct drm_crtc *crtc,
9309 struct drm_framebuffer *fb,
ed8d1975 9310 struct drm_i915_gem_object *obj,
a4872ba6 9311 struct intel_engine_cs *ring,
ed8d1975 9312 uint32_t flags)
8c9f3aaf
JB
9313{
9314 struct drm_i915_private *dev_priv = dev->dev_private;
9315 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9316 uint32_t pf, pipesrc;
9317 int ret;
9318
6d90c952 9319 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9320 if (ret)
4fa62c89 9321 return ret;
8c9f3aaf
JB
9322
9323 /* i965+ uses the linear or tiled offsets from the
9324 * Display Registers (which do not change across a page-flip)
9325 * so we need only reprogram the base address.
9326 */
6d90c952
DV
9327 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9328 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9329 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9330 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9331 obj->tiling_mode);
8c9f3aaf
JB
9332
9333 /* XXX Enabling the panel-fitter across page-flip is so far
9334 * untested on non-native modes, so ignore it for now.
9335 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9336 */
9337 pf = 0;
9338 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9339 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9340
9341 intel_mark_page_flip_active(intel_crtc);
09246732 9342 __intel_ring_advance(ring);
83d4092b 9343 return 0;
8c9f3aaf
JB
9344}
9345
9346static int intel_gen6_queue_flip(struct drm_device *dev,
9347 struct drm_crtc *crtc,
9348 struct drm_framebuffer *fb,
ed8d1975 9349 struct drm_i915_gem_object *obj,
a4872ba6 9350 struct intel_engine_cs *ring,
ed8d1975 9351 uint32_t flags)
8c9f3aaf
JB
9352{
9353 struct drm_i915_private *dev_priv = dev->dev_private;
9354 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9355 uint32_t pf, pipesrc;
9356 int ret;
9357
6d90c952 9358 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9359 if (ret)
4fa62c89 9360 return ret;
8c9f3aaf 9361
6d90c952
DV
9362 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9363 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9364 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9365 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9366
dc257cf1
DV
9367 /* Contrary to the suggestions in the documentation,
9368 * "Enable Panel Fitter" does not seem to be required when page
9369 * flipping with a non-native mode, and worse causes a normal
9370 * modeset to fail.
9371 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9372 */
9373 pf = 0;
8c9f3aaf 9374 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9375 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9376
9377 intel_mark_page_flip_active(intel_crtc);
09246732 9378 __intel_ring_advance(ring);
83d4092b 9379 return 0;
8c9f3aaf
JB
9380}
9381
7c9017e5
JB
9382static int intel_gen7_queue_flip(struct drm_device *dev,
9383 struct drm_crtc *crtc,
9384 struct drm_framebuffer *fb,
ed8d1975 9385 struct drm_i915_gem_object *obj,
a4872ba6 9386 struct intel_engine_cs *ring,
ed8d1975 9387 uint32_t flags)
7c9017e5 9388{
7c9017e5 9389 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9390 uint32_t plane_bit = 0;
ffe74d75
CW
9391 int len, ret;
9392
eba905b2 9393 switch (intel_crtc->plane) {
cb05d8de
DV
9394 case PLANE_A:
9395 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9396 break;
9397 case PLANE_B:
9398 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9399 break;
9400 case PLANE_C:
9401 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9402 break;
9403 default:
9404 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9405 return -ENODEV;
cb05d8de
DV
9406 }
9407
ffe74d75 9408 len = 4;
f476828a 9409 if (ring->id == RCS) {
ffe74d75 9410 len += 6;
f476828a
DL
9411 /*
9412 * On Gen 8, SRM is now taking an extra dword to accommodate
9413 * 48bits addresses, and we need a NOOP for the batch size to
9414 * stay even.
9415 */
9416 if (IS_GEN8(dev))
9417 len += 2;
9418 }
ffe74d75 9419
f66fab8e
VS
9420 /*
9421 * BSpec MI_DISPLAY_FLIP for IVB:
9422 * "The full packet must be contained within the same cache line."
9423 *
9424 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9425 * cacheline, if we ever start emitting more commands before
9426 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9427 * then do the cacheline alignment, and finally emit the
9428 * MI_DISPLAY_FLIP.
9429 */
9430 ret = intel_ring_cacheline_align(ring);
9431 if (ret)
4fa62c89 9432 return ret;
f66fab8e 9433
ffe74d75 9434 ret = intel_ring_begin(ring, len);
7c9017e5 9435 if (ret)
4fa62c89 9436 return ret;
7c9017e5 9437
ffe74d75
CW
9438 /* Unmask the flip-done completion message. Note that the bspec says that
9439 * we should do this for both the BCS and RCS, and that we must not unmask
9440 * more than one flip event at any time (or ensure that one flip message
9441 * can be sent by waiting for flip-done prior to queueing new flips).
9442 * Experimentation says that BCS works despite DERRMR masking all
9443 * flip-done completion events and that unmasking all planes at once
9444 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9445 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9446 */
9447 if (ring->id == RCS) {
9448 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9449 intel_ring_emit(ring, DERRMR);
9450 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9451 DERRMR_PIPEB_PRI_FLIP_DONE |
9452 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9453 if (IS_GEN8(dev))
9454 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9455 MI_SRM_LRM_GLOBAL_GTT);
9456 else
9457 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9458 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9459 intel_ring_emit(ring, DERRMR);
9460 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9461 if (IS_GEN8(dev)) {
9462 intel_ring_emit(ring, 0);
9463 intel_ring_emit(ring, MI_NOOP);
9464 }
ffe74d75
CW
9465 }
9466
cb05d8de 9467 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9468 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9469 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9470 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9471
9472 intel_mark_page_flip_active(intel_crtc);
09246732 9473 __intel_ring_advance(ring);
83d4092b 9474 return 0;
7c9017e5
JB
9475}
9476
84c33a64
SG
9477static bool use_mmio_flip(struct intel_engine_cs *ring,
9478 struct drm_i915_gem_object *obj)
9479{
9480 /*
9481 * This is not being used for older platforms, because
9482 * non-availability of flip done interrupt forces us to use
9483 * CS flips. Older platforms derive flip done using some clever
9484 * tricks involving the flip_pending status bits and vblank irqs.
9485 * So using MMIO flips there would disrupt this mechanism.
9486 */
9487
8e09bf83
CW
9488 if (ring == NULL)
9489 return true;
9490
84c33a64
SG
9491 if (INTEL_INFO(ring->dev)->gen < 5)
9492 return false;
9493
9494 if (i915.use_mmio_flip < 0)
9495 return false;
9496 else if (i915.use_mmio_flip > 0)
9497 return true;
9498 else
9499 return ring != obj->ring;
9500}
9501
9502static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9503{
9504 struct drm_device *dev = intel_crtc->base.dev;
9505 struct drm_i915_private *dev_priv = dev->dev_private;
9506 struct intel_framebuffer *intel_fb =
9507 to_intel_framebuffer(intel_crtc->base.primary->fb);
9508 struct drm_i915_gem_object *obj = intel_fb->obj;
9509 u32 dspcntr;
9510 u32 reg;
9511
9512 intel_mark_page_flip_active(intel_crtc);
9513
9514 reg = DSPCNTR(intel_crtc->plane);
9515 dspcntr = I915_READ(reg);
9516
9517 if (INTEL_INFO(dev)->gen >= 4) {
9518 if (obj->tiling_mode != I915_TILING_NONE)
9519 dspcntr |= DISPPLANE_TILED;
9520 else
9521 dspcntr &= ~DISPPLANE_TILED;
9522 }
9523 I915_WRITE(reg, dspcntr);
9524
9525 I915_WRITE(DSPSURF(intel_crtc->plane),
9526 intel_crtc->unpin_work->gtt_offset);
9527 POSTING_READ(DSPSURF(intel_crtc->plane));
9528}
9529
9530static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9531{
9532 struct intel_engine_cs *ring;
9533 int ret;
9534
9535 lockdep_assert_held(&obj->base.dev->struct_mutex);
9536
9537 if (!obj->last_write_seqno)
9538 return 0;
9539
9540 ring = obj->ring;
9541
9542 if (i915_seqno_passed(ring->get_seqno(ring, true),
9543 obj->last_write_seqno))
9544 return 0;
9545
9546 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9547 if (ret)
9548 return ret;
9549
9550 if (WARN_ON(!ring->irq_get(ring)))
9551 return 0;
9552
9553 return 1;
9554}
9555
9556void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9557{
9558 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9559 struct intel_crtc *intel_crtc;
9560 unsigned long irq_flags;
9561 u32 seqno;
9562
9563 seqno = ring->get_seqno(ring, false);
9564
9565 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9566 for_each_intel_crtc(ring->dev, intel_crtc) {
9567 struct intel_mmio_flip *mmio_flip;
9568
9569 mmio_flip = &intel_crtc->mmio_flip;
9570 if (mmio_flip->seqno == 0)
9571 continue;
9572
9573 if (ring->id != mmio_flip->ring_id)
9574 continue;
9575
9576 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9577 intel_do_mmio_flip(intel_crtc);
9578 mmio_flip->seqno = 0;
9579 ring->irq_put(ring);
9580 }
9581 }
9582 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9583}
9584
9585static int intel_queue_mmio_flip(struct drm_device *dev,
9586 struct drm_crtc *crtc,
9587 struct drm_framebuffer *fb,
9588 struct drm_i915_gem_object *obj,
9589 struct intel_engine_cs *ring,
9590 uint32_t flags)
9591{
9592 struct drm_i915_private *dev_priv = dev->dev_private;
9593 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9594 unsigned long irq_flags;
9595 int ret;
9596
9597 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9598 return -EBUSY;
9599
9600 ret = intel_postpone_flip(obj);
9601 if (ret < 0)
9602 return ret;
9603 if (ret == 0) {
9604 intel_do_mmio_flip(intel_crtc);
9605 return 0;
9606 }
9607
9608 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9609 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9610 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9611 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9612
9613 /*
9614 * Double check to catch cases where irq fired before
9615 * mmio flip data was ready
9616 */
9617 intel_notify_mmio_flip(obj->ring);
9618 return 0;
9619}
9620
8c9f3aaf
JB
9621static int intel_default_queue_flip(struct drm_device *dev,
9622 struct drm_crtc *crtc,
9623 struct drm_framebuffer *fb,
ed8d1975 9624 struct drm_i915_gem_object *obj,
a4872ba6 9625 struct intel_engine_cs *ring,
ed8d1975 9626 uint32_t flags)
8c9f3aaf
JB
9627{
9628 return -ENODEV;
9629}
9630
6b95a207
KH
9631static int intel_crtc_page_flip(struct drm_crtc *crtc,
9632 struct drm_framebuffer *fb,
ed8d1975
KP
9633 struct drm_pending_vblank_event *event,
9634 uint32_t page_flip_flags)
6b95a207
KH
9635{
9636 struct drm_device *dev = crtc->dev;
9637 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9638 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9639 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9640 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9641 enum pipe pipe = intel_crtc->pipe;
6b95a207 9642 struct intel_unpin_work *work;
a4872ba6 9643 struct intel_engine_cs *ring;
8c9f3aaf 9644 unsigned long flags;
52e68630 9645 int ret;
6b95a207 9646
2ff8fde1
MR
9647 /*
9648 * drm_mode_page_flip_ioctl() should already catch this, but double
9649 * check to be safe. In the future we may enable pageflipping from
9650 * a disabled primary plane.
9651 */
9652 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9653 return -EBUSY;
9654
e6a595d2 9655 /* Can't change pixel format via MI display flips. */
f4510a27 9656 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9657 return -EINVAL;
9658
9659 /*
9660 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9661 * Note that pitch changes could also affect these register.
9662 */
9663 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9664 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9665 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9666 return -EINVAL;
9667
f900db47
CW
9668 if (i915_terminally_wedged(&dev_priv->gpu_error))
9669 goto out_hang;
9670
b14c5679 9671 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9672 if (work == NULL)
9673 return -ENOMEM;
9674
6b95a207 9675 work->event = event;
b4a98e57 9676 work->crtc = crtc;
2ff8fde1 9677 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9678 INIT_WORK(&work->work, intel_unpin_work_fn);
9679
87b6b101 9680 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9681 if (ret)
9682 goto free_work;
9683
6b95a207
KH
9684 /* We borrow the event spin lock for protecting unpin_work */
9685 spin_lock_irqsave(&dev->event_lock, flags);
9686 if (intel_crtc->unpin_work) {
9687 spin_unlock_irqrestore(&dev->event_lock, flags);
9688 kfree(work);
87b6b101 9689 drm_crtc_vblank_put(crtc);
468f0b44
CW
9690
9691 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9692 return -EBUSY;
9693 }
9694 intel_crtc->unpin_work = work;
9695 spin_unlock_irqrestore(&dev->event_lock, flags);
9696
b4a98e57
CW
9697 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9698 flush_workqueue(dev_priv->wq);
9699
79158103
CW
9700 ret = i915_mutex_lock_interruptible(dev);
9701 if (ret)
9702 goto cleanup;
6b95a207 9703
75dfca80 9704 /* Reference the objects for the scheduled work. */
05394f39
CW
9705 drm_gem_object_reference(&work->old_fb_obj->base);
9706 drm_gem_object_reference(&obj->base);
6b95a207 9707
f4510a27 9708 crtc->primary->fb = fb;
96b099fd 9709
e1f99ce6 9710 work->pending_flip_obj = obj;
e1f99ce6 9711
4e5359cd
SF
9712 work->enable_stall_check = true;
9713
b4a98e57 9714 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9715 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9716
75f7f3ec 9717 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9718 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9719
4fa62c89
VS
9720 if (IS_VALLEYVIEW(dev)) {
9721 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9722 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9723 /* vlv: DISPLAY_FLIP fails to change tiling */
9724 ring = NULL;
2a92d5bc
CW
9725 } else if (IS_IVYBRIDGE(dev)) {
9726 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9727 } else if (INTEL_INFO(dev)->gen >= 7) {
9728 ring = obj->ring;
9729 if (ring == NULL || ring->id != RCS)
9730 ring = &dev_priv->ring[BCS];
9731 } else {
9732 ring = &dev_priv->ring[RCS];
9733 }
9734
9735 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9736 if (ret)
9737 goto cleanup_pending;
6b95a207 9738
4fa62c89
VS
9739 work->gtt_offset =
9740 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9741
84c33a64
SG
9742 if (use_mmio_flip(ring, obj))
9743 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9744 page_flip_flags);
9745 else
9746 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9747 page_flip_flags);
4fa62c89
VS
9748 if (ret)
9749 goto cleanup_unpin;
9750
a071fa00
DV
9751 i915_gem_track_fb(work->old_fb_obj, obj,
9752 INTEL_FRONTBUFFER_PRIMARY(pipe));
9753
7782de3b 9754 intel_disable_fbc(dev);
f99d7069 9755 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9756 mutex_unlock(&dev->struct_mutex);
9757
e5510fac
JB
9758 trace_i915_flip_request(intel_crtc->plane, obj);
9759
6b95a207 9760 return 0;
96b099fd 9761
4fa62c89
VS
9762cleanup_unpin:
9763 intel_unpin_fb_obj(obj);
8c9f3aaf 9764cleanup_pending:
b4a98e57 9765 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9766 crtc->primary->fb = old_fb;
05394f39
CW
9767 drm_gem_object_unreference(&work->old_fb_obj->base);
9768 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9769 mutex_unlock(&dev->struct_mutex);
9770
79158103 9771cleanup:
96b099fd
CW
9772 spin_lock_irqsave(&dev->event_lock, flags);
9773 intel_crtc->unpin_work = NULL;
9774 spin_unlock_irqrestore(&dev->event_lock, flags);
9775
87b6b101 9776 drm_crtc_vblank_put(crtc);
7317c75e 9777free_work:
96b099fd
CW
9778 kfree(work);
9779
f900db47
CW
9780 if (ret == -EIO) {
9781out_hang:
9782 intel_crtc_wait_for_pending_flips(crtc);
9783 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9784 if (ret == 0 && event)
a071fa00 9785 drm_send_vblank_event(dev, pipe, event);
f900db47 9786 }
96b099fd 9787 return ret;
6b95a207
KH
9788}
9789
f6e5b160 9790static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9791 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9792 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9793};
9794
9a935856
DV
9795/**
9796 * intel_modeset_update_staged_output_state
9797 *
9798 * Updates the staged output configuration state, e.g. after we've read out the
9799 * current hw state.
9800 */
9801static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9802{
7668851f 9803 struct intel_crtc *crtc;
9a935856
DV
9804 struct intel_encoder *encoder;
9805 struct intel_connector *connector;
f6e5b160 9806
9a935856
DV
9807 list_for_each_entry(connector, &dev->mode_config.connector_list,
9808 base.head) {
9809 connector->new_encoder =
9810 to_intel_encoder(connector->base.encoder);
9811 }
f6e5b160 9812
9a935856
DV
9813 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9814 base.head) {
9815 encoder->new_crtc =
9816 to_intel_crtc(encoder->base.crtc);
9817 }
7668851f 9818
d3fcc808 9819 for_each_intel_crtc(dev, crtc) {
7668851f 9820 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9821
9822 if (crtc->new_enabled)
9823 crtc->new_config = &crtc->config;
9824 else
9825 crtc->new_config = NULL;
7668851f 9826 }
f6e5b160
CW
9827}
9828
9a935856
DV
9829/**
9830 * intel_modeset_commit_output_state
9831 *
9832 * This function copies the stage display pipe configuration to the real one.
9833 */
9834static void intel_modeset_commit_output_state(struct drm_device *dev)
9835{
7668851f 9836 struct intel_crtc *crtc;
9a935856
DV
9837 struct intel_encoder *encoder;
9838 struct intel_connector *connector;
f6e5b160 9839
9a935856
DV
9840 list_for_each_entry(connector, &dev->mode_config.connector_list,
9841 base.head) {
9842 connector->base.encoder = &connector->new_encoder->base;
9843 }
f6e5b160 9844
9a935856
DV
9845 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9846 base.head) {
9847 encoder->base.crtc = &encoder->new_crtc->base;
9848 }
7668851f 9849
d3fcc808 9850 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9851 crtc->base.enabled = crtc->new_enabled;
9852 }
9a935856
DV
9853}
9854
050f7aeb 9855static void
eba905b2 9856connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9857 struct intel_crtc_config *pipe_config)
9858{
9859 int bpp = pipe_config->pipe_bpp;
9860
9861 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9862 connector->base.base.id,
c23cc417 9863 connector->base.name);
050f7aeb
DV
9864
9865 /* Don't use an invalid EDID bpc value */
9866 if (connector->base.display_info.bpc &&
9867 connector->base.display_info.bpc * 3 < bpp) {
9868 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9869 bpp, connector->base.display_info.bpc*3);
9870 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9871 }
9872
9873 /* Clamp bpp to 8 on screens without EDID 1.4 */
9874 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9875 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9876 bpp);
9877 pipe_config->pipe_bpp = 24;
9878 }
9879}
9880
4e53c2e0 9881static int
050f7aeb
DV
9882compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9883 struct drm_framebuffer *fb,
9884 struct intel_crtc_config *pipe_config)
4e53c2e0 9885{
050f7aeb
DV
9886 struct drm_device *dev = crtc->base.dev;
9887 struct intel_connector *connector;
4e53c2e0
DV
9888 int bpp;
9889
d42264b1
DV
9890 switch (fb->pixel_format) {
9891 case DRM_FORMAT_C8:
4e53c2e0
DV
9892 bpp = 8*3; /* since we go through a colormap */
9893 break;
d42264b1
DV
9894 case DRM_FORMAT_XRGB1555:
9895 case DRM_FORMAT_ARGB1555:
9896 /* checked in intel_framebuffer_init already */
9897 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9898 return -EINVAL;
9899 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9900 bpp = 6*3; /* min is 18bpp */
9901 break;
d42264b1
DV
9902 case DRM_FORMAT_XBGR8888:
9903 case DRM_FORMAT_ABGR8888:
9904 /* checked in intel_framebuffer_init already */
9905 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9906 return -EINVAL;
9907 case DRM_FORMAT_XRGB8888:
9908 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9909 bpp = 8*3;
9910 break;
d42264b1
DV
9911 case DRM_FORMAT_XRGB2101010:
9912 case DRM_FORMAT_ARGB2101010:
9913 case DRM_FORMAT_XBGR2101010:
9914 case DRM_FORMAT_ABGR2101010:
9915 /* checked in intel_framebuffer_init already */
9916 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9917 return -EINVAL;
4e53c2e0
DV
9918 bpp = 10*3;
9919 break;
baba133a 9920 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9921 default:
9922 DRM_DEBUG_KMS("unsupported depth\n");
9923 return -EINVAL;
9924 }
9925
4e53c2e0
DV
9926 pipe_config->pipe_bpp = bpp;
9927
9928 /* Clamp display bpp to EDID value */
9929 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9930 base.head) {
1b829e05
DV
9931 if (!connector->new_encoder ||
9932 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9933 continue;
9934
050f7aeb 9935 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9936 }
9937
9938 return bpp;
9939}
9940
644db711
DV
9941static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9942{
9943 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9944 "type: 0x%x flags: 0x%x\n",
1342830c 9945 mode->crtc_clock,
644db711
DV
9946 mode->crtc_hdisplay, mode->crtc_hsync_start,
9947 mode->crtc_hsync_end, mode->crtc_htotal,
9948 mode->crtc_vdisplay, mode->crtc_vsync_start,
9949 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9950}
9951
c0b03411
DV
9952static void intel_dump_pipe_config(struct intel_crtc *crtc,
9953 struct intel_crtc_config *pipe_config,
9954 const char *context)
9955{
9956 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9957 context, pipe_name(crtc->pipe));
9958
9959 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9960 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9961 pipe_config->pipe_bpp, pipe_config->dither);
9962 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9963 pipe_config->has_pch_encoder,
9964 pipe_config->fdi_lanes,
9965 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9966 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9967 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9968 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9969 pipe_config->has_dp_encoder,
9970 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9971 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9972 pipe_config->dp_m_n.tu);
c0b03411
DV
9973 DRM_DEBUG_KMS("requested mode:\n");
9974 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9975 DRM_DEBUG_KMS("adjusted mode:\n");
9976 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 9977 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 9978 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
9979 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9980 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
9981 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9982 pipe_config->gmch_pfit.control,
9983 pipe_config->gmch_pfit.pgm_ratios,
9984 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 9985 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 9986 pipe_config->pch_pfit.pos,
fd4daa9c
CW
9987 pipe_config->pch_pfit.size,
9988 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 9989 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 9990 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
9991}
9992
bc079e8b
VS
9993static bool encoders_cloneable(const struct intel_encoder *a,
9994 const struct intel_encoder *b)
accfc0c5 9995{
bc079e8b
VS
9996 /* masks could be asymmetric, so check both ways */
9997 return a == b || (a->cloneable & (1 << b->type) &&
9998 b->cloneable & (1 << a->type));
9999}
10000
10001static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10002 struct intel_encoder *encoder)
10003{
10004 struct drm_device *dev = crtc->base.dev;
10005 struct intel_encoder *source_encoder;
10006
10007 list_for_each_entry(source_encoder,
10008 &dev->mode_config.encoder_list, base.head) {
10009 if (source_encoder->new_crtc != crtc)
10010 continue;
10011
10012 if (!encoders_cloneable(encoder, source_encoder))
10013 return false;
10014 }
10015
10016 return true;
10017}
10018
10019static bool check_encoder_cloning(struct intel_crtc *crtc)
10020{
10021 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10022 struct intel_encoder *encoder;
10023
bc079e8b
VS
10024 list_for_each_entry(encoder,
10025 &dev->mode_config.encoder_list, base.head) {
10026 if (encoder->new_crtc != crtc)
accfc0c5
DV
10027 continue;
10028
bc079e8b
VS
10029 if (!check_single_encoder_cloning(crtc, encoder))
10030 return false;
accfc0c5
DV
10031 }
10032
bc079e8b 10033 return true;
accfc0c5
DV
10034}
10035
b8cecdf5
DV
10036static struct intel_crtc_config *
10037intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10038 struct drm_framebuffer *fb,
b8cecdf5 10039 struct drm_display_mode *mode)
ee7b9f93 10040{
7758a113 10041 struct drm_device *dev = crtc->dev;
7758a113 10042 struct intel_encoder *encoder;
b8cecdf5 10043 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10044 int plane_bpp, ret = -EINVAL;
10045 bool retry = true;
ee7b9f93 10046
bc079e8b 10047 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10048 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10049 return ERR_PTR(-EINVAL);
10050 }
10051
b8cecdf5
DV
10052 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10053 if (!pipe_config)
7758a113
DV
10054 return ERR_PTR(-ENOMEM);
10055
b8cecdf5
DV
10056 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10057 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10058
e143a21c
DV
10059 pipe_config->cpu_transcoder =
10060 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10061 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10062
2960bc9c
ID
10063 /*
10064 * Sanitize sync polarity flags based on requested ones. If neither
10065 * positive or negative polarity is requested, treat this as meaning
10066 * negative polarity.
10067 */
10068 if (!(pipe_config->adjusted_mode.flags &
10069 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10070 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10071
10072 if (!(pipe_config->adjusted_mode.flags &
10073 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10074 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10075
050f7aeb
DV
10076 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10077 * plane pixel format and any sink constraints into account. Returns the
10078 * source plane bpp so that dithering can be selected on mismatches
10079 * after encoders and crtc also have had their say. */
10080 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10081 fb, pipe_config);
4e53c2e0
DV
10082 if (plane_bpp < 0)
10083 goto fail;
10084
e41a56be
VS
10085 /*
10086 * Determine the real pipe dimensions. Note that stereo modes can
10087 * increase the actual pipe size due to the frame doubling and
10088 * insertion of additional space for blanks between the frame. This
10089 * is stored in the crtc timings. We use the requested mode to do this
10090 * computation to clearly distinguish it from the adjusted mode, which
10091 * can be changed by the connectors in the below retry loop.
10092 */
10093 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10094 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10095 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10096
e29c22c0 10097encoder_retry:
ef1b460d 10098 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10099 pipe_config->port_clock = 0;
ef1b460d 10100 pipe_config->pixel_multiplier = 1;
ff9a6750 10101
135c81b8 10102 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10103 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10104
7758a113
DV
10105 /* Pass our mode to the connectors and the CRTC to give them a chance to
10106 * adjust it according to limitations or connector properties, and also
10107 * a chance to reject the mode entirely.
47f1c6c9 10108 */
7758a113
DV
10109 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10110 base.head) {
47f1c6c9 10111
7758a113
DV
10112 if (&encoder->new_crtc->base != crtc)
10113 continue;
7ae89233 10114
efea6e8e
DV
10115 if (!(encoder->compute_config(encoder, pipe_config))) {
10116 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10117 goto fail;
10118 }
ee7b9f93 10119 }
47f1c6c9 10120
ff9a6750
DV
10121 /* Set default port clock if not overwritten by the encoder. Needs to be
10122 * done afterwards in case the encoder adjusts the mode. */
10123 if (!pipe_config->port_clock)
241bfc38
DL
10124 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10125 * pipe_config->pixel_multiplier;
ff9a6750 10126
a43f6e0f 10127 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10128 if (ret < 0) {
7758a113
DV
10129 DRM_DEBUG_KMS("CRTC fixup failed\n");
10130 goto fail;
ee7b9f93 10131 }
e29c22c0
DV
10132
10133 if (ret == RETRY) {
10134 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10135 ret = -EINVAL;
10136 goto fail;
10137 }
10138
10139 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10140 retry = false;
10141 goto encoder_retry;
10142 }
10143
4e53c2e0
DV
10144 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10145 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10146 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10147
b8cecdf5 10148 return pipe_config;
7758a113 10149fail:
b8cecdf5 10150 kfree(pipe_config);
e29c22c0 10151 return ERR_PTR(ret);
ee7b9f93 10152}
47f1c6c9 10153
e2e1ed41
DV
10154/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10155 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10156static void
10157intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10158 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10159{
10160 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10161 struct drm_device *dev = crtc->dev;
10162 struct intel_encoder *encoder;
10163 struct intel_connector *connector;
10164 struct drm_crtc *tmp_crtc;
79e53945 10165
e2e1ed41 10166 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10167
e2e1ed41
DV
10168 /* Check which crtcs have changed outputs connected to them, these need
10169 * to be part of the prepare_pipes mask. We don't (yet) support global
10170 * modeset across multiple crtcs, so modeset_pipes will only have one
10171 * bit set at most. */
10172 list_for_each_entry(connector, &dev->mode_config.connector_list,
10173 base.head) {
10174 if (connector->base.encoder == &connector->new_encoder->base)
10175 continue;
79e53945 10176
e2e1ed41
DV
10177 if (connector->base.encoder) {
10178 tmp_crtc = connector->base.encoder->crtc;
10179
10180 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10181 }
10182
10183 if (connector->new_encoder)
10184 *prepare_pipes |=
10185 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10186 }
10187
e2e1ed41
DV
10188 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10189 base.head) {
10190 if (encoder->base.crtc == &encoder->new_crtc->base)
10191 continue;
10192
10193 if (encoder->base.crtc) {
10194 tmp_crtc = encoder->base.crtc;
10195
10196 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10197 }
10198
10199 if (encoder->new_crtc)
10200 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10201 }
10202
7668851f 10203 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10204 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10205 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10206 continue;
7e7d76c3 10207
7668851f 10208 if (!intel_crtc->new_enabled)
e2e1ed41 10209 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10210 else
10211 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10212 }
10213
e2e1ed41
DV
10214
10215 /* set_mode is also used to update properties on life display pipes. */
10216 intel_crtc = to_intel_crtc(crtc);
7668851f 10217 if (intel_crtc->new_enabled)
e2e1ed41
DV
10218 *prepare_pipes |= 1 << intel_crtc->pipe;
10219
b6c5164d
DV
10220 /*
10221 * For simplicity do a full modeset on any pipe where the output routing
10222 * changed. We could be more clever, but that would require us to be
10223 * more careful with calling the relevant encoder->mode_set functions.
10224 */
e2e1ed41
DV
10225 if (*prepare_pipes)
10226 *modeset_pipes = *prepare_pipes;
10227
10228 /* ... and mask these out. */
10229 *modeset_pipes &= ~(*disable_pipes);
10230 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10231
10232 /*
10233 * HACK: We don't (yet) fully support global modesets. intel_set_config
10234 * obies this rule, but the modeset restore mode of
10235 * intel_modeset_setup_hw_state does not.
10236 */
10237 *modeset_pipes &= 1 << intel_crtc->pipe;
10238 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10239
10240 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10241 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10242}
79e53945 10243
ea9d758d 10244static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10245{
ea9d758d 10246 struct drm_encoder *encoder;
f6e5b160 10247 struct drm_device *dev = crtc->dev;
f6e5b160 10248
ea9d758d
DV
10249 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10250 if (encoder->crtc == crtc)
10251 return true;
10252
10253 return false;
10254}
10255
10256static void
10257intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10258{
10259 struct intel_encoder *intel_encoder;
10260 struct intel_crtc *intel_crtc;
10261 struct drm_connector *connector;
10262
10263 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10264 base.head) {
10265 if (!intel_encoder->base.crtc)
10266 continue;
10267
10268 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10269
10270 if (prepare_pipes & (1 << intel_crtc->pipe))
10271 intel_encoder->connectors_active = false;
10272 }
10273
10274 intel_modeset_commit_output_state(dev);
10275
7668851f 10276 /* Double check state. */
d3fcc808 10277 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10278 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10279 WARN_ON(intel_crtc->new_config &&
10280 intel_crtc->new_config != &intel_crtc->config);
10281 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10282 }
10283
10284 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10285 if (!connector->encoder || !connector->encoder->crtc)
10286 continue;
10287
10288 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10289
10290 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10291 struct drm_property *dpms_property =
10292 dev->mode_config.dpms_property;
10293
ea9d758d 10294 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10295 drm_object_property_set_value(&connector->base,
68d34720
DV
10296 dpms_property,
10297 DRM_MODE_DPMS_ON);
ea9d758d
DV
10298
10299 intel_encoder = to_intel_encoder(connector->encoder);
10300 intel_encoder->connectors_active = true;
10301 }
10302 }
10303
10304}
10305
3bd26263 10306static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10307{
3bd26263 10308 int diff;
f1f644dc
JB
10309
10310 if (clock1 == clock2)
10311 return true;
10312
10313 if (!clock1 || !clock2)
10314 return false;
10315
10316 diff = abs(clock1 - clock2);
10317
10318 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10319 return true;
10320
10321 return false;
10322}
10323
25c5b266
DV
10324#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10325 list_for_each_entry((intel_crtc), \
10326 &(dev)->mode_config.crtc_list, \
10327 base.head) \
0973f18f 10328 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10329
0e8ffe1b 10330static bool
2fa2fe9a
DV
10331intel_pipe_config_compare(struct drm_device *dev,
10332 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10333 struct intel_crtc_config *pipe_config)
10334{
66e985c0
DV
10335#define PIPE_CONF_CHECK_X(name) \
10336 if (current_config->name != pipe_config->name) { \
10337 DRM_ERROR("mismatch in " #name " " \
10338 "(expected 0x%08x, found 0x%08x)\n", \
10339 current_config->name, \
10340 pipe_config->name); \
10341 return false; \
10342 }
10343
08a24034
DV
10344#define PIPE_CONF_CHECK_I(name) \
10345 if (current_config->name != pipe_config->name) { \
10346 DRM_ERROR("mismatch in " #name " " \
10347 "(expected %i, found %i)\n", \
10348 current_config->name, \
10349 pipe_config->name); \
10350 return false; \
88adfff1
DV
10351 }
10352
1bd1bd80
DV
10353#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10354 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10355 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10356 "(expected %i, found %i)\n", \
10357 current_config->name & (mask), \
10358 pipe_config->name & (mask)); \
10359 return false; \
10360 }
10361
5e550656
VS
10362#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10363 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10364 DRM_ERROR("mismatch in " #name " " \
10365 "(expected %i, found %i)\n", \
10366 current_config->name, \
10367 pipe_config->name); \
10368 return false; \
10369 }
10370
bb760063
DV
10371#define PIPE_CONF_QUIRK(quirk) \
10372 ((current_config->quirks | pipe_config->quirks) & (quirk))
10373
eccb140b
DV
10374 PIPE_CONF_CHECK_I(cpu_transcoder);
10375
08a24034
DV
10376 PIPE_CONF_CHECK_I(has_pch_encoder);
10377 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10378 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10379 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10380 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10381 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10382 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10383
eb14cb74
VS
10384 PIPE_CONF_CHECK_I(has_dp_encoder);
10385 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10386 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10387 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10388 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10389 PIPE_CONF_CHECK_I(dp_m_n.tu);
10390
1bd1bd80
DV
10391 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10392 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10393 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10394 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10395 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10396 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10397
10398 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10399 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10400 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10401 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10402 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10403 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10404
c93f54cf 10405 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10406 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10407 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10408 IS_VALLEYVIEW(dev))
10409 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10410
9ed109a7
DV
10411 PIPE_CONF_CHECK_I(has_audio);
10412
1bd1bd80
DV
10413 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10414 DRM_MODE_FLAG_INTERLACE);
10415
bb760063
DV
10416 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10417 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10418 DRM_MODE_FLAG_PHSYNC);
10419 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10420 DRM_MODE_FLAG_NHSYNC);
10421 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10422 DRM_MODE_FLAG_PVSYNC);
10423 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10424 DRM_MODE_FLAG_NVSYNC);
10425 }
045ac3b5 10426
37327abd
VS
10427 PIPE_CONF_CHECK_I(pipe_src_w);
10428 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10429
9953599b
DV
10430 /*
10431 * FIXME: BIOS likes to set up a cloned config with lvds+external
10432 * screen. Since we don't yet re-compute the pipe config when moving
10433 * just the lvds port away to another pipe the sw tracking won't match.
10434 *
10435 * Proper atomic modesets with recomputed global state will fix this.
10436 * Until then just don't check gmch state for inherited modes.
10437 */
10438 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10439 PIPE_CONF_CHECK_I(gmch_pfit.control);
10440 /* pfit ratios are autocomputed by the hw on gen4+ */
10441 if (INTEL_INFO(dev)->gen < 4)
10442 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10443 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10444 }
10445
fd4daa9c
CW
10446 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10447 if (current_config->pch_pfit.enabled) {
10448 PIPE_CONF_CHECK_I(pch_pfit.pos);
10449 PIPE_CONF_CHECK_I(pch_pfit.size);
10450 }
2fa2fe9a 10451
e59150dc
JB
10452 /* BDW+ don't expose a synchronous way to read the state */
10453 if (IS_HASWELL(dev))
10454 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10455
282740f7
VS
10456 PIPE_CONF_CHECK_I(double_wide);
10457
26804afd
DV
10458 PIPE_CONF_CHECK_X(ddi_pll_sel);
10459
c0d43d62 10460 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10461 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10462 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10463 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10464 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10465 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10466
42571aef
VS
10467 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10468 PIPE_CONF_CHECK_I(pipe_bpp);
10469
a9a7e98a
JB
10470 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10471 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10472
66e985c0 10473#undef PIPE_CONF_CHECK_X
08a24034 10474#undef PIPE_CONF_CHECK_I
1bd1bd80 10475#undef PIPE_CONF_CHECK_FLAGS
5e550656 10476#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10477#undef PIPE_CONF_QUIRK
88adfff1 10478
0e8ffe1b
DV
10479 return true;
10480}
10481
91d1b4bd
DV
10482static void
10483check_connector_state(struct drm_device *dev)
8af6cf88 10484{
8af6cf88
DV
10485 struct intel_connector *connector;
10486
10487 list_for_each_entry(connector, &dev->mode_config.connector_list,
10488 base.head) {
10489 /* This also checks the encoder/connector hw state with the
10490 * ->get_hw_state callbacks. */
10491 intel_connector_check_state(connector);
10492
10493 WARN(&connector->new_encoder->base != connector->base.encoder,
10494 "connector's staged encoder doesn't match current encoder\n");
10495 }
91d1b4bd
DV
10496}
10497
10498static void
10499check_encoder_state(struct drm_device *dev)
10500{
10501 struct intel_encoder *encoder;
10502 struct intel_connector *connector;
8af6cf88
DV
10503
10504 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10505 base.head) {
10506 bool enabled = false;
10507 bool active = false;
10508 enum pipe pipe, tracked_pipe;
10509
10510 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10511 encoder->base.base.id,
8e329a03 10512 encoder->base.name);
8af6cf88
DV
10513
10514 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10515 "encoder's stage crtc doesn't match current crtc\n");
10516 WARN(encoder->connectors_active && !encoder->base.crtc,
10517 "encoder's active_connectors set, but no crtc\n");
10518
10519 list_for_each_entry(connector, &dev->mode_config.connector_list,
10520 base.head) {
10521 if (connector->base.encoder != &encoder->base)
10522 continue;
10523 enabled = true;
10524 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10525 active = true;
10526 }
10527 WARN(!!encoder->base.crtc != enabled,
10528 "encoder's enabled state mismatch "
10529 "(expected %i, found %i)\n",
10530 !!encoder->base.crtc, enabled);
10531 WARN(active && !encoder->base.crtc,
10532 "active encoder with no crtc\n");
10533
10534 WARN(encoder->connectors_active != active,
10535 "encoder's computed active state doesn't match tracked active state "
10536 "(expected %i, found %i)\n", active, encoder->connectors_active);
10537
10538 active = encoder->get_hw_state(encoder, &pipe);
10539 WARN(active != encoder->connectors_active,
10540 "encoder's hw state doesn't match sw tracking "
10541 "(expected %i, found %i)\n",
10542 encoder->connectors_active, active);
10543
10544 if (!encoder->base.crtc)
10545 continue;
10546
10547 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10548 WARN(active && pipe != tracked_pipe,
10549 "active encoder's pipe doesn't match"
10550 "(expected %i, found %i)\n",
10551 tracked_pipe, pipe);
10552
10553 }
91d1b4bd
DV
10554}
10555
10556static void
10557check_crtc_state(struct drm_device *dev)
10558{
fbee40df 10559 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10560 struct intel_crtc *crtc;
10561 struct intel_encoder *encoder;
10562 struct intel_crtc_config pipe_config;
8af6cf88 10563
d3fcc808 10564 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10565 bool enabled = false;
10566 bool active = false;
10567
045ac3b5
JB
10568 memset(&pipe_config, 0, sizeof(pipe_config));
10569
8af6cf88
DV
10570 DRM_DEBUG_KMS("[CRTC:%d]\n",
10571 crtc->base.base.id);
10572
10573 WARN(crtc->active && !crtc->base.enabled,
10574 "active crtc, but not enabled in sw tracking\n");
10575
10576 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10577 base.head) {
10578 if (encoder->base.crtc != &crtc->base)
10579 continue;
10580 enabled = true;
10581 if (encoder->connectors_active)
10582 active = true;
10583 }
6c49f241 10584
8af6cf88
DV
10585 WARN(active != crtc->active,
10586 "crtc's computed active state doesn't match tracked active state "
10587 "(expected %i, found %i)\n", active, crtc->active);
10588 WARN(enabled != crtc->base.enabled,
10589 "crtc's computed enabled state doesn't match tracked enabled state "
10590 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10591
0e8ffe1b
DV
10592 active = dev_priv->display.get_pipe_config(crtc,
10593 &pipe_config);
d62cf62a
DV
10594
10595 /* hw state is inconsistent with the pipe A quirk */
10596 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10597 active = crtc->active;
10598
6c49f241
DV
10599 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10600 base.head) {
3eaba51c 10601 enum pipe pipe;
6c49f241
DV
10602 if (encoder->base.crtc != &crtc->base)
10603 continue;
1d37b689 10604 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10605 encoder->get_config(encoder, &pipe_config);
10606 }
10607
0e8ffe1b
DV
10608 WARN(crtc->active != active,
10609 "crtc active state doesn't match with hw state "
10610 "(expected %i, found %i)\n", crtc->active, active);
10611
c0b03411
DV
10612 if (active &&
10613 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10614 WARN(1, "pipe state doesn't match!\n");
10615 intel_dump_pipe_config(crtc, &pipe_config,
10616 "[hw state]");
10617 intel_dump_pipe_config(crtc, &crtc->config,
10618 "[sw state]");
10619 }
8af6cf88
DV
10620 }
10621}
10622
91d1b4bd
DV
10623static void
10624check_shared_dpll_state(struct drm_device *dev)
10625{
fbee40df 10626 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10627 struct intel_crtc *crtc;
10628 struct intel_dpll_hw_state dpll_hw_state;
10629 int i;
5358901f
DV
10630
10631 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10632 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10633 int enabled_crtcs = 0, active_crtcs = 0;
10634 bool active;
10635
10636 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10637
10638 DRM_DEBUG_KMS("%s\n", pll->name);
10639
10640 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10641
10642 WARN(pll->active > pll->refcount,
10643 "more active pll users than references: %i vs %i\n",
10644 pll->active, pll->refcount);
10645 WARN(pll->active && !pll->on,
10646 "pll in active use but not on in sw tracking\n");
35c95375
DV
10647 WARN(pll->on && !pll->active,
10648 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10649 WARN(pll->on != active,
10650 "pll on state mismatch (expected %i, found %i)\n",
10651 pll->on, active);
10652
d3fcc808 10653 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10654 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10655 enabled_crtcs++;
10656 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10657 active_crtcs++;
10658 }
10659 WARN(pll->active != active_crtcs,
10660 "pll active crtcs mismatch (expected %i, found %i)\n",
10661 pll->active, active_crtcs);
10662 WARN(pll->refcount != enabled_crtcs,
10663 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10664 pll->refcount, enabled_crtcs);
66e985c0
DV
10665
10666 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10667 sizeof(dpll_hw_state)),
10668 "pll hw state mismatch\n");
5358901f 10669 }
8af6cf88
DV
10670}
10671
91d1b4bd
DV
10672void
10673intel_modeset_check_state(struct drm_device *dev)
10674{
10675 check_connector_state(dev);
10676 check_encoder_state(dev);
10677 check_crtc_state(dev);
10678 check_shared_dpll_state(dev);
10679}
10680
18442d08
VS
10681void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10682 int dotclock)
10683{
10684 /*
10685 * FDI already provided one idea for the dotclock.
10686 * Yell if the encoder disagrees.
10687 */
241bfc38 10688 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10689 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10690 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10691}
10692
80715b2f
VS
10693static void update_scanline_offset(struct intel_crtc *crtc)
10694{
10695 struct drm_device *dev = crtc->base.dev;
10696
10697 /*
10698 * The scanline counter increments at the leading edge of hsync.
10699 *
10700 * On most platforms it starts counting from vtotal-1 on the
10701 * first active line. That means the scanline counter value is
10702 * always one less than what we would expect. Ie. just after
10703 * start of vblank, which also occurs at start of hsync (on the
10704 * last active line), the scanline counter will read vblank_start-1.
10705 *
10706 * On gen2 the scanline counter starts counting from 1 instead
10707 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10708 * to keep the value positive), instead of adding one.
10709 *
10710 * On HSW+ the behaviour of the scanline counter depends on the output
10711 * type. For DP ports it behaves like most other platforms, but on HDMI
10712 * there's an extra 1 line difference. So we need to add two instead of
10713 * one to the value.
10714 */
10715 if (IS_GEN2(dev)) {
10716 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10717 int vtotal;
10718
10719 vtotal = mode->crtc_vtotal;
10720 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10721 vtotal /= 2;
10722
10723 crtc->scanline_offset = vtotal - 1;
10724 } else if (HAS_DDI(dev) &&
10725 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10726 crtc->scanline_offset = 2;
10727 } else
10728 crtc->scanline_offset = 1;
10729}
10730
f30da187
DV
10731static int __intel_set_mode(struct drm_crtc *crtc,
10732 struct drm_display_mode *mode,
10733 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10734{
10735 struct drm_device *dev = crtc->dev;
fbee40df 10736 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10737 struct drm_display_mode *saved_mode;
b8cecdf5 10738 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10739 struct intel_crtc *intel_crtc;
10740 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10741 int ret = 0;
a6778b3c 10742
4b4b9238 10743 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10744 if (!saved_mode)
10745 return -ENOMEM;
a6778b3c 10746
e2e1ed41 10747 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10748 &prepare_pipes, &disable_pipes);
10749
3ac18232 10750 *saved_mode = crtc->mode;
a6778b3c 10751
25c5b266
DV
10752 /* Hack: Because we don't (yet) support global modeset on multiple
10753 * crtcs, we don't keep track of the new mode for more than one crtc.
10754 * Hence simply check whether any bit is set in modeset_pipes in all the
10755 * pieces of code that are not yet converted to deal with mutliple crtcs
10756 * changing their mode at the same time. */
25c5b266 10757 if (modeset_pipes) {
4e53c2e0 10758 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10759 if (IS_ERR(pipe_config)) {
10760 ret = PTR_ERR(pipe_config);
10761 pipe_config = NULL;
10762
3ac18232 10763 goto out;
25c5b266 10764 }
c0b03411
DV
10765 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10766 "[modeset]");
50741abc 10767 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10768 }
a6778b3c 10769
30a970c6
JB
10770 /*
10771 * See if the config requires any additional preparation, e.g.
10772 * to adjust global state with pipes off. We need to do this
10773 * here so we can get the modeset_pipe updated config for the new
10774 * mode set on this crtc. For other crtcs we need to use the
10775 * adjusted_mode bits in the crtc directly.
10776 */
c164f833 10777 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10778 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10779
c164f833
VS
10780 /* may have added more to prepare_pipes than we should */
10781 prepare_pipes &= ~disable_pipes;
10782 }
10783
460da916
DV
10784 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10785 intel_crtc_disable(&intel_crtc->base);
10786
ea9d758d
DV
10787 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10788 if (intel_crtc->base.enabled)
10789 dev_priv->display.crtc_disable(&intel_crtc->base);
10790 }
a6778b3c 10791
6c4c86f5
DV
10792 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10793 * to set it here already despite that we pass it down the callchain.
f6e5b160 10794 */
b8cecdf5 10795 if (modeset_pipes) {
25c5b266 10796 crtc->mode = *mode;
b8cecdf5
DV
10797 /* mode_set/enable/disable functions rely on a correct pipe
10798 * config. */
10799 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10800 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10801
10802 /*
10803 * Calculate and store various constants which
10804 * are later needed by vblank and swap-completion
10805 * timestamping. They are derived from true hwmode.
10806 */
10807 drm_calc_timestamping_constants(crtc,
10808 &pipe_config->adjusted_mode);
b8cecdf5 10809 }
7758a113 10810
ea9d758d
DV
10811 /* Only after disabling all output pipelines that will be changed can we
10812 * update the the output configuration. */
10813 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10814
47fab737
DV
10815 if (dev_priv->display.modeset_global_resources)
10816 dev_priv->display.modeset_global_resources(dev);
10817
a6778b3c
DV
10818 /* Set up the DPLL and any encoders state that needs to adjust or depend
10819 * on the DPLL.
f6e5b160 10820 */
25c5b266 10821 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10822 struct drm_framebuffer *old_fb = crtc->primary->fb;
10823 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10824 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10825
10826 mutex_lock(&dev->struct_mutex);
10827 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10828 obj,
4c10794f
DV
10829 NULL);
10830 if (ret != 0) {
10831 DRM_ERROR("pin & fence failed\n");
10832 mutex_unlock(&dev->struct_mutex);
10833 goto done;
10834 }
2ff8fde1 10835 if (old_fb)
a071fa00 10836 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10837 i915_gem_track_fb(old_obj, obj,
10838 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10839 mutex_unlock(&dev->struct_mutex);
10840
10841 crtc->primary->fb = fb;
10842 crtc->x = x;
10843 crtc->y = y;
10844
4271b753
DV
10845 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10846 x, y, fb);
c0c36b94
CW
10847 if (ret)
10848 goto done;
a6778b3c
DV
10849 }
10850
10851 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10852 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10853 update_scanline_offset(intel_crtc);
10854
25c5b266 10855 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10856 }
a6778b3c 10857
a6778b3c
DV
10858 /* FIXME: add subpixel order */
10859done:
4b4b9238 10860 if (ret && crtc->enabled)
3ac18232 10861 crtc->mode = *saved_mode;
a6778b3c 10862
3ac18232 10863out:
b8cecdf5 10864 kfree(pipe_config);
3ac18232 10865 kfree(saved_mode);
a6778b3c 10866 return ret;
f6e5b160
CW
10867}
10868
e7457a9a
DL
10869static int intel_set_mode(struct drm_crtc *crtc,
10870 struct drm_display_mode *mode,
10871 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
10872{
10873 int ret;
10874
10875 ret = __intel_set_mode(crtc, mode, x, y, fb);
10876
10877 if (ret == 0)
10878 intel_modeset_check_state(crtc->dev);
10879
10880 return ret;
10881}
10882
c0c36b94
CW
10883void intel_crtc_restore_mode(struct drm_crtc *crtc)
10884{
f4510a27 10885 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
10886}
10887
25c5b266
DV
10888#undef for_each_intel_crtc_masked
10889
d9e55608
DV
10890static void intel_set_config_free(struct intel_set_config *config)
10891{
10892 if (!config)
10893 return;
10894
1aa4b628
DV
10895 kfree(config->save_connector_encoders);
10896 kfree(config->save_encoder_crtcs);
7668851f 10897 kfree(config->save_crtc_enabled);
d9e55608
DV
10898 kfree(config);
10899}
10900
85f9eb71
DV
10901static int intel_set_config_save_state(struct drm_device *dev,
10902 struct intel_set_config *config)
10903{
7668851f 10904 struct drm_crtc *crtc;
85f9eb71
DV
10905 struct drm_encoder *encoder;
10906 struct drm_connector *connector;
10907 int count;
10908
7668851f
VS
10909 config->save_crtc_enabled =
10910 kcalloc(dev->mode_config.num_crtc,
10911 sizeof(bool), GFP_KERNEL);
10912 if (!config->save_crtc_enabled)
10913 return -ENOMEM;
10914
1aa4b628
DV
10915 config->save_encoder_crtcs =
10916 kcalloc(dev->mode_config.num_encoder,
10917 sizeof(struct drm_crtc *), GFP_KERNEL);
10918 if (!config->save_encoder_crtcs)
85f9eb71
DV
10919 return -ENOMEM;
10920
1aa4b628
DV
10921 config->save_connector_encoders =
10922 kcalloc(dev->mode_config.num_connector,
10923 sizeof(struct drm_encoder *), GFP_KERNEL);
10924 if (!config->save_connector_encoders)
85f9eb71
DV
10925 return -ENOMEM;
10926
10927 /* Copy data. Note that driver private data is not affected.
10928 * Should anything bad happen only the expected state is
10929 * restored, not the drivers personal bookkeeping.
10930 */
7668851f 10931 count = 0;
70e1e0ec 10932 for_each_crtc(dev, crtc) {
7668851f
VS
10933 config->save_crtc_enabled[count++] = crtc->enabled;
10934 }
10935
85f9eb71
DV
10936 count = 0;
10937 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 10938 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
10939 }
10940
10941 count = 0;
10942 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 10943 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
10944 }
10945
10946 return 0;
10947}
10948
10949static void intel_set_config_restore_state(struct drm_device *dev,
10950 struct intel_set_config *config)
10951{
7668851f 10952 struct intel_crtc *crtc;
9a935856
DV
10953 struct intel_encoder *encoder;
10954 struct intel_connector *connector;
85f9eb71
DV
10955 int count;
10956
7668851f 10957 count = 0;
d3fcc808 10958 for_each_intel_crtc(dev, crtc) {
7668851f 10959 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
10960
10961 if (crtc->new_enabled)
10962 crtc->new_config = &crtc->config;
10963 else
10964 crtc->new_config = NULL;
7668851f
VS
10965 }
10966
85f9eb71 10967 count = 0;
9a935856
DV
10968 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10969 encoder->new_crtc =
10970 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
10971 }
10972
10973 count = 0;
9a935856
DV
10974 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10975 connector->new_encoder =
10976 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
10977 }
10978}
10979
e3de42b6 10980static bool
2e57f47d 10981is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
10982{
10983 int i;
10984
2e57f47d
CW
10985 if (set->num_connectors == 0)
10986 return false;
10987
10988 if (WARN_ON(set->connectors == NULL))
10989 return false;
10990
10991 for (i = 0; i < set->num_connectors; i++)
10992 if (set->connectors[i]->encoder &&
10993 set->connectors[i]->encoder->crtc == set->crtc &&
10994 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
10995 return true;
10996
10997 return false;
10998}
10999
5e2b584e
DV
11000static void
11001intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11002 struct intel_set_config *config)
11003{
11004
11005 /* We should be able to check here if the fb has the same properties
11006 * and then just flip_or_move it */
2e57f47d
CW
11007 if (is_crtc_connector_off(set)) {
11008 config->mode_changed = true;
f4510a27 11009 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11010 /*
11011 * If we have no fb, we can only flip as long as the crtc is
11012 * active, otherwise we need a full mode set. The crtc may
11013 * be active if we've only disabled the primary plane, or
11014 * in fastboot situations.
11015 */
f4510a27 11016 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11017 struct intel_crtc *intel_crtc =
11018 to_intel_crtc(set->crtc);
11019
3b150f08 11020 if (intel_crtc->active) {
319d9827
JB
11021 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11022 config->fb_changed = true;
11023 } else {
11024 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11025 config->mode_changed = true;
11026 }
5e2b584e
DV
11027 } else if (set->fb == NULL) {
11028 config->mode_changed = true;
72f4901e 11029 } else if (set->fb->pixel_format !=
f4510a27 11030 set->crtc->primary->fb->pixel_format) {
5e2b584e 11031 config->mode_changed = true;
e3de42b6 11032 } else {
5e2b584e 11033 config->fb_changed = true;
e3de42b6 11034 }
5e2b584e
DV
11035 }
11036
835c5873 11037 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11038 config->fb_changed = true;
11039
11040 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11041 DRM_DEBUG_KMS("modes are different, full mode set\n");
11042 drm_mode_debug_printmodeline(&set->crtc->mode);
11043 drm_mode_debug_printmodeline(set->mode);
11044 config->mode_changed = true;
11045 }
a1d95703
CW
11046
11047 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11048 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11049}
11050
2e431051 11051static int
9a935856
DV
11052intel_modeset_stage_output_state(struct drm_device *dev,
11053 struct drm_mode_set *set,
11054 struct intel_set_config *config)
50f56119 11055{
9a935856
DV
11056 struct intel_connector *connector;
11057 struct intel_encoder *encoder;
7668851f 11058 struct intel_crtc *crtc;
f3f08572 11059 int ro;
50f56119 11060
9abdda74 11061 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11062 * of connectors. For paranoia, double-check this. */
11063 WARN_ON(!set->fb && (set->num_connectors != 0));
11064 WARN_ON(set->fb && (set->num_connectors == 0));
11065
9a935856
DV
11066 list_for_each_entry(connector, &dev->mode_config.connector_list,
11067 base.head) {
11068 /* Otherwise traverse passed in connector list and get encoders
11069 * for them. */
50f56119 11070 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
11071 if (set->connectors[ro] == &connector->base) {
11072 connector->new_encoder = connector->encoder;
50f56119
DV
11073 break;
11074 }
11075 }
11076
9a935856
DV
11077 /* If we disable the crtc, disable all its connectors. Also, if
11078 * the connector is on the changing crtc but not on the new
11079 * connector list, disable it. */
11080 if ((!set->fb || ro == set->num_connectors) &&
11081 connector->base.encoder &&
11082 connector->base.encoder->crtc == set->crtc) {
11083 connector->new_encoder = NULL;
11084
11085 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11086 connector->base.base.id,
c23cc417 11087 connector->base.name);
9a935856
DV
11088 }
11089
11090
11091 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11092 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11093 config->mode_changed = true;
50f56119
DV
11094 }
11095 }
9a935856 11096 /* connector->new_encoder is now updated for all connectors. */
50f56119 11097
9a935856 11098 /* Update crtc of enabled connectors. */
9a935856
DV
11099 list_for_each_entry(connector, &dev->mode_config.connector_list,
11100 base.head) {
7668851f
VS
11101 struct drm_crtc *new_crtc;
11102
9a935856 11103 if (!connector->new_encoder)
50f56119
DV
11104 continue;
11105
9a935856 11106 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11107
11108 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11109 if (set->connectors[ro] == &connector->base)
50f56119
DV
11110 new_crtc = set->crtc;
11111 }
11112
11113 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11114 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11115 new_crtc)) {
5e2b584e 11116 return -EINVAL;
50f56119 11117 }
9a935856
DV
11118 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
11119
11120 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11121 connector->base.base.id,
c23cc417 11122 connector->base.name,
9a935856
DV
11123 new_crtc->base.id);
11124 }
11125
11126 /* Check for any encoders that needs to be disabled. */
11127 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11128 base.head) {
5a65f358 11129 int num_connectors = 0;
9a935856
DV
11130 list_for_each_entry(connector,
11131 &dev->mode_config.connector_list,
11132 base.head) {
11133 if (connector->new_encoder == encoder) {
11134 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11135 num_connectors++;
9a935856
DV
11136 }
11137 }
5a65f358
PZ
11138
11139 if (num_connectors == 0)
11140 encoder->new_crtc = NULL;
11141 else if (num_connectors > 1)
11142 return -EINVAL;
11143
9a935856
DV
11144 /* Only now check for crtc changes so we don't miss encoders
11145 * that will be disabled. */
11146 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11147 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11148 config->mode_changed = true;
50f56119
DV
11149 }
11150 }
9a935856 11151 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 11152
d3fcc808 11153 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11154 crtc->new_enabled = false;
11155
11156 list_for_each_entry(encoder,
11157 &dev->mode_config.encoder_list,
11158 base.head) {
11159 if (encoder->new_crtc == crtc) {
11160 crtc->new_enabled = true;
11161 break;
11162 }
11163 }
11164
11165 if (crtc->new_enabled != crtc->base.enabled) {
11166 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11167 crtc->new_enabled ? "en" : "dis");
11168 config->mode_changed = true;
11169 }
7bd0a8e7
VS
11170
11171 if (crtc->new_enabled)
11172 crtc->new_config = &crtc->config;
11173 else
11174 crtc->new_config = NULL;
7668851f
VS
11175 }
11176
2e431051
DV
11177 return 0;
11178}
11179
7d00a1f5
VS
11180static void disable_crtc_nofb(struct intel_crtc *crtc)
11181{
11182 struct drm_device *dev = crtc->base.dev;
11183 struct intel_encoder *encoder;
11184 struct intel_connector *connector;
11185
11186 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11187 pipe_name(crtc->pipe));
11188
11189 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11190 if (connector->new_encoder &&
11191 connector->new_encoder->new_crtc == crtc)
11192 connector->new_encoder = NULL;
11193 }
11194
11195 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11196 if (encoder->new_crtc == crtc)
11197 encoder->new_crtc = NULL;
11198 }
11199
11200 crtc->new_enabled = false;
7bd0a8e7 11201 crtc->new_config = NULL;
7d00a1f5
VS
11202}
11203
2e431051
DV
11204static int intel_crtc_set_config(struct drm_mode_set *set)
11205{
11206 struct drm_device *dev;
2e431051
DV
11207 struct drm_mode_set save_set;
11208 struct intel_set_config *config;
11209 int ret;
2e431051 11210
8d3e375e
DV
11211 BUG_ON(!set);
11212 BUG_ON(!set->crtc);
11213 BUG_ON(!set->crtc->helper_private);
2e431051 11214
7e53f3a4
DV
11215 /* Enforce sane interface api - has been abused by the fb helper. */
11216 BUG_ON(!set->mode && set->fb);
11217 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11218
2e431051
DV
11219 if (set->fb) {
11220 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11221 set->crtc->base.id, set->fb->base.id,
11222 (int)set->num_connectors, set->x, set->y);
11223 } else {
11224 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11225 }
11226
11227 dev = set->crtc->dev;
11228
11229 ret = -ENOMEM;
11230 config = kzalloc(sizeof(*config), GFP_KERNEL);
11231 if (!config)
11232 goto out_config;
11233
11234 ret = intel_set_config_save_state(dev, config);
11235 if (ret)
11236 goto out_config;
11237
11238 save_set.crtc = set->crtc;
11239 save_set.mode = &set->crtc->mode;
11240 save_set.x = set->crtc->x;
11241 save_set.y = set->crtc->y;
f4510a27 11242 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11243
11244 /* Compute whether we need a full modeset, only an fb base update or no
11245 * change at all. In the future we might also check whether only the
11246 * mode changed, e.g. for LVDS where we only change the panel fitter in
11247 * such cases. */
11248 intel_set_config_compute_mode_changes(set, config);
11249
9a935856 11250 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11251 if (ret)
11252 goto fail;
11253
5e2b584e 11254 if (config->mode_changed) {
c0c36b94
CW
11255 ret = intel_set_mode(set->crtc, set->mode,
11256 set->x, set->y, set->fb);
5e2b584e 11257 } else if (config->fb_changed) {
3b150f08
MR
11258 struct drm_i915_private *dev_priv = dev->dev_private;
11259 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11260
4878cae2
VS
11261 intel_crtc_wait_for_pending_flips(set->crtc);
11262
4f660f49 11263 ret = intel_pipe_set_base(set->crtc,
94352cf9 11264 set->x, set->y, set->fb);
3b150f08
MR
11265
11266 /*
11267 * We need to make sure the primary plane is re-enabled if it
11268 * has previously been turned off.
11269 */
11270 if (!intel_crtc->primary_enabled && ret == 0) {
11271 WARN_ON(!intel_crtc->active);
11272 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11273 intel_crtc->pipe);
11274 }
11275
7ca51a3a
JB
11276 /*
11277 * In the fastboot case this may be our only check of the
11278 * state after boot. It would be better to only do it on
11279 * the first update, but we don't have a nice way of doing that
11280 * (and really, set_config isn't used much for high freq page
11281 * flipping, so increasing its cost here shouldn't be a big
11282 * deal).
11283 */
d330a953 11284 if (i915.fastboot && ret == 0)
7ca51a3a 11285 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11286 }
11287
2d05eae1 11288 if (ret) {
bf67dfeb
DV
11289 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11290 set->crtc->base.id, ret);
50f56119 11291fail:
2d05eae1 11292 intel_set_config_restore_state(dev, config);
50f56119 11293
7d00a1f5
VS
11294 /*
11295 * HACK: if the pipe was on, but we didn't have a framebuffer,
11296 * force the pipe off to avoid oopsing in the modeset code
11297 * due to fb==NULL. This should only happen during boot since
11298 * we don't yet reconstruct the FB from the hardware state.
11299 */
11300 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11301 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11302
2d05eae1
CW
11303 /* Try to restore the config */
11304 if (config->mode_changed &&
11305 intel_set_mode(save_set.crtc, save_set.mode,
11306 save_set.x, save_set.y, save_set.fb))
11307 DRM_ERROR("failed to restore config after modeset failure\n");
11308 }
50f56119 11309
d9e55608
DV
11310out_config:
11311 intel_set_config_free(config);
50f56119
DV
11312 return ret;
11313}
f6e5b160
CW
11314
11315static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11316 .gamma_set = intel_crtc_gamma_set,
50f56119 11317 .set_config = intel_crtc_set_config,
f6e5b160
CW
11318 .destroy = intel_crtc_destroy,
11319 .page_flip = intel_crtc_page_flip,
11320};
11321
5358901f
DV
11322static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11323 struct intel_shared_dpll *pll,
11324 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11325{
5358901f 11326 uint32_t val;
ee7b9f93 11327
bd2bb1b9
PZ
11328 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11329 return false;
11330
5358901f 11331 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11332 hw_state->dpll = val;
11333 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11334 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11335
11336 return val & DPLL_VCO_ENABLE;
11337}
11338
15bdd4cf
DV
11339static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11340 struct intel_shared_dpll *pll)
11341{
11342 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11343 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11344}
11345
e7b903d2
DV
11346static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11347 struct intel_shared_dpll *pll)
11348{
e7b903d2 11349 /* PCH refclock must be enabled first */
89eff4be 11350 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11351
15bdd4cf
DV
11352 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11353
11354 /* Wait for the clocks to stabilize. */
11355 POSTING_READ(PCH_DPLL(pll->id));
11356 udelay(150);
11357
11358 /* The pixel multiplier can only be updated once the
11359 * DPLL is enabled and the clocks are stable.
11360 *
11361 * So write it again.
11362 */
11363 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11364 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11365 udelay(200);
11366}
11367
11368static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11369 struct intel_shared_dpll *pll)
11370{
11371 struct drm_device *dev = dev_priv->dev;
11372 struct intel_crtc *crtc;
e7b903d2
DV
11373
11374 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11375 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11376 if (intel_crtc_to_shared_dpll(crtc) == pll)
11377 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11378 }
11379
15bdd4cf
DV
11380 I915_WRITE(PCH_DPLL(pll->id), 0);
11381 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11382 udelay(200);
11383}
11384
46edb027
DV
11385static char *ibx_pch_dpll_names[] = {
11386 "PCH DPLL A",
11387 "PCH DPLL B",
11388};
11389
7c74ade1 11390static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11391{
e7b903d2 11392 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11393 int i;
11394
7c74ade1 11395 dev_priv->num_shared_dpll = 2;
ee7b9f93 11396
e72f9fbf 11397 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11398 dev_priv->shared_dplls[i].id = i;
11399 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11400 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11401 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11402 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11403 dev_priv->shared_dplls[i].get_hw_state =
11404 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11405 }
11406}
11407
7c74ade1
DV
11408static void intel_shared_dpll_init(struct drm_device *dev)
11409{
e7b903d2 11410 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11411
9cd86933
DV
11412 if (HAS_DDI(dev))
11413 intel_ddi_pll_init(dev);
11414 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11415 ibx_pch_dpll_init(dev);
11416 else
11417 dev_priv->num_shared_dpll = 0;
11418
11419 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11420}
11421
465c120c
MR
11422static int
11423intel_primary_plane_disable(struct drm_plane *plane)
11424{
11425 struct drm_device *dev = plane->dev;
11426 struct drm_i915_private *dev_priv = dev->dev_private;
11427 struct intel_plane *intel_plane = to_intel_plane(plane);
11428 struct intel_crtc *intel_crtc;
11429
11430 if (!plane->fb)
11431 return 0;
11432
11433 BUG_ON(!plane->crtc);
11434
11435 intel_crtc = to_intel_crtc(plane->crtc);
11436
11437 /*
11438 * Even though we checked plane->fb above, it's still possible that
11439 * the primary plane has been implicitly disabled because the crtc
11440 * coordinates given weren't visible, or because we detected
11441 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11442 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11443 * In either case, we need to unpin the FB and let the fb pointer get
11444 * updated, but otherwise we don't need to touch the hardware.
11445 */
11446 if (!intel_crtc->primary_enabled)
11447 goto disable_unpin;
11448
11449 intel_crtc_wait_for_pending_flips(plane->crtc);
11450 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11451 intel_plane->pipe);
465c120c 11452disable_unpin:
4c34574f 11453 mutex_lock(&dev->struct_mutex);
2ff8fde1 11454 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11455 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11456 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11457 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11458 plane->fb = NULL;
11459
11460 return 0;
11461}
11462
11463static int
11464intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11465 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11466 unsigned int crtc_w, unsigned int crtc_h,
11467 uint32_t src_x, uint32_t src_y,
11468 uint32_t src_w, uint32_t src_h)
11469{
11470 struct drm_device *dev = crtc->dev;
11471 struct drm_i915_private *dev_priv = dev->dev_private;
11472 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11473 struct intel_plane *intel_plane = to_intel_plane(plane);
2ff8fde1
MR
11474 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11475 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11476 struct drm_rect dest = {
11477 /* integer pixels */
11478 .x1 = crtc_x,
11479 .y1 = crtc_y,
11480 .x2 = crtc_x + crtc_w,
11481 .y2 = crtc_y + crtc_h,
11482 };
11483 struct drm_rect src = {
11484 /* 16.16 fixed point */
11485 .x1 = src_x,
11486 .y1 = src_y,
11487 .x2 = src_x + src_w,
11488 .y2 = src_y + src_h,
11489 };
11490 const struct drm_rect clip = {
11491 /* integer pixels */
11492 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11493 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11494 };
11495 bool visible;
11496 int ret;
11497
11498 ret = drm_plane_helper_check_update(plane, crtc, fb,
11499 &src, &dest, &clip,
11500 DRM_PLANE_HELPER_NO_SCALING,
11501 DRM_PLANE_HELPER_NO_SCALING,
11502 false, true, &visible);
11503
11504 if (ret)
11505 return ret;
11506
11507 /*
11508 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11509 * updating the fb pointer, and returning without touching the
11510 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11511 * turn on the display with all planes setup as desired.
11512 */
11513 if (!crtc->enabled) {
4c34574f
MR
11514 mutex_lock(&dev->struct_mutex);
11515
465c120c
MR
11516 /*
11517 * If we already called setplane while the crtc was disabled,
11518 * we may have an fb pinned; unpin it.
11519 */
11520 if (plane->fb)
a071fa00
DV
11521 intel_unpin_fb_obj(old_obj);
11522
11523 i915_gem_track_fb(old_obj, obj,
11524 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11525
11526 /* Pin and return without programming hardware */
4c34574f
MR
11527 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11528 mutex_unlock(&dev->struct_mutex);
11529
11530 return ret;
465c120c
MR
11531 }
11532
11533 intel_crtc_wait_for_pending_flips(crtc);
11534
11535 /*
11536 * If clipping results in a non-visible primary plane, we'll disable
11537 * the primary plane. Note that this is a bit different than what
11538 * happens if userspace explicitly disables the plane by passing fb=0
11539 * because plane->fb still gets set and pinned.
11540 */
11541 if (!visible) {
4c34574f
MR
11542 mutex_lock(&dev->struct_mutex);
11543
465c120c
MR
11544 /*
11545 * Try to pin the new fb first so that we can bail out if we
11546 * fail.
11547 */
11548 if (plane->fb != fb) {
a071fa00 11549 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
4c34574f
MR
11550 if (ret) {
11551 mutex_unlock(&dev->struct_mutex);
465c120c 11552 return ret;
4c34574f 11553 }
465c120c
MR
11554 }
11555
a071fa00
DV
11556 i915_gem_track_fb(old_obj, obj,
11557 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11558
465c120c
MR
11559 if (intel_crtc->primary_enabled)
11560 intel_disable_primary_hw_plane(dev_priv,
11561 intel_plane->plane,
11562 intel_plane->pipe);
11563
11564
11565 if (plane->fb != fb)
11566 if (plane->fb)
a071fa00 11567 intel_unpin_fb_obj(old_obj);
465c120c 11568
4c34574f
MR
11569 mutex_unlock(&dev->struct_mutex);
11570
465c120c
MR
11571 return 0;
11572 }
11573
11574 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11575 if (ret)
11576 return ret;
11577
11578 if (!intel_crtc->primary_enabled)
11579 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11580 intel_crtc->pipe);
11581
11582 return 0;
11583}
11584
3d7d6510
MR
11585/* Common destruction function for both primary and cursor planes */
11586static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11587{
11588 struct intel_plane *intel_plane = to_intel_plane(plane);
11589 drm_plane_cleanup(plane);
11590 kfree(intel_plane);
11591}
11592
11593static const struct drm_plane_funcs intel_primary_plane_funcs = {
11594 .update_plane = intel_primary_plane_setplane,
11595 .disable_plane = intel_primary_plane_disable,
3d7d6510 11596 .destroy = intel_plane_destroy,
465c120c
MR
11597};
11598
11599static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11600 int pipe)
11601{
11602 struct intel_plane *primary;
11603 const uint32_t *intel_primary_formats;
11604 int num_formats;
11605
11606 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11607 if (primary == NULL)
11608 return NULL;
11609
11610 primary->can_scale = false;
11611 primary->max_downscale = 1;
11612 primary->pipe = pipe;
11613 primary->plane = pipe;
11614 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11615 primary->plane = !pipe;
11616
11617 if (INTEL_INFO(dev)->gen <= 3) {
11618 intel_primary_formats = intel_primary_formats_gen2;
11619 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11620 } else {
11621 intel_primary_formats = intel_primary_formats_gen4;
11622 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11623 }
11624
11625 drm_universal_plane_init(dev, &primary->base, 0,
11626 &intel_primary_plane_funcs,
11627 intel_primary_formats, num_formats,
11628 DRM_PLANE_TYPE_PRIMARY);
11629 return &primary->base;
11630}
11631
3d7d6510
MR
11632static int
11633intel_cursor_plane_disable(struct drm_plane *plane)
11634{
11635 if (!plane->fb)
11636 return 0;
11637
11638 BUG_ON(!plane->crtc);
11639
11640 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11641}
11642
11643static int
11644intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11645 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11646 unsigned int crtc_w, unsigned int crtc_h,
11647 uint32_t src_x, uint32_t src_y,
11648 uint32_t src_w, uint32_t src_h)
11649{
11650 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11651 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11652 struct drm_i915_gem_object *obj = intel_fb->obj;
11653 struct drm_rect dest = {
11654 /* integer pixels */
11655 .x1 = crtc_x,
11656 .y1 = crtc_y,
11657 .x2 = crtc_x + crtc_w,
11658 .y2 = crtc_y + crtc_h,
11659 };
11660 struct drm_rect src = {
11661 /* 16.16 fixed point */
11662 .x1 = src_x,
11663 .y1 = src_y,
11664 .x2 = src_x + src_w,
11665 .y2 = src_y + src_h,
11666 };
11667 const struct drm_rect clip = {
11668 /* integer pixels */
11669 .x2 = intel_crtc->config.pipe_src_w,
11670 .y2 = intel_crtc->config.pipe_src_h,
11671 };
11672 bool visible;
11673 int ret;
11674
11675 ret = drm_plane_helper_check_update(plane, crtc, fb,
11676 &src, &dest, &clip,
11677 DRM_PLANE_HELPER_NO_SCALING,
11678 DRM_PLANE_HELPER_NO_SCALING,
11679 true, true, &visible);
11680 if (ret)
11681 return ret;
11682
11683 crtc->cursor_x = crtc_x;
11684 crtc->cursor_y = crtc_y;
11685 if (fb != crtc->cursor->fb) {
11686 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11687 } else {
11688 intel_crtc_update_cursor(crtc, visible);
11689 return 0;
11690 }
11691}
11692static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11693 .update_plane = intel_cursor_plane_update,
11694 .disable_plane = intel_cursor_plane_disable,
11695 .destroy = intel_plane_destroy,
11696};
11697
11698static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11699 int pipe)
11700{
11701 struct intel_plane *cursor;
11702
11703 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11704 if (cursor == NULL)
11705 return NULL;
11706
11707 cursor->can_scale = false;
11708 cursor->max_downscale = 1;
11709 cursor->pipe = pipe;
11710 cursor->plane = pipe;
11711
11712 drm_universal_plane_init(dev, &cursor->base, 0,
11713 &intel_cursor_plane_funcs,
11714 intel_cursor_formats,
11715 ARRAY_SIZE(intel_cursor_formats),
11716 DRM_PLANE_TYPE_CURSOR);
11717 return &cursor->base;
11718}
11719
b358d0a6 11720static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11721{
fbee40df 11722 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11723 struct intel_crtc *intel_crtc;
3d7d6510
MR
11724 struct drm_plane *primary = NULL;
11725 struct drm_plane *cursor = NULL;
465c120c 11726 int i, ret;
79e53945 11727
955382f3 11728 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11729 if (intel_crtc == NULL)
11730 return;
11731
465c120c 11732 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11733 if (!primary)
11734 goto fail;
11735
11736 cursor = intel_cursor_plane_create(dev, pipe);
11737 if (!cursor)
11738 goto fail;
11739
465c120c 11740 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11741 cursor, &intel_crtc_funcs);
11742 if (ret)
11743 goto fail;
79e53945
JB
11744
11745 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11746 for (i = 0; i < 256; i++) {
11747 intel_crtc->lut_r[i] = i;
11748 intel_crtc->lut_g[i] = i;
11749 intel_crtc->lut_b[i] = i;
11750 }
11751
1f1c2e24
VS
11752 /*
11753 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11754 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11755 */
80824003
JB
11756 intel_crtc->pipe = pipe;
11757 intel_crtc->plane = pipe;
3a77c4c4 11758 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11759 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11760 intel_crtc->plane = !pipe;
80824003
JB
11761 }
11762
4b0e333e
CW
11763 intel_crtc->cursor_base = ~0;
11764 intel_crtc->cursor_cntl = ~0;
11765
8d7849db
VS
11766 init_waitqueue_head(&intel_crtc->vbl_wait);
11767
22fd0fab
JB
11768 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11769 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11770 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11771 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11772
79e53945 11773 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11774
11775 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11776 return;
11777
11778fail:
11779 if (primary)
11780 drm_plane_cleanup(primary);
11781 if (cursor)
11782 drm_plane_cleanup(cursor);
11783 kfree(intel_crtc);
79e53945
JB
11784}
11785
752aa88a
JB
11786enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11787{
11788 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11789 struct drm_device *dev = connector->base.dev;
752aa88a 11790
51fd371b 11791 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11792
11793 if (!encoder)
11794 return INVALID_PIPE;
11795
11796 return to_intel_crtc(encoder->crtc)->pipe;
11797}
11798
08d7b3d1 11799int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11800 struct drm_file *file)
08d7b3d1 11801{
08d7b3d1 11802 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 11803 struct drm_crtc *drmmode_crtc;
c05422d5 11804 struct intel_crtc *crtc;
08d7b3d1 11805
1cff8f6b
DV
11806 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11807 return -ENODEV;
08d7b3d1 11808
7707e653 11809 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 11810
7707e653 11811 if (!drmmode_crtc) {
08d7b3d1 11812 DRM_ERROR("no such CRTC id\n");
3f2c2057 11813 return -ENOENT;
08d7b3d1
CW
11814 }
11815
7707e653 11816 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 11817 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 11818
c05422d5 11819 return 0;
08d7b3d1
CW
11820}
11821
66a9278e 11822static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 11823{
66a9278e
DV
11824 struct drm_device *dev = encoder->base.dev;
11825 struct intel_encoder *source_encoder;
79e53945 11826 int index_mask = 0;
79e53945
JB
11827 int entry = 0;
11828
66a9278e
DV
11829 list_for_each_entry(source_encoder,
11830 &dev->mode_config.encoder_list, base.head) {
bc079e8b 11831 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
11832 index_mask |= (1 << entry);
11833
79e53945
JB
11834 entry++;
11835 }
4ef69c7a 11836
79e53945
JB
11837 return index_mask;
11838}
11839
4d302442
CW
11840static bool has_edp_a(struct drm_device *dev)
11841{
11842 struct drm_i915_private *dev_priv = dev->dev_private;
11843
11844 if (!IS_MOBILE(dev))
11845 return false;
11846
11847 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11848 return false;
11849
e3589908 11850 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
11851 return false;
11852
11853 return true;
11854}
11855
ba0fbca4
DL
11856const char *intel_output_name(int output)
11857{
11858 static const char *names[] = {
11859 [INTEL_OUTPUT_UNUSED] = "Unused",
11860 [INTEL_OUTPUT_ANALOG] = "Analog",
11861 [INTEL_OUTPUT_DVO] = "DVO",
11862 [INTEL_OUTPUT_SDVO] = "SDVO",
11863 [INTEL_OUTPUT_LVDS] = "LVDS",
11864 [INTEL_OUTPUT_TVOUT] = "TV",
11865 [INTEL_OUTPUT_HDMI] = "HDMI",
11866 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11867 [INTEL_OUTPUT_EDP] = "eDP",
11868 [INTEL_OUTPUT_DSI] = "DSI",
11869 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11870 };
11871
11872 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11873 return "Invalid";
11874
11875 return names[output];
11876}
11877
84b4e042
JB
11878static bool intel_crt_present(struct drm_device *dev)
11879{
11880 struct drm_i915_private *dev_priv = dev->dev_private;
11881
11882 if (IS_ULT(dev))
11883 return false;
11884
11885 if (IS_CHERRYVIEW(dev))
11886 return false;
11887
11888 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11889 return false;
11890
11891 return true;
11892}
11893
79e53945
JB
11894static void intel_setup_outputs(struct drm_device *dev)
11895{
725e30ad 11896 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 11897 struct intel_encoder *encoder;
cb0953d7 11898 bool dpd_is_edp = false;
79e53945 11899
c9093354 11900 intel_lvds_init(dev);
79e53945 11901
84b4e042 11902 if (intel_crt_present(dev))
79935fca 11903 intel_crt_init(dev);
cb0953d7 11904
affa9354 11905 if (HAS_DDI(dev)) {
0e72a5b5
ED
11906 int found;
11907
11908 /* Haswell uses DDI functions to detect digital outputs */
11909 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11910 /* DDI A only supports eDP */
11911 if (found)
11912 intel_ddi_init(dev, PORT_A);
11913
11914 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11915 * register */
11916 found = I915_READ(SFUSE_STRAP);
11917
11918 if (found & SFUSE_STRAP_DDIB_DETECTED)
11919 intel_ddi_init(dev, PORT_B);
11920 if (found & SFUSE_STRAP_DDIC_DETECTED)
11921 intel_ddi_init(dev, PORT_C);
11922 if (found & SFUSE_STRAP_DDID_DETECTED)
11923 intel_ddi_init(dev, PORT_D);
11924 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 11925 int found;
5d8a7752 11926 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
11927
11928 if (has_edp_a(dev))
11929 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 11930
dc0fa718 11931 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 11932 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 11933 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 11934 if (!found)
e2debe91 11935 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 11936 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 11937 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
11938 }
11939
dc0fa718 11940 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 11941 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 11942
dc0fa718 11943 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 11944 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 11945
5eb08b69 11946 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 11947 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 11948
270b3042 11949 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 11950 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 11951 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
11952 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11953 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11954 PORT_B);
11955 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11956 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11957 }
11958
6f6005a5
JB
11959 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11960 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11961 PORT_C);
11962 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 11963 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 11964 }
19c03924 11965
9418c1f1
VS
11966 if (IS_CHERRYVIEW(dev)) {
11967 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11968 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11969 PORT_D);
11970 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11971 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11972 }
11973 }
11974
3cfca973 11975 intel_dsi_init(dev);
103a196f 11976 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 11977 bool found = false;
7d57382e 11978
e2debe91 11979 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11980 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 11981 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
11982 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11983 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 11984 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 11985 }
27185ae1 11986
e7281eab 11987 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11988 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 11989 }
13520b05
KH
11990
11991 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 11992
e2debe91 11993 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11994 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 11995 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 11996 }
27185ae1 11997
e2debe91 11998 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 11999
b01f2c3a
JB
12000 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12001 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12002 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12003 }
e7281eab 12004 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12005 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12006 }
27185ae1 12007
b01f2c3a 12008 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12009 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12010 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12011 } else if (IS_GEN2(dev))
79e53945
JB
12012 intel_dvo_init(dev);
12013
103a196f 12014 if (SUPPORTS_TV(dev))
79e53945
JB
12015 intel_tv_init(dev);
12016
7c8f8a70
RV
12017 intel_edp_psr_init(dev);
12018
4ef69c7a
CW
12019 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
12020 encoder->base.possible_crtcs = encoder->crtc_mask;
12021 encoder->base.possible_clones =
66a9278e 12022 intel_encoder_clones(encoder);
79e53945 12023 }
47356eb6 12024
dde86e2d 12025 intel_init_pch_refclk(dev);
270b3042
DV
12026
12027 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12028}
12029
12030static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12031{
60a5ca01 12032 struct drm_device *dev = fb->dev;
79e53945 12033 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12034
ef2d633e 12035 drm_framebuffer_cleanup(fb);
60a5ca01 12036 mutex_lock(&dev->struct_mutex);
ef2d633e 12037 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12038 drm_gem_object_unreference(&intel_fb->obj->base);
12039 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12040 kfree(intel_fb);
12041}
12042
12043static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12044 struct drm_file *file,
79e53945
JB
12045 unsigned int *handle)
12046{
12047 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12048 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12049
05394f39 12050 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12051}
12052
12053static const struct drm_framebuffer_funcs intel_fb_funcs = {
12054 .destroy = intel_user_framebuffer_destroy,
12055 .create_handle = intel_user_framebuffer_create_handle,
12056};
12057
b5ea642a
DV
12058static int intel_framebuffer_init(struct drm_device *dev,
12059 struct intel_framebuffer *intel_fb,
12060 struct drm_mode_fb_cmd2 *mode_cmd,
12061 struct drm_i915_gem_object *obj)
79e53945 12062{
a57ce0b2 12063 int aligned_height;
a35cdaa0 12064 int pitch_limit;
79e53945
JB
12065 int ret;
12066
dd4916c5
DV
12067 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12068
c16ed4be
CW
12069 if (obj->tiling_mode == I915_TILING_Y) {
12070 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12071 return -EINVAL;
c16ed4be 12072 }
57cd6508 12073
c16ed4be
CW
12074 if (mode_cmd->pitches[0] & 63) {
12075 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12076 mode_cmd->pitches[0]);
57cd6508 12077 return -EINVAL;
c16ed4be 12078 }
57cd6508 12079
a35cdaa0
CW
12080 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12081 pitch_limit = 32*1024;
12082 } else if (INTEL_INFO(dev)->gen >= 4) {
12083 if (obj->tiling_mode)
12084 pitch_limit = 16*1024;
12085 else
12086 pitch_limit = 32*1024;
12087 } else if (INTEL_INFO(dev)->gen >= 3) {
12088 if (obj->tiling_mode)
12089 pitch_limit = 8*1024;
12090 else
12091 pitch_limit = 16*1024;
12092 } else
12093 /* XXX DSPC is limited to 4k tiled */
12094 pitch_limit = 8*1024;
12095
12096 if (mode_cmd->pitches[0] > pitch_limit) {
12097 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12098 obj->tiling_mode ? "tiled" : "linear",
12099 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12100 return -EINVAL;
c16ed4be 12101 }
5d7bd705
VS
12102
12103 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12104 mode_cmd->pitches[0] != obj->stride) {
12105 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12106 mode_cmd->pitches[0], obj->stride);
5d7bd705 12107 return -EINVAL;
c16ed4be 12108 }
5d7bd705 12109
57779d06 12110 /* Reject formats not supported by any plane early. */
308e5bcb 12111 switch (mode_cmd->pixel_format) {
57779d06 12112 case DRM_FORMAT_C8:
04b3924d
VS
12113 case DRM_FORMAT_RGB565:
12114 case DRM_FORMAT_XRGB8888:
12115 case DRM_FORMAT_ARGB8888:
57779d06
VS
12116 break;
12117 case DRM_FORMAT_XRGB1555:
12118 case DRM_FORMAT_ARGB1555:
c16ed4be 12119 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12120 DRM_DEBUG("unsupported pixel format: %s\n",
12121 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12122 return -EINVAL;
c16ed4be 12123 }
57779d06
VS
12124 break;
12125 case DRM_FORMAT_XBGR8888:
12126 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12127 case DRM_FORMAT_XRGB2101010:
12128 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12129 case DRM_FORMAT_XBGR2101010:
12130 case DRM_FORMAT_ABGR2101010:
c16ed4be 12131 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12132 DRM_DEBUG("unsupported pixel format: %s\n",
12133 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12134 return -EINVAL;
c16ed4be 12135 }
b5626747 12136 break;
04b3924d
VS
12137 case DRM_FORMAT_YUYV:
12138 case DRM_FORMAT_UYVY:
12139 case DRM_FORMAT_YVYU:
12140 case DRM_FORMAT_VYUY:
c16ed4be 12141 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12142 DRM_DEBUG("unsupported pixel format: %s\n",
12143 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12144 return -EINVAL;
c16ed4be 12145 }
57cd6508
CW
12146 break;
12147 default:
4ee62c76
VS
12148 DRM_DEBUG("unsupported pixel format: %s\n",
12149 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12150 return -EINVAL;
12151 }
12152
90f9a336
VS
12153 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12154 if (mode_cmd->offsets[0] != 0)
12155 return -EINVAL;
12156
a57ce0b2
JB
12157 aligned_height = intel_align_height(dev, mode_cmd->height,
12158 obj->tiling_mode);
53155c0a
DV
12159 /* FIXME drm helper for size checks (especially planar formats)? */
12160 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12161 return -EINVAL;
12162
c7d73f6a
DV
12163 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12164 intel_fb->obj = obj;
80075d49 12165 intel_fb->obj->framebuffer_references++;
c7d73f6a 12166
79e53945
JB
12167 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12168 if (ret) {
12169 DRM_ERROR("framebuffer init failed %d\n", ret);
12170 return ret;
12171 }
12172
79e53945
JB
12173 return 0;
12174}
12175
79e53945
JB
12176static struct drm_framebuffer *
12177intel_user_framebuffer_create(struct drm_device *dev,
12178 struct drm_file *filp,
308e5bcb 12179 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12180{
05394f39 12181 struct drm_i915_gem_object *obj;
79e53945 12182
308e5bcb
JB
12183 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12184 mode_cmd->handles[0]));
c8725226 12185 if (&obj->base == NULL)
cce13ff7 12186 return ERR_PTR(-ENOENT);
79e53945 12187
d2dff872 12188 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12189}
12190
4520f53a 12191#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12192static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12193{
12194}
12195#endif
12196
79e53945 12197static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12198 .fb_create = intel_user_framebuffer_create,
0632fef6 12199 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12200};
12201
e70236a8
JB
12202/* Set up chip specific display functions */
12203static void intel_init_display(struct drm_device *dev)
12204{
12205 struct drm_i915_private *dev_priv = dev->dev_private;
12206
ee9300bb
DV
12207 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12208 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12209 else if (IS_CHERRYVIEW(dev))
12210 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12211 else if (IS_VALLEYVIEW(dev))
12212 dev_priv->display.find_dpll = vlv_find_best_dpll;
12213 else if (IS_PINEVIEW(dev))
12214 dev_priv->display.find_dpll = pnv_find_best_dpll;
12215 else
12216 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12217
affa9354 12218 if (HAS_DDI(dev)) {
0e8ffe1b 12219 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12220 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12221 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12222 dev_priv->display.crtc_enable = haswell_crtc_enable;
12223 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12224 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12225 dev_priv->display.update_primary_plane =
12226 ironlake_update_primary_plane;
09b4ddf9 12227 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12228 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12229 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12230 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12231 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12232 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12233 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12234 dev_priv->display.update_primary_plane =
12235 ironlake_update_primary_plane;
89b667f8
JB
12236 } else if (IS_VALLEYVIEW(dev)) {
12237 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12238 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12239 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12240 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12241 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12242 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12243 dev_priv->display.update_primary_plane =
12244 i9xx_update_primary_plane;
f564048e 12245 } else {
0e8ffe1b 12246 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12247 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12248 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12249 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12250 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12251 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12252 dev_priv->display.update_primary_plane =
12253 i9xx_update_primary_plane;
f564048e 12254 }
e70236a8 12255
e70236a8 12256 /* Returns the core display clock speed */
25eb05fc
JB
12257 if (IS_VALLEYVIEW(dev))
12258 dev_priv->display.get_display_clock_speed =
12259 valleyview_get_display_clock_speed;
12260 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12261 dev_priv->display.get_display_clock_speed =
12262 i945_get_display_clock_speed;
12263 else if (IS_I915G(dev))
12264 dev_priv->display.get_display_clock_speed =
12265 i915_get_display_clock_speed;
257a7ffc 12266 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12267 dev_priv->display.get_display_clock_speed =
12268 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12269 else if (IS_PINEVIEW(dev))
12270 dev_priv->display.get_display_clock_speed =
12271 pnv_get_display_clock_speed;
e70236a8
JB
12272 else if (IS_I915GM(dev))
12273 dev_priv->display.get_display_clock_speed =
12274 i915gm_get_display_clock_speed;
12275 else if (IS_I865G(dev))
12276 dev_priv->display.get_display_clock_speed =
12277 i865_get_display_clock_speed;
f0f8a9ce 12278 else if (IS_I85X(dev))
e70236a8
JB
12279 dev_priv->display.get_display_clock_speed =
12280 i855_get_display_clock_speed;
12281 else /* 852, 830 */
12282 dev_priv->display.get_display_clock_speed =
12283 i830_get_display_clock_speed;
12284
7f8a8569 12285 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 12286 if (IS_GEN5(dev)) {
674cf967 12287 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 12288 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 12289 } else if (IS_GEN6(dev)) {
674cf967 12290 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 12291 dev_priv->display.write_eld = ironlake_write_eld;
9a952a0d
PZ
12292 dev_priv->display.modeset_global_resources =
12293 snb_modeset_global_resources;
357555c0
JB
12294 } else if (IS_IVYBRIDGE(dev)) {
12295 /* FIXME: detect B0+ stepping and use auto training */
12296 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 12297 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
12298 dev_priv->display.modeset_global_resources =
12299 ivb_modeset_global_resources;
4e0bbc31 12300 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
c82e4d26 12301 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 12302 dev_priv->display.write_eld = haswell_write_eld;
d6dd9eb1
DV
12303 dev_priv->display.modeset_global_resources =
12304 haswell_modeset_global_resources;
a0e63c22 12305 }
6067aaea 12306 } else if (IS_G4X(dev)) {
e0dac65e 12307 dev_priv->display.write_eld = g4x_write_eld;
30a970c6
JB
12308 } else if (IS_VALLEYVIEW(dev)) {
12309 dev_priv->display.modeset_global_resources =
12310 valleyview_modeset_global_resources;
9ca2fe73 12311 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12312 }
8c9f3aaf
JB
12313
12314 /* Default just returns -ENODEV to indicate unsupported */
12315 dev_priv->display.queue_flip = intel_default_queue_flip;
12316
12317 switch (INTEL_INFO(dev)->gen) {
12318 case 2:
12319 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12320 break;
12321
12322 case 3:
12323 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12324 break;
12325
12326 case 4:
12327 case 5:
12328 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12329 break;
12330
12331 case 6:
12332 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12333 break;
7c9017e5 12334 case 7:
4e0bbc31 12335 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12336 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12337 break;
8c9f3aaf 12338 }
7bd688cd
JN
12339
12340 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12341}
12342
b690e96c
JB
12343/*
12344 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12345 * resume, or other times. This quirk makes sure that's the case for
12346 * affected systems.
12347 */
0206e353 12348static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12349{
12350 struct drm_i915_private *dev_priv = dev->dev_private;
12351
12352 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12353 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12354}
12355
435793df
KP
12356/*
12357 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12358 */
12359static void quirk_ssc_force_disable(struct drm_device *dev)
12360{
12361 struct drm_i915_private *dev_priv = dev->dev_private;
12362 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12363 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12364}
12365
4dca20ef 12366/*
5a15ab5b
CE
12367 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12368 * brightness value
4dca20ef
CE
12369 */
12370static void quirk_invert_brightness(struct drm_device *dev)
12371{
12372 struct drm_i915_private *dev_priv = dev->dev_private;
12373 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12374 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12375}
12376
b690e96c
JB
12377struct intel_quirk {
12378 int device;
12379 int subsystem_vendor;
12380 int subsystem_device;
12381 void (*hook)(struct drm_device *dev);
12382};
12383
5f85f176
EE
12384/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12385struct intel_dmi_quirk {
12386 void (*hook)(struct drm_device *dev);
12387 const struct dmi_system_id (*dmi_id_list)[];
12388};
12389
12390static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12391{
12392 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12393 return 1;
12394}
12395
12396static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12397 {
12398 .dmi_id_list = &(const struct dmi_system_id[]) {
12399 {
12400 .callback = intel_dmi_reverse_brightness,
12401 .ident = "NCR Corporation",
12402 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12403 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12404 },
12405 },
12406 { } /* terminating entry */
12407 },
12408 .hook = quirk_invert_brightness,
12409 },
12410};
12411
c43b5634 12412static struct intel_quirk intel_quirks[] = {
b690e96c 12413 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12414 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12415
b690e96c
JB
12416 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12417 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12418
b690e96c
JB
12419 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12420 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12421
435793df
KP
12422 /* Lenovo U160 cannot use SSC on LVDS */
12423 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12424
12425 /* Sony Vaio Y cannot use SSC on LVDS */
12426 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12427
be505f64
AH
12428 /* Acer Aspire 5734Z must invert backlight brightness */
12429 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12430
12431 /* Acer/eMachines G725 */
12432 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12433
12434 /* Acer/eMachines e725 */
12435 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12436
12437 /* Acer/Packard Bell NCL20 */
12438 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12439
12440 /* Acer Aspire 4736Z */
12441 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12442
12443 /* Acer Aspire 5336 */
12444 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
b690e96c
JB
12445};
12446
12447static void intel_init_quirks(struct drm_device *dev)
12448{
12449 struct pci_dev *d = dev->pdev;
12450 int i;
12451
12452 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12453 struct intel_quirk *q = &intel_quirks[i];
12454
12455 if (d->device == q->device &&
12456 (d->subsystem_vendor == q->subsystem_vendor ||
12457 q->subsystem_vendor == PCI_ANY_ID) &&
12458 (d->subsystem_device == q->subsystem_device ||
12459 q->subsystem_device == PCI_ANY_ID))
12460 q->hook(dev);
12461 }
5f85f176
EE
12462 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12463 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12464 intel_dmi_quirks[i].hook(dev);
12465 }
b690e96c
JB
12466}
12467
9cce37f4
JB
12468/* Disable the VGA plane that we never use */
12469static void i915_disable_vga(struct drm_device *dev)
12470{
12471 struct drm_i915_private *dev_priv = dev->dev_private;
12472 u8 sr1;
766aa1c4 12473 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12474
2b37c616 12475 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12476 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12477 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12478 sr1 = inb(VGA_SR_DATA);
12479 outb(sr1 | 1<<5, VGA_SR_DATA);
12480 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12481 udelay(300);
12482
12483 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12484 POSTING_READ(vga_reg);
12485}
12486
f817586c
DV
12487void intel_modeset_init_hw(struct drm_device *dev)
12488{
a8f78b58
ED
12489 intel_prepare_ddi(dev);
12490
f8bf63fd
VS
12491 if (IS_VALLEYVIEW(dev))
12492 vlv_update_cdclk(dev);
12493
f817586c
DV
12494 intel_init_clock_gating(dev);
12495
5382f5f3 12496 intel_reset_dpio(dev);
40e9cf64 12497
8090c6b9 12498 intel_enable_gt_powersave(dev);
f817586c
DV
12499}
12500
7d708ee4
ID
12501void intel_modeset_suspend_hw(struct drm_device *dev)
12502{
12503 intel_suspend_hw(dev);
12504}
12505
79e53945
JB
12506void intel_modeset_init(struct drm_device *dev)
12507{
652c393a 12508 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12509 int sprite, ret;
8cc87b75 12510 enum pipe pipe;
46f297fb 12511 struct intel_crtc *crtc;
79e53945
JB
12512
12513 drm_mode_config_init(dev);
12514
12515 dev->mode_config.min_width = 0;
12516 dev->mode_config.min_height = 0;
12517
019d96cb
DA
12518 dev->mode_config.preferred_depth = 24;
12519 dev->mode_config.prefer_shadow = 1;
12520
e6ecefaa 12521 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12522
b690e96c
JB
12523 intel_init_quirks(dev);
12524
1fa61106
ED
12525 intel_init_pm(dev);
12526
e3c74757
BW
12527 if (INTEL_INFO(dev)->num_pipes == 0)
12528 return;
12529
e70236a8
JB
12530 intel_init_display(dev);
12531
a6c45cf0
CW
12532 if (IS_GEN2(dev)) {
12533 dev->mode_config.max_width = 2048;
12534 dev->mode_config.max_height = 2048;
12535 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12536 dev->mode_config.max_width = 4096;
12537 dev->mode_config.max_height = 4096;
79e53945 12538 } else {
a6c45cf0
CW
12539 dev->mode_config.max_width = 8192;
12540 dev->mode_config.max_height = 8192;
79e53945 12541 }
068be561
DL
12542
12543 if (IS_GEN2(dev)) {
12544 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12545 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12546 } else {
12547 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12548 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12549 }
12550
5d4545ae 12551 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12552
28c97730 12553 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12554 INTEL_INFO(dev)->num_pipes,
12555 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12556
8cc87b75
DL
12557 for_each_pipe(pipe) {
12558 intel_crtc_init(dev, pipe);
1fe47785
DL
12559 for_each_sprite(pipe, sprite) {
12560 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12561 if (ret)
06da8da2 12562 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12563 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12564 }
79e53945
JB
12565 }
12566
f42bb70d 12567 intel_init_dpio(dev);
5382f5f3 12568 intel_reset_dpio(dev);
f42bb70d 12569
e72f9fbf 12570 intel_shared_dpll_init(dev);
ee7b9f93 12571
9cce37f4
JB
12572 /* Just disable it once at startup */
12573 i915_disable_vga(dev);
79e53945 12574 intel_setup_outputs(dev);
11be49eb
CW
12575
12576 /* Just in case the BIOS is doing something questionable. */
12577 intel_disable_fbc(dev);
fa9fa083 12578
6e9f798d 12579 drm_modeset_lock_all(dev);
fa9fa083 12580 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12581 drm_modeset_unlock_all(dev);
46f297fb 12582
d3fcc808 12583 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12584 if (!crtc->active)
12585 continue;
12586
46f297fb 12587 /*
46f297fb
JB
12588 * Note that reserving the BIOS fb up front prevents us
12589 * from stuffing other stolen allocations like the ring
12590 * on top. This prevents some ugliness at boot time, and
12591 * can even allow for smooth boot transitions if the BIOS
12592 * fb is large enough for the active pipe configuration.
12593 */
12594 if (dev_priv->display.get_plane_config) {
12595 dev_priv->display.get_plane_config(crtc,
12596 &crtc->plane_config);
12597 /*
12598 * If the fb is shared between multiple heads, we'll
12599 * just get the first one.
12600 */
484b41dd 12601 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12602 }
46f297fb 12603 }
2c7111db
CW
12604}
12605
7fad798e
DV
12606static void intel_enable_pipe_a(struct drm_device *dev)
12607{
12608 struct intel_connector *connector;
12609 struct drm_connector *crt = NULL;
12610 struct intel_load_detect_pipe load_detect_temp;
51fd371b 12611 struct drm_modeset_acquire_ctx ctx;
7fad798e
DV
12612
12613 /* We can't just switch on the pipe A, we need to set things up with a
12614 * proper mode and output configuration. As a gross hack, enable pipe A
12615 * by enabling the load detect pipe once. */
12616 list_for_each_entry(connector,
12617 &dev->mode_config.connector_list,
12618 base.head) {
12619 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12620 crt = &connector->base;
12621 break;
12622 }
12623 }
12624
12625 if (!crt)
12626 return;
12627
51fd371b
RC
12628 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12629 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
7fad798e 12630
652c393a 12631
7fad798e
DV
12632}
12633
fa555837
DV
12634static bool
12635intel_check_plane_mapping(struct intel_crtc *crtc)
12636{
7eb552ae
BW
12637 struct drm_device *dev = crtc->base.dev;
12638 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12639 u32 reg, val;
12640
7eb552ae 12641 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12642 return true;
12643
12644 reg = DSPCNTR(!crtc->plane);
12645 val = I915_READ(reg);
12646
12647 if ((val & DISPLAY_PLANE_ENABLE) &&
12648 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12649 return false;
12650
12651 return true;
12652}
12653
24929352
DV
12654static void intel_sanitize_crtc(struct intel_crtc *crtc)
12655{
12656 struct drm_device *dev = crtc->base.dev;
12657 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12658 u32 reg;
24929352 12659
24929352 12660 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12661 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12662 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12663
d3eaf884
VS
12664 /* restore vblank interrupts to correct state */
12665 if (crtc->active)
12666 drm_vblank_on(dev, crtc->pipe);
12667 else
12668 drm_vblank_off(dev, crtc->pipe);
12669
24929352 12670 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12671 * disable the crtc (and hence change the state) if it is wrong. Note
12672 * that gen4+ has a fixed plane -> pipe mapping. */
12673 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12674 struct intel_connector *connector;
12675 bool plane;
12676
24929352
DV
12677 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12678 crtc->base.base.id);
12679
12680 /* Pipe has the wrong plane attached and the plane is active.
12681 * Temporarily change the plane mapping and disable everything
12682 * ... */
12683 plane = crtc->plane;
12684 crtc->plane = !plane;
12685 dev_priv->display.crtc_disable(&crtc->base);
12686 crtc->plane = plane;
12687
12688 /* ... and break all links. */
12689 list_for_each_entry(connector, &dev->mode_config.connector_list,
12690 base.head) {
12691 if (connector->encoder->base.crtc != &crtc->base)
12692 continue;
12693
7f1950fb
EE
12694 connector->base.dpms = DRM_MODE_DPMS_OFF;
12695 connector->base.encoder = NULL;
24929352 12696 }
7f1950fb
EE
12697 /* multiple connectors may have the same encoder:
12698 * handle them and break crtc link separately */
12699 list_for_each_entry(connector, &dev->mode_config.connector_list,
12700 base.head)
12701 if (connector->encoder->base.crtc == &crtc->base) {
12702 connector->encoder->base.crtc = NULL;
12703 connector->encoder->connectors_active = false;
12704 }
24929352
DV
12705
12706 WARN_ON(crtc->active);
12707 crtc->base.enabled = false;
12708 }
24929352 12709
7fad798e
DV
12710 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12711 crtc->pipe == PIPE_A && !crtc->active) {
12712 /* BIOS forgot to enable pipe A, this mostly happens after
12713 * resume. Force-enable the pipe to fix this, the update_dpms
12714 * call below we restore the pipe to the right state, but leave
12715 * the required bits on. */
12716 intel_enable_pipe_a(dev);
12717 }
12718
24929352
DV
12719 /* Adjust the state of the output pipe according to whether we
12720 * have active connectors/encoders. */
12721 intel_crtc_update_dpms(&crtc->base);
12722
12723 if (crtc->active != crtc->base.enabled) {
12724 struct intel_encoder *encoder;
12725
12726 /* This can happen either due to bugs in the get_hw_state
12727 * functions or because the pipe is force-enabled due to the
12728 * pipe A quirk. */
12729 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12730 crtc->base.base.id,
12731 crtc->base.enabled ? "enabled" : "disabled",
12732 crtc->active ? "enabled" : "disabled");
12733
12734 crtc->base.enabled = crtc->active;
12735
12736 /* Because we only establish the connector -> encoder ->
12737 * crtc links if something is active, this means the
12738 * crtc is now deactivated. Break the links. connector
12739 * -> encoder links are only establish when things are
12740 * actually up, hence no need to break them. */
12741 WARN_ON(crtc->active);
12742
12743 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12744 WARN_ON(encoder->connectors_active);
12745 encoder->base.crtc = NULL;
12746 }
12747 }
c5ab3bc0
DV
12748
12749 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12750 /*
12751 * We start out with underrun reporting disabled to avoid races.
12752 * For correct bookkeeping mark this on active crtcs.
12753 *
c5ab3bc0
DV
12754 * Also on gmch platforms we dont have any hardware bits to
12755 * disable the underrun reporting. Which means we need to start
12756 * out with underrun reporting disabled also on inactive pipes,
12757 * since otherwise we'll complain about the garbage we read when
12758 * e.g. coming up after runtime pm.
12759 *
4cc31489
DV
12760 * No protection against concurrent access is required - at
12761 * worst a fifo underrun happens which also sets this to false.
12762 */
12763 crtc->cpu_fifo_underrun_disabled = true;
12764 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12765
12766 update_scanline_offset(crtc);
4cc31489 12767 }
24929352
DV
12768}
12769
12770static void intel_sanitize_encoder(struct intel_encoder *encoder)
12771{
12772 struct intel_connector *connector;
12773 struct drm_device *dev = encoder->base.dev;
12774
12775 /* We need to check both for a crtc link (meaning that the
12776 * encoder is active and trying to read from a pipe) and the
12777 * pipe itself being active. */
12778 bool has_active_crtc = encoder->base.crtc &&
12779 to_intel_crtc(encoder->base.crtc)->active;
12780
12781 if (encoder->connectors_active && !has_active_crtc) {
12782 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12783 encoder->base.base.id,
8e329a03 12784 encoder->base.name);
24929352
DV
12785
12786 /* Connector is active, but has no active pipe. This is
12787 * fallout from our resume register restoring. Disable
12788 * the encoder manually again. */
12789 if (encoder->base.crtc) {
12790 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12791 encoder->base.base.id,
8e329a03 12792 encoder->base.name);
24929352
DV
12793 encoder->disable(encoder);
12794 }
7f1950fb
EE
12795 encoder->base.crtc = NULL;
12796 encoder->connectors_active = false;
24929352
DV
12797
12798 /* Inconsistent output/port/pipe state happens presumably due to
12799 * a bug in one of the get_hw_state functions. Or someplace else
12800 * in our code, like the register restore mess on resume. Clamp
12801 * things to off as a safer default. */
12802 list_for_each_entry(connector,
12803 &dev->mode_config.connector_list,
12804 base.head) {
12805 if (connector->encoder != encoder)
12806 continue;
7f1950fb
EE
12807 connector->base.dpms = DRM_MODE_DPMS_OFF;
12808 connector->base.encoder = NULL;
24929352
DV
12809 }
12810 }
12811 /* Enabled encoders without active connectors will be fixed in
12812 * the crtc fixup. */
12813}
12814
04098753 12815void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
12816{
12817 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 12818 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 12819
04098753
ID
12820 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12821 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12822 i915_disable_vga(dev);
12823 }
12824}
12825
12826void i915_redisable_vga(struct drm_device *dev)
12827{
12828 struct drm_i915_private *dev_priv = dev->dev_private;
12829
8dc8a27c
PZ
12830 /* This function can be called both from intel_modeset_setup_hw_state or
12831 * at a very early point in our resume sequence, where the power well
12832 * structures are not yet restored. Since this function is at a very
12833 * paranoid "someone might have enabled VGA while we were not looking"
12834 * level, just check if the power well is enabled instead of trying to
12835 * follow the "don't touch the power well if we don't need it" policy
12836 * the rest of the driver uses. */
04098753 12837 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
12838 return;
12839
04098753 12840 i915_redisable_vga_power_on(dev);
0fde901f
KM
12841}
12842
98ec7739
VS
12843static bool primary_get_hw_state(struct intel_crtc *crtc)
12844{
12845 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12846
12847 if (!crtc->active)
12848 return false;
12849
12850 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12851}
12852
30e984df 12853static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
12854{
12855 struct drm_i915_private *dev_priv = dev->dev_private;
12856 enum pipe pipe;
24929352
DV
12857 struct intel_crtc *crtc;
12858 struct intel_encoder *encoder;
12859 struct intel_connector *connector;
5358901f 12860 int i;
24929352 12861
d3fcc808 12862 for_each_intel_crtc(dev, crtc) {
88adfff1 12863 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 12864
9953599b
DV
12865 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12866
0e8ffe1b
DV
12867 crtc->active = dev_priv->display.get_pipe_config(crtc,
12868 &crtc->config);
24929352
DV
12869
12870 crtc->base.enabled = crtc->active;
98ec7739 12871 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
12872
12873 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12874 crtc->base.base.id,
12875 crtc->active ? "enabled" : "disabled");
12876 }
12877
5358901f
DV
12878 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12879 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12880
12881 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12882 pll->active = 0;
d3fcc808 12883 for_each_intel_crtc(dev, crtc) {
5358901f
DV
12884 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12885 pll->active++;
12886 }
12887 pll->refcount = pll->active;
12888
35c95375
DV
12889 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12890 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
12891
12892 if (pll->refcount)
12893 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
12894 }
12895
24929352
DV
12896 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12897 base.head) {
12898 pipe = 0;
12899
12900 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
12901 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12902 encoder->base.crtc = &crtc->base;
1d37b689 12903 encoder->get_config(encoder, &crtc->config);
24929352
DV
12904 } else {
12905 encoder->base.crtc = NULL;
12906 }
12907
12908 encoder->connectors_active = false;
6f2bcceb 12909 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 12910 encoder->base.base.id,
8e329a03 12911 encoder->base.name,
24929352 12912 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 12913 pipe_name(pipe));
24929352
DV
12914 }
12915
12916 list_for_each_entry(connector, &dev->mode_config.connector_list,
12917 base.head) {
12918 if (connector->get_hw_state(connector)) {
12919 connector->base.dpms = DRM_MODE_DPMS_ON;
12920 connector->encoder->connectors_active = true;
12921 connector->base.encoder = &connector->encoder->base;
12922 } else {
12923 connector->base.dpms = DRM_MODE_DPMS_OFF;
12924 connector->base.encoder = NULL;
12925 }
12926 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12927 connector->base.base.id,
c23cc417 12928 connector->base.name,
24929352
DV
12929 connector->base.encoder ? "enabled" : "disabled");
12930 }
30e984df
DV
12931}
12932
12933/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12934 * and i915 state tracking structures. */
12935void intel_modeset_setup_hw_state(struct drm_device *dev,
12936 bool force_restore)
12937{
12938 struct drm_i915_private *dev_priv = dev->dev_private;
12939 enum pipe pipe;
30e984df
DV
12940 struct intel_crtc *crtc;
12941 struct intel_encoder *encoder;
35c95375 12942 int i;
30e984df
DV
12943
12944 intel_modeset_readout_hw_state(dev);
24929352 12945
babea61d
JB
12946 /*
12947 * Now that we have the config, copy it to each CRTC struct
12948 * Note that this could go away if we move to using crtc_config
12949 * checking everywhere.
12950 */
d3fcc808 12951 for_each_intel_crtc(dev, crtc) {
d330a953 12952 if (crtc->active && i915.fastboot) {
f6a83288 12953 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
12954 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12955 crtc->base.base.id);
12956 drm_mode_debug_printmodeline(&crtc->base.mode);
12957 }
12958 }
12959
24929352
DV
12960 /* HW state is read out, now we need to sanitize this mess. */
12961 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12962 base.head) {
12963 intel_sanitize_encoder(encoder);
12964 }
12965
12966 for_each_pipe(pipe) {
12967 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12968 intel_sanitize_crtc(crtc);
c0b03411 12969 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 12970 }
9a935856 12971
35c95375
DV
12972 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12973 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12974
12975 if (!pll->on || pll->active)
12976 continue;
12977
12978 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12979
12980 pll->disable(dev_priv, pll);
12981 pll->on = false;
12982 }
12983
96f90c54 12984 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
12985 ilk_wm_get_hw_state(dev);
12986
45e2b5f6 12987 if (force_restore) {
7d0bc1ea
VS
12988 i915_redisable_vga(dev);
12989
f30da187
DV
12990 /*
12991 * We need to use raw interfaces for restoring state to avoid
12992 * checking (bogus) intermediate states.
12993 */
45e2b5f6 12994 for_each_pipe(pipe) {
b5644d05
JB
12995 struct drm_crtc *crtc =
12996 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
12997
12998 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 12999 crtc->primary->fb);
45e2b5f6
DV
13000 }
13001 } else {
13002 intel_modeset_update_staged_output_state(dev);
13003 }
8af6cf88
DV
13004
13005 intel_modeset_check_state(dev);
2c7111db
CW
13006}
13007
13008void intel_modeset_gem_init(struct drm_device *dev)
13009{
484b41dd 13010 struct drm_crtc *c;
2ff8fde1 13011 struct drm_i915_gem_object *obj;
484b41dd 13012
ae48434c
ID
13013 mutex_lock(&dev->struct_mutex);
13014 intel_init_gt_powersave(dev);
13015 mutex_unlock(&dev->struct_mutex);
13016
1833b134 13017 intel_modeset_init_hw(dev);
02e792fb
DV
13018
13019 intel_setup_overlay(dev);
484b41dd
JB
13020
13021 /*
13022 * Make sure any fbs we allocated at startup are properly
13023 * pinned & fenced. When we do the allocation it's too early
13024 * for this.
13025 */
13026 mutex_lock(&dev->struct_mutex);
70e1e0ec 13027 for_each_crtc(dev, c) {
2ff8fde1
MR
13028 obj = intel_fb_obj(c->primary->fb);
13029 if (obj == NULL)
484b41dd
JB
13030 continue;
13031
2ff8fde1 13032 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13033 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13034 to_intel_crtc(c)->pipe);
66e514c1
DA
13035 drm_framebuffer_unreference(c->primary->fb);
13036 c->primary->fb = NULL;
484b41dd
JB
13037 }
13038 }
13039 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13040}
13041
4932e2c3
ID
13042void intel_connector_unregister(struct intel_connector *intel_connector)
13043{
13044 struct drm_connector *connector = &intel_connector->base;
13045
13046 intel_panel_destroy_backlight(connector);
34ea3d38 13047 drm_connector_unregister(connector);
4932e2c3
ID
13048}
13049
79e53945
JB
13050void intel_modeset_cleanup(struct drm_device *dev)
13051{
652c393a 13052 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13053 struct drm_connector *connector;
652c393a 13054
fd0c0642
DV
13055 /*
13056 * Interrupts and polling as the first thing to avoid creating havoc.
13057 * Too much stuff here (turning of rps, connectors, ...) would
13058 * experience fancy races otherwise.
13059 */
13060 drm_irq_uninstall(dev);
13061 cancel_work_sync(&dev_priv->hotplug_work);
13062 /*
13063 * Due to the hpd irq storm handling the hotplug work can re-arm the
13064 * poll handlers. Hence disable polling after hpd handling is shut down.
13065 */
f87ea761 13066 drm_kms_helper_poll_fini(dev);
fd0c0642 13067
652c393a
JB
13068 mutex_lock(&dev->struct_mutex);
13069
723bfd70
JB
13070 intel_unregister_dsm_handler();
13071
973d04f9 13072 intel_disable_fbc(dev);
e70236a8 13073
8090c6b9 13074 intel_disable_gt_powersave(dev);
0cdab21f 13075
930ebb46
DV
13076 ironlake_teardown_rc6(dev);
13077
69341a5e
KH
13078 mutex_unlock(&dev->struct_mutex);
13079
1630fe75
CW
13080 /* flush any delayed tasks or pending work */
13081 flush_scheduled_work();
13082
db31af1d
JN
13083 /* destroy the backlight and sysfs files before encoders/connectors */
13084 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13085 struct intel_connector *intel_connector;
13086
13087 intel_connector = to_intel_connector(connector);
13088 intel_connector->unregister(intel_connector);
db31af1d 13089 }
d9255d57 13090
79e53945 13091 drm_mode_config_cleanup(dev);
4d7bb011
DV
13092
13093 intel_cleanup_overlay(dev);
ae48434c
ID
13094
13095 mutex_lock(&dev->struct_mutex);
13096 intel_cleanup_gt_powersave(dev);
13097 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13098}
13099
f1c79df3
ZW
13100/*
13101 * Return which encoder is currently attached for connector.
13102 */
df0e9248 13103struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13104{
df0e9248
CW
13105 return &intel_attached_encoder(connector)->base;
13106}
f1c79df3 13107
df0e9248
CW
13108void intel_connector_attach_encoder(struct intel_connector *connector,
13109 struct intel_encoder *encoder)
13110{
13111 connector->encoder = encoder;
13112 drm_mode_connector_attach_encoder(&connector->base,
13113 &encoder->base);
79e53945 13114}
28d52043
DA
13115
13116/*
13117 * set vga decode state - true == enable VGA decode
13118 */
13119int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13120{
13121 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13122 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13123 u16 gmch_ctrl;
13124
75fa041d
CW
13125 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13126 DRM_ERROR("failed to read control word\n");
13127 return -EIO;
13128 }
13129
c0cc8a55
CW
13130 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13131 return 0;
13132
28d52043
DA
13133 if (state)
13134 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13135 else
13136 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13137
13138 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13139 DRM_ERROR("failed to write control word\n");
13140 return -EIO;
13141 }
13142
28d52043
DA
13143 return 0;
13144}
c4a1d9e4 13145
c4a1d9e4 13146struct intel_display_error_state {
ff57f1b0
PZ
13147
13148 u32 power_well_driver;
13149
63b66e5b
CW
13150 int num_transcoders;
13151
c4a1d9e4
CW
13152 struct intel_cursor_error_state {
13153 u32 control;
13154 u32 position;
13155 u32 base;
13156 u32 size;
52331309 13157 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13158
13159 struct intel_pipe_error_state {
ddf9c536 13160 bool power_domain_on;
c4a1d9e4 13161 u32 source;
f301b1e1 13162 u32 stat;
52331309 13163 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13164
13165 struct intel_plane_error_state {
13166 u32 control;
13167 u32 stride;
13168 u32 size;
13169 u32 pos;
13170 u32 addr;
13171 u32 surface;
13172 u32 tile_offset;
52331309 13173 } plane[I915_MAX_PIPES];
63b66e5b
CW
13174
13175 struct intel_transcoder_error_state {
ddf9c536 13176 bool power_domain_on;
63b66e5b
CW
13177 enum transcoder cpu_transcoder;
13178
13179 u32 conf;
13180
13181 u32 htotal;
13182 u32 hblank;
13183 u32 hsync;
13184 u32 vtotal;
13185 u32 vblank;
13186 u32 vsync;
13187 } transcoder[4];
c4a1d9e4
CW
13188};
13189
13190struct intel_display_error_state *
13191intel_display_capture_error_state(struct drm_device *dev)
13192{
fbee40df 13193 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13194 struct intel_display_error_state *error;
63b66e5b
CW
13195 int transcoders[] = {
13196 TRANSCODER_A,
13197 TRANSCODER_B,
13198 TRANSCODER_C,
13199 TRANSCODER_EDP,
13200 };
c4a1d9e4
CW
13201 int i;
13202
63b66e5b
CW
13203 if (INTEL_INFO(dev)->num_pipes == 0)
13204 return NULL;
13205
9d1cb914 13206 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13207 if (error == NULL)
13208 return NULL;
13209
190be112 13210 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13211 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13212
52331309 13213 for_each_pipe(i) {
ddf9c536 13214 error->pipe[i].power_domain_on =
bfafe93a
ID
13215 intel_display_power_enabled_unlocked(dev_priv,
13216 POWER_DOMAIN_PIPE(i));
ddf9c536 13217 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13218 continue;
13219
5efb3e28
VS
13220 error->cursor[i].control = I915_READ(CURCNTR(i));
13221 error->cursor[i].position = I915_READ(CURPOS(i));
13222 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13223
13224 error->plane[i].control = I915_READ(DSPCNTR(i));
13225 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13226 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13227 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13228 error->plane[i].pos = I915_READ(DSPPOS(i));
13229 }
ca291363
PZ
13230 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13231 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13232 if (INTEL_INFO(dev)->gen >= 4) {
13233 error->plane[i].surface = I915_READ(DSPSURF(i));
13234 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13235 }
13236
c4a1d9e4 13237 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1
ID
13238
13239 if (!HAS_PCH_SPLIT(dev))
13240 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13241 }
13242
13243 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13244 if (HAS_DDI(dev_priv->dev))
13245 error->num_transcoders++; /* Account for eDP. */
13246
13247 for (i = 0; i < error->num_transcoders; i++) {
13248 enum transcoder cpu_transcoder = transcoders[i];
13249
ddf9c536 13250 error->transcoder[i].power_domain_on =
bfafe93a 13251 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13252 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13253 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13254 continue;
13255
63b66e5b
CW
13256 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13257
13258 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13259 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13260 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13261 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13262 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13263 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13264 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13265 }
13266
13267 return error;
13268}
13269
edc3d884
MK
13270#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13271
c4a1d9e4 13272void
edc3d884 13273intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13274 struct drm_device *dev,
13275 struct intel_display_error_state *error)
13276{
13277 int i;
13278
63b66e5b
CW
13279 if (!error)
13280 return;
13281
edc3d884 13282 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13283 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13284 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13285 error->power_well_driver);
52331309 13286 for_each_pipe(i) {
edc3d884 13287 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13288 err_printf(m, " Power: %s\n",
13289 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13290 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13291 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13292
13293 err_printf(m, "Plane [%d]:\n", i);
13294 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13295 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13296 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13297 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13298 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13299 }
4b71a570 13300 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13301 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13302 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13303 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13304 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13305 }
13306
edc3d884
MK
13307 err_printf(m, "Cursor [%d]:\n", i);
13308 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13309 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13310 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13311 }
63b66e5b
CW
13312
13313 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13314 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13315 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13316 err_printf(m, " Power: %s\n",
13317 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13318 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13319 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13320 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13321 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13322 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13323 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13324 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13325 }
c4a1d9e4 13326}