]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: reject modes the LPT FDI receiver can't handle
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
c0f372b3 42#include <linux/dma_remapping.h>
79e53945 43
0206e353 44bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
3dec0095 45static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 46static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
47
48typedef struct {
0206e353
AJ
49 /* given values */
50 int n;
51 int m1, m2;
52 int p1, p2;
53 /* derived values */
54 int dot;
55 int vco;
56 int m;
57 int p;
79e53945
JB
58} intel_clock_t;
59
60typedef struct {
0206e353 61 int min, max;
79e53945
JB
62} intel_range_t;
63
64typedef struct {
0206e353
AJ
65 int dot_limit;
66 int p2_slow, p2_fast;
79e53945
JB
67} intel_p2_t;
68
69#define INTEL_P2_NUM 2
d4906093
ML
70typedef struct intel_limit intel_limit_t;
71struct intel_limit {
0206e353
AJ
72 intel_range_t dot, vco, n, m, m1, m2, p, p1;
73 intel_p2_t p2;
74 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
cec2f356 75 int, int, intel_clock_t *, intel_clock_t *);
d4906093 76};
79e53945 77
2377b741
JB
78/* FDI */
79#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
80
d2acd215
DV
81int
82intel_pch_rawclk(struct drm_device *dev)
83{
84 struct drm_i915_private *dev_priv = dev->dev_private;
85
86 WARN_ON(!HAS_PCH_SPLIT(dev));
87
88 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89}
90
d4906093
ML
91static bool
92intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
93 int target, int refclk, intel_clock_t *match_clock,
94 intel_clock_t *best_clock);
d4906093
ML
95static bool
96intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
97 int target, int refclk, intel_clock_t *match_clock,
98 intel_clock_t *best_clock);
79e53945 99
a4fc5ed6
KP
100static bool
101intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
102 int target, int refclk, intel_clock_t *match_clock,
103 intel_clock_t *best_clock);
5eb08b69 104static bool
f2b115e6 105intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
106 int target, int refclk, intel_clock_t *match_clock,
107 intel_clock_t *best_clock);
a4fc5ed6 108
a0c4da24
JB
109static bool
110intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111 int target, int refclk, intel_clock_t *match_clock,
112 intel_clock_t *best_clock);
113
021357ac
CW
114static inline u32 /* units of 100MHz */
115intel_fdi_link_freq(struct drm_device *dev)
116{
8b99e68c
CW
117 if (IS_GEN5(dev)) {
118 struct drm_i915_private *dev_priv = dev->dev_private;
119 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120 } else
121 return 27;
021357ac
CW
122}
123
e4b36699 124static const intel_limit_t intel_limits_i8xx_dvo = {
0206e353
AJ
125 .dot = { .min = 25000, .max = 350000 },
126 .vco = { .min = 930000, .max = 1400000 },
127 .n = { .min = 3, .max = 16 },
128 .m = { .min = 96, .max = 140 },
129 .m1 = { .min = 18, .max = 26 },
130 .m2 = { .min = 6, .max = 16 },
131 .p = { .min = 4, .max = 128 },
132 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
133 .p2 = { .dot_limit = 165000,
134 .p2_slow = 4, .p2_fast = 2 },
d4906093 135 .find_pll = intel_find_best_PLL,
e4b36699
KP
136};
137
138static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353
AJ
139 .dot = { .min = 25000, .max = 350000 },
140 .vco = { .min = 930000, .max = 1400000 },
141 .n = { .min = 3, .max = 16 },
142 .m = { .min = 96, .max = 140 },
143 .m1 = { .min = 18, .max = 26 },
144 .m2 = { .min = 6, .max = 16 },
145 .p = { .min = 4, .max = 128 },
146 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
147 .p2 = { .dot_limit = 165000,
148 .p2_slow = 14, .p2_fast = 7 },
d4906093 149 .find_pll = intel_find_best_PLL,
e4b36699 150};
273e27ca 151
e4b36699 152static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
153 .dot = { .min = 20000, .max = 400000 },
154 .vco = { .min = 1400000, .max = 2800000 },
155 .n = { .min = 1, .max = 6 },
156 .m = { .min = 70, .max = 120 },
157 .m1 = { .min = 10, .max = 22 },
158 .m2 = { .min = 5, .max = 9 },
159 .p = { .min = 5, .max = 80 },
160 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
161 .p2 = { .dot_limit = 200000,
162 .p2_slow = 10, .p2_fast = 5 },
d4906093 163 .find_pll = intel_find_best_PLL,
e4b36699
KP
164};
165
166static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
167 .dot = { .min = 20000, .max = 400000 },
168 .vco = { .min = 1400000, .max = 2800000 },
169 .n = { .min = 1, .max = 6 },
170 .m = { .min = 70, .max = 120 },
171 .m1 = { .min = 10, .max = 22 },
172 .m2 = { .min = 5, .max = 9 },
173 .p = { .min = 7, .max = 98 },
174 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
175 .p2 = { .dot_limit = 112000,
176 .p2_slow = 14, .p2_fast = 7 },
d4906093 177 .find_pll = intel_find_best_PLL,
e4b36699
KP
178};
179
273e27ca 180
e4b36699 181static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
182 .dot = { .min = 25000, .max = 270000 },
183 .vco = { .min = 1750000, .max = 3500000},
184 .n = { .min = 1, .max = 4 },
185 .m = { .min = 104, .max = 138 },
186 .m1 = { .min = 17, .max = 23 },
187 .m2 = { .min = 5, .max = 11 },
188 .p = { .min = 10, .max = 30 },
189 .p1 = { .min = 1, .max = 3},
190 .p2 = { .dot_limit = 270000,
191 .p2_slow = 10,
192 .p2_fast = 10
044c7c41 193 },
d4906093 194 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
195};
196
197static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
198 .dot = { .min = 22000, .max = 400000 },
199 .vco = { .min = 1750000, .max = 3500000},
200 .n = { .min = 1, .max = 4 },
201 .m = { .min = 104, .max = 138 },
202 .m1 = { .min = 16, .max = 23 },
203 .m2 = { .min = 5, .max = 11 },
204 .p = { .min = 5, .max = 80 },
205 .p1 = { .min = 1, .max = 8},
206 .p2 = { .dot_limit = 165000,
207 .p2_slow = 10, .p2_fast = 5 },
d4906093 208 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
209};
210
211static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
212 .dot = { .min = 20000, .max = 115000 },
213 .vco = { .min = 1750000, .max = 3500000 },
214 .n = { .min = 1, .max = 3 },
215 .m = { .min = 104, .max = 138 },
216 .m1 = { .min = 17, .max = 23 },
217 .m2 = { .min = 5, .max = 11 },
218 .p = { .min = 28, .max = 112 },
219 .p1 = { .min = 2, .max = 8 },
220 .p2 = { .dot_limit = 0,
221 .p2_slow = 14, .p2_fast = 14
044c7c41 222 },
d4906093 223 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
224};
225
226static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
227 .dot = { .min = 80000, .max = 224000 },
228 .vco = { .min = 1750000, .max = 3500000 },
229 .n = { .min = 1, .max = 3 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 17, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 14, .max = 42 },
234 .p1 = { .min = 2, .max = 6 },
235 .p2 = { .dot_limit = 0,
236 .p2_slow = 7, .p2_fast = 7
044c7c41 237 },
d4906093 238 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
239};
240
241static const intel_limit_t intel_limits_g4x_display_port = {
0206e353
AJ
242 .dot = { .min = 161670, .max = 227000 },
243 .vco = { .min = 1750000, .max = 3500000},
244 .n = { .min = 1, .max = 2 },
245 .m = { .min = 97, .max = 108 },
246 .m1 = { .min = 0x10, .max = 0x12 },
247 .m2 = { .min = 0x05, .max = 0x06 },
248 .p = { .min = 10, .max = 20 },
249 .p1 = { .min = 1, .max = 2},
250 .p2 = { .dot_limit = 0,
273e27ca 251 .p2_slow = 10, .p2_fast = 10 },
0206e353 252 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
253};
254
f2b115e6 255static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
256 .dot = { .min = 20000, .max = 400000},
257 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 258 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
259 .n = { .min = 3, .max = 6 },
260 .m = { .min = 2, .max = 256 },
273e27ca 261 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
262 .m1 = { .min = 0, .max = 0 },
263 .m2 = { .min = 0, .max = 254 },
264 .p = { .min = 5, .max = 80 },
265 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
266 .p2 = { .dot_limit = 200000,
267 .p2_slow = 10, .p2_fast = 5 },
6115707b 268 .find_pll = intel_find_best_PLL,
e4b36699
KP
269};
270
f2b115e6 271static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
272 .dot = { .min = 20000, .max = 400000 },
273 .vco = { .min = 1700000, .max = 3500000 },
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 7, .max = 112 },
279 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
280 .p2 = { .dot_limit = 112000,
281 .p2_slow = 14, .p2_fast = 14 },
6115707b 282 .find_pll = intel_find_best_PLL,
e4b36699
KP
283};
284
273e27ca
EA
285/* Ironlake / Sandybridge
286 *
287 * We calculate clock using (register_value + 2) for N/M1/M2, so here
288 * the range value for them is (actual_value - 2).
289 */
b91ad0ec 290static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
291 .dot = { .min = 25000, .max = 350000 },
292 .vco = { .min = 1760000, .max = 3510000 },
293 .n = { .min = 1, .max = 5 },
294 .m = { .min = 79, .max = 127 },
295 .m1 = { .min = 12, .max = 22 },
296 .m2 = { .min = 5, .max = 9 },
297 .p = { .min = 5, .max = 80 },
298 .p1 = { .min = 1, .max = 8 },
299 .p2 = { .dot_limit = 225000,
300 .p2_slow = 10, .p2_fast = 5 },
4547668a 301 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
302};
303
b91ad0ec 304static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
305 .dot = { .min = 25000, .max = 350000 },
306 .vco = { .min = 1760000, .max = 3510000 },
307 .n = { .min = 1, .max = 3 },
308 .m = { .min = 79, .max = 118 },
309 .m1 = { .min = 12, .max = 22 },
310 .m2 = { .min = 5, .max = 9 },
311 .p = { .min = 28, .max = 112 },
312 .p1 = { .min = 2, .max = 8 },
313 .p2 = { .dot_limit = 225000,
314 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
315 .find_pll = intel_g4x_find_best_PLL,
316};
317
318static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
319 .dot = { .min = 25000, .max = 350000 },
320 .vco = { .min = 1760000, .max = 3510000 },
321 .n = { .min = 1, .max = 3 },
322 .m = { .min = 79, .max = 127 },
323 .m1 = { .min = 12, .max = 22 },
324 .m2 = { .min = 5, .max = 9 },
325 .p = { .min = 14, .max = 56 },
326 .p1 = { .min = 2, .max = 8 },
327 .p2 = { .dot_limit = 225000,
328 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
329 .find_pll = intel_g4x_find_best_PLL,
330};
331
273e27ca 332/* LVDS 100mhz refclk limits. */
b91ad0ec 333static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
334 .dot = { .min = 25000, .max = 350000 },
335 .vco = { .min = 1760000, .max = 3510000 },
336 .n = { .min = 1, .max = 2 },
337 .m = { .min = 79, .max = 126 },
338 .m1 = { .min = 12, .max = 22 },
339 .m2 = { .min = 5, .max = 9 },
340 .p = { .min = 28, .max = 112 },
0206e353 341 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
342 .p2 = { .dot_limit = 225000,
343 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
344 .find_pll = intel_g4x_find_best_PLL,
345};
346
347static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
0206e353 355 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
358 .find_pll = intel_g4x_find_best_PLL,
359};
360
361static const intel_limit_t intel_limits_ironlake_display_port = {
0206e353
AJ
362 .dot = { .min = 25000, .max = 350000 },
363 .vco = { .min = 1760000, .max = 3510000},
364 .n = { .min = 1, .max = 2 },
365 .m = { .min = 81, .max = 90 },
366 .m1 = { .min = 12, .max = 22 },
367 .m2 = { .min = 5, .max = 9 },
368 .p = { .min = 10, .max = 20 },
369 .p1 = { .min = 1, .max = 2},
370 .p2 = { .dot_limit = 0,
273e27ca 371 .p2_slow = 10, .p2_fast = 10 },
0206e353 372 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
373};
374
a0c4da24
JB
375static const intel_limit_t intel_limits_vlv_dac = {
376 .dot = { .min = 25000, .max = 270000 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m = { .min = 22, .max = 450 }, /* guess */
380 .m1 = { .min = 2, .max = 3 },
381 .m2 = { .min = 11, .max = 156 },
382 .p = { .min = 10, .max = 30 },
383 .p1 = { .min = 2, .max = 3 },
384 .p2 = { .dot_limit = 270000,
385 .p2_slow = 2, .p2_fast = 20 },
386 .find_pll = intel_vlv_find_best_pll,
387};
388
389static const intel_limit_t intel_limits_vlv_hdmi = {
390 .dot = { .min = 20000, .max = 165000 },
17dc9257 391 .vco = { .min = 4000000, .max = 5994000},
a0c4da24
JB
392 .n = { .min = 1, .max = 7 },
393 .m = { .min = 60, .max = 300 }, /* guess */
394 .m1 = { .min = 2, .max = 3 },
395 .m2 = { .min = 11, .max = 156 },
396 .p = { .min = 10, .max = 30 },
397 .p1 = { .min = 2, .max = 3 },
398 .p2 = { .dot_limit = 270000,
399 .p2_slow = 2, .p2_fast = 20 },
400 .find_pll = intel_vlv_find_best_pll,
401};
402
403static const intel_limit_t intel_limits_vlv_dp = {
74a4dd2e
VP
404 .dot = { .min = 25000, .max = 270000 },
405 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 406 .n = { .min = 1, .max = 7 },
74a4dd2e 407 .m = { .min = 22, .max = 450 },
a0c4da24
JB
408 .m1 = { .min = 2, .max = 3 },
409 .m2 = { .min = 11, .max = 156 },
410 .p = { .min = 10, .max = 30 },
411 .p1 = { .min = 2, .max = 3 },
412 .p2 = { .dot_limit = 270000,
413 .p2_slow = 2, .p2_fast = 20 },
414 .find_pll = intel_vlv_find_best_pll,
415};
416
57f350b6
JB
417u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418{
419 unsigned long flags;
420 u32 val = 0;
421
422 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO idle wait timed out\n");
425 goto out_unlock;
426 }
427
428 I915_WRITE(DPIO_REG, reg);
429 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
430 DPIO_BYTE);
431 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
432 DRM_ERROR("DPIO read wait timed out\n");
433 goto out_unlock;
434 }
435 val = I915_READ(DPIO_DATA);
436
437out_unlock:
438 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
439 return val;
440}
441
a0c4da24
JB
442static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
443 u32 val)
444{
445 unsigned long flags;
446
447 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
448 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
449 DRM_ERROR("DPIO idle wait timed out\n");
450 goto out_unlock;
451 }
452
453 I915_WRITE(DPIO_DATA, val);
454 I915_WRITE(DPIO_REG, reg);
455 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
456 DPIO_BYTE);
457 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
458 DRM_ERROR("DPIO write wait timed out\n");
459
460out_unlock:
461 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
462}
463
57f350b6
JB
464static void vlv_init_dpio(struct drm_device *dev)
465{
466 struct drm_i915_private *dev_priv = dev->dev_private;
467
468 /* Reset the DPIO config */
469 I915_WRITE(DPIO_CTL, 0);
470 POSTING_READ(DPIO_CTL);
471 I915_WRITE(DPIO_CTL, 1);
472 POSTING_READ(DPIO_CTL);
473}
474
618563e3
DV
475static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
476{
477 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
478 return 1;
479}
480
481static const struct dmi_system_id intel_dual_link_lvds[] = {
482 {
483 .callback = intel_dual_link_lvds_callback,
484 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
485 .matches = {
486 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
487 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
488 },
489 },
490 { } /* terminating entry */
491};
492
b0354385
TI
493static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
494 unsigned int reg)
495{
496 unsigned int val;
497
121d527a
TI
498 /* use the module option value if specified */
499 if (i915_lvds_channel_mode > 0)
500 return i915_lvds_channel_mode == 2;
501
618563e3
DV
502 if (dmi_check_system(intel_dual_link_lvds))
503 return true;
504
b0354385
TI
505 if (dev_priv->lvds_val)
506 val = dev_priv->lvds_val;
507 else {
508 /* BIOS should set the proper LVDS register value at boot, but
509 * in reality, it doesn't set the value when the lid is closed;
510 * we need to check "the value to be set" in VBT when LVDS
511 * register is uninitialized.
512 */
513 val = I915_READ(reg);
14d94a3d 514 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
b0354385
TI
515 val = dev_priv->bios_lvds_val;
516 dev_priv->lvds_val = val;
517 }
518 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
519}
520
1b894b59
CW
521static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
522 int refclk)
2c07245f 523{
b91ad0ec
ZW
524 struct drm_device *dev = crtc->dev;
525 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 526 const intel_limit_t *limit;
b91ad0ec
ZW
527
528 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 529 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
b91ad0ec 530 /* LVDS dual channel */
1b894b59 531 if (refclk == 100000)
b91ad0ec
ZW
532 limit = &intel_limits_ironlake_dual_lvds_100m;
533 else
534 limit = &intel_limits_ironlake_dual_lvds;
535 } else {
1b894b59 536 if (refclk == 100000)
b91ad0ec
ZW
537 limit = &intel_limits_ironlake_single_lvds_100m;
538 else
539 limit = &intel_limits_ironlake_single_lvds;
540 }
541 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
547dc041 542 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
4547668a 543 limit = &intel_limits_ironlake_display_port;
2c07245f 544 else
b91ad0ec 545 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
546
547 return limit;
548}
549
044c7c41
ML
550static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
551{
552 struct drm_device *dev = crtc->dev;
553 struct drm_i915_private *dev_priv = dev->dev_private;
554 const intel_limit_t *limit;
555
556 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 557 if (is_dual_link_lvds(dev_priv, LVDS))
044c7c41 558 /* LVDS with dual channel */
e4b36699 559 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
560 else
561 /* LVDS with dual channel */
e4b36699 562 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
563 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
564 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 565 limit = &intel_limits_g4x_hdmi;
044c7c41 566 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 567 limit = &intel_limits_g4x_sdvo;
0206e353 568 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 569 limit = &intel_limits_g4x_display_port;
044c7c41 570 } else /* The option is for other outputs */
e4b36699 571 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
572
573 return limit;
574}
575
1b894b59 576static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
577{
578 struct drm_device *dev = crtc->dev;
579 const intel_limit_t *limit;
580
bad720ff 581 if (HAS_PCH_SPLIT(dev))
1b894b59 582 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 583 else if (IS_G4X(dev)) {
044c7c41 584 limit = intel_g4x_limit(crtc);
f2b115e6 585 } else if (IS_PINEVIEW(dev)) {
2177832f 586 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 587 limit = &intel_limits_pineview_lvds;
2177832f 588 else
f2b115e6 589 limit = &intel_limits_pineview_sdvo;
a0c4da24
JB
590 } else if (IS_VALLEYVIEW(dev)) {
591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
592 limit = &intel_limits_vlv_dac;
593 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
594 limit = &intel_limits_vlv_hdmi;
595 else
596 limit = &intel_limits_vlv_dp;
a6c45cf0
CW
597 } else if (!IS_GEN2(dev)) {
598 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
599 limit = &intel_limits_i9xx_lvds;
600 else
601 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
602 } else {
603 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 604 limit = &intel_limits_i8xx_lvds;
79e53945 605 else
e4b36699 606 limit = &intel_limits_i8xx_dvo;
79e53945
JB
607 }
608 return limit;
609}
610
f2b115e6
AJ
611/* m1 is reserved as 0 in Pineview, n is a ring counter */
612static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 613{
2177832f
SL
614 clock->m = clock->m2 + 2;
615 clock->p = clock->p1 * clock->p2;
616 clock->vco = refclk * clock->m / clock->n;
617 clock->dot = clock->vco / clock->p;
618}
619
620static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
621{
f2b115e6
AJ
622 if (IS_PINEVIEW(dev)) {
623 pineview_clock(refclk, clock);
2177832f
SL
624 return;
625 }
79e53945
JB
626 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
627 clock->p = clock->p1 * clock->p2;
628 clock->vco = refclk * clock->m / (clock->n + 2);
629 clock->dot = clock->vco / clock->p;
630}
631
79e53945
JB
632/**
633 * Returns whether any output on the specified pipe is of the specified type
634 */
4ef69c7a 635bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 636{
4ef69c7a 637 struct drm_device *dev = crtc->dev;
4ef69c7a
CW
638 struct intel_encoder *encoder;
639
6c2b7c12
DV
640 for_each_encoder_on_crtc(dev, crtc, encoder)
641 if (encoder->type == type)
4ef69c7a
CW
642 return true;
643
644 return false;
79e53945
JB
645}
646
7c04d1d9 647#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
648/**
649 * Returns whether the given set of divisors are valid for a given refclk with
650 * the given connectors.
651 */
652
1b894b59
CW
653static bool intel_PLL_is_valid(struct drm_device *dev,
654 const intel_limit_t *limit,
655 const intel_clock_t *clock)
79e53945 656{
79e53945 657 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 658 INTELPllInvalid("p1 out of range\n");
79e53945 659 if (clock->p < limit->p.min || limit->p.max < clock->p)
0206e353 660 INTELPllInvalid("p out of range\n");
79e53945 661 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 662 INTELPllInvalid("m2 out of range\n");
79e53945 663 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 664 INTELPllInvalid("m1 out of range\n");
f2b115e6 665 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
0206e353 666 INTELPllInvalid("m1 <= m2\n");
79e53945 667 if (clock->m < limit->m.min || limit->m.max < clock->m)
0206e353 668 INTELPllInvalid("m out of range\n");
79e53945 669 if (clock->n < limit->n.min || limit->n.max < clock->n)
0206e353 670 INTELPllInvalid("n out of range\n");
79e53945 671 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 672 INTELPllInvalid("vco out of range\n");
79e53945
JB
673 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
674 * connector, etc., rather than just a single range.
675 */
676 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 677 INTELPllInvalid("dot out of range\n");
79e53945
JB
678
679 return true;
680}
681
d4906093
ML
682static bool
683intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
684 int target, int refclk, intel_clock_t *match_clock,
685 intel_clock_t *best_clock)
d4906093 686
79e53945
JB
687{
688 struct drm_device *dev = crtc->dev;
689 struct drm_i915_private *dev_priv = dev->dev_private;
690 intel_clock_t clock;
79e53945
JB
691 int err = target;
692
bc5e5718 693 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 694 (I915_READ(LVDS)) != 0) {
79e53945
JB
695 /*
696 * For LVDS, if the panel is on, just rely on its current
697 * settings for dual-channel. We haven't figured out how to
698 * reliably set up different single/dual channel state, if we
699 * even can.
700 */
b0354385 701 if (is_dual_link_lvds(dev_priv, LVDS))
79e53945
JB
702 clock.p2 = limit->p2.p2_fast;
703 else
704 clock.p2 = limit->p2.p2_slow;
705 } else {
706 if (target < limit->p2.dot_limit)
707 clock.p2 = limit->p2.p2_slow;
708 else
709 clock.p2 = limit->p2.p2_fast;
710 }
711
0206e353 712 memset(best_clock, 0, sizeof(*best_clock));
79e53945 713
42158660
ZY
714 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
715 clock.m1++) {
716 for (clock.m2 = limit->m2.min;
717 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
718 /* m1 is always 0 in Pineview */
719 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
720 break;
721 for (clock.n = limit->n.min;
722 clock.n <= limit->n.max; clock.n++) {
723 for (clock.p1 = limit->p1.min;
724 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
725 int this_err;
726
2177832f 727 intel_clock(dev, refclk, &clock);
1b894b59
CW
728 if (!intel_PLL_is_valid(dev, limit,
729 &clock))
79e53945 730 continue;
cec2f356
SP
731 if (match_clock &&
732 clock.p != match_clock->p)
733 continue;
79e53945
JB
734
735 this_err = abs(clock.dot - target);
736 if (this_err < err) {
737 *best_clock = clock;
738 err = this_err;
739 }
740 }
741 }
742 }
743 }
744
745 return (err != target);
746}
747
d4906093
ML
748static bool
749intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
750 int target, int refclk, intel_clock_t *match_clock,
751 intel_clock_t *best_clock)
d4906093
ML
752{
753 struct drm_device *dev = crtc->dev;
754 struct drm_i915_private *dev_priv = dev->dev_private;
755 intel_clock_t clock;
756 int max_n;
757 bool found;
6ba770dc
AJ
758 /* approximately equals target * 0.00585 */
759 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
760 found = false;
761
762 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
763 int lvds_reg;
764
c619eed4 765 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
766 lvds_reg = PCH_LVDS;
767 else
768 lvds_reg = LVDS;
769 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
770 LVDS_CLKB_POWER_UP)
771 clock.p2 = limit->p2.p2_fast;
772 else
773 clock.p2 = limit->p2.p2_slow;
774 } else {
775 if (target < limit->p2.dot_limit)
776 clock.p2 = limit->p2.p2_slow;
777 else
778 clock.p2 = limit->p2.p2_fast;
779 }
780
781 memset(best_clock, 0, sizeof(*best_clock));
782 max_n = limit->n.max;
f77f13e2 783 /* based on hardware requirement, prefer smaller n to precision */
d4906093 784 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 785 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
786 for (clock.m1 = limit->m1.max;
787 clock.m1 >= limit->m1.min; clock.m1--) {
788 for (clock.m2 = limit->m2.max;
789 clock.m2 >= limit->m2.min; clock.m2--) {
790 for (clock.p1 = limit->p1.max;
791 clock.p1 >= limit->p1.min; clock.p1--) {
792 int this_err;
793
2177832f 794 intel_clock(dev, refclk, &clock);
1b894b59
CW
795 if (!intel_PLL_is_valid(dev, limit,
796 &clock))
d4906093 797 continue;
cec2f356
SP
798 if (match_clock &&
799 clock.p != match_clock->p)
800 continue;
1b894b59
CW
801
802 this_err = abs(clock.dot - target);
d4906093
ML
803 if (this_err < err_most) {
804 *best_clock = clock;
805 err_most = this_err;
806 max_n = clock.n;
807 found = true;
808 }
809 }
810 }
811 }
812 }
2c07245f
ZW
813 return found;
814}
815
5eb08b69 816static bool
f2b115e6 817intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
818 int target, int refclk, intel_clock_t *match_clock,
819 intel_clock_t *best_clock)
5eb08b69
ZW
820{
821 struct drm_device *dev = crtc->dev;
822 intel_clock_t clock;
4547668a 823
5eb08b69
ZW
824 if (target < 200000) {
825 clock.n = 1;
826 clock.p1 = 2;
827 clock.p2 = 10;
828 clock.m1 = 12;
829 clock.m2 = 9;
830 } else {
831 clock.n = 2;
832 clock.p1 = 1;
833 clock.p2 = 10;
834 clock.m1 = 14;
835 clock.m2 = 8;
836 }
837 intel_clock(dev, refclk, &clock);
838 memcpy(best_clock, &clock, sizeof(intel_clock_t));
839 return true;
840}
841
a4fc5ed6
KP
842/* DisplayPort has only two frequencies, 162MHz and 270MHz */
843static bool
844intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
845 int target, int refclk, intel_clock_t *match_clock,
846 intel_clock_t *best_clock)
a4fc5ed6 847{
5eddb70b
CW
848 intel_clock_t clock;
849 if (target < 200000) {
850 clock.p1 = 2;
851 clock.p2 = 10;
852 clock.n = 2;
853 clock.m1 = 23;
854 clock.m2 = 8;
855 } else {
856 clock.p1 = 1;
857 clock.p2 = 10;
858 clock.n = 1;
859 clock.m1 = 14;
860 clock.m2 = 2;
861 }
862 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
863 clock.p = (clock.p1 * clock.p2);
864 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
865 clock.vco = 0;
866 memcpy(best_clock, &clock, sizeof(intel_clock_t));
867 return true;
a4fc5ed6 868}
a0c4da24
JB
869static bool
870intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
871 int target, int refclk, intel_clock_t *match_clock,
872 intel_clock_t *best_clock)
873{
874 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
875 u32 m, n, fastclk;
876 u32 updrate, minupdate, fracbits, p;
877 unsigned long bestppm, ppm, absppm;
878 int dotclk, flag;
879
af447bd3 880 flag = 0;
a0c4da24
JB
881 dotclk = target * 1000;
882 bestppm = 1000000;
883 ppm = absppm = 0;
884 fastclk = dotclk / (2*100);
885 updrate = 0;
886 minupdate = 19200;
887 fracbits = 1;
888 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
889 bestm1 = bestm2 = bestp1 = bestp2 = 0;
890
891 /* based on hardware requirement, prefer smaller n to precision */
892 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
893 updrate = refclk / n;
894 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
895 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
896 if (p2 > 10)
897 p2 = p2 - 1;
898 p = p1 * p2;
899 /* based on hardware requirement, prefer bigger m1,m2 values */
900 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
901 m2 = (((2*(fastclk * p * n / m1 )) +
902 refclk) / (2*refclk));
903 m = m1 * m2;
904 vco = updrate * m;
905 if (vco >= limit->vco.min && vco < limit->vco.max) {
906 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
907 absppm = (ppm > 0) ? ppm : (-ppm);
908 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
909 bestppm = 0;
910 flag = 1;
911 }
912 if (absppm < bestppm - 10) {
913 bestppm = absppm;
914 flag = 1;
915 }
916 if (flag) {
917 bestn = n;
918 bestm1 = m1;
919 bestm2 = m2;
920 bestp1 = p1;
921 bestp2 = p2;
922 flag = 0;
923 }
924 }
925 }
926 }
927 }
928 }
929 best_clock->n = bestn;
930 best_clock->m1 = bestm1;
931 best_clock->m2 = bestm2;
932 best_clock->p1 = bestp1;
933 best_clock->p2 = bestp2;
934
935 return true;
936}
a4fc5ed6 937
a5c961d1
PZ
938enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
939 enum pipe pipe)
940{
941 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
942 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
943
944 return intel_crtc->cpu_transcoder;
945}
946
a928d536
PZ
947static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
948{
949 struct drm_i915_private *dev_priv = dev->dev_private;
950 u32 frame, frame_reg = PIPEFRAME(pipe);
951
952 frame = I915_READ(frame_reg);
953
954 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
955 DRM_DEBUG_KMS("vblank wait timed out\n");
956}
957
9d0498a2
JB
958/**
959 * intel_wait_for_vblank - wait for vblank on a given pipe
960 * @dev: drm device
961 * @pipe: pipe to wait for
962 *
963 * Wait for vblank to occur on a given pipe. Needed for various bits of
964 * mode setting code.
965 */
966void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 967{
9d0498a2 968 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 969 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 970
a928d536
PZ
971 if (INTEL_INFO(dev)->gen >= 5) {
972 ironlake_wait_for_vblank(dev, pipe);
973 return;
974 }
975
300387c0
CW
976 /* Clear existing vblank status. Note this will clear any other
977 * sticky status fields as well.
978 *
979 * This races with i915_driver_irq_handler() with the result
980 * that either function could miss a vblank event. Here it is not
981 * fatal, as we will either wait upon the next vblank interrupt or
982 * timeout. Generally speaking intel_wait_for_vblank() is only
983 * called during modeset at which time the GPU should be idle and
984 * should *not* be performing page flips and thus not waiting on
985 * vblanks...
986 * Currently, the result of us stealing a vblank from the irq
987 * handler is that a single frame will be skipped during swapbuffers.
988 */
989 I915_WRITE(pipestat_reg,
990 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
991
9d0498a2 992 /* Wait for vblank interrupt bit to set */
481b6af3
CW
993 if (wait_for(I915_READ(pipestat_reg) &
994 PIPE_VBLANK_INTERRUPT_STATUS,
995 50))
9d0498a2
JB
996 DRM_DEBUG_KMS("vblank wait timed out\n");
997}
998
ab7ad7f6
KP
999/*
1000 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
1001 * @dev: drm device
1002 * @pipe: pipe to wait for
1003 *
1004 * After disabling a pipe, we can't wait for vblank in the usual way,
1005 * spinning on the vblank interrupt status bit, since we won't actually
1006 * see an interrupt when the pipe is disabled.
1007 *
ab7ad7f6
KP
1008 * On Gen4 and above:
1009 * wait for the pipe register state bit to turn off
1010 *
1011 * Otherwise:
1012 * wait for the display line value to settle (it usually
1013 * ends up stopping at the start of the next frame).
58e10eb9 1014 *
9d0498a2 1015 */
58e10eb9 1016void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
1017{
1018 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
1019 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1020 pipe);
ab7ad7f6
KP
1021
1022 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1023 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1024
1025 /* Wait for the Pipe State to go off */
58e10eb9
CW
1026 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1027 100))
284637d9 1028 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1029 } else {
837ba00f 1030 u32 last_line, line_mask;
58e10eb9 1031 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
1032 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1033
837ba00f
PZ
1034 if (IS_GEN2(dev))
1035 line_mask = DSL_LINEMASK_GEN2;
1036 else
1037 line_mask = DSL_LINEMASK_GEN3;
1038
ab7ad7f6
KP
1039 /* Wait for the display line to settle */
1040 do {
837ba00f 1041 last_line = I915_READ(reg) & line_mask;
ab7ad7f6 1042 mdelay(5);
837ba00f 1043 } while (((I915_READ(reg) & line_mask) != last_line) &&
ab7ad7f6
KP
1044 time_after(timeout, jiffies));
1045 if (time_after(jiffies, timeout))
284637d9 1046 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1047 }
79e53945
JB
1048}
1049
b24e7179
JB
1050static const char *state_string(bool enabled)
1051{
1052 return enabled ? "on" : "off";
1053}
1054
1055/* Only for pre-ILK configs */
1056static void assert_pll(struct drm_i915_private *dev_priv,
1057 enum pipe pipe, bool state)
1058{
1059 int reg;
1060 u32 val;
1061 bool cur_state;
1062
1063 reg = DPLL(pipe);
1064 val = I915_READ(reg);
1065 cur_state = !!(val & DPLL_VCO_ENABLE);
1066 WARN(cur_state != state,
1067 "PLL state assertion failure (expected %s, current %s)\n",
1068 state_string(state), state_string(cur_state));
1069}
1070#define assert_pll_enabled(d, p) assert_pll(d, p, true)
1071#define assert_pll_disabled(d, p) assert_pll(d, p, false)
1072
040484af
JB
1073/* For ILK+ */
1074static void assert_pch_pll(struct drm_i915_private *dev_priv,
92b27b08
CW
1075 struct intel_pch_pll *pll,
1076 struct intel_crtc *crtc,
1077 bool state)
040484af 1078{
040484af
JB
1079 u32 val;
1080 bool cur_state;
1081
9d82aa17
ED
1082 if (HAS_PCH_LPT(dev_priv->dev)) {
1083 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1084 return;
1085 }
1086
92b27b08
CW
1087 if (WARN (!pll,
1088 "asserting PCH PLL %s with no PLL\n", state_string(state)))
ee7b9f93 1089 return;
ee7b9f93 1090
92b27b08
CW
1091 val = I915_READ(pll->pll_reg);
1092 cur_state = !!(val & DPLL_VCO_ENABLE);
1093 WARN(cur_state != state,
1094 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1095 pll->pll_reg, state_string(state), state_string(cur_state), val);
1096
1097 /* Make sure the selected PLL is correctly attached to the transcoder */
1098 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
d3ccbe86
JB
1099 u32 pch_dpll;
1100
1101 pch_dpll = I915_READ(PCH_DPLL_SEL);
92b27b08
CW
1102 cur_state = pll->pll_reg == _PCH_DPLL_B;
1103 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1104 "PLL[%d] not attached to this transcoder %d: %08x\n",
1105 cur_state, crtc->pipe, pch_dpll)) {
1106 cur_state = !!(val >> (4*crtc->pipe + 3));
1107 WARN(cur_state != state,
1108 "PLL[%d] not %s on this transcoder %d: %08x\n",
1109 pll->pll_reg == _PCH_DPLL_B,
1110 state_string(state),
1111 crtc->pipe,
1112 val);
1113 }
d3ccbe86 1114 }
040484af 1115}
92b27b08
CW
1116#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1117#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
040484af
JB
1118
1119static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1120 enum pipe pipe, bool state)
1121{
1122 int reg;
1123 u32 val;
1124 bool cur_state;
ad80a810
PZ
1125 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1126 pipe);
040484af 1127
bf507ef7
ED
1128 if (IS_HASWELL(dev_priv->dev)) {
1129 /* On Haswell, DDI is used instead of FDI_TX_CTL */
ad80a810 1130 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1131 val = I915_READ(reg);
ad80a810 1132 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1133 } else {
1134 reg = FDI_TX_CTL(pipe);
1135 val = I915_READ(reg);
1136 cur_state = !!(val & FDI_TX_ENABLE);
1137 }
040484af
JB
1138 WARN(cur_state != state,
1139 "FDI TX state assertion failure (expected %s, current %s)\n",
1140 state_string(state), state_string(cur_state));
1141}
1142#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 enum pipe pipe, bool state)
1147{
1148 int reg;
1149 u32 val;
1150 bool cur_state;
1151
d63fa0dc
PZ
1152 reg = FDI_RX_CTL(pipe);
1153 val = I915_READ(reg);
1154 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1155 WARN(cur_state != state,
1156 "FDI RX state assertion failure (expected %s, current %s)\n",
1157 state_string(state), state_string(cur_state));
1158}
1159#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1160#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1161
1162static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1163 enum pipe pipe)
1164{
1165 int reg;
1166 u32 val;
1167
1168 /* ILK FDI PLL is always enabled */
1169 if (dev_priv->info->gen == 5)
1170 return;
1171
bf507ef7
ED
1172 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1173 if (IS_HASWELL(dev_priv->dev))
1174 return;
1175
040484af
JB
1176 reg = FDI_TX_CTL(pipe);
1177 val = I915_READ(reg);
1178 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1179}
1180
1181static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1182 enum pipe pipe)
1183{
1184 int reg;
1185 u32 val;
1186
1187 reg = FDI_RX_CTL(pipe);
1188 val = I915_READ(reg);
1189 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1190}
1191
ea0760cf
JB
1192static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1193 enum pipe pipe)
1194{
1195 int pp_reg, lvds_reg;
1196 u32 val;
1197 enum pipe panel_pipe = PIPE_A;
0de3b485 1198 bool locked = true;
ea0760cf
JB
1199
1200 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1201 pp_reg = PCH_PP_CONTROL;
1202 lvds_reg = PCH_LVDS;
1203 } else {
1204 pp_reg = PP_CONTROL;
1205 lvds_reg = LVDS;
1206 }
1207
1208 val = I915_READ(pp_reg);
1209 if (!(val & PANEL_POWER_ON) ||
1210 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1211 locked = false;
1212
1213 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1214 panel_pipe = PIPE_B;
1215
1216 WARN(panel_pipe == pipe && locked,
1217 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1218 pipe_name(pipe));
ea0760cf
JB
1219}
1220
b840d907
JB
1221void assert_pipe(struct drm_i915_private *dev_priv,
1222 enum pipe pipe, bool state)
b24e7179
JB
1223{
1224 int reg;
1225 u32 val;
63d7bbe9 1226 bool cur_state;
702e7a56
PZ
1227 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1228 pipe);
b24e7179 1229
8e636784
DV
1230 /* if we need the pipe A quirk it must be always on */
1231 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1232 state = true;
1233
702e7a56 1234 reg = PIPECONF(cpu_transcoder);
b24e7179 1235 val = I915_READ(reg);
63d7bbe9
JB
1236 cur_state = !!(val & PIPECONF_ENABLE);
1237 WARN(cur_state != state,
1238 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1239 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1240}
1241
931872fc
CW
1242static void assert_plane(struct drm_i915_private *dev_priv,
1243 enum plane plane, bool state)
b24e7179
JB
1244{
1245 int reg;
1246 u32 val;
931872fc 1247 bool cur_state;
b24e7179
JB
1248
1249 reg = DSPCNTR(plane);
1250 val = I915_READ(reg);
931872fc
CW
1251 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1252 WARN(cur_state != state,
1253 "plane %c assertion failure (expected %s, current %s)\n",
1254 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1255}
1256
931872fc
CW
1257#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1258#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1259
b24e7179
JB
1260static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1261 enum pipe pipe)
1262{
1263 int reg, i;
1264 u32 val;
1265 int cur_pipe;
1266
19ec1358 1267 /* Planes are fixed to pipes on ILK+ */
28c05794
AJ
1268 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1269 reg = DSPCNTR(pipe);
1270 val = I915_READ(reg);
1271 WARN((val & DISPLAY_PLANE_ENABLE),
1272 "plane %c assertion failure, should be disabled but not\n",
1273 plane_name(pipe));
19ec1358 1274 return;
28c05794 1275 }
19ec1358 1276
b24e7179
JB
1277 /* Need to check both planes against the pipe */
1278 for (i = 0; i < 2; i++) {
1279 reg = DSPCNTR(i);
1280 val = I915_READ(reg);
1281 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1282 DISPPLANE_SEL_PIPE_SHIFT;
1283 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1284 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1285 plane_name(i), pipe_name(pipe));
b24e7179
JB
1286 }
1287}
1288
92f2584a
JB
1289static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1290{
1291 u32 val;
1292 bool enabled;
1293
9d82aa17
ED
1294 if (HAS_PCH_LPT(dev_priv->dev)) {
1295 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1296 return;
1297 }
1298
92f2584a
JB
1299 val = I915_READ(PCH_DREF_CONTROL);
1300 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1301 DREF_SUPERSPREAD_SOURCE_MASK));
1302 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1303}
1304
1305static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1306 enum pipe pipe)
1307{
1308 int reg;
1309 u32 val;
1310 bool enabled;
1311
1312 reg = TRANSCONF(pipe);
1313 val = I915_READ(reg);
1314 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1315 WARN(enabled,
1316 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1317 pipe_name(pipe));
92f2584a
JB
1318}
1319
4e634389
KP
1320static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1321 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1322{
1323 if ((val & DP_PORT_EN) == 0)
1324 return false;
1325
1326 if (HAS_PCH_CPT(dev_priv->dev)) {
1327 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1328 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1329 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1330 return false;
1331 } else {
1332 if ((val & DP_PIPE_MASK) != (pipe << 30))
1333 return false;
1334 }
1335 return true;
1336}
1337
1519b995
KP
1338static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1339 enum pipe pipe, u32 val)
1340{
1341 if ((val & PORT_ENABLE) == 0)
1342 return false;
1343
1344 if (HAS_PCH_CPT(dev_priv->dev)) {
1345 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1346 return false;
1347 } else {
1348 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1349 return false;
1350 }
1351 return true;
1352}
1353
1354static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe, u32 val)
1356{
1357 if ((val & LVDS_PORT_EN) == 0)
1358 return false;
1359
1360 if (HAS_PCH_CPT(dev_priv->dev)) {
1361 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1362 return false;
1363 } else {
1364 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1365 return false;
1366 }
1367 return true;
1368}
1369
1370static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1371 enum pipe pipe, u32 val)
1372{
1373 if ((val & ADPA_DAC_ENABLE) == 0)
1374 return false;
1375 if (HAS_PCH_CPT(dev_priv->dev)) {
1376 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1377 return false;
1378 } else {
1379 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1380 return false;
1381 }
1382 return true;
1383}
1384
291906f1 1385static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1386 enum pipe pipe, int reg, u32 port_sel)
291906f1 1387{
47a05eca 1388 u32 val = I915_READ(reg);
4e634389 1389 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1390 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1391 reg, pipe_name(pipe));
de9a35ab 1392
75c5da27
DV
1393 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1394 && (val & DP_PIPEB_SELECT),
de9a35ab 1395 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1396}
1397
1398static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1399 enum pipe pipe, int reg)
1400{
47a05eca 1401 u32 val = I915_READ(reg);
b70ad586 1402 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1403 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1404 reg, pipe_name(pipe));
de9a35ab 1405
75c5da27
DV
1406 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1407 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1408 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1409}
1410
1411static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1412 enum pipe pipe)
1413{
1414 int reg;
1415 u32 val;
291906f1 1416
f0575e92
KP
1417 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1418 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1419 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1420
1421 reg = PCH_ADPA;
1422 val = I915_READ(reg);
b70ad586 1423 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1424 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1425 pipe_name(pipe));
291906f1
JB
1426
1427 reg = PCH_LVDS;
1428 val = I915_READ(reg);
b70ad586 1429 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1430 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1431 pipe_name(pipe));
291906f1
JB
1432
1433 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1434 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1435 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1436}
1437
63d7bbe9
JB
1438/**
1439 * intel_enable_pll - enable a PLL
1440 * @dev_priv: i915 private structure
1441 * @pipe: pipe PLL to enable
1442 *
1443 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1444 * make sure the PLL reg is writable first though, since the panel write
1445 * protect mechanism may be enabled.
1446 *
1447 * Note! This is for pre-ILK only.
7434a255
TR
1448 *
1449 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
63d7bbe9
JB
1450 */
1451static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1452{
1453 int reg;
1454 u32 val;
1455
1456 /* No really, not for ILK+ */
a0c4da24 1457 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
63d7bbe9
JB
1458
1459 /* PLL is protected by panel, make sure we can write it */
1460 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1461 assert_panel_unlocked(dev_priv, pipe);
1462
1463 reg = DPLL(pipe);
1464 val = I915_READ(reg);
1465 val |= DPLL_VCO_ENABLE;
1466
1467 /* We do this three times for luck */
1468 I915_WRITE(reg, val);
1469 POSTING_READ(reg);
1470 udelay(150); /* wait for warmup */
1471 I915_WRITE(reg, val);
1472 POSTING_READ(reg);
1473 udelay(150); /* wait for warmup */
1474 I915_WRITE(reg, val);
1475 POSTING_READ(reg);
1476 udelay(150); /* wait for warmup */
1477}
1478
1479/**
1480 * intel_disable_pll - disable a PLL
1481 * @dev_priv: i915 private structure
1482 * @pipe: pipe PLL to disable
1483 *
1484 * Disable the PLL for @pipe, making sure the pipe is off first.
1485 *
1486 * Note! This is for pre-ILK only.
1487 */
1488static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1489{
1490 int reg;
1491 u32 val;
1492
1493 /* Don't disable pipe A or pipe A PLLs if needed */
1494 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1495 return;
1496
1497 /* Make sure the pipe isn't still relying on us */
1498 assert_pipe_disabled(dev_priv, pipe);
1499
1500 reg = DPLL(pipe);
1501 val = I915_READ(reg);
1502 val &= ~DPLL_VCO_ENABLE;
1503 I915_WRITE(reg, val);
1504 POSTING_READ(reg);
1505}
1506
a416edef
ED
1507/* SBI access */
1508static void
1509intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1510{
1511 unsigned long flags;
1512
1513 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1514 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1515 100)) {
1516 DRM_ERROR("timeout waiting for SBI to become ready\n");
1517 goto out_unlock;
1518 }
1519
1520 I915_WRITE(SBI_ADDR,
1521 (reg << 16));
1522 I915_WRITE(SBI_DATA,
1523 value);
1524 I915_WRITE(SBI_CTL_STAT,
1525 SBI_BUSY |
1526 SBI_CTL_OP_CRWR);
1527
39fb50f6 1528 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1529 100)) {
1530 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1531 goto out_unlock;
1532 }
1533
1534out_unlock:
1535 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1536}
1537
1538static u32
1539intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1540{
1541 unsigned long flags;
39fb50f6 1542 u32 value = 0;
a416edef
ED
1543
1544 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1545 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1546 100)) {
1547 DRM_ERROR("timeout waiting for SBI to become ready\n");
1548 goto out_unlock;
1549 }
1550
1551 I915_WRITE(SBI_ADDR,
1552 (reg << 16));
1553 I915_WRITE(SBI_CTL_STAT,
1554 SBI_BUSY |
1555 SBI_CTL_OP_CRRD);
1556
39fb50f6 1557 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1558 100)) {
1559 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1560 goto out_unlock;
1561 }
1562
1563 value = I915_READ(SBI_DATA);
1564
1565out_unlock:
1566 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1567 return value;
1568}
1569
92f2584a 1570/**
b6b4e185 1571 * ironlake_enable_pch_pll - enable PCH PLL
92f2584a
JB
1572 * @dev_priv: i915 private structure
1573 * @pipe: pipe PLL to enable
1574 *
1575 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1576 * drives the transcoder clock.
1577 */
b6b4e185 1578static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1579{
ee7b9f93 1580 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
48da64a8 1581 struct intel_pch_pll *pll;
92f2584a
JB
1582 int reg;
1583 u32 val;
1584
48da64a8 1585 /* PCH PLLs only available on ILK, SNB and IVB */
92f2584a 1586 BUG_ON(dev_priv->info->gen < 5);
48da64a8
CW
1587 pll = intel_crtc->pch_pll;
1588 if (pll == NULL)
1589 return;
1590
1591 if (WARN_ON(pll->refcount == 0))
1592 return;
ee7b9f93
JB
1593
1594 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1595 pll->pll_reg, pll->active, pll->on,
1596 intel_crtc->base.base.id);
92f2584a
JB
1597
1598 /* PCH refclock must be enabled first */
1599 assert_pch_refclk_enabled(dev_priv);
1600
ee7b9f93 1601 if (pll->active++ && pll->on) {
92b27b08 1602 assert_pch_pll_enabled(dev_priv, pll, NULL);
ee7b9f93
JB
1603 return;
1604 }
1605
1606 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1607
1608 reg = pll->pll_reg;
92f2584a
JB
1609 val = I915_READ(reg);
1610 val |= DPLL_VCO_ENABLE;
1611 I915_WRITE(reg, val);
1612 POSTING_READ(reg);
1613 udelay(200);
ee7b9f93
JB
1614
1615 pll->on = true;
92f2584a
JB
1616}
1617
ee7b9f93 1618static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1619{
ee7b9f93
JB
1620 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1621 struct intel_pch_pll *pll = intel_crtc->pch_pll;
92f2584a 1622 int reg;
ee7b9f93 1623 u32 val;
4c609cb8 1624
92f2584a
JB
1625 /* PCH only available on ILK+ */
1626 BUG_ON(dev_priv->info->gen < 5);
ee7b9f93
JB
1627 if (pll == NULL)
1628 return;
92f2584a 1629
48da64a8
CW
1630 if (WARN_ON(pll->refcount == 0))
1631 return;
7a419866 1632
ee7b9f93
JB
1633 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1634 pll->pll_reg, pll->active, pll->on,
1635 intel_crtc->base.base.id);
7a419866 1636
48da64a8 1637 if (WARN_ON(pll->active == 0)) {
92b27b08 1638 assert_pch_pll_disabled(dev_priv, pll, NULL);
48da64a8
CW
1639 return;
1640 }
1641
ee7b9f93 1642 if (--pll->active) {
92b27b08 1643 assert_pch_pll_enabled(dev_priv, pll, NULL);
7a419866 1644 return;
ee7b9f93
JB
1645 }
1646
1647 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1648
1649 /* Make sure transcoder isn't still depending on us */
1650 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
7a419866 1651
ee7b9f93 1652 reg = pll->pll_reg;
92f2584a
JB
1653 val = I915_READ(reg);
1654 val &= ~DPLL_VCO_ENABLE;
1655 I915_WRITE(reg, val);
1656 POSTING_READ(reg);
1657 udelay(200);
ee7b9f93
JB
1658
1659 pll->on = false;
92f2584a
JB
1660}
1661
b8a4f404
PZ
1662static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1663 enum pipe pipe)
040484af 1664{
23670b32 1665 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1666 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
23670b32 1667 uint32_t reg, val, pipeconf_val;
040484af
JB
1668
1669 /* PCH only available on ILK+ */
1670 BUG_ON(dev_priv->info->gen < 5);
1671
1672 /* Make sure PCH DPLL is enabled */
92b27b08
CW
1673 assert_pch_pll_enabled(dev_priv,
1674 to_intel_crtc(crtc)->pch_pll,
1675 to_intel_crtc(crtc));
040484af
JB
1676
1677 /* FDI must be feeding us bits for PCH ports */
1678 assert_fdi_tx_enabled(dev_priv, pipe);
1679 assert_fdi_rx_enabled(dev_priv, pipe);
1680
23670b32
DV
1681 if (HAS_PCH_CPT(dev)) {
1682 /* Workaround: Set the timing override bit before enabling the
1683 * pch transcoder. */
1684 reg = TRANS_CHICKEN2(pipe);
1685 val = I915_READ(reg);
1686 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1687 I915_WRITE(reg, val);
59c859d6 1688 }
23670b32 1689
040484af
JB
1690 reg = TRANSCONF(pipe);
1691 val = I915_READ(reg);
5f7f726d 1692 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1693
1694 if (HAS_PCH_IBX(dev_priv->dev)) {
1695 /*
1696 * make the BPC in transcoder be consistent with
1697 * that in pipeconf reg.
1698 */
1699 val &= ~PIPE_BPC_MASK;
5f7f726d 1700 val |= pipeconf_val & PIPE_BPC_MASK;
e9bcff5c 1701 }
5f7f726d
PZ
1702
1703 val &= ~TRANS_INTERLACE_MASK;
1704 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1705 if (HAS_PCH_IBX(dev_priv->dev) &&
1706 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1707 val |= TRANS_LEGACY_INTERLACED_ILK;
1708 else
1709 val |= TRANS_INTERLACED;
5f7f726d
PZ
1710 else
1711 val |= TRANS_PROGRESSIVE;
1712
040484af
JB
1713 I915_WRITE(reg, val | TRANS_ENABLE);
1714 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1715 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1716}
1717
8fb033d7 1718static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1719 enum transcoder cpu_transcoder)
040484af 1720{
8fb033d7 1721 u32 val, pipeconf_val;
8fb033d7
PZ
1722
1723 /* PCH only available on ILK+ */
1724 BUG_ON(dev_priv->info->gen < 5);
1725
8fb033d7 1726 /* FDI must be feeding us bits for PCH ports */
937bb610
PZ
1727 assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1728 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1729
223a6fdf
PZ
1730 /* Workaround: set timing override bit. */
1731 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1732 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1733 I915_WRITE(_TRANSA_CHICKEN2, val);
1734
25f3ef11 1735 val = TRANS_ENABLE;
937bb610 1736 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1737
9a76b1c6
PZ
1738 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1739 PIPECONF_INTERLACED_ILK)
a35f2679 1740 val |= TRANS_INTERLACED;
8fb033d7
PZ
1741 else
1742 val |= TRANS_PROGRESSIVE;
1743
25f3ef11 1744 I915_WRITE(TRANSCONF(TRANSCODER_A), val);
937bb610
PZ
1745 if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1746 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1747}
1748
b8a4f404
PZ
1749static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1750 enum pipe pipe)
040484af 1751{
23670b32
DV
1752 struct drm_device *dev = dev_priv->dev;
1753 uint32_t reg, val;
040484af
JB
1754
1755 /* FDI relies on the transcoder */
1756 assert_fdi_tx_disabled(dev_priv, pipe);
1757 assert_fdi_rx_disabled(dev_priv, pipe);
1758
291906f1
JB
1759 /* Ports must be off as well */
1760 assert_pch_ports_disabled(dev_priv, pipe);
1761
040484af
JB
1762 reg = TRANSCONF(pipe);
1763 val = I915_READ(reg);
1764 val &= ~TRANS_ENABLE;
1765 I915_WRITE(reg, val);
1766 /* wait for PCH transcoder off, transcoder state */
1767 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4c9c18c2 1768 DRM_ERROR("failed to disable transcoder %d\n", pipe);
23670b32
DV
1769
1770 if (!HAS_PCH_IBX(dev)) {
1771 /* Workaround: Clear the timing override chicken bit again. */
1772 reg = TRANS_CHICKEN2(pipe);
1773 val = I915_READ(reg);
1774 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1775 I915_WRITE(reg, val);
1776 }
040484af
JB
1777}
1778
ab4d966c 1779static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1780{
8fb033d7
PZ
1781 u32 val;
1782
8a52fd9f 1783 val = I915_READ(_TRANSACONF);
8fb033d7 1784 val &= ~TRANS_ENABLE;
8a52fd9f 1785 I915_WRITE(_TRANSACONF, val);
8fb033d7 1786 /* wait for PCH transcoder off, transcoder state */
8a52fd9f
PZ
1787 if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1788 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1789
1790 /* Workaround: clear timing override bit. */
1791 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1792 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1793 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1794}
1795
b24e7179 1796/**
309cfea8 1797 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1798 * @dev_priv: i915 private structure
1799 * @pipe: pipe to enable
040484af 1800 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1801 *
1802 * Enable @pipe, making sure that various hardware specific requirements
1803 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1804 *
1805 * @pipe should be %PIPE_A or %PIPE_B.
1806 *
1807 * Will wait until the pipe is actually running (i.e. first vblank) before
1808 * returning.
1809 */
040484af
JB
1810static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1811 bool pch_port)
b24e7179 1812{
702e7a56
PZ
1813 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1814 pipe);
cc391bbb 1815 enum transcoder pch_transcoder;
b24e7179
JB
1816 int reg;
1817 u32 val;
1818
cc391bbb
PZ
1819 if (IS_HASWELL(dev_priv->dev))
1820 pch_transcoder = TRANSCODER_A;
1821 else
1822 pch_transcoder = pipe;
1823
b24e7179
JB
1824 /*
1825 * A pipe without a PLL won't actually be able to drive bits from
1826 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1827 * need the check.
1828 */
1829 if (!HAS_PCH_SPLIT(dev_priv->dev))
1830 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1831 else {
1832 if (pch_port) {
1833 /* if driving the PCH, we need FDI enabled */
cc391bbb
PZ
1834 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1835 assert_fdi_tx_pll_enabled(dev_priv, cpu_transcoder);
040484af
JB
1836 }
1837 /* FIXME: assert CPU port conditions for SNB+ */
1838 }
b24e7179 1839
702e7a56 1840 reg = PIPECONF(cpu_transcoder);
b24e7179 1841 val = I915_READ(reg);
00d70b15
CW
1842 if (val & PIPECONF_ENABLE)
1843 return;
1844
1845 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1846 intel_wait_for_vblank(dev_priv->dev, pipe);
1847}
1848
1849/**
309cfea8 1850 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1851 * @dev_priv: i915 private structure
1852 * @pipe: pipe to disable
1853 *
1854 * Disable @pipe, making sure that various hardware specific requirements
1855 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1856 *
1857 * @pipe should be %PIPE_A or %PIPE_B.
1858 *
1859 * Will wait until the pipe has shut down before returning.
1860 */
1861static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1862 enum pipe pipe)
1863{
702e7a56
PZ
1864 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1865 pipe);
b24e7179
JB
1866 int reg;
1867 u32 val;
1868
1869 /*
1870 * Make sure planes won't keep trying to pump pixels to us,
1871 * or we might hang the display.
1872 */
1873 assert_planes_disabled(dev_priv, pipe);
1874
1875 /* Don't disable pipe A or pipe A PLLs if needed */
1876 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1877 return;
1878
702e7a56 1879 reg = PIPECONF(cpu_transcoder);
b24e7179 1880 val = I915_READ(reg);
00d70b15
CW
1881 if ((val & PIPECONF_ENABLE) == 0)
1882 return;
1883
1884 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1885 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1886}
1887
d74362c9
KP
1888/*
1889 * Plane regs are double buffered, going from enabled->disabled needs a
1890 * trigger in order to latch. The display address reg provides this.
1891 */
6f1d69b0 1892void intel_flush_display_plane(struct drm_i915_private *dev_priv,
d74362c9
KP
1893 enum plane plane)
1894{
14f86147
DL
1895 if (dev_priv->info->gen >= 4)
1896 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1897 else
1898 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
d74362c9
KP
1899}
1900
b24e7179
JB
1901/**
1902 * intel_enable_plane - enable a display plane on a given pipe
1903 * @dev_priv: i915 private structure
1904 * @plane: plane to enable
1905 * @pipe: pipe being fed
1906 *
1907 * Enable @plane on @pipe, making sure that @pipe is running first.
1908 */
1909static void intel_enable_plane(struct drm_i915_private *dev_priv,
1910 enum plane plane, enum pipe pipe)
1911{
1912 int reg;
1913 u32 val;
1914
1915 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1916 assert_pipe_enabled(dev_priv, pipe);
1917
1918 reg = DSPCNTR(plane);
1919 val = I915_READ(reg);
00d70b15
CW
1920 if (val & DISPLAY_PLANE_ENABLE)
1921 return;
1922
1923 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1924 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1925 intel_wait_for_vblank(dev_priv->dev, pipe);
1926}
1927
b24e7179
JB
1928/**
1929 * intel_disable_plane - disable a display plane
1930 * @dev_priv: i915 private structure
1931 * @plane: plane to disable
1932 * @pipe: pipe consuming the data
1933 *
1934 * Disable @plane; should be an independent operation.
1935 */
1936static void intel_disable_plane(struct drm_i915_private *dev_priv,
1937 enum plane plane, enum pipe pipe)
1938{
1939 int reg;
1940 u32 val;
1941
1942 reg = DSPCNTR(plane);
1943 val = I915_READ(reg);
00d70b15
CW
1944 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1945 return;
1946
1947 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1948 intel_flush_display_plane(dev_priv, plane);
1949 intel_wait_for_vblank(dev_priv->dev, pipe);
1950}
1951
127bd2ac 1952int
48b956c5 1953intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1954 struct drm_i915_gem_object *obj,
919926ae 1955 struct intel_ring_buffer *pipelined)
6b95a207 1956{
ce453d81 1957 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1958 u32 alignment;
1959 int ret;
1960
05394f39 1961 switch (obj->tiling_mode) {
6b95a207 1962 case I915_TILING_NONE:
534843da
CW
1963 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1964 alignment = 128 * 1024;
a6c45cf0 1965 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1966 alignment = 4 * 1024;
1967 else
1968 alignment = 64 * 1024;
6b95a207
KH
1969 break;
1970 case I915_TILING_X:
1971 /* pin() will align the object as required by fence */
1972 alignment = 0;
1973 break;
1974 case I915_TILING_Y:
1975 /* FIXME: Is this true? */
1976 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1977 return -EINVAL;
1978 default:
1979 BUG();
1980 }
1981
ce453d81 1982 dev_priv->mm.interruptible = false;
2da3b9b9 1983 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 1984 if (ret)
ce453d81 1985 goto err_interruptible;
6b95a207
KH
1986
1987 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1988 * fence, whereas 965+ only requires a fence if using
1989 * framebuffer compression. For simplicity, we always install
1990 * a fence as the cost is not that onerous.
1991 */
06d98131 1992 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
1993 if (ret)
1994 goto err_unpin;
1690e1eb 1995
9a5a53b3 1996 i915_gem_object_pin_fence(obj);
6b95a207 1997
ce453d81 1998 dev_priv->mm.interruptible = true;
6b95a207 1999 return 0;
48b956c5
CW
2000
2001err_unpin:
2002 i915_gem_object_unpin(obj);
ce453d81
CW
2003err_interruptible:
2004 dev_priv->mm.interruptible = true;
48b956c5 2005 return ret;
6b95a207
KH
2006}
2007
1690e1eb
CW
2008void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2009{
2010 i915_gem_object_unpin_fence(obj);
2011 i915_gem_object_unpin(obj);
2012}
2013
c2c75131
DV
2014/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2015 * is assumed to be a power-of-two. */
5a35e99e
DL
2016unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2017 unsigned int bpp,
2018 unsigned int pitch)
c2c75131
DV
2019{
2020 int tile_rows, tiles;
2021
2022 tile_rows = *y / 8;
2023 *y %= 8;
2024 tiles = *x / (512/bpp);
2025 *x %= 512/bpp;
2026
2027 return tile_rows * pitch * 8 + tiles * 4096;
2028}
2029
17638cd6
JB
2030static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2031 int x, int y)
81255565
JB
2032{
2033 struct drm_device *dev = crtc->dev;
2034 struct drm_i915_private *dev_priv = dev->dev_private;
2035 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2036 struct intel_framebuffer *intel_fb;
05394f39 2037 struct drm_i915_gem_object *obj;
81255565 2038 int plane = intel_crtc->plane;
e506a0c6 2039 unsigned long linear_offset;
81255565 2040 u32 dspcntr;
5eddb70b 2041 u32 reg;
81255565
JB
2042
2043 switch (plane) {
2044 case 0:
2045 case 1:
2046 break;
2047 default:
2048 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2049 return -EINVAL;
2050 }
2051
2052 intel_fb = to_intel_framebuffer(fb);
2053 obj = intel_fb->obj;
81255565 2054
5eddb70b
CW
2055 reg = DSPCNTR(plane);
2056 dspcntr = I915_READ(reg);
81255565
JB
2057 /* Mask out pixel format bits in case we change it */
2058 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2059 switch (fb->pixel_format) {
2060 case DRM_FORMAT_C8:
81255565
JB
2061 dspcntr |= DISPPLANE_8BPP;
2062 break;
57779d06
VS
2063 case DRM_FORMAT_XRGB1555:
2064 case DRM_FORMAT_ARGB1555:
2065 dspcntr |= DISPPLANE_BGRX555;
81255565 2066 break;
57779d06
VS
2067 case DRM_FORMAT_RGB565:
2068 dspcntr |= DISPPLANE_BGRX565;
2069 break;
2070 case DRM_FORMAT_XRGB8888:
2071 case DRM_FORMAT_ARGB8888:
2072 dspcntr |= DISPPLANE_BGRX888;
2073 break;
2074 case DRM_FORMAT_XBGR8888:
2075 case DRM_FORMAT_ABGR8888:
2076 dspcntr |= DISPPLANE_RGBX888;
2077 break;
2078 case DRM_FORMAT_XRGB2101010:
2079 case DRM_FORMAT_ARGB2101010:
2080 dspcntr |= DISPPLANE_BGRX101010;
2081 break;
2082 case DRM_FORMAT_XBGR2101010:
2083 case DRM_FORMAT_ABGR2101010:
2084 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2085 break;
2086 default:
57779d06 2087 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
81255565
JB
2088 return -EINVAL;
2089 }
57779d06 2090
a6c45cf0 2091 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2092 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2093 dspcntr |= DISPPLANE_TILED;
2094 else
2095 dspcntr &= ~DISPPLANE_TILED;
2096 }
2097
5eddb70b 2098 I915_WRITE(reg, dspcntr);
81255565 2099
e506a0c6 2100 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2101
c2c75131
DV
2102 if (INTEL_INFO(dev)->gen >= 4) {
2103 intel_crtc->dspaddr_offset =
5a35e99e
DL
2104 intel_gen4_compute_offset_xtiled(&x, &y,
2105 fb->bits_per_pixel / 8,
2106 fb->pitches[0]);
c2c75131
DV
2107 linear_offset -= intel_crtc->dspaddr_offset;
2108 } else {
e506a0c6 2109 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2110 }
e506a0c6
DV
2111
2112 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2113 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2114 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2115 if (INTEL_INFO(dev)->gen >= 4) {
c2c75131
DV
2116 I915_MODIFY_DISPBASE(DSPSURF(plane),
2117 obj->gtt_offset + intel_crtc->dspaddr_offset);
5eddb70b 2118 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2119 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2120 } else
e506a0c6 2121 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
5eddb70b 2122 POSTING_READ(reg);
81255565 2123
17638cd6
JB
2124 return 0;
2125}
2126
2127static int ironlake_update_plane(struct drm_crtc *crtc,
2128 struct drm_framebuffer *fb, int x, int y)
2129{
2130 struct drm_device *dev = crtc->dev;
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133 struct intel_framebuffer *intel_fb;
2134 struct drm_i915_gem_object *obj;
2135 int plane = intel_crtc->plane;
e506a0c6 2136 unsigned long linear_offset;
17638cd6
JB
2137 u32 dspcntr;
2138 u32 reg;
2139
2140 switch (plane) {
2141 case 0:
2142 case 1:
27f8227b 2143 case 2:
17638cd6
JB
2144 break;
2145 default:
2146 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2147 return -EINVAL;
2148 }
2149
2150 intel_fb = to_intel_framebuffer(fb);
2151 obj = intel_fb->obj;
2152
2153 reg = DSPCNTR(plane);
2154 dspcntr = I915_READ(reg);
2155 /* Mask out pixel format bits in case we change it */
2156 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2157 switch (fb->pixel_format) {
2158 case DRM_FORMAT_C8:
17638cd6
JB
2159 dspcntr |= DISPPLANE_8BPP;
2160 break;
57779d06
VS
2161 case DRM_FORMAT_RGB565:
2162 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2163 break;
57779d06
VS
2164 case DRM_FORMAT_XRGB8888:
2165 case DRM_FORMAT_ARGB8888:
2166 dspcntr |= DISPPLANE_BGRX888;
2167 break;
2168 case DRM_FORMAT_XBGR8888:
2169 case DRM_FORMAT_ABGR8888:
2170 dspcntr |= DISPPLANE_RGBX888;
2171 break;
2172 case DRM_FORMAT_XRGB2101010:
2173 case DRM_FORMAT_ARGB2101010:
2174 dspcntr |= DISPPLANE_BGRX101010;
2175 break;
2176 case DRM_FORMAT_XBGR2101010:
2177 case DRM_FORMAT_ABGR2101010:
2178 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2179 break;
2180 default:
57779d06 2181 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
17638cd6
JB
2182 return -EINVAL;
2183 }
2184
2185 if (obj->tiling_mode != I915_TILING_NONE)
2186 dspcntr |= DISPPLANE_TILED;
2187 else
2188 dspcntr &= ~DISPPLANE_TILED;
2189
2190 /* must disable */
2191 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2192
2193 I915_WRITE(reg, dspcntr);
2194
e506a0c6 2195 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2196 intel_crtc->dspaddr_offset =
5a35e99e
DL
2197 intel_gen4_compute_offset_xtiled(&x, &y,
2198 fb->bits_per_pixel / 8,
2199 fb->pitches[0]);
c2c75131 2200 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2201
e506a0c6
DV
2202 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2203 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2204 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
c2c75131
DV
2205 I915_MODIFY_DISPBASE(DSPSURF(plane),
2206 obj->gtt_offset + intel_crtc->dspaddr_offset);
bc1c91eb
DL
2207 if (IS_HASWELL(dev)) {
2208 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2209 } else {
2210 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2211 I915_WRITE(DSPLINOFF(plane), linear_offset);
2212 }
17638cd6
JB
2213 POSTING_READ(reg);
2214
2215 return 0;
2216}
2217
2218/* Assume fb object is pinned & idle & fenced and just update base pointers */
2219static int
2220intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2221 int x, int y, enum mode_set_atomic state)
2222{
2223 struct drm_device *dev = crtc->dev;
2224 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2225
6b8e6ed0
CW
2226 if (dev_priv->display.disable_fbc)
2227 dev_priv->display.disable_fbc(dev);
3dec0095 2228 intel_increase_pllclock(crtc);
81255565 2229
6b8e6ed0 2230 return dev_priv->display.update_plane(crtc, fb, x, y);
81255565
JB
2231}
2232
14667a4b
CW
2233static int
2234intel_finish_fb(struct drm_framebuffer *old_fb)
2235{
2236 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2237 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2238 bool was_interruptible = dev_priv->mm.interruptible;
2239 int ret;
2240
2241 wait_event(dev_priv->pending_flip_queue,
2242 atomic_read(&dev_priv->mm.wedged) ||
2243 atomic_read(&obj->pending_flip) == 0);
2244
2245 /* Big Hammer, we also need to ensure that any pending
2246 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2247 * current scanout is retired before unpinning the old
2248 * framebuffer.
2249 *
2250 * This should only fail upon a hung GPU, in which case we
2251 * can safely continue.
2252 */
2253 dev_priv->mm.interruptible = false;
2254 ret = i915_gem_object_finish_gpu(obj);
2255 dev_priv->mm.interruptible = was_interruptible;
2256
2257 return ret;
2258}
2259
198598d0
VS
2260static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2261{
2262 struct drm_device *dev = crtc->dev;
2263 struct drm_i915_master_private *master_priv;
2264 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2265
2266 if (!dev->primary->master)
2267 return;
2268
2269 master_priv = dev->primary->master->driver_priv;
2270 if (!master_priv->sarea_priv)
2271 return;
2272
2273 switch (intel_crtc->pipe) {
2274 case 0:
2275 master_priv->sarea_priv->pipeA_x = x;
2276 master_priv->sarea_priv->pipeA_y = y;
2277 break;
2278 case 1:
2279 master_priv->sarea_priv->pipeB_x = x;
2280 master_priv->sarea_priv->pipeB_y = y;
2281 break;
2282 default:
2283 break;
2284 }
2285}
2286
5c3b82e2 2287static int
3c4fdcfb 2288intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2289 struct drm_framebuffer *fb)
79e53945
JB
2290{
2291 struct drm_device *dev = crtc->dev;
6b8e6ed0 2292 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
94352cf9 2294 struct drm_framebuffer *old_fb;
5c3b82e2 2295 int ret;
79e53945
JB
2296
2297 /* no fb bound */
94352cf9 2298 if (!fb) {
a5071c2f 2299 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2300 return 0;
2301 }
2302
5826eca5
ED
2303 if(intel_crtc->plane > dev_priv->num_pipe) {
2304 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2305 intel_crtc->plane,
2306 dev_priv->num_pipe);
5c3b82e2 2307 return -EINVAL;
79e53945
JB
2308 }
2309
5c3b82e2 2310 mutex_lock(&dev->struct_mutex);
265db958 2311 ret = intel_pin_and_fence_fb_obj(dev,
94352cf9 2312 to_intel_framebuffer(fb)->obj,
919926ae 2313 NULL);
5c3b82e2
CW
2314 if (ret != 0) {
2315 mutex_unlock(&dev->struct_mutex);
a5071c2f 2316 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2317 return ret;
2318 }
79e53945 2319
94352cf9
DV
2320 if (crtc->fb)
2321 intel_finish_fb(crtc->fb);
265db958 2322
94352cf9 2323 ret = dev_priv->display.update_plane(crtc, fb, x, y);
4e6cfefc 2324 if (ret) {
94352cf9 2325 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
5c3b82e2 2326 mutex_unlock(&dev->struct_mutex);
a5071c2f 2327 DRM_ERROR("failed to update base address\n");
4e6cfefc 2328 return ret;
79e53945 2329 }
3c4fdcfb 2330
94352cf9
DV
2331 old_fb = crtc->fb;
2332 crtc->fb = fb;
6c4c86f5
DV
2333 crtc->x = x;
2334 crtc->y = y;
94352cf9 2335
b7f1de28
CW
2336 if (old_fb) {
2337 intel_wait_for_vblank(dev, intel_crtc->pipe);
1690e1eb 2338 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2339 }
652c393a 2340
6b8e6ed0 2341 intel_update_fbc(dev);
5c3b82e2 2342 mutex_unlock(&dev->struct_mutex);
79e53945 2343
198598d0 2344 intel_crtc_update_sarea_pos(crtc, x, y);
5c3b82e2
CW
2345
2346 return 0;
79e53945
JB
2347}
2348
5eddb70b 2349static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2350{
2351 struct drm_device *dev = crtc->dev;
2352 struct drm_i915_private *dev_priv = dev->dev_private;
2353 u32 dpa_ctl;
2354
28c97730 2355 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2356 dpa_ctl = I915_READ(DP_A);
2357 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2358
2359 if (clock < 200000) {
2360 u32 temp;
2361 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2362 /* workaround for 160Mhz:
2363 1) program 0x4600c bits 15:0 = 0x8124
2364 2) program 0x46010 bit 0 = 1
2365 3) program 0x46034 bit 24 = 1
2366 4) program 0x64000 bit 14 = 1
2367 */
2368 temp = I915_READ(0x4600c);
2369 temp &= 0xffff0000;
2370 I915_WRITE(0x4600c, temp | 0x8124);
2371
2372 temp = I915_READ(0x46010);
2373 I915_WRITE(0x46010, temp | 1);
2374
2375 temp = I915_READ(0x46034);
2376 I915_WRITE(0x46034, temp | (1 << 24));
2377 } else {
2378 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2379 }
2380 I915_WRITE(DP_A, dpa_ctl);
2381
5eddb70b 2382 POSTING_READ(DP_A);
32f9d658
ZW
2383 udelay(500);
2384}
2385
5e84e1a4
ZW
2386static void intel_fdi_normal_train(struct drm_crtc *crtc)
2387{
2388 struct drm_device *dev = crtc->dev;
2389 struct drm_i915_private *dev_priv = dev->dev_private;
2390 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2391 int pipe = intel_crtc->pipe;
2392 u32 reg, temp;
2393
2394 /* enable normal train */
2395 reg = FDI_TX_CTL(pipe);
2396 temp = I915_READ(reg);
61e499bf 2397 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2398 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2399 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2400 } else {
2401 temp &= ~FDI_LINK_TRAIN_NONE;
2402 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2403 }
5e84e1a4
ZW
2404 I915_WRITE(reg, temp);
2405
2406 reg = FDI_RX_CTL(pipe);
2407 temp = I915_READ(reg);
2408 if (HAS_PCH_CPT(dev)) {
2409 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2410 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2411 } else {
2412 temp &= ~FDI_LINK_TRAIN_NONE;
2413 temp |= FDI_LINK_TRAIN_NONE;
2414 }
2415 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2416
2417 /* wait one idle pattern time */
2418 POSTING_READ(reg);
2419 udelay(1000);
357555c0
JB
2420
2421 /* IVB wants error correction enabled */
2422 if (IS_IVYBRIDGE(dev))
2423 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2424 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2425}
2426
291427f5
JB
2427static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2428{
2429 struct drm_i915_private *dev_priv = dev->dev_private;
2430 u32 flags = I915_READ(SOUTH_CHICKEN1);
2431
2432 flags |= FDI_PHASE_SYNC_OVR(pipe);
2433 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2434 flags |= FDI_PHASE_SYNC_EN(pipe);
2435 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2436 POSTING_READ(SOUTH_CHICKEN1);
2437}
2438
01a415fd
DV
2439static void ivb_modeset_global_resources(struct drm_device *dev)
2440{
2441 struct drm_i915_private *dev_priv = dev->dev_private;
2442 struct intel_crtc *pipe_B_crtc =
2443 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2444 struct intel_crtc *pipe_C_crtc =
2445 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2446 uint32_t temp;
2447
2448 /* When everything is off disable fdi C so that we could enable fdi B
2449 * with all lanes. XXX: This misses the case where a pipe is not using
2450 * any pch resources and so doesn't need any fdi lanes. */
2451 if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2452 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2453 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2454
2455 temp = I915_READ(SOUTH_CHICKEN1);
2456 temp &= ~FDI_BC_BIFURCATION_SELECT;
2457 DRM_DEBUG_KMS("disabling fdi C rx\n");
2458 I915_WRITE(SOUTH_CHICKEN1, temp);
2459 }
2460}
2461
8db9d77b
ZW
2462/* The FDI link training functions for ILK/Ibexpeak. */
2463static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2464{
2465 struct drm_device *dev = crtc->dev;
2466 struct drm_i915_private *dev_priv = dev->dev_private;
2467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2468 int pipe = intel_crtc->pipe;
0fc932b8 2469 int plane = intel_crtc->plane;
5eddb70b 2470 u32 reg, temp, tries;
8db9d77b 2471
0fc932b8
JB
2472 /* FDI needs bits from pipe & plane first */
2473 assert_pipe_enabled(dev_priv, pipe);
2474 assert_plane_enabled(dev_priv, plane);
2475
e1a44743
AJ
2476 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2477 for train result */
5eddb70b
CW
2478 reg = FDI_RX_IMR(pipe);
2479 temp = I915_READ(reg);
e1a44743
AJ
2480 temp &= ~FDI_RX_SYMBOL_LOCK;
2481 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2482 I915_WRITE(reg, temp);
2483 I915_READ(reg);
e1a44743
AJ
2484 udelay(150);
2485
8db9d77b 2486 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2487 reg = FDI_TX_CTL(pipe);
2488 temp = I915_READ(reg);
77ffb597
AJ
2489 temp &= ~(7 << 19);
2490 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2491 temp &= ~FDI_LINK_TRAIN_NONE;
2492 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2493 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2494
5eddb70b
CW
2495 reg = FDI_RX_CTL(pipe);
2496 temp = I915_READ(reg);
8db9d77b
ZW
2497 temp &= ~FDI_LINK_TRAIN_NONE;
2498 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2499 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2500
2501 POSTING_READ(reg);
8db9d77b
ZW
2502 udelay(150);
2503
5b2adf89 2504 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2505 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2506 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2507 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2508
5eddb70b 2509 reg = FDI_RX_IIR(pipe);
e1a44743 2510 for (tries = 0; tries < 5; tries++) {
5eddb70b 2511 temp = I915_READ(reg);
8db9d77b
ZW
2512 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2513
2514 if ((temp & FDI_RX_BIT_LOCK)) {
2515 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2516 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2517 break;
2518 }
8db9d77b 2519 }
e1a44743 2520 if (tries == 5)
5eddb70b 2521 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2522
2523 /* Train 2 */
5eddb70b
CW
2524 reg = FDI_TX_CTL(pipe);
2525 temp = I915_READ(reg);
8db9d77b
ZW
2526 temp &= ~FDI_LINK_TRAIN_NONE;
2527 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2528 I915_WRITE(reg, temp);
8db9d77b 2529
5eddb70b
CW
2530 reg = FDI_RX_CTL(pipe);
2531 temp = I915_READ(reg);
8db9d77b
ZW
2532 temp &= ~FDI_LINK_TRAIN_NONE;
2533 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2534 I915_WRITE(reg, temp);
8db9d77b 2535
5eddb70b
CW
2536 POSTING_READ(reg);
2537 udelay(150);
8db9d77b 2538
5eddb70b 2539 reg = FDI_RX_IIR(pipe);
e1a44743 2540 for (tries = 0; tries < 5; tries++) {
5eddb70b 2541 temp = I915_READ(reg);
8db9d77b
ZW
2542 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2543
2544 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2545 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2546 DRM_DEBUG_KMS("FDI train 2 done.\n");
2547 break;
2548 }
8db9d77b 2549 }
e1a44743 2550 if (tries == 5)
5eddb70b 2551 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2552
2553 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2554
8db9d77b
ZW
2555}
2556
0206e353 2557static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2558 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2559 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2560 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2561 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2562};
2563
2564/* The FDI link training functions for SNB/Cougarpoint. */
2565static void gen6_fdi_link_train(struct drm_crtc *crtc)
2566{
2567 struct drm_device *dev = crtc->dev;
2568 struct drm_i915_private *dev_priv = dev->dev_private;
2569 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2570 int pipe = intel_crtc->pipe;
fa37d39e 2571 u32 reg, temp, i, retry;
8db9d77b 2572
e1a44743
AJ
2573 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2574 for train result */
5eddb70b
CW
2575 reg = FDI_RX_IMR(pipe);
2576 temp = I915_READ(reg);
e1a44743
AJ
2577 temp &= ~FDI_RX_SYMBOL_LOCK;
2578 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2579 I915_WRITE(reg, temp);
2580
2581 POSTING_READ(reg);
e1a44743
AJ
2582 udelay(150);
2583
8db9d77b 2584 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2585 reg = FDI_TX_CTL(pipe);
2586 temp = I915_READ(reg);
77ffb597
AJ
2587 temp &= ~(7 << 19);
2588 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2589 temp &= ~FDI_LINK_TRAIN_NONE;
2590 temp |= FDI_LINK_TRAIN_PATTERN_1;
2591 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2592 /* SNB-B */
2593 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2594 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2595
d74cf324
DV
2596 I915_WRITE(FDI_RX_MISC(pipe),
2597 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2598
5eddb70b
CW
2599 reg = FDI_RX_CTL(pipe);
2600 temp = I915_READ(reg);
8db9d77b
ZW
2601 if (HAS_PCH_CPT(dev)) {
2602 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2603 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2604 } else {
2605 temp &= ~FDI_LINK_TRAIN_NONE;
2606 temp |= FDI_LINK_TRAIN_PATTERN_1;
2607 }
5eddb70b
CW
2608 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2609
2610 POSTING_READ(reg);
8db9d77b
ZW
2611 udelay(150);
2612
8f5718a6 2613 cpt_phase_pointer_enable(dev, pipe);
291427f5 2614
0206e353 2615 for (i = 0; i < 4; i++) {
5eddb70b
CW
2616 reg = FDI_TX_CTL(pipe);
2617 temp = I915_READ(reg);
8db9d77b
ZW
2618 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2619 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2620 I915_WRITE(reg, temp);
2621
2622 POSTING_READ(reg);
8db9d77b
ZW
2623 udelay(500);
2624
fa37d39e
SP
2625 for (retry = 0; retry < 5; retry++) {
2626 reg = FDI_RX_IIR(pipe);
2627 temp = I915_READ(reg);
2628 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2629 if (temp & FDI_RX_BIT_LOCK) {
2630 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2631 DRM_DEBUG_KMS("FDI train 1 done.\n");
2632 break;
2633 }
2634 udelay(50);
8db9d77b 2635 }
fa37d39e
SP
2636 if (retry < 5)
2637 break;
8db9d77b
ZW
2638 }
2639 if (i == 4)
5eddb70b 2640 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2641
2642 /* Train 2 */
5eddb70b
CW
2643 reg = FDI_TX_CTL(pipe);
2644 temp = I915_READ(reg);
8db9d77b
ZW
2645 temp &= ~FDI_LINK_TRAIN_NONE;
2646 temp |= FDI_LINK_TRAIN_PATTERN_2;
2647 if (IS_GEN6(dev)) {
2648 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2649 /* SNB-B */
2650 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2651 }
5eddb70b 2652 I915_WRITE(reg, temp);
8db9d77b 2653
5eddb70b
CW
2654 reg = FDI_RX_CTL(pipe);
2655 temp = I915_READ(reg);
8db9d77b
ZW
2656 if (HAS_PCH_CPT(dev)) {
2657 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2658 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2659 } else {
2660 temp &= ~FDI_LINK_TRAIN_NONE;
2661 temp |= FDI_LINK_TRAIN_PATTERN_2;
2662 }
5eddb70b
CW
2663 I915_WRITE(reg, temp);
2664
2665 POSTING_READ(reg);
8db9d77b
ZW
2666 udelay(150);
2667
0206e353 2668 for (i = 0; i < 4; i++) {
5eddb70b
CW
2669 reg = FDI_TX_CTL(pipe);
2670 temp = I915_READ(reg);
8db9d77b
ZW
2671 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2672 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2673 I915_WRITE(reg, temp);
2674
2675 POSTING_READ(reg);
8db9d77b
ZW
2676 udelay(500);
2677
fa37d39e
SP
2678 for (retry = 0; retry < 5; retry++) {
2679 reg = FDI_RX_IIR(pipe);
2680 temp = I915_READ(reg);
2681 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2682 if (temp & FDI_RX_SYMBOL_LOCK) {
2683 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2684 DRM_DEBUG_KMS("FDI train 2 done.\n");
2685 break;
2686 }
2687 udelay(50);
8db9d77b 2688 }
fa37d39e
SP
2689 if (retry < 5)
2690 break;
8db9d77b
ZW
2691 }
2692 if (i == 4)
5eddb70b 2693 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2694
2695 DRM_DEBUG_KMS("FDI train done.\n");
2696}
2697
357555c0
JB
2698/* Manual link training for Ivy Bridge A0 parts */
2699static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2700{
2701 struct drm_device *dev = crtc->dev;
2702 struct drm_i915_private *dev_priv = dev->dev_private;
2703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2704 int pipe = intel_crtc->pipe;
2705 u32 reg, temp, i;
2706
2707 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2708 for train result */
2709 reg = FDI_RX_IMR(pipe);
2710 temp = I915_READ(reg);
2711 temp &= ~FDI_RX_SYMBOL_LOCK;
2712 temp &= ~FDI_RX_BIT_LOCK;
2713 I915_WRITE(reg, temp);
2714
2715 POSTING_READ(reg);
2716 udelay(150);
2717
01a415fd
DV
2718 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2719 I915_READ(FDI_RX_IIR(pipe)));
2720
357555c0
JB
2721 /* enable CPU FDI TX and PCH FDI RX */
2722 reg = FDI_TX_CTL(pipe);
2723 temp = I915_READ(reg);
2724 temp &= ~(7 << 19);
2725 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2726 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2727 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2728 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2729 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
c4f9c4c2 2730 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2731 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2732
d74cf324
DV
2733 I915_WRITE(FDI_RX_MISC(pipe),
2734 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2735
357555c0
JB
2736 reg = FDI_RX_CTL(pipe);
2737 temp = I915_READ(reg);
2738 temp &= ~FDI_LINK_TRAIN_AUTO;
2739 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2740 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
c4f9c4c2 2741 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2742 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2743
2744 POSTING_READ(reg);
2745 udelay(150);
2746
8f5718a6 2747 cpt_phase_pointer_enable(dev, pipe);
291427f5 2748
0206e353 2749 for (i = 0; i < 4; i++) {
357555c0
JB
2750 reg = FDI_TX_CTL(pipe);
2751 temp = I915_READ(reg);
2752 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2753 temp |= snb_b_fdi_train_param[i];
2754 I915_WRITE(reg, temp);
2755
2756 POSTING_READ(reg);
2757 udelay(500);
2758
2759 reg = FDI_RX_IIR(pipe);
2760 temp = I915_READ(reg);
2761 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2762
2763 if (temp & FDI_RX_BIT_LOCK ||
2764 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2765 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
01a415fd 2766 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
357555c0
JB
2767 break;
2768 }
2769 }
2770 if (i == 4)
2771 DRM_ERROR("FDI train 1 fail!\n");
2772
2773 /* Train 2 */
2774 reg = FDI_TX_CTL(pipe);
2775 temp = I915_READ(reg);
2776 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2777 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2778 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2779 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2780 I915_WRITE(reg, temp);
2781
2782 reg = FDI_RX_CTL(pipe);
2783 temp = I915_READ(reg);
2784 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2785 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2786 I915_WRITE(reg, temp);
2787
2788 POSTING_READ(reg);
2789 udelay(150);
2790
0206e353 2791 for (i = 0; i < 4; i++) {
357555c0
JB
2792 reg = FDI_TX_CTL(pipe);
2793 temp = I915_READ(reg);
2794 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2795 temp |= snb_b_fdi_train_param[i];
2796 I915_WRITE(reg, temp);
2797
2798 POSTING_READ(reg);
2799 udelay(500);
2800
2801 reg = FDI_RX_IIR(pipe);
2802 temp = I915_READ(reg);
2803 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2804
2805 if (temp & FDI_RX_SYMBOL_LOCK) {
2806 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
01a415fd 2807 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
357555c0
JB
2808 break;
2809 }
2810 }
2811 if (i == 4)
2812 DRM_ERROR("FDI train 2 fail!\n");
2813
2814 DRM_DEBUG_KMS("FDI train done.\n");
2815}
2816
88cefb6c 2817static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 2818{
88cefb6c 2819 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 2820 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 2821 int pipe = intel_crtc->pipe;
5eddb70b 2822 u32 reg, temp;
79e53945 2823
c64e311e 2824
c98e9dcf 2825 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2826 reg = FDI_RX_CTL(pipe);
2827 temp = I915_READ(reg);
2828 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2829 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2830 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2831 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2832
2833 POSTING_READ(reg);
c98e9dcf
JB
2834 udelay(200);
2835
2836 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2837 temp = I915_READ(reg);
2838 I915_WRITE(reg, temp | FDI_PCDCLK);
2839
2840 POSTING_READ(reg);
c98e9dcf
JB
2841 udelay(200);
2842
bf507ef7
ED
2843 /* On Haswell, the PLL configuration for ports and pipes is handled
2844 * separately, as part of DDI setup */
2845 if (!IS_HASWELL(dev)) {
2846 /* Enable CPU FDI TX PLL, always on for Ironlake */
2847 reg = FDI_TX_CTL(pipe);
2848 temp = I915_READ(reg);
2849 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2850 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 2851
bf507ef7
ED
2852 POSTING_READ(reg);
2853 udelay(100);
2854 }
6be4a607 2855 }
0e23b99d
JB
2856}
2857
88cefb6c
DV
2858static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2859{
2860 struct drm_device *dev = intel_crtc->base.dev;
2861 struct drm_i915_private *dev_priv = dev->dev_private;
2862 int pipe = intel_crtc->pipe;
2863 u32 reg, temp;
2864
2865 /* Switch from PCDclk to Rawclk */
2866 reg = FDI_RX_CTL(pipe);
2867 temp = I915_READ(reg);
2868 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2869
2870 /* Disable CPU FDI TX PLL */
2871 reg = FDI_TX_CTL(pipe);
2872 temp = I915_READ(reg);
2873 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2874
2875 POSTING_READ(reg);
2876 udelay(100);
2877
2878 reg = FDI_RX_CTL(pipe);
2879 temp = I915_READ(reg);
2880 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2881
2882 /* Wait for the clocks to turn off. */
2883 POSTING_READ(reg);
2884 udelay(100);
2885}
2886
291427f5
JB
2887static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2888{
2889 struct drm_i915_private *dev_priv = dev->dev_private;
2890 u32 flags = I915_READ(SOUTH_CHICKEN1);
2891
2892 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2893 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2894 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2895 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2896 POSTING_READ(SOUTH_CHICKEN1);
2897}
0fc932b8
JB
2898static void ironlake_fdi_disable(struct drm_crtc *crtc)
2899{
2900 struct drm_device *dev = crtc->dev;
2901 struct drm_i915_private *dev_priv = dev->dev_private;
2902 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2903 int pipe = intel_crtc->pipe;
2904 u32 reg, temp;
2905
2906 /* disable CPU FDI tx and PCH FDI rx */
2907 reg = FDI_TX_CTL(pipe);
2908 temp = I915_READ(reg);
2909 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2910 POSTING_READ(reg);
2911
2912 reg = FDI_RX_CTL(pipe);
2913 temp = I915_READ(reg);
2914 temp &= ~(0x7 << 16);
2915 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2916 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2917
2918 POSTING_READ(reg);
2919 udelay(100);
2920
2921 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2922 if (HAS_PCH_IBX(dev)) {
2923 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
291427f5
JB
2924 } else if (HAS_PCH_CPT(dev)) {
2925 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2926 }
0fc932b8
JB
2927
2928 /* still set train pattern 1 */
2929 reg = FDI_TX_CTL(pipe);
2930 temp = I915_READ(reg);
2931 temp &= ~FDI_LINK_TRAIN_NONE;
2932 temp |= FDI_LINK_TRAIN_PATTERN_1;
2933 I915_WRITE(reg, temp);
2934
2935 reg = FDI_RX_CTL(pipe);
2936 temp = I915_READ(reg);
2937 if (HAS_PCH_CPT(dev)) {
2938 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2939 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2940 } else {
2941 temp &= ~FDI_LINK_TRAIN_NONE;
2942 temp |= FDI_LINK_TRAIN_PATTERN_1;
2943 }
2944 /* BPC in FDI rx is consistent with that in PIPECONF */
2945 temp &= ~(0x07 << 16);
2946 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2947 I915_WRITE(reg, temp);
2948
2949 POSTING_READ(reg);
2950 udelay(100);
2951}
2952
5bb61643
CW
2953static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2954{
2955 struct drm_device *dev = crtc->dev;
2956 struct drm_i915_private *dev_priv = dev->dev_private;
2957 unsigned long flags;
2958 bool pending;
2959
2960 if (atomic_read(&dev_priv->mm.wedged))
2961 return false;
2962
2963 spin_lock_irqsave(&dev->event_lock, flags);
2964 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2965 spin_unlock_irqrestore(&dev->event_lock, flags);
2966
2967 return pending;
2968}
2969
e6c3a2a6
CW
2970static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2971{
0f91128d 2972 struct drm_device *dev = crtc->dev;
5bb61643 2973 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6
CW
2974
2975 if (crtc->fb == NULL)
2976 return;
2977
5bb61643
CW
2978 wait_event(dev_priv->pending_flip_queue,
2979 !intel_crtc_has_pending_flip(crtc));
2980
0f91128d
CW
2981 mutex_lock(&dev->struct_mutex);
2982 intel_finish_fb(crtc->fb);
2983 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
2984}
2985
fc316cbe 2986static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
040484af
JB
2987{
2988 struct drm_device *dev = crtc->dev;
228d3e36 2989 struct intel_encoder *intel_encoder;
040484af
JB
2990
2991 /*
2992 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2993 * must be driven by its own crtc; no sharing is possible.
2994 */
228d3e36 2995 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
228d3e36 2996 switch (intel_encoder->type) {
040484af 2997 case INTEL_OUTPUT_EDP:
228d3e36 2998 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
040484af
JB
2999 return false;
3000 continue;
3001 }
3002 }
3003
3004 return true;
3005}
3006
fc316cbe
PZ
3007static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
3008{
3009 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
3010}
3011
e615efe4
ED
3012/* Program iCLKIP clock to the desired frequency */
3013static void lpt_program_iclkip(struct drm_crtc *crtc)
3014{
3015 struct drm_device *dev = crtc->dev;
3016 struct drm_i915_private *dev_priv = dev->dev_private;
3017 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3018 u32 temp;
3019
3020 /* It is necessary to ungate the pixclk gate prior to programming
3021 * the divisors, and gate it back when it is done.
3022 */
3023 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3024
3025 /* Disable SSCCTL */
3026 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3027 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
3028 SBI_SSCCTL_DISABLE);
3029
3030 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3031 if (crtc->mode.clock == 20000) {
3032 auxdiv = 1;
3033 divsel = 0x41;
3034 phaseinc = 0x20;
3035 } else {
3036 /* The iCLK virtual clock root frequency is in MHz,
3037 * but the crtc->mode.clock in in KHz. To get the divisors,
3038 * it is necessary to divide one by another, so we
3039 * convert the virtual clock precision to KHz here for higher
3040 * precision.
3041 */
3042 u32 iclk_virtual_root_freq = 172800 * 1000;
3043 u32 iclk_pi_range = 64;
3044 u32 desired_divisor, msb_divisor_value, pi_value;
3045
3046 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3047 msb_divisor_value = desired_divisor / iclk_pi_range;
3048 pi_value = desired_divisor % iclk_pi_range;
3049
3050 auxdiv = 0;
3051 divsel = msb_divisor_value - 2;
3052 phaseinc = pi_value;
3053 }
3054
3055 /* This should not happen with any sane values */
3056 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3057 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3058 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3059 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3060
3061 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3062 crtc->mode.clock,
3063 auxdiv,
3064 divsel,
3065 phasedir,
3066 phaseinc);
3067
3068 /* Program SSCDIVINTPHASE6 */
3069 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3070 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3071 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3072 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3073 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3074 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3075 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3076
3077 intel_sbi_write(dev_priv,
3078 SBI_SSCDIVINTPHASE6,
3079 temp);
3080
3081 /* Program SSCAUXDIV */
3082 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3083 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3084 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3085 intel_sbi_write(dev_priv,
3086 SBI_SSCAUXDIV6,
3087 temp);
3088
3089
3090 /* Enable modulator and associated divider */
3091 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3092 temp &= ~SBI_SSCCTL_DISABLE;
3093 intel_sbi_write(dev_priv,
3094 SBI_SSCCTL6,
3095 temp);
3096
3097 /* Wait for initialization time */
3098 udelay(24);
3099
3100 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3101}
3102
f67a559d
JB
3103/*
3104 * Enable PCH resources required for PCH ports:
3105 * - PCH PLLs
3106 * - FDI training & RX/TX
3107 * - update transcoder timings
3108 * - DP transcoding bits
3109 * - transcoder
3110 */
3111static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3112{
3113 struct drm_device *dev = crtc->dev;
3114 struct drm_i915_private *dev_priv = dev->dev_private;
3115 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3116 int pipe = intel_crtc->pipe;
ee7b9f93 3117 u32 reg, temp;
2c07245f 3118
e7e164db
CW
3119 assert_transcoder_disabled(dev_priv, pipe);
3120
cd986abb
DV
3121 /* Write the TU size bits before fdi link training, so that error
3122 * detection works. */
3123 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3124 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3125
c98e9dcf 3126 /* For PCH output, training FDI link */
674cf967 3127 dev_priv->display.fdi_link_train(crtc);
2c07245f 3128
572deb37
DV
3129 /* XXX: pch pll's can be enabled any time before we enable the PCH
3130 * transcoder, and we actually should do this to not upset any PCH
3131 * transcoder that already use the clock when we share it.
3132 *
3133 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3134 * unconditionally resets the pll - we need that to have the right LVDS
3135 * enable sequence. */
b6b4e185 3136 ironlake_enable_pch_pll(intel_crtc);
6f13b7b5 3137
303b81e0 3138 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3139 u32 sel;
4b645f14 3140
c98e9dcf 3141 temp = I915_READ(PCH_DPLL_SEL);
ee7b9f93
JB
3142 switch (pipe) {
3143 default:
3144 case 0:
3145 temp |= TRANSA_DPLL_ENABLE;
3146 sel = TRANSA_DPLLB_SEL;
3147 break;
3148 case 1:
3149 temp |= TRANSB_DPLL_ENABLE;
3150 sel = TRANSB_DPLLB_SEL;
3151 break;
3152 case 2:
3153 temp |= TRANSC_DPLL_ENABLE;
3154 sel = TRANSC_DPLLB_SEL;
3155 break;
d64311ab 3156 }
ee7b9f93
JB
3157 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3158 temp |= sel;
3159 else
3160 temp &= ~sel;
c98e9dcf 3161 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3162 }
5eddb70b 3163
d9b6cb56
JB
3164 /* set transcoder timing, panel must allow it */
3165 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
3166 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3167 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3168 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 3169
5eddb70b
CW
3170 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3171 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3172 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
0529a0d9 3173 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
8db9d77b 3174
303b81e0 3175 intel_fdi_normal_train(crtc);
5e84e1a4 3176
c98e9dcf
JB
3177 /* For PCH DP, enable TRANS_DP_CTL */
3178 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3179 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3180 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
9325c9f0 3181 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
3182 reg = TRANS_DP_CTL(pipe);
3183 temp = I915_READ(reg);
3184 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3185 TRANS_DP_SYNC_MASK |
3186 TRANS_DP_BPC_MASK);
5eddb70b
CW
3187 temp |= (TRANS_DP_OUTPUT_ENABLE |
3188 TRANS_DP_ENH_FRAMING);
9325c9f0 3189 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3190
3191 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3192 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3193 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3194 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3195
3196 switch (intel_trans_dp_port_sel(crtc)) {
3197 case PCH_DP_B:
5eddb70b 3198 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3199 break;
3200 case PCH_DP_C:
5eddb70b 3201 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3202 break;
3203 case PCH_DP_D:
5eddb70b 3204 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3205 break;
3206 default:
e95d41e1 3207 BUG();
32f9d658 3208 }
2c07245f 3209
5eddb70b 3210 I915_WRITE(reg, temp);
6be4a607 3211 }
b52eb4dc 3212
b8a4f404 3213 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3214}
3215
1507e5bd
PZ
3216static void lpt_pch_enable(struct drm_crtc *crtc)
3217{
3218 struct drm_device *dev = crtc->dev;
3219 struct drm_i915_private *dev_priv = dev->dev_private;
3220 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
daed2dbb 3221 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
1507e5bd 3222
daed2dbb 3223 assert_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3224
8c52b5e8 3225 lpt_program_iclkip(crtc);
1507e5bd 3226
0540e488 3227 /* Set transcoder timing. */
daed2dbb
PZ
3228 I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3229 I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3230 I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
1507e5bd 3231
daed2dbb
PZ
3232 I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3233 I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3234 I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
3235 I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
1507e5bd 3236
937bb610 3237 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3238}
3239
ee7b9f93
JB
3240static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3241{
3242 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3243
3244 if (pll == NULL)
3245 return;
3246
3247 if (pll->refcount == 0) {
3248 WARN(1, "bad PCH PLL refcount\n");
3249 return;
3250 }
3251
3252 --pll->refcount;
3253 intel_crtc->pch_pll = NULL;
3254}
3255
3256static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3257{
3258 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3259 struct intel_pch_pll *pll;
3260 int i;
3261
3262 pll = intel_crtc->pch_pll;
3263 if (pll) {
3264 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3265 intel_crtc->base.base.id, pll->pll_reg);
3266 goto prepare;
3267 }
3268
98b6bd99
DV
3269 if (HAS_PCH_IBX(dev_priv->dev)) {
3270 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3271 i = intel_crtc->pipe;
3272 pll = &dev_priv->pch_plls[i];
3273
3274 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3275 intel_crtc->base.base.id, pll->pll_reg);
3276
3277 goto found;
3278 }
3279
ee7b9f93
JB
3280 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3281 pll = &dev_priv->pch_plls[i];
3282
3283 /* Only want to check enabled timings first */
3284 if (pll->refcount == 0)
3285 continue;
3286
3287 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3288 fp == I915_READ(pll->fp0_reg)) {
3289 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3290 intel_crtc->base.base.id,
3291 pll->pll_reg, pll->refcount, pll->active);
3292
3293 goto found;
3294 }
3295 }
3296
3297 /* Ok no matching timings, maybe there's a free one? */
3298 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3299 pll = &dev_priv->pch_plls[i];
3300 if (pll->refcount == 0) {
3301 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3302 intel_crtc->base.base.id, pll->pll_reg);
3303 goto found;
3304 }
3305 }
3306
3307 return NULL;
3308
3309found:
3310 intel_crtc->pch_pll = pll;
3311 pll->refcount++;
3312 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3313prepare: /* separate function? */
3314 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
ee7b9f93 3315
e04c7350
CW
3316 /* Wait for the clocks to stabilize before rewriting the regs */
3317 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3318 POSTING_READ(pll->pll_reg);
3319 udelay(150);
e04c7350
CW
3320
3321 I915_WRITE(pll->fp0_reg, fp);
3322 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3323 pll->on = false;
3324 return pll;
3325}
3326
d4270e57
JB
3327void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3328{
3329 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3330 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3331 u32 temp;
3332
3333 temp = I915_READ(dslreg);
3334 udelay(500);
3335 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57
JB
3336 if (wait_for(I915_READ(dslreg) != temp, 5))
3337 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3338 }
3339}
3340
f67a559d
JB
3341static void ironlake_crtc_enable(struct drm_crtc *crtc)
3342{
3343 struct drm_device *dev = crtc->dev;
3344 struct drm_i915_private *dev_priv = dev->dev_private;
3345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3346 struct intel_encoder *encoder;
f67a559d
JB
3347 int pipe = intel_crtc->pipe;
3348 int plane = intel_crtc->plane;
3349 u32 temp;
3350 bool is_pch_port;
3351
08a48469
DV
3352 WARN_ON(!crtc->enabled);
3353
f67a559d
JB
3354 if (intel_crtc->active)
3355 return;
3356
3357 intel_crtc->active = true;
3358 intel_update_watermarks(dev);
3359
3360 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3361 temp = I915_READ(PCH_LVDS);
3362 if ((temp & LVDS_PORT_EN) == 0)
3363 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3364 }
3365
fc316cbe 3366 is_pch_port = ironlake_crtc_driving_pch(crtc);
f67a559d 3367
46b6f814 3368 if (is_pch_port) {
fff367c7
DV
3369 /* Note: FDI PLL enabling _must_ be done before we enable the
3370 * cpu pipes, hence this is separate from all the other fdi/pch
3371 * enabling. */
88cefb6c 3372 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3373 } else {
3374 assert_fdi_tx_disabled(dev_priv, pipe);
3375 assert_fdi_rx_disabled(dev_priv, pipe);
3376 }
f67a559d 3377
bf49ec8c
DV
3378 for_each_encoder_on_crtc(dev, crtc, encoder)
3379 if (encoder->pre_enable)
3380 encoder->pre_enable(encoder);
f67a559d
JB
3381
3382 /* Enable panel fitting for LVDS */
3383 if (dev_priv->pch_pf_size &&
547dc041
JN
3384 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3385 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
f67a559d
JB
3386 /* Force use of hard-coded filter coefficients
3387 * as some pre-programmed values are broken,
3388 * e.g. x201.
3389 */
13888d78
PZ
3390 if (IS_IVYBRIDGE(dev))
3391 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3392 PF_PIPE_SEL_IVB(pipe));
3393 else
3394 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
9db4a9c7
JB
3395 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3396 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
3397 }
3398
9c54c0dd
JB
3399 /*
3400 * On ILK+ LUT must be loaded before the pipe is running but with
3401 * clocks enabled
3402 */
3403 intel_crtc_load_lut(crtc);
3404
f67a559d
JB
3405 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3406 intel_enable_plane(dev_priv, plane, pipe);
3407
3408 if (is_pch_port)
3409 ironlake_pch_enable(crtc);
c98e9dcf 3410
d1ebd816 3411 mutex_lock(&dev->struct_mutex);
bed4a673 3412 intel_update_fbc(dev);
d1ebd816
BW
3413 mutex_unlock(&dev->struct_mutex);
3414
6b383a7f 3415 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3416
fa5c73b1
DV
3417 for_each_encoder_on_crtc(dev, crtc, encoder)
3418 encoder->enable(encoder);
61b77ddd
DV
3419
3420 if (HAS_PCH_CPT(dev))
3421 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100
DV
3422
3423 /*
3424 * There seems to be a race in PCH platform hw (at least on some
3425 * outputs) where an enabled pipe still completes any pageflip right
3426 * away (as if the pipe is off) instead of waiting for vblank. As soon
3427 * as the first vblank happend, everything works as expected. Hence just
3428 * wait for one vblank before returning to avoid strange things
3429 * happening.
3430 */
3431 intel_wait_for_vblank(dev, intel_crtc->pipe);
6be4a607
JB
3432}
3433
4f771f10
PZ
3434static void haswell_crtc_enable(struct drm_crtc *crtc)
3435{
3436 struct drm_device *dev = crtc->dev;
3437 struct drm_i915_private *dev_priv = dev->dev_private;
3438 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3439 struct intel_encoder *encoder;
3440 int pipe = intel_crtc->pipe;
3441 int plane = intel_crtc->plane;
4f771f10
PZ
3442 bool is_pch_port;
3443
3444 WARN_ON(!crtc->enabled);
3445
3446 if (intel_crtc->active)
3447 return;
3448
3449 intel_crtc->active = true;
3450 intel_update_watermarks(dev);
3451
fc316cbe 3452 is_pch_port = haswell_crtc_driving_pch(crtc);
4f771f10 3453
83616634 3454 if (is_pch_port)
04945641 3455 dev_priv->display.fdi_link_train(crtc);
4f771f10
PZ
3456
3457 for_each_encoder_on_crtc(dev, crtc, encoder)
3458 if (encoder->pre_enable)
3459 encoder->pre_enable(encoder);
3460
1f544388 3461 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 3462
1f544388 3463 /* Enable panel fitting for eDP */
547dc041
JN
3464 if (dev_priv->pch_pf_size &&
3465 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4f771f10
PZ
3466 /* Force use of hard-coded filter coefficients
3467 * as some pre-programmed values are broken,
3468 * e.g. x201.
3469 */
54075a7d
PZ
3470 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3471 PF_PIPE_SEL_IVB(pipe));
4f771f10
PZ
3472 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3473 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3474 }
3475
3476 /*
3477 * On ILK+ LUT must be loaded before the pipe is running but with
3478 * clocks enabled
3479 */
3480 intel_crtc_load_lut(crtc);
3481
1f544388
PZ
3482 intel_ddi_set_pipe_settings(crtc);
3483 intel_ddi_enable_pipe_func(crtc);
4f771f10
PZ
3484
3485 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3486 intel_enable_plane(dev_priv, plane, pipe);
3487
3488 if (is_pch_port)
1507e5bd 3489 lpt_pch_enable(crtc);
4f771f10
PZ
3490
3491 mutex_lock(&dev->struct_mutex);
3492 intel_update_fbc(dev);
3493 mutex_unlock(&dev->struct_mutex);
3494
3495 intel_crtc_update_cursor(crtc, true);
3496
3497 for_each_encoder_on_crtc(dev, crtc, encoder)
3498 encoder->enable(encoder);
3499
4f771f10
PZ
3500 /*
3501 * There seems to be a race in PCH platform hw (at least on some
3502 * outputs) where an enabled pipe still completes any pageflip right
3503 * away (as if the pipe is off) instead of waiting for vblank. As soon
3504 * as the first vblank happend, everything works as expected. Hence just
3505 * wait for one vblank before returning to avoid strange things
3506 * happening.
3507 */
3508 intel_wait_for_vblank(dev, intel_crtc->pipe);
3509}
3510
6be4a607
JB
3511static void ironlake_crtc_disable(struct drm_crtc *crtc)
3512{
3513 struct drm_device *dev = crtc->dev;
3514 struct drm_i915_private *dev_priv = dev->dev_private;
3515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3516 struct intel_encoder *encoder;
6be4a607
JB
3517 int pipe = intel_crtc->pipe;
3518 int plane = intel_crtc->plane;
5eddb70b 3519 u32 reg, temp;
b52eb4dc 3520
ef9c3aee 3521
f7abfe8b
CW
3522 if (!intel_crtc->active)
3523 return;
3524
ea9d758d
DV
3525 for_each_encoder_on_crtc(dev, crtc, encoder)
3526 encoder->disable(encoder);
3527
e6c3a2a6 3528 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 3529 drm_vblank_off(dev, pipe);
6b383a7f 3530 intel_crtc_update_cursor(crtc, false);
5eddb70b 3531
b24e7179 3532 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 3533
973d04f9
CW
3534 if (dev_priv->cfb_plane == plane)
3535 intel_disable_fbc(dev);
2c07245f 3536
b24e7179 3537 intel_disable_pipe(dev_priv, pipe);
32f9d658 3538
6be4a607 3539 /* Disable PF */
9db4a9c7
JB
3540 I915_WRITE(PF_CTL(pipe), 0);
3541 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 3542
bf49ec8c
DV
3543 for_each_encoder_on_crtc(dev, crtc, encoder)
3544 if (encoder->post_disable)
3545 encoder->post_disable(encoder);
2c07245f 3546
0fc932b8 3547 ironlake_fdi_disable(crtc);
249c0e64 3548
b8a4f404 3549 ironlake_disable_pch_transcoder(dev_priv, pipe);
913d8d11 3550
6be4a607
JB
3551 if (HAS_PCH_CPT(dev)) {
3552 /* disable TRANS_DP_CTL */
5eddb70b
CW
3553 reg = TRANS_DP_CTL(pipe);
3554 temp = I915_READ(reg);
3555 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 3556 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 3557 I915_WRITE(reg, temp);
6be4a607
JB
3558
3559 /* disable DPLL_SEL */
3560 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
3561 switch (pipe) {
3562 case 0:
d64311ab 3563 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
9db4a9c7
JB
3564 break;
3565 case 1:
6be4a607 3566 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
3567 break;
3568 case 2:
4b645f14 3569 /* C shares PLL A or B */
d64311ab 3570 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
9db4a9c7
JB
3571 break;
3572 default:
3573 BUG(); /* wtf */
3574 }
6be4a607 3575 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3576 }
e3421a18 3577
6be4a607 3578 /* disable PCH DPLL */
ee7b9f93 3579 intel_disable_pch_pll(intel_crtc);
8db9d77b 3580
88cefb6c 3581 ironlake_fdi_pll_disable(intel_crtc);
6b383a7f 3582
f7abfe8b 3583 intel_crtc->active = false;
6b383a7f 3584 intel_update_watermarks(dev);
d1ebd816
BW
3585
3586 mutex_lock(&dev->struct_mutex);
6b383a7f 3587 intel_update_fbc(dev);
d1ebd816 3588 mutex_unlock(&dev->struct_mutex);
6be4a607 3589}
1b3c7a47 3590
4f771f10 3591static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 3592{
4f771f10
PZ
3593 struct drm_device *dev = crtc->dev;
3594 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 3595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
3596 struct intel_encoder *encoder;
3597 int pipe = intel_crtc->pipe;
3598 int plane = intel_crtc->plane;
ad80a810 3599 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
83616634 3600 bool is_pch_port;
ee7b9f93 3601
4f771f10
PZ
3602 if (!intel_crtc->active)
3603 return;
3604
83616634
PZ
3605 is_pch_port = haswell_crtc_driving_pch(crtc);
3606
4f771f10
PZ
3607 for_each_encoder_on_crtc(dev, crtc, encoder)
3608 encoder->disable(encoder);
3609
3610 intel_crtc_wait_for_pending_flips(crtc);
3611 drm_vblank_off(dev, pipe);
3612 intel_crtc_update_cursor(crtc, false);
3613
3614 intel_disable_plane(dev_priv, plane, pipe);
3615
3616 if (dev_priv->cfb_plane == plane)
3617 intel_disable_fbc(dev);
3618
3619 intel_disable_pipe(dev_priv, pipe);
3620
ad80a810 3621 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10
PZ
3622
3623 /* Disable PF */
3624 I915_WRITE(PF_CTL(pipe), 0);
3625 I915_WRITE(PF_WIN_SZ(pipe), 0);
3626
1f544388 3627 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10
PZ
3628
3629 for_each_encoder_on_crtc(dev, crtc, encoder)
3630 if (encoder->post_disable)
3631 encoder->post_disable(encoder);
3632
83616634 3633 if (is_pch_port) {
ab4d966c 3634 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 3635 intel_ddi_fdi_disable(crtc);
83616634 3636 }
4f771f10
PZ
3637
3638 intel_crtc->active = false;
3639 intel_update_watermarks(dev);
3640
3641 mutex_lock(&dev->struct_mutex);
3642 intel_update_fbc(dev);
3643 mutex_unlock(&dev->struct_mutex);
3644}
3645
ee7b9f93
JB
3646static void ironlake_crtc_off(struct drm_crtc *crtc)
3647{
3648 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3649 intel_put_pch_pll(intel_crtc);
3650}
3651
6441ab5f
PZ
3652static void haswell_crtc_off(struct drm_crtc *crtc)
3653{
a5c961d1
PZ
3654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3655
3656 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3657 * start using it. */
3658 intel_crtc->cpu_transcoder = intel_crtc->pipe;
3659
6441ab5f
PZ
3660 intel_ddi_put_crtc_pll(crtc);
3661}
3662
02e792fb
DV
3663static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3664{
02e792fb 3665 if (!enable && intel_crtc->overlay) {
23f09ce3 3666 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3667 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3668
23f09ce3 3669 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3670 dev_priv->mm.interruptible = false;
3671 (void) intel_overlay_switch_off(intel_crtc->overlay);
3672 dev_priv->mm.interruptible = true;
23f09ce3 3673 mutex_unlock(&dev->struct_mutex);
02e792fb 3674 }
02e792fb 3675
5dcdbcb0
CW
3676 /* Let userspace switch the overlay on again. In most cases userspace
3677 * has to recompute where to put it anyway.
3678 */
02e792fb
DV
3679}
3680
0b8765c6 3681static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3682{
3683 struct drm_device *dev = crtc->dev;
79e53945
JB
3684 struct drm_i915_private *dev_priv = dev->dev_private;
3685 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3686 struct intel_encoder *encoder;
79e53945 3687 int pipe = intel_crtc->pipe;
80824003 3688 int plane = intel_crtc->plane;
79e53945 3689
08a48469
DV
3690 WARN_ON(!crtc->enabled);
3691
f7abfe8b
CW
3692 if (intel_crtc->active)
3693 return;
3694
3695 intel_crtc->active = true;
6b383a7f
CW
3696 intel_update_watermarks(dev);
3697
63d7bbe9 3698 intel_enable_pll(dev_priv, pipe);
040484af 3699 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3700 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3701
0b8765c6 3702 intel_crtc_load_lut(crtc);
bed4a673 3703 intel_update_fbc(dev);
79e53945 3704
0b8765c6
JB
3705 /* Give the overlay scaler a chance to enable if it's on this pipe */
3706 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3707 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3708
fa5c73b1
DV
3709 for_each_encoder_on_crtc(dev, crtc, encoder)
3710 encoder->enable(encoder);
0b8765c6 3711}
79e53945 3712
0b8765c6
JB
3713static void i9xx_crtc_disable(struct drm_crtc *crtc)
3714{
3715 struct drm_device *dev = crtc->dev;
3716 struct drm_i915_private *dev_priv = dev->dev_private;
3717 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3718 struct intel_encoder *encoder;
0b8765c6
JB
3719 int pipe = intel_crtc->pipe;
3720 int plane = intel_crtc->plane;
b690e96c 3721
ef9c3aee 3722
f7abfe8b
CW
3723 if (!intel_crtc->active)
3724 return;
3725
ea9d758d
DV
3726 for_each_encoder_on_crtc(dev, crtc, encoder)
3727 encoder->disable(encoder);
3728
0b8765c6 3729 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3730 intel_crtc_wait_for_pending_flips(crtc);
3731 drm_vblank_off(dev, pipe);
0b8765c6 3732 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3733 intel_crtc_update_cursor(crtc, false);
0b8765c6 3734
973d04f9
CW
3735 if (dev_priv->cfb_plane == plane)
3736 intel_disable_fbc(dev);
79e53945 3737
b24e7179 3738 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3739 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3740 intel_disable_pll(dev_priv, pipe);
0b8765c6 3741
f7abfe8b 3742 intel_crtc->active = false;
6b383a7f
CW
3743 intel_update_fbc(dev);
3744 intel_update_watermarks(dev);
0b8765c6
JB
3745}
3746
ee7b9f93
JB
3747static void i9xx_crtc_off(struct drm_crtc *crtc)
3748{
3749}
3750
976f8a20
DV
3751static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3752 bool enabled)
2c07245f
ZW
3753{
3754 struct drm_device *dev = crtc->dev;
3755 struct drm_i915_master_private *master_priv;
3756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3757 int pipe = intel_crtc->pipe;
79e53945
JB
3758
3759 if (!dev->primary->master)
3760 return;
3761
3762 master_priv = dev->primary->master->driver_priv;
3763 if (!master_priv->sarea_priv)
3764 return;
3765
79e53945
JB
3766 switch (pipe) {
3767 case 0:
3768 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3769 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3770 break;
3771 case 1:
3772 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3773 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3774 break;
3775 default:
9db4a9c7 3776 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3777 break;
3778 }
79e53945
JB
3779}
3780
976f8a20
DV
3781/**
3782 * Sets the power management mode of the pipe and plane.
3783 */
3784void intel_crtc_update_dpms(struct drm_crtc *crtc)
3785{
3786 struct drm_device *dev = crtc->dev;
3787 struct drm_i915_private *dev_priv = dev->dev_private;
3788 struct intel_encoder *intel_encoder;
3789 bool enable = false;
3790
3791 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3792 enable |= intel_encoder->connectors_active;
3793
3794 if (enable)
3795 dev_priv->display.crtc_enable(crtc);
3796 else
3797 dev_priv->display.crtc_disable(crtc);
3798
3799 intel_crtc_update_sarea(crtc, enable);
3800}
3801
3802static void intel_crtc_noop(struct drm_crtc *crtc)
3803{
3804}
3805
cdd59983
CW
3806static void intel_crtc_disable(struct drm_crtc *crtc)
3807{
cdd59983 3808 struct drm_device *dev = crtc->dev;
976f8a20 3809 struct drm_connector *connector;
ee7b9f93 3810 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 3811
976f8a20
DV
3812 /* crtc should still be enabled when we disable it. */
3813 WARN_ON(!crtc->enabled);
3814
3815 dev_priv->display.crtc_disable(crtc);
3816 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
3817 dev_priv->display.off(crtc);
3818
931872fc
CW
3819 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3820 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
cdd59983
CW
3821
3822 if (crtc->fb) {
3823 mutex_lock(&dev->struct_mutex);
1690e1eb 3824 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
cdd59983 3825 mutex_unlock(&dev->struct_mutex);
976f8a20
DV
3826 crtc->fb = NULL;
3827 }
3828
3829 /* Update computed state. */
3830 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3831 if (!connector->encoder || !connector->encoder->crtc)
3832 continue;
3833
3834 if (connector->encoder->crtc != crtc)
3835 continue;
3836
3837 connector->dpms = DRM_MODE_DPMS_OFF;
3838 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
3839 }
3840}
3841
a261b246 3842void intel_modeset_disable(struct drm_device *dev)
79e53945 3843{
a261b246
DV
3844 struct drm_crtc *crtc;
3845
3846 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3847 if (crtc->enabled)
3848 intel_crtc_disable(crtc);
3849 }
79e53945
JB
3850}
3851
1f703855 3852void intel_encoder_noop(struct drm_encoder *encoder)
79e53945 3853{
7e7d76c3
JB
3854}
3855
ea5b213a 3856void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 3857{
4ef69c7a 3858 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3859
ea5b213a
CW
3860 drm_encoder_cleanup(encoder);
3861 kfree(intel_encoder);
7e7d76c3
JB
3862}
3863
5ab432ef
DV
3864/* Simple dpms helper for encodres with just one connector, no cloning and only
3865 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3866 * state of the entire output pipe. */
3867void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 3868{
5ab432ef
DV
3869 if (mode == DRM_MODE_DPMS_ON) {
3870 encoder->connectors_active = true;
3871
b2cabb0e 3872 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
3873 } else {
3874 encoder->connectors_active = false;
3875
b2cabb0e 3876 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 3877 }
79e53945
JB
3878}
3879
0a91ca29
DV
3880/* Cross check the actual hw state with our own modeset state tracking (and it's
3881 * internal consistency). */
b980514c 3882static void intel_connector_check_state(struct intel_connector *connector)
79e53945 3883{
0a91ca29
DV
3884 if (connector->get_hw_state(connector)) {
3885 struct intel_encoder *encoder = connector->encoder;
3886 struct drm_crtc *crtc;
3887 bool encoder_enabled;
3888 enum pipe pipe;
3889
3890 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3891 connector->base.base.id,
3892 drm_get_connector_name(&connector->base));
3893
3894 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3895 "wrong connector dpms state\n");
3896 WARN(connector->base.encoder != &encoder->base,
3897 "active connector not linked to encoder\n");
3898 WARN(!encoder->connectors_active,
3899 "encoder->connectors_active not set\n");
3900
3901 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3902 WARN(!encoder_enabled, "encoder not enabled\n");
3903 if (WARN_ON(!encoder->base.crtc))
3904 return;
3905
3906 crtc = encoder->base.crtc;
3907
3908 WARN(!crtc->enabled, "crtc not enabled\n");
3909 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3910 WARN(pipe != to_intel_crtc(crtc)->pipe,
3911 "encoder active on the wrong pipe\n");
3912 }
79e53945
JB
3913}
3914
5ab432ef
DV
3915/* Even simpler default implementation, if there's really no special case to
3916 * consider. */
3917void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 3918{
5ab432ef 3919 struct intel_encoder *encoder = intel_attached_encoder(connector);
d4270e57 3920
5ab432ef
DV
3921 /* All the simple cases only support two dpms states. */
3922 if (mode != DRM_MODE_DPMS_ON)
3923 mode = DRM_MODE_DPMS_OFF;
d4270e57 3924
5ab432ef
DV
3925 if (mode == connector->dpms)
3926 return;
3927
3928 connector->dpms = mode;
3929
3930 /* Only need to change hw state when actually enabled */
3931 if (encoder->base.crtc)
3932 intel_encoder_dpms(encoder, mode);
3933 else
8af6cf88 3934 WARN_ON(encoder->connectors_active != false);
0a91ca29 3935
b980514c 3936 intel_modeset_check_state(connector->dev);
79e53945
JB
3937}
3938
f0947c37
DV
3939/* Simple connector->get_hw_state implementation for encoders that support only
3940 * one connector and no cloning and hence the encoder state determines the state
3941 * of the connector. */
3942bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 3943{
24929352 3944 enum pipe pipe = 0;
f0947c37 3945 struct intel_encoder *encoder = connector->encoder;
ea5b213a 3946
f0947c37 3947 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
3948}
3949
79e53945 3950static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
35313cde 3951 const struct drm_display_mode *mode,
79e53945
JB
3952 struct drm_display_mode *adjusted_mode)
3953{
2c07245f 3954 struct drm_device *dev = crtc->dev;
89749350 3955
bad720ff 3956 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3957 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3958 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3959 return false;
2c07245f 3960 }
89749350 3961
f9bef081
DV
3962 /* All interlaced capable intel hw wants timings in frames. Note though
3963 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3964 * timings, so we need to be careful not to clobber these.*/
3965 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3966 drm_mode_set_crtcinfo(adjusted_mode, 0);
89749350 3967
44f46b42
CW
3968 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3969 * with a hsync front porch of 0.
3970 */
3971 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3972 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3973 return false;
3974
79e53945
JB
3975 return true;
3976}
3977
25eb05fc
JB
3978static int valleyview_get_display_clock_speed(struct drm_device *dev)
3979{
3980 return 400000; /* FIXME */
3981}
3982
e70236a8
JB
3983static int i945_get_display_clock_speed(struct drm_device *dev)
3984{
3985 return 400000;
3986}
79e53945 3987
e70236a8 3988static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3989{
e70236a8
JB
3990 return 333000;
3991}
79e53945 3992
e70236a8
JB
3993static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3994{
3995 return 200000;
3996}
79e53945 3997
e70236a8
JB
3998static int i915gm_get_display_clock_speed(struct drm_device *dev)
3999{
4000 u16 gcfgc = 0;
79e53945 4001
e70236a8
JB
4002 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4003
4004 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4005 return 133000;
4006 else {
4007 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4008 case GC_DISPLAY_CLOCK_333_MHZ:
4009 return 333000;
4010 default:
4011 case GC_DISPLAY_CLOCK_190_200_MHZ:
4012 return 190000;
79e53945 4013 }
e70236a8
JB
4014 }
4015}
4016
4017static int i865_get_display_clock_speed(struct drm_device *dev)
4018{
4019 return 266000;
4020}
4021
4022static int i855_get_display_clock_speed(struct drm_device *dev)
4023{
4024 u16 hpllcc = 0;
4025 /* Assume that the hardware is in the high speed state. This
4026 * should be the default.
4027 */
4028 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4029 case GC_CLOCK_133_200:
4030 case GC_CLOCK_100_200:
4031 return 200000;
4032 case GC_CLOCK_166_250:
4033 return 250000;
4034 case GC_CLOCK_100_133:
79e53945 4035 return 133000;
e70236a8 4036 }
79e53945 4037
e70236a8
JB
4038 /* Shouldn't happen */
4039 return 0;
4040}
79e53945 4041
e70236a8
JB
4042static int i830_get_display_clock_speed(struct drm_device *dev)
4043{
4044 return 133000;
79e53945
JB
4045}
4046
2c07245f
ZW
4047struct fdi_m_n {
4048 u32 tu;
4049 u32 gmch_m;
4050 u32 gmch_n;
4051 u32 link_m;
4052 u32 link_n;
4053};
4054
4055static void
4056fdi_reduce_ratio(u32 *num, u32 *den)
4057{
4058 while (*num > 0xffffff || *den > 0xffffff) {
4059 *num >>= 1;
4060 *den >>= 1;
4061 }
4062}
4063
2c07245f 4064static void
f2b115e6
AJ
4065ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4066 int link_clock, struct fdi_m_n *m_n)
2c07245f 4067{
2c07245f
ZW
4068 m_n->tu = 64; /* default size */
4069
22ed1113
CW
4070 /* BUG_ON(pixel_clock > INT_MAX / 36); */
4071 m_n->gmch_m = bits_per_pixel * pixel_clock;
4072 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
4073 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4074
22ed1113
CW
4075 m_n->link_m = pixel_clock;
4076 m_n->link_n = link_clock;
2c07245f
ZW
4077 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4078}
4079
a7615030
CW
4080static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4081{
72bbe58c
KP
4082 if (i915_panel_use_ssc >= 0)
4083 return i915_panel_use_ssc != 0;
4084 return dev_priv->lvds_use_ssc
435793df 4085 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
4086}
4087
5a354204
JB
4088/**
4089 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4090 * @crtc: CRTC structure
3b5c78a3 4091 * @mode: requested mode
5a354204
JB
4092 *
4093 * A pipe may be connected to one or more outputs. Based on the depth of the
4094 * attached framebuffer, choose a good color depth to use on the pipe.
4095 *
4096 * If possible, match the pipe depth to the fb depth. In some cases, this
4097 * isn't ideal, because the connected output supports a lesser or restricted
4098 * set of depths. Resolve that here:
4099 * LVDS typically supports only 6bpc, so clamp down in that case
4100 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4101 * Displays may support a restricted set as well, check EDID and clamp as
4102 * appropriate.
3b5c78a3 4103 * DP may want to dither down to 6bpc to fit larger modes
5a354204
JB
4104 *
4105 * RETURNS:
4106 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4107 * true if they don't match).
4108 */
4109static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
94352cf9 4110 struct drm_framebuffer *fb,
3b5c78a3
AJ
4111 unsigned int *pipe_bpp,
4112 struct drm_display_mode *mode)
5a354204
JB
4113{
4114 struct drm_device *dev = crtc->dev;
4115 struct drm_i915_private *dev_priv = dev->dev_private;
5a354204 4116 struct drm_connector *connector;
6c2b7c12 4117 struct intel_encoder *intel_encoder;
5a354204
JB
4118 unsigned int display_bpc = UINT_MAX, bpc;
4119
4120 /* Walk the encoders & connectors on this crtc, get min bpc */
6c2b7c12 4121 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5a354204
JB
4122
4123 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4124 unsigned int lvds_bpc;
4125
4126 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4127 LVDS_A3_POWER_UP)
4128 lvds_bpc = 8;
4129 else
4130 lvds_bpc = 6;
4131
4132 if (lvds_bpc < display_bpc) {
82820490 4133 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5a354204
JB
4134 display_bpc = lvds_bpc;
4135 }
4136 continue;
4137 }
4138
5a354204
JB
4139 /* Not one of the known troublemakers, check the EDID */
4140 list_for_each_entry(connector, &dev->mode_config.connector_list,
4141 head) {
6c2b7c12 4142 if (connector->encoder != &intel_encoder->base)
5a354204
JB
4143 continue;
4144
62ac41a6
JB
4145 /* Don't use an invalid EDID bpc value */
4146 if (connector->display_info.bpc &&
4147 connector->display_info.bpc < display_bpc) {
82820490 4148 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5a354204
JB
4149 display_bpc = connector->display_info.bpc;
4150 }
4151 }
4152
4153 /*
4154 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4155 * through, clamp it down. (Note: >12bpc will be caught below.)
4156 */
4157 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4158 if (display_bpc > 8 && display_bpc < 12) {
82820490 4159 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5a354204
JB
4160 display_bpc = 12;
4161 } else {
82820490 4162 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5a354204
JB
4163 display_bpc = 8;
4164 }
4165 }
4166 }
4167
3b5c78a3
AJ
4168 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4169 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4170 display_bpc = 6;
4171 }
4172
5a354204
JB
4173 /*
4174 * We could just drive the pipe at the highest bpc all the time and
4175 * enable dithering as needed, but that costs bandwidth. So choose
4176 * the minimum value that expresses the full color range of the fb but
4177 * also stays within the max display bpc discovered above.
4178 */
4179
94352cf9 4180 switch (fb->depth) {
5a354204
JB
4181 case 8:
4182 bpc = 8; /* since we go through a colormap */
4183 break;
4184 case 15:
4185 case 16:
4186 bpc = 6; /* min is 18bpp */
4187 break;
4188 case 24:
578393cd 4189 bpc = 8;
5a354204
JB
4190 break;
4191 case 30:
578393cd 4192 bpc = 10;
5a354204
JB
4193 break;
4194 case 48:
578393cd 4195 bpc = 12;
5a354204
JB
4196 break;
4197 default:
4198 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4199 bpc = min((unsigned int)8, display_bpc);
4200 break;
4201 }
4202
578393cd
KP
4203 display_bpc = min(display_bpc, bpc);
4204
82820490
AJ
4205 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4206 bpc, display_bpc);
5a354204 4207
578393cd 4208 *pipe_bpp = display_bpc * 3;
5a354204
JB
4209
4210 return display_bpc != bpc;
4211}
4212
a0c4da24
JB
4213static int vlv_get_refclk(struct drm_crtc *crtc)
4214{
4215 struct drm_device *dev = crtc->dev;
4216 struct drm_i915_private *dev_priv = dev->dev_private;
4217 int refclk = 27000; /* for DP & HDMI */
4218
4219 return 100000; /* only one validated so far */
4220
4221 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4222 refclk = 96000;
4223 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4224 if (intel_panel_use_ssc(dev_priv))
4225 refclk = 100000;
4226 else
4227 refclk = 96000;
4228 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4229 refclk = 100000;
4230 }
4231
4232 return refclk;
4233}
4234
c65d77d8
JB
4235static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4236{
4237 struct drm_device *dev = crtc->dev;
4238 struct drm_i915_private *dev_priv = dev->dev_private;
4239 int refclk;
4240
a0c4da24
JB
4241 if (IS_VALLEYVIEW(dev)) {
4242 refclk = vlv_get_refclk(crtc);
4243 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8
JB
4244 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4245 refclk = dev_priv->lvds_ssc_freq * 1000;
4246 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4247 refclk / 1000);
4248 } else if (!IS_GEN2(dev)) {
4249 refclk = 96000;
4250 } else {
4251 refclk = 48000;
4252 }
4253
4254 return refclk;
4255}
4256
4257static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4258 intel_clock_t *clock)
4259{
4260 /* SDVO TV has fixed PLL values depend on its clock range,
4261 this mirrors vbios setting. */
4262 if (adjusted_mode->clock >= 100000
4263 && adjusted_mode->clock < 140500) {
4264 clock->p1 = 2;
4265 clock->p2 = 10;
4266 clock->n = 3;
4267 clock->m1 = 16;
4268 clock->m2 = 8;
4269 } else if (adjusted_mode->clock >= 140500
4270 && adjusted_mode->clock <= 200000) {
4271 clock->p1 = 1;
4272 clock->p2 = 10;
4273 clock->n = 6;
4274 clock->m1 = 12;
4275 clock->m2 = 8;
4276 }
4277}
4278
a7516a05
JB
4279static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4280 intel_clock_t *clock,
4281 intel_clock_t *reduced_clock)
4282{
4283 struct drm_device *dev = crtc->dev;
4284 struct drm_i915_private *dev_priv = dev->dev_private;
4285 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4286 int pipe = intel_crtc->pipe;
4287 u32 fp, fp2 = 0;
4288
4289 if (IS_PINEVIEW(dev)) {
4290 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4291 if (reduced_clock)
4292 fp2 = (1 << reduced_clock->n) << 16 |
4293 reduced_clock->m1 << 8 | reduced_clock->m2;
4294 } else {
4295 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4296 if (reduced_clock)
4297 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4298 reduced_clock->m2;
4299 }
4300
4301 I915_WRITE(FP0(pipe), fp);
4302
4303 intel_crtc->lowfreq_avail = false;
4304 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4305 reduced_clock && i915_powersave) {
4306 I915_WRITE(FP1(pipe), fp2);
4307 intel_crtc->lowfreq_avail = true;
4308 } else {
4309 I915_WRITE(FP1(pipe), fp);
4310 }
4311}
4312
93e537a1
DV
4313static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4314 struct drm_display_mode *adjusted_mode)
4315{
4316 struct drm_device *dev = crtc->dev;
4317 struct drm_i915_private *dev_priv = dev->dev_private;
4318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4319 int pipe = intel_crtc->pipe;
284d5df5 4320 u32 temp;
93e537a1
DV
4321
4322 temp = I915_READ(LVDS);
4323 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4324 if (pipe == 1) {
4325 temp |= LVDS_PIPEB_SELECT;
4326 } else {
4327 temp &= ~LVDS_PIPEB_SELECT;
4328 }
4329 /* set the corresponsding LVDS_BORDER bit */
4330 temp |= dev_priv->lvds_border_bits;
4331 /* Set the B0-B3 data pairs corresponding to whether we're going to
4332 * set the DPLLs for dual-channel mode or not.
4333 */
4334 if (clock->p2 == 7)
4335 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4336 else
4337 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4338
4339 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4340 * appropriately here, but we need to look more thoroughly into how
4341 * panels behave in the two modes.
4342 */
4343 /* set the dithering flag on LVDS as needed */
4344 if (INTEL_INFO(dev)->gen >= 4) {
4345 if (dev_priv->lvds_dither)
4346 temp |= LVDS_ENABLE_DITHER;
4347 else
4348 temp &= ~LVDS_ENABLE_DITHER;
4349 }
284d5df5 4350 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
93e537a1 4351 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 4352 temp |= LVDS_HSYNC_POLARITY;
93e537a1 4353 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 4354 temp |= LVDS_VSYNC_POLARITY;
93e537a1
DV
4355 I915_WRITE(LVDS, temp);
4356}
4357
a0c4da24
JB
4358static void vlv_update_pll(struct drm_crtc *crtc,
4359 struct drm_display_mode *mode,
4360 struct drm_display_mode *adjusted_mode,
4361 intel_clock_t *clock, intel_clock_t *reduced_clock,
2a8f64ca 4362 int num_connectors)
a0c4da24
JB
4363{
4364 struct drm_device *dev = crtc->dev;
4365 struct drm_i915_private *dev_priv = dev->dev_private;
4366 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4367 int pipe = intel_crtc->pipe;
4368 u32 dpll, mdiv, pdiv;
4369 u32 bestn, bestm1, bestm2, bestp1, bestp2;
2a8f64ca
VP
4370 bool is_sdvo;
4371 u32 temp;
a0c4da24 4372
2a8f64ca
VP
4373 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4374 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
a0c4da24 4375
2a8f64ca
VP
4376 dpll = DPLL_VGA_MODE_DIS;
4377 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4378 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4379 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4380
4381 I915_WRITE(DPLL(pipe), dpll);
4382 POSTING_READ(DPLL(pipe));
a0c4da24
JB
4383
4384 bestn = clock->n;
4385 bestm1 = clock->m1;
4386 bestm2 = clock->m2;
4387 bestp1 = clock->p1;
4388 bestp2 = clock->p2;
4389
2a8f64ca
VP
4390 /*
4391 * In Valleyview PLL and program lane counter registers are exposed
4392 * through DPIO interface
4393 */
a0c4da24
JB
4394 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4395 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4396 mdiv |= ((bestn << DPIO_N_SHIFT));
4397 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4398 mdiv |= (1 << DPIO_K_SHIFT);
4399 mdiv |= DPIO_ENABLE_CALIBRATION;
4400 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4401
4402 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4403
2a8f64ca 4404 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
a0c4da24 4405 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
2a8f64ca
VP
4406 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4407 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
a0c4da24
JB
4408 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4409
2a8f64ca 4410 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
a0c4da24
JB
4411
4412 dpll |= DPLL_VCO_ENABLE;
4413 I915_WRITE(DPLL(pipe), dpll);
4414 POSTING_READ(DPLL(pipe));
4415 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4416 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4417
2a8f64ca
VP
4418 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4419
4420 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4421 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4422
4423 I915_WRITE(DPLL(pipe), dpll);
4424
4425 /* Wait for the clocks to stabilize. */
4426 POSTING_READ(DPLL(pipe));
4427 udelay(150);
a0c4da24 4428
2a8f64ca
VP
4429 temp = 0;
4430 if (is_sdvo) {
4431 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
a0c4da24
JB
4432 if (temp > 1)
4433 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4434 else
4435 temp = 0;
a0c4da24 4436 }
2a8f64ca
VP
4437 I915_WRITE(DPLL_MD(pipe), temp);
4438 POSTING_READ(DPLL_MD(pipe));
a0c4da24 4439
2a8f64ca
VP
4440 /* Now program lane control registers */
4441 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4442 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4443 {
4444 temp = 0x1000C4;
4445 if(pipe == 1)
4446 temp |= (1 << 21);
4447 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4448 }
4449 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4450 {
4451 temp = 0x1000C4;
4452 if(pipe == 1)
4453 temp |= (1 << 21);
4454 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4455 }
a0c4da24
JB
4456}
4457
eb1cbe48
DV
4458static void i9xx_update_pll(struct drm_crtc *crtc,
4459 struct drm_display_mode *mode,
4460 struct drm_display_mode *adjusted_mode,
4461 intel_clock_t *clock, intel_clock_t *reduced_clock,
4462 int num_connectors)
4463{
4464 struct drm_device *dev = crtc->dev;
4465 struct drm_i915_private *dev_priv = dev->dev_private;
4466 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4467 int pipe = intel_crtc->pipe;
4468 u32 dpll;
4469 bool is_sdvo;
4470
2a8f64ca
VP
4471 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4472
eb1cbe48
DV
4473 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4474 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4475
4476 dpll = DPLL_VGA_MODE_DIS;
4477
4478 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4479 dpll |= DPLLB_MODE_LVDS;
4480 else
4481 dpll |= DPLLB_MODE_DAC_SERIAL;
4482 if (is_sdvo) {
4483 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4484 if (pixel_multiplier > 1) {
4485 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4486 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4487 }
4488 dpll |= DPLL_DVO_HIGH_SPEED;
4489 }
4490 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4491 dpll |= DPLL_DVO_HIGH_SPEED;
4492
4493 /* compute bitmask from p1 value */
4494 if (IS_PINEVIEW(dev))
4495 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4496 else {
4497 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4498 if (IS_G4X(dev) && reduced_clock)
4499 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4500 }
4501 switch (clock->p2) {
4502 case 5:
4503 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4504 break;
4505 case 7:
4506 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4507 break;
4508 case 10:
4509 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4510 break;
4511 case 14:
4512 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4513 break;
4514 }
4515 if (INTEL_INFO(dev)->gen >= 4)
4516 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4517
4518 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4519 dpll |= PLL_REF_INPUT_TVCLKINBC;
4520 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4521 /* XXX: just matching BIOS for now */
4522 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4523 dpll |= 3;
4524 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4525 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4526 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4527 else
4528 dpll |= PLL_REF_INPUT_DREFCLK;
4529
4530 dpll |= DPLL_VCO_ENABLE;
4531 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4532 POSTING_READ(DPLL(pipe));
4533 udelay(150);
4534
4535 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4536 * This is an exception to the general rule that mode_set doesn't turn
4537 * things on.
4538 */
4539 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4540 intel_update_lvds(crtc, clock, adjusted_mode);
4541
4542 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4543 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4544
4545 I915_WRITE(DPLL(pipe), dpll);
4546
4547 /* Wait for the clocks to stabilize. */
4548 POSTING_READ(DPLL(pipe));
4549 udelay(150);
4550
4551 if (INTEL_INFO(dev)->gen >= 4) {
4552 u32 temp = 0;
4553 if (is_sdvo) {
4554 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4555 if (temp > 1)
4556 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4557 else
4558 temp = 0;
4559 }
4560 I915_WRITE(DPLL_MD(pipe), temp);
4561 } else {
4562 /* The pixel multiplier can only be updated once the
4563 * DPLL is enabled and the clocks are stable.
4564 *
4565 * So write it again.
4566 */
4567 I915_WRITE(DPLL(pipe), dpll);
4568 }
4569}
4570
4571static void i8xx_update_pll(struct drm_crtc *crtc,
4572 struct drm_display_mode *adjusted_mode,
2a8f64ca 4573 intel_clock_t *clock, intel_clock_t *reduced_clock,
eb1cbe48
DV
4574 int num_connectors)
4575{
4576 struct drm_device *dev = crtc->dev;
4577 struct drm_i915_private *dev_priv = dev->dev_private;
4578 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4579 int pipe = intel_crtc->pipe;
4580 u32 dpll;
4581
2a8f64ca
VP
4582 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4583
eb1cbe48
DV
4584 dpll = DPLL_VGA_MODE_DIS;
4585
4586 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4587 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4588 } else {
4589 if (clock->p1 == 2)
4590 dpll |= PLL_P1_DIVIDE_BY_TWO;
4591 else
4592 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4593 if (clock->p2 == 4)
4594 dpll |= PLL_P2_DIVIDE_BY_4;
4595 }
4596
4597 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4598 /* XXX: just matching BIOS for now */
4599 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4600 dpll |= 3;
4601 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4602 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4603 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4604 else
4605 dpll |= PLL_REF_INPUT_DREFCLK;
4606
4607 dpll |= DPLL_VCO_ENABLE;
4608 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4609 POSTING_READ(DPLL(pipe));
4610 udelay(150);
4611
eb1cbe48
DV
4612 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4613 * This is an exception to the general rule that mode_set doesn't turn
4614 * things on.
4615 */
4616 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4617 intel_update_lvds(crtc, clock, adjusted_mode);
4618
5b5896e4
DV
4619 I915_WRITE(DPLL(pipe), dpll);
4620
4621 /* Wait for the clocks to stabilize. */
4622 POSTING_READ(DPLL(pipe));
4623 udelay(150);
4624
eb1cbe48
DV
4625 /* The pixel multiplier can only be updated once the
4626 * DPLL is enabled and the clocks are stable.
4627 *
4628 * So write it again.
4629 */
4630 I915_WRITE(DPLL(pipe), dpll);
4631}
4632
b0e77b9c
PZ
4633static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4634 struct drm_display_mode *mode,
4635 struct drm_display_mode *adjusted_mode)
4636{
4637 struct drm_device *dev = intel_crtc->base.dev;
4638 struct drm_i915_private *dev_priv = dev->dev_private;
4639 enum pipe pipe = intel_crtc->pipe;
fe2b8f9d 4640 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
b0e77b9c
PZ
4641 uint32_t vsyncshift;
4642
4643 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4644 /* the chip adds 2 halflines automatically */
4645 adjusted_mode->crtc_vtotal -= 1;
4646 adjusted_mode->crtc_vblank_end -= 1;
4647 vsyncshift = adjusted_mode->crtc_hsync_start
4648 - adjusted_mode->crtc_htotal / 2;
4649 } else {
4650 vsyncshift = 0;
4651 }
4652
4653 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 4654 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 4655
fe2b8f9d 4656 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
4657 (adjusted_mode->crtc_hdisplay - 1) |
4658 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 4659 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
4660 (adjusted_mode->crtc_hblank_start - 1) |
4661 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 4662 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
4663 (adjusted_mode->crtc_hsync_start - 1) |
4664 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4665
fe2b8f9d 4666 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c
PZ
4667 (adjusted_mode->crtc_vdisplay - 1) |
4668 ((adjusted_mode->crtc_vtotal - 1) << 16));
fe2b8f9d 4669 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c
PZ
4670 (adjusted_mode->crtc_vblank_start - 1) |
4671 ((adjusted_mode->crtc_vblank_end - 1) << 16));
fe2b8f9d 4672 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
4673 (adjusted_mode->crtc_vsync_start - 1) |
4674 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4675
b5e508d4
PZ
4676 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4677 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4678 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4679 * bits. */
4680 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4681 (pipe == PIPE_B || pipe == PIPE_C))
4682 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4683
b0e77b9c
PZ
4684 /* pipesrc controls the size that is scaled from, which should
4685 * always be the user's requested size.
4686 */
4687 I915_WRITE(PIPESRC(pipe),
4688 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4689}
4690
f564048e
EA
4691static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4692 struct drm_display_mode *mode,
4693 struct drm_display_mode *adjusted_mode,
4694 int x, int y,
94352cf9 4695 struct drm_framebuffer *fb)
79e53945
JB
4696{
4697 struct drm_device *dev = crtc->dev;
4698 struct drm_i915_private *dev_priv = dev->dev_private;
4699 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4700 int pipe = intel_crtc->pipe;
80824003 4701 int plane = intel_crtc->plane;
c751ce4f 4702 int refclk, num_connectors = 0;
652c393a 4703 intel_clock_t clock, reduced_clock;
b0e77b9c 4704 u32 dspcntr, pipeconf;
eb1cbe48
DV
4705 bool ok, has_reduced_clock = false, is_sdvo = false;
4706 bool is_lvds = false, is_tv = false, is_dp = false;
5eddb70b 4707 struct intel_encoder *encoder;
d4906093 4708 const intel_limit_t *limit;
5c3b82e2 4709 int ret;
79e53945 4710
6c2b7c12 4711 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 4712 switch (encoder->type) {
79e53945
JB
4713 case INTEL_OUTPUT_LVDS:
4714 is_lvds = true;
4715 break;
4716 case INTEL_OUTPUT_SDVO:
7d57382e 4717 case INTEL_OUTPUT_HDMI:
79e53945 4718 is_sdvo = true;
5eddb70b 4719 if (encoder->needs_tv_clock)
e2f0ba97 4720 is_tv = true;
79e53945 4721 break;
79e53945
JB
4722 case INTEL_OUTPUT_TVOUT:
4723 is_tv = true;
4724 break;
a4fc5ed6
KP
4725 case INTEL_OUTPUT_DISPLAYPORT:
4726 is_dp = true;
4727 break;
79e53945 4728 }
43565a06 4729
c751ce4f 4730 num_connectors++;
79e53945
JB
4731 }
4732
c65d77d8 4733 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 4734
d4906093
ML
4735 /*
4736 * Returns a set of divisors for the desired target clock with the given
4737 * refclk, or FALSE. The returned values represent the clock equation:
4738 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4739 */
1b894b59 4740 limit = intel_limit(crtc, refclk);
cec2f356
SP
4741 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4742 &clock);
79e53945
JB
4743 if (!ok) {
4744 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4745 return -EINVAL;
79e53945
JB
4746 }
4747
cda4b7d3 4748 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4749 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4750
ddc9003c 4751 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
4752 /*
4753 * Ensure we match the reduced clock's P to the target clock.
4754 * If the clocks don't match, we can't switch the display clock
4755 * by using the FP0/FP1. In such case we will disable the LVDS
4756 * downclock feature.
4757 */
ddc9003c 4758 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
4759 dev_priv->lvds_downclock,
4760 refclk,
cec2f356 4761 &clock,
5eddb70b 4762 &reduced_clock);
7026d4ac
ZW
4763 }
4764
c65d77d8
JB
4765 if (is_sdvo && is_tv)
4766 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
7026d4ac 4767
eb1cbe48 4768 if (IS_GEN2(dev))
2a8f64ca
VP
4769 i8xx_update_pll(crtc, adjusted_mode, &clock,
4770 has_reduced_clock ? &reduced_clock : NULL,
4771 num_connectors);
a0c4da24 4772 else if (IS_VALLEYVIEW(dev))
2a8f64ca
VP
4773 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4774 has_reduced_clock ? &reduced_clock : NULL,
4775 num_connectors);
79e53945 4776 else
eb1cbe48
DV
4777 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4778 has_reduced_clock ? &reduced_clock : NULL,
4779 num_connectors);
79e53945
JB
4780
4781 /* setup pipeconf */
5eddb70b 4782 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
4783
4784 /* Set up the display plane register */
4785 dspcntr = DISPPLANE_GAMMA_ENABLE;
4786
929c77fb
EA
4787 if (pipe == 0)
4788 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4789 else
4790 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 4791
a6c45cf0 4792 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
4793 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4794 * core speed.
4795 *
4796 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4797 * pipe == 0 check?
4798 */
e70236a8
JB
4799 if (mode->clock >
4800 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 4801 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 4802 else
5eddb70b 4803 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
4804 }
4805
3b5c78a3
AJ
4806 /* default to 8bpc */
4807 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4808 if (is_dp) {
0c96c65b 4809 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3b5c78a3
AJ
4810 pipeconf |= PIPECONF_BPP_6 |
4811 PIPECONF_DITHER_EN |
4812 PIPECONF_DITHER_TYPE_SP;
4813 }
4814 }
4815
19c03924
GB
4816 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4817 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4818 pipeconf |= PIPECONF_BPP_6 |
4819 PIPECONF_ENABLE |
4820 I965_PIPECONF_ACTIVE;
4821 }
4822 }
4823
28c97730 4824 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
4825 drm_mode_debug_printmodeline(mode);
4826
a7516a05
JB
4827 if (HAS_PIPE_CXSR(dev)) {
4828 if (intel_crtc->lowfreq_avail) {
28c97730 4829 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a 4830 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
a7516a05 4831 } else {
28c97730 4832 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
4833 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4834 }
4835 }
4836
617cf884 4837 pipeconf &= ~PIPECONF_INTERLACE_MASK;
dbb02575 4838 if (!IS_GEN2(dev) &&
b0e77b9c 4839 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
734b4157 4840 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
b0e77b9c 4841 else
617cf884 4842 pipeconf |= PIPECONF_PROGRESSIVE;
734b4157 4843
b0e77b9c 4844 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5eddb70b
CW
4845
4846 /* pipesrc and dspsize control the size that is scaled from,
4847 * which should always be the user's requested size.
79e53945 4848 */
929c77fb
EA
4849 I915_WRITE(DSPSIZE(plane),
4850 ((mode->vdisplay - 1) << 16) |
4851 (mode->hdisplay - 1));
4852 I915_WRITE(DSPPOS(plane), 0);
2c07245f 4853
f564048e
EA
4854 I915_WRITE(PIPECONF(pipe), pipeconf);
4855 POSTING_READ(PIPECONF(pipe));
929c77fb 4856 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
4857
4858 intel_wait_for_vblank(dev, pipe);
4859
f564048e
EA
4860 I915_WRITE(DSPCNTR(plane), dspcntr);
4861 POSTING_READ(DSPCNTR(plane));
4862
94352cf9 4863 ret = intel_pipe_set_base(crtc, x, y, fb);
f564048e
EA
4864
4865 intel_update_watermarks(dev);
4866
f564048e
EA
4867 return ret;
4868}
4869
9fb526db
KP
4870/*
4871 * Initialize reference clocks when the driver loads
4872 */
4873void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
4874{
4875 struct drm_i915_private *dev_priv = dev->dev_private;
4876 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 4877 struct intel_encoder *encoder;
13d83a67
JB
4878 u32 temp;
4879 bool has_lvds = false;
199e5d79
KP
4880 bool has_cpu_edp = false;
4881 bool has_pch_edp = false;
4882 bool has_panel = false;
99eb6a01
KP
4883 bool has_ck505 = false;
4884 bool can_ssc = false;
13d83a67
JB
4885
4886 /* We need to take the global config into account */
199e5d79
KP
4887 list_for_each_entry(encoder, &mode_config->encoder_list,
4888 base.head) {
4889 switch (encoder->type) {
4890 case INTEL_OUTPUT_LVDS:
4891 has_panel = true;
4892 has_lvds = true;
4893 break;
4894 case INTEL_OUTPUT_EDP:
4895 has_panel = true;
4896 if (intel_encoder_is_pch_edp(&encoder->base))
4897 has_pch_edp = true;
4898 else
4899 has_cpu_edp = true;
4900 break;
13d83a67
JB
4901 }
4902 }
4903
99eb6a01
KP
4904 if (HAS_PCH_IBX(dev)) {
4905 has_ck505 = dev_priv->display_clock_mode;
4906 can_ssc = has_ck505;
4907 } else {
4908 has_ck505 = false;
4909 can_ssc = true;
4910 }
4911
4912 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4913 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4914 has_ck505);
13d83a67
JB
4915
4916 /* Ironlake: try to setup display ref clock before DPLL
4917 * enabling. This is only under driver's control after
4918 * PCH B stepping, previous chipset stepping should be
4919 * ignoring this setting.
4920 */
4921 temp = I915_READ(PCH_DREF_CONTROL);
4922 /* Always enable nonspread source */
4923 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 4924
99eb6a01
KP
4925 if (has_ck505)
4926 temp |= DREF_NONSPREAD_CK505_ENABLE;
4927 else
4928 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 4929
199e5d79
KP
4930 if (has_panel) {
4931 temp &= ~DREF_SSC_SOURCE_MASK;
4932 temp |= DREF_SSC_SOURCE_ENABLE;
13d83a67 4933
199e5d79 4934 /* SSC must be turned on before enabling the CPU output */
99eb6a01 4935 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4936 DRM_DEBUG_KMS("Using SSC on panel\n");
13d83a67 4937 temp |= DREF_SSC1_ENABLE;
e77166b5
DV
4938 } else
4939 temp &= ~DREF_SSC1_ENABLE;
199e5d79
KP
4940
4941 /* Get SSC going before enabling the outputs */
4942 I915_WRITE(PCH_DREF_CONTROL, temp);
4943 POSTING_READ(PCH_DREF_CONTROL);
4944 udelay(200);
4945
13d83a67
JB
4946 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4947
4948 /* Enable CPU source on CPU attached eDP */
199e5d79 4949 if (has_cpu_edp) {
99eb6a01 4950 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4951 DRM_DEBUG_KMS("Using SSC on eDP\n");
13d83a67 4952 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
199e5d79 4953 }
13d83a67
JB
4954 else
4955 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79
KP
4956 } else
4957 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4958
4959 I915_WRITE(PCH_DREF_CONTROL, temp);
4960 POSTING_READ(PCH_DREF_CONTROL);
4961 udelay(200);
4962 } else {
4963 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4964
4965 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4966
4967 /* Turn off CPU output */
4968 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4969
4970 I915_WRITE(PCH_DREF_CONTROL, temp);
4971 POSTING_READ(PCH_DREF_CONTROL);
4972 udelay(200);
4973
4974 /* Turn off the SSC source */
4975 temp &= ~DREF_SSC_SOURCE_MASK;
4976 temp |= DREF_SSC_SOURCE_DISABLE;
4977
4978 /* Turn off SSC1 */
4979 temp &= ~ DREF_SSC1_ENABLE;
4980
13d83a67
JB
4981 I915_WRITE(PCH_DREF_CONTROL, temp);
4982 POSTING_READ(PCH_DREF_CONTROL);
4983 udelay(200);
4984 }
4985}
4986
d9d444cb
JB
4987static int ironlake_get_refclk(struct drm_crtc *crtc)
4988{
4989 struct drm_device *dev = crtc->dev;
4990 struct drm_i915_private *dev_priv = dev->dev_private;
4991 struct intel_encoder *encoder;
d9d444cb
JB
4992 struct intel_encoder *edp_encoder = NULL;
4993 int num_connectors = 0;
4994 bool is_lvds = false;
4995
6c2b7c12 4996 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
4997 switch (encoder->type) {
4998 case INTEL_OUTPUT_LVDS:
4999 is_lvds = true;
5000 break;
5001 case INTEL_OUTPUT_EDP:
5002 edp_encoder = encoder;
5003 break;
5004 }
5005 num_connectors++;
5006 }
5007
5008 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5009 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5010 dev_priv->lvds_ssc_freq);
5011 return dev_priv->lvds_ssc_freq * 1000;
5012 }
5013
5014 return 120000;
5015}
5016
c8203565 5017static void ironlake_set_pipeconf(struct drm_crtc *crtc,
f564048e 5018 struct drm_display_mode *adjusted_mode,
c8203565 5019 bool dither)
79e53945 5020{
c8203565 5021 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
5022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5023 int pipe = intel_crtc->pipe;
c8203565
PZ
5024 uint32_t val;
5025
5026 val = I915_READ(PIPECONF(pipe));
5027
5028 val &= ~PIPE_BPC_MASK;
5029 switch (intel_crtc->bpp) {
5030 case 18:
5031 val |= PIPE_6BPC;
5032 break;
5033 case 24:
5034 val |= PIPE_8BPC;
5035 break;
5036 case 30:
5037 val |= PIPE_10BPC;
5038 break;
5039 case 36:
5040 val |= PIPE_12BPC;
5041 break;
5042 default:
cc769b62
PZ
5043 /* Case prevented by intel_choose_pipe_bpp_dither. */
5044 BUG();
c8203565
PZ
5045 }
5046
5047 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5048 if (dither)
5049 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5050
5051 val &= ~PIPECONF_INTERLACE_MASK;
5052 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5053 val |= PIPECONF_INTERLACED_ILK;
5054 else
5055 val |= PIPECONF_PROGRESSIVE;
5056
5057 I915_WRITE(PIPECONF(pipe), val);
5058 POSTING_READ(PIPECONF(pipe));
5059}
5060
ee2b0b38
PZ
5061static void haswell_set_pipeconf(struct drm_crtc *crtc,
5062 struct drm_display_mode *adjusted_mode,
5063 bool dither)
5064{
5065 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5066 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
702e7a56 5067 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
ee2b0b38
PZ
5068 uint32_t val;
5069
702e7a56 5070 val = I915_READ(PIPECONF(cpu_transcoder));
ee2b0b38
PZ
5071
5072 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5073 if (dither)
5074 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5075
5076 val &= ~PIPECONF_INTERLACE_MASK_HSW;
5077 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5078 val |= PIPECONF_INTERLACED_ILK;
5079 else
5080 val |= PIPECONF_PROGRESSIVE;
5081
702e7a56
PZ
5082 I915_WRITE(PIPECONF(cpu_transcoder), val);
5083 POSTING_READ(PIPECONF(cpu_transcoder));
ee2b0b38
PZ
5084}
5085
6591c6e4
PZ
5086static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5087 struct drm_display_mode *adjusted_mode,
5088 intel_clock_t *clock,
5089 bool *has_reduced_clock,
5090 intel_clock_t *reduced_clock)
5091{
5092 struct drm_device *dev = crtc->dev;
5093 struct drm_i915_private *dev_priv = dev->dev_private;
5094 struct intel_encoder *intel_encoder;
5095 int refclk;
d4906093 5096 const intel_limit_t *limit;
6591c6e4 5097 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
79e53945 5098
6591c6e4
PZ
5099 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5100 switch (intel_encoder->type) {
79e53945
JB
5101 case INTEL_OUTPUT_LVDS:
5102 is_lvds = true;
5103 break;
5104 case INTEL_OUTPUT_SDVO:
7d57382e 5105 case INTEL_OUTPUT_HDMI:
79e53945 5106 is_sdvo = true;
6591c6e4 5107 if (intel_encoder->needs_tv_clock)
e2f0ba97 5108 is_tv = true;
79e53945 5109 break;
79e53945
JB
5110 case INTEL_OUTPUT_TVOUT:
5111 is_tv = true;
5112 break;
79e53945
JB
5113 }
5114 }
5115
d9d444cb 5116 refclk = ironlake_get_refclk(crtc);
79e53945 5117
d4906093
ML
5118 /*
5119 * Returns a set of divisors for the desired target clock with the given
5120 * refclk, or FALSE. The returned values represent the clock equation:
5121 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5122 */
1b894b59 5123 limit = intel_limit(crtc, refclk);
6591c6e4
PZ
5124 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5125 clock);
5126 if (!ret)
5127 return false;
cda4b7d3 5128
ddc9003c 5129 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
5130 /*
5131 * Ensure we match the reduced clock's P to the target clock.
5132 * If the clocks don't match, we can't switch the display clock
5133 * by using the FP0/FP1. In such case we will disable the LVDS
5134 * downclock feature.
5135 */
6591c6e4
PZ
5136 *has_reduced_clock = limit->find_pll(limit, crtc,
5137 dev_priv->lvds_downclock,
5138 refclk,
5139 clock,
5140 reduced_clock);
652c393a 5141 }
61e9653f
DV
5142
5143 if (is_sdvo && is_tv)
6591c6e4
PZ
5144 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5145
5146 return true;
5147}
5148
01a415fd
DV
5149static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5150{
5151 struct drm_i915_private *dev_priv = dev->dev_private;
5152 uint32_t temp;
5153
5154 temp = I915_READ(SOUTH_CHICKEN1);
5155 if (temp & FDI_BC_BIFURCATION_SELECT)
5156 return;
5157
5158 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5159 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5160
5161 temp |= FDI_BC_BIFURCATION_SELECT;
5162 DRM_DEBUG_KMS("enabling fdi C rx\n");
5163 I915_WRITE(SOUTH_CHICKEN1, temp);
5164 POSTING_READ(SOUTH_CHICKEN1);
5165}
5166
5167static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5168{
5169 struct drm_device *dev = intel_crtc->base.dev;
5170 struct drm_i915_private *dev_priv = dev->dev_private;
5171 struct intel_crtc *pipe_B_crtc =
5172 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5173
5174 DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5175 intel_crtc->pipe, intel_crtc->fdi_lanes);
5176 if (intel_crtc->fdi_lanes > 4) {
5177 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5178 intel_crtc->pipe, intel_crtc->fdi_lanes);
5179 /* Clamp lanes to avoid programming the hw with bogus values. */
5180 intel_crtc->fdi_lanes = 4;
5181
5182 return false;
5183 }
5184
5185 if (dev_priv->num_pipe == 2)
5186 return true;
5187
5188 switch (intel_crtc->pipe) {
5189 case PIPE_A:
5190 return true;
5191 case PIPE_B:
5192 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5193 intel_crtc->fdi_lanes > 2) {
5194 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5195 intel_crtc->pipe, intel_crtc->fdi_lanes);
5196 /* Clamp lanes to avoid programming the hw with bogus values. */
5197 intel_crtc->fdi_lanes = 2;
5198
5199 return false;
5200 }
5201
5202 if (intel_crtc->fdi_lanes > 2)
5203 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5204 else
5205 cpt_enable_fdi_bc_bifurcation(dev);
5206
5207 return true;
5208 case PIPE_C:
5209 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5210 if (intel_crtc->fdi_lanes > 2) {
5211 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5212 intel_crtc->pipe, intel_crtc->fdi_lanes);
5213 /* Clamp lanes to avoid programming the hw with bogus values. */
5214 intel_crtc->fdi_lanes = 2;
5215
5216 return false;
5217 }
5218 } else {
5219 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5220 return false;
5221 }
5222
5223 cpt_enable_fdi_bc_bifurcation(dev);
5224
5225 return true;
5226 default:
5227 BUG();
5228 }
5229}
5230
d4b1931c
PZ
5231int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5232{
5233 /*
5234 * Account for spread spectrum to avoid
5235 * oversubscribing the link. Max center spread
5236 * is 2.5%; use 5% for safety's sake.
5237 */
5238 u32 bps = target_clock * bpp * 21 / 20;
5239 return bps / (link_bw * 8) + 1;
5240}
5241
f48d8f23
PZ
5242static void ironlake_set_m_n(struct drm_crtc *crtc,
5243 struct drm_display_mode *mode,
5244 struct drm_display_mode *adjusted_mode)
79e53945
JB
5245{
5246 struct drm_device *dev = crtc->dev;
5247 struct drm_i915_private *dev_priv = dev->dev_private;
5248 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
afe2fcf5 5249 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
f48d8f23 5250 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
2c07245f 5251 struct fdi_m_n m_n = {0};
f48d8f23
PZ
5252 int target_clock, pixel_multiplier, lane, link_bw;
5253 bool is_dp = false, is_cpu_edp = false;
79e53945 5254
f48d8f23
PZ
5255 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5256 switch (intel_encoder->type) {
a4fc5ed6
KP
5257 case INTEL_OUTPUT_DISPLAYPORT:
5258 is_dp = true;
5259 break;
32f9d658 5260 case INTEL_OUTPUT_EDP:
e3aef172 5261 is_dp = true;
f48d8f23 5262 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
e3aef172 5263 is_cpu_edp = true;
f48d8f23 5264 edp_encoder = intel_encoder;
32f9d658 5265 break;
79e53945 5266 }
79e53945 5267 }
61e9653f 5268
2c07245f 5269 /* FDI link */
8febb297
EA
5270 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5271 lane = 0;
5272 /* CPU eDP doesn't require FDI link, so just set DP M/N
5273 according to current link config */
e3aef172 5274 if (is_cpu_edp) {
e3aef172 5275 intel_edp_link_config(edp_encoder, &lane, &link_bw);
8febb297 5276 } else {
8febb297
EA
5277 /* FDI is a binary signal running at ~2.7GHz, encoding
5278 * each output octet as 10 bits. The actual frequency
5279 * is stored as a divider into a 100MHz clock, and the
5280 * mode pixel clock is stored in units of 1KHz.
5281 * Hence the bw of each lane in terms of the mode signal
5282 * is:
5283 */
5284 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5285 }
58a27471 5286
94bf2ced
DV
5287 /* [e]DP over FDI requires target mode clock instead of link clock. */
5288 if (edp_encoder)
5289 target_clock = intel_edp_target_clock(edp_encoder, mode);
5290 else if (is_dp)
5291 target_clock = mode->clock;
5292 else
5293 target_clock = adjusted_mode->clock;
5294
d4b1931c
PZ
5295 if (!lane)
5296 lane = ironlake_get_lanes_required(target_clock, link_bw,
5297 intel_crtc->bpp);
2c07245f 5298
8febb297
EA
5299 intel_crtc->fdi_lanes = lane;
5300
5301 if (pixel_multiplier > 1)
5302 link_bw *= pixel_multiplier;
5a354204
JB
5303 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5304 &m_n);
8febb297 5305
afe2fcf5
PZ
5306 I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5307 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5308 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5309 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
f48d8f23
PZ
5310}
5311
de13a2e3
PZ
5312static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5313 struct drm_display_mode *adjusted_mode,
5314 intel_clock_t *clock, u32 fp)
79e53945 5315{
de13a2e3 5316 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
5317 struct drm_device *dev = crtc->dev;
5318 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
5319 struct intel_encoder *intel_encoder;
5320 uint32_t dpll;
5321 int factor, pixel_multiplier, num_connectors = 0;
5322 bool is_lvds = false, is_sdvo = false, is_tv = false;
5323 bool is_dp = false, is_cpu_edp = false;
79e53945 5324
de13a2e3
PZ
5325 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5326 switch (intel_encoder->type) {
79e53945
JB
5327 case INTEL_OUTPUT_LVDS:
5328 is_lvds = true;
5329 break;
5330 case INTEL_OUTPUT_SDVO:
7d57382e 5331 case INTEL_OUTPUT_HDMI:
79e53945 5332 is_sdvo = true;
de13a2e3 5333 if (intel_encoder->needs_tv_clock)
e2f0ba97 5334 is_tv = true;
79e53945 5335 break;
79e53945
JB
5336 case INTEL_OUTPUT_TVOUT:
5337 is_tv = true;
5338 break;
a4fc5ed6
KP
5339 case INTEL_OUTPUT_DISPLAYPORT:
5340 is_dp = true;
5341 break;
32f9d658 5342 case INTEL_OUTPUT_EDP:
e3aef172 5343 is_dp = true;
de13a2e3 5344 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
e3aef172 5345 is_cpu_edp = true;
32f9d658 5346 break;
79e53945 5347 }
43565a06 5348
c751ce4f 5349 num_connectors++;
79e53945 5350 }
79e53945 5351
c1858123 5352 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
5353 factor = 21;
5354 if (is_lvds) {
5355 if ((intel_panel_use_ssc(dev_priv) &&
5356 dev_priv->lvds_ssc_freq == 100) ||
5357 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5358 factor = 25;
5359 } else if (is_sdvo && is_tv)
5360 factor = 20;
c1858123 5361
de13a2e3 5362 if (clock->m < factor * clock->n)
8febb297 5363 fp |= FP_CB_TUNE;
2c07245f 5364
5eddb70b 5365 dpll = 0;
2c07245f 5366
a07d6787
EA
5367 if (is_lvds)
5368 dpll |= DPLLB_MODE_LVDS;
5369 else
5370 dpll |= DPLLB_MODE_DAC_SERIAL;
5371 if (is_sdvo) {
de13a2e3 5372 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
a07d6787
EA
5373 if (pixel_multiplier > 1) {
5374 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 5375 }
a07d6787
EA
5376 dpll |= DPLL_DVO_HIGH_SPEED;
5377 }
e3aef172 5378 if (is_dp && !is_cpu_edp)
a07d6787 5379 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 5380
a07d6787 5381 /* compute bitmask from p1 value */
de13a2e3 5382 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 5383 /* also FPA1 */
de13a2e3 5384 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 5385
de13a2e3 5386 switch (clock->p2) {
a07d6787
EA
5387 case 5:
5388 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5389 break;
5390 case 7:
5391 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5392 break;
5393 case 10:
5394 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5395 break;
5396 case 14:
5397 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5398 break;
79e53945
JB
5399 }
5400
43565a06
KH
5401 if (is_sdvo && is_tv)
5402 dpll |= PLL_REF_INPUT_TVCLKINBC;
5403 else if (is_tv)
79e53945 5404 /* XXX: just matching BIOS for now */
43565a06 5405 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5406 dpll |= 3;
a7615030 5407 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5408 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5409 else
5410 dpll |= PLL_REF_INPUT_DREFCLK;
5411
de13a2e3
PZ
5412 return dpll;
5413}
5414
5415static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5416 struct drm_display_mode *mode,
5417 struct drm_display_mode *adjusted_mode,
5418 int x, int y,
5419 struct drm_framebuffer *fb)
5420{
5421 struct drm_device *dev = crtc->dev;
5422 struct drm_i915_private *dev_priv = dev->dev_private;
5423 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5424 int pipe = intel_crtc->pipe;
5425 int plane = intel_crtc->plane;
5426 int num_connectors = 0;
5427 intel_clock_t clock, reduced_clock;
5428 u32 dpll, fp = 0, fp2 = 0;
e2f12b07
PZ
5429 bool ok, has_reduced_clock = false;
5430 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
de13a2e3
PZ
5431 struct intel_encoder *encoder;
5432 u32 temp;
5433 int ret;
01a415fd 5434 bool dither, fdi_config_ok;
de13a2e3
PZ
5435
5436 for_each_encoder_on_crtc(dev, crtc, encoder) {
5437 switch (encoder->type) {
5438 case INTEL_OUTPUT_LVDS:
5439 is_lvds = true;
5440 break;
de13a2e3
PZ
5441 case INTEL_OUTPUT_DISPLAYPORT:
5442 is_dp = true;
5443 break;
5444 case INTEL_OUTPUT_EDP:
5445 is_dp = true;
e2f12b07 5446 if (!intel_encoder_is_pch_edp(&encoder->base))
de13a2e3
PZ
5447 is_cpu_edp = true;
5448 break;
5449 }
5450
5451 num_connectors++;
a07d6787 5452 }
79e53945 5453
5dc5298b
PZ
5454 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5455 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 5456
de13a2e3
PZ
5457 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5458 &has_reduced_clock, &reduced_clock);
5459 if (!ok) {
5460 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5461 return -EINVAL;
79e53945
JB
5462 }
5463
de13a2e3
PZ
5464 /* Ensure that the cursor is valid for the new mode before changing... */
5465 intel_crtc_update_cursor(crtc, true);
5466
5467 /* determine panel color depth */
c8241969
JN
5468 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5469 adjusted_mode);
de13a2e3
PZ
5470 if (is_lvds && dev_priv->lvds_dither)
5471 dither = true;
5472
5473 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5474 if (has_reduced_clock)
5475 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5476 reduced_clock.m2;
5477
5478 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
79e53945 5479
f7cb34d4 5480 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
79e53945
JB
5481 drm_mode_debug_printmodeline(mode);
5482
5dc5298b
PZ
5483 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5484 if (!is_cpu_edp) {
ee7b9f93 5485 struct intel_pch_pll *pll;
4b645f14 5486
ee7b9f93
JB
5487 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5488 if (pll == NULL) {
5489 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5490 pipe);
4b645f14
JB
5491 return -EINVAL;
5492 }
ee7b9f93
JB
5493 } else
5494 intel_put_pch_pll(intel_crtc);
79e53945
JB
5495
5496 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5497 * This is an exception to the general rule that mode_set doesn't turn
5498 * things on.
5499 */
5500 if (is_lvds) {
fae14981 5501 temp = I915_READ(PCH_LVDS);
5eddb70b 5502 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
7885d205
JB
5503 if (HAS_PCH_CPT(dev)) {
5504 temp &= ~PORT_TRANS_SEL_MASK;
4b645f14 5505 temp |= PORT_TRANS_SEL_CPT(pipe);
7885d205
JB
5506 } else {
5507 if (pipe == 1)
5508 temp |= LVDS_PIPEB_SELECT;
5509 else
5510 temp &= ~LVDS_PIPEB_SELECT;
5511 }
4b645f14 5512
a3e17eb8 5513 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5514 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5515 /* Set the B0-B3 data pairs corresponding to whether we're going to
5516 * set the DPLLs for dual-channel mode or not.
5517 */
5518 if (clock.p2 == 7)
5eddb70b 5519 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5520 else
5eddb70b 5521 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5522
5523 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5524 * appropriately here, but we need to look more thoroughly into how
5525 * panels behave in the two modes.
5526 */
284d5df5 5527 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
aa9b500d 5528 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 5529 temp |= LVDS_HSYNC_POLARITY;
aa9b500d 5530 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 5531 temp |= LVDS_VSYNC_POLARITY;
fae14981 5532 I915_WRITE(PCH_LVDS, temp);
79e53945 5533 }
434ed097 5534
e3aef172 5535 if (is_dp && !is_cpu_edp) {
a4fc5ed6 5536 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5537 } else {
8db9d77b 5538 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5539 I915_WRITE(TRANSDATA_M1(pipe), 0);
5540 I915_WRITE(TRANSDATA_N1(pipe), 0);
5541 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5542 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5543 }
79e53945 5544
ee7b9f93
JB
5545 if (intel_crtc->pch_pll) {
5546 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5eddb70b 5547
32f9d658 5548 /* Wait for the clocks to stabilize. */
ee7b9f93 5549 POSTING_READ(intel_crtc->pch_pll->pll_reg);
32f9d658
ZW
5550 udelay(150);
5551
8febb297
EA
5552 /* The pixel multiplier can only be updated once the
5553 * DPLL is enabled and the clocks are stable.
5554 *
5555 * So write it again.
5556 */
ee7b9f93 5557 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
79e53945 5558 }
79e53945 5559
5eddb70b 5560 intel_crtc->lowfreq_avail = false;
ee7b9f93 5561 if (intel_crtc->pch_pll) {
4b645f14 5562 if (is_lvds && has_reduced_clock && i915_powersave) {
ee7b9f93 5563 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4b645f14 5564 intel_crtc->lowfreq_avail = true;
4b645f14 5565 } else {
ee7b9f93 5566 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
652c393a
JB
5567 }
5568 }
5569
b0e77b9c 5570 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5eddb70b 5571
01a415fd
DV
5572 /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5573 * ironlake_check_fdi_lanes. */
f48d8f23 5574 ironlake_set_m_n(crtc, mode, adjusted_mode);
2c07245f 5575
01a415fd 5576 fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
2c07245f 5577
e3aef172 5578 if (is_cpu_edp)
8febb297 5579 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f 5580
c8203565 5581 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
79e53945 5582
9d0498a2 5583 intel_wait_for_vblank(dev, pipe);
79e53945 5584
a1f9e77e
PZ
5585 /* Set up the display plane register */
5586 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
b24e7179 5587 POSTING_READ(DSPCNTR(plane));
79e53945 5588
94352cf9 5589 ret = intel_pipe_set_base(crtc, x, y, fb);
7662c8bd
SL
5590
5591 intel_update_watermarks(dev);
5592
1f8eeabf
ED
5593 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5594
01a415fd 5595 return fdi_config_ok ? ret : -EINVAL;
79e53945
JB
5596}
5597
09b4ddf9
PZ
5598static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5599 struct drm_display_mode *mode,
5600 struct drm_display_mode *adjusted_mode,
5601 int x, int y,
5602 struct drm_framebuffer *fb)
5603{
5604 struct drm_device *dev = crtc->dev;
5605 struct drm_i915_private *dev_priv = dev->dev_private;
5606 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5607 int pipe = intel_crtc->pipe;
5608 int plane = intel_crtc->plane;
5609 int num_connectors = 0;
5610 intel_clock_t clock, reduced_clock;
5dc5298b 5611 u32 dpll = 0, fp = 0, fp2 = 0;
09b4ddf9
PZ
5612 bool ok, has_reduced_clock = false;
5613 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5614 struct intel_encoder *encoder;
5615 u32 temp;
5616 int ret;
5617 bool dither;
5618
5619 for_each_encoder_on_crtc(dev, crtc, encoder) {
5620 switch (encoder->type) {
5621 case INTEL_OUTPUT_LVDS:
5622 is_lvds = true;
5623 break;
5624 case INTEL_OUTPUT_DISPLAYPORT:
5625 is_dp = true;
5626 break;
5627 case INTEL_OUTPUT_EDP:
5628 is_dp = true;
5629 if (!intel_encoder_is_pch_edp(&encoder->base))
5630 is_cpu_edp = true;
5631 break;
5632 }
5633
5634 num_connectors++;
5635 }
5636
a5c961d1
PZ
5637 if (is_cpu_edp)
5638 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5639 else
5640 intel_crtc->cpu_transcoder = pipe;
5641
5dc5298b
PZ
5642 /* We are not sure yet this won't happen. */
5643 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5644 INTEL_PCH_TYPE(dev));
5645
5646 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5647 num_connectors, pipe_name(pipe));
5648
702e7a56 5649 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
1ce42920
PZ
5650 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5651
5652 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5653
6441ab5f
PZ
5654 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5655 return -EINVAL;
5656
5dc5298b
PZ
5657 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5658 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5659 &has_reduced_clock,
5660 &reduced_clock);
5661 if (!ok) {
5662 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5663 return -EINVAL;
5664 }
09b4ddf9
PZ
5665 }
5666
5667 /* Ensure that the cursor is valid for the new mode before changing... */
5668 intel_crtc_update_cursor(crtc, true);
5669
5670 /* determine panel color depth */
c8241969
JN
5671 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5672 adjusted_mode);
09b4ddf9
PZ
5673 if (is_lvds && dev_priv->lvds_dither)
5674 dither = true;
5675
09b4ddf9
PZ
5676 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5677 drm_mode_debug_printmodeline(mode);
5678
5dc5298b
PZ
5679 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5680 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5681 if (has_reduced_clock)
5682 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5683 reduced_clock.m2;
5684
5685 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5686 fp);
5687
5688 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5689 * own on pre-Haswell/LPT generation */
5690 if (!is_cpu_edp) {
5691 struct intel_pch_pll *pll;
5692
5693 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5694 if (pll == NULL) {
5695 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5696 pipe);
5697 return -EINVAL;
5698 }
5699 } else
5700 intel_put_pch_pll(intel_crtc);
09b4ddf9 5701
5dc5298b
PZ
5702 /* The LVDS pin pair needs to be on before the DPLLs are
5703 * enabled. This is an exception to the general rule that
5704 * mode_set doesn't turn things on.
5705 */
5706 if (is_lvds) {
5707 temp = I915_READ(PCH_LVDS);
5708 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5709 if (HAS_PCH_CPT(dev)) {
5710 temp &= ~PORT_TRANS_SEL_MASK;
5711 temp |= PORT_TRANS_SEL_CPT(pipe);
5712 } else {
5713 if (pipe == 1)
5714 temp |= LVDS_PIPEB_SELECT;
5715 else
5716 temp &= ~LVDS_PIPEB_SELECT;
5717 }
09b4ddf9 5718
5dc5298b
PZ
5719 /* set the corresponsding LVDS_BORDER bit */
5720 temp |= dev_priv->lvds_border_bits;
5721 /* Set the B0-B3 data pairs corresponding to whether
5722 * we're going to set the DPLLs for dual-channel mode or
5723 * not.
5724 */
5725 if (clock.p2 == 7)
5726 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
09b4ddf9 5727 else
5dc5298b
PZ
5728 temp &= ~(LVDS_B0B3_POWER_UP |
5729 LVDS_CLKB_POWER_UP);
5730
5731 /* It would be nice to set 24 vs 18-bit mode
5732 * (LVDS_A3_POWER_UP) appropriately here, but we need to
5733 * look more thoroughly into how panels behave in the
5734 * two modes.
5735 */
5736 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5737 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5738 temp |= LVDS_HSYNC_POLARITY;
5739 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5740 temp |= LVDS_VSYNC_POLARITY;
5741 I915_WRITE(PCH_LVDS, temp);
09b4ddf9 5742 }
09b4ddf9
PZ
5743 }
5744
5745 if (is_dp && !is_cpu_edp) {
5746 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5747 } else {
5dc5298b
PZ
5748 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5749 /* For non-DP output, clear any trans DP clock recovery
5750 * setting.*/
5751 I915_WRITE(TRANSDATA_M1(pipe), 0);
5752 I915_WRITE(TRANSDATA_N1(pipe), 0);
5753 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5754 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5755 }
09b4ddf9
PZ
5756 }
5757
5758 intel_crtc->lowfreq_avail = false;
5dc5298b
PZ
5759 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5760 if (intel_crtc->pch_pll) {
5761 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5762
5763 /* Wait for the clocks to stabilize. */
5764 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5765 udelay(150);
5766
5767 /* The pixel multiplier can only be updated once the
5768 * DPLL is enabled and the clocks are stable.
5769 *
5770 * So write it again.
5771 */
5772 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5773 }
5774
5775 if (intel_crtc->pch_pll) {
5776 if (is_lvds && has_reduced_clock && i915_powersave) {
5777 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5778 intel_crtc->lowfreq_avail = true;
5779 } else {
5780 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5781 }
09b4ddf9
PZ
5782 }
5783 }
5784
5785 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5786
1eb8dfec
PZ
5787 if (!is_dp || is_cpu_edp)
5788 ironlake_set_m_n(crtc, mode, adjusted_mode);
09b4ddf9 5789
5dc5298b
PZ
5790 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5791 if (is_cpu_edp)
5792 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
09b4ddf9 5793
ee2b0b38 5794 haswell_set_pipeconf(crtc, adjusted_mode, dither);
09b4ddf9 5795
09b4ddf9
PZ
5796 /* Set up the display plane register */
5797 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5798 POSTING_READ(DSPCNTR(plane));
5799
5800 ret = intel_pipe_set_base(crtc, x, y, fb);
5801
5802 intel_update_watermarks(dev);
5803
5804 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5805
1f803ee5 5806 return ret;
79e53945
JB
5807}
5808
f564048e
EA
5809static int intel_crtc_mode_set(struct drm_crtc *crtc,
5810 struct drm_display_mode *mode,
5811 struct drm_display_mode *adjusted_mode,
5812 int x, int y,
94352cf9 5813 struct drm_framebuffer *fb)
f564048e
EA
5814{
5815 struct drm_device *dev = crtc->dev;
5816 struct drm_i915_private *dev_priv = dev->dev_private;
9256aa19
DV
5817 struct drm_encoder_helper_funcs *encoder_funcs;
5818 struct intel_encoder *encoder;
0b701d27
EA
5819 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5820 int pipe = intel_crtc->pipe;
f564048e
EA
5821 int ret;
5822
0b701d27 5823 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5824
f564048e 5825 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
94352cf9 5826 x, y, fb);
79e53945 5827 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5828
9256aa19
DV
5829 if (ret != 0)
5830 return ret;
5831
5832 for_each_encoder_on_crtc(dev, crtc, encoder) {
5833 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5834 encoder->base.base.id,
5835 drm_get_encoder_name(&encoder->base),
5836 mode->base.id, mode->name);
5837 encoder_funcs = encoder->base.helper_private;
5838 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5839 }
5840
5841 return 0;
79e53945
JB
5842}
5843
3a9627f4
WF
5844static bool intel_eld_uptodate(struct drm_connector *connector,
5845 int reg_eldv, uint32_t bits_eldv,
5846 int reg_elda, uint32_t bits_elda,
5847 int reg_edid)
5848{
5849 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5850 uint8_t *eld = connector->eld;
5851 uint32_t i;
5852
5853 i = I915_READ(reg_eldv);
5854 i &= bits_eldv;
5855
5856 if (!eld[0])
5857 return !i;
5858
5859 if (!i)
5860 return false;
5861
5862 i = I915_READ(reg_elda);
5863 i &= ~bits_elda;
5864 I915_WRITE(reg_elda, i);
5865
5866 for (i = 0; i < eld[2]; i++)
5867 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5868 return false;
5869
5870 return true;
5871}
5872
e0dac65e
WF
5873static void g4x_write_eld(struct drm_connector *connector,
5874 struct drm_crtc *crtc)
5875{
5876 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5877 uint8_t *eld = connector->eld;
5878 uint32_t eldv;
5879 uint32_t len;
5880 uint32_t i;
5881
5882 i = I915_READ(G4X_AUD_VID_DID);
5883
5884 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5885 eldv = G4X_ELDV_DEVCL_DEVBLC;
5886 else
5887 eldv = G4X_ELDV_DEVCTG;
5888
3a9627f4
WF
5889 if (intel_eld_uptodate(connector,
5890 G4X_AUD_CNTL_ST, eldv,
5891 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5892 G4X_HDMIW_HDMIEDID))
5893 return;
5894
e0dac65e
WF
5895 i = I915_READ(G4X_AUD_CNTL_ST);
5896 i &= ~(eldv | G4X_ELD_ADDR);
5897 len = (i >> 9) & 0x1f; /* ELD buffer size */
5898 I915_WRITE(G4X_AUD_CNTL_ST, i);
5899
5900 if (!eld[0])
5901 return;
5902
5903 len = min_t(uint8_t, eld[2], len);
5904 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5905 for (i = 0; i < len; i++)
5906 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5907
5908 i = I915_READ(G4X_AUD_CNTL_ST);
5909 i |= eldv;
5910 I915_WRITE(G4X_AUD_CNTL_ST, i);
5911}
5912
83358c85
WX
5913static void haswell_write_eld(struct drm_connector *connector,
5914 struct drm_crtc *crtc)
5915{
5916 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5917 uint8_t *eld = connector->eld;
5918 struct drm_device *dev = crtc->dev;
5919 uint32_t eldv;
5920 uint32_t i;
5921 int len;
5922 int pipe = to_intel_crtc(crtc)->pipe;
5923 int tmp;
5924
5925 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5926 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5927 int aud_config = HSW_AUD_CFG(pipe);
5928 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5929
5930
5931 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5932
5933 /* Audio output enable */
5934 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5935 tmp = I915_READ(aud_cntrl_st2);
5936 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5937 I915_WRITE(aud_cntrl_st2, tmp);
5938
5939 /* Wait for 1 vertical blank */
5940 intel_wait_for_vblank(dev, pipe);
5941
5942 /* Set ELD valid state */
5943 tmp = I915_READ(aud_cntrl_st2);
5944 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5945 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5946 I915_WRITE(aud_cntrl_st2, tmp);
5947 tmp = I915_READ(aud_cntrl_st2);
5948 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5949
5950 /* Enable HDMI mode */
5951 tmp = I915_READ(aud_config);
5952 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5953 /* clear N_programing_enable and N_value_index */
5954 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5955 I915_WRITE(aud_config, tmp);
5956
5957 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5958
5959 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5960
5961 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5962 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5963 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5964 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5965 } else
5966 I915_WRITE(aud_config, 0);
5967
5968 if (intel_eld_uptodate(connector,
5969 aud_cntrl_st2, eldv,
5970 aud_cntl_st, IBX_ELD_ADDRESS,
5971 hdmiw_hdmiedid))
5972 return;
5973
5974 i = I915_READ(aud_cntrl_st2);
5975 i &= ~eldv;
5976 I915_WRITE(aud_cntrl_st2, i);
5977
5978 if (!eld[0])
5979 return;
5980
5981 i = I915_READ(aud_cntl_st);
5982 i &= ~IBX_ELD_ADDRESS;
5983 I915_WRITE(aud_cntl_st, i);
5984 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5985 DRM_DEBUG_DRIVER("port num:%d\n", i);
5986
5987 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5988 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5989 for (i = 0; i < len; i++)
5990 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5991
5992 i = I915_READ(aud_cntrl_st2);
5993 i |= eldv;
5994 I915_WRITE(aud_cntrl_st2, i);
5995
5996}
5997
e0dac65e
WF
5998static void ironlake_write_eld(struct drm_connector *connector,
5999 struct drm_crtc *crtc)
6000{
6001 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6002 uint8_t *eld = connector->eld;
6003 uint32_t eldv;
6004 uint32_t i;
6005 int len;
6006 int hdmiw_hdmiedid;
b6daa025 6007 int aud_config;
e0dac65e
WF
6008 int aud_cntl_st;
6009 int aud_cntrl_st2;
9b138a83 6010 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 6011
b3f33cbf 6012 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
6013 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6014 aud_config = IBX_AUD_CFG(pipe);
6015 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 6016 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
e0dac65e 6017 } else {
9b138a83
WX
6018 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6019 aud_config = CPT_AUD_CFG(pipe);
6020 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 6021 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
6022 }
6023
9b138a83 6024 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e
WF
6025
6026 i = I915_READ(aud_cntl_st);
9b138a83 6027 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
e0dac65e
WF
6028 if (!i) {
6029 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6030 /* operate blindly on all ports */
1202b4c6
WF
6031 eldv = IBX_ELD_VALIDB;
6032 eldv |= IBX_ELD_VALIDB << 4;
6033 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e
WF
6034 } else {
6035 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
1202b4c6 6036 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
6037 }
6038
3a9627f4
WF
6039 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6040 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6041 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025
WF
6042 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6043 } else
6044 I915_WRITE(aud_config, 0);
e0dac65e 6045
3a9627f4
WF
6046 if (intel_eld_uptodate(connector,
6047 aud_cntrl_st2, eldv,
6048 aud_cntl_st, IBX_ELD_ADDRESS,
6049 hdmiw_hdmiedid))
6050 return;
6051
e0dac65e
WF
6052 i = I915_READ(aud_cntrl_st2);
6053 i &= ~eldv;
6054 I915_WRITE(aud_cntrl_st2, i);
6055
6056 if (!eld[0])
6057 return;
6058
e0dac65e 6059 i = I915_READ(aud_cntl_st);
1202b4c6 6060 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
6061 I915_WRITE(aud_cntl_st, i);
6062
6063 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6064 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6065 for (i = 0; i < len; i++)
6066 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6067
6068 i = I915_READ(aud_cntrl_st2);
6069 i |= eldv;
6070 I915_WRITE(aud_cntrl_st2, i);
6071}
6072
6073void intel_write_eld(struct drm_encoder *encoder,
6074 struct drm_display_mode *mode)
6075{
6076 struct drm_crtc *crtc = encoder->crtc;
6077 struct drm_connector *connector;
6078 struct drm_device *dev = encoder->dev;
6079 struct drm_i915_private *dev_priv = dev->dev_private;
6080
6081 connector = drm_select_eld(encoder, mode);
6082 if (!connector)
6083 return;
6084
6085 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6086 connector->base.id,
6087 drm_get_connector_name(connector),
6088 connector->encoder->base.id,
6089 drm_get_encoder_name(connector->encoder));
6090
6091 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6092
6093 if (dev_priv->display.write_eld)
6094 dev_priv->display.write_eld(connector, crtc);
6095}
6096
79e53945
JB
6097/** Loads the palette/gamma unit for the CRTC with the prepared values */
6098void intel_crtc_load_lut(struct drm_crtc *crtc)
6099{
6100 struct drm_device *dev = crtc->dev;
6101 struct drm_i915_private *dev_priv = dev->dev_private;
6102 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 6103 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
6104 int i;
6105
6106 /* The clocks have to be on to load the palette. */
aed3f09d 6107 if (!crtc->enabled || !intel_crtc->active)
79e53945
JB
6108 return;
6109
f2b115e6 6110 /* use legacy palette for Ironlake */
bad720ff 6111 if (HAS_PCH_SPLIT(dev))
9db4a9c7 6112 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 6113
79e53945
JB
6114 for (i = 0; i < 256; i++) {
6115 I915_WRITE(palreg + 4 * i,
6116 (intel_crtc->lut_r[i] << 16) |
6117 (intel_crtc->lut_g[i] << 8) |
6118 intel_crtc->lut_b[i]);
6119 }
6120}
6121
560b85bb
CW
6122static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6123{
6124 struct drm_device *dev = crtc->dev;
6125 struct drm_i915_private *dev_priv = dev->dev_private;
6126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6127 bool visible = base != 0;
6128 u32 cntl;
6129
6130 if (intel_crtc->cursor_visible == visible)
6131 return;
6132
9db4a9c7 6133 cntl = I915_READ(_CURACNTR);
560b85bb
CW
6134 if (visible) {
6135 /* On these chipsets we can only modify the base whilst
6136 * the cursor is disabled.
6137 */
9db4a9c7 6138 I915_WRITE(_CURABASE, base);
560b85bb
CW
6139
6140 cntl &= ~(CURSOR_FORMAT_MASK);
6141 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6142 cntl |= CURSOR_ENABLE |
6143 CURSOR_GAMMA_ENABLE |
6144 CURSOR_FORMAT_ARGB;
6145 } else
6146 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 6147 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
6148
6149 intel_crtc->cursor_visible = visible;
6150}
6151
6152static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6153{
6154 struct drm_device *dev = crtc->dev;
6155 struct drm_i915_private *dev_priv = dev->dev_private;
6156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6157 int pipe = intel_crtc->pipe;
6158 bool visible = base != 0;
6159
6160 if (intel_crtc->cursor_visible != visible) {
548f245b 6161 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
6162 if (base) {
6163 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6164 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6165 cntl |= pipe << 28; /* Connect to correct pipe */
6166 } else {
6167 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6168 cntl |= CURSOR_MODE_DISABLE;
6169 }
9db4a9c7 6170 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
6171
6172 intel_crtc->cursor_visible = visible;
6173 }
6174 /* and commit changes on next vblank */
9db4a9c7 6175 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
6176}
6177
65a21cd6
JB
6178static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6179{
6180 struct drm_device *dev = crtc->dev;
6181 struct drm_i915_private *dev_priv = dev->dev_private;
6182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6183 int pipe = intel_crtc->pipe;
6184 bool visible = base != 0;
6185
6186 if (intel_crtc->cursor_visible != visible) {
6187 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6188 if (base) {
6189 cntl &= ~CURSOR_MODE;
6190 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6191 } else {
6192 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6193 cntl |= CURSOR_MODE_DISABLE;
6194 }
6195 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6196
6197 intel_crtc->cursor_visible = visible;
6198 }
6199 /* and commit changes on next vblank */
6200 I915_WRITE(CURBASE_IVB(pipe), base);
6201}
6202
cda4b7d3 6203/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
6204static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6205 bool on)
cda4b7d3
CW
6206{
6207 struct drm_device *dev = crtc->dev;
6208 struct drm_i915_private *dev_priv = dev->dev_private;
6209 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6210 int pipe = intel_crtc->pipe;
6211 int x = intel_crtc->cursor_x;
6212 int y = intel_crtc->cursor_y;
560b85bb 6213 u32 base, pos;
cda4b7d3
CW
6214 bool visible;
6215
6216 pos = 0;
6217
6b383a7f 6218 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
6219 base = intel_crtc->cursor_addr;
6220 if (x > (int) crtc->fb->width)
6221 base = 0;
6222
6223 if (y > (int) crtc->fb->height)
6224 base = 0;
6225 } else
6226 base = 0;
6227
6228 if (x < 0) {
6229 if (x + intel_crtc->cursor_width < 0)
6230 base = 0;
6231
6232 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6233 x = -x;
6234 }
6235 pos |= x << CURSOR_X_SHIFT;
6236
6237 if (y < 0) {
6238 if (y + intel_crtc->cursor_height < 0)
6239 base = 0;
6240
6241 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6242 y = -y;
6243 }
6244 pos |= y << CURSOR_Y_SHIFT;
6245
6246 visible = base != 0;
560b85bb 6247 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
6248 return;
6249
0cd83aa9 6250 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
65a21cd6
JB
6251 I915_WRITE(CURPOS_IVB(pipe), pos);
6252 ivb_update_cursor(crtc, base);
6253 } else {
6254 I915_WRITE(CURPOS(pipe), pos);
6255 if (IS_845G(dev) || IS_I865G(dev))
6256 i845_update_cursor(crtc, base);
6257 else
6258 i9xx_update_cursor(crtc, base);
6259 }
cda4b7d3
CW
6260}
6261
79e53945 6262static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 6263 struct drm_file *file,
79e53945
JB
6264 uint32_t handle,
6265 uint32_t width, uint32_t height)
6266{
6267 struct drm_device *dev = crtc->dev;
6268 struct drm_i915_private *dev_priv = dev->dev_private;
6269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 6270 struct drm_i915_gem_object *obj;
cda4b7d3 6271 uint32_t addr;
3f8bc370 6272 int ret;
79e53945 6273
79e53945
JB
6274 /* if we want to turn off the cursor ignore width and height */
6275 if (!handle) {
28c97730 6276 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 6277 addr = 0;
05394f39 6278 obj = NULL;
5004417d 6279 mutex_lock(&dev->struct_mutex);
3f8bc370 6280 goto finish;
79e53945
JB
6281 }
6282
6283 /* Currently we only support 64x64 cursors */
6284 if (width != 64 || height != 64) {
6285 DRM_ERROR("we currently only support 64x64 cursors\n");
6286 return -EINVAL;
6287 }
6288
05394f39 6289 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 6290 if (&obj->base == NULL)
79e53945
JB
6291 return -ENOENT;
6292
05394f39 6293 if (obj->base.size < width * height * 4) {
79e53945 6294 DRM_ERROR("buffer is to small\n");
34b8686e
DA
6295 ret = -ENOMEM;
6296 goto fail;
79e53945
JB
6297 }
6298
71acb5eb 6299 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 6300 mutex_lock(&dev->struct_mutex);
b295d1b6 6301 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
6302 if (obj->tiling_mode) {
6303 DRM_ERROR("cursor cannot be tiled\n");
6304 ret = -EINVAL;
6305 goto fail_locked;
6306 }
6307
2da3b9b9 6308 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
6309 if (ret) {
6310 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 6311 goto fail_locked;
e7b526bb
CW
6312 }
6313
d9e86c0e
CW
6314 ret = i915_gem_object_put_fence(obj);
6315 if (ret) {
2da3b9b9 6316 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
6317 goto fail_unpin;
6318 }
6319
05394f39 6320 addr = obj->gtt_offset;
71acb5eb 6321 } else {
6eeefaf3 6322 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 6323 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
6324 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6325 align);
71acb5eb
DA
6326 if (ret) {
6327 DRM_ERROR("failed to attach phys object\n");
7f9872e0 6328 goto fail_locked;
71acb5eb 6329 }
05394f39 6330 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
6331 }
6332
a6c45cf0 6333 if (IS_GEN2(dev))
14b60391
JB
6334 I915_WRITE(CURSIZE, (height << 12) | width);
6335
3f8bc370 6336 finish:
3f8bc370 6337 if (intel_crtc->cursor_bo) {
b295d1b6 6338 if (dev_priv->info->cursor_needs_physical) {
05394f39 6339 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
6340 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6341 } else
6342 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 6343 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 6344 }
80824003 6345
7f9872e0 6346 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
6347
6348 intel_crtc->cursor_addr = addr;
05394f39 6349 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
6350 intel_crtc->cursor_width = width;
6351 intel_crtc->cursor_height = height;
6352
6b383a7f 6353 intel_crtc_update_cursor(crtc, true);
3f8bc370 6354
79e53945 6355 return 0;
e7b526bb 6356fail_unpin:
05394f39 6357 i915_gem_object_unpin(obj);
7f9872e0 6358fail_locked:
34b8686e 6359 mutex_unlock(&dev->struct_mutex);
bc9025bd 6360fail:
05394f39 6361 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 6362 return ret;
79e53945
JB
6363}
6364
6365static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6366{
79e53945 6367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6368
cda4b7d3
CW
6369 intel_crtc->cursor_x = x;
6370 intel_crtc->cursor_y = y;
652c393a 6371
6b383a7f 6372 intel_crtc_update_cursor(crtc, true);
79e53945
JB
6373
6374 return 0;
6375}
6376
6377/** Sets the color ramps on behalf of RandR */
6378void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6379 u16 blue, int regno)
6380{
6381 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6382
6383 intel_crtc->lut_r[regno] = red >> 8;
6384 intel_crtc->lut_g[regno] = green >> 8;
6385 intel_crtc->lut_b[regno] = blue >> 8;
6386}
6387
b8c00ac5
DA
6388void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6389 u16 *blue, int regno)
6390{
6391 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6392
6393 *red = intel_crtc->lut_r[regno] << 8;
6394 *green = intel_crtc->lut_g[regno] << 8;
6395 *blue = intel_crtc->lut_b[regno] << 8;
6396}
6397
79e53945 6398static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 6399 u16 *blue, uint32_t start, uint32_t size)
79e53945 6400{
7203425a 6401 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 6402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6403
7203425a 6404 for (i = start; i < end; i++) {
79e53945
JB
6405 intel_crtc->lut_r[i] = red[i] >> 8;
6406 intel_crtc->lut_g[i] = green[i] >> 8;
6407 intel_crtc->lut_b[i] = blue[i] >> 8;
6408 }
6409
6410 intel_crtc_load_lut(crtc);
6411}
6412
6413/**
6414 * Get a pipe with a simple mode set on it for doing load-based monitor
6415 * detection.
6416 *
6417 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 6418 * its requirements. The pipe will be connected to no other encoders.
79e53945 6419 *
c751ce4f 6420 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
6421 * configured for it. In the future, it could choose to temporarily disable
6422 * some outputs to free up a pipe for its use.
6423 *
6424 * \return crtc, or NULL if no pipes are available.
6425 */
6426
6427/* VESA 640x480x72Hz mode to set on the pipe */
6428static struct drm_display_mode load_detect_mode = {
6429 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6430 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6431};
6432
d2dff872
CW
6433static struct drm_framebuffer *
6434intel_framebuffer_create(struct drm_device *dev,
308e5bcb 6435 struct drm_mode_fb_cmd2 *mode_cmd,
d2dff872
CW
6436 struct drm_i915_gem_object *obj)
6437{
6438 struct intel_framebuffer *intel_fb;
6439 int ret;
6440
6441 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6442 if (!intel_fb) {
6443 drm_gem_object_unreference_unlocked(&obj->base);
6444 return ERR_PTR(-ENOMEM);
6445 }
6446
6447 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6448 if (ret) {
6449 drm_gem_object_unreference_unlocked(&obj->base);
6450 kfree(intel_fb);
6451 return ERR_PTR(ret);
6452 }
6453
6454 return &intel_fb->base;
6455}
6456
6457static u32
6458intel_framebuffer_pitch_for_width(int width, int bpp)
6459{
6460 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6461 return ALIGN(pitch, 64);
6462}
6463
6464static u32
6465intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6466{
6467 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6468 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6469}
6470
6471static struct drm_framebuffer *
6472intel_framebuffer_create_for_mode(struct drm_device *dev,
6473 struct drm_display_mode *mode,
6474 int depth, int bpp)
6475{
6476 struct drm_i915_gem_object *obj;
0fed39bd 6477 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
6478
6479 obj = i915_gem_alloc_object(dev,
6480 intel_framebuffer_size_for_mode(mode, bpp));
6481 if (obj == NULL)
6482 return ERR_PTR(-ENOMEM);
6483
6484 mode_cmd.width = mode->hdisplay;
6485 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
6486 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6487 bpp);
5ca0c34a 6488 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
6489
6490 return intel_framebuffer_create(dev, &mode_cmd, obj);
6491}
6492
6493static struct drm_framebuffer *
6494mode_fits_in_fbdev(struct drm_device *dev,
6495 struct drm_display_mode *mode)
6496{
6497 struct drm_i915_private *dev_priv = dev->dev_private;
6498 struct drm_i915_gem_object *obj;
6499 struct drm_framebuffer *fb;
6500
6501 if (dev_priv->fbdev == NULL)
6502 return NULL;
6503
6504 obj = dev_priv->fbdev->ifb.obj;
6505 if (obj == NULL)
6506 return NULL;
6507
6508 fb = &dev_priv->fbdev->ifb.base;
01f2c773
VS
6509 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6510 fb->bits_per_pixel))
d2dff872
CW
6511 return NULL;
6512
01f2c773 6513 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
6514 return NULL;
6515
6516 return fb;
6517}
6518
d2434ab7 6519bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 6520 struct drm_display_mode *mode,
8261b191 6521 struct intel_load_detect_pipe *old)
79e53945
JB
6522{
6523 struct intel_crtc *intel_crtc;
d2434ab7
DV
6524 struct intel_encoder *intel_encoder =
6525 intel_attached_encoder(connector);
79e53945 6526 struct drm_crtc *possible_crtc;
4ef69c7a 6527 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6528 struct drm_crtc *crtc = NULL;
6529 struct drm_device *dev = encoder->dev;
94352cf9 6530 struct drm_framebuffer *fb;
79e53945
JB
6531 int i = -1;
6532
d2dff872
CW
6533 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6534 connector->base.id, drm_get_connector_name(connector),
6535 encoder->base.id, drm_get_encoder_name(encoder));
6536
79e53945
JB
6537 /*
6538 * Algorithm gets a little messy:
7a5e4805 6539 *
79e53945
JB
6540 * - if the connector already has an assigned crtc, use it (but make
6541 * sure it's on first)
7a5e4805 6542 *
79e53945
JB
6543 * - try to find the first unused crtc that can drive this connector,
6544 * and use that if we find one
79e53945
JB
6545 */
6546
6547 /* See if we already have a CRTC for this connector */
6548 if (encoder->crtc) {
6549 crtc = encoder->crtc;
8261b191 6550
24218aac 6551 old->dpms_mode = connector->dpms;
8261b191
CW
6552 old->load_detect_temp = false;
6553
6554 /* Make sure the crtc and connector are running */
24218aac
DV
6555 if (connector->dpms != DRM_MODE_DPMS_ON)
6556 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 6557
7173188d 6558 return true;
79e53945
JB
6559 }
6560
6561 /* Find an unused one (if possible) */
6562 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6563 i++;
6564 if (!(encoder->possible_crtcs & (1 << i)))
6565 continue;
6566 if (!possible_crtc->enabled) {
6567 crtc = possible_crtc;
6568 break;
6569 }
79e53945
JB
6570 }
6571
6572 /*
6573 * If we didn't find an unused CRTC, don't use any.
6574 */
6575 if (!crtc) {
7173188d
CW
6576 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6577 return false;
79e53945
JB
6578 }
6579
fc303101
DV
6580 intel_encoder->new_crtc = to_intel_crtc(crtc);
6581 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
6582
6583 intel_crtc = to_intel_crtc(crtc);
24218aac 6584 old->dpms_mode = connector->dpms;
8261b191 6585 old->load_detect_temp = true;
d2dff872 6586 old->release_fb = NULL;
79e53945 6587
6492711d
CW
6588 if (!mode)
6589 mode = &load_detect_mode;
79e53945 6590
d2dff872
CW
6591 /* We need a framebuffer large enough to accommodate all accesses
6592 * that the plane may generate whilst we perform load detection.
6593 * We can not rely on the fbcon either being present (we get called
6594 * during its initialisation to detect all boot displays, or it may
6595 * not even exist) or that it is large enough to satisfy the
6596 * requested mode.
6597 */
94352cf9
DV
6598 fb = mode_fits_in_fbdev(dev, mode);
6599 if (fb == NULL) {
d2dff872 6600 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
6601 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6602 old->release_fb = fb;
d2dff872
CW
6603 } else
6604 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 6605 if (IS_ERR(fb)) {
d2dff872 6606 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
0e8b3d3e 6607 return false;
79e53945 6608 }
79e53945 6609
94352cf9 6610 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 6611 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
6612 if (old->release_fb)
6613 old->release_fb->funcs->destroy(old->release_fb);
0e8b3d3e 6614 return false;
79e53945 6615 }
7173188d 6616
79e53945 6617 /* let the connector get through one full cycle before testing */
9d0498a2 6618 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 6619 return true;
79e53945
JB
6620}
6621
d2434ab7 6622void intel_release_load_detect_pipe(struct drm_connector *connector,
8261b191 6623 struct intel_load_detect_pipe *old)
79e53945 6624{
d2434ab7
DV
6625 struct intel_encoder *intel_encoder =
6626 intel_attached_encoder(connector);
4ef69c7a 6627 struct drm_encoder *encoder = &intel_encoder->base;
79e53945 6628
d2dff872
CW
6629 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6630 connector->base.id, drm_get_connector_name(connector),
6631 encoder->base.id, drm_get_encoder_name(encoder));
6632
8261b191 6633 if (old->load_detect_temp) {
fc303101
DV
6634 struct drm_crtc *crtc = encoder->crtc;
6635
6636 to_intel_connector(connector)->new_encoder = NULL;
6637 intel_encoder->new_crtc = NULL;
6638 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872
CW
6639
6640 if (old->release_fb)
6641 old->release_fb->funcs->destroy(old->release_fb);
6642
0622a53c 6643 return;
79e53945
JB
6644 }
6645
c751ce4f 6646 /* Switch crtc and encoder back off if necessary */
24218aac
DV
6647 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6648 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
6649}
6650
6651/* Returns the clock of the currently programmed mode of the given pipe. */
6652static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6653{
6654 struct drm_i915_private *dev_priv = dev->dev_private;
6655 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6656 int pipe = intel_crtc->pipe;
548f245b 6657 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
6658 u32 fp;
6659 intel_clock_t clock;
6660
6661 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 6662 fp = I915_READ(FP0(pipe));
79e53945 6663 else
39adb7a5 6664 fp = I915_READ(FP1(pipe));
79e53945
JB
6665
6666 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
6667 if (IS_PINEVIEW(dev)) {
6668 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6669 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
6670 } else {
6671 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6672 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6673 }
6674
a6c45cf0 6675 if (!IS_GEN2(dev)) {
f2b115e6
AJ
6676 if (IS_PINEVIEW(dev))
6677 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6678 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
6679 else
6680 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
6681 DPLL_FPA01_P1_POST_DIV_SHIFT);
6682
6683 switch (dpll & DPLL_MODE_MASK) {
6684 case DPLLB_MODE_DAC_SERIAL:
6685 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6686 5 : 10;
6687 break;
6688 case DPLLB_MODE_LVDS:
6689 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6690 7 : 14;
6691 break;
6692 default:
28c97730 6693 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6694 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6695 return 0;
6696 }
6697
6698 /* XXX: Handle the 100Mhz refclk */
2177832f 6699 intel_clock(dev, 96000, &clock);
79e53945
JB
6700 } else {
6701 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6702
6703 if (is_lvds) {
6704 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6705 DPLL_FPA01_P1_POST_DIV_SHIFT);
6706 clock.p2 = 14;
6707
6708 if ((dpll & PLL_REF_INPUT_MASK) ==
6709 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6710 /* XXX: might not be 66MHz */
2177832f 6711 intel_clock(dev, 66000, &clock);
79e53945 6712 } else
2177832f 6713 intel_clock(dev, 48000, &clock);
79e53945
JB
6714 } else {
6715 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6716 clock.p1 = 2;
6717 else {
6718 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6719 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6720 }
6721 if (dpll & PLL_P2_DIVIDE_BY_4)
6722 clock.p2 = 4;
6723 else
6724 clock.p2 = 2;
6725
2177832f 6726 intel_clock(dev, 48000, &clock);
79e53945
JB
6727 }
6728 }
6729
6730 /* XXX: It would be nice to validate the clocks, but we can't reuse
6731 * i830PllIsValid() because it relies on the xf86_config connector
6732 * configuration being accurate, which it isn't necessarily.
6733 */
6734
6735 return clock.dot;
6736}
6737
6738/** Returns the currently programmed mode of the given pipe. */
6739struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6740 struct drm_crtc *crtc)
6741{
548f245b 6742 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 6743 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
fe2b8f9d 6744 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
79e53945 6745 struct drm_display_mode *mode;
fe2b8f9d
PZ
6746 int htot = I915_READ(HTOTAL(cpu_transcoder));
6747 int hsync = I915_READ(HSYNC(cpu_transcoder));
6748 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6749 int vsync = I915_READ(VSYNC(cpu_transcoder));
79e53945
JB
6750
6751 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6752 if (!mode)
6753 return NULL;
6754
6755 mode->clock = intel_crtc_clock_get(dev, crtc);
6756 mode->hdisplay = (htot & 0xffff) + 1;
6757 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6758 mode->hsync_start = (hsync & 0xffff) + 1;
6759 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6760 mode->vdisplay = (vtot & 0xffff) + 1;
6761 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6762 mode->vsync_start = (vsync & 0xffff) + 1;
6763 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6764
6765 drm_mode_set_name(mode);
79e53945
JB
6766
6767 return mode;
6768}
6769
3dec0095 6770static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6771{
6772 struct drm_device *dev = crtc->dev;
6773 drm_i915_private_t *dev_priv = dev->dev_private;
6774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6775 int pipe = intel_crtc->pipe;
dbdc6479
JB
6776 int dpll_reg = DPLL(pipe);
6777 int dpll;
652c393a 6778
bad720ff 6779 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6780 return;
6781
6782 if (!dev_priv->lvds_downclock_avail)
6783 return;
6784
dbdc6479 6785 dpll = I915_READ(dpll_reg);
652c393a 6786 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6787 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 6788
8ac5a6d5 6789 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
6790
6791 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6792 I915_WRITE(dpll_reg, dpll);
9d0498a2 6793 intel_wait_for_vblank(dev, pipe);
dbdc6479 6794
652c393a
JB
6795 dpll = I915_READ(dpll_reg);
6796 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6797 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 6798 }
652c393a
JB
6799}
6800
6801static void intel_decrease_pllclock(struct drm_crtc *crtc)
6802{
6803 struct drm_device *dev = crtc->dev;
6804 drm_i915_private_t *dev_priv = dev->dev_private;
6805 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 6806
bad720ff 6807 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6808 return;
6809
6810 if (!dev_priv->lvds_downclock_avail)
6811 return;
6812
6813 /*
6814 * Since this is called by a timer, we should never get here in
6815 * the manual case.
6816 */
6817 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
6818 int pipe = intel_crtc->pipe;
6819 int dpll_reg = DPLL(pipe);
6820 int dpll;
f6e5b160 6821
44d98a61 6822 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 6823
8ac5a6d5 6824 assert_panel_unlocked(dev_priv, pipe);
652c393a 6825
dc257cf1 6826 dpll = I915_READ(dpll_reg);
652c393a
JB
6827 dpll |= DISPLAY_RATE_SELECT_FPA1;
6828 I915_WRITE(dpll_reg, dpll);
9d0498a2 6829 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6830 dpll = I915_READ(dpll_reg);
6831 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6832 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6833 }
6834
6835}
6836
f047e395
CW
6837void intel_mark_busy(struct drm_device *dev)
6838{
f047e395
CW
6839 i915_update_gfx_val(dev->dev_private);
6840}
6841
6842void intel_mark_idle(struct drm_device *dev)
652c393a 6843{
f047e395
CW
6844}
6845
6846void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6847{
6848 struct drm_device *dev = obj->base.dev;
652c393a 6849 struct drm_crtc *crtc;
652c393a
JB
6850
6851 if (!i915_powersave)
6852 return;
6853
652c393a 6854 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
652c393a
JB
6855 if (!crtc->fb)
6856 continue;
6857
f047e395
CW
6858 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6859 intel_increase_pllclock(crtc);
652c393a 6860 }
652c393a
JB
6861}
6862
f047e395 6863void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
652c393a 6864{
f047e395
CW
6865 struct drm_device *dev = obj->base.dev;
6866 struct drm_crtc *crtc;
652c393a 6867
f047e395 6868 if (!i915_powersave)
acb87dfb
CW
6869 return;
6870
652c393a
JB
6871 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6872 if (!crtc->fb)
6873 continue;
6874
f047e395
CW
6875 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6876 intel_decrease_pllclock(crtc);
652c393a
JB
6877 }
6878}
6879
79e53945
JB
6880static void intel_crtc_destroy(struct drm_crtc *crtc)
6881{
6882 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
6883 struct drm_device *dev = crtc->dev;
6884 struct intel_unpin_work *work;
6885 unsigned long flags;
6886
6887 spin_lock_irqsave(&dev->event_lock, flags);
6888 work = intel_crtc->unpin_work;
6889 intel_crtc->unpin_work = NULL;
6890 spin_unlock_irqrestore(&dev->event_lock, flags);
6891
6892 if (work) {
6893 cancel_work_sync(&work->work);
6894 kfree(work);
6895 }
79e53945
JB
6896
6897 drm_crtc_cleanup(crtc);
67e77c5a 6898
79e53945
JB
6899 kfree(intel_crtc);
6900}
6901
6b95a207
KH
6902static void intel_unpin_work_fn(struct work_struct *__work)
6903{
6904 struct intel_unpin_work *work =
6905 container_of(__work, struct intel_unpin_work, work);
b4a98e57 6906 struct drm_device *dev = work->crtc->dev;
6b95a207 6907
b4a98e57 6908 mutex_lock(&dev->struct_mutex);
1690e1eb 6909 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
6910 drm_gem_object_unreference(&work->pending_flip_obj->base);
6911 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 6912
b4a98e57
CW
6913 intel_update_fbc(dev);
6914 mutex_unlock(&dev->struct_mutex);
6915
6916 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6917 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6918
6b95a207
KH
6919 kfree(work);
6920}
6921
1afe3e9d 6922static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 6923 struct drm_crtc *crtc)
6b95a207
KH
6924{
6925 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
6926 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6927 struct intel_unpin_work *work;
05394f39 6928 struct drm_i915_gem_object *obj;
6b95a207
KH
6929 unsigned long flags;
6930
6931 /* Ignore early vblank irqs */
6932 if (intel_crtc == NULL)
6933 return;
6934
6935 spin_lock_irqsave(&dev->event_lock, flags);
6936 work = intel_crtc->unpin_work;
e7d841ca
CW
6937
6938 /* Ensure we don't miss a work->pending update ... */
6939 smp_rmb();
6940
6941 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
6942 spin_unlock_irqrestore(&dev->event_lock, flags);
6943 return;
6944 }
6945
e7d841ca
CW
6946 /* and that the unpin work is consistent wrt ->pending. */
6947 smp_rmb();
6948
6b95a207 6949 intel_crtc->unpin_work = NULL;
6b95a207 6950
45a066eb
RC
6951 if (work->event)
6952 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 6953
0af7e4df
MK
6954 drm_vblank_put(dev, intel_crtc->pipe);
6955
6b95a207
KH
6956 spin_unlock_irqrestore(&dev->event_lock, flags);
6957
05394f39 6958 obj = work->old_fb_obj;
d9e86c0e 6959
e59f2bac 6960 atomic_clear_mask(1 << intel_crtc->plane,
05394f39 6961 &obj->pending_flip.counter);
5bb61643 6962 wake_up(&dev_priv->pending_flip_queue);
b4a98e57
CW
6963
6964 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
6965
6966 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
6967}
6968
1afe3e9d
JB
6969void intel_finish_page_flip(struct drm_device *dev, int pipe)
6970{
6971 drm_i915_private_t *dev_priv = dev->dev_private;
6972 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6973
49b14a5c 6974 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6975}
6976
6977void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6978{
6979 drm_i915_private_t *dev_priv = dev->dev_private;
6980 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6981
49b14a5c 6982 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6983}
6984
6b95a207
KH
6985void intel_prepare_page_flip(struct drm_device *dev, int plane)
6986{
6987 drm_i915_private_t *dev_priv = dev->dev_private;
6988 struct intel_crtc *intel_crtc =
6989 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6990 unsigned long flags;
6991
e7d841ca
CW
6992 /* NB: An MMIO update of the plane base pointer will also
6993 * generate a page-flip completion irq, i.e. every modeset
6994 * is also accompanied by a spurious intel_prepare_page_flip().
6995 */
6b95a207 6996 spin_lock_irqsave(&dev->event_lock, flags);
e7d841ca
CW
6997 if (intel_crtc->unpin_work)
6998 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
6999 spin_unlock_irqrestore(&dev->event_lock, flags);
7000}
7001
e7d841ca
CW
7002inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7003{
7004 /* Ensure that the work item is consistent when activating it ... */
7005 smp_wmb();
7006 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7007 /* and that it is marked active as soon as the irq could fire. */
7008 smp_wmb();
7009}
7010
8c9f3aaf
JB
7011static int intel_gen2_queue_flip(struct drm_device *dev,
7012 struct drm_crtc *crtc,
7013 struct drm_framebuffer *fb,
7014 struct drm_i915_gem_object *obj)
7015{
7016 struct drm_i915_private *dev_priv = dev->dev_private;
7017 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 7018 u32 flip_mask;
6d90c952 7019 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7020 int ret;
7021
6d90c952 7022 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7023 if (ret)
83d4092b 7024 goto err;
8c9f3aaf 7025
6d90c952 7026 ret = intel_ring_begin(ring, 6);
8c9f3aaf 7027 if (ret)
83d4092b 7028 goto err_unpin;
8c9f3aaf
JB
7029
7030 /* Can't queue multiple flips, so wait for the previous
7031 * one to finish before executing the next.
7032 */
7033 if (intel_crtc->plane)
7034 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7035 else
7036 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
7037 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7038 intel_ring_emit(ring, MI_NOOP);
7039 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7040 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7041 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 7042 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952 7043 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
7044
7045 intel_mark_page_flip_active(intel_crtc);
6d90c952 7046 intel_ring_advance(ring);
83d4092b
CW
7047 return 0;
7048
7049err_unpin:
7050 intel_unpin_fb_obj(obj);
7051err:
8c9f3aaf
JB
7052 return ret;
7053}
7054
7055static int intel_gen3_queue_flip(struct drm_device *dev,
7056 struct drm_crtc *crtc,
7057 struct drm_framebuffer *fb,
7058 struct drm_i915_gem_object *obj)
7059{
7060 struct drm_i915_private *dev_priv = dev->dev_private;
7061 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 7062 u32 flip_mask;
6d90c952 7063 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7064 int ret;
7065
6d90c952 7066 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7067 if (ret)
83d4092b 7068 goto err;
8c9f3aaf 7069
6d90c952 7070 ret = intel_ring_begin(ring, 6);
8c9f3aaf 7071 if (ret)
83d4092b 7072 goto err_unpin;
8c9f3aaf
JB
7073
7074 if (intel_crtc->plane)
7075 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7076 else
7077 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
7078 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7079 intel_ring_emit(ring, MI_NOOP);
7080 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7081 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7082 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 7083 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
7084 intel_ring_emit(ring, MI_NOOP);
7085
e7d841ca 7086 intel_mark_page_flip_active(intel_crtc);
6d90c952 7087 intel_ring_advance(ring);
83d4092b
CW
7088 return 0;
7089
7090err_unpin:
7091 intel_unpin_fb_obj(obj);
7092err:
8c9f3aaf
JB
7093 return ret;
7094}
7095
7096static int intel_gen4_queue_flip(struct drm_device *dev,
7097 struct drm_crtc *crtc,
7098 struct drm_framebuffer *fb,
7099 struct drm_i915_gem_object *obj)
7100{
7101 struct drm_i915_private *dev_priv = dev->dev_private;
7102 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7103 uint32_t pf, pipesrc;
6d90c952 7104 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7105 int ret;
7106
6d90c952 7107 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7108 if (ret)
83d4092b 7109 goto err;
8c9f3aaf 7110
6d90c952 7111 ret = intel_ring_begin(ring, 4);
8c9f3aaf 7112 if (ret)
83d4092b 7113 goto err_unpin;
8c9f3aaf
JB
7114
7115 /* i965+ uses the linear or tiled offsets from the
7116 * Display Registers (which do not change across a page-flip)
7117 * so we need only reprogram the base address.
7118 */
6d90c952
DV
7119 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7120 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7121 intel_ring_emit(ring, fb->pitches[0]);
c2c75131
DV
7122 intel_ring_emit(ring,
7123 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7124 obj->tiling_mode);
8c9f3aaf
JB
7125
7126 /* XXX Enabling the panel-fitter across page-flip is so far
7127 * untested on non-native modes, so ignore it for now.
7128 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7129 */
7130 pf = 0;
7131 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 7132 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
7133
7134 intel_mark_page_flip_active(intel_crtc);
6d90c952 7135 intel_ring_advance(ring);
83d4092b
CW
7136 return 0;
7137
7138err_unpin:
7139 intel_unpin_fb_obj(obj);
7140err:
8c9f3aaf
JB
7141 return ret;
7142}
7143
7144static int intel_gen6_queue_flip(struct drm_device *dev,
7145 struct drm_crtc *crtc,
7146 struct drm_framebuffer *fb,
7147 struct drm_i915_gem_object *obj)
7148{
7149 struct drm_i915_private *dev_priv = dev->dev_private;
7150 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6d90c952 7151 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7152 uint32_t pf, pipesrc;
7153 int ret;
7154
6d90c952 7155 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7156 if (ret)
83d4092b 7157 goto err;
8c9f3aaf 7158
6d90c952 7159 ret = intel_ring_begin(ring, 4);
8c9f3aaf 7160 if (ret)
83d4092b 7161 goto err_unpin;
8c9f3aaf 7162
6d90c952
DV
7163 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7164 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7165 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
c2c75131 7166 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
8c9f3aaf 7167
dc257cf1
DV
7168 /* Contrary to the suggestions in the documentation,
7169 * "Enable Panel Fitter" does not seem to be required when page
7170 * flipping with a non-native mode, and worse causes a normal
7171 * modeset to fail.
7172 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7173 */
7174 pf = 0;
8c9f3aaf 7175 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 7176 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
7177
7178 intel_mark_page_flip_active(intel_crtc);
6d90c952 7179 intel_ring_advance(ring);
83d4092b
CW
7180 return 0;
7181
7182err_unpin:
7183 intel_unpin_fb_obj(obj);
7184err:
8c9f3aaf
JB
7185 return ret;
7186}
7187
7c9017e5
JB
7188/*
7189 * On gen7 we currently use the blit ring because (in early silicon at least)
7190 * the render ring doesn't give us interrpts for page flip completion, which
7191 * means clients will hang after the first flip is queued. Fortunately the
7192 * blit ring generates interrupts properly, so use it instead.
7193 */
7194static int intel_gen7_queue_flip(struct drm_device *dev,
7195 struct drm_crtc *crtc,
7196 struct drm_framebuffer *fb,
7197 struct drm_i915_gem_object *obj)
7198{
7199 struct drm_i915_private *dev_priv = dev->dev_private;
7200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7201 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
cb05d8de 7202 uint32_t plane_bit = 0;
7c9017e5
JB
7203 int ret;
7204
7205 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7206 if (ret)
83d4092b 7207 goto err;
7c9017e5 7208
cb05d8de
DV
7209 switch(intel_crtc->plane) {
7210 case PLANE_A:
7211 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7212 break;
7213 case PLANE_B:
7214 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7215 break;
7216 case PLANE_C:
7217 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7218 break;
7219 default:
7220 WARN_ONCE(1, "unknown plane in flip command\n");
7221 ret = -ENODEV;
ab3951eb 7222 goto err_unpin;
cb05d8de
DV
7223 }
7224
7c9017e5
JB
7225 ret = intel_ring_begin(ring, 4);
7226 if (ret)
83d4092b 7227 goto err_unpin;
7c9017e5 7228
cb05d8de 7229 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 7230 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
c2c75131 7231 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7c9017e5 7232 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
7233
7234 intel_mark_page_flip_active(intel_crtc);
7c9017e5 7235 intel_ring_advance(ring);
83d4092b
CW
7236 return 0;
7237
7238err_unpin:
7239 intel_unpin_fb_obj(obj);
7240err:
7c9017e5
JB
7241 return ret;
7242}
7243
8c9f3aaf
JB
7244static int intel_default_queue_flip(struct drm_device *dev,
7245 struct drm_crtc *crtc,
7246 struct drm_framebuffer *fb,
7247 struct drm_i915_gem_object *obj)
7248{
7249 return -ENODEV;
7250}
7251
6b95a207
KH
7252static int intel_crtc_page_flip(struct drm_crtc *crtc,
7253 struct drm_framebuffer *fb,
7254 struct drm_pending_vblank_event *event)
7255{
7256 struct drm_device *dev = crtc->dev;
7257 struct drm_i915_private *dev_priv = dev->dev_private;
7258 struct intel_framebuffer *intel_fb;
05394f39 7259 struct drm_i915_gem_object *obj;
6b95a207
KH
7260 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7261 struct intel_unpin_work *work;
8c9f3aaf 7262 unsigned long flags;
52e68630 7263 int ret;
6b95a207 7264
e6a595d2
VS
7265 /* Can't change pixel format via MI display flips. */
7266 if (fb->pixel_format != crtc->fb->pixel_format)
7267 return -EINVAL;
7268
7269 /*
7270 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7271 * Note that pitch changes could also affect these register.
7272 */
7273 if (INTEL_INFO(dev)->gen > 3 &&
7274 (fb->offsets[0] != crtc->fb->offsets[0] ||
7275 fb->pitches[0] != crtc->fb->pitches[0]))
7276 return -EINVAL;
7277
6b95a207
KH
7278 work = kzalloc(sizeof *work, GFP_KERNEL);
7279 if (work == NULL)
7280 return -ENOMEM;
7281
6b95a207 7282 work->event = event;
b4a98e57 7283 work->crtc = crtc;
6b95a207 7284 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 7285 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
7286 INIT_WORK(&work->work, intel_unpin_work_fn);
7287
7317c75e
JB
7288 ret = drm_vblank_get(dev, intel_crtc->pipe);
7289 if (ret)
7290 goto free_work;
7291
6b95a207
KH
7292 /* We borrow the event spin lock for protecting unpin_work */
7293 spin_lock_irqsave(&dev->event_lock, flags);
7294 if (intel_crtc->unpin_work) {
7295 spin_unlock_irqrestore(&dev->event_lock, flags);
7296 kfree(work);
7317c75e 7297 drm_vblank_put(dev, intel_crtc->pipe);
468f0b44
CW
7298
7299 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
7300 return -EBUSY;
7301 }
7302 intel_crtc->unpin_work = work;
7303 spin_unlock_irqrestore(&dev->event_lock, flags);
7304
7305 intel_fb = to_intel_framebuffer(fb);
7306 obj = intel_fb->obj;
7307
b4a98e57
CW
7308 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7309 flush_workqueue(dev_priv->wq);
7310
79158103
CW
7311 ret = i915_mutex_lock_interruptible(dev);
7312 if (ret)
7313 goto cleanup;
6b95a207 7314
75dfca80 7315 /* Reference the objects for the scheduled work. */
05394f39
CW
7316 drm_gem_object_reference(&work->old_fb_obj->base);
7317 drm_gem_object_reference(&obj->base);
6b95a207
KH
7318
7319 crtc->fb = fb;
96b099fd 7320
e1f99ce6 7321 work->pending_flip_obj = obj;
e1f99ce6 7322
4e5359cd
SF
7323 work->enable_stall_check = true;
7324
e1f99ce6
CW
7325 /* Block clients from rendering to the new back buffer until
7326 * the flip occurs and the object is no longer visible.
7327 */
05394f39 7328 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
b4a98e57 7329 atomic_inc(&intel_crtc->unpin_work_count);
e1f99ce6 7330
8c9f3aaf
JB
7331 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7332 if (ret)
7333 goto cleanup_pending;
6b95a207 7334
7782de3b 7335 intel_disable_fbc(dev);
f047e395 7336 intel_mark_fb_busy(obj);
6b95a207
KH
7337 mutex_unlock(&dev->struct_mutex);
7338
e5510fac
JB
7339 trace_i915_flip_request(intel_crtc->plane, obj);
7340
6b95a207 7341 return 0;
96b099fd 7342
8c9f3aaf 7343cleanup_pending:
b4a98e57 7344 atomic_dec(&intel_crtc->unpin_work_count);
8c9f3aaf 7345 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
05394f39
CW
7346 drm_gem_object_unreference(&work->old_fb_obj->base);
7347 drm_gem_object_unreference(&obj->base);
96b099fd
CW
7348 mutex_unlock(&dev->struct_mutex);
7349
79158103 7350cleanup:
96b099fd
CW
7351 spin_lock_irqsave(&dev->event_lock, flags);
7352 intel_crtc->unpin_work = NULL;
7353 spin_unlock_irqrestore(&dev->event_lock, flags);
7354
7317c75e
JB
7355 drm_vblank_put(dev, intel_crtc->pipe);
7356free_work:
96b099fd
CW
7357 kfree(work);
7358
7359 return ret;
6b95a207
KH
7360}
7361
f6e5b160 7362static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
7363 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7364 .load_lut = intel_crtc_load_lut,
976f8a20 7365 .disable = intel_crtc_noop,
f6e5b160
CW
7366};
7367
6ed0f796 7368bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
47f1c6c9 7369{
6ed0f796
DV
7370 struct intel_encoder *other_encoder;
7371 struct drm_crtc *crtc = &encoder->new_crtc->base;
47f1c6c9 7372
6ed0f796
DV
7373 if (WARN_ON(!crtc))
7374 return false;
7375
7376 list_for_each_entry(other_encoder,
7377 &crtc->dev->mode_config.encoder_list,
7378 base.head) {
7379
7380 if (&other_encoder->new_crtc->base != crtc ||
7381 encoder == other_encoder)
7382 continue;
7383 else
7384 return true;
f47166d2
CW
7385 }
7386
6ed0f796
DV
7387 return false;
7388}
47f1c6c9 7389
50f56119
DV
7390static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7391 struct drm_crtc *crtc)
7392{
7393 struct drm_device *dev;
7394 struct drm_crtc *tmp;
7395 int crtc_mask = 1;
47f1c6c9 7396
50f56119 7397 WARN(!crtc, "checking null crtc?\n");
47f1c6c9 7398
50f56119 7399 dev = crtc->dev;
47f1c6c9 7400
50f56119
DV
7401 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7402 if (tmp == crtc)
7403 break;
7404 crtc_mask <<= 1;
7405 }
47f1c6c9 7406
50f56119
DV
7407 if (encoder->possible_crtcs & crtc_mask)
7408 return true;
7409 return false;
47f1c6c9 7410}
79e53945 7411
9a935856
DV
7412/**
7413 * intel_modeset_update_staged_output_state
7414 *
7415 * Updates the staged output configuration state, e.g. after we've read out the
7416 * current hw state.
7417 */
7418static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 7419{
9a935856
DV
7420 struct intel_encoder *encoder;
7421 struct intel_connector *connector;
f6e5b160 7422
9a935856
DV
7423 list_for_each_entry(connector, &dev->mode_config.connector_list,
7424 base.head) {
7425 connector->new_encoder =
7426 to_intel_encoder(connector->base.encoder);
7427 }
f6e5b160 7428
9a935856
DV
7429 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7430 base.head) {
7431 encoder->new_crtc =
7432 to_intel_crtc(encoder->base.crtc);
7433 }
f6e5b160
CW
7434}
7435
9a935856
DV
7436/**
7437 * intel_modeset_commit_output_state
7438 *
7439 * This function copies the stage display pipe configuration to the real one.
7440 */
7441static void intel_modeset_commit_output_state(struct drm_device *dev)
7442{
7443 struct intel_encoder *encoder;
7444 struct intel_connector *connector;
f6e5b160 7445
9a935856
DV
7446 list_for_each_entry(connector, &dev->mode_config.connector_list,
7447 base.head) {
7448 connector->base.encoder = &connector->new_encoder->base;
7449 }
f6e5b160 7450
9a935856
DV
7451 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7452 base.head) {
7453 encoder->base.crtc = &encoder->new_crtc->base;
7454 }
7455}
7456
7758a113
DV
7457static struct drm_display_mode *
7458intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7459 struct drm_display_mode *mode)
ee7b9f93 7460{
7758a113
DV
7461 struct drm_device *dev = crtc->dev;
7462 struct drm_display_mode *adjusted_mode;
7463 struct drm_encoder_helper_funcs *encoder_funcs;
7464 struct intel_encoder *encoder;
ee7b9f93 7465
7758a113
DV
7466 adjusted_mode = drm_mode_duplicate(dev, mode);
7467 if (!adjusted_mode)
7468 return ERR_PTR(-ENOMEM);
7469
7470 /* Pass our mode to the connectors and the CRTC to give them a chance to
7471 * adjust it according to limitations or connector properties, and also
7472 * a chance to reject the mode entirely.
47f1c6c9 7473 */
7758a113
DV
7474 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7475 base.head) {
47f1c6c9 7476
7758a113
DV
7477 if (&encoder->new_crtc->base != crtc)
7478 continue;
7479 encoder_funcs = encoder->base.helper_private;
7480 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7481 adjusted_mode))) {
7482 DRM_DEBUG_KMS("Encoder fixup failed\n");
7483 goto fail;
7484 }
ee7b9f93 7485 }
47f1c6c9 7486
7758a113
DV
7487 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7488 DRM_DEBUG_KMS("CRTC fixup failed\n");
7489 goto fail;
ee7b9f93 7490 }
7758a113 7491 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
47f1c6c9 7492
7758a113
DV
7493 return adjusted_mode;
7494fail:
7495 drm_mode_destroy(dev, adjusted_mode);
7496 return ERR_PTR(-EINVAL);
ee7b9f93 7497}
47f1c6c9 7498
e2e1ed41
DV
7499/* Computes which crtcs are affected and sets the relevant bits in the mask. For
7500 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7501static void
7502intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7503 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
7504{
7505 struct intel_crtc *intel_crtc;
e2e1ed41
DV
7506 struct drm_device *dev = crtc->dev;
7507 struct intel_encoder *encoder;
7508 struct intel_connector *connector;
7509 struct drm_crtc *tmp_crtc;
79e53945 7510
e2e1ed41 7511 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 7512
e2e1ed41
DV
7513 /* Check which crtcs have changed outputs connected to them, these need
7514 * to be part of the prepare_pipes mask. We don't (yet) support global
7515 * modeset across multiple crtcs, so modeset_pipes will only have one
7516 * bit set at most. */
7517 list_for_each_entry(connector, &dev->mode_config.connector_list,
7518 base.head) {
7519 if (connector->base.encoder == &connector->new_encoder->base)
7520 continue;
79e53945 7521
e2e1ed41
DV
7522 if (connector->base.encoder) {
7523 tmp_crtc = connector->base.encoder->crtc;
7524
7525 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7526 }
7527
7528 if (connector->new_encoder)
7529 *prepare_pipes |=
7530 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
7531 }
7532
e2e1ed41
DV
7533 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7534 base.head) {
7535 if (encoder->base.crtc == &encoder->new_crtc->base)
7536 continue;
7537
7538 if (encoder->base.crtc) {
7539 tmp_crtc = encoder->base.crtc;
7540
7541 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7542 }
7543
7544 if (encoder->new_crtc)
7545 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
7546 }
7547
e2e1ed41
DV
7548 /* Check for any pipes that will be fully disabled ... */
7549 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7550 base.head) {
7551 bool used = false;
22fd0fab 7552
e2e1ed41
DV
7553 /* Don't try to disable disabled crtcs. */
7554 if (!intel_crtc->base.enabled)
7555 continue;
7e7d76c3 7556
e2e1ed41
DV
7557 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7558 base.head) {
7559 if (encoder->new_crtc == intel_crtc)
7560 used = true;
7561 }
7562
7563 if (!used)
7564 *disable_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
7565 }
7566
e2e1ed41
DV
7567
7568 /* set_mode is also used to update properties on life display pipes. */
7569 intel_crtc = to_intel_crtc(crtc);
7570 if (crtc->enabled)
7571 *prepare_pipes |= 1 << intel_crtc->pipe;
7572
7573 /* We only support modeset on one single crtc, hence we need to do that
7574 * only for the passed in crtc iff we change anything else than just
7575 * disable crtcs.
7576 *
7577 * This is actually not true, to be fully compatible with the old crtc
7578 * helper we automatically disable _any_ output (i.e. doesn't need to be
7579 * connected to the crtc we're modesetting on) if it's disconnected.
7580 * Which is a rather nutty api (since changed the output configuration
7581 * without userspace's explicit request can lead to confusion), but
7582 * alas. Hence we currently need to modeset on all pipes we prepare. */
7583 if (*prepare_pipes)
7584 *modeset_pipes = *prepare_pipes;
7585
7586 /* ... and mask these out. */
7587 *modeset_pipes &= ~(*disable_pipes);
7588 *prepare_pipes &= ~(*disable_pipes);
47f1c6c9 7589}
79e53945 7590
ea9d758d 7591static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 7592{
ea9d758d 7593 struct drm_encoder *encoder;
f6e5b160 7594 struct drm_device *dev = crtc->dev;
f6e5b160 7595
ea9d758d
DV
7596 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7597 if (encoder->crtc == crtc)
7598 return true;
7599
7600 return false;
7601}
7602
7603static void
7604intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7605{
7606 struct intel_encoder *intel_encoder;
7607 struct intel_crtc *intel_crtc;
7608 struct drm_connector *connector;
7609
7610 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7611 base.head) {
7612 if (!intel_encoder->base.crtc)
7613 continue;
7614
7615 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7616
7617 if (prepare_pipes & (1 << intel_crtc->pipe))
7618 intel_encoder->connectors_active = false;
7619 }
7620
7621 intel_modeset_commit_output_state(dev);
7622
7623 /* Update computed state. */
7624 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7625 base.head) {
7626 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7627 }
7628
7629 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7630 if (!connector->encoder || !connector->encoder->crtc)
7631 continue;
7632
7633 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7634
7635 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
7636 struct drm_property *dpms_property =
7637 dev->mode_config.dpms_property;
7638
ea9d758d 7639 connector->dpms = DRM_MODE_DPMS_ON;
662595df 7640 drm_object_property_set_value(&connector->base,
68d34720
DV
7641 dpms_property,
7642 DRM_MODE_DPMS_ON);
ea9d758d
DV
7643
7644 intel_encoder = to_intel_encoder(connector->encoder);
7645 intel_encoder->connectors_active = true;
7646 }
7647 }
7648
7649}
7650
25c5b266
DV
7651#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7652 list_for_each_entry((intel_crtc), \
7653 &(dev)->mode_config.crtc_list, \
7654 base.head) \
7655 if (mask & (1 <<(intel_crtc)->pipe)) \
7656
b980514c 7657void
8af6cf88
DV
7658intel_modeset_check_state(struct drm_device *dev)
7659{
7660 struct intel_crtc *crtc;
7661 struct intel_encoder *encoder;
7662 struct intel_connector *connector;
7663
7664 list_for_each_entry(connector, &dev->mode_config.connector_list,
7665 base.head) {
7666 /* This also checks the encoder/connector hw state with the
7667 * ->get_hw_state callbacks. */
7668 intel_connector_check_state(connector);
7669
7670 WARN(&connector->new_encoder->base != connector->base.encoder,
7671 "connector's staged encoder doesn't match current encoder\n");
7672 }
7673
7674 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7675 base.head) {
7676 bool enabled = false;
7677 bool active = false;
7678 enum pipe pipe, tracked_pipe;
7679
7680 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7681 encoder->base.base.id,
7682 drm_get_encoder_name(&encoder->base));
7683
7684 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7685 "encoder's stage crtc doesn't match current crtc\n");
7686 WARN(encoder->connectors_active && !encoder->base.crtc,
7687 "encoder's active_connectors set, but no crtc\n");
7688
7689 list_for_each_entry(connector, &dev->mode_config.connector_list,
7690 base.head) {
7691 if (connector->base.encoder != &encoder->base)
7692 continue;
7693 enabled = true;
7694 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7695 active = true;
7696 }
7697 WARN(!!encoder->base.crtc != enabled,
7698 "encoder's enabled state mismatch "
7699 "(expected %i, found %i)\n",
7700 !!encoder->base.crtc, enabled);
7701 WARN(active && !encoder->base.crtc,
7702 "active encoder with no crtc\n");
7703
7704 WARN(encoder->connectors_active != active,
7705 "encoder's computed active state doesn't match tracked active state "
7706 "(expected %i, found %i)\n", active, encoder->connectors_active);
7707
7708 active = encoder->get_hw_state(encoder, &pipe);
7709 WARN(active != encoder->connectors_active,
7710 "encoder's hw state doesn't match sw tracking "
7711 "(expected %i, found %i)\n",
7712 encoder->connectors_active, active);
7713
7714 if (!encoder->base.crtc)
7715 continue;
7716
7717 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7718 WARN(active && pipe != tracked_pipe,
7719 "active encoder's pipe doesn't match"
7720 "(expected %i, found %i)\n",
7721 tracked_pipe, pipe);
7722
7723 }
7724
7725 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7726 base.head) {
7727 bool enabled = false;
7728 bool active = false;
7729
7730 DRM_DEBUG_KMS("[CRTC:%d]\n",
7731 crtc->base.base.id);
7732
7733 WARN(crtc->active && !crtc->base.enabled,
7734 "active crtc, but not enabled in sw tracking\n");
7735
7736 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7737 base.head) {
7738 if (encoder->base.crtc != &crtc->base)
7739 continue;
7740 enabled = true;
7741 if (encoder->connectors_active)
7742 active = true;
7743 }
7744 WARN(active != crtc->active,
7745 "crtc's computed active state doesn't match tracked active state "
7746 "(expected %i, found %i)\n", active, crtc->active);
7747 WARN(enabled != crtc->base.enabled,
7748 "crtc's computed enabled state doesn't match tracked enabled state "
7749 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7750
7751 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7752 }
7753}
7754
a6778b3c
DV
7755bool intel_set_mode(struct drm_crtc *crtc,
7756 struct drm_display_mode *mode,
94352cf9 7757 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
7758{
7759 struct drm_device *dev = crtc->dev;
dbf2b54e 7760 drm_i915_private_t *dev_priv = dev->dev_private;
a6778b3c 7761 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
25c5b266
DV
7762 struct intel_crtc *intel_crtc;
7763 unsigned disable_pipes, prepare_pipes, modeset_pipes;
a6778b3c
DV
7764 bool ret = true;
7765
e2e1ed41 7766 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
7767 &prepare_pipes, &disable_pipes);
7768
7769 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7770 modeset_pipes, prepare_pipes, disable_pipes);
e2e1ed41 7771
976f8a20
DV
7772 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7773 intel_crtc_disable(&intel_crtc->base);
87f1faa6 7774
a6778b3c
DV
7775 saved_hwmode = crtc->hwmode;
7776 saved_mode = crtc->mode;
a6778b3c 7777
25c5b266
DV
7778 /* Hack: Because we don't (yet) support global modeset on multiple
7779 * crtcs, we don't keep track of the new mode for more than one crtc.
7780 * Hence simply check whether any bit is set in modeset_pipes in all the
7781 * pieces of code that are not yet converted to deal with mutliple crtcs
7782 * changing their mode at the same time. */
7783 adjusted_mode = NULL;
7784 if (modeset_pipes) {
7785 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7786 if (IS_ERR(adjusted_mode)) {
7787 return false;
7788 }
25c5b266 7789 }
a6778b3c 7790
ea9d758d
DV
7791 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7792 if (intel_crtc->base.enabled)
7793 dev_priv->display.crtc_disable(&intel_crtc->base);
7794 }
a6778b3c 7795
6c4c86f5
DV
7796 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7797 * to set it here already despite that we pass it down the callchain.
f6e5b160 7798 */
6c4c86f5 7799 if (modeset_pipes)
25c5b266 7800 crtc->mode = *mode;
7758a113 7801
ea9d758d
DV
7802 /* Only after disabling all output pipelines that will be changed can we
7803 * update the the output configuration. */
7804 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 7805
47fab737
DV
7806 if (dev_priv->display.modeset_global_resources)
7807 dev_priv->display.modeset_global_resources(dev);
7808
a6778b3c
DV
7809 /* Set up the DPLL and any encoders state that needs to adjust or depend
7810 * on the DPLL.
f6e5b160 7811 */
25c5b266
DV
7812 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7813 ret = !intel_crtc_mode_set(&intel_crtc->base,
7814 mode, adjusted_mode,
7815 x, y, fb);
7816 if (!ret)
7817 goto done;
a6778b3c
DV
7818 }
7819
7820 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
25c5b266
DV
7821 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7822 dev_priv->display.crtc_enable(&intel_crtc->base);
a6778b3c 7823
25c5b266
DV
7824 if (modeset_pipes) {
7825 /* Store real post-adjustment hardware mode. */
7826 crtc->hwmode = *adjusted_mode;
a6778b3c 7827
25c5b266
DV
7828 /* Calculate and store various constants which
7829 * are later needed by vblank and swap-completion
7830 * timestamping. They are derived from true hwmode.
7831 */
7832 drm_calc_timestamping_constants(crtc);
7833 }
a6778b3c
DV
7834
7835 /* FIXME: add subpixel order */
7836done:
7837 drm_mode_destroy(dev, adjusted_mode);
25c5b266 7838 if (!ret && crtc->enabled) {
a6778b3c
DV
7839 crtc->hwmode = saved_hwmode;
7840 crtc->mode = saved_mode;
8af6cf88
DV
7841 } else {
7842 intel_modeset_check_state(dev);
a6778b3c
DV
7843 }
7844
7845 return ret;
f6e5b160
CW
7846}
7847
25c5b266
DV
7848#undef for_each_intel_crtc_masked
7849
d9e55608
DV
7850static void intel_set_config_free(struct intel_set_config *config)
7851{
7852 if (!config)
7853 return;
7854
1aa4b628
DV
7855 kfree(config->save_connector_encoders);
7856 kfree(config->save_encoder_crtcs);
d9e55608
DV
7857 kfree(config);
7858}
7859
85f9eb71
DV
7860static int intel_set_config_save_state(struct drm_device *dev,
7861 struct intel_set_config *config)
7862{
85f9eb71
DV
7863 struct drm_encoder *encoder;
7864 struct drm_connector *connector;
7865 int count;
7866
1aa4b628
DV
7867 config->save_encoder_crtcs =
7868 kcalloc(dev->mode_config.num_encoder,
7869 sizeof(struct drm_crtc *), GFP_KERNEL);
7870 if (!config->save_encoder_crtcs)
85f9eb71
DV
7871 return -ENOMEM;
7872
1aa4b628
DV
7873 config->save_connector_encoders =
7874 kcalloc(dev->mode_config.num_connector,
7875 sizeof(struct drm_encoder *), GFP_KERNEL);
7876 if (!config->save_connector_encoders)
85f9eb71
DV
7877 return -ENOMEM;
7878
7879 /* Copy data. Note that driver private data is not affected.
7880 * Should anything bad happen only the expected state is
7881 * restored, not the drivers personal bookkeeping.
7882 */
85f9eb71
DV
7883 count = 0;
7884 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 7885 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
7886 }
7887
7888 count = 0;
7889 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 7890 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
7891 }
7892
7893 return 0;
7894}
7895
7896static void intel_set_config_restore_state(struct drm_device *dev,
7897 struct intel_set_config *config)
7898{
9a935856
DV
7899 struct intel_encoder *encoder;
7900 struct intel_connector *connector;
85f9eb71
DV
7901 int count;
7902
85f9eb71 7903 count = 0;
9a935856
DV
7904 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7905 encoder->new_crtc =
7906 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
7907 }
7908
7909 count = 0;
9a935856
DV
7910 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7911 connector->new_encoder =
7912 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
7913 }
7914}
7915
5e2b584e
DV
7916static void
7917intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7918 struct intel_set_config *config)
7919{
7920
7921 /* We should be able to check here if the fb has the same properties
7922 * and then just flip_or_move it */
7923 if (set->crtc->fb != set->fb) {
7924 /* If we have no fb then treat it as a full mode set */
7925 if (set->crtc->fb == NULL) {
7926 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7927 config->mode_changed = true;
7928 } else if (set->fb == NULL) {
7929 config->mode_changed = true;
7930 } else if (set->fb->depth != set->crtc->fb->depth) {
7931 config->mode_changed = true;
7932 } else if (set->fb->bits_per_pixel !=
7933 set->crtc->fb->bits_per_pixel) {
7934 config->mode_changed = true;
7935 } else
7936 config->fb_changed = true;
7937 }
7938
835c5873 7939 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
7940 config->fb_changed = true;
7941
7942 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7943 DRM_DEBUG_KMS("modes are different, full mode set\n");
7944 drm_mode_debug_printmodeline(&set->crtc->mode);
7945 drm_mode_debug_printmodeline(set->mode);
7946 config->mode_changed = true;
7947 }
7948}
7949
2e431051 7950static int
9a935856
DV
7951intel_modeset_stage_output_state(struct drm_device *dev,
7952 struct drm_mode_set *set,
7953 struct intel_set_config *config)
50f56119 7954{
85f9eb71 7955 struct drm_crtc *new_crtc;
9a935856
DV
7956 struct intel_connector *connector;
7957 struct intel_encoder *encoder;
2e431051 7958 int count, ro;
50f56119 7959
9a935856
DV
7960 /* The upper layers ensure that we either disabl a crtc or have a list
7961 * of connectors. For paranoia, double-check this. */
7962 WARN_ON(!set->fb && (set->num_connectors != 0));
7963 WARN_ON(set->fb && (set->num_connectors == 0));
7964
50f56119 7965 count = 0;
9a935856
DV
7966 list_for_each_entry(connector, &dev->mode_config.connector_list,
7967 base.head) {
7968 /* Otherwise traverse passed in connector list and get encoders
7969 * for them. */
50f56119 7970 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
7971 if (set->connectors[ro] == &connector->base) {
7972 connector->new_encoder = connector->encoder;
50f56119
DV
7973 break;
7974 }
7975 }
7976
9a935856
DV
7977 /* If we disable the crtc, disable all its connectors. Also, if
7978 * the connector is on the changing crtc but not on the new
7979 * connector list, disable it. */
7980 if ((!set->fb || ro == set->num_connectors) &&
7981 connector->base.encoder &&
7982 connector->base.encoder->crtc == set->crtc) {
7983 connector->new_encoder = NULL;
7984
7985 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7986 connector->base.base.id,
7987 drm_get_connector_name(&connector->base));
7988 }
7989
7990
7991 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 7992 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 7993 config->mode_changed = true;
50f56119 7994 }
9a935856
DV
7995
7996 /* Disable all disconnected encoders. */
7997 if (connector->base.status == connector_status_disconnected)
7998 connector->new_encoder = NULL;
50f56119 7999 }
9a935856 8000 /* connector->new_encoder is now updated for all connectors. */
50f56119 8001
9a935856 8002 /* Update crtc of enabled connectors. */
50f56119 8003 count = 0;
9a935856
DV
8004 list_for_each_entry(connector, &dev->mode_config.connector_list,
8005 base.head) {
8006 if (!connector->new_encoder)
50f56119
DV
8007 continue;
8008
9a935856 8009 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
8010
8011 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 8012 if (set->connectors[ro] == &connector->base)
50f56119
DV
8013 new_crtc = set->crtc;
8014 }
8015
8016 /* Make sure the new CRTC will work with the encoder */
9a935856
DV
8017 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8018 new_crtc)) {
5e2b584e 8019 return -EINVAL;
50f56119 8020 }
9a935856
DV
8021 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8022
8023 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8024 connector->base.base.id,
8025 drm_get_connector_name(&connector->base),
8026 new_crtc->base.id);
8027 }
8028
8029 /* Check for any encoders that needs to be disabled. */
8030 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8031 base.head) {
8032 list_for_each_entry(connector,
8033 &dev->mode_config.connector_list,
8034 base.head) {
8035 if (connector->new_encoder == encoder) {
8036 WARN_ON(!connector->new_encoder->new_crtc);
8037
8038 goto next_encoder;
8039 }
8040 }
8041 encoder->new_crtc = NULL;
8042next_encoder:
8043 /* Only now check for crtc changes so we don't miss encoders
8044 * that will be disabled. */
8045 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 8046 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 8047 config->mode_changed = true;
50f56119
DV
8048 }
8049 }
9a935856 8050 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 8051
2e431051
DV
8052 return 0;
8053}
8054
8055static int intel_crtc_set_config(struct drm_mode_set *set)
8056{
8057 struct drm_device *dev;
2e431051
DV
8058 struct drm_mode_set save_set;
8059 struct intel_set_config *config;
8060 int ret;
2e431051 8061
8d3e375e
DV
8062 BUG_ON(!set);
8063 BUG_ON(!set->crtc);
8064 BUG_ON(!set->crtc->helper_private);
2e431051
DV
8065
8066 if (!set->mode)
8067 set->fb = NULL;
8068
431e50f7
DV
8069 /* The fb helper likes to play gross jokes with ->mode_set_config.
8070 * Unfortunately the crtc helper doesn't do much at all for this case,
8071 * so we have to cope with this madness until the fb helper is fixed up. */
8072 if (set->fb && set->num_connectors == 0)
8073 return 0;
8074
2e431051
DV
8075 if (set->fb) {
8076 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8077 set->crtc->base.id, set->fb->base.id,
8078 (int)set->num_connectors, set->x, set->y);
8079 } else {
8080 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
8081 }
8082
8083 dev = set->crtc->dev;
8084
8085 ret = -ENOMEM;
8086 config = kzalloc(sizeof(*config), GFP_KERNEL);
8087 if (!config)
8088 goto out_config;
8089
8090 ret = intel_set_config_save_state(dev, config);
8091 if (ret)
8092 goto out_config;
8093
8094 save_set.crtc = set->crtc;
8095 save_set.mode = &set->crtc->mode;
8096 save_set.x = set->crtc->x;
8097 save_set.y = set->crtc->y;
8098 save_set.fb = set->crtc->fb;
8099
8100 /* Compute whether we need a full modeset, only an fb base update or no
8101 * change at all. In the future we might also check whether only the
8102 * mode changed, e.g. for LVDS where we only change the panel fitter in
8103 * such cases. */
8104 intel_set_config_compute_mode_changes(set, config);
8105
9a935856 8106 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
8107 if (ret)
8108 goto fail;
8109
5e2b584e 8110 if (config->mode_changed) {
87f1faa6 8111 if (set->mode) {
50f56119
DV
8112 DRM_DEBUG_KMS("attempting to set mode from"
8113 " userspace\n");
8114 drm_mode_debug_printmodeline(set->mode);
87f1faa6
DV
8115 }
8116
8117 if (!intel_set_mode(set->crtc, set->mode,
8118 set->x, set->y, set->fb)) {
8119 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8120 set->crtc->base.id);
8121 ret = -EINVAL;
8122 goto fail;
8123 }
5e2b584e 8124 } else if (config->fb_changed) {
4f660f49 8125 ret = intel_pipe_set_base(set->crtc,
94352cf9 8126 set->x, set->y, set->fb);
50f56119
DV
8127 }
8128
d9e55608
DV
8129 intel_set_config_free(config);
8130
50f56119
DV
8131 return 0;
8132
8133fail:
85f9eb71 8134 intel_set_config_restore_state(dev, config);
50f56119
DV
8135
8136 /* Try to restore the config */
5e2b584e 8137 if (config->mode_changed &&
a6778b3c
DV
8138 !intel_set_mode(save_set.crtc, save_set.mode,
8139 save_set.x, save_set.y, save_set.fb))
50f56119
DV
8140 DRM_ERROR("failed to restore config after modeset failure\n");
8141
d9e55608
DV
8142out_config:
8143 intel_set_config_free(config);
50f56119
DV
8144 return ret;
8145}
f6e5b160
CW
8146
8147static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160
CW
8148 .cursor_set = intel_crtc_cursor_set,
8149 .cursor_move = intel_crtc_cursor_move,
8150 .gamma_set = intel_crtc_gamma_set,
50f56119 8151 .set_config = intel_crtc_set_config,
f6e5b160
CW
8152 .destroy = intel_crtc_destroy,
8153 .page_flip = intel_crtc_page_flip,
8154};
8155
79f689aa
PZ
8156static void intel_cpu_pll_init(struct drm_device *dev)
8157{
8158 if (IS_HASWELL(dev))
8159 intel_ddi_pll_init(dev);
8160}
8161
ee7b9f93
JB
8162static void intel_pch_pll_init(struct drm_device *dev)
8163{
8164 drm_i915_private_t *dev_priv = dev->dev_private;
8165 int i;
8166
8167 if (dev_priv->num_pch_pll == 0) {
8168 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8169 return;
8170 }
8171
8172 for (i = 0; i < dev_priv->num_pch_pll; i++) {
8173 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8174 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8175 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8176 }
8177}
8178
b358d0a6 8179static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 8180{
22fd0fab 8181 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
8182 struct intel_crtc *intel_crtc;
8183 int i;
8184
8185 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8186 if (intel_crtc == NULL)
8187 return;
8188
8189 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8190
8191 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
8192 for (i = 0; i < 256; i++) {
8193 intel_crtc->lut_r[i] = i;
8194 intel_crtc->lut_g[i] = i;
8195 intel_crtc->lut_b[i] = i;
8196 }
8197
80824003
JB
8198 /* Swap pipes & planes for FBC on pre-965 */
8199 intel_crtc->pipe = pipe;
8200 intel_crtc->plane = pipe;
a5c961d1 8201 intel_crtc->cpu_transcoder = pipe;
e2e767ab 8202 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 8203 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 8204 intel_crtc->plane = !pipe;
80824003
JB
8205 }
8206
22fd0fab
JB
8207 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8208 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8209 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8210 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8211
5a354204 8212 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3 8213
79e53945 8214 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
79e53945
JB
8215}
8216
08d7b3d1 8217int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 8218 struct drm_file *file)
08d7b3d1 8219{
08d7b3d1 8220 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
8221 struct drm_mode_object *drmmode_obj;
8222 struct intel_crtc *crtc;
08d7b3d1 8223
1cff8f6b
DV
8224 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8225 return -ENODEV;
08d7b3d1 8226
c05422d5
DV
8227 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8228 DRM_MODE_OBJECT_CRTC);
08d7b3d1 8229
c05422d5 8230 if (!drmmode_obj) {
08d7b3d1
CW
8231 DRM_ERROR("no such CRTC id\n");
8232 return -EINVAL;
8233 }
8234
c05422d5
DV
8235 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8236 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 8237
c05422d5 8238 return 0;
08d7b3d1
CW
8239}
8240
66a9278e 8241static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 8242{
66a9278e
DV
8243 struct drm_device *dev = encoder->base.dev;
8244 struct intel_encoder *source_encoder;
79e53945 8245 int index_mask = 0;
79e53945
JB
8246 int entry = 0;
8247
66a9278e
DV
8248 list_for_each_entry(source_encoder,
8249 &dev->mode_config.encoder_list, base.head) {
8250
8251 if (encoder == source_encoder)
79e53945 8252 index_mask |= (1 << entry);
66a9278e
DV
8253
8254 /* Intel hw has only one MUX where enocoders could be cloned. */
8255 if (encoder->cloneable && source_encoder->cloneable)
8256 index_mask |= (1 << entry);
8257
79e53945
JB
8258 entry++;
8259 }
4ef69c7a 8260
79e53945
JB
8261 return index_mask;
8262}
8263
4d302442
CW
8264static bool has_edp_a(struct drm_device *dev)
8265{
8266 struct drm_i915_private *dev_priv = dev->dev_private;
8267
8268 if (!IS_MOBILE(dev))
8269 return false;
8270
8271 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8272 return false;
8273
8274 if (IS_GEN5(dev) &&
8275 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8276 return false;
8277
8278 return true;
8279}
8280
79e53945
JB
8281static void intel_setup_outputs(struct drm_device *dev)
8282{
725e30ad 8283 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 8284 struct intel_encoder *encoder;
cb0953d7 8285 bool dpd_is_edp = false;
f3cfcba6 8286 bool has_lvds;
79e53945 8287
f3cfcba6 8288 has_lvds = intel_lvds_init(dev);
c5d1b51d
CW
8289 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8290 /* disable the panel fitter on everything but LVDS */
8291 I915_WRITE(PFIT_CONTROL, 0);
8292 }
79e53945 8293
79935fca
PZ
8294 if (!(IS_HASWELL(dev) &&
8295 (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8296 intel_crt_init(dev);
cb0953d7 8297
0e72a5b5
ED
8298 if (IS_HASWELL(dev)) {
8299 int found;
8300
8301 /* Haswell uses DDI functions to detect digital outputs */
8302 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8303 /* DDI A only supports eDP */
8304 if (found)
8305 intel_ddi_init(dev, PORT_A);
8306
8307 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8308 * register */
8309 found = I915_READ(SFUSE_STRAP);
8310
8311 if (found & SFUSE_STRAP_DDIB_DETECTED)
8312 intel_ddi_init(dev, PORT_B);
8313 if (found & SFUSE_STRAP_DDIC_DETECTED)
8314 intel_ddi_init(dev, PORT_C);
8315 if (found & SFUSE_STRAP_DDID_DETECTED)
8316 intel_ddi_init(dev, PORT_D);
8317 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 8318 int found;
270b3042
DV
8319 dpd_is_edp = intel_dpd_is_edp(dev);
8320
8321 if (has_edp_a(dev))
8322 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 8323
30ad48b7 8324 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca 8325 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 8326 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 8327 if (!found)
08d644ad 8328 intel_hdmi_init(dev, HDMIB, PORT_B);
5eb08b69 8329 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 8330 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
8331 }
8332
8333 if (I915_READ(HDMIC) & PORT_DETECTED)
08d644ad 8334 intel_hdmi_init(dev, HDMIC, PORT_C);
30ad48b7 8335
b708a1d5 8336 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
08d644ad 8337 intel_hdmi_init(dev, HDMID, PORT_D);
30ad48b7 8338
5eb08b69 8339 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 8340 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 8341
270b3042 8342 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 8343 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d
JB
8344 } else if (IS_VALLEYVIEW(dev)) {
8345 int found;
8346
19c03924
GB
8347 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8348 if (I915_READ(DP_C) & DP_DETECTED)
8349 intel_dp_init(dev, DP_C, PORT_C);
8350
4a87d65d
JB
8351 if (I915_READ(SDVOB) & PORT_DETECTED) {
8352 /* SDVOB multiplex with HDMIB */
8353 found = intel_sdvo_init(dev, SDVOB, true);
8354 if (!found)
08d644ad 8355 intel_hdmi_init(dev, SDVOB, PORT_B);
4a87d65d 8356 if (!found && (I915_READ(DP_B) & DP_DETECTED))
ab9d7c30 8357 intel_dp_init(dev, DP_B, PORT_B);
4a87d65d
JB
8358 }
8359
8360 if (I915_READ(SDVOC) & PORT_DETECTED)
08d644ad 8361 intel_hdmi_init(dev, SDVOC, PORT_C);
5eb08b69 8362
103a196f 8363 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 8364 bool found = false;
7d57382e 8365
725e30ad 8366 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 8367 DRM_DEBUG_KMS("probing SDVOB\n");
eef4eacb 8368 found = intel_sdvo_init(dev, SDVOB, true);
b01f2c3a
JB
8369 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8370 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
08d644ad 8371 intel_hdmi_init(dev, SDVOB, PORT_B);
b01f2c3a 8372 }
27185ae1 8373
b01f2c3a
JB
8374 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8375 DRM_DEBUG_KMS("probing DP_B\n");
ab9d7c30 8376 intel_dp_init(dev, DP_B, PORT_B);
b01f2c3a 8377 }
725e30ad 8378 }
13520b05
KH
8379
8380 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 8381
b01f2c3a
JB
8382 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8383 DRM_DEBUG_KMS("probing SDVOC\n");
eef4eacb 8384 found = intel_sdvo_init(dev, SDVOC, false);
b01f2c3a 8385 }
27185ae1
ML
8386
8387 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8388
b01f2c3a
JB
8389 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8390 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
08d644ad 8391 intel_hdmi_init(dev, SDVOC, PORT_C);
b01f2c3a
JB
8392 }
8393 if (SUPPORTS_INTEGRATED_DP(dev)) {
8394 DRM_DEBUG_KMS("probing DP_C\n");
ab9d7c30 8395 intel_dp_init(dev, DP_C, PORT_C);
b01f2c3a 8396 }
725e30ad 8397 }
27185ae1 8398
b01f2c3a
JB
8399 if (SUPPORTS_INTEGRATED_DP(dev) &&
8400 (I915_READ(DP_D) & DP_DETECTED)) {
8401 DRM_DEBUG_KMS("probing DP_D\n");
ab9d7c30 8402 intel_dp_init(dev, DP_D, PORT_D);
b01f2c3a 8403 }
bad720ff 8404 } else if (IS_GEN2(dev))
79e53945
JB
8405 intel_dvo_init(dev);
8406
103a196f 8407 if (SUPPORTS_TV(dev))
79e53945
JB
8408 intel_tv_init(dev);
8409
4ef69c7a
CW
8410 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8411 encoder->base.possible_crtcs = encoder->crtc_mask;
8412 encoder->base.possible_clones =
66a9278e 8413 intel_encoder_clones(encoder);
79e53945 8414 }
47356eb6 8415
40579abe 8416 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9fb526db 8417 ironlake_init_pch_refclk(dev);
270b3042
DV
8418
8419 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
8420}
8421
8422static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8423{
8424 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
8425
8426 drm_framebuffer_cleanup(fb);
05394f39 8427 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
8428
8429 kfree(intel_fb);
8430}
8431
8432static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 8433 struct drm_file *file,
79e53945
JB
8434 unsigned int *handle)
8435{
8436 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 8437 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 8438
05394f39 8439 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
8440}
8441
8442static const struct drm_framebuffer_funcs intel_fb_funcs = {
8443 .destroy = intel_user_framebuffer_destroy,
8444 .create_handle = intel_user_framebuffer_create_handle,
8445};
8446
38651674
DA
8447int intel_framebuffer_init(struct drm_device *dev,
8448 struct intel_framebuffer *intel_fb,
308e5bcb 8449 struct drm_mode_fb_cmd2 *mode_cmd,
05394f39 8450 struct drm_i915_gem_object *obj)
79e53945 8451{
79e53945
JB
8452 int ret;
8453
05394f39 8454 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
8455 return -EINVAL;
8456
308e5bcb 8457 if (mode_cmd->pitches[0] & 63)
57cd6508
CW
8458 return -EINVAL;
8459
5d7bd705
VS
8460 /* FIXME <= Gen4 stride limits are bit unclear */
8461 if (mode_cmd->pitches[0] > 32768)
8462 return -EINVAL;
8463
8464 if (obj->tiling_mode != I915_TILING_NONE &&
8465 mode_cmd->pitches[0] != obj->stride)
8466 return -EINVAL;
8467
57779d06 8468 /* Reject formats not supported by any plane early. */
308e5bcb 8469 switch (mode_cmd->pixel_format) {
57779d06 8470 case DRM_FORMAT_C8:
04b3924d
VS
8471 case DRM_FORMAT_RGB565:
8472 case DRM_FORMAT_XRGB8888:
8473 case DRM_FORMAT_ARGB8888:
57779d06
VS
8474 break;
8475 case DRM_FORMAT_XRGB1555:
8476 case DRM_FORMAT_ARGB1555:
8477 if (INTEL_INFO(dev)->gen > 3)
8478 return -EINVAL;
8479 break;
8480 case DRM_FORMAT_XBGR8888:
8481 case DRM_FORMAT_ABGR8888:
04b3924d
VS
8482 case DRM_FORMAT_XRGB2101010:
8483 case DRM_FORMAT_ARGB2101010:
57779d06
VS
8484 case DRM_FORMAT_XBGR2101010:
8485 case DRM_FORMAT_ABGR2101010:
8486 if (INTEL_INFO(dev)->gen < 4)
8487 return -EINVAL;
b5626747 8488 break;
04b3924d
VS
8489 case DRM_FORMAT_YUYV:
8490 case DRM_FORMAT_UYVY:
8491 case DRM_FORMAT_YVYU:
8492 case DRM_FORMAT_VYUY:
57779d06
VS
8493 if (INTEL_INFO(dev)->gen < 6)
8494 return -EINVAL;
57cd6508
CW
8495 break;
8496 default:
57779d06 8497 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
57cd6508
CW
8498 return -EINVAL;
8499 }
8500
90f9a336
VS
8501 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8502 if (mode_cmd->offsets[0] != 0)
8503 return -EINVAL;
8504
79e53945
JB
8505 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8506 if (ret) {
8507 DRM_ERROR("framebuffer init failed %d\n", ret);
8508 return ret;
8509 }
8510
8511 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 8512 intel_fb->obj = obj;
79e53945
JB
8513 return 0;
8514}
8515
79e53945
JB
8516static struct drm_framebuffer *
8517intel_user_framebuffer_create(struct drm_device *dev,
8518 struct drm_file *filp,
308e5bcb 8519 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 8520{
05394f39 8521 struct drm_i915_gem_object *obj;
79e53945 8522
308e5bcb
JB
8523 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8524 mode_cmd->handles[0]));
c8725226 8525 if (&obj->base == NULL)
cce13ff7 8526 return ERR_PTR(-ENOENT);
79e53945 8527
d2dff872 8528 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
8529}
8530
79e53945 8531static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 8532 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 8533 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
8534};
8535
e70236a8
JB
8536/* Set up chip specific display functions */
8537static void intel_init_display(struct drm_device *dev)
8538{
8539 struct drm_i915_private *dev_priv = dev->dev_private;
8540
8541 /* We always want a DPMS function */
09b4ddf9
PZ
8542 if (IS_HASWELL(dev)) {
8543 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
8544 dev_priv->display.crtc_enable = haswell_crtc_enable;
8545 dev_priv->display.crtc_disable = haswell_crtc_disable;
6441ab5f 8546 dev_priv->display.off = haswell_crtc_off;
09b4ddf9
PZ
8547 dev_priv->display.update_plane = ironlake_update_plane;
8548 } else if (HAS_PCH_SPLIT(dev)) {
f564048e 8549 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
8550 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8551 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 8552 dev_priv->display.off = ironlake_crtc_off;
17638cd6 8553 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 8554 } else {
f564048e 8555 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
8556 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8557 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 8558 dev_priv->display.off = i9xx_crtc_off;
17638cd6 8559 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 8560 }
e70236a8 8561
e70236a8 8562 /* Returns the core display clock speed */
25eb05fc
JB
8563 if (IS_VALLEYVIEW(dev))
8564 dev_priv->display.get_display_clock_speed =
8565 valleyview_get_display_clock_speed;
8566 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
8567 dev_priv->display.get_display_clock_speed =
8568 i945_get_display_clock_speed;
8569 else if (IS_I915G(dev))
8570 dev_priv->display.get_display_clock_speed =
8571 i915_get_display_clock_speed;
f2b115e6 8572 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
8573 dev_priv->display.get_display_clock_speed =
8574 i9xx_misc_get_display_clock_speed;
8575 else if (IS_I915GM(dev))
8576 dev_priv->display.get_display_clock_speed =
8577 i915gm_get_display_clock_speed;
8578 else if (IS_I865G(dev))
8579 dev_priv->display.get_display_clock_speed =
8580 i865_get_display_clock_speed;
f0f8a9ce 8581 else if (IS_I85X(dev))
e70236a8
JB
8582 dev_priv->display.get_display_clock_speed =
8583 i855_get_display_clock_speed;
8584 else /* 852, 830 */
8585 dev_priv->display.get_display_clock_speed =
8586 i830_get_display_clock_speed;
8587
7f8a8569 8588 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 8589 if (IS_GEN5(dev)) {
674cf967 8590 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 8591 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 8592 } else if (IS_GEN6(dev)) {
674cf967 8593 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 8594 dev_priv->display.write_eld = ironlake_write_eld;
357555c0
JB
8595 } else if (IS_IVYBRIDGE(dev)) {
8596 /* FIXME: detect B0+ stepping and use auto training */
8597 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 8598 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
8599 dev_priv->display.modeset_global_resources =
8600 ivb_modeset_global_resources;
c82e4d26
ED
8601 } else if (IS_HASWELL(dev)) {
8602 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 8603 dev_priv->display.write_eld = haswell_write_eld;
7f8a8569
ZW
8604 } else
8605 dev_priv->display.update_wm = NULL;
6067aaea 8606 } else if (IS_G4X(dev)) {
e0dac65e 8607 dev_priv->display.write_eld = g4x_write_eld;
e70236a8 8608 }
8c9f3aaf
JB
8609
8610 /* Default just returns -ENODEV to indicate unsupported */
8611 dev_priv->display.queue_flip = intel_default_queue_flip;
8612
8613 switch (INTEL_INFO(dev)->gen) {
8614 case 2:
8615 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8616 break;
8617
8618 case 3:
8619 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8620 break;
8621
8622 case 4:
8623 case 5:
8624 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8625 break;
8626
8627 case 6:
8628 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8629 break;
7c9017e5
JB
8630 case 7:
8631 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8632 break;
8c9f3aaf 8633 }
e70236a8
JB
8634}
8635
b690e96c
JB
8636/*
8637 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8638 * resume, or other times. This quirk makes sure that's the case for
8639 * affected systems.
8640 */
0206e353 8641static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
8642{
8643 struct drm_i915_private *dev_priv = dev->dev_private;
8644
8645 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 8646 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
8647}
8648
435793df
KP
8649/*
8650 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8651 */
8652static void quirk_ssc_force_disable(struct drm_device *dev)
8653{
8654 struct drm_i915_private *dev_priv = dev->dev_private;
8655 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 8656 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
8657}
8658
4dca20ef 8659/*
5a15ab5b
CE
8660 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8661 * brightness value
4dca20ef
CE
8662 */
8663static void quirk_invert_brightness(struct drm_device *dev)
8664{
8665 struct drm_i915_private *dev_priv = dev->dev_private;
8666 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 8667 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
8668}
8669
b690e96c
JB
8670struct intel_quirk {
8671 int device;
8672 int subsystem_vendor;
8673 int subsystem_device;
8674 void (*hook)(struct drm_device *dev);
8675};
8676
5f85f176
EE
8677/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8678struct intel_dmi_quirk {
8679 void (*hook)(struct drm_device *dev);
8680 const struct dmi_system_id (*dmi_id_list)[];
8681};
8682
8683static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8684{
8685 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8686 return 1;
8687}
8688
8689static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8690 {
8691 .dmi_id_list = &(const struct dmi_system_id[]) {
8692 {
8693 .callback = intel_dmi_reverse_brightness,
8694 .ident = "NCR Corporation",
8695 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8696 DMI_MATCH(DMI_PRODUCT_NAME, ""),
8697 },
8698 },
8699 { } /* terminating entry */
8700 },
8701 .hook = quirk_invert_brightness,
8702 },
8703};
8704
c43b5634 8705static struct intel_quirk intel_quirks[] = {
b690e96c 8706 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 8707 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 8708
b690e96c
JB
8709 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8710 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8711
b690e96c
JB
8712 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8713 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8714
ccd0d36e 8715 /* 830/845 need to leave pipe A & dpll A up */
b690e96c 8716 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
dcdaed6e 8717 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
8718
8719 /* Lenovo U160 cannot use SSC on LVDS */
8720 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
8721
8722 /* Sony Vaio Y cannot use SSC on LVDS */
8723 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b
CE
8724
8725 /* Acer Aspire 5734Z must invert backlight brightness */
8726 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
b690e96c
JB
8727};
8728
8729static void intel_init_quirks(struct drm_device *dev)
8730{
8731 struct pci_dev *d = dev->pdev;
8732 int i;
8733
8734 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8735 struct intel_quirk *q = &intel_quirks[i];
8736
8737 if (d->device == q->device &&
8738 (d->subsystem_vendor == q->subsystem_vendor ||
8739 q->subsystem_vendor == PCI_ANY_ID) &&
8740 (d->subsystem_device == q->subsystem_device ||
8741 q->subsystem_device == PCI_ANY_ID))
8742 q->hook(dev);
8743 }
5f85f176
EE
8744 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8745 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8746 intel_dmi_quirks[i].hook(dev);
8747 }
b690e96c
JB
8748}
8749
9cce37f4
JB
8750/* Disable the VGA plane that we never use */
8751static void i915_disable_vga(struct drm_device *dev)
8752{
8753 struct drm_i915_private *dev_priv = dev->dev_private;
8754 u8 sr1;
8755 u32 vga_reg;
8756
8757 if (HAS_PCH_SPLIT(dev))
8758 vga_reg = CPU_VGACNTRL;
8759 else
8760 vga_reg = VGACNTRL;
8761
8762 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 8763 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
8764 sr1 = inb(VGA_SR_DATA);
8765 outb(sr1 | 1<<5, VGA_SR_DATA);
8766 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8767 udelay(300);
8768
8769 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8770 POSTING_READ(vga_reg);
8771}
8772
f817586c
DV
8773void intel_modeset_init_hw(struct drm_device *dev)
8774{
0232e927
ED
8775 /* We attempt to init the necessary power wells early in the initialization
8776 * time, so the subsystems that expect power to be enabled can work.
8777 */
8778 intel_init_power_wells(dev);
8779
a8f78b58
ED
8780 intel_prepare_ddi(dev);
8781
f817586c
DV
8782 intel_init_clock_gating(dev);
8783
79f5b2c7 8784 mutex_lock(&dev->struct_mutex);
8090c6b9 8785 intel_enable_gt_powersave(dev);
79f5b2c7 8786 mutex_unlock(&dev->struct_mutex);
f817586c
DV
8787}
8788
79e53945
JB
8789void intel_modeset_init(struct drm_device *dev)
8790{
652c393a 8791 struct drm_i915_private *dev_priv = dev->dev_private;
b840d907 8792 int i, ret;
79e53945
JB
8793
8794 drm_mode_config_init(dev);
8795
8796 dev->mode_config.min_width = 0;
8797 dev->mode_config.min_height = 0;
8798
019d96cb
DA
8799 dev->mode_config.preferred_depth = 24;
8800 dev->mode_config.prefer_shadow = 1;
8801
e6ecefaa 8802 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 8803
b690e96c
JB
8804 intel_init_quirks(dev);
8805
1fa61106
ED
8806 intel_init_pm(dev);
8807
e70236a8
JB
8808 intel_init_display(dev);
8809
a6c45cf0
CW
8810 if (IS_GEN2(dev)) {
8811 dev->mode_config.max_width = 2048;
8812 dev->mode_config.max_height = 2048;
8813 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
8814 dev->mode_config.max_width = 4096;
8815 dev->mode_config.max_height = 4096;
79e53945 8816 } else {
a6c45cf0
CW
8817 dev->mode_config.max_width = 8192;
8818 dev->mode_config.max_height = 8192;
79e53945 8819 }
dd2757f8 8820 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
79e53945 8821
28c97730 8822 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 8823 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 8824
a3524f1b 8825 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945 8826 intel_crtc_init(dev, i);
00c2064b
JB
8827 ret = intel_plane_init(dev, i);
8828 if (ret)
8829 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
79e53945
JB
8830 }
8831
79f689aa 8832 intel_cpu_pll_init(dev);
ee7b9f93
JB
8833 intel_pch_pll_init(dev);
8834
9cce37f4
JB
8835 /* Just disable it once at startup */
8836 i915_disable_vga(dev);
79e53945 8837 intel_setup_outputs(dev);
2c7111db
CW
8838}
8839
24929352
DV
8840static void
8841intel_connector_break_all_links(struct intel_connector *connector)
8842{
8843 connector->base.dpms = DRM_MODE_DPMS_OFF;
8844 connector->base.encoder = NULL;
8845 connector->encoder->connectors_active = false;
8846 connector->encoder->base.crtc = NULL;
8847}
8848
7fad798e
DV
8849static void intel_enable_pipe_a(struct drm_device *dev)
8850{
8851 struct intel_connector *connector;
8852 struct drm_connector *crt = NULL;
8853 struct intel_load_detect_pipe load_detect_temp;
8854
8855 /* We can't just switch on the pipe A, we need to set things up with a
8856 * proper mode and output configuration. As a gross hack, enable pipe A
8857 * by enabling the load detect pipe once. */
8858 list_for_each_entry(connector,
8859 &dev->mode_config.connector_list,
8860 base.head) {
8861 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8862 crt = &connector->base;
8863 break;
8864 }
8865 }
8866
8867 if (!crt)
8868 return;
8869
8870 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8871 intel_release_load_detect_pipe(crt, &load_detect_temp);
8872
652c393a 8873
7fad798e
DV
8874}
8875
fa555837
DV
8876static bool
8877intel_check_plane_mapping(struct intel_crtc *crtc)
8878{
8879 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8880 u32 reg, val;
8881
8882 if (dev_priv->num_pipe == 1)
8883 return true;
8884
8885 reg = DSPCNTR(!crtc->plane);
8886 val = I915_READ(reg);
8887
8888 if ((val & DISPLAY_PLANE_ENABLE) &&
8889 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8890 return false;
8891
8892 return true;
8893}
8894
24929352
DV
8895static void intel_sanitize_crtc(struct intel_crtc *crtc)
8896{
8897 struct drm_device *dev = crtc->base.dev;
8898 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 8899 u32 reg;
24929352 8900
24929352 8901 /* Clear any frame start delays used for debugging left by the BIOS */
702e7a56 8902 reg = PIPECONF(crtc->cpu_transcoder);
24929352
DV
8903 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8904
8905 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
8906 * disable the crtc (and hence change the state) if it is wrong. Note
8907 * that gen4+ has a fixed plane -> pipe mapping. */
8908 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
8909 struct intel_connector *connector;
8910 bool plane;
8911
24929352
DV
8912 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8913 crtc->base.base.id);
8914
8915 /* Pipe has the wrong plane attached and the plane is active.
8916 * Temporarily change the plane mapping and disable everything
8917 * ... */
8918 plane = crtc->plane;
8919 crtc->plane = !plane;
8920 dev_priv->display.crtc_disable(&crtc->base);
8921 crtc->plane = plane;
8922
8923 /* ... and break all links. */
8924 list_for_each_entry(connector, &dev->mode_config.connector_list,
8925 base.head) {
8926 if (connector->encoder->base.crtc != &crtc->base)
8927 continue;
8928
8929 intel_connector_break_all_links(connector);
8930 }
8931
8932 WARN_ON(crtc->active);
8933 crtc->base.enabled = false;
8934 }
24929352 8935
7fad798e
DV
8936 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8937 crtc->pipe == PIPE_A && !crtc->active) {
8938 /* BIOS forgot to enable pipe A, this mostly happens after
8939 * resume. Force-enable the pipe to fix this, the update_dpms
8940 * call below we restore the pipe to the right state, but leave
8941 * the required bits on. */
8942 intel_enable_pipe_a(dev);
8943 }
8944
24929352
DV
8945 /* Adjust the state of the output pipe according to whether we
8946 * have active connectors/encoders. */
8947 intel_crtc_update_dpms(&crtc->base);
8948
8949 if (crtc->active != crtc->base.enabled) {
8950 struct intel_encoder *encoder;
8951
8952 /* This can happen either due to bugs in the get_hw_state
8953 * functions or because the pipe is force-enabled due to the
8954 * pipe A quirk. */
8955 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8956 crtc->base.base.id,
8957 crtc->base.enabled ? "enabled" : "disabled",
8958 crtc->active ? "enabled" : "disabled");
8959
8960 crtc->base.enabled = crtc->active;
8961
8962 /* Because we only establish the connector -> encoder ->
8963 * crtc links if something is active, this means the
8964 * crtc is now deactivated. Break the links. connector
8965 * -> encoder links are only establish when things are
8966 * actually up, hence no need to break them. */
8967 WARN_ON(crtc->active);
8968
8969 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8970 WARN_ON(encoder->connectors_active);
8971 encoder->base.crtc = NULL;
8972 }
8973 }
8974}
8975
8976static void intel_sanitize_encoder(struct intel_encoder *encoder)
8977{
8978 struct intel_connector *connector;
8979 struct drm_device *dev = encoder->base.dev;
8980
8981 /* We need to check both for a crtc link (meaning that the
8982 * encoder is active and trying to read from a pipe) and the
8983 * pipe itself being active. */
8984 bool has_active_crtc = encoder->base.crtc &&
8985 to_intel_crtc(encoder->base.crtc)->active;
8986
8987 if (encoder->connectors_active && !has_active_crtc) {
8988 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8989 encoder->base.base.id,
8990 drm_get_encoder_name(&encoder->base));
8991
8992 /* Connector is active, but has no active pipe. This is
8993 * fallout from our resume register restoring. Disable
8994 * the encoder manually again. */
8995 if (encoder->base.crtc) {
8996 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8997 encoder->base.base.id,
8998 drm_get_encoder_name(&encoder->base));
8999 encoder->disable(encoder);
9000 }
9001
9002 /* Inconsistent output/port/pipe state happens presumably due to
9003 * a bug in one of the get_hw_state functions. Or someplace else
9004 * in our code, like the register restore mess on resume. Clamp
9005 * things to off as a safer default. */
9006 list_for_each_entry(connector,
9007 &dev->mode_config.connector_list,
9008 base.head) {
9009 if (connector->encoder != encoder)
9010 continue;
9011
9012 intel_connector_break_all_links(connector);
9013 }
9014 }
9015 /* Enabled encoders without active connectors will be fixed in
9016 * the crtc fixup. */
9017}
9018
9019/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9020 * and i915 state tracking structures. */
45e2b5f6
DV
9021void intel_modeset_setup_hw_state(struct drm_device *dev,
9022 bool force_restore)
24929352
DV
9023{
9024 struct drm_i915_private *dev_priv = dev->dev_private;
9025 enum pipe pipe;
9026 u32 tmp;
9027 struct intel_crtc *crtc;
9028 struct intel_encoder *encoder;
9029 struct intel_connector *connector;
9030
e28d54cb
PZ
9031 if (IS_HASWELL(dev)) {
9032 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9033
9034 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9035 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9036 case TRANS_DDI_EDP_INPUT_A_ON:
9037 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9038 pipe = PIPE_A;
9039 break;
9040 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9041 pipe = PIPE_B;
9042 break;
9043 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9044 pipe = PIPE_C;
9045 break;
9046 }
9047
9048 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9049 crtc->cpu_transcoder = TRANSCODER_EDP;
9050
9051 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9052 pipe_name(pipe));
9053 }
9054 }
9055
24929352
DV
9056 for_each_pipe(pipe) {
9057 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9058
702e7a56 9059 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
24929352
DV
9060 if (tmp & PIPECONF_ENABLE)
9061 crtc->active = true;
9062 else
9063 crtc->active = false;
9064
9065 crtc->base.enabled = crtc->active;
9066
9067 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9068 crtc->base.base.id,
9069 crtc->active ? "enabled" : "disabled");
9070 }
9071
6441ab5f
PZ
9072 if (IS_HASWELL(dev))
9073 intel_ddi_setup_hw_pll_state(dev);
9074
24929352
DV
9075 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9076 base.head) {
9077 pipe = 0;
9078
9079 if (encoder->get_hw_state(encoder, &pipe)) {
9080 encoder->base.crtc =
9081 dev_priv->pipe_to_crtc_mapping[pipe];
9082 } else {
9083 encoder->base.crtc = NULL;
9084 }
9085
9086 encoder->connectors_active = false;
9087 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9088 encoder->base.base.id,
9089 drm_get_encoder_name(&encoder->base),
9090 encoder->base.crtc ? "enabled" : "disabled",
9091 pipe);
9092 }
9093
9094 list_for_each_entry(connector, &dev->mode_config.connector_list,
9095 base.head) {
9096 if (connector->get_hw_state(connector)) {
9097 connector->base.dpms = DRM_MODE_DPMS_ON;
9098 connector->encoder->connectors_active = true;
9099 connector->base.encoder = &connector->encoder->base;
9100 } else {
9101 connector->base.dpms = DRM_MODE_DPMS_OFF;
9102 connector->base.encoder = NULL;
9103 }
9104 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9105 connector->base.base.id,
9106 drm_get_connector_name(&connector->base),
9107 connector->base.encoder ? "enabled" : "disabled");
9108 }
9109
9110 /* HW state is read out, now we need to sanitize this mess. */
9111 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9112 base.head) {
9113 intel_sanitize_encoder(encoder);
9114 }
9115
9116 for_each_pipe(pipe) {
9117 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9118 intel_sanitize_crtc(crtc);
9119 }
9a935856 9120
45e2b5f6
DV
9121 if (force_restore) {
9122 for_each_pipe(pipe) {
9123 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9124 intel_set_mode(&crtc->base, &crtc->base.mode,
9125 crtc->base.x, crtc->base.y, crtc->base.fb);
9126 }
9127 } else {
9128 intel_modeset_update_staged_output_state(dev);
9129 }
8af6cf88
DV
9130
9131 intel_modeset_check_state(dev);
2e938892
DV
9132
9133 drm_mode_config_reset(dev);
2c7111db
CW
9134}
9135
9136void intel_modeset_gem_init(struct drm_device *dev)
9137{
1833b134 9138 intel_modeset_init_hw(dev);
02e792fb
DV
9139
9140 intel_setup_overlay(dev);
24929352 9141
45e2b5f6 9142 intel_modeset_setup_hw_state(dev, false);
79e53945
JB
9143}
9144
9145void intel_modeset_cleanup(struct drm_device *dev)
9146{
652c393a
JB
9147 struct drm_i915_private *dev_priv = dev->dev_private;
9148 struct drm_crtc *crtc;
9149 struct intel_crtc *intel_crtc;
9150
f87ea761 9151 drm_kms_helper_poll_fini(dev);
652c393a
JB
9152 mutex_lock(&dev->struct_mutex);
9153
723bfd70
JB
9154 intel_unregister_dsm_handler();
9155
9156
652c393a
JB
9157 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9158 /* Skip inactive CRTCs */
9159 if (!crtc->fb)
9160 continue;
9161
9162 intel_crtc = to_intel_crtc(crtc);
3dec0095 9163 intel_increase_pllclock(crtc);
652c393a
JB
9164 }
9165
973d04f9 9166 intel_disable_fbc(dev);
e70236a8 9167
8090c6b9 9168 intel_disable_gt_powersave(dev);
0cdab21f 9169
930ebb46
DV
9170 ironlake_teardown_rc6(dev);
9171
57f350b6
JB
9172 if (IS_VALLEYVIEW(dev))
9173 vlv_init_dpio(dev);
9174
69341a5e
KH
9175 mutex_unlock(&dev->struct_mutex);
9176
6c0d9350
DV
9177 /* Disable the irq before mode object teardown, for the irq might
9178 * enqueue unpin/hotplug work. */
9179 drm_irq_uninstall(dev);
9180 cancel_work_sync(&dev_priv->hotplug_work);
c6a828d3 9181 cancel_work_sync(&dev_priv->rps.work);
6c0d9350 9182
1630fe75
CW
9183 /* flush any delayed tasks or pending work */
9184 flush_scheduled_work();
9185
79e53945
JB
9186 drm_mode_config_cleanup(dev);
9187}
9188
f1c79df3
ZW
9189/*
9190 * Return which encoder is currently attached for connector.
9191 */
df0e9248 9192struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 9193{
df0e9248
CW
9194 return &intel_attached_encoder(connector)->base;
9195}
f1c79df3 9196
df0e9248
CW
9197void intel_connector_attach_encoder(struct intel_connector *connector,
9198 struct intel_encoder *encoder)
9199{
9200 connector->encoder = encoder;
9201 drm_mode_connector_attach_encoder(&connector->base,
9202 &encoder->base);
79e53945 9203}
28d52043
DA
9204
9205/*
9206 * set vga decode state - true == enable VGA decode
9207 */
9208int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9209{
9210 struct drm_i915_private *dev_priv = dev->dev_private;
9211 u16 gmch_ctrl;
9212
9213 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9214 if (state)
9215 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9216 else
9217 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9218 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9219 return 0;
9220}
c4a1d9e4
CW
9221
9222#ifdef CONFIG_DEBUG_FS
9223#include <linux/seq_file.h>
9224
9225struct intel_display_error_state {
9226 struct intel_cursor_error_state {
9227 u32 control;
9228 u32 position;
9229 u32 base;
9230 u32 size;
52331309 9231 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
9232
9233 struct intel_pipe_error_state {
9234 u32 conf;
9235 u32 source;
9236
9237 u32 htotal;
9238 u32 hblank;
9239 u32 hsync;
9240 u32 vtotal;
9241 u32 vblank;
9242 u32 vsync;
52331309 9243 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
9244
9245 struct intel_plane_error_state {
9246 u32 control;
9247 u32 stride;
9248 u32 size;
9249 u32 pos;
9250 u32 addr;
9251 u32 surface;
9252 u32 tile_offset;
52331309 9253 } plane[I915_MAX_PIPES];
c4a1d9e4
CW
9254};
9255
9256struct intel_display_error_state *
9257intel_display_capture_error_state(struct drm_device *dev)
9258{
0206e353 9259 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4 9260 struct intel_display_error_state *error;
702e7a56 9261 enum transcoder cpu_transcoder;
c4a1d9e4
CW
9262 int i;
9263
9264 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9265 if (error == NULL)
9266 return NULL;
9267
52331309 9268 for_each_pipe(i) {
702e7a56
PZ
9269 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9270
c4a1d9e4
CW
9271 error->cursor[i].control = I915_READ(CURCNTR(i));
9272 error->cursor[i].position = I915_READ(CURPOS(i));
9273 error->cursor[i].base = I915_READ(CURBASE(i));
9274
9275 error->plane[i].control = I915_READ(DSPCNTR(i));
9276 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9277 error->plane[i].size = I915_READ(DSPSIZE(i));
0206e353 9278 error->plane[i].pos = I915_READ(DSPPOS(i));
c4a1d9e4
CW
9279 error->plane[i].addr = I915_READ(DSPADDR(i));
9280 if (INTEL_INFO(dev)->gen >= 4) {
9281 error->plane[i].surface = I915_READ(DSPSURF(i));
9282 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9283 }
9284
702e7a56 9285 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
c4a1d9e4 9286 error->pipe[i].source = I915_READ(PIPESRC(i));
fe2b8f9d
PZ
9287 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9288 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9289 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9290 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9291 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9292 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
9293 }
9294
9295 return error;
9296}
9297
9298void
9299intel_display_print_error_state(struct seq_file *m,
9300 struct drm_device *dev,
9301 struct intel_display_error_state *error)
9302{
52331309 9303 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
9304 int i;
9305
52331309
DL
9306 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9307 for_each_pipe(i) {
c4a1d9e4
CW
9308 seq_printf(m, "Pipe [%d]:\n", i);
9309 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9310 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9311 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9312 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9313 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9314 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9315 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9316 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9317
9318 seq_printf(m, "Plane [%d]:\n", i);
9319 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9320 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9321 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9322 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9323 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9324 if (INTEL_INFO(dev)->gen >= 4) {
9325 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9326 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9327 }
9328
9329 seq_printf(m, "Cursor [%d]:\n", i);
9330 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9331 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9332 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9333 }
9334}
9335#endif