]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: fix transcoder PLL select masking
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
23b2f8bb 27#include <linux/cpufreq.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
79e53945
JB
35#include "drmP.h"
36#include "intel_drv.h"
37#include "i915_drm.h"
38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
ab2c0672 40#include "drm_dp_helper.h"
79e53945
JB
41
42#include "drm_crtc_helper.h"
43
32f9d658
ZW
44#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
0206e353 46bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
7662c8bd 47static void intel_update_watermarks(struct drm_device *dev);
3dec0095 48static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 49static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
50
51typedef struct {
0206e353
AJ
52 /* given values */
53 int n;
54 int m1, m2;
55 int p1, p2;
56 /* derived values */
57 int dot;
58 int vco;
59 int m;
60 int p;
79e53945
JB
61} intel_clock_t;
62
63typedef struct {
0206e353 64 int min, max;
79e53945
JB
65} intel_range_t;
66
67typedef struct {
0206e353
AJ
68 int dot_limit;
69 int p2_slow, p2_fast;
79e53945
JB
70} intel_p2_t;
71
72#define INTEL_P2_NUM 2
d4906093
ML
73typedef struct intel_limit intel_limit_t;
74struct intel_limit {
0206e353
AJ
75 intel_range_t dot, vco, n, m, m1, m2, p, p1;
76 intel_p2_t p2;
77 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78 int, int, intel_clock_t *);
d4906093 79};
79e53945 80
2377b741
JB
81/* FDI */
82#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
83
d4906093
ML
84static bool
85intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86 int target, int refclk, intel_clock_t *best_clock);
87static bool
88intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 int target, int refclk, intel_clock_t *best_clock);
79e53945 90
a4fc5ed6
KP
91static bool
92intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
93 int target, int refclk, intel_clock_t *best_clock);
5eb08b69 94static bool
f2b115e6
AJ
95intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
96 int target, int refclk, intel_clock_t *best_clock);
a4fc5ed6 97
021357ac
CW
98static inline u32 /* units of 100MHz */
99intel_fdi_link_freq(struct drm_device *dev)
100{
8b99e68c
CW
101 if (IS_GEN5(dev)) {
102 struct drm_i915_private *dev_priv = dev->dev_private;
103 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
104 } else
105 return 27;
021357ac
CW
106}
107
e4b36699 108static const intel_limit_t intel_limits_i8xx_dvo = {
0206e353
AJ
109 .dot = { .min = 25000, .max = 350000 },
110 .vco = { .min = 930000, .max = 1400000 },
111 .n = { .min = 3, .max = 16 },
112 .m = { .min = 96, .max = 140 },
113 .m1 = { .min = 18, .max = 26 },
114 .m2 = { .min = 6, .max = 16 },
115 .p = { .min = 4, .max = 128 },
116 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
117 .p2 = { .dot_limit = 165000,
118 .p2_slow = 4, .p2_fast = 2 },
d4906093 119 .find_pll = intel_find_best_PLL,
e4b36699
KP
120};
121
122static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353
AJ
123 .dot = { .min = 25000, .max = 350000 },
124 .vco = { .min = 930000, .max = 1400000 },
125 .n = { .min = 3, .max = 16 },
126 .m = { .min = 96, .max = 140 },
127 .m1 = { .min = 18, .max = 26 },
128 .m2 = { .min = 6, .max = 16 },
129 .p = { .min = 4, .max = 128 },
130 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
131 .p2 = { .dot_limit = 165000,
132 .p2_slow = 14, .p2_fast = 7 },
d4906093 133 .find_pll = intel_find_best_PLL,
e4b36699 134};
273e27ca 135
e4b36699 136static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
137 .dot = { .min = 20000, .max = 400000 },
138 .vco = { .min = 1400000, .max = 2800000 },
139 .n = { .min = 1, .max = 6 },
140 .m = { .min = 70, .max = 120 },
141 .m1 = { .min = 10, .max = 22 },
142 .m2 = { .min = 5, .max = 9 },
143 .p = { .min = 5, .max = 80 },
144 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
145 .p2 = { .dot_limit = 200000,
146 .p2_slow = 10, .p2_fast = 5 },
d4906093 147 .find_pll = intel_find_best_PLL,
e4b36699
KP
148};
149
150static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
151 .dot = { .min = 20000, .max = 400000 },
152 .vco = { .min = 1400000, .max = 2800000 },
153 .n = { .min = 1, .max = 6 },
154 .m = { .min = 70, .max = 120 },
155 .m1 = { .min = 10, .max = 22 },
156 .m2 = { .min = 5, .max = 9 },
157 .p = { .min = 7, .max = 98 },
158 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
159 .p2 = { .dot_limit = 112000,
160 .p2_slow = 14, .p2_fast = 7 },
d4906093 161 .find_pll = intel_find_best_PLL,
e4b36699
KP
162};
163
273e27ca 164
e4b36699 165static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
166 .dot = { .min = 25000, .max = 270000 },
167 .vco = { .min = 1750000, .max = 3500000},
168 .n = { .min = 1, .max = 4 },
169 .m = { .min = 104, .max = 138 },
170 .m1 = { .min = 17, .max = 23 },
171 .m2 = { .min = 5, .max = 11 },
172 .p = { .min = 10, .max = 30 },
173 .p1 = { .min = 1, .max = 3},
174 .p2 = { .dot_limit = 270000,
175 .p2_slow = 10,
176 .p2_fast = 10
044c7c41 177 },
d4906093 178 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
179};
180
181static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
182 .dot = { .min = 22000, .max = 400000 },
183 .vco = { .min = 1750000, .max = 3500000},
184 .n = { .min = 1, .max = 4 },
185 .m = { .min = 104, .max = 138 },
186 .m1 = { .min = 16, .max = 23 },
187 .m2 = { .min = 5, .max = 11 },
188 .p = { .min = 5, .max = 80 },
189 .p1 = { .min = 1, .max = 8},
190 .p2 = { .dot_limit = 165000,
191 .p2_slow = 10, .p2_fast = 5 },
d4906093 192 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
193};
194
195static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
196 .dot = { .min = 20000, .max = 115000 },
197 .vco = { .min = 1750000, .max = 3500000 },
198 .n = { .min = 1, .max = 3 },
199 .m = { .min = 104, .max = 138 },
200 .m1 = { .min = 17, .max = 23 },
201 .m2 = { .min = 5, .max = 11 },
202 .p = { .min = 28, .max = 112 },
203 .p1 = { .min = 2, .max = 8 },
204 .p2 = { .dot_limit = 0,
205 .p2_slow = 14, .p2_fast = 14
044c7c41 206 },
d4906093 207 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
208};
209
210static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
211 .dot = { .min = 80000, .max = 224000 },
212 .vco = { .min = 1750000, .max = 3500000 },
213 .n = { .min = 1, .max = 3 },
214 .m = { .min = 104, .max = 138 },
215 .m1 = { .min = 17, .max = 23 },
216 .m2 = { .min = 5, .max = 11 },
217 .p = { .min = 14, .max = 42 },
218 .p1 = { .min = 2, .max = 6 },
219 .p2 = { .dot_limit = 0,
220 .p2_slow = 7, .p2_fast = 7
044c7c41 221 },
d4906093 222 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
223};
224
225static const intel_limit_t intel_limits_g4x_display_port = {
0206e353
AJ
226 .dot = { .min = 161670, .max = 227000 },
227 .vco = { .min = 1750000, .max = 3500000},
228 .n = { .min = 1, .max = 2 },
229 .m = { .min = 97, .max = 108 },
230 .m1 = { .min = 0x10, .max = 0x12 },
231 .m2 = { .min = 0x05, .max = 0x06 },
232 .p = { .min = 10, .max = 20 },
233 .p1 = { .min = 1, .max = 2},
234 .p2 = { .dot_limit = 0,
273e27ca 235 .p2_slow = 10, .p2_fast = 10 },
0206e353 236 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
237};
238
f2b115e6 239static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
240 .dot = { .min = 20000, .max = 400000},
241 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 242 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
243 .n = { .min = 3, .max = 6 },
244 .m = { .min = 2, .max = 256 },
273e27ca 245 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
246 .m1 = { .min = 0, .max = 0 },
247 .m2 = { .min = 0, .max = 254 },
248 .p = { .min = 5, .max = 80 },
249 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
250 .p2 = { .dot_limit = 200000,
251 .p2_slow = 10, .p2_fast = 5 },
6115707b 252 .find_pll = intel_find_best_PLL,
e4b36699
KP
253};
254
f2b115e6 255static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
256 .dot = { .min = 20000, .max = 400000 },
257 .vco = { .min = 1700000, .max = 3500000 },
258 .n = { .min = 3, .max = 6 },
259 .m = { .min = 2, .max = 256 },
260 .m1 = { .min = 0, .max = 0 },
261 .m2 = { .min = 0, .max = 254 },
262 .p = { .min = 7, .max = 112 },
263 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
264 .p2 = { .dot_limit = 112000,
265 .p2_slow = 14, .p2_fast = 14 },
6115707b 266 .find_pll = intel_find_best_PLL,
e4b36699
KP
267};
268
273e27ca
EA
269/* Ironlake / Sandybridge
270 *
271 * We calculate clock using (register_value + 2) for N/M1/M2, so here
272 * the range value for them is (actual_value - 2).
273 */
b91ad0ec 274static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
275 .dot = { .min = 25000, .max = 350000 },
276 .vco = { .min = 1760000, .max = 3510000 },
277 .n = { .min = 1, .max = 5 },
278 .m = { .min = 79, .max = 127 },
279 .m1 = { .min = 12, .max = 22 },
280 .m2 = { .min = 5, .max = 9 },
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
283 .p2 = { .dot_limit = 225000,
284 .p2_slow = 10, .p2_fast = 5 },
4547668a 285 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
286};
287
b91ad0ec 288static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
289 .dot = { .min = 25000, .max = 350000 },
290 .vco = { .min = 1760000, .max = 3510000 },
291 .n = { .min = 1, .max = 3 },
292 .m = { .min = 79, .max = 118 },
293 .m1 = { .min = 12, .max = 22 },
294 .m2 = { .min = 5, .max = 9 },
295 .p = { .min = 28, .max = 112 },
296 .p1 = { .min = 2, .max = 8 },
297 .p2 = { .dot_limit = 225000,
298 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
299 .find_pll = intel_g4x_find_best_PLL,
300};
301
302static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 3 },
306 .m = { .min = 79, .max = 127 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 14, .max = 56 },
310 .p1 = { .min = 2, .max = 8 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
313 .find_pll = intel_g4x_find_best_PLL,
314};
315
273e27ca 316/* LVDS 100mhz refclk limits. */
b91ad0ec 317static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
318 .dot = { .min = 25000, .max = 350000 },
319 .vco = { .min = 1760000, .max = 3510000 },
320 .n = { .min = 1, .max = 2 },
321 .m = { .min = 79, .max = 126 },
322 .m1 = { .min = 12, .max = 22 },
323 .m2 = { .min = 5, .max = 9 },
324 .p = { .min = 28, .max = 112 },
0206e353 325 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
326 .p2 = { .dot_limit = 225000,
327 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
328 .find_pll = intel_g4x_find_best_PLL,
329};
330
331static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
332 .dot = { .min = 25000, .max = 350000 },
333 .vco = { .min = 1760000, .max = 3510000 },
334 .n = { .min = 1, .max = 3 },
335 .m = { .min = 79, .max = 126 },
336 .m1 = { .min = 12, .max = 22 },
337 .m2 = { .min = 5, .max = 9 },
338 .p = { .min = 14, .max = 42 },
0206e353 339 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
340 .p2 = { .dot_limit = 225000,
341 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
342 .find_pll = intel_g4x_find_best_PLL,
343};
344
345static const intel_limit_t intel_limits_ironlake_display_port = {
0206e353
AJ
346 .dot = { .min = 25000, .max = 350000 },
347 .vco = { .min = 1760000, .max = 3510000},
348 .n = { .min = 1, .max = 2 },
349 .m = { .min = 81, .max = 90 },
350 .m1 = { .min = 12, .max = 22 },
351 .m2 = { .min = 5, .max = 9 },
352 .p = { .min = 10, .max = 20 },
353 .p1 = { .min = 1, .max = 2},
354 .p2 = { .dot_limit = 0,
273e27ca 355 .p2_slow = 10, .p2_fast = 10 },
0206e353 356 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
357};
358
1b894b59
CW
359static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
360 int refclk)
2c07245f 361{
b91ad0ec
ZW
362 struct drm_device *dev = crtc->dev;
363 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 364 const intel_limit_t *limit;
b91ad0ec
ZW
365
366 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b91ad0ec
ZW
367 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
368 LVDS_CLKB_POWER_UP) {
369 /* LVDS dual channel */
1b894b59 370 if (refclk == 100000)
b91ad0ec
ZW
371 limit = &intel_limits_ironlake_dual_lvds_100m;
372 else
373 limit = &intel_limits_ironlake_dual_lvds;
374 } else {
1b894b59 375 if (refclk == 100000)
b91ad0ec
ZW
376 limit = &intel_limits_ironlake_single_lvds_100m;
377 else
378 limit = &intel_limits_ironlake_single_lvds;
379 }
380 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
4547668a
ZY
381 HAS_eDP)
382 limit = &intel_limits_ironlake_display_port;
2c07245f 383 else
b91ad0ec 384 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
385
386 return limit;
387}
388
044c7c41
ML
389static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
390{
391 struct drm_device *dev = crtc->dev;
392 struct drm_i915_private *dev_priv = dev->dev_private;
393 const intel_limit_t *limit;
394
395 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
396 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
397 LVDS_CLKB_POWER_UP)
398 /* LVDS with dual channel */
e4b36699 399 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
400 else
401 /* LVDS with dual channel */
e4b36699 402 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
403 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
404 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 405 limit = &intel_limits_g4x_hdmi;
044c7c41 406 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 407 limit = &intel_limits_g4x_sdvo;
0206e353 408 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 409 limit = &intel_limits_g4x_display_port;
044c7c41 410 } else /* The option is for other outputs */
e4b36699 411 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
412
413 return limit;
414}
415
1b894b59 416static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
417{
418 struct drm_device *dev = crtc->dev;
419 const intel_limit_t *limit;
420
bad720ff 421 if (HAS_PCH_SPLIT(dev))
1b894b59 422 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 423 else if (IS_G4X(dev)) {
044c7c41 424 limit = intel_g4x_limit(crtc);
f2b115e6 425 } else if (IS_PINEVIEW(dev)) {
2177832f 426 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 427 limit = &intel_limits_pineview_lvds;
2177832f 428 else
f2b115e6 429 limit = &intel_limits_pineview_sdvo;
a6c45cf0
CW
430 } else if (!IS_GEN2(dev)) {
431 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
432 limit = &intel_limits_i9xx_lvds;
433 else
434 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
435 } else {
436 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 437 limit = &intel_limits_i8xx_lvds;
79e53945 438 else
e4b36699 439 limit = &intel_limits_i8xx_dvo;
79e53945
JB
440 }
441 return limit;
442}
443
f2b115e6
AJ
444/* m1 is reserved as 0 in Pineview, n is a ring counter */
445static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 446{
2177832f
SL
447 clock->m = clock->m2 + 2;
448 clock->p = clock->p1 * clock->p2;
449 clock->vco = refclk * clock->m / clock->n;
450 clock->dot = clock->vco / clock->p;
451}
452
453static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
454{
f2b115e6
AJ
455 if (IS_PINEVIEW(dev)) {
456 pineview_clock(refclk, clock);
2177832f
SL
457 return;
458 }
79e53945
JB
459 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
460 clock->p = clock->p1 * clock->p2;
461 clock->vco = refclk * clock->m / (clock->n + 2);
462 clock->dot = clock->vco / clock->p;
463}
464
79e53945
JB
465/**
466 * Returns whether any output on the specified pipe is of the specified type
467 */
4ef69c7a 468bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 469{
4ef69c7a
CW
470 struct drm_device *dev = crtc->dev;
471 struct drm_mode_config *mode_config = &dev->mode_config;
472 struct intel_encoder *encoder;
473
474 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
475 if (encoder->base.crtc == crtc && encoder->type == type)
476 return true;
477
478 return false;
79e53945
JB
479}
480
7c04d1d9 481#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
482/**
483 * Returns whether the given set of divisors are valid for a given refclk with
484 * the given connectors.
485 */
486
1b894b59
CW
487static bool intel_PLL_is_valid(struct drm_device *dev,
488 const intel_limit_t *limit,
489 const intel_clock_t *clock)
79e53945 490{
79e53945 491 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 492 INTELPllInvalid("p1 out of range\n");
79e53945 493 if (clock->p < limit->p.min || limit->p.max < clock->p)
0206e353 494 INTELPllInvalid("p out of range\n");
79e53945 495 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 496 INTELPllInvalid("m2 out of range\n");
79e53945 497 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 498 INTELPllInvalid("m1 out of range\n");
f2b115e6 499 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
0206e353 500 INTELPllInvalid("m1 <= m2\n");
79e53945 501 if (clock->m < limit->m.min || limit->m.max < clock->m)
0206e353 502 INTELPllInvalid("m out of range\n");
79e53945 503 if (clock->n < limit->n.min || limit->n.max < clock->n)
0206e353 504 INTELPllInvalid("n out of range\n");
79e53945 505 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 506 INTELPllInvalid("vco out of range\n");
79e53945
JB
507 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
508 * connector, etc., rather than just a single range.
509 */
510 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 511 INTELPllInvalid("dot out of range\n");
79e53945
JB
512
513 return true;
514}
515
d4906093
ML
516static bool
517intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
518 int target, int refclk, intel_clock_t *best_clock)
519
79e53945
JB
520{
521 struct drm_device *dev = crtc->dev;
522 struct drm_i915_private *dev_priv = dev->dev_private;
523 intel_clock_t clock;
79e53945
JB
524 int err = target;
525
bc5e5718 526 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 527 (I915_READ(LVDS)) != 0) {
79e53945
JB
528 /*
529 * For LVDS, if the panel is on, just rely on its current
530 * settings for dual-channel. We haven't figured out how to
531 * reliably set up different single/dual channel state, if we
532 * even can.
533 */
534 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
535 LVDS_CLKB_POWER_UP)
536 clock.p2 = limit->p2.p2_fast;
537 else
538 clock.p2 = limit->p2.p2_slow;
539 } else {
540 if (target < limit->p2.dot_limit)
541 clock.p2 = limit->p2.p2_slow;
542 else
543 clock.p2 = limit->p2.p2_fast;
544 }
545
0206e353 546 memset(best_clock, 0, sizeof(*best_clock));
79e53945 547
42158660
ZY
548 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
549 clock.m1++) {
550 for (clock.m2 = limit->m2.min;
551 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
552 /* m1 is always 0 in Pineview */
553 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
554 break;
555 for (clock.n = limit->n.min;
556 clock.n <= limit->n.max; clock.n++) {
557 for (clock.p1 = limit->p1.min;
558 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
559 int this_err;
560
2177832f 561 intel_clock(dev, refclk, &clock);
1b894b59
CW
562 if (!intel_PLL_is_valid(dev, limit,
563 &clock))
79e53945
JB
564 continue;
565
566 this_err = abs(clock.dot - target);
567 if (this_err < err) {
568 *best_clock = clock;
569 err = this_err;
570 }
571 }
572 }
573 }
574 }
575
576 return (err != target);
577}
578
d4906093
ML
579static bool
580intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
581 int target, int refclk, intel_clock_t *best_clock)
582{
583 struct drm_device *dev = crtc->dev;
584 struct drm_i915_private *dev_priv = dev->dev_private;
585 intel_clock_t clock;
586 int max_n;
587 bool found;
6ba770dc
AJ
588 /* approximately equals target * 0.00585 */
589 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
590 found = false;
591
592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
593 int lvds_reg;
594
c619eed4 595 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
596 lvds_reg = PCH_LVDS;
597 else
598 lvds_reg = LVDS;
599 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
600 LVDS_CLKB_POWER_UP)
601 clock.p2 = limit->p2.p2_fast;
602 else
603 clock.p2 = limit->p2.p2_slow;
604 } else {
605 if (target < limit->p2.dot_limit)
606 clock.p2 = limit->p2.p2_slow;
607 else
608 clock.p2 = limit->p2.p2_fast;
609 }
610
611 memset(best_clock, 0, sizeof(*best_clock));
612 max_n = limit->n.max;
f77f13e2 613 /* based on hardware requirement, prefer smaller n to precision */
d4906093 614 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 615 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
616 for (clock.m1 = limit->m1.max;
617 clock.m1 >= limit->m1.min; clock.m1--) {
618 for (clock.m2 = limit->m2.max;
619 clock.m2 >= limit->m2.min; clock.m2--) {
620 for (clock.p1 = limit->p1.max;
621 clock.p1 >= limit->p1.min; clock.p1--) {
622 int this_err;
623
2177832f 624 intel_clock(dev, refclk, &clock);
1b894b59
CW
625 if (!intel_PLL_is_valid(dev, limit,
626 &clock))
d4906093 627 continue;
1b894b59
CW
628
629 this_err = abs(clock.dot - target);
d4906093
ML
630 if (this_err < err_most) {
631 *best_clock = clock;
632 err_most = this_err;
633 max_n = clock.n;
634 found = true;
635 }
636 }
637 }
638 }
639 }
2c07245f
ZW
640 return found;
641}
642
5eb08b69 643static bool
f2b115e6
AJ
644intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
645 int target, int refclk, intel_clock_t *best_clock)
5eb08b69
ZW
646{
647 struct drm_device *dev = crtc->dev;
648 intel_clock_t clock;
4547668a 649
5eb08b69
ZW
650 if (target < 200000) {
651 clock.n = 1;
652 clock.p1 = 2;
653 clock.p2 = 10;
654 clock.m1 = 12;
655 clock.m2 = 9;
656 } else {
657 clock.n = 2;
658 clock.p1 = 1;
659 clock.p2 = 10;
660 clock.m1 = 14;
661 clock.m2 = 8;
662 }
663 intel_clock(dev, refclk, &clock);
664 memcpy(best_clock, &clock, sizeof(intel_clock_t));
665 return true;
666}
667
a4fc5ed6
KP
668/* DisplayPort has only two frequencies, 162MHz and 270MHz */
669static bool
670intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
671 int target, int refclk, intel_clock_t *best_clock)
672{
5eddb70b
CW
673 intel_clock_t clock;
674 if (target < 200000) {
675 clock.p1 = 2;
676 clock.p2 = 10;
677 clock.n = 2;
678 clock.m1 = 23;
679 clock.m2 = 8;
680 } else {
681 clock.p1 = 1;
682 clock.p2 = 10;
683 clock.n = 1;
684 clock.m1 = 14;
685 clock.m2 = 2;
686 }
687 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
688 clock.p = (clock.p1 * clock.p2);
689 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
690 clock.vco = 0;
691 memcpy(best_clock, &clock, sizeof(intel_clock_t));
692 return true;
a4fc5ed6
KP
693}
694
9d0498a2
JB
695/**
696 * intel_wait_for_vblank - wait for vblank on a given pipe
697 * @dev: drm device
698 * @pipe: pipe to wait for
699 *
700 * Wait for vblank to occur on a given pipe. Needed for various bits of
701 * mode setting code.
702 */
703void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 704{
9d0498a2 705 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 706 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 707
300387c0
CW
708 /* Clear existing vblank status. Note this will clear any other
709 * sticky status fields as well.
710 *
711 * This races with i915_driver_irq_handler() with the result
712 * that either function could miss a vblank event. Here it is not
713 * fatal, as we will either wait upon the next vblank interrupt or
714 * timeout. Generally speaking intel_wait_for_vblank() is only
715 * called during modeset at which time the GPU should be idle and
716 * should *not* be performing page flips and thus not waiting on
717 * vblanks...
718 * Currently, the result of us stealing a vblank from the irq
719 * handler is that a single frame will be skipped during swapbuffers.
720 */
721 I915_WRITE(pipestat_reg,
722 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
723
9d0498a2 724 /* Wait for vblank interrupt bit to set */
481b6af3
CW
725 if (wait_for(I915_READ(pipestat_reg) &
726 PIPE_VBLANK_INTERRUPT_STATUS,
727 50))
9d0498a2
JB
728 DRM_DEBUG_KMS("vblank wait timed out\n");
729}
730
ab7ad7f6
KP
731/*
732 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
733 * @dev: drm device
734 * @pipe: pipe to wait for
735 *
736 * After disabling a pipe, we can't wait for vblank in the usual way,
737 * spinning on the vblank interrupt status bit, since we won't actually
738 * see an interrupt when the pipe is disabled.
739 *
ab7ad7f6
KP
740 * On Gen4 and above:
741 * wait for the pipe register state bit to turn off
742 *
743 * Otherwise:
744 * wait for the display line value to settle (it usually
745 * ends up stopping at the start of the next frame).
58e10eb9 746 *
9d0498a2 747 */
58e10eb9 748void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
749{
750 struct drm_i915_private *dev_priv = dev->dev_private;
ab7ad7f6
KP
751
752 if (INTEL_INFO(dev)->gen >= 4) {
58e10eb9 753 int reg = PIPECONF(pipe);
ab7ad7f6
KP
754
755 /* Wait for the Pipe State to go off */
58e10eb9
CW
756 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
757 100))
ab7ad7f6
KP
758 DRM_DEBUG_KMS("pipe_off wait timed out\n");
759 } else {
760 u32 last_line;
58e10eb9 761 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
762 unsigned long timeout = jiffies + msecs_to_jiffies(100);
763
764 /* Wait for the display line to settle */
765 do {
58e10eb9 766 last_line = I915_READ(reg) & DSL_LINEMASK;
ab7ad7f6 767 mdelay(5);
58e10eb9 768 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
ab7ad7f6
KP
769 time_after(timeout, jiffies));
770 if (time_after(jiffies, timeout))
771 DRM_DEBUG_KMS("pipe_off wait timed out\n");
772 }
79e53945
JB
773}
774
b24e7179
JB
775static const char *state_string(bool enabled)
776{
777 return enabled ? "on" : "off";
778}
779
780/* Only for pre-ILK configs */
781static void assert_pll(struct drm_i915_private *dev_priv,
782 enum pipe pipe, bool state)
783{
784 int reg;
785 u32 val;
786 bool cur_state;
787
788 reg = DPLL(pipe);
789 val = I915_READ(reg);
790 cur_state = !!(val & DPLL_VCO_ENABLE);
791 WARN(cur_state != state,
792 "PLL state assertion failure (expected %s, current %s)\n",
793 state_string(state), state_string(cur_state));
794}
795#define assert_pll_enabled(d, p) assert_pll(d, p, true)
796#define assert_pll_disabled(d, p) assert_pll(d, p, false)
797
040484af
JB
798/* For ILK+ */
799static void assert_pch_pll(struct drm_i915_private *dev_priv,
800 enum pipe pipe, bool state)
801{
802 int reg;
803 u32 val;
804 bool cur_state;
805
d3ccbe86
JB
806 if (HAS_PCH_CPT(dev_priv->dev)) {
807 u32 pch_dpll;
808
809 pch_dpll = I915_READ(PCH_DPLL_SEL);
810
811 /* Make sure the selected PLL is enabled to the transcoder */
812 WARN(!((pch_dpll >> (4 * pipe)) & 8),
813 "transcoder %d PLL not enabled\n", pipe);
814
815 /* Convert the transcoder pipe number to a pll pipe number */
816 pipe = (pch_dpll >> (4 * pipe)) & 1;
817 }
818
040484af
JB
819 reg = PCH_DPLL(pipe);
820 val = I915_READ(reg);
821 cur_state = !!(val & DPLL_VCO_ENABLE);
822 WARN(cur_state != state,
823 "PCH PLL state assertion failure (expected %s, current %s)\n",
824 state_string(state), state_string(cur_state));
825}
826#define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
827#define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
828
829static void assert_fdi_tx(struct drm_i915_private *dev_priv,
830 enum pipe pipe, bool state)
831{
832 int reg;
833 u32 val;
834 bool cur_state;
835
836 reg = FDI_TX_CTL(pipe);
837 val = I915_READ(reg);
838 cur_state = !!(val & FDI_TX_ENABLE);
839 WARN(cur_state != state,
840 "FDI TX state assertion failure (expected %s, current %s)\n",
841 state_string(state), state_string(cur_state));
842}
843#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
844#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
845
846static void assert_fdi_rx(struct drm_i915_private *dev_priv,
847 enum pipe pipe, bool state)
848{
849 int reg;
850 u32 val;
851 bool cur_state;
852
853 reg = FDI_RX_CTL(pipe);
854 val = I915_READ(reg);
855 cur_state = !!(val & FDI_RX_ENABLE);
856 WARN(cur_state != state,
857 "FDI RX state assertion failure (expected %s, current %s)\n",
858 state_string(state), state_string(cur_state));
859}
860#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
861#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
862
863static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
864 enum pipe pipe)
865{
866 int reg;
867 u32 val;
868
869 /* ILK FDI PLL is always enabled */
870 if (dev_priv->info->gen == 5)
871 return;
872
873 reg = FDI_TX_CTL(pipe);
874 val = I915_READ(reg);
875 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
876}
877
878static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
879 enum pipe pipe)
880{
881 int reg;
882 u32 val;
883
884 reg = FDI_RX_CTL(pipe);
885 val = I915_READ(reg);
886 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
887}
888
ea0760cf
JB
889static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
890 enum pipe pipe)
891{
892 int pp_reg, lvds_reg;
893 u32 val;
894 enum pipe panel_pipe = PIPE_A;
0de3b485 895 bool locked = true;
ea0760cf
JB
896
897 if (HAS_PCH_SPLIT(dev_priv->dev)) {
898 pp_reg = PCH_PP_CONTROL;
899 lvds_reg = PCH_LVDS;
900 } else {
901 pp_reg = PP_CONTROL;
902 lvds_reg = LVDS;
903 }
904
905 val = I915_READ(pp_reg);
906 if (!(val & PANEL_POWER_ON) ||
907 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
908 locked = false;
909
910 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
911 panel_pipe = PIPE_B;
912
913 WARN(panel_pipe == pipe && locked,
914 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 915 pipe_name(pipe));
ea0760cf
JB
916}
917
63d7bbe9
JB
918static void assert_pipe(struct drm_i915_private *dev_priv,
919 enum pipe pipe, bool state)
b24e7179
JB
920{
921 int reg;
922 u32 val;
63d7bbe9 923 bool cur_state;
b24e7179
JB
924
925 reg = PIPECONF(pipe);
926 val = I915_READ(reg);
63d7bbe9
JB
927 cur_state = !!(val & PIPECONF_ENABLE);
928 WARN(cur_state != state,
929 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 930 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179 931}
63d7bbe9
JB
932#define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
933#define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
b24e7179
JB
934
935static void assert_plane_enabled(struct drm_i915_private *dev_priv,
936 enum plane plane)
937{
938 int reg;
939 u32 val;
940
941 reg = DSPCNTR(plane);
942 val = I915_READ(reg);
943 WARN(!(val & DISPLAY_PLANE_ENABLE),
944 "plane %c assertion failure, should be active but is disabled\n",
9db4a9c7 945 plane_name(plane));
b24e7179
JB
946}
947
948static void assert_planes_disabled(struct drm_i915_private *dev_priv,
949 enum pipe pipe)
950{
951 int reg, i;
952 u32 val;
953 int cur_pipe;
954
19ec1358
JB
955 /* Planes are fixed to pipes on ILK+ */
956 if (HAS_PCH_SPLIT(dev_priv->dev))
957 return;
958
b24e7179
JB
959 /* Need to check both planes against the pipe */
960 for (i = 0; i < 2; i++) {
961 reg = DSPCNTR(i);
962 val = I915_READ(reg);
963 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
964 DISPPLANE_SEL_PIPE_SHIFT;
965 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
966 "plane %c assertion failure, should be off on pipe %c but is still active\n",
967 plane_name(i), pipe_name(pipe));
b24e7179
JB
968 }
969}
970
92f2584a
JB
971static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
972{
973 u32 val;
974 bool enabled;
975
976 val = I915_READ(PCH_DREF_CONTROL);
977 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
978 DREF_SUPERSPREAD_SOURCE_MASK));
979 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
980}
981
982static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
983 enum pipe pipe)
984{
985 int reg;
986 u32 val;
987 bool enabled;
988
989 reg = TRANSCONF(pipe);
990 val = I915_READ(reg);
991 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
992 WARN(enabled,
993 "transcoder assertion failed, should be off on pipe %c but is still active\n",
994 pipe_name(pipe));
92f2584a
JB
995}
996
4e634389
KP
997static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
998 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
999{
1000 if ((val & DP_PORT_EN) == 0)
1001 return false;
1002
1003 if (HAS_PCH_CPT(dev_priv->dev)) {
1004 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1005 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1006 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1007 return false;
1008 } else {
1009 if ((val & DP_PIPE_MASK) != (pipe << 30))
1010 return false;
1011 }
1012 return true;
1013}
1014
1519b995
KP
1015static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1016 enum pipe pipe, u32 val)
1017{
1018 if ((val & PORT_ENABLE) == 0)
1019 return false;
1020
1021 if (HAS_PCH_CPT(dev_priv->dev)) {
1022 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1023 return false;
1024 } else {
1025 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1026 return false;
1027 }
1028 return true;
1029}
1030
1031static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1032 enum pipe pipe, u32 val)
1033{
1034 if ((val & LVDS_PORT_EN) == 0)
1035 return false;
1036
1037 if (HAS_PCH_CPT(dev_priv->dev)) {
1038 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1039 return false;
1040 } else {
1041 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1042 return false;
1043 }
1044 return true;
1045}
1046
1047static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1048 enum pipe pipe, u32 val)
1049{
1050 if ((val & ADPA_DAC_ENABLE) == 0)
1051 return false;
1052 if (HAS_PCH_CPT(dev_priv->dev)) {
1053 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1054 return false;
1055 } else {
1056 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1057 return false;
1058 }
1059 return true;
1060}
1061
291906f1 1062static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1063 enum pipe pipe, int reg, u32 port_sel)
291906f1 1064{
47a05eca 1065 u32 val = I915_READ(reg);
4e634389 1066 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1067 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1068 reg, pipe_name(pipe));
291906f1
JB
1069}
1070
1071static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1072 enum pipe pipe, int reg)
1073{
47a05eca 1074 u32 val = I915_READ(reg);
1519b995 1075 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
291906f1 1076 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1077 reg, pipe_name(pipe));
291906f1
JB
1078}
1079
1080static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1081 enum pipe pipe)
1082{
1083 int reg;
1084 u32 val;
291906f1 1085
f0575e92
KP
1086 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1087 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1088 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1089
1090 reg = PCH_ADPA;
1091 val = I915_READ(reg);
1519b995 1092 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
291906f1 1093 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1094 pipe_name(pipe));
291906f1
JB
1095
1096 reg = PCH_LVDS;
1097 val = I915_READ(reg);
1519b995 1098 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
291906f1 1099 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1100 pipe_name(pipe));
291906f1
JB
1101
1102 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1103 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1104 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1105}
1106
63d7bbe9
JB
1107/**
1108 * intel_enable_pll - enable a PLL
1109 * @dev_priv: i915 private structure
1110 * @pipe: pipe PLL to enable
1111 *
1112 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1113 * make sure the PLL reg is writable first though, since the panel write
1114 * protect mechanism may be enabled.
1115 *
1116 * Note! This is for pre-ILK only.
1117 */
1118static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1119{
1120 int reg;
1121 u32 val;
1122
1123 /* No really, not for ILK+ */
1124 BUG_ON(dev_priv->info->gen >= 5);
1125
1126 /* PLL is protected by panel, make sure we can write it */
1127 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1128 assert_panel_unlocked(dev_priv, pipe);
1129
1130 reg = DPLL(pipe);
1131 val = I915_READ(reg);
1132 val |= DPLL_VCO_ENABLE;
1133
1134 /* We do this three times for luck */
1135 I915_WRITE(reg, val);
1136 POSTING_READ(reg);
1137 udelay(150); /* wait for warmup */
1138 I915_WRITE(reg, val);
1139 POSTING_READ(reg);
1140 udelay(150); /* wait for warmup */
1141 I915_WRITE(reg, val);
1142 POSTING_READ(reg);
1143 udelay(150); /* wait for warmup */
1144}
1145
1146/**
1147 * intel_disable_pll - disable a PLL
1148 * @dev_priv: i915 private structure
1149 * @pipe: pipe PLL to disable
1150 *
1151 * Disable the PLL for @pipe, making sure the pipe is off first.
1152 *
1153 * Note! This is for pre-ILK only.
1154 */
1155static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1156{
1157 int reg;
1158 u32 val;
1159
1160 /* Don't disable pipe A or pipe A PLLs if needed */
1161 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1162 return;
1163
1164 /* Make sure the pipe isn't still relying on us */
1165 assert_pipe_disabled(dev_priv, pipe);
1166
1167 reg = DPLL(pipe);
1168 val = I915_READ(reg);
1169 val &= ~DPLL_VCO_ENABLE;
1170 I915_WRITE(reg, val);
1171 POSTING_READ(reg);
1172}
1173
92f2584a
JB
1174/**
1175 * intel_enable_pch_pll - enable PCH PLL
1176 * @dev_priv: i915 private structure
1177 * @pipe: pipe PLL to enable
1178 *
1179 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1180 * drives the transcoder clock.
1181 */
1182static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1183 enum pipe pipe)
1184{
1185 int reg;
1186 u32 val;
1187
4c609cb8
JB
1188 if (pipe > 1)
1189 return;
1190
92f2584a
JB
1191 /* PCH only available on ILK+ */
1192 BUG_ON(dev_priv->info->gen < 5);
1193
1194 /* PCH refclock must be enabled first */
1195 assert_pch_refclk_enabled(dev_priv);
1196
1197 reg = PCH_DPLL(pipe);
1198 val = I915_READ(reg);
1199 val |= DPLL_VCO_ENABLE;
1200 I915_WRITE(reg, val);
1201 POSTING_READ(reg);
1202 udelay(200);
1203}
1204
1205static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1206 enum pipe pipe)
1207{
1208 int reg;
1209 u32 val;
1210
4c609cb8
JB
1211 if (pipe > 1)
1212 return;
1213
92f2584a
JB
1214 /* PCH only available on ILK+ */
1215 BUG_ON(dev_priv->info->gen < 5);
1216
1217 /* Make sure transcoder isn't still depending on us */
1218 assert_transcoder_disabled(dev_priv, pipe);
1219
1220 reg = PCH_DPLL(pipe);
1221 val = I915_READ(reg);
1222 val &= ~DPLL_VCO_ENABLE;
1223 I915_WRITE(reg, val);
1224 POSTING_READ(reg);
1225 udelay(200);
1226}
1227
040484af
JB
1228static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1229 enum pipe pipe)
1230{
1231 int reg;
1232 u32 val;
1233
1234 /* PCH only available on ILK+ */
1235 BUG_ON(dev_priv->info->gen < 5);
1236
1237 /* Make sure PCH DPLL is enabled */
1238 assert_pch_pll_enabled(dev_priv, pipe);
1239
1240 /* FDI must be feeding us bits for PCH ports */
1241 assert_fdi_tx_enabled(dev_priv, pipe);
1242 assert_fdi_rx_enabled(dev_priv, pipe);
1243
1244 reg = TRANSCONF(pipe);
1245 val = I915_READ(reg);
e9bcff5c
JB
1246
1247 if (HAS_PCH_IBX(dev_priv->dev)) {
1248 /*
1249 * make the BPC in transcoder be consistent with
1250 * that in pipeconf reg.
1251 */
1252 val &= ~PIPE_BPC_MASK;
1253 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1254 }
040484af
JB
1255 I915_WRITE(reg, val | TRANS_ENABLE);
1256 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1257 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1258}
1259
1260static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1261 enum pipe pipe)
1262{
1263 int reg;
1264 u32 val;
1265
1266 /* FDI relies on the transcoder */
1267 assert_fdi_tx_disabled(dev_priv, pipe);
1268 assert_fdi_rx_disabled(dev_priv, pipe);
1269
291906f1
JB
1270 /* Ports must be off as well */
1271 assert_pch_ports_disabled(dev_priv, pipe);
1272
040484af
JB
1273 reg = TRANSCONF(pipe);
1274 val = I915_READ(reg);
1275 val &= ~TRANS_ENABLE;
1276 I915_WRITE(reg, val);
1277 /* wait for PCH transcoder off, transcoder state */
1278 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1279 DRM_ERROR("failed to disable transcoder\n");
1280}
1281
b24e7179 1282/**
309cfea8 1283 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1284 * @dev_priv: i915 private structure
1285 * @pipe: pipe to enable
040484af 1286 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1287 *
1288 * Enable @pipe, making sure that various hardware specific requirements
1289 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1290 *
1291 * @pipe should be %PIPE_A or %PIPE_B.
1292 *
1293 * Will wait until the pipe is actually running (i.e. first vblank) before
1294 * returning.
1295 */
040484af
JB
1296static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1297 bool pch_port)
b24e7179
JB
1298{
1299 int reg;
1300 u32 val;
1301
1302 /*
1303 * A pipe without a PLL won't actually be able to drive bits from
1304 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1305 * need the check.
1306 */
1307 if (!HAS_PCH_SPLIT(dev_priv->dev))
1308 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1309 else {
1310 if (pch_port) {
1311 /* if driving the PCH, we need FDI enabled */
1312 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1313 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1314 }
1315 /* FIXME: assert CPU port conditions for SNB+ */
1316 }
b24e7179
JB
1317
1318 reg = PIPECONF(pipe);
1319 val = I915_READ(reg);
00d70b15
CW
1320 if (val & PIPECONF_ENABLE)
1321 return;
1322
1323 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1324 intel_wait_for_vblank(dev_priv->dev, pipe);
1325}
1326
1327/**
309cfea8 1328 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1329 * @dev_priv: i915 private structure
1330 * @pipe: pipe to disable
1331 *
1332 * Disable @pipe, making sure that various hardware specific requirements
1333 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1334 *
1335 * @pipe should be %PIPE_A or %PIPE_B.
1336 *
1337 * Will wait until the pipe has shut down before returning.
1338 */
1339static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1340 enum pipe pipe)
1341{
1342 int reg;
1343 u32 val;
1344
1345 /*
1346 * Make sure planes won't keep trying to pump pixels to us,
1347 * or we might hang the display.
1348 */
1349 assert_planes_disabled(dev_priv, pipe);
1350
1351 /* Don't disable pipe A or pipe A PLLs if needed */
1352 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1353 return;
1354
1355 reg = PIPECONF(pipe);
1356 val = I915_READ(reg);
00d70b15
CW
1357 if ((val & PIPECONF_ENABLE) == 0)
1358 return;
1359
1360 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1361 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1362}
1363
d74362c9
KP
1364/*
1365 * Plane regs are double buffered, going from enabled->disabled needs a
1366 * trigger in order to latch. The display address reg provides this.
1367 */
1368static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1369 enum plane plane)
1370{
1371 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1372 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1373}
1374
b24e7179
JB
1375/**
1376 * intel_enable_plane - enable a display plane on a given pipe
1377 * @dev_priv: i915 private structure
1378 * @plane: plane to enable
1379 * @pipe: pipe being fed
1380 *
1381 * Enable @plane on @pipe, making sure that @pipe is running first.
1382 */
1383static void intel_enable_plane(struct drm_i915_private *dev_priv,
1384 enum plane plane, enum pipe pipe)
1385{
1386 int reg;
1387 u32 val;
1388
1389 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1390 assert_pipe_enabled(dev_priv, pipe);
1391
1392 reg = DSPCNTR(plane);
1393 val = I915_READ(reg);
00d70b15
CW
1394 if (val & DISPLAY_PLANE_ENABLE)
1395 return;
1396
1397 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1398 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1399 intel_wait_for_vblank(dev_priv->dev, pipe);
1400}
1401
b24e7179
JB
1402/**
1403 * intel_disable_plane - disable a display plane
1404 * @dev_priv: i915 private structure
1405 * @plane: plane to disable
1406 * @pipe: pipe consuming the data
1407 *
1408 * Disable @plane; should be an independent operation.
1409 */
1410static void intel_disable_plane(struct drm_i915_private *dev_priv,
1411 enum plane plane, enum pipe pipe)
1412{
1413 int reg;
1414 u32 val;
1415
1416 reg = DSPCNTR(plane);
1417 val = I915_READ(reg);
00d70b15
CW
1418 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1419 return;
1420
1421 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1422 intel_flush_display_plane(dev_priv, plane);
1423 intel_wait_for_vblank(dev_priv->dev, pipe);
1424}
1425
47a05eca 1426static void disable_pch_dp(struct drm_i915_private *dev_priv,
f0575e92 1427 enum pipe pipe, int reg, u32 port_sel)
47a05eca
JB
1428{
1429 u32 val = I915_READ(reg);
4e634389 1430 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
f0575e92 1431 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
47a05eca 1432 I915_WRITE(reg, val & ~DP_PORT_EN);
f0575e92 1433 }
47a05eca
JB
1434}
1435
1436static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1437 enum pipe pipe, int reg)
1438{
1439 u32 val = I915_READ(reg);
1519b995 1440 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
f0575e92
KP
1441 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1442 reg, pipe);
47a05eca 1443 I915_WRITE(reg, val & ~PORT_ENABLE);
f0575e92 1444 }
47a05eca
JB
1445}
1446
1447/* Disable any ports connected to this transcoder */
1448static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1449 enum pipe pipe)
1450{
1451 u32 reg, val;
1452
1453 val = I915_READ(PCH_PP_CONTROL);
1454 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1455
f0575e92
KP
1456 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1457 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1458 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
47a05eca
JB
1459
1460 reg = PCH_ADPA;
1461 val = I915_READ(reg);
1519b995 1462 if (adpa_pipe_enabled(dev_priv, val, pipe))
47a05eca
JB
1463 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1464
1465 reg = PCH_LVDS;
1466 val = I915_READ(reg);
1519b995
KP
1467 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1468 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
47a05eca
JB
1469 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1470 POSTING_READ(reg);
1471 udelay(100);
1472 }
1473
1474 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1475 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1476 disable_pch_hdmi(dev_priv, pipe, HDMID);
1477}
1478
43a9539f
CW
1479static void i8xx_disable_fbc(struct drm_device *dev)
1480{
1481 struct drm_i915_private *dev_priv = dev->dev_private;
1482 u32 fbc_ctl;
1483
1484 /* Disable compression */
1485 fbc_ctl = I915_READ(FBC_CONTROL);
1486 if ((fbc_ctl & FBC_CTL_EN) == 0)
1487 return;
1488
1489 fbc_ctl &= ~FBC_CTL_EN;
1490 I915_WRITE(FBC_CONTROL, fbc_ctl);
1491
1492 /* Wait for compressing bit to clear */
1493 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1494 DRM_DEBUG_KMS("FBC idle timed out\n");
1495 return;
1496 }
1497
1498 DRM_DEBUG_KMS("disabled FBC\n");
1499}
1500
80824003
JB
1501static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1502{
1503 struct drm_device *dev = crtc->dev;
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505 struct drm_framebuffer *fb = crtc->fb;
1506 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1507 struct drm_i915_gem_object *obj = intel_fb->obj;
80824003 1508 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
016b9b61 1509 int cfb_pitch;
80824003
JB
1510 int plane, i;
1511 u32 fbc_ctl, fbc_ctl2;
1512
016b9b61
CW
1513 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1514 if (fb->pitch < cfb_pitch)
1515 cfb_pitch = fb->pitch;
80824003
JB
1516
1517 /* FBC_CTL wants 64B units */
016b9b61
CW
1518 cfb_pitch = (cfb_pitch / 64) - 1;
1519 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
80824003
JB
1520
1521 /* Clear old tags */
1522 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1523 I915_WRITE(FBC_TAG + (i * 4), 0);
1524
1525 /* Set it up... */
de568510
CW
1526 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1527 fbc_ctl2 |= plane;
80824003
JB
1528 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1529 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1530
1531 /* enable it... */
1532 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
ee25df2b 1533 if (IS_I945GM(dev))
49677901 1534 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
016b9b61 1535 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
80824003 1536 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
016b9b61 1537 fbc_ctl |= obj->fence_reg;
80824003
JB
1538 I915_WRITE(FBC_CONTROL, fbc_ctl);
1539
016b9b61
CW
1540 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1541 cfb_pitch, crtc->y, intel_crtc->plane);
80824003
JB
1542}
1543
ee5382ae 1544static bool i8xx_fbc_enabled(struct drm_device *dev)
80824003 1545{
80824003
JB
1546 struct drm_i915_private *dev_priv = dev->dev_private;
1547
1548 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1549}
1550
74dff282
JB
1551static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1552{
1553 struct drm_device *dev = crtc->dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 struct drm_framebuffer *fb = crtc->fb;
1556 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1557 struct drm_i915_gem_object *obj = intel_fb->obj;
74dff282 1558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5eddb70b 1559 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
74dff282
JB
1560 unsigned long stall_watermark = 200;
1561 u32 dpfc_ctl;
1562
74dff282 1563 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
016b9b61 1564 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
de568510 1565 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
74dff282 1566
74dff282
JB
1567 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1568 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1569 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1570 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1571
1572 /* enable it... */
1573 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1574
28c97730 1575 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
74dff282
JB
1576}
1577
43a9539f 1578static void g4x_disable_fbc(struct drm_device *dev)
74dff282
JB
1579{
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 u32 dpfc_ctl;
1582
1583 /* Disable compression */
1584 dpfc_ctl = I915_READ(DPFC_CONTROL);
bed4a673
CW
1585 if (dpfc_ctl & DPFC_CTL_EN) {
1586 dpfc_ctl &= ~DPFC_CTL_EN;
1587 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
74dff282 1588
bed4a673
CW
1589 DRM_DEBUG_KMS("disabled FBC\n");
1590 }
74dff282
JB
1591}
1592
ee5382ae 1593static bool g4x_fbc_enabled(struct drm_device *dev)
74dff282 1594{
74dff282
JB
1595 struct drm_i915_private *dev_priv = dev->dev_private;
1596
1597 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1598}
1599
4efe0708
JB
1600static void sandybridge_blit_fbc_update(struct drm_device *dev)
1601{
1602 struct drm_i915_private *dev_priv = dev->dev_private;
1603 u32 blt_ecoskpd;
1604
1605 /* Make sure blitter notifies FBC of writes */
fcca7926 1606 gen6_gt_force_wake_get(dev_priv);
4efe0708
JB
1607 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1608 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1609 GEN6_BLITTER_LOCK_SHIFT;
1610 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1611 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1612 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1613 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1614 GEN6_BLITTER_LOCK_SHIFT);
1615 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1616 POSTING_READ(GEN6_BLITTER_ECOSKPD);
fcca7926 1617 gen6_gt_force_wake_put(dev_priv);
4efe0708
JB
1618}
1619
b52eb4dc
ZY
1620static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1621{
1622 struct drm_device *dev = crtc->dev;
1623 struct drm_i915_private *dev_priv = dev->dev_private;
1624 struct drm_framebuffer *fb = crtc->fb;
1625 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1626 struct drm_i915_gem_object *obj = intel_fb->obj;
b52eb4dc 1627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5eddb70b 1628 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
b52eb4dc
ZY
1629 unsigned long stall_watermark = 200;
1630 u32 dpfc_ctl;
1631
bed4a673 1632 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
b52eb4dc
ZY
1633 dpfc_ctl &= DPFC_RESERVED;
1634 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
9ce9d069
CW
1635 /* Set persistent mode for front-buffer rendering, ala X. */
1636 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
016b9b61 1637 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
de568510 1638 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
b52eb4dc 1639
b52eb4dc
ZY
1640 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1641 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1642 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1643 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
05394f39 1644 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
b52eb4dc 1645 /* enable it... */
bed4a673 1646 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
b52eb4dc 1647
9c04f015
YL
1648 if (IS_GEN6(dev)) {
1649 I915_WRITE(SNB_DPFC_CTL_SA,
016b9b61 1650 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
9c04f015 1651 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
4efe0708 1652 sandybridge_blit_fbc_update(dev);
9c04f015
YL
1653 }
1654
b52eb4dc
ZY
1655 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1656}
1657
43a9539f 1658static void ironlake_disable_fbc(struct drm_device *dev)
b52eb4dc
ZY
1659{
1660 struct drm_i915_private *dev_priv = dev->dev_private;
1661 u32 dpfc_ctl;
1662
1663 /* Disable compression */
1664 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
bed4a673
CW
1665 if (dpfc_ctl & DPFC_CTL_EN) {
1666 dpfc_ctl &= ~DPFC_CTL_EN;
1667 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
b52eb4dc 1668
bed4a673
CW
1669 DRM_DEBUG_KMS("disabled FBC\n");
1670 }
b52eb4dc
ZY
1671}
1672
1673static bool ironlake_fbc_enabled(struct drm_device *dev)
1674{
1675 struct drm_i915_private *dev_priv = dev->dev_private;
1676
1677 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1678}
1679
ee5382ae
AJ
1680bool intel_fbc_enabled(struct drm_device *dev)
1681{
1682 struct drm_i915_private *dev_priv = dev->dev_private;
1683
1684 if (!dev_priv->display.fbc_enabled)
1685 return false;
1686
1687 return dev_priv->display.fbc_enabled(dev);
1688}
1689
1630fe75
CW
1690static void intel_fbc_work_fn(struct work_struct *__work)
1691{
1692 struct intel_fbc_work *work =
1693 container_of(to_delayed_work(__work),
1694 struct intel_fbc_work, work);
1695 struct drm_device *dev = work->crtc->dev;
1696 struct drm_i915_private *dev_priv = dev->dev_private;
1697
1698 mutex_lock(&dev->struct_mutex);
1699 if (work == dev_priv->fbc_work) {
1700 /* Double check that we haven't switched fb without cancelling
1701 * the prior work.
1702 */
016b9b61 1703 if (work->crtc->fb == work->fb) {
1630fe75
CW
1704 dev_priv->display.enable_fbc(work->crtc,
1705 work->interval);
1706
016b9b61
CW
1707 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1708 dev_priv->cfb_fb = work->crtc->fb->base.id;
1709 dev_priv->cfb_y = work->crtc->y;
1710 }
1711
1630fe75
CW
1712 dev_priv->fbc_work = NULL;
1713 }
1714 mutex_unlock(&dev->struct_mutex);
1715
1716 kfree(work);
1717}
1718
1719static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1720{
1721 if (dev_priv->fbc_work == NULL)
1722 return;
1723
1724 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1725
1726 /* Synchronisation is provided by struct_mutex and checking of
1727 * dev_priv->fbc_work, so we can perform the cancellation
1728 * entirely asynchronously.
1729 */
1730 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1731 /* tasklet was killed before being run, clean up */
1732 kfree(dev_priv->fbc_work);
1733
1734 /* Mark the work as no longer wanted so that if it does
1735 * wake-up (because the work was already running and waiting
1736 * for our mutex), it will discover that is no longer
1737 * necessary to run.
1738 */
1739 dev_priv->fbc_work = NULL;
1740}
1741
43a9539f 1742static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
ee5382ae 1743{
1630fe75
CW
1744 struct intel_fbc_work *work;
1745 struct drm_device *dev = crtc->dev;
1746 struct drm_i915_private *dev_priv = dev->dev_private;
ee5382ae
AJ
1747
1748 if (!dev_priv->display.enable_fbc)
1749 return;
1750
1630fe75
CW
1751 intel_cancel_fbc_work(dev_priv);
1752
1753 work = kzalloc(sizeof *work, GFP_KERNEL);
1754 if (work == NULL) {
1755 dev_priv->display.enable_fbc(crtc, interval);
1756 return;
1757 }
1758
1759 work->crtc = crtc;
1760 work->fb = crtc->fb;
1761 work->interval = interval;
1762 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1763
1764 dev_priv->fbc_work = work;
1765
1766 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1767
1768 /* Delay the actual enabling to let pageflipping cease and the
016b9b61
CW
1769 * display to settle before starting the compression. Note that
1770 * this delay also serves a second purpose: it allows for a
1771 * vblank to pass after disabling the FBC before we attempt
1772 * to modify the control registers.
1630fe75
CW
1773 *
1774 * A more complicated solution would involve tracking vblanks
1775 * following the termination of the page-flipping sequence
1776 * and indeed performing the enable as a co-routine and not
1777 * waiting synchronously upon the vblank.
1778 */
1779 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
ee5382ae
AJ
1780}
1781
1782void intel_disable_fbc(struct drm_device *dev)
1783{
1784 struct drm_i915_private *dev_priv = dev->dev_private;
1785
1630fe75
CW
1786 intel_cancel_fbc_work(dev_priv);
1787
ee5382ae
AJ
1788 if (!dev_priv->display.disable_fbc)
1789 return;
1790
1791 dev_priv->display.disable_fbc(dev);
016b9b61 1792 dev_priv->cfb_plane = -1;
ee5382ae
AJ
1793}
1794
80824003
JB
1795/**
1796 * intel_update_fbc - enable/disable FBC as needed
bed4a673 1797 * @dev: the drm_device
80824003
JB
1798 *
1799 * Set up the framebuffer compression hardware at mode set time. We
1800 * enable it if possible:
1801 * - plane A only (on pre-965)
1802 * - no pixel mulitply/line duplication
1803 * - no alpha buffer discard
1804 * - no dual wide
1805 * - framebuffer <= 2048 in width, 1536 in height
1806 *
1807 * We can't assume that any compression will take place (worst case),
1808 * so the compressed buffer has to be the same size as the uncompressed
1809 * one. It also must reside (along with the line length buffer) in
1810 * stolen memory.
1811 *
1812 * We need to enable/disable FBC on a global basis.
1813 */
bed4a673 1814static void intel_update_fbc(struct drm_device *dev)
80824003 1815{
80824003 1816 struct drm_i915_private *dev_priv = dev->dev_private;
bed4a673
CW
1817 struct drm_crtc *crtc = NULL, *tmp_crtc;
1818 struct intel_crtc *intel_crtc;
1819 struct drm_framebuffer *fb;
80824003 1820 struct intel_framebuffer *intel_fb;
05394f39 1821 struct drm_i915_gem_object *obj;
cd0de039 1822 int enable_fbc;
9c928d16
JB
1823
1824 DRM_DEBUG_KMS("\n");
80824003
JB
1825
1826 if (!i915_powersave)
1827 return;
1828
ee5382ae 1829 if (!I915_HAS_FBC(dev))
e70236a8
JB
1830 return;
1831
80824003
JB
1832 /*
1833 * If FBC is already on, we just have to verify that we can
1834 * keep it that way...
1835 * Need to disable if:
9c928d16 1836 * - more than one pipe is active
80824003
JB
1837 * - changing FBC params (stride, fence, mode)
1838 * - new fb is too large to fit in compressed buffer
1839 * - going to an unsupported config (interlace, pixel multiply, etc.)
1840 */
9c928d16 1841 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
d210246a 1842 if (tmp_crtc->enabled && tmp_crtc->fb) {
bed4a673
CW
1843 if (crtc) {
1844 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1845 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1846 goto out_disable;
1847 }
1848 crtc = tmp_crtc;
1849 }
9c928d16 1850 }
bed4a673
CW
1851
1852 if (!crtc || crtc->fb == NULL) {
1853 DRM_DEBUG_KMS("no output, disabling\n");
1854 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
9c928d16
JB
1855 goto out_disable;
1856 }
bed4a673
CW
1857
1858 intel_crtc = to_intel_crtc(crtc);
1859 fb = crtc->fb;
1860 intel_fb = to_intel_framebuffer(fb);
05394f39 1861 obj = intel_fb->obj;
bed4a673 1862
cd0de039
KP
1863 enable_fbc = i915_enable_fbc;
1864 if (enable_fbc < 0) {
1865 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1866 enable_fbc = 1;
1867 if (INTEL_INFO(dev)->gen <= 5)
1868 enable_fbc = 0;
1869 }
1870 if (!enable_fbc) {
1871 DRM_DEBUG_KMS("fbc disabled per module param\n");
c1a9f047
JB
1872 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1873 goto out_disable;
1874 }
05394f39 1875 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
28c97730 1876 DRM_DEBUG_KMS("framebuffer too large, disabling "
5eddb70b 1877 "compression\n");
b5e50c3f 1878 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
80824003
JB
1879 goto out_disable;
1880 }
bed4a673
CW
1881 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1882 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
28c97730 1883 DRM_DEBUG_KMS("mode incompatible with compression, "
5eddb70b 1884 "disabling\n");
b5e50c3f 1885 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
80824003
JB
1886 goto out_disable;
1887 }
bed4a673
CW
1888 if ((crtc->mode.hdisplay > 2048) ||
1889 (crtc->mode.vdisplay > 1536)) {
28c97730 1890 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
b5e50c3f 1891 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
80824003
JB
1892 goto out_disable;
1893 }
bed4a673 1894 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
28c97730 1895 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
b5e50c3f 1896 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
80824003
JB
1897 goto out_disable;
1898 }
de568510
CW
1899
1900 /* The use of a CPU fence is mandatory in order to detect writes
1901 * by the CPU to the scanout and trigger updates to the FBC.
1902 */
1903 if (obj->tiling_mode != I915_TILING_X ||
1904 obj->fence_reg == I915_FENCE_REG_NONE) {
1905 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
b5e50c3f 1906 dev_priv->no_fbc_reason = FBC_NOT_TILED;
80824003
JB
1907 goto out_disable;
1908 }
1909
c924b934
JW
1910 /* If the kernel debugger is active, always disable compression */
1911 if (in_dbg_master())
1912 goto out_disable;
1913
016b9b61
CW
1914 /* If the scanout has not changed, don't modify the FBC settings.
1915 * Note that we make the fundamental assumption that the fb->obj
1916 * cannot be unpinned (and have its GTT offset and fence revoked)
1917 * without first being decoupled from the scanout and FBC disabled.
1918 */
1919 if (dev_priv->cfb_plane == intel_crtc->plane &&
1920 dev_priv->cfb_fb == fb->base.id &&
1921 dev_priv->cfb_y == crtc->y)
1922 return;
1923
1924 if (intel_fbc_enabled(dev)) {
1925 /* We update FBC along two paths, after changing fb/crtc
1926 * configuration (modeswitching) and after page-flipping
1927 * finishes. For the latter, we know that not only did
1928 * we disable the FBC at the start of the page-flip
1929 * sequence, but also more than one vblank has passed.
1930 *
1931 * For the former case of modeswitching, it is possible
1932 * to switch between two FBC valid configurations
1933 * instantaneously so we do need to disable the FBC
1934 * before we can modify its control registers. We also
1935 * have to wait for the next vblank for that to take
1936 * effect. However, since we delay enabling FBC we can
1937 * assume that a vblank has passed since disabling and
1938 * that we can safely alter the registers in the deferred
1939 * callback.
1940 *
1941 * In the scenario that we go from a valid to invalid
1942 * and then back to valid FBC configuration we have
1943 * no strict enforcement that a vblank occurred since
1944 * disabling the FBC. However, along all current pipe
1945 * disabling paths we do need to wait for a vblank at
1946 * some point. And we wait before enabling FBC anyway.
1947 */
1948 DRM_DEBUG_KMS("disabling active FBC for update\n");
1949 intel_disable_fbc(dev);
1950 }
1951
bed4a673 1952 intel_enable_fbc(crtc, 500);
80824003
JB
1953 return;
1954
1955out_disable:
80824003 1956 /* Multiple disables should be harmless */
a939406f
CW
1957 if (intel_fbc_enabled(dev)) {
1958 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
ee5382ae 1959 intel_disable_fbc(dev);
a939406f 1960 }
80824003
JB
1961}
1962
127bd2ac 1963int
48b956c5 1964intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1965 struct drm_i915_gem_object *obj,
919926ae 1966 struct intel_ring_buffer *pipelined)
6b95a207 1967{
ce453d81 1968 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1969 u32 alignment;
1970 int ret;
1971
05394f39 1972 switch (obj->tiling_mode) {
6b95a207 1973 case I915_TILING_NONE:
534843da
CW
1974 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1975 alignment = 128 * 1024;
a6c45cf0 1976 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1977 alignment = 4 * 1024;
1978 else
1979 alignment = 64 * 1024;
6b95a207
KH
1980 break;
1981 case I915_TILING_X:
1982 /* pin() will align the object as required by fence */
1983 alignment = 0;
1984 break;
1985 case I915_TILING_Y:
1986 /* FIXME: Is this true? */
1987 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1988 return -EINVAL;
1989 default:
1990 BUG();
1991 }
1992
ce453d81 1993 dev_priv->mm.interruptible = false;
2da3b9b9 1994 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 1995 if (ret)
ce453d81 1996 goto err_interruptible;
6b95a207
KH
1997
1998 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1999 * fence, whereas 965+ only requires a fence if using
2000 * framebuffer compression. For simplicity, we always install
2001 * a fence as the cost is not that onerous.
2002 */
05394f39 2003 if (obj->tiling_mode != I915_TILING_NONE) {
ce453d81 2004 ret = i915_gem_object_get_fence(obj, pipelined);
48b956c5
CW
2005 if (ret)
2006 goto err_unpin;
6b95a207
KH
2007 }
2008
ce453d81 2009 dev_priv->mm.interruptible = true;
6b95a207 2010 return 0;
48b956c5
CW
2011
2012err_unpin:
2013 i915_gem_object_unpin(obj);
ce453d81
CW
2014err_interruptible:
2015 dev_priv->mm.interruptible = true;
48b956c5 2016 return ret;
6b95a207
KH
2017}
2018
17638cd6
JB
2019static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2020 int x, int y)
81255565
JB
2021{
2022 struct drm_device *dev = crtc->dev;
2023 struct drm_i915_private *dev_priv = dev->dev_private;
2024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2025 struct intel_framebuffer *intel_fb;
05394f39 2026 struct drm_i915_gem_object *obj;
81255565
JB
2027 int plane = intel_crtc->plane;
2028 unsigned long Start, Offset;
81255565 2029 u32 dspcntr;
5eddb70b 2030 u32 reg;
81255565
JB
2031
2032 switch (plane) {
2033 case 0:
2034 case 1:
2035 break;
2036 default:
2037 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2038 return -EINVAL;
2039 }
2040
2041 intel_fb = to_intel_framebuffer(fb);
2042 obj = intel_fb->obj;
81255565 2043
5eddb70b
CW
2044 reg = DSPCNTR(plane);
2045 dspcntr = I915_READ(reg);
81255565
JB
2046 /* Mask out pixel format bits in case we change it */
2047 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2048 switch (fb->bits_per_pixel) {
2049 case 8:
2050 dspcntr |= DISPPLANE_8BPP;
2051 break;
2052 case 16:
2053 if (fb->depth == 15)
2054 dspcntr |= DISPPLANE_15_16BPP;
2055 else
2056 dspcntr |= DISPPLANE_16BPP;
2057 break;
2058 case 24:
2059 case 32:
2060 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2061 break;
2062 default:
17638cd6 2063 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
81255565
JB
2064 return -EINVAL;
2065 }
a6c45cf0 2066 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2067 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2068 dspcntr |= DISPPLANE_TILED;
2069 else
2070 dspcntr &= ~DISPPLANE_TILED;
2071 }
2072
5eddb70b 2073 I915_WRITE(reg, dspcntr);
81255565 2074
05394f39 2075 Start = obj->gtt_offset;
81255565
JB
2076 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2077
4e6cfefc
CW
2078 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2079 Start, Offset, x, y, fb->pitch);
5eddb70b 2080 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
a6c45cf0 2081 if (INTEL_INFO(dev)->gen >= 4) {
5eddb70b
CW
2082 I915_WRITE(DSPSURF(plane), Start);
2083 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2084 I915_WRITE(DSPADDR(plane), Offset);
2085 } else
2086 I915_WRITE(DSPADDR(plane), Start + Offset);
2087 POSTING_READ(reg);
81255565 2088
17638cd6
JB
2089 return 0;
2090}
2091
2092static int ironlake_update_plane(struct drm_crtc *crtc,
2093 struct drm_framebuffer *fb, int x, int y)
2094{
2095 struct drm_device *dev = crtc->dev;
2096 struct drm_i915_private *dev_priv = dev->dev_private;
2097 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2098 struct intel_framebuffer *intel_fb;
2099 struct drm_i915_gem_object *obj;
2100 int plane = intel_crtc->plane;
2101 unsigned long Start, Offset;
2102 u32 dspcntr;
2103 u32 reg;
2104
2105 switch (plane) {
2106 case 0:
2107 case 1:
27f8227b 2108 case 2:
17638cd6
JB
2109 break;
2110 default:
2111 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2112 return -EINVAL;
2113 }
2114
2115 intel_fb = to_intel_framebuffer(fb);
2116 obj = intel_fb->obj;
2117
2118 reg = DSPCNTR(plane);
2119 dspcntr = I915_READ(reg);
2120 /* Mask out pixel format bits in case we change it */
2121 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2122 switch (fb->bits_per_pixel) {
2123 case 8:
2124 dspcntr |= DISPPLANE_8BPP;
2125 break;
2126 case 16:
2127 if (fb->depth != 16)
2128 return -EINVAL;
2129
2130 dspcntr |= DISPPLANE_16BPP;
2131 break;
2132 case 24:
2133 case 32:
2134 if (fb->depth == 24)
2135 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2136 else if (fb->depth == 30)
2137 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2138 else
2139 return -EINVAL;
2140 break;
2141 default:
2142 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2143 return -EINVAL;
2144 }
2145
2146 if (obj->tiling_mode != I915_TILING_NONE)
2147 dspcntr |= DISPPLANE_TILED;
2148 else
2149 dspcntr &= ~DISPPLANE_TILED;
2150
2151 /* must disable */
2152 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2153
2154 I915_WRITE(reg, dspcntr);
2155
2156 Start = obj->gtt_offset;
2157 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2158
2159 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2160 Start, Offset, x, y, fb->pitch);
2161 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2162 I915_WRITE(DSPSURF(plane), Start);
2163 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2164 I915_WRITE(DSPADDR(plane), Offset);
2165 POSTING_READ(reg);
2166
2167 return 0;
2168}
2169
2170/* Assume fb object is pinned & idle & fenced and just update base pointers */
2171static int
2172intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2173 int x, int y, enum mode_set_atomic state)
2174{
2175 struct drm_device *dev = crtc->dev;
2176 struct drm_i915_private *dev_priv = dev->dev_private;
2177 int ret;
2178
2179 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2180 if (ret)
2181 return ret;
2182
bed4a673 2183 intel_update_fbc(dev);
3dec0095 2184 intel_increase_pllclock(crtc);
81255565
JB
2185
2186 return 0;
2187}
2188
5c3b82e2 2189static int
3c4fdcfb
KH
2190intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2191 struct drm_framebuffer *old_fb)
79e53945
JB
2192{
2193 struct drm_device *dev = crtc->dev;
79e53945
JB
2194 struct drm_i915_master_private *master_priv;
2195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5c3b82e2 2196 int ret;
79e53945
JB
2197
2198 /* no fb bound */
2199 if (!crtc->fb) {
a5071c2f 2200 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2201 return 0;
2202 }
2203
265db958 2204 switch (intel_crtc->plane) {
5c3b82e2
CW
2205 case 0:
2206 case 1:
2207 break;
27f8227b
JB
2208 case 2:
2209 if (IS_IVYBRIDGE(dev))
2210 break;
2211 /* fall through otherwise */
5c3b82e2 2212 default:
a5071c2f 2213 DRM_ERROR("no plane for crtc\n");
5c3b82e2 2214 return -EINVAL;
79e53945
JB
2215 }
2216
5c3b82e2 2217 mutex_lock(&dev->struct_mutex);
265db958
CW
2218 ret = intel_pin_and_fence_fb_obj(dev,
2219 to_intel_framebuffer(crtc->fb)->obj,
919926ae 2220 NULL);
5c3b82e2
CW
2221 if (ret != 0) {
2222 mutex_unlock(&dev->struct_mutex);
a5071c2f 2223 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2224 return ret;
2225 }
79e53945 2226
265db958 2227 if (old_fb) {
e6c3a2a6 2228 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2229 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
265db958 2230
e6c3a2a6 2231 wait_event(dev_priv->pending_flip_queue,
01eec727 2232 atomic_read(&dev_priv->mm.wedged) ||
05394f39 2233 atomic_read(&obj->pending_flip) == 0);
85345517
CW
2234
2235 /* Big Hammer, we also need to ensure that any pending
2236 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2237 * current scanout is retired before unpinning the old
2238 * framebuffer.
01eec727
CW
2239 *
2240 * This should only fail upon a hung GPU, in which case we
2241 * can safely continue.
85345517 2242 */
a8198eea 2243 ret = i915_gem_object_finish_gpu(obj);
01eec727 2244 (void) ret;
265db958
CW
2245 }
2246
21c74a8e
JW
2247 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2248 LEAVE_ATOMIC_MODE_SET);
4e6cfefc 2249 if (ret) {
265db958 2250 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
5c3b82e2 2251 mutex_unlock(&dev->struct_mutex);
a5071c2f 2252 DRM_ERROR("failed to update base address\n");
4e6cfefc 2253 return ret;
79e53945 2254 }
3c4fdcfb 2255
b7f1de28
CW
2256 if (old_fb) {
2257 intel_wait_for_vblank(dev, intel_crtc->pipe);
265db958 2258 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2259 }
652c393a 2260
5c3b82e2 2261 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2262
2263 if (!dev->primary->master)
5c3b82e2 2264 return 0;
79e53945
JB
2265
2266 master_priv = dev->primary->master->driver_priv;
2267 if (!master_priv->sarea_priv)
5c3b82e2 2268 return 0;
79e53945 2269
265db958 2270 if (intel_crtc->pipe) {
79e53945
JB
2271 master_priv->sarea_priv->pipeB_x = x;
2272 master_priv->sarea_priv->pipeB_y = y;
5c3b82e2
CW
2273 } else {
2274 master_priv->sarea_priv->pipeA_x = x;
2275 master_priv->sarea_priv->pipeA_y = y;
79e53945 2276 }
5c3b82e2
CW
2277
2278 return 0;
79e53945
JB
2279}
2280
5eddb70b 2281static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2282{
2283 struct drm_device *dev = crtc->dev;
2284 struct drm_i915_private *dev_priv = dev->dev_private;
2285 u32 dpa_ctl;
2286
28c97730 2287 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2288 dpa_ctl = I915_READ(DP_A);
2289 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2290
2291 if (clock < 200000) {
2292 u32 temp;
2293 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2294 /* workaround for 160Mhz:
2295 1) program 0x4600c bits 15:0 = 0x8124
2296 2) program 0x46010 bit 0 = 1
2297 3) program 0x46034 bit 24 = 1
2298 4) program 0x64000 bit 14 = 1
2299 */
2300 temp = I915_READ(0x4600c);
2301 temp &= 0xffff0000;
2302 I915_WRITE(0x4600c, temp | 0x8124);
2303
2304 temp = I915_READ(0x46010);
2305 I915_WRITE(0x46010, temp | 1);
2306
2307 temp = I915_READ(0x46034);
2308 I915_WRITE(0x46034, temp | (1 << 24));
2309 } else {
2310 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2311 }
2312 I915_WRITE(DP_A, dpa_ctl);
2313
5eddb70b 2314 POSTING_READ(DP_A);
32f9d658
ZW
2315 udelay(500);
2316}
2317
5e84e1a4
ZW
2318static void intel_fdi_normal_train(struct drm_crtc *crtc)
2319{
2320 struct drm_device *dev = crtc->dev;
2321 struct drm_i915_private *dev_priv = dev->dev_private;
2322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323 int pipe = intel_crtc->pipe;
2324 u32 reg, temp;
2325
2326 /* enable normal train */
2327 reg = FDI_TX_CTL(pipe);
2328 temp = I915_READ(reg);
61e499bf 2329 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2330 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2331 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2332 } else {
2333 temp &= ~FDI_LINK_TRAIN_NONE;
2334 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2335 }
5e84e1a4
ZW
2336 I915_WRITE(reg, temp);
2337
2338 reg = FDI_RX_CTL(pipe);
2339 temp = I915_READ(reg);
2340 if (HAS_PCH_CPT(dev)) {
2341 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2342 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2343 } else {
2344 temp &= ~FDI_LINK_TRAIN_NONE;
2345 temp |= FDI_LINK_TRAIN_NONE;
2346 }
2347 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2348
2349 /* wait one idle pattern time */
2350 POSTING_READ(reg);
2351 udelay(1000);
357555c0
JB
2352
2353 /* IVB wants error correction enabled */
2354 if (IS_IVYBRIDGE(dev))
2355 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2356 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2357}
2358
291427f5
JB
2359static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2360{
2361 struct drm_i915_private *dev_priv = dev->dev_private;
2362 u32 flags = I915_READ(SOUTH_CHICKEN1);
2363
2364 flags |= FDI_PHASE_SYNC_OVR(pipe);
2365 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2366 flags |= FDI_PHASE_SYNC_EN(pipe);
2367 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2368 POSTING_READ(SOUTH_CHICKEN1);
2369}
2370
8db9d77b
ZW
2371/* The FDI link training functions for ILK/Ibexpeak. */
2372static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2373{
2374 struct drm_device *dev = crtc->dev;
2375 struct drm_i915_private *dev_priv = dev->dev_private;
2376 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2377 int pipe = intel_crtc->pipe;
0fc932b8 2378 int plane = intel_crtc->plane;
5eddb70b 2379 u32 reg, temp, tries;
8db9d77b 2380
0fc932b8
JB
2381 /* FDI needs bits from pipe & plane first */
2382 assert_pipe_enabled(dev_priv, pipe);
2383 assert_plane_enabled(dev_priv, plane);
2384
e1a44743
AJ
2385 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2386 for train result */
5eddb70b
CW
2387 reg = FDI_RX_IMR(pipe);
2388 temp = I915_READ(reg);
e1a44743
AJ
2389 temp &= ~FDI_RX_SYMBOL_LOCK;
2390 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2391 I915_WRITE(reg, temp);
2392 I915_READ(reg);
e1a44743
AJ
2393 udelay(150);
2394
8db9d77b 2395 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2396 reg = FDI_TX_CTL(pipe);
2397 temp = I915_READ(reg);
77ffb597
AJ
2398 temp &= ~(7 << 19);
2399 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2400 temp &= ~FDI_LINK_TRAIN_NONE;
2401 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2402 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2403
5eddb70b
CW
2404 reg = FDI_RX_CTL(pipe);
2405 temp = I915_READ(reg);
8db9d77b
ZW
2406 temp &= ~FDI_LINK_TRAIN_NONE;
2407 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2408 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2409
2410 POSTING_READ(reg);
8db9d77b
ZW
2411 udelay(150);
2412
5b2adf89 2413 /* Ironlake workaround, enable clock pointer after FDI enable*/
6f06ce18
JB
2414 if (HAS_PCH_IBX(dev)) {
2415 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2416 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2417 FDI_RX_PHASE_SYNC_POINTER_EN);
2418 }
5b2adf89 2419
5eddb70b 2420 reg = FDI_RX_IIR(pipe);
e1a44743 2421 for (tries = 0; tries < 5; tries++) {
5eddb70b 2422 temp = I915_READ(reg);
8db9d77b
ZW
2423 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2424
2425 if ((temp & FDI_RX_BIT_LOCK)) {
2426 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2427 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2428 break;
2429 }
8db9d77b 2430 }
e1a44743 2431 if (tries == 5)
5eddb70b 2432 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2433
2434 /* Train 2 */
5eddb70b
CW
2435 reg = FDI_TX_CTL(pipe);
2436 temp = I915_READ(reg);
8db9d77b
ZW
2437 temp &= ~FDI_LINK_TRAIN_NONE;
2438 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2439 I915_WRITE(reg, temp);
8db9d77b 2440
5eddb70b
CW
2441 reg = FDI_RX_CTL(pipe);
2442 temp = I915_READ(reg);
8db9d77b
ZW
2443 temp &= ~FDI_LINK_TRAIN_NONE;
2444 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2445 I915_WRITE(reg, temp);
8db9d77b 2446
5eddb70b
CW
2447 POSTING_READ(reg);
2448 udelay(150);
8db9d77b 2449
5eddb70b 2450 reg = FDI_RX_IIR(pipe);
e1a44743 2451 for (tries = 0; tries < 5; tries++) {
5eddb70b 2452 temp = I915_READ(reg);
8db9d77b
ZW
2453 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2454
2455 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2456 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2457 DRM_DEBUG_KMS("FDI train 2 done.\n");
2458 break;
2459 }
8db9d77b 2460 }
e1a44743 2461 if (tries == 5)
5eddb70b 2462 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2463
2464 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2465
8db9d77b
ZW
2466}
2467
0206e353 2468static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2469 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2470 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2471 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2472 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2473};
2474
2475/* The FDI link training functions for SNB/Cougarpoint. */
2476static void gen6_fdi_link_train(struct drm_crtc *crtc)
2477{
2478 struct drm_device *dev = crtc->dev;
2479 struct drm_i915_private *dev_priv = dev->dev_private;
2480 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2481 int pipe = intel_crtc->pipe;
5eddb70b 2482 u32 reg, temp, i;
8db9d77b 2483
e1a44743
AJ
2484 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2485 for train result */
5eddb70b
CW
2486 reg = FDI_RX_IMR(pipe);
2487 temp = I915_READ(reg);
e1a44743
AJ
2488 temp &= ~FDI_RX_SYMBOL_LOCK;
2489 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2490 I915_WRITE(reg, temp);
2491
2492 POSTING_READ(reg);
e1a44743
AJ
2493 udelay(150);
2494
8db9d77b 2495 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2496 reg = FDI_TX_CTL(pipe);
2497 temp = I915_READ(reg);
77ffb597
AJ
2498 temp &= ~(7 << 19);
2499 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2500 temp &= ~FDI_LINK_TRAIN_NONE;
2501 temp |= FDI_LINK_TRAIN_PATTERN_1;
2502 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2503 /* SNB-B */
2504 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2505 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2506
5eddb70b
CW
2507 reg = FDI_RX_CTL(pipe);
2508 temp = I915_READ(reg);
8db9d77b
ZW
2509 if (HAS_PCH_CPT(dev)) {
2510 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2511 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2512 } else {
2513 temp &= ~FDI_LINK_TRAIN_NONE;
2514 temp |= FDI_LINK_TRAIN_PATTERN_1;
2515 }
5eddb70b
CW
2516 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2517
2518 POSTING_READ(reg);
8db9d77b
ZW
2519 udelay(150);
2520
291427f5
JB
2521 if (HAS_PCH_CPT(dev))
2522 cpt_phase_pointer_enable(dev, pipe);
2523
0206e353 2524 for (i = 0; i < 4; i++) {
5eddb70b
CW
2525 reg = FDI_TX_CTL(pipe);
2526 temp = I915_READ(reg);
8db9d77b
ZW
2527 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2528 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2529 I915_WRITE(reg, temp);
2530
2531 POSTING_READ(reg);
8db9d77b
ZW
2532 udelay(500);
2533
5eddb70b
CW
2534 reg = FDI_RX_IIR(pipe);
2535 temp = I915_READ(reg);
8db9d77b
ZW
2536 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537
2538 if (temp & FDI_RX_BIT_LOCK) {
5eddb70b 2539 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2540 DRM_DEBUG_KMS("FDI train 1 done.\n");
2541 break;
2542 }
2543 }
2544 if (i == 4)
5eddb70b 2545 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2546
2547 /* Train 2 */
5eddb70b
CW
2548 reg = FDI_TX_CTL(pipe);
2549 temp = I915_READ(reg);
8db9d77b
ZW
2550 temp &= ~FDI_LINK_TRAIN_NONE;
2551 temp |= FDI_LINK_TRAIN_PATTERN_2;
2552 if (IS_GEN6(dev)) {
2553 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2554 /* SNB-B */
2555 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2556 }
5eddb70b 2557 I915_WRITE(reg, temp);
8db9d77b 2558
5eddb70b
CW
2559 reg = FDI_RX_CTL(pipe);
2560 temp = I915_READ(reg);
8db9d77b
ZW
2561 if (HAS_PCH_CPT(dev)) {
2562 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2563 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2564 } else {
2565 temp &= ~FDI_LINK_TRAIN_NONE;
2566 temp |= FDI_LINK_TRAIN_PATTERN_2;
2567 }
5eddb70b
CW
2568 I915_WRITE(reg, temp);
2569
2570 POSTING_READ(reg);
8db9d77b
ZW
2571 udelay(150);
2572
0206e353 2573 for (i = 0; i < 4; i++) {
5eddb70b
CW
2574 reg = FDI_TX_CTL(pipe);
2575 temp = I915_READ(reg);
8db9d77b
ZW
2576 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2577 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2578 I915_WRITE(reg, temp);
2579
2580 POSTING_READ(reg);
8db9d77b
ZW
2581 udelay(500);
2582
5eddb70b
CW
2583 reg = FDI_RX_IIR(pipe);
2584 temp = I915_READ(reg);
8db9d77b
ZW
2585 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2586
2587 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2588 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2589 DRM_DEBUG_KMS("FDI train 2 done.\n");
2590 break;
2591 }
2592 }
2593 if (i == 4)
5eddb70b 2594 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2595
2596 DRM_DEBUG_KMS("FDI train done.\n");
2597}
2598
357555c0
JB
2599/* Manual link training for Ivy Bridge A0 parts */
2600static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2601{
2602 struct drm_device *dev = crtc->dev;
2603 struct drm_i915_private *dev_priv = dev->dev_private;
2604 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2605 int pipe = intel_crtc->pipe;
2606 u32 reg, temp, i;
2607
2608 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2609 for train result */
2610 reg = FDI_RX_IMR(pipe);
2611 temp = I915_READ(reg);
2612 temp &= ~FDI_RX_SYMBOL_LOCK;
2613 temp &= ~FDI_RX_BIT_LOCK;
2614 I915_WRITE(reg, temp);
2615
2616 POSTING_READ(reg);
2617 udelay(150);
2618
2619 /* enable CPU FDI TX and PCH FDI RX */
2620 reg = FDI_TX_CTL(pipe);
2621 temp = I915_READ(reg);
2622 temp &= ~(7 << 19);
2623 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2624 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2625 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2626 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2627 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
c4f9c4c2 2628 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2629 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2630
2631 reg = FDI_RX_CTL(pipe);
2632 temp = I915_READ(reg);
2633 temp &= ~FDI_LINK_TRAIN_AUTO;
2634 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
c4f9c4c2 2636 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2637 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2638
2639 POSTING_READ(reg);
2640 udelay(150);
2641
291427f5
JB
2642 if (HAS_PCH_CPT(dev))
2643 cpt_phase_pointer_enable(dev, pipe);
2644
0206e353 2645 for (i = 0; i < 4; i++) {
357555c0
JB
2646 reg = FDI_TX_CTL(pipe);
2647 temp = I915_READ(reg);
2648 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2649 temp |= snb_b_fdi_train_param[i];
2650 I915_WRITE(reg, temp);
2651
2652 POSTING_READ(reg);
2653 udelay(500);
2654
2655 reg = FDI_RX_IIR(pipe);
2656 temp = I915_READ(reg);
2657 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2658
2659 if (temp & FDI_RX_BIT_LOCK ||
2660 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2661 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2662 DRM_DEBUG_KMS("FDI train 1 done.\n");
2663 break;
2664 }
2665 }
2666 if (i == 4)
2667 DRM_ERROR("FDI train 1 fail!\n");
2668
2669 /* Train 2 */
2670 reg = FDI_TX_CTL(pipe);
2671 temp = I915_READ(reg);
2672 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2673 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2674 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2675 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2676 I915_WRITE(reg, temp);
2677
2678 reg = FDI_RX_CTL(pipe);
2679 temp = I915_READ(reg);
2680 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2681 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2682 I915_WRITE(reg, temp);
2683
2684 POSTING_READ(reg);
2685 udelay(150);
2686
0206e353 2687 for (i = 0; i < 4; i++) {
357555c0
JB
2688 reg = FDI_TX_CTL(pipe);
2689 temp = I915_READ(reg);
2690 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2691 temp |= snb_b_fdi_train_param[i];
2692 I915_WRITE(reg, temp);
2693
2694 POSTING_READ(reg);
2695 udelay(500);
2696
2697 reg = FDI_RX_IIR(pipe);
2698 temp = I915_READ(reg);
2699 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2700
2701 if (temp & FDI_RX_SYMBOL_LOCK) {
2702 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2703 DRM_DEBUG_KMS("FDI train 2 done.\n");
2704 break;
2705 }
2706 }
2707 if (i == 4)
2708 DRM_ERROR("FDI train 2 fail!\n");
2709
2710 DRM_DEBUG_KMS("FDI train done.\n");
2711}
2712
2713static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2c07245f
ZW
2714{
2715 struct drm_device *dev = crtc->dev;
2716 struct drm_i915_private *dev_priv = dev->dev_private;
2717 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2718 int pipe = intel_crtc->pipe;
5eddb70b 2719 u32 reg, temp;
79e53945 2720
c64e311e 2721 /* Write the TU size bits so error detection works */
5eddb70b
CW
2722 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2723 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
c64e311e 2724
c98e9dcf 2725 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2726 reg = FDI_RX_CTL(pipe);
2727 temp = I915_READ(reg);
2728 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2729 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2730 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2731 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2732
2733 POSTING_READ(reg);
c98e9dcf
JB
2734 udelay(200);
2735
2736 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2737 temp = I915_READ(reg);
2738 I915_WRITE(reg, temp | FDI_PCDCLK);
2739
2740 POSTING_READ(reg);
c98e9dcf
JB
2741 udelay(200);
2742
2743 /* Enable CPU FDI TX PLL, always on for Ironlake */
5eddb70b
CW
2744 reg = FDI_TX_CTL(pipe);
2745 temp = I915_READ(reg);
c98e9dcf 2746 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5eddb70b
CW
2747 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2748
2749 POSTING_READ(reg);
c98e9dcf 2750 udelay(100);
6be4a607 2751 }
0e23b99d
JB
2752}
2753
291427f5
JB
2754static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2755{
2756 struct drm_i915_private *dev_priv = dev->dev_private;
2757 u32 flags = I915_READ(SOUTH_CHICKEN1);
2758
2759 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2760 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2761 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2762 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2763 POSTING_READ(SOUTH_CHICKEN1);
2764}
0fc932b8
JB
2765static void ironlake_fdi_disable(struct drm_crtc *crtc)
2766{
2767 struct drm_device *dev = crtc->dev;
2768 struct drm_i915_private *dev_priv = dev->dev_private;
2769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2770 int pipe = intel_crtc->pipe;
2771 u32 reg, temp;
2772
2773 /* disable CPU FDI tx and PCH FDI rx */
2774 reg = FDI_TX_CTL(pipe);
2775 temp = I915_READ(reg);
2776 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2777 POSTING_READ(reg);
2778
2779 reg = FDI_RX_CTL(pipe);
2780 temp = I915_READ(reg);
2781 temp &= ~(0x7 << 16);
2782 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2783 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2784
2785 POSTING_READ(reg);
2786 udelay(100);
2787
2788 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2789 if (HAS_PCH_IBX(dev)) {
2790 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
2791 I915_WRITE(FDI_RX_CHICKEN(pipe),
2792 I915_READ(FDI_RX_CHICKEN(pipe) &
6f06ce18 2793 ~FDI_RX_PHASE_SYNC_POINTER_EN));
291427f5
JB
2794 } else if (HAS_PCH_CPT(dev)) {
2795 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2796 }
0fc932b8
JB
2797
2798 /* still set train pattern 1 */
2799 reg = FDI_TX_CTL(pipe);
2800 temp = I915_READ(reg);
2801 temp &= ~FDI_LINK_TRAIN_NONE;
2802 temp |= FDI_LINK_TRAIN_PATTERN_1;
2803 I915_WRITE(reg, temp);
2804
2805 reg = FDI_RX_CTL(pipe);
2806 temp = I915_READ(reg);
2807 if (HAS_PCH_CPT(dev)) {
2808 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2809 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2810 } else {
2811 temp &= ~FDI_LINK_TRAIN_NONE;
2812 temp |= FDI_LINK_TRAIN_PATTERN_1;
2813 }
2814 /* BPC in FDI rx is consistent with that in PIPECONF */
2815 temp &= ~(0x07 << 16);
2816 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2817 I915_WRITE(reg, temp);
2818
2819 POSTING_READ(reg);
2820 udelay(100);
2821}
2822
6b383a7f
CW
2823/*
2824 * When we disable a pipe, we need to clear any pending scanline wait events
2825 * to avoid hanging the ring, which we assume we are waiting on.
2826 */
2827static void intel_clear_scanline_wait(struct drm_device *dev)
2828{
2829 struct drm_i915_private *dev_priv = dev->dev_private;
8168bd48 2830 struct intel_ring_buffer *ring;
6b383a7f
CW
2831 u32 tmp;
2832
2833 if (IS_GEN2(dev))
2834 /* Can't break the hang on i8xx */
2835 return;
2836
1ec14ad3 2837 ring = LP_RING(dev_priv);
8168bd48
CW
2838 tmp = I915_READ_CTL(ring);
2839 if (tmp & RING_WAIT)
2840 I915_WRITE_CTL(ring, tmp);
6b383a7f
CW
2841}
2842
e6c3a2a6
CW
2843static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2844{
05394f39 2845 struct drm_i915_gem_object *obj;
e6c3a2a6
CW
2846 struct drm_i915_private *dev_priv;
2847
2848 if (crtc->fb == NULL)
2849 return;
2850
05394f39 2851 obj = to_intel_framebuffer(crtc->fb)->obj;
e6c3a2a6
CW
2852 dev_priv = crtc->dev->dev_private;
2853 wait_event(dev_priv->pending_flip_queue,
05394f39 2854 atomic_read(&obj->pending_flip) == 0);
e6c3a2a6
CW
2855}
2856
040484af
JB
2857static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2858{
2859 struct drm_device *dev = crtc->dev;
2860 struct drm_mode_config *mode_config = &dev->mode_config;
2861 struct intel_encoder *encoder;
2862
2863 /*
2864 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2865 * must be driven by its own crtc; no sharing is possible.
2866 */
2867 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2868 if (encoder->base.crtc != crtc)
2869 continue;
2870
2871 switch (encoder->type) {
2872 case INTEL_OUTPUT_EDP:
2873 if (!intel_encoder_is_pch_edp(&encoder->base))
2874 return false;
2875 continue;
2876 }
2877 }
2878
2879 return true;
2880}
2881
f67a559d
JB
2882/*
2883 * Enable PCH resources required for PCH ports:
2884 * - PCH PLLs
2885 * - FDI training & RX/TX
2886 * - update transcoder timings
2887 * - DP transcoding bits
2888 * - transcoder
2889 */
2890static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
2891{
2892 struct drm_device *dev = crtc->dev;
2893 struct drm_i915_private *dev_priv = dev->dev_private;
2894 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2895 int pipe = intel_crtc->pipe;
4b645f14 2896 u32 reg, temp, transc_sel;
2c07245f 2897
c98e9dcf 2898 /* For PCH output, training FDI link */
674cf967 2899 dev_priv->display.fdi_link_train(crtc);
2c07245f 2900
92f2584a 2901 intel_enable_pch_pll(dev_priv, pipe);
8db9d77b 2902
c98e9dcf 2903 if (HAS_PCH_CPT(dev)) {
4b645f14
JB
2904 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2905 TRANSC_DPLLB_SEL;
2906
c98e9dcf
JB
2907 /* Be sure PCH DPLL SEL is set */
2908 temp = I915_READ(PCH_DPLL_SEL);
d64311ab
JB
2909 if (pipe == 0) {
2910 temp &= ~(TRANSA_DPLLB_SEL);
c98e9dcf 2911 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
d64311ab
JB
2912 } else if (pipe == 1) {
2913 temp &= ~(TRANSB_DPLLB_SEL);
c98e9dcf 2914 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
d64311ab
JB
2915 } else if (pipe == 2) {
2916 temp &= ~(TRANSC_DPLLB_SEL);
4b645f14 2917 temp |= (TRANSC_DPLL_ENABLE | transc_sel);
d64311ab 2918 }
c98e9dcf 2919 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 2920 }
5eddb70b 2921
d9b6cb56
JB
2922 /* set transcoder timing, panel must allow it */
2923 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
2924 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2925 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2926 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 2927
5eddb70b
CW
2928 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2929 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2930 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
8db9d77b 2931
5e84e1a4
ZW
2932 intel_fdi_normal_train(crtc);
2933
c98e9dcf
JB
2934 /* For PCH DP, enable TRANS_DP_CTL */
2935 if (HAS_PCH_CPT(dev) &&
2936 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
9325c9f0 2937 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
2938 reg = TRANS_DP_CTL(pipe);
2939 temp = I915_READ(reg);
2940 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
2941 TRANS_DP_SYNC_MASK |
2942 TRANS_DP_BPC_MASK);
5eddb70b
CW
2943 temp |= (TRANS_DP_OUTPUT_ENABLE |
2944 TRANS_DP_ENH_FRAMING);
9325c9f0 2945 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
2946
2947 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 2948 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 2949 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 2950 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
2951
2952 switch (intel_trans_dp_port_sel(crtc)) {
2953 case PCH_DP_B:
5eddb70b 2954 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
2955 break;
2956 case PCH_DP_C:
5eddb70b 2957 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
2958 break;
2959 case PCH_DP_D:
5eddb70b 2960 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
2961 break;
2962 default:
2963 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
5eddb70b 2964 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 2965 break;
32f9d658 2966 }
2c07245f 2967
5eddb70b 2968 I915_WRITE(reg, temp);
6be4a607 2969 }
b52eb4dc 2970
040484af 2971 intel_enable_transcoder(dev_priv, pipe);
f67a559d
JB
2972}
2973
2974static void ironlake_crtc_enable(struct drm_crtc *crtc)
2975{
2976 struct drm_device *dev = crtc->dev;
2977 struct drm_i915_private *dev_priv = dev->dev_private;
2978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2979 int pipe = intel_crtc->pipe;
2980 int plane = intel_crtc->plane;
2981 u32 temp;
2982 bool is_pch_port;
2983
2984 if (intel_crtc->active)
2985 return;
2986
2987 intel_crtc->active = true;
2988 intel_update_watermarks(dev);
2989
2990 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2991 temp = I915_READ(PCH_LVDS);
2992 if ((temp & LVDS_PORT_EN) == 0)
2993 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2994 }
2995
2996 is_pch_port = intel_crtc_driving_pch(crtc);
2997
2998 if (is_pch_port)
357555c0 2999 ironlake_fdi_pll_enable(crtc);
f67a559d
JB
3000 else
3001 ironlake_fdi_disable(crtc);
3002
3003 /* Enable panel fitting for LVDS */
3004 if (dev_priv->pch_pf_size &&
3005 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3006 /* Force use of hard-coded filter coefficients
3007 * as some pre-programmed values are broken,
3008 * e.g. x201.
3009 */
9db4a9c7
JB
3010 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3011 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3012 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
3013 }
3014
9c54c0dd
JB
3015 /*
3016 * On ILK+ LUT must be loaded before the pipe is running but with
3017 * clocks enabled
3018 */
3019 intel_crtc_load_lut(crtc);
3020
f67a559d
JB
3021 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3022 intel_enable_plane(dev_priv, plane, pipe);
3023
3024 if (is_pch_port)
3025 ironlake_pch_enable(crtc);
c98e9dcf 3026
d1ebd816 3027 mutex_lock(&dev->struct_mutex);
bed4a673 3028 intel_update_fbc(dev);
d1ebd816
BW
3029 mutex_unlock(&dev->struct_mutex);
3030
6b383a7f 3031 intel_crtc_update_cursor(crtc, true);
6be4a607
JB
3032}
3033
3034static void ironlake_crtc_disable(struct drm_crtc *crtc)
3035{
3036 struct drm_device *dev = crtc->dev;
3037 struct drm_i915_private *dev_priv = dev->dev_private;
3038 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3039 int pipe = intel_crtc->pipe;
3040 int plane = intel_crtc->plane;
5eddb70b 3041 u32 reg, temp;
b52eb4dc 3042
f7abfe8b
CW
3043 if (!intel_crtc->active)
3044 return;
3045
e6c3a2a6 3046 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 3047 drm_vblank_off(dev, pipe);
6b383a7f 3048 intel_crtc_update_cursor(crtc, false);
5eddb70b 3049
b24e7179 3050 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 3051
973d04f9
CW
3052 if (dev_priv->cfb_plane == plane)
3053 intel_disable_fbc(dev);
2c07245f 3054
b24e7179 3055 intel_disable_pipe(dev_priv, pipe);
32f9d658 3056
6be4a607 3057 /* Disable PF */
9db4a9c7
JB
3058 I915_WRITE(PF_CTL(pipe), 0);
3059 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 3060
0fc932b8 3061 ironlake_fdi_disable(crtc);
2c07245f 3062
47a05eca
JB
3063 /* This is a horrible layering violation; we should be doing this in
3064 * the connector/encoder ->prepare instead, but we don't always have
3065 * enough information there about the config to know whether it will
3066 * actually be necessary or just cause undesired flicker.
3067 */
3068 intel_disable_pch_ports(dev_priv, pipe);
249c0e64 3069
040484af 3070 intel_disable_transcoder(dev_priv, pipe);
913d8d11 3071
6be4a607
JB
3072 if (HAS_PCH_CPT(dev)) {
3073 /* disable TRANS_DP_CTL */
5eddb70b
CW
3074 reg = TRANS_DP_CTL(pipe);
3075 temp = I915_READ(reg);
3076 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 3077 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 3078 I915_WRITE(reg, temp);
6be4a607
JB
3079
3080 /* disable DPLL_SEL */
3081 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
3082 switch (pipe) {
3083 case 0:
d64311ab 3084 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
9db4a9c7
JB
3085 break;
3086 case 1:
6be4a607 3087 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
3088 break;
3089 case 2:
4b645f14 3090 /* C shares PLL A or B */
d64311ab 3091 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
9db4a9c7
JB
3092 break;
3093 default:
3094 BUG(); /* wtf */
3095 }
6be4a607 3096 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3097 }
e3421a18 3098
6be4a607 3099 /* disable PCH DPLL */
4b645f14
JB
3100 if (!intel_crtc->no_pll)
3101 intel_disable_pch_pll(dev_priv, pipe);
8db9d77b 3102
6be4a607 3103 /* Switch from PCDclk to Rawclk */
5eddb70b
CW
3104 reg = FDI_RX_CTL(pipe);
3105 temp = I915_READ(reg);
3106 I915_WRITE(reg, temp & ~FDI_PCDCLK);
8db9d77b 3107
6be4a607 3108 /* Disable CPU FDI TX PLL */
5eddb70b
CW
3109 reg = FDI_TX_CTL(pipe);
3110 temp = I915_READ(reg);
3111 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3112
3113 POSTING_READ(reg);
6be4a607 3114 udelay(100);
8db9d77b 3115
5eddb70b
CW
3116 reg = FDI_RX_CTL(pipe);
3117 temp = I915_READ(reg);
3118 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2c07245f 3119
6be4a607 3120 /* Wait for the clocks to turn off. */
5eddb70b 3121 POSTING_READ(reg);
6be4a607 3122 udelay(100);
6b383a7f 3123
f7abfe8b 3124 intel_crtc->active = false;
6b383a7f 3125 intel_update_watermarks(dev);
d1ebd816
BW
3126
3127 mutex_lock(&dev->struct_mutex);
6b383a7f
CW
3128 intel_update_fbc(dev);
3129 intel_clear_scanline_wait(dev);
d1ebd816 3130 mutex_unlock(&dev->struct_mutex);
6be4a607 3131}
1b3c7a47 3132
6be4a607
JB
3133static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3134{
3135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3136 int pipe = intel_crtc->pipe;
3137 int plane = intel_crtc->plane;
8db9d77b 3138
6be4a607
JB
3139 /* XXX: When our outputs are all unaware of DPMS modes other than off
3140 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3141 */
3142 switch (mode) {
3143 case DRM_MODE_DPMS_ON:
3144 case DRM_MODE_DPMS_STANDBY:
3145 case DRM_MODE_DPMS_SUSPEND:
3146 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3147 ironlake_crtc_enable(crtc);
3148 break;
1b3c7a47 3149
6be4a607
JB
3150 case DRM_MODE_DPMS_OFF:
3151 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3152 ironlake_crtc_disable(crtc);
2c07245f
ZW
3153 break;
3154 }
3155}
3156
02e792fb
DV
3157static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3158{
02e792fb 3159 if (!enable && intel_crtc->overlay) {
23f09ce3 3160 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3161 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3162
23f09ce3 3163 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3164 dev_priv->mm.interruptible = false;
3165 (void) intel_overlay_switch_off(intel_crtc->overlay);
3166 dev_priv->mm.interruptible = true;
23f09ce3 3167 mutex_unlock(&dev->struct_mutex);
02e792fb 3168 }
02e792fb 3169
5dcdbcb0
CW
3170 /* Let userspace switch the overlay on again. In most cases userspace
3171 * has to recompute where to put it anyway.
3172 */
02e792fb
DV
3173}
3174
0b8765c6 3175static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3176{
3177 struct drm_device *dev = crtc->dev;
79e53945
JB
3178 struct drm_i915_private *dev_priv = dev->dev_private;
3179 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3180 int pipe = intel_crtc->pipe;
80824003 3181 int plane = intel_crtc->plane;
79e53945 3182
f7abfe8b
CW
3183 if (intel_crtc->active)
3184 return;
3185
3186 intel_crtc->active = true;
6b383a7f
CW
3187 intel_update_watermarks(dev);
3188
63d7bbe9 3189 intel_enable_pll(dev_priv, pipe);
040484af 3190 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3191 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3192
0b8765c6 3193 intel_crtc_load_lut(crtc);
bed4a673 3194 intel_update_fbc(dev);
79e53945 3195
0b8765c6
JB
3196 /* Give the overlay scaler a chance to enable if it's on this pipe */
3197 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3198 intel_crtc_update_cursor(crtc, true);
0b8765c6 3199}
79e53945 3200
0b8765c6
JB
3201static void i9xx_crtc_disable(struct drm_crtc *crtc)
3202{
3203 struct drm_device *dev = crtc->dev;
3204 struct drm_i915_private *dev_priv = dev->dev_private;
3205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3206 int pipe = intel_crtc->pipe;
3207 int plane = intel_crtc->plane;
b690e96c 3208
f7abfe8b
CW
3209 if (!intel_crtc->active)
3210 return;
3211
0b8765c6 3212 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3213 intel_crtc_wait_for_pending_flips(crtc);
3214 drm_vblank_off(dev, pipe);
0b8765c6 3215 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3216 intel_crtc_update_cursor(crtc, false);
0b8765c6 3217
973d04f9
CW
3218 if (dev_priv->cfb_plane == plane)
3219 intel_disable_fbc(dev);
79e53945 3220
b24e7179 3221 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3222 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3223 intel_disable_pll(dev_priv, pipe);
0b8765c6 3224
f7abfe8b 3225 intel_crtc->active = false;
6b383a7f
CW
3226 intel_update_fbc(dev);
3227 intel_update_watermarks(dev);
3228 intel_clear_scanline_wait(dev);
0b8765c6
JB
3229}
3230
3231static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3232{
3233 /* XXX: When our outputs are all unaware of DPMS modes other than off
3234 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3235 */
3236 switch (mode) {
3237 case DRM_MODE_DPMS_ON:
3238 case DRM_MODE_DPMS_STANDBY:
3239 case DRM_MODE_DPMS_SUSPEND:
3240 i9xx_crtc_enable(crtc);
3241 break;
3242 case DRM_MODE_DPMS_OFF:
3243 i9xx_crtc_disable(crtc);
79e53945
JB
3244 break;
3245 }
2c07245f
ZW
3246}
3247
3248/**
3249 * Sets the power management mode of the pipe and plane.
2c07245f
ZW
3250 */
3251static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3252{
3253 struct drm_device *dev = crtc->dev;
e70236a8 3254 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f
ZW
3255 struct drm_i915_master_private *master_priv;
3256 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3257 int pipe = intel_crtc->pipe;
3258 bool enabled;
3259
032d2a0d
CW
3260 if (intel_crtc->dpms_mode == mode)
3261 return;
3262
65655d4a 3263 intel_crtc->dpms_mode = mode;
debcaddc 3264
e70236a8 3265 dev_priv->display.dpms(crtc, mode);
79e53945
JB
3266
3267 if (!dev->primary->master)
3268 return;
3269
3270 master_priv = dev->primary->master->driver_priv;
3271 if (!master_priv->sarea_priv)
3272 return;
3273
3274 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3275
3276 switch (pipe) {
3277 case 0:
3278 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3279 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3280 break;
3281 case 1:
3282 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3283 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3284 break;
3285 default:
9db4a9c7 3286 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3287 break;
3288 }
79e53945
JB
3289}
3290
cdd59983
CW
3291static void intel_crtc_disable(struct drm_crtc *crtc)
3292{
3293 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3294 struct drm_device *dev = crtc->dev;
3295
3296 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3297
3298 if (crtc->fb) {
3299 mutex_lock(&dev->struct_mutex);
3300 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3301 mutex_unlock(&dev->struct_mutex);
3302 }
3303}
3304
7e7d76c3
JB
3305/* Prepare for a mode set.
3306 *
3307 * Note we could be a lot smarter here. We need to figure out which outputs
3308 * will be enabled, which disabled (in short, how the config will changes)
3309 * and perform the minimum necessary steps to accomplish that, e.g. updating
3310 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3311 * panel fitting is in the proper state, etc.
3312 */
3313static void i9xx_crtc_prepare(struct drm_crtc *crtc)
79e53945 3314{
7e7d76c3 3315 i9xx_crtc_disable(crtc);
79e53945
JB
3316}
3317
7e7d76c3 3318static void i9xx_crtc_commit(struct drm_crtc *crtc)
79e53945 3319{
7e7d76c3 3320 i9xx_crtc_enable(crtc);
7e7d76c3
JB
3321}
3322
3323static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3324{
7e7d76c3 3325 ironlake_crtc_disable(crtc);
7e7d76c3
JB
3326}
3327
3328static void ironlake_crtc_commit(struct drm_crtc *crtc)
3329{
7e7d76c3 3330 ironlake_crtc_enable(crtc);
79e53945
JB
3331}
3332
0206e353 3333void intel_encoder_prepare(struct drm_encoder *encoder)
79e53945
JB
3334{
3335 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3336 /* lvds has its own version of prepare see intel_lvds_prepare */
3337 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3338}
3339
0206e353 3340void intel_encoder_commit(struct drm_encoder *encoder)
79e53945
JB
3341{
3342 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3343 /* lvds has its own version of commit see intel_lvds_commit */
3344 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3345}
3346
ea5b213a
CW
3347void intel_encoder_destroy(struct drm_encoder *encoder)
3348{
4ef69c7a 3349 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3350
ea5b213a
CW
3351 drm_encoder_cleanup(encoder);
3352 kfree(intel_encoder);
3353}
3354
79e53945
JB
3355static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3356 struct drm_display_mode *mode,
3357 struct drm_display_mode *adjusted_mode)
3358{
2c07245f 3359 struct drm_device *dev = crtc->dev;
89749350 3360
bad720ff 3361 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3362 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3363 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3364 return false;
2c07245f 3365 }
89749350
CW
3366
3367 /* XXX some encoders set the crtcinfo, others don't.
3368 * Obviously we need some form of conflict resolution here...
3369 */
3370 if (adjusted_mode->crtc_htotal == 0)
3371 drm_mode_set_crtcinfo(adjusted_mode, 0);
3372
79e53945
JB
3373 return true;
3374}
3375
e70236a8
JB
3376static int i945_get_display_clock_speed(struct drm_device *dev)
3377{
3378 return 400000;
3379}
79e53945 3380
e70236a8 3381static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3382{
e70236a8
JB
3383 return 333000;
3384}
79e53945 3385
e70236a8
JB
3386static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3387{
3388 return 200000;
3389}
79e53945 3390
e70236a8
JB
3391static int i915gm_get_display_clock_speed(struct drm_device *dev)
3392{
3393 u16 gcfgc = 0;
79e53945 3394
e70236a8
JB
3395 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3396
3397 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3398 return 133000;
3399 else {
3400 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3401 case GC_DISPLAY_CLOCK_333_MHZ:
3402 return 333000;
3403 default:
3404 case GC_DISPLAY_CLOCK_190_200_MHZ:
3405 return 190000;
79e53945 3406 }
e70236a8
JB
3407 }
3408}
3409
3410static int i865_get_display_clock_speed(struct drm_device *dev)
3411{
3412 return 266000;
3413}
3414
3415static int i855_get_display_clock_speed(struct drm_device *dev)
3416{
3417 u16 hpllcc = 0;
3418 /* Assume that the hardware is in the high speed state. This
3419 * should be the default.
3420 */
3421 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3422 case GC_CLOCK_133_200:
3423 case GC_CLOCK_100_200:
3424 return 200000;
3425 case GC_CLOCK_166_250:
3426 return 250000;
3427 case GC_CLOCK_100_133:
79e53945 3428 return 133000;
e70236a8 3429 }
79e53945 3430
e70236a8
JB
3431 /* Shouldn't happen */
3432 return 0;
3433}
79e53945 3434
e70236a8
JB
3435static int i830_get_display_clock_speed(struct drm_device *dev)
3436{
3437 return 133000;
79e53945
JB
3438}
3439
2c07245f
ZW
3440struct fdi_m_n {
3441 u32 tu;
3442 u32 gmch_m;
3443 u32 gmch_n;
3444 u32 link_m;
3445 u32 link_n;
3446};
3447
3448static void
3449fdi_reduce_ratio(u32 *num, u32 *den)
3450{
3451 while (*num > 0xffffff || *den > 0xffffff) {
3452 *num >>= 1;
3453 *den >>= 1;
3454 }
3455}
3456
2c07245f 3457static void
f2b115e6
AJ
3458ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3459 int link_clock, struct fdi_m_n *m_n)
2c07245f 3460{
2c07245f
ZW
3461 m_n->tu = 64; /* default size */
3462
22ed1113
CW
3463 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3464 m_n->gmch_m = bits_per_pixel * pixel_clock;
3465 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
3466 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3467
22ed1113
CW
3468 m_n->link_m = pixel_clock;
3469 m_n->link_n = link_clock;
2c07245f
ZW
3470 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3471}
3472
3473
7662c8bd
SL
3474struct intel_watermark_params {
3475 unsigned long fifo_size;
3476 unsigned long max_wm;
3477 unsigned long default_wm;
3478 unsigned long guard_size;
3479 unsigned long cacheline_size;
3480};
3481
f2b115e6 3482/* Pineview has different values for various configs */
d210246a 3483static const struct intel_watermark_params pineview_display_wm = {
f2b115e6
AJ
3484 PINEVIEW_DISPLAY_FIFO,
3485 PINEVIEW_MAX_WM,
3486 PINEVIEW_DFT_WM,
3487 PINEVIEW_GUARD_WM,
3488 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3489};
d210246a 3490static const struct intel_watermark_params pineview_display_hplloff_wm = {
f2b115e6
AJ
3491 PINEVIEW_DISPLAY_FIFO,
3492 PINEVIEW_MAX_WM,
3493 PINEVIEW_DFT_HPLLOFF_WM,
3494 PINEVIEW_GUARD_WM,
3495 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3496};
d210246a 3497static const struct intel_watermark_params pineview_cursor_wm = {
f2b115e6
AJ
3498 PINEVIEW_CURSOR_FIFO,
3499 PINEVIEW_CURSOR_MAX_WM,
3500 PINEVIEW_CURSOR_DFT_WM,
3501 PINEVIEW_CURSOR_GUARD_WM,
3502 PINEVIEW_FIFO_LINE_SIZE,
7662c8bd 3503};
d210246a 3504static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
f2b115e6
AJ
3505 PINEVIEW_CURSOR_FIFO,
3506 PINEVIEW_CURSOR_MAX_WM,
3507 PINEVIEW_CURSOR_DFT_WM,
3508 PINEVIEW_CURSOR_GUARD_WM,
3509 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3510};
d210246a 3511static const struct intel_watermark_params g4x_wm_info = {
0e442c60
JB
3512 G4X_FIFO_SIZE,
3513 G4X_MAX_WM,
3514 G4X_MAX_WM,
3515 2,
3516 G4X_FIFO_LINE_SIZE,
3517};
d210246a 3518static const struct intel_watermark_params g4x_cursor_wm_info = {
4fe5e611
ZY
3519 I965_CURSOR_FIFO,
3520 I965_CURSOR_MAX_WM,
3521 I965_CURSOR_DFT_WM,
3522 2,
3523 G4X_FIFO_LINE_SIZE,
3524};
d210246a 3525static const struct intel_watermark_params i965_cursor_wm_info = {
4fe5e611
ZY
3526 I965_CURSOR_FIFO,
3527 I965_CURSOR_MAX_WM,
3528 I965_CURSOR_DFT_WM,
3529 2,
3530 I915_FIFO_LINE_SIZE,
3531};
d210246a 3532static const struct intel_watermark_params i945_wm_info = {
dff33cfc 3533 I945_FIFO_SIZE,
7662c8bd
SL
3534 I915_MAX_WM,
3535 1,
dff33cfc
JB
3536 2,
3537 I915_FIFO_LINE_SIZE
7662c8bd 3538};
d210246a 3539static const struct intel_watermark_params i915_wm_info = {
dff33cfc 3540 I915_FIFO_SIZE,
7662c8bd
SL
3541 I915_MAX_WM,
3542 1,
dff33cfc 3543 2,
7662c8bd
SL
3544 I915_FIFO_LINE_SIZE
3545};
d210246a 3546static const struct intel_watermark_params i855_wm_info = {
7662c8bd
SL
3547 I855GM_FIFO_SIZE,
3548 I915_MAX_WM,
3549 1,
dff33cfc 3550 2,
7662c8bd
SL
3551 I830_FIFO_LINE_SIZE
3552};
d210246a 3553static const struct intel_watermark_params i830_wm_info = {
7662c8bd
SL
3554 I830_FIFO_SIZE,
3555 I915_MAX_WM,
3556 1,
dff33cfc 3557 2,
7662c8bd
SL
3558 I830_FIFO_LINE_SIZE
3559};
3560
d210246a 3561static const struct intel_watermark_params ironlake_display_wm_info = {
7f8a8569
ZW
3562 ILK_DISPLAY_FIFO,
3563 ILK_DISPLAY_MAXWM,
3564 ILK_DISPLAY_DFTWM,
3565 2,
3566 ILK_FIFO_LINE_SIZE
3567};
d210246a 3568static const struct intel_watermark_params ironlake_cursor_wm_info = {
c936f44d
ZY
3569 ILK_CURSOR_FIFO,
3570 ILK_CURSOR_MAXWM,
3571 ILK_CURSOR_DFTWM,
3572 2,
3573 ILK_FIFO_LINE_SIZE
3574};
d210246a 3575static const struct intel_watermark_params ironlake_display_srwm_info = {
7f8a8569
ZW
3576 ILK_DISPLAY_SR_FIFO,
3577 ILK_DISPLAY_MAX_SRWM,
3578 ILK_DISPLAY_DFT_SRWM,
3579 2,
3580 ILK_FIFO_LINE_SIZE
3581};
d210246a 3582static const struct intel_watermark_params ironlake_cursor_srwm_info = {
7f8a8569
ZW
3583 ILK_CURSOR_SR_FIFO,
3584 ILK_CURSOR_MAX_SRWM,
3585 ILK_CURSOR_DFT_SRWM,
3586 2,
3587 ILK_FIFO_LINE_SIZE
3588};
3589
d210246a 3590static const struct intel_watermark_params sandybridge_display_wm_info = {
1398261a
YL
3591 SNB_DISPLAY_FIFO,
3592 SNB_DISPLAY_MAXWM,
3593 SNB_DISPLAY_DFTWM,
3594 2,
3595 SNB_FIFO_LINE_SIZE
3596};
d210246a 3597static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1398261a
YL
3598 SNB_CURSOR_FIFO,
3599 SNB_CURSOR_MAXWM,
3600 SNB_CURSOR_DFTWM,
3601 2,
3602 SNB_FIFO_LINE_SIZE
3603};
d210246a 3604static const struct intel_watermark_params sandybridge_display_srwm_info = {
1398261a
YL
3605 SNB_DISPLAY_SR_FIFO,
3606 SNB_DISPLAY_MAX_SRWM,
3607 SNB_DISPLAY_DFT_SRWM,
3608 2,
3609 SNB_FIFO_LINE_SIZE
3610};
d210246a 3611static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1398261a
YL
3612 SNB_CURSOR_SR_FIFO,
3613 SNB_CURSOR_MAX_SRWM,
3614 SNB_CURSOR_DFT_SRWM,
3615 2,
3616 SNB_FIFO_LINE_SIZE
3617};
3618
3619
dff33cfc
JB
3620/**
3621 * intel_calculate_wm - calculate watermark level
3622 * @clock_in_khz: pixel clock
3623 * @wm: chip FIFO params
3624 * @pixel_size: display pixel size
3625 * @latency_ns: memory latency for the platform
3626 *
3627 * Calculate the watermark level (the level at which the display plane will
3628 * start fetching from memory again). Each chip has a different display
3629 * FIFO size and allocation, so the caller needs to figure that out and pass
3630 * in the correct intel_watermark_params structure.
3631 *
3632 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3633 * on the pixel size. When it reaches the watermark level, it'll start
3634 * fetching FIFO line sized based chunks from memory until the FIFO fills
3635 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3636 * will occur, and a display engine hang could result.
3637 */
7662c8bd 3638static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
d210246a
CW
3639 const struct intel_watermark_params *wm,
3640 int fifo_size,
7662c8bd
SL
3641 int pixel_size,
3642 unsigned long latency_ns)
3643{
390c4dd4 3644 long entries_required, wm_size;
dff33cfc 3645
d660467c
JB
3646 /*
3647 * Note: we need to make sure we don't overflow for various clock &
3648 * latency values.
3649 * clocks go from a few thousand to several hundred thousand.
3650 * latency is usually a few thousand
3651 */
3652 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3653 1000;
8de9b311 3654 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
7662c8bd 3655
bbb0aef5 3656 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
dff33cfc 3657
d210246a 3658 wm_size = fifo_size - (entries_required + wm->guard_size);
dff33cfc 3659
bbb0aef5 3660 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
7662c8bd 3661
390c4dd4
JB
3662 /* Don't promote wm_size to unsigned... */
3663 if (wm_size > (long)wm->max_wm)
7662c8bd 3664 wm_size = wm->max_wm;
c3add4b6 3665 if (wm_size <= 0)
7662c8bd
SL
3666 wm_size = wm->default_wm;
3667 return wm_size;
3668}
3669
3670struct cxsr_latency {
3671 int is_desktop;
95534263 3672 int is_ddr3;
7662c8bd
SL
3673 unsigned long fsb_freq;
3674 unsigned long mem_freq;
3675 unsigned long display_sr;
3676 unsigned long display_hpll_disable;
3677 unsigned long cursor_sr;
3678 unsigned long cursor_hpll_disable;
3679};
3680
403c89ff 3681static const struct cxsr_latency cxsr_latency_table[] = {
95534263
LP
3682 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3683 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3684 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3685 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3686 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3687
3688 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3689 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3690 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3691 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3692 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3693
3694 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3695 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3696 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3697 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3698 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3699
3700 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3701 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3702 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3703 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3704 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3705
3706 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3707 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3708 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3709 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3710 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3711
3712 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3713 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3714 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3715 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3716 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
7662c8bd
SL
3717};
3718
403c89ff
CW
3719static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3720 int is_ddr3,
3721 int fsb,
3722 int mem)
7662c8bd 3723{
403c89ff 3724 const struct cxsr_latency *latency;
7662c8bd 3725 int i;
7662c8bd
SL
3726
3727 if (fsb == 0 || mem == 0)
3728 return NULL;
3729
3730 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3731 latency = &cxsr_latency_table[i];
3732 if (is_desktop == latency->is_desktop &&
95534263 3733 is_ddr3 == latency->is_ddr3 &&
decbbcda
JSR
3734 fsb == latency->fsb_freq && mem == latency->mem_freq)
3735 return latency;
7662c8bd 3736 }
decbbcda 3737
28c97730 3738 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
decbbcda
JSR
3739
3740 return NULL;
7662c8bd
SL
3741}
3742
f2b115e6 3743static void pineview_disable_cxsr(struct drm_device *dev)
7662c8bd
SL
3744{
3745 struct drm_i915_private *dev_priv = dev->dev_private;
7662c8bd
SL
3746
3747 /* deactivate cxsr */
3e33d94d 3748 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
7662c8bd
SL
3749}
3750
bcc24fb4
JB
3751/*
3752 * Latency for FIFO fetches is dependent on several factors:
3753 * - memory configuration (speed, channels)
3754 * - chipset
3755 * - current MCH state
3756 * It can be fairly high in some situations, so here we assume a fairly
3757 * pessimal value. It's a tradeoff between extra memory fetches (if we
3758 * set this value too high, the FIFO will fetch frequently to stay full)
3759 * and power consumption (set it too low to save power and we might see
3760 * FIFO underruns and display "flicker").
3761 *
3762 * A value of 5us seems to be a good balance; safe for very low end
3763 * platforms but not overly aggressive on lower latency configs.
3764 */
69e302a9 3765static const int latency_ns = 5000;
7662c8bd 3766
e70236a8 3767static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
dff33cfc
JB
3768{
3769 struct drm_i915_private *dev_priv = dev->dev_private;
3770 uint32_t dsparb = I915_READ(DSPARB);
3771 int size;
3772
8de9b311
CW
3773 size = dsparb & 0x7f;
3774 if (plane)
3775 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
dff33cfc 3776
28c97730 3777 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3778 plane ? "B" : "A", size);
dff33cfc
JB
3779
3780 return size;
3781}
7662c8bd 3782
e70236a8
JB
3783static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3784{
3785 struct drm_i915_private *dev_priv = dev->dev_private;
3786 uint32_t dsparb = I915_READ(DSPARB);
3787 int size;
3788
8de9b311
CW
3789 size = dsparb & 0x1ff;
3790 if (plane)
3791 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
e70236a8 3792 size >>= 1; /* Convert to cachelines */
dff33cfc 3793
28c97730 3794 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3795 plane ? "B" : "A", size);
dff33cfc
JB
3796
3797 return size;
3798}
7662c8bd 3799
e70236a8
JB
3800static int i845_get_fifo_size(struct drm_device *dev, int plane)
3801{
3802 struct drm_i915_private *dev_priv = dev->dev_private;
3803 uint32_t dsparb = I915_READ(DSPARB);
3804 int size;
3805
3806 size = dsparb & 0x7f;
3807 size >>= 2; /* Convert to cachelines */
3808
28c97730 3809 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b
CW
3810 plane ? "B" : "A",
3811 size);
e70236a8
JB
3812
3813 return size;
3814}
3815
3816static int i830_get_fifo_size(struct drm_device *dev, int plane)
3817{
3818 struct drm_i915_private *dev_priv = dev->dev_private;
3819 uint32_t dsparb = I915_READ(DSPARB);
3820 int size;
3821
3822 size = dsparb & 0x7f;
3823 size >>= 1; /* Convert to cachelines */
3824
28c97730 3825 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3826 plane ? "B" : "A", size);
e70236a8
JB
3827
3828 return size;
3829}
3830
d210246a
CW
3831static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3832{
3833 struct drm_crtc *crtc, *enabled = NULL;
3834
3835 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3836 if (crtc->enabled && crtc->fb) {
3837 if (enabled)
3838 return NULL;
3839 enabled = crtc;
3840 }
3841 }
3842
3843 return enabled;
3844}
3845
3846static void pineview_update_wm(struct drm_device *dev)
d4294342
ZY
3847{
3848 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a 3849 struct drm_crtc *crtc;
403c89ff 3850 const struct cxsr_latency *latency;
d4294342
ZY
3851 u32 reg;
3852 unsigned long wm;
d4294342 3853
403c89ff 3854 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
95534263 3855 dev_priv->fsb_freq, dev_priv->mem_freq);
d4294342
ZY
3856 if (!latency) {
3857 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3858 pineview_disable_cxsr(dev);
3859 return;
3860 }
3861
d210246a
CW
3862 crtc = single_enabled_crtc(dev);
3863 if (crtc) {
3864 int clock = crtc->mode.clock;
3865 int pixel_size = crtc->fb->bits_per_pixel / 8;
d4294342
ZY
3866
3867 /* Display SR */
d210246a
CW
3868 wm = intel_calculate_wm(clock, &pineview_display_wm,
3869 pineview_display_wm.fifo_size,
d4294342
ZY
3870 pixel_size, latency->display_sr);
3871 reg = I915_READ(DSPFW1);
3872 reg &= ~DSPFW_SR_MASK;
3873 reg |= wm << DSPFW_SR_SHIFT;
3874 I915_WRITE(DSPFW1, reg);
3875 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3876
3877 /* cursor SR */
d210246a
CW
3878 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3879 pineview_display_wm.fifo_size,
d4294342
ZY
3880 pixel_size, latency->cursor_sr);
3881 reg = I915_READ(DSPFW3);
3882 reg &= ~DSPFW_CURSOR_SR_MASK;
3883 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3884 I915_WRITE(DSPFW3, reg);
3885
3886 /* Display HPLL off SR */
d210246a
CW
3887 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3888 pineview_display_hplloff_wm.fifo_size,
d4294342
ZY
3889 pixel_size, latency->display_hpll_disable);
3890 reg = I915_READ(DSPFW3);
3891 reg &= ~DSPFW_HPLL_SR_MASK;
3892 reg |= wm & DSPFW_HPLL_SR_MASK;
3893 I915_WRITE(DSPFW3, reg);
3894
3895 /* cursor HPLL off SR */
d210246a
CW
3896 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3897 pineview_display_hplloff_wm.fifo_size,
d4294342
ZY
3898 pixel_size, latency->cursor_hpll_disable);
3899 reg = I915_READ(DSPFW3);
3900 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3901 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3902 I915_WRITE(DSPFW3, reg);
3903 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3904
3905 /* activate cxsr */
3e33d94d
CW
3906 I915_WRITE(DSPFW3,
3907 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
d4294342
ZY
3908 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3909 } else {
3910 pineview_disable_cxsr(dev);
3911 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3912 }
3913}
3914
417ae147
CW
3915static bool g4x_compute_wm0(struct drm_device *dev,
3916 int plane,
3917 const struct intel_watermark_params *display,
3918 int display_latency_ns,
3919 const struct intel_watermark_params *cursor,
3920 int cursor_latency_ns,
3921 int *plane_wm,
3922 int *cursor_wm)
3923{
3924 struct drm_crtc *crtc;
3925 int htotal, hdisplay, clock, pixel_size;
3926 int line_time_us, line_count;
3927 int entries, tlb_miss;
3928
3929 crtc = intel_get_crtc_for_plane(dev, plane);
5c72d064
CW
3930 if (crtc->fb == NULL || !crtc->enabled) {
3931 *cursor_wm = cursor->guard_size;
3932 *plane_wm = display->guard_size;
417ae147 3933 return false;
5c72d064 3934 }
417ae147
CW
3935
3936 htotal = crtc->mode.htotal;
3937 hdisplay = crtc->mode.hdisplay;
3938 clock = crtc->mode.clock;
3939 pixel_size = crtc->fb->bits_per_pixel / 8;
3940
3941 /* Use the small buffer method to calculate plane watermark */
3942 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3943 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3944 if (tlb_miss > 0)
3945 entries += tlb_miss;
3946 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3947 *plane_wm = entries + display->guard_size;
3948 if (*plane_wm > (int)display->max_wm)
3949 *plane_wm = display->max_wm;
3950
3951 /* Use the large buffer method to calculate cursor watermark */
3952 line_time_us = ((htotal * 1000) / clock);
3953 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3954 entries = line_count * 64 * pixel_size;
3955 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3956 if (tlb_miss > 0)
3957 entries += tlb_miss;
3958 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3959 *cursor_wm = entries + cursor->guard_size;
3960 if (*cursor_wm > (int)cursor->max_wm)
3961 *cursor_wm = (int)cursor->max_wm;
3962
3963 return true;
3964}
3965
3966/*
3967 * Check the wm result.
3968 *
3969 * If any calculated watermark values is larger than the maximum value that
3970 * can be programmed into the associated watermark register, that watermark
3971 * must be disabled.
3972 */
3973static bool g4x_check_srwm(struct drm_device *dev,
3974 int display_wm, int cursor_wm,
3975 const struct intel_watermark_params *display,
3976 const struct intel_watermark_params *cursor)
652c393a 3977{
417ae147
CW
3978 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3979 display_wm, cursor_wm);
652c393a 3980
417ae147 3981 if (display_wm > display->max_wm) {
bbb0aef5 3982 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
417ae147
CW
3983 display_wm, display->max_wm);
3984 return false;
3985 }
0e442c60 3986
417ae147 3987 if (cursor_wm > cursor->max_wm) {
bbb0aef5 3988 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
417ae147
CW
3989 cursor_wm, cursor->max_wm);
3990 return false;
3991 }
0e442c60 3992
417ae147
CW
3993 if (!(display_wm || cursor_wm)) {
3994 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3995 return false;
3996 }
0e442c60 3997
417ae147
CW
3998 return true;
3999}
0e442c60 4000
417ae147 4001static bool g4x_compute_srwm(struct drm_device *dev,
d210246a
CW
4002 int plane,
4003 int latency_ns,
417ae147
CW
4004 const struct intel_watermark_params *display,
4005 const struct intel_watermark_params *cursor,
4006 int *display_wm, int *cursor_wm)
4007{
d210246a
CW
4008 struct drm_crtc *crtc;
4009 int hdisplay, htotal, pixel_size, clock;
417ae147
CW
4010 unsigned long line_time_us;
4011 int line_count, line_size;
4012 int small, large;
4013 int entries;
0e442c60 4014
417ae147
CW
4015 if (!latency_ns) {
4016 *display_wm = *cursor_wm = 0;
4017 return false;
4018 }
0e442c60 4019
d210246a
CW
4020 crtc = intel_get_crtc_for_plane(dev, plane);
4021 hdisplay = crtc->mode.hdisplay;
4022 htotal = crtc->mode.htotal;
4023 clock = crtc->mode.clock;
4024 pixel_size = crtc->fb->bits_per_pixel / 8;
4025
417ae147
CW
4026 line_time_us = (htotal * 1000) / clock;
4027 line_count = (latency_ns / line_time_us + 1000) / 1000;
4028 line_size = hdisplay * pixel_size;
0e442c60 4029
417ae147
CW
4030 /* Use the minimum of the small and large buffer method for primary */
4031 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4032 large = line_count * line_size;
0e442c60 4033
417ae147
CW
4034 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4035 *display_wm = entries + display->guard_size;
4fe5e611 4036
417ae147
CW
4037 /* calculate the self-refresh watermark for display cursor */
4038 entries = line_count * pixel_size * 64;
4039 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4040 *cursor_wm = entries + cursor->guard_size;
4fe5e611 4041
417ae147
CW
4042 return g4x_check_srwm(dev,
4043 *display_wm, *cursor_wm,
4044 display, cursor);
4045}
4fe5e611 4046
7ccb4a53 4047#define single_plane_enabled(mask) is_power_of_2(mask)
d210246a
CW
4048
4049static void g4x_update_wm(struct drm_device *dev)
417ae147
CW
4050{
4051 static const int sr_latency_ns = 12000;
4052 struct drm_i915_private *dev_priv = dev->dev_private;
4053 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
d210246a
CW
4054 int plane_sr, cursor_sr;
4055 unsigned int enabled = 0;
417ae147
CW
4056
4057 if (g4x_compute_wm0(dev, 0,
4058 &g4x_wm_info, latency_ns,
4059 &g4x_cursor_wm_info, latency_ns,
4060 &planea_wm, &cursora_wm))
d210246a 4061 enabled |= 1;
417ae147
CW
4062
4063 if (g4x_compute_wm0(dev, 1,
4064 &g4x_wm_info, latency_ns,
4065 &g4x_cursor_wm_info, latency_ns,
4066 &planeb_wm, &cursorb_wm))
d210246a 4067 enabled |= 2;
417ae147
CW
4068
4069 plane_sr = cursor_sr = 0;
d210246a
CW
4070 if (single_plane_enabled(enabled) &&
4071 g4x_compute_srwm(dev, ffs(enabled) - 1,
4072 sr_latency_ns,
417ae147
CW
4073 &g4x_wm_info,
4074 &g4x_cursor_wm_info,
4075 &plane_sr, &cursor_sr))
0e442c60 4076 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
417ae147
CW
4077 else
4078 I915_WRITE(FW_BLC_SELF,
4079 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
0e442c60 4080
308977ac
CW
4081 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4082 planea_wm, cursora_wm,
4083 planeb_wm, cursorb_wm,
4084 plane_sr, cursor_sr);
0e442c60 4085
417ae147
CW
4086 I915_WRITE(DSPFW1,
4087 (plane_sr << DSPFW_SR_SHIFT) |
0e442c60 4088 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
417ae147
CW
4089 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4090 planea_wm);
4091 I915_WRITE(DSPFW2,
4092 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
0e442c60
JB
4093 (cursora_wm << DSPFW_CURSORA_SHIFT));
4094 /* HPLL off in SR has some issues on G4x... disable it */
417ae147
CW
4095 I915_WRITE(DSPFW3,
4096 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
0e442c60 4097 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
652c393a
JB
4098}
4099
d210246a 4100static void i965_update_wm(struct drm_device *dev)
7662c8bd
SL
4101{
4102 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4103 struct drm_crtc *crtc;
4104 int srwm = 1;
4fe5e611 4105 int cursor_sr = 16;
1dc7546d
JB
4106
4107 /* Calc sr entries for one plane configs */
d210246a
CW
4108 crtc = single_enabled_crtc(dev);
4109 if (crtc) {
1dc7546d 4110 /* self-refresh has much higher latency */
69e302a9 4111 static const int sr_latency_ns = 12000;
d210246a
CW
4112 int clock = crtc->mode.clock;
4113 int htotal = crtc->mode.htotal;
4114 int hdisplay = crtc->mode.hdisplay;
4115 int pixel_size = crtc->fb->bits_per_pixel / 8;
4116 unsigned long line_time_us;
4117 int entries;
1dc7546d 4118
d210246a 4119 line_time_us = ((htotal * 1000) / clock);
1dc7546d
JB
4120
4121 /* Use ns/us then divide to preserve precision */
d210246a
CW
4122 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4123 pixel_size * hdisplay;
4124 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
d210246a 4125 srwm = I965_FIFO_SIZE - entries;
1dc7546d
JB
4126 if (srwm < 0)
4127 srwm = 1;
1b07e04e 4128 srwm &= 0x1ff;
308977ac
CW
4129 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4130 entries, srwm);
4fe5e611 4131
d210246a 4132 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
5eddb70b 4133 pixel_size * 64;
d210246a 4134 entries = DIV_ROUND_UP(entries,
8de9b311 4135 i965_cursor_wm_info.cacheline_size);
4fe5e611 4136 cursor_sr = i965_cursor_wm_info.fifo_size -
d210246a 4137 (entries + i965_cursor_wm_info.guard_size);
4fe5e611
ZY
4138
4139 if (cursor_sr > i965_cursor_wm_info.max_wm)
4140 cursor_sr = i965_cursor_wm_info.max_wm;
4141
4142 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4143 "cursor %d\n", srwm, cursor_sr);
4144
a6c45cf0 4145 if (IS_CRESTLINE(dev))
adcdbc66 4146 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
33c5fd12
DJ
4147 } else {
4148 /* Turn off self refresh if both pipes are enabled */
a6c45cf0 4149 if (IS_CRESTLINE(dev))
adcdbc66
JB
4150 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4151 & ~FW_BLC_SELF_EN);
1dc7546d 4152 }
7662c8bd 4153
1dc7546d
JB
4154 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4155 srwm);
7662c8bd
SL
4156
4157 /* 965 has limitations... */
417ae147
CW
4158 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4159 (8 << 16) | (8 << 8) | (8 << 0));
7662c8bd 4160 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4fe5e611
ZY
4161 /* update cursor SR watermark */
4162 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
7662c8bd
SL
4163}
4164
d210246a 4165static void i9xx_update_wm(struct drm_device *dev)
7662c8bd
SL
4166{
4167 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a 4168 const struct intel_watermark_params *wm_info;
dff33cfc
JB
4169 uint32_t fwater_lo;
4170 uint32_t fwater_hi;
d210246a
CW
4171 int cwm, srwm = 1;
4172 int fifo_size;
dff33cfc 4173 int planea_wm, planeb_wm;
d210246a 4174 struct drm_crtc *crtc, *enabled = NULL;
7662c8bd 4175
72557b4f 4176 if (IS_I945GM(dev))
d210246a 4177 wm_info = &i945_wm_info;
a6c45cf0 4178 else if (!IS_GEN2(dev))
d210246a 4179 wm_info = &i915_wm_info;
7662c8bd 4180 else
d210246a
CW
4181 wm_info = &i855_wm_info;
4182
4183 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4184 crtc = intel_get_crtc_for_plane(dev, 0);
4185 if (crtc->enabled && crtc->fb) {
4186 planea_wm = intel_calculate_wm(crtc->mode.clock,
4187 wm_info, fifo_size,
4188 crtc->fb->bits_per_pixel / 8,
4189 latency_ns);
4190 enabled = crtc;
4191 } else
4192 planea_wm = fifo_size - wm_info->guard_size;
4193
4194 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4195 crtc = intel_get_crtc_for_plane(dev, 1);
4196 if (crtc->enabled && crtc->fb) {
4197 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4198 wm_info, fifo_size,
4199 crtc->fb->bits_per_pixel / 8,
4200 latency_ns);
4201 if (enabled == NULL)
4202 enabled = crtc;
4203 else
4204 enabled = NULL;
4205 } else
4206 planeb_wm = fifo_size - wm_info->guard_size;
7662c8bd 4207
28c97730 4208 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
7662c8bd
SL
4209
4210 /*
4211 * Overlay gets an aggressive default since video jitter is bad.
4212 */
4213 cwm = 2;
4214
18b2190c
AL
4215 /* Play safe and disable self-refresh before adjusting watermarks. */
4216 if (IS_I945G(dev) || IS_I945GM(dev))
4217 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4218 else if (IS_I915GM(dev))
4219 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4220
dff33cfc 4221 /* Calc sr entries for one plane configs */
d210246a 4222 if (HAS_FW_BLC(dev) && enabled) {
dff33cfc 4223 /* self-refresh has much higher latency */
69e302a9 4224 static const int sr_latency_ns = 6000;
d210246a
CW
4225 int clock = enabled->mode.clock;
4226 int htotal = enabled->mode.htotal;
4227 int hdisplay = enabled->mode.hdisplay;
4228 int pixel_size = enabled->fb->bits_per_pixel / 8;
4229 unsigned long line_time_us;
4230 int entries;
dff33cfc 4231
d210246a 4232 line_time_us = (htotal * 1000) / clock;
dff33cfc
JB
4233
4234 /* Use ns/us then divide to preserve precision */
d210246a
CW
4235 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4236 pixel_size * hdisplay;
4237 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4238 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4239 srwm = wm_info->fifo_size - entries;
dff33cfc
JB
4240 if (srwm < 0)
4241 srwm = 1;
ee980b80
LP
4242
4243 if (IS_I945G(dev) || IS_I945GM(dev))
18b2190c
AL
4244 I915_WRITE(FW_BLC_SELF,
4245 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4246 else if (IS_I915GM(dev))
ee980b80 4247 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
7662c8bd
SL
4248 }
4249
28c97730 4250 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
5eddb70b 4251 planea_wm, planeb_wm, cwm, srwm);
7662c8bd 4252
dff33cfc
JB
4253 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4254 fwater_hi = (cwm & 0x1f);
4255
4256 /* Set request length to 8 cachelines per fetch */
4257 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4258 fwater_hi = fwater_hi | (1 << 8);
7662c8bd
SL
4259
4260 I915_WRITE(FW_BLC, fwater_lo);
4261 I915_WRITE(FW_BLC2, fwater_hi);
18b2190c 4262
d210246a
CW
4263 if (HAS_FW_BLC(dev)) {
4264 if (enabled) {
4265 if (IS_I945G(dev) || IS_I945GM(dev))
4266 I915_WRITE(FW_BLC_SELF,
4267 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4268 else if (IS_I915GM(dev))
4269 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4270 DRM_DEBUG_KMS("memory self refresh enabled\n");
4271 } else
4272 DRM_DEBUG_KMS("memory self refresh disabled\n");
4273 }
7662c8bd
SL
4274}
4275
d210246a 4276static void i830_update_wm(struct drm_device *dev)
7662c8bd
SL
4277{
4278 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4279 struct drm_crtc *crtc;
4280 uint32_t fwater_lo;
dff33cfc 4281 int planea_wm;
7662c8bd 4282
d210246a
CW
4283 crtc = single_enabled_crtc(dev);
4284 if (crtc == NULL)
4285 return;
7662c8bd 4286
d210246a
CW
4287 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4288 dev_priv->display.get_fifo_size(dev, 0),
4289 crtc->fb->bits_per_pixel / 8,
4290 latency_ns);
4291 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
f3601326
JB
4292 fwater_lo |= (3<<8) | planea_wm;
4293
28c97730 4294 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
7662c8bd
SL
4295
4296 I915_WRITE(FW_BLC, fwater_lo);
4297}
4298
7f8a8569 4299#define ILK_LP0_PLANE_LATENCY 700
c936f44d 4300#define ILK_LP0_CURSOR_LATENCY 1300
7f8a8569 4301
1398261a
YL
4302/*
4303 * Check the wm result.
4304 *
4305 * If any calculated watermark values is larger than the maximum value that
4306 * can be programmed into the associated watermark register, that watermark
4307 * must be disabled.
1398261a 4308 */
b79d4990
JB
4309static bool ironlake_check_srwm(struct drm_device *dev, int level,
4310 int fbc_wm, int display_wm, int cursor_wm,
4311 const struct intel_watermark_params *display,
4312 const struct intel_watermark_params *cursor)
1398261a
YL
4313{
4314 struct drm_i915_private *dev_priv = dev->dev_private;
4315
4316 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4317 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4318
4319 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4320 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4321 fbc_wm, SNB_FBC_MAX_SRWM, level);
1398261a
YL
4322
4323 /* fbc has it's own way to disable FBC WM */
4324 I915_WRITE(DISP_ARB_CTL,
4325 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4326 return false;
4327 }
4328
b79d4990 4329 if (display_wm > display->max_wm) {
1398261a 4330 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4331 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1398261a
YL
4332 return false;
4333 }
4334
b79d4990 4335 if (cursor_wm > cursor->max_wm) {
1398261a 4336 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4337 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1398261a
YL
4338 return false;
4339 }
4340
4341 if (!(fbc_wm || display_wm || cursor_wm)) {
4342 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4343 return false;
4344 }
4345
4346 return true;
4347}
4348
4349/*
4350 * Compute watermark values of WM[1-3],
4351 */
d210246a
CW
4352static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4353 int latency_ns,
b79d4990
JB
4354 const struct intel_watermark_params *display,
4355 const struct intel_watermark_params *cursor,
4356 int *fbc_wm, int *display_wm, int *cursor_wm)
1398261a 4357{
d210246a 4358 struct drm_crtc *crtc;
1398261a 4359 unsigned long line_time_us;
d210246a 4360 int hdisplay, htotal, pixel_size, clock;
b79d4990 4361 int line_count, line_size;
1398261a
YL
4362 int small, large;
4363 int entries;
1398261a
YL
4364
4365 if (!latency_ns) {
4366 *fbc_wm = *display_wm = *cursor_wm = 0;
4367 return false;
4368 }
4369
d210246a
CW
4370 crtc = intel_get_crtc_for_plane(dev, plane);
4371 hdisplay = crtc->mode.hdisplay;
4372 htotal = crtc->mode.htotal;
4373 clock = crtc->mode.clock;
4374 pixel_size = crtc->fb->bits_per_pixel / 8;
4375
1398261a
YL
4376 line_time_us = (htotal * 1000) / clock;
4377 line_count = (latency_ns / line_time_us + 1000) / 1000;
4378 line_size = hdisplay * pixel_size;
4379
4380 /* Use the minimum of the small and large buffer method for primary */
4381 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4382 large = line_count * line_size;
4383
b79d4990
JB
4384 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4385 *display_wm = entries + display->guard_size;
1398261a
YL
4386
4387 /*
b79d4990 4388 * Spec says:
1398261a
YL
4389 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4390 */
4391 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4392
4393 /* calculate the self-refresh watermark for display cursor */
4394 entries = line_count * pixel_size * 64;
b79d4990
JB
4395 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4396 *cursor_wm = entries + cursor->guard_size;
1398261a 4397
b79d4990
JB
4398 return ironlake_check_srwm(dev, level,
4399 *fbc_wm, *display_wm, *cursor_wm,
4400 display, cursor);
4401}
4402
d210246a 4403static void ironlake_update_wm(struct drm_device *dev)
b79d4990
JB
4404{
4405 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4406 int fbc_wm, plane_wm, cursor_wm;
4407 unsigned int enabled;
b79d4990
JB
4408
4409 enabled = 0;
9f405100
CW
4410 if (g4x_compute_wm0(dev, 0,
4411 &ironlake_display_wm_info,
4412 ILK_LP0_PLANE_LATENCY,
4413 &ironlake_cursor_wm_info,
4414 ILK_LP0_CURSOR_LATENCY,
4415 &plane_wm, &cursor_wm)) {
b79d4990
JB
4416 I915_WRITE(WM0_PIPEA_ILK,
4417 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4418 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4419 " plane %d, " "cursor: %d\n",
4420 plane_wm, cursor_wm);
d210246a 4421 enabled |= 1;
b79d4990
JB
4422 }
4423
9f405100
CW
4424 if (g4x_compute_wm0(dev, 1,
4425 &ironlake_display_wm_info,
4426 ILK_LP0_PLANE_LATENCY,
4427 &ironlake_cursor_wm_info,
4428 ILK_LP0_CURSOR_LATENCY,
4429 &plane_wm, &cursor_wm)) {
b79d4990
JB
4430 I915_WRITE(WM0_PIPEB_ILK,
4431 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4432 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4433 " plane %d, cursor: %d\n",
4434 plane_wm, cursor_wm);
d210246a 4435 enabled |= 2;
b79d4990
JB
4436 }
4437
4438 /*
4439 * Calculate and update the self-refresh watermark only when one
4440 * display plane is used.
4441 */
4442 I915_WRITE(WM3_LP_ILK, 0);
4443 I915_WRITE(WM2_LP_ILK, 0);
4444 I915_WRITE(WM1_LP_ILK, 0);
4445
d210246a 4446 if (!single_plane_enabled(enabled))
b79d4990 4447 return;
d210246a 4448 enabled = ffs(enabled) - 1;
b79d4990
JB
4449
4450 /* WM1 */
d210246a
CW
4451 if (!ironlake_compute_srwm(dev, 1, enabled,
4452 ILK_READ_WM1_LATENCY() * 500,
b79d4990
JB
4453 &ironlake_display_srwm_info,
4454 &ironlake_cursor_srwm_info,
4455 &fbc_wm, &plane_wm, &cursor_wm))
4456 return;
4457
4458 I915_WRITE(WM1_LP_ILK,
4459 WM1_LP_SR_EN |
4460 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4461 (fbc_wm << WM1_LP_FBC_SHIFT) |
4462 (plane_wm << WM1_LP_SR_SHIFT) |
4463 cursor_wm);
4464
4465 /* WM2 */
d210246a
CW
4466 if (!ironlake_compute_srwm(dev, 2, enabled,
4467 ILK_READ_WM2_LATENCY() * 500,
b79d4990
JB
4468 &ironlake_display_srwm_info,
4469 &ironlake_cursor_srwm_info,
4470 &fbc_wm, &plane_wm, &cursor_wm))
4471 return;
4472
4473 I915_WRITE(WM2_LP_ILK,
4474 WM2_LP_EN |
4475 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4476 (fbc_wm << WM1_LP_FBC_SHIFT) |
4477 (plane_wm << WM1_LP_SR_SHIFT) |
4478 cursor_wm);
4479
4480 /*
4481 * WM3 is unsupported on ILK, probably because we don't have latency
4482 * data for that power state
4483 */
1398261a
YL
4484}
4485
d210246a 4486static void sandybridge_update_wm(struct drm_device *dev)
1398261a
YL
4487{
4488 struct drm_i915_private *dev_priv = dev->dev_private;
a0fa62d3 4489 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
d210246a
CW
4490 int fbc_wm, plane_wm, cursor_wm;
4491 unsigned int enabled;
1398261a
YL
4492
4493 enabled = 0;
9f405100
CW
4494 if (g4x_compute_wm0(dev, 0,
4495 &sandybridge_display_wm_info, latency,
4496 &sandybridge_cursor_wm_info, latency,
4497 &plane_wm, &cursor_wm)) {
1398261a
YL
4498 I915_WRITE(WM0_PIPEA_ILK,
4499 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4500 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4501 " plane %d, " "cursor: %d\n",
4502 plane_wm, cursor_wm);
d210246a 4503 enabled |= 1;
1398261a
YL
4504 }
4505
9f405100
CW
4506 if (g4x_compute_wm0(dev, 1,
4507 &sandybridge_display_wm_info, latency,
4508 &sandybridge_cursor_wm_info, latency,
4509 &plane_wm, &cursor_wm)) {
1398261a
YL
4510 I915_WRITE(WM0_PIPEB_ILK,
4511 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4512 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4513 " plane %d, cursor: %d\n",
4514 plane_wm, cursor_wm);
d210246a 4515 enabled |= 2;
1398261a
YL
4516 }
4517
4518 /*
4519 * Calculate and update the self-refresh watermark only when one
4520 * display plane is used.
4521 *
4522 * SNB support 3 levels of watermark.
4523 *
4524 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4525 * and disabled in the descending order
4526 *
4527 */
4528 I915_WRITE(WM3_LP_ILK, 0);
4529 I915_WRITE(WM2_LP_ILK, 0);
4530 I915_WRITE(WM1_LP_ILK, 0);
4531
d210246a 4532 if (!single_plane_enabled(enabled))
1398261a 4533 return;
d210246a 4534 enabled = ffs(enabled) - 1;
1398261a
YL
4535
4536 /* WM1 */
d210246a
CW
4537 if (!ironlake_compute_srwm(dev, 1, enabled,
4538 SNB_READ_WM1_LATENCY() * 500,
b79d4990
JB
4539 &sandybridge_display_srwm_info,
4540 &sandybridge_cursor_srwm_info,
4541 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4542 return;
4543
4544 I915_WRITE(WM1_LP_ILK,
4545 WM1_LP_SR_EN |
4546 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4547 (fbc_wm << WM1_LP_FBC_SHIFT) |
4548 (plane_wm << WM1_LP_SR_SHIFT) |
4549 cursor_wm);
4550
4551 /* WM2 */
d210246a
CW
4552 if (!ironlake_compute_srwm(dev, 2, enabled,
4553 SNB_READ_WM2_LATENCY() * 500,
b79d4990
JB
4554 &sandybridge_display_srwm_info,
4555 &sandybridge_cursor_srwm_info,
4556 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4557 return;
4558
4559 I915_WRITE(WM2_LP_ILK,
4560 WM2_LP_EN |
4561 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4562 (fbc_wm << WM1_LP_FBC_SHIFT) |
4563 (plane_wm << WM1_LP_SR_SHIFT) |
4564 cursor_wm);
4565
4566 /* WM3 */
d210246a
CW
4567 if (!ironlake_compute_srwm(dev, 3, enabled,
4568 SNB_READ_WM3_LATENCY() * 500,
b79d4990
JB
4569 &sandybridge_display_srwm_info,
4570 &sandybridge_cursor_srwm_info,
4571 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4572 return;
4573
4574 I915_WRITE(WM3_LP_ILK,
4575 WM3_LP_EN |
4576 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4577 (fbc_wm << WM1_LP_FBC_SHIFT) |
4578 (plane_wm << WM1_LP_SR_SHIFT) |
4579 cursor_wm);
4580}
4581
7662c8bd
SL
4582/**
4583 * intel_update_watermarks - update FIFO watermark values based on current modes
4584 *
4585 * Calculate watermark values for the various WM regs based on current mode
4586 * and plane configuration.
4587 *
4588 * There are several cases to deal with here:
4589 * - normal (i.e. non-self-refresh)
4590 * - self-refresh (SR) mode
4591 * - lines are large relative to FIFO size (buffer can hold up to 2)
4592 * - lines are small relative to FIFO size (buffer can hold more than 2
4593 * lines), so need to account for TLB latency
4594 *
4595 * The normal calculation is:
4596 * watermark = dotclock * bytes per pixel * latency
4597 * where latency is platform & configuration dependent (we assume pessimal
4598 * values here).
4599 *
4600 * The SR calculation is:
4601 * watermark = (trunc(latency/line time)+1) * surface width *
4602 * bytes per pixel
4603 * where
4604 * line time = htotal / dotclock
fa143215 4605 * surface width = hdisplay for normal plane and 64 for cursor
7662c8bd
SL
4606 * and latency is assumed to be high, as above.
4607 *
4608 * The final value programmed to the register should always be rounded up,
4609 * and include an extra 2 entries to account for clock crossings.
4610 *
4611 * We don't use the sprite, so we can ignore that. And on Crestline we have
4612 * to set the non-SR watermarks to 8.
5eddb70b 4613 */
7662c8bd
SL
4614static void intel_update_watermarks(struct drm_device *dev)
4615{
e70236a8 4616 struct drm_i915_private *dev_priv = dev->dev_private;
7662c8bd 4617
d210246a
CW
4618 if (dev_priv->display.update_wm)
4619 dev_priv->display.update_wm(dev);
7662c8bd
SL
4620}
4621
a7615030
CW
4622static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4623{
72bbe58c
KP
4624 if (i915_panel_use_ssc >= 0)
4625 return i915_panel_use_ssc != 0;
4626 return dev_priv->lvds_use_ssc
435793df 4627 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
4628}
4629
5a354204
JB
4630/**
4631 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4632 * @crtc: CRTC structure
4633 *
4634 * A pipe may be connected to one or more outputs. Based on the depth of the
4635 * attached framebuffer, choose a good color depth to use on the pipe.
4636 *
4637 * If possible, match the pipe depth to the fb depth. In some cases, this
4638 * isn't ideal, because the connected output supports a lesser or restricted
4639 * set of depths. Resolve that here:
4640 * LVDS typically supports only 6bpc, so clamp down in that case
4641 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4642 * Displays may support a restricted set as well, check EDID and clamp as
4643 * appropriate.
4644 *
4645 * RETURNS:
4646 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4647 * true if they don't match).
4648 */
4649static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4650 unsigned int *pipe_bpp)
4651{
4652 struct drm_device *dev = crtc->dev;
4653 struct drm_i915_private *dev_priv = dev->dev_private;
4654 struct drm_encoder *encoder;
4655 struct drm_connector *connector;
4656 unsigned int display_bpc = UINT_MAX, bpc;
4657
4658 /* Walk the encoders & connectors on this crtc, get min bpc */
4659 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4660 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4661
4662 if (encoder->crtc != crtc)
4663 continue;
4664
4665 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4666 unsigned int lvds_bpc;
4667
4668 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4669 LVDS_A3_POWER_UP)
4670 lvds_bpc = 8;
4671 else
4672 lvds_bpc = 6;
4673
4674 if (lvds_bpc < display_bpc) {
4675 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4676 display_bpc = lvds_bpc;
4677 }
4678 continue;
4679 }
4680
4681 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4682 /* Use VBT settings if we have an eDP panel */
4683 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4684
4685 if (edp_bpc < display_bpc) {
4686 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4687 display_bpc = edp_bpc;
4688 }
4689 continue;
4690 }
4691
4692 /* Not one of the known troublemakers, check the EDID */
4693 list_for_each_entry(connector, &dev->mode_config.connector_list,
4694 head) {
4695 if (connector->encoder != encoder)
4696 continue;
4697
62ac41a6
JB
4698 /* Don't use an invalid EDID bpc value */
4699 if (connector->display_info.bpc &&
4700 connector->display_info.bpc < display_bpc) {
5a354204
JB
4701 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4702 display_bpc = connector->display_info.bpc;
4703 }
4704 }
4705
4706 /*
4707 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4708 * through, clamp it down. (Note: >12bpc will be caught below.)
4709 */
4710 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4711 if (display_bpc > 8 && display_bpc < 12) {
4712 DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
4713 display_bpc = 12;
4714 } else {
4715 DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
4716 display_bpc = 8;
4717 }
4718 }
4719 }
4720
4721 /*
4722 * We could just drive the pipe at the highest bpc all the time and
4723 * enable dithering as needed, but that costs bandwidth. So choose
4724 * the minimum value that expresses the full color range of the fb but
4725 * also stays within the max display bpc discovered above.
4726 */
4727
4728 switch (crtc->fb->depth) {
4729 case 8:
4730 bpc = 8; /* since we go through a colormap */
4731 break;
4732 case 15:
4733 case 16:
4734 bpc = 6; /* min is 18bpp */
4735 break;
4736 case 24:
578393cd 4737 bpc = 8;
5a354204
JB
4738 break;
4739 case 30:
578393cd 4740 bpc = 10;
5a354204
JB
4741 break;
4742 case 48:
578393cd 4743 bpc = 12;
5a354204
JB
4744 break;
4745 default:
4746 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4747 bpc = min((unsigned int)8, display_bpc);
4748 break;
4749 }
4750
578393cd
KP
4751 display_bpc = min(display_bpc, bpc);
4752
5a354204
JB
4753 DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
4754 bpc, display_bpc);
4755
578393cd 4756 *pipe_bpp = display_bpc * 3;
5a354204
JB
4757
4758 return display_bpc != bpc;
4759}
4760
f564048e
EA
4761static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4762 struct drm_display_mode *mode,
4763 struct drm_display_mode *adjusted_mode,
4764 int x, int y,
4765 struct drm_framebuffer *old_fb)
79e53945
JB
4766{
4767 struct drm_device *dev = crtc->dev;
4768 struct drm_i915_private *dev_priv = dev->dev_private;
4769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4770 int pipe = intel_crtc->pipe;
80824003 4771 int plane = intel_crtc->plane;
c751ce4f 4772 int refclk, num_connectors = 0;
652c393a 4773 intel_clock_t clock, reduced_clock;
5eddb70b 4774 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
652c393a 4775 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
a4fc5ed6 4776 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
79e53945 4777 struct drm_mode_config *mode_config = &dev->mode_config;
5eddb70b 4778 struct intel_encoder *encoder;
d4906093 4779 const intel_limit_t *limit;
5c3b82e2 4780 int ret;
fae14981 4781 u32 temp;
aa9b500d 4782 u32 lvds_sync = 0;
79e53945 4783
5eddb70b
CW
4784 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4785 if (encoder->base.crtc != crtc)
79e53945
JB
4786 continue;
4787
5eddb70b 4788 switch (encoder->type) {
79e53945
JB
4789 case INTEL_OUTPUT_LVDS:
4790 is_lvds = true;
4791 break;
4792 case INTEL_OUTPUT_SDVO:
7d57382e 4793 case INTEL_OUTPUT_HDMI:
79e53945 4794 is_sdvo = true;
5eddb70b 4795 if (encoder->needs_tv_clock)
e2f0ba97 4796 is_tv = true;
79e53945
JB
4797 break;
4798 case INTEL_OUTPUT_DVO:
4799 is_dvo = true;
4800 break;
4801 case INTEL_OUTPUT_TVOUT:
4802 is_tv = true;
4803 break;
4804 case INTEL_OUTPUT_ANALOG:
4805 is_crt = true;
4806 break;
a4fc5ed6
KP
4807 case INTEL_OUTPUT_DISPLAYPORT:
4808 is_dp = true;
4809 break;
79e53945 4810 }
43565a06 4811
c751ce4f 4812 num_connectors++;
79e53945
JB
4813 }
4814
a7615030 4815 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
43565a06 4816 refclk = dev_priv->lvds_ssc_freq * 1000;
28c97730 4817 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5eddb70b 4818 refclk / 1000);
a6c45cf0 4819 } else if (!IS_GEN2(dev)) {
79e53945
JB
4820 refclk = 96000;
4821 } else {
4822 refclk = 48000;
4823 }
4824
d4906093
ML
4825 /*
4826 * Returns a set of divisors for the desired target clock with the given
4827 * refclk, or FALSE. The returned values represent the clock equation:
4828 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4829 */
1b894b59 4830 limit = intel_limit(crtc, refclk);
d4906093 4831 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
79e53945
JB
4832 if (!ok) {
4833 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4834 return -EINVAL;
79e53945
JB
4835 }
4836
cda4b7d3 4837 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4838 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4839
ddc9003c
ZY
4840 if (is_lvds && dev_priv->lvds_downclock_avail) {
4841 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
4842 dev_priv->lvds_downclock,
4843 refclk,
4844 &reduced_clock);
18f9ed12
ZY
4845 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4846 /*
4847 * If the different P is found, it means that we can't
4848 * switch the display clock by using the FP0/FP1.
4849 * In such case we will disable the LVDS downclock
4850 * feature.
4851 */
4852 DRM_DEBUG_KMS("Different P is found for "
5eddb70b 4853 "LVDS clock/downclock\n");
18f9ed12
ZY
4854 has_reduced_clock = 0;
4855 }
652c393a 4856 }
7026d4ac
ZW
4857 /* SDVO TV has fixed PLL values depend on its clock range,
4858 this mirrors vbios setting. */
4859 if (is_sdvo && is_tv) {
4860 if (adjusted_mode->clock >= 100000
5eddb70b 4861 && adjusted_mode->clock < 140500) {
7026d4ac
ZW
4862 clock.p1 = 2;
4863 clock.p2 = 10;
4864 clock.n = 3;
4865 clock.m1 = 16;
4866 clock.m2 = 8;
4867 } else if (adjusted_mode->clock >= 140500
5eddb70b 4868 && adjusted_mode->clock <= 200000) {
7026d4ac
ZW
4869 clock.p1 = 1;
4870 clock.p2 = 10;
4871 clock.n = 6;
4872 clock.m1 = 12;
4873 clock.m2 = 8;
4874 }
4875 }
4876
f2b115e6 4877 if (IS_PINEVIEW(dev)) {
2177832f 4878 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
652c393a
JB
4879 if (has_reduced_clock)
4880 fp2 = (1 << reduced_clock.n) << 16 |
4881 reduced_clock.m1 << 8 | reduced_clock.m2;
4882 } else {
2177832f 4883 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
652c393a
JB
4884 if (has_reduced_clock)
4885 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4886 reduced_clock.m2;
4887 }
79e53945 4888
929c77fb 4889 dpll = DPLL_VGA_MODE_DIS;
2c07245f 4890
a6c45cf0 4891 if (!IS_GEN2(dev)) {
79e53945
JB
4892 if (is_lvds)
4893 dpll |= DPLLB_MODE_LVDS;
4894 else
4895 dpll |= DPLLB_MODE_DAC_SERIAL;
4896 if (is_sdvo) {
6c9547ff
CW
4897 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4898 if (pixel_multiplier > 1) {
4899 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4900 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
6c9547ff 4901 }
79e53945 4902 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 4903 }
929c77fb 4904 if (is_dp)
a4fc5ed6 4905 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945
JB
4906
4907 /* compute bitmask from p1 value */
f2b115e6
AJ
4908 if (IS_PINEVIEW(dev))
4909 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
2c07245f 4910 else {
2177832f 4911 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
652c393a
JB
4912 if (IS_G4X(dev) && has_reduced_clock)
4913 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2c07245f 4914 }
79e53945
JB
4915 switch (clock.p2) {
4916 case 5:
4917 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4918 break;
4919 case 7:
4920 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4921 break;
4922 case 10:
4923 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4924 break;
4925 case 14:
4926 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4927 break;
4928 }
929c77fb 4929 if (INTEL_INFO(dev)->gen >= 4)
79e53945
JB
4930 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4931 } else {
4932 if (is_lvds) {
4933 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4934 } else {
4935 if (clock.p1 == 2)
4936 dpll |= PLL_P1_DIVIDE_BY_TWO;
4937 else
4938 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4939 if (clock.p2 == 4)
4940 dpll |= PLL_P2_DIVIDE_BY_4;
4941 }
4942 }
4943
43565a06
KH
4944 if (is_sdvo && is_tv)
4945 dpll |= PLL_REF_INPUT_TVCLKINBC;
4946 else if (is_tv)
79e53945 4947 /* XXX: just matching BIOS for now */
43565a06 4948 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 4949 dpll |= 3;
a7615030 4950 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 4951 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
4952 else
4953 dpll |= PLL_REF_INPUT_DREFCLK;
4954
4955 /* setup pipeconf */
5eddb70b 4956 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
4957
4958 /* Set up the display plane register */
4959 dspcntr = DISPPLANE_GAMMA_ENABLE;
4960
f2b115e6 4961 /* Ironlake's plane is forced to pipe, bit 24 is to
2c07245f 4962 enable color space conversion */
929c77fb
EA
4963 if (pipe == 0)
4964 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4965 else
4966 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 4967
a6c45cf0 4968 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
4969 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4970 * core speed.
4971 *
4972 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4973 * pipe == 0 check?
4974 */
e70236a8
JB
4975 if (mode->clock >
4976 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 4977 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 4978 else
5eddb70b 4979 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
4980 }
4981
929c77fb 4982 dpll |= DPLL_VCO_ENABLE;
8d86dc6a 4983
28c97730 4984 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
4985 drm_mode_debug_printmodeline(mode);
4986
fae14981
EA
4987 I915_WRITE(FP0(pipe), fp);
4988 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5eddb70b 4989
fae14981 4990 POSTING_READ(DPLL(pipe));
c713bb08 4991 udelay(150);
8db9d77b 4992
79e53945
JB
4993 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4994 * This is an exception to the general rule that mode_set doesn't turn
4995 * things on.
4996 */
4997 if (is_lvds) {
fae14981 4998 temp = I915_READ(LVDS);
5eddb70b 4999 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
b3b095b3 5000 if (pipe == 1) {
929c77fb 5001 temp |= LVDS_PIPEB_SELECT;
b3b095b3 5002 } else {
929c77fb 5003 temp &= ~LVDS_PIPEB_SELECT;
b3b095b3 5004 }
a3e17eb8 5005 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5006 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5007 /* Set the B0-B3 data pairs corresponding to whether we're going to
5008 * set the DPLLs for dual-channel mode or not.
5009 */
5010 if (clock.p2 == 7)
5eddb70b 5011 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5012 else
5eddb70b 5013 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5014
5015 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5016 * appropriately here, but we need to look more thoroughly into how
5017 * panels behave in the two modes.
5018 */
929c77fb
EA
5019 /* set the dithering flag on LVDS as needed */
5020 if (INTEL_INFO(dev)->gen >= 4) {
434ed097 5021 if (dev_priv->lvds_dither)
5eddb70b 5022 temp |= LVDS_ENABLE_DITHER;
434ed097 5023 else
5eddb70b 5024 temp &= ~LVDS_ENABLE_DITHER;
898822ce 5025 }
aa9b500d
BF
5026 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5027 lvds_sync |= LVDS_HSYNC_POLARITY;
5028 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5029 lvds_sync |= LVDS_VSYNC_POLARITY;
5030 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5031 != lvds_sync) {
5032 char flags[2] = "-+";
5033 DRM_INFO("Changing LVDS panel from "
5034 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5035 flags[!(temp & LVDS_HSYNC_POLARITY)],
5036 flags[!(temp & LVDS_VSYNC_POLARITY)],
5037 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5038 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5039 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5040 temp |= lvds_sync;
5041 }
fae14981 5042 I915_WRITE(LVDS, temp);
79e53945 5043 }
434ed097 5044
929c77fb 5045 if (is_dp) {
a4fc5ed6 5046 intel_dp_set_m_n(crtc, mode, adjusted_mode);
434ed097
JB
5047 }
5048
fae14981 5049 I915_WRITE(DPLL(pipe), dpll);
5eddb70b 5050
c713bb08 5051 /* Wait for the clocks to stabilize. */
fae14981 5052 POSTING_READ(DPLL(pipe));
c713bb08 5053 udelay(150);
32f9d658 5054
c713bb08
EA
5055 if (INTEL_INFO(dev)->gen >= 4) {
5056 temp = 0;
5057 if (is_sdvo) {
5058 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5059 if (temp > 1)
5060 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5061 else
5062 temp = 0;
32f9d658 5063 }
c713bb08
EA
5064 I915_WRITE(DPLL_MD(pipe), temp);
5065 } else {
5066 /* The pixel multiplier can only be updated once the
5067 * DPLL is enabled and the clocks are stable.
5068 *
5069 * So write it again.
5070 */
fae14981 5071 I915_WRITE(DPLL(pipe), dpll);
79e53945 5072 }
79e53945 5073
5eddb70b 5074 intel_crtc->lowfreq_avail = false;
652c393a 5075 if (is_lvds && has_reduced_clock && i915_powersave) {
fae14981 5076 I915_WRITE(FP1(pipe), fp2);
652c393a
JB
5077 intel_crtc->lowfreq_avail = true;
5078 if (HAS_PIPE_CXSR(dev)) {
28c97730 5079 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a
JB
5080 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5081 }
5082 } else {
fae14981 5083 I915_WRITE(FP1(pipe), fp);
652c393a 5084 if (HAS_PIPE_CXSR(dev)) {
28c97730 5085 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
5086 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5087 }
5088 }
5089
734b4157
KH
5090 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5091 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5092 /* the chip adds 2 halflines automatically */
5093 adjusted_mode->crtc_vdisplay -= 1;
5094 adjusted_mode->crtc_vtotal -= 1;
5095 adjusted_mode->crtc_vblank_start -= 1;
5096 adjusted_mode->crtc_vblank_end -= 1;
5097 adjusted_mode->crtc_vsync_end -= 1;
5098 adjusted_mode->crtc_vsync_start -= 1;
5099 } else
5100 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5101
5eddb70b
CW
5102 I915_WRITE(HTOTAL(pipe),
5103 (adjusted_mode->crtc_hdisplay - 1) |
79e53945 5104 ((adjusted_mode->crtc_htotal - 1) << 16));
5eddb70b
CW
5105 I915_WRITE(HBLANK(pipe),
5106 (adjusted_mode->crtc_hblank_start - 1) |
79e53945 5107 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5eddb70b
CW
5108 I915_WRITE(HSYNC(pipe),
5109 (adjusted_mode->crtc_hsync_start - 1) |
79e53945 5110 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5eddb70b
CW
5111
5112 I915_WRITE(VTOTAL(pipe),
5113 (adjusted_mode->crtc_vdisplay - 1) |
79e53945 5114 ((adjusted_mode->crtc_vtotal - 1) << 16));
5eddb70b
CW
5115 I915_WRITE(VBLANK(pipe),
5116 (adjusted_mode->crtc_vblank_start - 1) |
79e53945 5117 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5eddb70b
CW
5118 I915_WRITE(VSYNC(pipe),
5119 (adjusted_mode->crtc_vsync_start - 1) |
79e53945 5120 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5eddb70b
CW
5121
5122 /* pipesrc and dspsize control the size that is scaled from,
5123 * which should always be the user's requested size.
79e53945 5124 */
929c77fb
EA
5125 I915_WRITE(DSPSIZE(plane),
5126 ((mode->vdisplay - 1) << 16) |
5127 (mode->hdisplay - 1));
5128 I915_WRITE(DSPPOS(plane), 0);
5eddb70b
CW
5129 I915_WRITE(PIPESRC(pipe),
5130 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f 5131
f564048e
EA
5132 I915_WRITE(PIPECONF(pipe), pipeconf);
5133 POSTING_READ(PIPECONF(pipe));
929c77fb 5134 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
5135
5136 intel_wait_for_vblank(dev, pipe);
5137
f564048e
EA
5138 I915_WRITE(DSPCNTR(plane), dspcntr);
5139 POSTING_READ(DSPCNTR(plane));
284d9529 5140 intel_enable_plane(dev_priv, plane, pipe);
f564048e
EA
5141
5142 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5143
5144 intel_update_watermarks(dev);
5145
f564048e
EA
5146 return ret;
5147}
5148
9fb526db
KP
5149/*
5150 * Initialize reference clocks when the driver loads
5151 */
5152void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
5153{
5154 struct drm_i915_private *dev_priv = dev->dev_private;
5155 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 5156 struct intel_encoder *encoder;
13d83a67
JB
5157 u32 temp;
5158 bool has_lvds = false;
199e5d79
KP
5159 bool has_cpu_edp = false;
5160 bool has_pch_edp = false;
5161 bool has_panel = false;
99eb6a01
KP
5162 bool has_ck505 = false;
5163 bool can_ssc = false;
13d83a67
JB
5164
5165 /* We need to take the global config into account */
199e5d79
KP
5166 list_for_each_entry(encoder, &mode_config->encoder_list,
5167 base.head) {
5168 switch (encoder->type) {
5169 case INTEL_OUTPUT_LVDS:
5170 has_panel = true;
5171 has_lvds = true;
5172 break;
5173 case INTEL_OUTPUT_EDP:
5174 has_panel = true;
5175 if (intel_encoder_is_pch_edp(&encoder->base))
5176 has_pch_edp = true;
5177 else
5178 has_cpu_edp = true;
5179 break;
13d83a67
JB
5180 }
5181 }
5182
99eb6a01
KP
5183 if (HAS_PCH_IBX(dev)) {
5184 has_ck505 = dev_priv->display_clock_mode;
5185 can_ssc = has_ck505;
5186 } else {
5187 has_ck505 = false;
5188 can_ssc = true;
5189 }
5190
5191 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5192 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5193 has_ck505);
13d83a67
JB
5194
5195 /* Ironlake: try to setup display ref clock before DPLL
5196 * enabling. This is only under driver's control after
5197 * PCH B stepping, previous chipset stepping should be
5198 * ignoring this setting.
5199 */
5200 temp = I915_READ(PCH_DREF_CONTROL);
5201 /* Always enable nonspread source */
5202 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 5203
99eb6a01
KP
5204 if (has_ck505)
5205 temp |= DREF_NONSPREAD_CK505_ENABLE;
5206 else
5207 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 5208
199e5d79
KP
5209 if (has_panel) {
5210 temp &= ~DREF_SSC_SOURCE_MASK;
5211 temp |= DREF_SSC_SOURCE_ENABLE;
13d83a67 5212
199e5d79 5213 /* SSC must be turned on before enabling the CPU output */
99eb6a01 5214 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 5215 DRM_DEBUG_KMS("Using SSC on panel\n");
13d83a67 5216 temp |= DREF_SSC1_ENABLE;
13d83a67 5217 }
199e5d79
KP
5218
5219 /* Get SSC going before enabling the outputs */
5220 I915_WRITE(PCH_DREF_CONTROL, temp);
5221 POSTING_READ(PCH_DREF_CONTROL);
5222 udelay(200);
5223
13d83a67
JB
5224 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5225
5226 /* Enable CPU source on CPU attached eDP */
199e5d79 5227 if (has_cpu_edp) {
99eb6a01 5228 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 5229 DRM_DEBUG_KMS("Using SSC on eDP\n");
13d83a67 5230 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
199e5d79 5231 }
13d83a67
JB
5232 else
5233 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79
KP
5234 } else
5235 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5236
5237 I915_WRITE(PCH_DREF_CONTROL, temp);
5238 POSTING_READ(PCH_DREF_CONTROL);
5239 udelay(200);
5240 } else {
5241 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5242
5243 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5244
5245 /* Turn off CPU output */
5246 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5247
5248 I915_WRITE(PCH_DREF_CONTROL, temp);
5249 POSTING_READ(PCH_DREF_CONTROL);
5250 udelay(200);
5251
5252 /* Turn off the SSC source */
5253 temp &= ~DREF_SSC_SOURCE_MASK;
5254 temp |= DREF_SSC_SOURCE_DISABLE;
5255
5256 /* Turn off SSC1 */
5257 temp &= ~ DREF_SSC1_ENABLE;
5258
13d83a67
JB
5259 I915_WRITE(PCH_DREF_CONTROL, temp);
5260 POSTING_READ(PCH_DREF_CONTROL);
5261 udelay(200);
5262 }
5263}
5264
d9d444cb
JB
5265static int ironlake_get_refclk(struct drm_crtc *crtc)
5266{
5267 struct drm_device *dev = crtc->dev;
5268 struct drm_i915_private *dev_priv = dev->dev_private;
5269 struct intel_encoder *encoder;
5270 struct drm_mode_config *mode_config = &dev->mode_config;
5271 struct intel_encoder *edp_encoder = NULL;
5272 int num_connectors = 0;
5273 bool is_lvds = false;
5274
5275 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5276 if (encoder->base.crtc != crtc)
5277 continue;
5278
5279 switch (encoder->type) {
5280 case INTEL_OUTPUT_LVDS:
5281 is_lvds = true;
5282 break;
5283 case INTEL_OUTPUT_EDP:
5284 edp_encoder = encoder;
5285 break;
5286 }
5287 num_connectors++;
5288 }
5289
5290 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5291 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5292 dev_priv->lvds_ssc_freq);
5293 return dev_priv->lvds_ssc_freq * 1000;
5294 }
5295
5296 return 120000;
5297}
5298
f564048e
EA
5299static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5300 struct drm_display_mode *mode,
5301 struct drm_display_mode *adjusted_mode,
5302 int x, int y,
5303 struct drm_framebuffer *old_fb)
79e53945
JB
5304{
5305 struct drm_device *dev = crtc->dev;
5306 struct drm_i915_private *dev_priv = dev->dev_private;
5307 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5308 int pipe = intel_crtc->pipe;
80824003 5309 int plane = intel_crtc->plane;
c751ce4f 5310 int refclk, num_connectors = 0;
652c393a 5311 intel_clock_t clock, reduced_clock;
5eddb70b 5312 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
a07d6787 5313 bool ok, has_reduced_clock = false, is_sdvo = false;
a4fc5ed6 5314 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
8e647a27 5315 struct intel_encoder *has_edp_encoder = NULL;
79e53945 5316 struct drm_mode_config *mode_config = &dev->mode_config;
5eddb70b 5317 struct intel_encoder *encoder;
d4906093 5318 const intel_limit_t *limit;
5c3b82e2 5319 int ret;
2c07245f 5320 struct fdi_m_n m_n = {0};
fae14981 5321 u32 temp;
aa9b500d 5322 u32 lvds_sync = 0;
5a354204
JB
5323 int target_clock, pixel_multiplier, lane, link_bw, factor;
5324 unsigned int pipe_bpp;
5325 bool dither;
79e53945 5326
5eddb70b
CW
5327 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5328 if (encoder->base.crtc != crtc)
79e53945
JB
5329 continue;
5330
5eddb70b 5331 switch (encoder->type) {
79e53945
JB
5332 case INTEL_OUTPUT_LVDS:
5333 is_lvds = true;
5334 break;
5335 case INTEL_OUTPUT_SDVO:
7d57382e 5336 case INTEL_OUTPUT_HDMI:
79e53945 5337 is_sdvo = true;
5eddb70b 5338 if (encoder->needs_tv_clock)
e2f0ba97 5339 is_tv = true;
79e53945 5340 break;
79e53945
JB
5341 case INTEL_OUTPUT_TVOUT:
5342 is_tv = true;
5343 break;
5344 case INTEL_OUTPUT_ANALOG:
5345 is_crt = true;
5346 break;
a4fc5ed6
KP
5347 case INTEL_OUTPUT_DISPLAYPORT:
5348 is_dp = true;
5349 break;
32f9d658 5350 case INTEL_OUTPUT_EDP:
5eddb70b 5351 has_edp_encoder = encoder;
32f9d658 5352 break;
79e53945 5353 }
43565a06 5354
c751ce4f 5355 num_connectors++;
79e53945
JB
5356 }
5357
d9d444cb 5358 refclk = ironlake_get_refclk(crtc);
79e53945 5359
d4906093
ML
5360 /*
5361 * Returns a set of divisors for the desired target clock with the given
5362 * refclk, or FALSE. The returned values represent the clock equation:
5363 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5364 */
1b894b59 5365 limit = intel_limit(crtc, refclk);
d4906093 5366 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
79e53945
JB
5367 if (!ok) {
5368 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 5369 return -EINVAL;
79e53945
JB
5370 }
5371
cda4b7d3 5372 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 5373 intel_crtc_update_cursor(crtc, true);
cda4b7d3 5374
ddc9003c
ZY
5375 if (is_lvds && dev_priv->lvds_downclock_avail) {
5376 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
5377 dev_priv->lvds_downclock,
5378 refclk,
5379 &reduced_clock);
18f9ed12
ZY
5380 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5381 /*
5382 * If the different P is found, it means that we can't
5383 * switch the display clock by using the FP0/FP1.
5384 * In such case we will disable the LVDS downclock
5385 * feature.
5386 */
5387 DRM_DEBUG_KMS("Different P is found for "
5eddb70b 5388 "LVDS clock/downclock\n");
18f9ed12
ZY
5389 has_reduced_clock = 0;
5390 }
652c393a 5391 }
7026d4ac
ZW
5392 /* SDVO TV has fixed PLL values depend on its clock range,
5393 this mirrors vbios setting. */
5394 if (is_sdvo && is_tv) {
5395 if (adjusted_mode->clock >= 100000
5eddb70b 5396 && adjusted_mode->clock < 140500) {
7026d4ac
ZW
5397 clock.p1 = 2;
5398 clock.p2 = 10;
5399 clock.n = 3;
5400 clock.m1 = 16;
5401 clock.m2 = 8;
5402 } else if (adjusted_mode->clock >= 140500
5eddb70b 5403 && adjusted_mode->clock <= 200000) {
7026d4ac
ZW
5404 clock.p1 = 1;
5405 clock.p2 = 10;
5406 clock.n = 6;
5407 clock.m1 = 12;
5408 clock.m2 = 8;
5409 }
5410 }
5411
2c07245f 5412 /* FDI link */
8febb297
EA
5413 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5414 lane = 0;
5415 /* CPU eDP doesn't require FDI link, so just set DP M/N
5416 according to current link config */
5417 if (has_edp_encoder &&
5418 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5419 target_clock = mode->clock;
5420 intel_edp_link_config(has_edp_encoder,
5421 &lane, &link_bw);
5422 } else {
5423 /* [e]DP over FDI requires target mode clock
5424 instead of link clock */
5425 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5eb08b69 5426 target_clock = mode->clock;
8febb297
EA
5427 else
5428 target_clock = adjusted_mode->clock;
5429
5430 /* FDI is a binary signal running at ~2.7GHz, encoding
5431 * each output octet as 10 bits. The actual frequency
5432 * is stored as a divider into a 100MHz clock, and the
5433 * mode pixel clock is stored in units of 1KHz.
5434 * Hence the bw of each lane in terms of the mode signal
5435 * is:
5436 */
5437 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5438 }
58a27471 5439
8febb297
EA
5440 /* determine panel color depth */
5441 temp = I915_READ(PIPECONF(pipe));
5442 temp &= ~PIPE_BPC_MASK;
5a354204
JB
5443 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
5444 switch (pipe_bpp) {
5445 case 18:
5446 temp |= PIPE_6BPC;
8febb297 5447 break;
5a354204
JB
5448 case 24:
5449 temp |= PIPE_8BPC;
8febb297 5450 break;
5a354204
JB
5451 case 30:
5452 temp |= PIPE_10BPC;
8febb297 5453 break;
5a354204
JB
5454 case 36:
5455 temp |= PIPE_12BPC;
8febb297
EA
5456 break;
5457 default:
62ac41a6
JB
5458 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5459 pipe_bpp);
5a354204
JB
5460 temp |= PIPE_8BPC;
5461 pipe_bpp = 24;
5462 break;
8febb297 5463 }
77ffb597 5464
5a354204
JB
5465 intel_crtc->bpp = pipe_bpp;
5466 I915_WRITE(PIPECONF(pipe), temp);
5467
8febb297
EA
5468 if (!lane) {
5469 /*
5470 * Account for spread spectrum to avoid
5471 * oversubscribing the link. Max center spread
5472 * is 2.5%; use 5% for safety's sake.
5473 */
5a354204 5474 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
8febb297 5475 lane = bps / (link_bw * 8) + 1;
5eb08b69 5476 }
2c07245f 5477
8febb297
EA
5478 intel_crtc->fdi_lanes = lane;
5479
5480 if (pixel_multiplier > 1)
5481 link_bw *= pixel_multiplier;
5a354204
JB
5482 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5483 &m_n);
8febb297 5484
a07d6787
EA
5485 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5486 if (has_reduced_clock)
5487 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5488 reduced_clock.m2;
79e53945 5489
c1858123 5490 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
5491 factor = 21;
5492 if (is_lvds) {
5493 if ((intel_panel_use_ssc(dev_priv) &&
5494 dev_priv->lvds_ssc_freq == 100) ||
5495 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5496 factor = 25;
5497 } else if (is_sdvo && is_tv)
5498 factor = 20;
c1858123 5499
cb0e0931 5500 if (clock.m < factor * clock.n)
8febb297 5501 fp |= FP_CB_TUNE;
2c07245f 5502
5eddb70b 5503 dpll = 0;
2c07245f 5504
a07d6787
EA
5505 if (is_lvds)
5506 dpll |= DPLLB_MODE_LVDS;
5507 else
5508 dpll |= DPLLB_MODE_DAC_SERIAL;
5509 if (is_sdvo) {
5510 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5511 if (pixel_multiplier > 1) {
5512 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 5513 }
a07d6787
EA
5514 dpll |= DPLL_DVO_HIGH_SPEED;
5515 }
5516 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5517 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 5518
a07d6787
EA
5519 /* compute bitmask from p1 value */
5520 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5521 /* also FPA1 */
5522 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5523
5524 switch (clock.p2) {
5525 case 5:
5526 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5527 break;
5528 case 7:
5529 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5530 break;
5531 case 10:
5532 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5533 break;
5534 case 14:
5535 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5536 break;
79e53945
JB
5537 }
5538
43565a06
KH
5539 if (is_sdvo && is_tv)
5540 dpll |= PLL_REF_INPUT_TVCLKINBC;
5541 else if (is_tv)
79e53945 5542 /* XXX: just matching BIOS for now */
43565a06 5543 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5544 dpll |= 3;
a7615030 5545 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5546 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5547 else
5548 dpll |= PLL_REF_INPUT_DREFCLK;
5549
5550 /* setup pipeconf */
5eddb70b 5551 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
5552
5553 /* Set up the display plane register */
5554 dspcntr = DISPPLANE_GAMMA_ENABLE;
5555
f7cb34d4 5556 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
79e53945
JB
5557 drm_mode_debug_printmodeline(mode);
5558
5c5313c8 5559 /* PCH eDP needs FDI, but CPU eDP does not */
4b645f14
JB
5560 if (!intel_crtc->no_pll) {
5561 if (!has_edp_encoder ||
5562 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5563 I915_WRITE(PCH_FP0(pipe), fp);
5564 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5565
5566 POSTING_READ(PCH_DPLL(pipe));
5567 udelay(150);
5568 }
5569 } else {
5570 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5571 fp == I915_READ(PCH_FP0(0))) {
5572 intel_crtc->use_pll_a = true;
5573 DRM_DEBUG_KMS("using pipe a dpll\n");
5574 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5575 fp == I915_READ(PCH_FP0(1))) {
5576 intel_crtc->use_pll_a = false;
5577 DRM_DEBUG_KMS("using pipe b dpll\n");
5578 } else {
5579 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5580 return -EINVAL;
5581 }
79e53945
JB
5582 }
5583
8db9d77b
ZW
5584 /* enable transcoder DPLL */
5585 if (HAS_PCH_CPT(dev)) {
4b645f14
JB
5586 u32 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
5587 TRANSC_DPLLB_SEL;
8db9d77b 5588 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
5589 switch (pipe) {
5590 case 0:
5eddb70b 5591 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
9db4a9c7
JB
5592 break;
5593 case 1:
5eddb70b 5594 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
9db4a9c7
JB
5595 break;
5596 case 2:
d64311ab 5597 temp &= ~(TRANSC_DPLLB_SEL);
4b645f14 5598 temp |= TRANSC_DPLL_ENABLE | transc_sel;
9db4a9c7
JB
5599 break;
5600 default:
5601 BUG();
32f9d658 5602 }
8db9d77b 5603 I915_WRITE(PCH_DPLL_SEL, temp);
5eddb70b
CW
5604
5605 POSTING_READ(PCH_DPLL_SEL);
8db9d77b
ZW
5606 udelay(150);
5607 }
5608
79e53945
JB
5609 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5610 * This is an exception to the general rule that mode_set doesn't turn
5611 * things on.
5612 */
5613 if (is_lvds) {
fae14981 5614 temp = I915_READ(PCH_LVDS);
5eddb70b 5615 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4b645f14
JB
5616 if (HAS_PCH_CPT(dev))
5617 temp |= PORT_TRANS_SEL_CPT(pipe);
5618 else if (pipe == 1)
5619 temp |= LVDS_PIPEB_SELECT;
5620 else
5621 temp &= ~LVDS_PIPEB_SELECT;
5622
a3e17eb8 5623 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5624 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5625 /* Set the B0-B3 data pairs corresponding to whether we're going to
5626 * set the DPLLs for dual-channel mode or not.
5627 */
5628 if (clock.p2 == 7)
5eddb70b 5629 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5630 else
5eddb70b 5631 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5632
5633 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5634 * appropriately here, but we need to look more thoroughly into how
5635 * panels behave in the two modes.
5636 */
aa9b500d
BF
5637 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5638 lvds_sync |= LVDS_HSYNC_POLARITY;
5639 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5640 lvds_sync |= LVDS_VSYNC_POLARITY;
5641 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5642 != lvds_sync) {
5643 char flags[2] = "-+";
5644 DRM_INFO("Changing LVDS panel from "
5645 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5646 flags[!(temp & LVDS_HSYNC_POLARITY)],
5647 flags[!(temp & LVDS_VSYNC_POLARITY)],
5648 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5649 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5650 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5651 temp |= lvds_sync;
5652 }
fae14981 5653 I915_WRITE(PCH_LVDS, temp);
79e53945 5654 }
434ed097 5655
8febb297
EA
5656 pipeconf &= ~PIPECONF_DITHER_EN;
5657 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5a354204 5658 if ((is_lvds && dev_priv->lvds_dither) || dither) {
8febb297
EA
5659 pipeconf |= PIPECONF_DITHER_EN;
5660 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
434ed097 5661 }
5c5313c8 5662 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
a4fc5ed6 5663 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5664 } else {
8db9d77b 5665 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5666 I915_WRITE(TRANSDATA_M1(pipe), 0);
5667 I915_WRITE(TRANSDATA_N1(pipe), 0);
5668 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5669 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5670 }
79e53945 5671
4b645f14
JB
5672 if (!intel_crtc->no_pll &&
5673 (!has_edp_encoder ||
5674 intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
fae14981 5675 I915_WRITE(PCH_DPLL(pipe), dpll);
5eddb70b 5676
32f9d658 5677 /* Wait for the clocks to stabilize. */
fae14981 5678 POSTING_READ(PCH_DPLL(pipe));
32f9d658
ZW
5679 udelay(150);
5680
8febb297
EA
5681 /* The pixel multiplier can only be updated once the
5682 * DPLL is enabled and the clocks are stable.
5683 *
5684 * So write it again.
5685 */
fae14981 5686 I915_WRITE(PCH_DPLL(pipe), dpll);
79e53945 5687 }
79e53945 5688
5eddb70b 5689 intel_crtc->lowfreq_avail = false;
4b645f14
JB
5690 if (!intel_crtc->no_pll) {
5691 if (is_lvds && has_reduced_clock && i915_powersave) {
5692 I915_WRITE(PCH_FP1(pipe), fp2);
5693 intel_crtc->lowfreq_avail = true;
5694 if (HAS_PIPE_CXSR(dev)) {
5695 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5696 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5697 }
5698 } else {
5699 I915_WRITE(PCH_FP1(pipe), fp);
5700 if (HAS_PIPE_CXSR(dev)) {
5701 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5702 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5703 }
652c393a
JB
5704 }
5705 }
5706
734b4157
KH
5707 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5708 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5709 /* the chip adds 2 halflines automatically */
5710 adjusted_mode->crtc_vdisplay -= 1;
5711 adjusted_mode->crtc_vtotal -= 1;
5712 adjusted_mode->crtc_vblank_start -= 1;
5713 adjusted_mode->crtc_vblank_end -= 1;
5714 adjusted_mode->crtc_vsync_end -= 1;
5715 adjusted_mode->crtc_vsync_start -= 1;
5716 } else
5717 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5718
5eddb70b
CW
5719 I915_WRITE(HTOTAL(pipe),
5720 (adjusted_mode->crtc_hdisplay - 1) |
79e53945 5721 ((adjusted_mode->crtc_htotal - 1) << 16));
5eddb70b
CW
5722 I915_WRITE(HBLANK(pipe),
5723 (adjusted_mode->crtc_hblank_start - 1) |
79e53945 5724 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5eddb70b
CW
5725 I915_WRITE(HSYNC(pipe),
5726 (adjusted_mode->crtc_hsync_start - 1) |
79e53945 5727 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5eddb70b
CW
5728
5729 I915_WRITE(VTOTAL(pipe),
5730 (adjusted_mode->crtc_vdisplay - 1) |
79e53945 5731 ((adjusted_mode->crtc_vtotal - 1) << 16));
5eddb70b
CW
5732 I915_WRITE(VBLANK(pipe),
5733 (adjusted_mode->crtc_vblank_start - 1) |
79e53945 5734 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5eddb70b
CW
5735 I915_WRITE(VSYNC(pipe),
5736 (adjusted_mode->crtc_vsync_start - 1) |
79e53945 5737 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5eddb70b 5738
8febb297
EA
5739 /* pipesrc controls the size that is scaled from, which should
5740 * always be the user's requested size.
79e53945 5741 */
5eddb70b
CW
5742 I915_WRITE(PIPESRC(pipe),
5743 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f 5744
8febb297
EA
5745 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5746 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5747 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5748 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
2c07245f 5749
8febb297
EA
5750 if (has_edp_encoder &&
5751 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5752 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f
ZW
5753 }
5754
5eddb70b
CW
5755 I915_WRITE(PIPECONF(pipe), pipeconf);
5756 POSTING_READ(PIPECONF(pipe));
79e53945 5757
9d0498a2 5758 intel_wait_for_vblank(dev, pipe);
79e53945 5759
f00a3ddf 5760 if (IS_GEN5(dev)) {
553bd149
ZW
5761 /* enable address swizzle for tiling buffer */
5762 temp = I915_READ(DISP_ARB_CTL);
5763 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5764 }
5765
5eddb70b 5766 I915_WRITE(DSPCNTR(plane), dspcntr);
b24e7179 5767 POSTING_READ(DSPCNTR(plane));
79e53945 5768
5c3b82e2 5769 ret = intel_pipe_set_base(crtc, x, y, old_fb);
7662c8bd
SL
5770
5771 intel_update_watermarks(dev);
5772
1f803ee5 5773 return ret;
79e53945
JB
5774}
5775
f564048e
EA
5776static int intel_crtc_mode_set(struct drm_crtc *crtc,
5777 struct drm_display_mode *mode,
5778 struct drm_display_mode *adjusted_mode,
5779 int x, int y,
5780 struct drm_framebuffer *old_fb)
5781{
5782 struct drm_device *dev = crtc->dev;
5783 struct drm_i915_private *dev_priv = dev->dev_private;
0b701d27
EA
5784 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5785 int pipe = intel_crtc->pipe;
f564048e
EA
5786 int ret;
5787
0b701d27 5788 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5789
f564048e
EA
5790 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5791 x, y, old_fb);
7662c8bd 5792
79e53945 5793 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5794
120eced9
KP
5795 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
5796
1f803ee5 5797 return ret;
79e53945
JB
5798}
5799
e0dac65e
WF
5800static void g4x_write_eld(struct drm_connector *connector,
5801 struct drm_crtc *crtc)
5802{
5803 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5804 uint8_t *eld = connector->eld;
5805 uint32_t eldv;
5806 uint32_t len;
5807 uint32_t i;
5808
5809 i = I915_READ(G4X_AUD_VID_DID);
5810
5811 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5812 eldv = G4X_ELDV_DEVCL_DEVBLC;
5813 else
5814 eldv = G4X_ELDV_DEVCTG;
5815
5816 i = I915_READ(G4X_AUD_CNTL_ST);
5817 i &= ~(eldv | G4X_ELD_ADDR);
5818 len = (i >> 9) & 0x1f; /* ELD buffer size */
5819 I915_WRITE(G4X_AUD_CNTL_ST, i);
5820
5821 if (!eld[0])
5822 return;
5823
5824 len = min_t(uint8_t, eld[2], len);
5825 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5826 for (i = 0; i < len; i++)
5827 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5828
5829 i = I915_READ(G4X_AUD_CNTL_ST);
5830 i |= eldv;
5831 I915_WRITE(G4X_AUD_CNTL_ST, i);
5832}
5833
5834static void ironlake_write_eld(struct drm_connector *connector,
5835 struct drm_crtc *crtc)
5836{
5837 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5838 uint8_t *eld = connector->eld;
5839 uint32_t eldv;
5840 uint32_t i;
5841 int len;
5842 int hdmiw_hdmiedid;
5843 int aud_cntl_st;
5844 int aud_cntrl_st2;
5845
5846 if (IS_IVYBRIDGE(connector->dev)) {
5847 hdmiw_hdmiedid = GEN7_HDMIW_HDMIEDID_A;
5848 aud_cntl_st = GEN7_AUD_CNTRL_ST_A;
5849 aud_cntrl_st2 = GEN7_AUD_CNTRL_ST2;
5850 } else {
5851 hdmiw_hdmiedid = GEN5_HDMIW_HDMIEDID_A;
5852 aud_cntl_st = GEN5_AUD_CNTL_ST_A;
5853 aud_cntrl_st2 = GEN5_AUD_CNTL_ST2;
5854 }
5855
5856 i = to_intel_crtc(crtc)->pipe;
5857 hdmiw_hdmiedid += i * 0x100;
5858 aud_cntl_st += i * 0x100;
5859
5860 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
5861
5862 i = I915_READ(aud_cntl_st);
5863 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
5864 if (!i) {
5865 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5866 /* operate blindly on all ports */
5867 eldv = GEN5_ELD_VALIDB;
5868 eldv |= GEN5_ELD_VALIDB << 4;
5869 eldv |= GEN5_ELD_VALIDB << 8;
5870 } else {
5871 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5872 eldv = GEN5_ELD_VALIDB << ((i - 1) * 4);
5873 }
5874
5875 i = I915_READ(aud_cntrl_st2);
5876 i &= ~eldv;
5877 I915_WRITE(aud_cntrl_st2, i);
5878
5879 if (!eld[0])
5880 return;
5881
5882 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5883 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5884 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5885 }
5886
5887 i = I915_READ(aud_cntl_st);
5888 i &= ~GEN5_ELD_ADDRESS;
5889 I915_WRITE(aud_cntl_st, i);
5890
5891 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5892 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5893 for (i = 0; i < len; i++)
5894 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5895
5896 i = I915_READ(aud_cntrl_st2);
5897 i |= eldv;
5898 I915_WRITE(aud_cntrl_st2, i);
5899}
5900
5901void intel_write_eld(struct drm_encoder *encoder,
5902 struct drm_display_mode *mode)
5903{
5904 struct drm_crtc *crtc = encoder->crtc;
5905 struct drm_connector *connector;
5906 struct drm_device *dev = encoder->dev;
5907 struct drm_i915_private *dev_priv = dev->dev_private;
5908
5909 connector = drm_select_eld(encoder, mode);
5910 if (!connector)
5911 return;
5912
5913 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5914 connector->base.id,
5915 drm_get_connector_name(connector),
5916 connector->encoder->base.id,
5917 drm_get_encoder_name(connector->encoder));
5918
5919 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5920
5921 if (dev_priv->display.write_eld)
5922 dev_priv->display.write_eld(connector, crtc);
5923}
5924
79e53945
JB
5925/** Loads the palette/gamma unit for the CRTC with the prepared values */
5926void intel_crtc_load_lut(struct drm_crtc *crtc)
5927{
5928 struct drm_device *dev = crtc->dev;
5929 struct drm_i915_private *dev_priv = dev->dev_private;
5930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 5931 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
5932 int i;
5933
5934 /* The clocks have to be on to load the palette. */
5935 if (!crtc->enabled)
5936 return;
5937
f2b115e6 5938 /* use legacy palette for Ironlake */
bad720ff 5939 if (HAS_PCH_SPLIT(dev))
9db4a9c7 5940 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 5941
79e53945
JB
5942 for (i = 0; i < 256; i++) {
5943 I915_WRITE(palreg + 4 * i,
5944 (intel_crtc->lut_r[i] << 16) |
5945 (intel_crtc->lut_g[i] << 8) |
5946 intel_crtc->lut_b[i]);
5947 }
5948}
5949
560b85bb
CW
5950static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5951{
5952 struct drm_device *dev = crtc->dev;
5953 struct drm_i915_private *dev_priv = dev->dev_private;
5954 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5955 bool visible = base != 0;
5956 u32 cntl;
5957
5958 if (intel_crtc->cursor_visible == visible)
5959 return;
5960
9db4a9c7 5961 cntl = I915_READ(_CURACNTR);
560b85bb
CW
5962 if (visible) {
5963 /* On these chipsets we can only modify the base whilst
5964 * the cursor is disabled.
5965 */
9db4a9c7 5966 I915_WRITE(_CURABASE, base);
560b85bb
CW
5967
5968 cntl &= ~(CURSOR_FORMAT_MASK);
5969 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5970 cntl |= CURSOR_ENABLE |
5971 CURSOR_GAMMA_ENABLE |
5972 CURSOR_FORMAT_ARGB;
5973 } else
5974 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 5975 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
5976
5977 intel_crtc->cursor_visible = visible;
5978}
5979
5980static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5981{
5982 struct drm_device *dev = crtc->dev;
5983 struct drm_i915_private *dev_priv = dev->dev_private;
5984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5985 int pipe = intel_crtc->pipe;
5986 bool visible = base != 0;
5987
5988 if (intel_crtc->cursor_visible != visible) {
548f245b 5989 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
5990 if (base) {
5991 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5992 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5993 cntl |= pipe << 28; /* Connect to correct pipe */
5994 } else {
5995 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5996 cntl |= CURSOR_MODE_DISABLE;
5997 }
9db4a9c7 5998 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
5999
6000 intel_crtc->cursor_visible = visible;
6001 }
6002 /* and commit changes on next vblank */
9db4a9c7 6003 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
6004}
6005
65a21cd6
JB
6006static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6007{
6008 struct drm_device *dev = crtc->dev;
6009 struct drm_i915_private *dev_priv = dev->dev_private;
6010 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6011 int pipe = intel_crtc->pipe;
6012 bool visible = base != 0;
6013
6014 if (intel_crtc->cursor_visible != visible) {
6015 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6016 if (base) {
6017 cntl &= ~CURSOR_MODE;
6018 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6019 } else {
6020 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6021 cntl |= CURSOR_MODE_DISABLE;
6022 }
6023 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6024
6025 intel_crtc->cursor_visible = visible;
6026 }
6027 /* and commit changes on next vblank */
6028 I915_WRITE(CURBASE_IVB(pipe), base);
6029}
6030
cda4b7d3 6031/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
6032static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6033 bool on)
cda4b7d3
CW
6034{
6035 struct drm_device *dev = crtc->dev;
6036 struct drm_i915_private *dev_priv = dev->dev_private;
6037 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6038 int pipe = intel_crtc->pipe;
6039 int x = intel_crtc->cursor_x;
6040 int y = intel_crtc->cursor_y;
560b85bb 6041 u32 base, pos;
cda4b7d3
CW
6042 bool visible;
6043
6044 pos = 0;
6045
6b383a7f 6046 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
6047 base = intel_crtc->cursor_addr;
6048 if (x > (int) crtc->fb->width)
6049 base = 0;
6050
6051 if (y > (int) crtc->fb->height)
6052 base = 0;
6053 } else
6054 base = 0;
6055
6056 if (x < 0) {
6057 if (x + intel_crtc->cursor_width < 0)
6058 base = 0;
6059
6060 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6061 x = -x;
6062 }
6063 pos |= x << CURSOR_X_SHIFT;
6064
6065 if (y < 0) {
6066 if (y + intel_crtc->cursor_height < 0)
6067 base = 0;
6068
6069 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6070 y = -y;
6071 }
6072 pos |= y << CURSOR_Y_SHIFT;
6073
6074 visible = base != 0;
560b85bb 6075 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
6076 return;
6077
65a21cd6
JB
6078 if (IS_IVYBRIDGE(dev)) {
6079 I915_WRITE(CURPOS_IVB(pipe), pos);
6080 ivb_update_cursor(crtc, base);
6081 } else {
6082 I915_WRITE(CURPOS(pipe), pos);
6083 if (IS_845G(dev) || IS_I865G(dev))
6084 i845_update_cursor(crtc, base);
6085 else
6086 i9xx_update_cursor(crtc, base);
6087 }
cda4b7d3
CW
6088
6089 if (visible)
6090 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6091}
6092
79e53945 6093static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 6094 struct drm_file *file,
79e53945
JB
6095 uint32_t handle,
6096 uint32_t width, uint32_t height)
6097{
6098 struct drm_device *dev = crtc->dev;
6099 struct drm_i915_private *dev_priv = dev->dev_private;
6100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 6101 struct drm_i915_gem_object *obj;
cda4b7d3 6102 uint32_t addr;
3f8bc370 6103 int ret;
79e53945 6104
28c97730 6105 DRM_DEBUG_KMS("\n");
79e53945
JB
6106
6107 /* if we want to turn off the cursor ignore width and height */
6108 if (!handle) {
28c97730 6109 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 6110 addr = 0;
05394f39 6111 obj = NULL;
5004417d 6112 mutex_lock(&dev->struct_mutex);
3f8bc370 6113 goto finish;
79e53945
JB
6114 }
6115
6116 /* Currently we only support 64x64 cursors */
6117 if (width != 64 || height != 64) {
6118 DRM_ERROR("we currently only support 64x64 cursors\n");
6119 return -EINVAL;
6120 }
6121
05394f39 6122 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 6123 if (&obj->base == NULL)
79e53945
JB
6124 return -ENOENT;
6125
05394f39 6126 if (obj->base.size < width * height * 4) {
79e53945 6127 DRM_ERROR("buffer is to small\n");
34b8686e
DA
6128 ret = -ENOMEM;
6129 goto fail;
79e53945
JB
6130 }
6131
71acb5eb 6132 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 6133 mutex_lock(&dev->struct_mutex);
b295d1b6 6134 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
6135 if (obj->tiling_mode) {
6136 DRM_ERROR("cursor cannot be tiled\n");
6137 ret = -EINVAL;
6138 goto fail_locked;
6139 }
6140
2da3b9b9 6141 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
6142 if (ret) {
6143 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 6144 goto fail_locked;
e7b526bb
CW
6145 }
6146
d9e86c0e
CW
6147 ret = i915_gem_object_put_fence(obj);
6148 if (ret) {
2da3b9b9 6149 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
6150 goto fail_unpin;
6151 }
6152
05394f39 6153 addr = obj->gtt_offset;
71acb5eb 6154 } else {
6eeefaf3 6155 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 6156 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
6157 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6158 align);
71acb5eb
DA
6159 if (ret) {
6160 DRM_ERROR("failed to attach phys object\n");
7f9872e0 6161 goto fail_locked;
71acb5eb 6162 }
05394f39 6163 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
6164 }
6165
a6c45cf0 6166 if (IS_GEN2(dev))
14b60391
JB
6167 I915_WRITE(CURSIZE, (height << 12) | width);
6168
3f8bc370 6169 finish:
3f8bc370 6170 if (intel_crtc->cursor_bo) {
b295d1b6 6171 if (dev_priv->info->cursor_needs_physical) {
05394f39 6172 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
6173 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6174 } else
6175 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 6176 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 6177 }
80824003 6178
7f9872e0 6179 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
6180
6181 intel_crtc->cursor_addr = addr;
05394f39 6182 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
6183 intel_crtc->cursor_width = width;
6184 intel_crtc->cursor_height = height;
6185
6b383a7f 6186 intel_crtc_update_cursor(crtc, true);
3f8bc370 6187
79e53945 6188 return 0;
e7b526bb 6189fail_unpin:
05394f39 6190 i915_gem_object_unpin(obj);
7f9872e0 6191fail_locked:
34b8686e 6192 mutex_unlock(&dev->struct_mutex);
bc9025bd 6193fail:
05394f39 6194 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 6195 return ret;
79e53945
JB
6196}
6197
6198static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6199{
79e53945 6200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6201
cda4b7d3
CW
6202 intel_crtc->cursor_x = x;
6203 intel_crtc->cursor_y = y;
652c393a 6204
6b383a7f 6205 intel_crtc_update_cursor(crtc, true);
79e53945
JB
6206
6207 return 0;
6208}
6209
6210/** Sets the color ramps on behalf of RandR */
6211void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6212 u16 blue, int regno)
6213{
6214 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6215
6216 intel_crtc->lut_r[regno] = red >> 8;
6217 intel_crtc->lut_g[regno] = green >> 8;
6218 intel_crtc->lut_b[regno] = blue >> 8;
6219}
6220
b8c00ac5
DA
6221void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6222 u16 *blue, int regno)
6223{
6224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6225
6226 *red = intel_crtc->lut_r[regno] << 8;
6227 *green = intel_crtc->lut_g[regno] << 8;
6228 *blue = intel_crtc->lut_b[regno] << 8;
6229}
6230
79e53945 6231static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 6232 u16 *blue, uint32_t start, uint32_t size)
79e53945 6233{
7203425a 6234 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 6235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6236
7203425a 6237 for (i = start; i < end; i++) {
79e53945
JB
6238 intel_crtc->lut_r[i] = red[i] >> 8;
6239 intel_crtc->lut_g[i] = green[i] >> 8;
6240 intel_crtc->lut_b[i] = blue[i] >> 8;
6241 }
6242
6243 intel_crtc_load_lut(crtc);
6244}
6245
6246/**
6247 * Get a pipe with a simple mode set on it for doing load-based monitor
6248 * detection.
6249 *
6250 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 6251 * its requirements. The pipe will be connected to no other encoders.
79e53945 6252 *
c751ce4f 6253 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
6254 * configured for it. In the future, it could choose to temporarily disable
6255 * some outputs to free up a pipe for its use.
6256 *
6257 * \return crtc, or NULL if no pipes are available.
6258 */
6259
6260/* VESA 640x480x72Hz mode to set on the pipe */
6261static struct drm_display_mode load_detect_mode = {
6262 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6263 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6264};
6265
d2dff872
CW
6266static struct drm_framebuffer *
6267intel_framebuffer_create(struct drm_device *dev,
6268 struct drm_mode_fb_cmd *mode_cmd,
6269 struct drm_i915_gem_object *obj)
6270{
6271 struct intel_framebuffer *intel_fb;
6272 int ret;
6273
6274 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6275 if (!intel_fb) {
6276 drm_gem_object_unreference_unlocked(&obj->base);
6277 return ERR_PTR(-ENOMEM);
6278 }
6279
6280 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6281 if (ret) {
6282 drm_gem_object_unreference_unlocked(&obj->base);
6283 kfree(intel_fb);
6284 return ERR_PTR(ret);
6285 }
6286
6287 return &intel_fb->base;
6288}
6289
6290static u32
6291intel_framebuffer_pitch_for_width(int width, int bpp)
6292{
6293 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6294 return ALIGN(pitch, 64);
6295}
6296
6297static u32
6298intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6299{
6300 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6301 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6302}
6303
6304static struct drm_framebuffer *
6305intel_framebuffer_create_for_mode(struct drm_device *dev,
6306 struct drm_display_mode *mode,
6307 int depth, int bpp)
6308{
6309 struct drm_i915_gem_object *obj;
6310 struct drm_mode_fb_cmd mode_cmd;
6311
6312 obj = i915_gem_alloc_object(dev,
6313 intel_framebuffer_size_for_mode(mode, bpp));
6314 if (obj == NULL)
6315 return ERR_PTR(-ENOMEM);
6316
6317 mode_cmd.width = mode->hdisplay;
6318 mode_cmd.height = mode->vdisplay;
6319 mode_cmd.depth = depth;
6320 mode_cmd.bpp = bpp;
6321 mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
6322
6323 return intel_framebuffer_create(dev, &mode_cmd, obj);
6324}
6325
6326static struct drm_framebuffer *
6327mode_fits_in_fbdev(struct drm_device *dev,
6328 struct drm_display_mode *mode)
6329{
6330 struct drm_i915_private *dev_priv = dev->dev_private;
6331 struct drm_i915_gem_object *obj;
6332 struct drm_framebuffer *fb;
6333
6334 if (dev_priv->fbdev == NULL)
6335 return NULL;
6336
6337 obj = dev_priv->fbdev->ifb.obj;
6338 if (obj == NULL)
6339 return NULL;
6340
6341 fb = &dev_priv->fbdev->ifb.base;
6342 if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
6343 fb->bits_per_pixel))
6344 return NULL;
6345
6346 if (obj->base.size < mode->vdisplay * fb->pitch)
6347 return NULL;
6348
6349 return fb;
6350}
6351
7173188d
CW
6352bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6353 struct drm_connector *connector,
6354 struct drm_display_mode *mode,
8261b191 6355 struct intel_load_detect_pipe *old)
79e53945
JB
6356{
6357 struct intel_crtc *intel_crtc;
6358 struct drm_crtc *possible_crtc;
4ef69c7a 6359 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6360 struct drm_crtc *crtc = NULL;
6361 struct drm_device *dev = encoder->dev;
d2dff872 6362 struct drm_framebuffer *old_fb;
79e53945
JB
6363 int i = -1;
6364
d2dff872
CW
6365 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6366 connector->base.id, drm_get_connector_name(connector),
6367 encoder->base.id, drm_get_encoder_name(encoder));
6368
79e53945
JB
6369 /*
6370 * Algorithm gets a little messy:
7a5e4805 6371 *
79e53945
JB
6372 * - if the connector already has an assigned crtc, use it (but make
6373 * sure it's on first)
7a5e4805 6374 *
79e53945
JB
6375 * - try to find the first unused crtc that can drive this connector,
6376 * and use that if we find one
79e53945
JB
6377 */
6378
6379 /* See if we already have a CRTC for this connector */
6380 if (encoder->crtc) {
6381 crtc = encoder->crtc;
8261b191 6382
79e53945 6383 intel_crtc = to_intel_crtc(crtc);
8261b191
CW
6384 old->dpms_mode = intel_crtc->dpms_mode;
6385 old->load_detect_temp = false;
6386
6387 /* Make sure the crtc and connector are running */
79e53945 6388 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6492711d
CW
6389 struct drm_encoder_helper_funcs *encoder_funcs;
6390 struct drm_crtc_helper_funcs *crtc_funcs;
6391
79e53945
JB
6392 crtc_funcs = crtc->helper_private;
6393 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6492711d
CW
6394
6395 encoder_funcs = encoder->helper_private;
79e53945
JB
6396 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6397 }
8261b191 6398
7173188d 6399 return true;
79e53945
JB
6400 }
6401
6402 /* Find an unused one (if possible) */
6403 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6404 i++;
6405 if (!(encoder->possible_crtcs & (1 << i)))
6406 continue;
6407 if (!possible_crtc->enabled) {
6408 crtc = possible_crtc;
6409 break;
6410 }
79e53945
JB
6411 }
6412
6413 /*
6414 * If we didn't find an unused CRTC, don't use any.
6415 */
6416 if (!crtc) {
7173188d
CW
6417 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6418 return false;
79e53945
JB
6419 }
6420
6421 encoder->crtc = crtc;
c1c43977 6422 connector->encoder = encoder;
79e53945
JB
6423
6424 intel_crtc = to_intel_crtc(crtc);
8261b191
CW
6425 old->dpms_mode = intel_crtc->dpms_mode;
6426 old->load_detect_temp = true;
d2dff872 6427 old->release_fb = NULL;
79e53945 6428
6492711d
CW
6429 if (!mode)
6430 mode = &load_detect_mode;
79e53945 6431
d2dff872
CW
6432 old_fb = crtc->fb;
6433
6434 /* We need a framebuffer large enough to accommodate all accesses
6435 * that the plane may generate whilst we perform load detection.
6436 * We can not rely on the fbcon either being present (we get called
6437 * during its initialisation to detect all boot displays, or it may
6438 * not even exist) or that it is large enough to satisfy the
6439 * requested mode.
6440 */
6441 crtc->fb = mode_fits_in_fbdev(dev, mode);
6442 if (crtc->fb == NULL) {
6443 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6444 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6445 old->release_fb = crtc->fb;
6446 } else
6447 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6448 if (IS_ERR(crtc->fb)) {
6449 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6450 crtc->fb = old_fb;
6451 return false;
79e53945 6452 }
79e53945 6453
d2dff872 6454 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6492711d 6455 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
6456 if (old->release_fb)
6457 old->release_fb->funcs->destroy(old->release_fb);
6458 crtc->fb = old_fb;
6492711d 6459 return false;
79e53945 6460 }
7173188d 6461
79e53945 6462 /* let the connector get through one full cycle before testing */
9d0498a2 6463 intel_wait_for_vblank(dev, intel_crtc->pipe);
79e53945 6464
7173188d 6465 return true;
79e53945
JB
6466}
6467
c1c43977 6468void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
8261b191
CW
6469 struct drm_connector *connector,
6470 struct intel_load_detect_pipe *old)
79e53945 6471{
4ef69c7a 6472 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6473 struct drm_device *dev = encoder->dev;
6474 struct drm_crtc *crtc = encoder->crtc;
6475 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6476 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6477
d2dff872
CW
6478 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6479 connector->base.id, drm_get_connector_name(connector),
6480 encoder->base.id, drm_get_encoder_name(encoder));
6481
8261b191 6482 if (old->load_detect_temp) {
c1c43977 6483 connector->encoder = NULL;
79e53945 6484 drm_helper_disable_unused_functions(dev);
d2dff872
CW
6485
6486 if (old->release_fb)
6487 old->release_fb->funcs->destroy(old->release_fb);
6488
0622a53c 6489 return;
79e53945
JB
6490 }
6491
c751ce4f 6492 /* Switch crtc and encoder back off if necessary */
0622a53c
CW
6493 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6494 encoder_funcs->dpms(encoder, old->dpms_mode);
8261b191 6495 crtc_funcs->dpms(crtc, old->dpms_mode);
79e53945
JB
6496 }
6497}
6498
6499/* Returns the clock of the currently programmed mode of the given pipe. */
6500static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6501{
6502 struct drm_i915_private *dev_priv = dev->dev_private;
6503 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6504 int pipe = intel_crtc->pipe;
548f245b 6505 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
6506 u32 fp;
6507 intel_clock_t clock;
6508
6509 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 6510 fp = I915_READ(FP0(pipe));
79e53945 6511 else
39adb7a5 6512 fp = I915_READ(FP1(pipe));
79e53945
JB
6513
6514 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
6515 if (IS_PINEVIEW(dev)) {
6516 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6517 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
6518 } else {
6519 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6520 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6521 }
6522
a6c45cf0 6523 if (!IS_GEN2(dev)) {
f2b115e6
AJ
6524 if (IS_PINEVIEW(dev))
6525 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6526 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
6527 else
6528 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
6529 DPLL_FPA01_P1_POST_DIV_SHIFT);
6530
6531 switch (dpll & DPLL_MODE_MASK) {
6532 case DPLLB_MODE_DAC_SERIAL:
6533 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6534 5 : 10;
6535 break;
6536 case DPLLB_MODE_LVDS:
6537 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6538 7 : 14;
6539 break;
6540 default:
28c97730 6541 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6542 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6543 return 0;
6544 }
6545
6546 /* XXX: Handle the 100Mhz refclk */
2177832f 6547 intel_clock(dev, 96000, &clock);
79e53945
JB
6548 } else {
6549 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6550
6551 if (is_lvds) {
6552 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6553 DPLL_FPA01_P1_POST_DIV_SHIFT);
6554 clock.p2 = 14;
6555
6556 if ((dpll & PLL_REF_INPUT_MASK) ==
6557 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6558 /* XXX: might not be 66MHz */
2177832f 6559 intel_clock(dev, 66000, &clock);
79e53945 6560 } else
2177832f 6561 intel_clock(dev, 48000, &clock);
79e53945
JB
6562 } else {
6563 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6564 clock.p1 = 2;
6565 else {
6566 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6567 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6568 }
6569 if (dpll & PLL_P2_DIVIDE_BY_4)
6570 clock.p2 = 4;
6571 else
6572 clock.p2 = 2;
6573
2177832f 6574 intel_clock(dev, 48000, &clock);
79e53945
JB
6575 }
6576 }
6577
6578 /* XXX: It would be nice to validate the clocks, but we can't reuse
6579 * i830PllIsValid() because it relies on the xf86_config connector
6580 * configuration being accurate, which it isn't necessarily.
6581 */
6582
6583 return clock.dot;
6584}
6585
6586/** Returns the currently programmed mode of the given pipe. */
6587struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6588 struct drm_crtc *crtc)
6589{
548f245b 6590 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
6591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6592 int pipe = intel_crtc->pipe;
6593 struct drm_display_mode *mode;
548f245b
JB
6594 int htot = I915_READ(HTOTAL(pipe));
6595 int hsync = I915_READ(HSYNC(pipe));
6596 int vtot = I915_READ(VTOTAL(pipe));
6597 int vsync = I915_READ(VSYNC(pipe));
79e53945
JB
6598
6599 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6600 if (!mode)
6601 return NULL;
6602
6603 mode->clock = intel_crtc_clock_get(dev, crtc);
6604 mode->hdisplay = (htot & 0xffff) + 1;
6605 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6606 mode->hsync_start = (hsync & 0xffff) + 1;
6607 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6608 mode->vdisplay = (vtot & 0xffff) + 1;
6609 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6610 mode->vsync_start = (vsync & 0xffff) + 1;
6611 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6612
6613 drm_mode_set_name(mode);
6614 drm_mode_set_crtcinfo(mode, 0);
6615
6616 return mode;
6617}
6618
652c393a
JB
6619#define GPU_IDLE_TIMEOUT 500 /* ms */
6620
6621/* When this timer fires, we've been idle for awhile */
6622static void intel_gpu_idle_timer(unsigned long arg)
6623{
6624 struct drm_device *dev = (struct drm_device *)arg;
6625 drm_i915_private_t *dev_priv = dev->dev_private;
6626
ff7ea4c0
CW
6627 if (!list_empty(&dev_priv->mm.active_list)) {
6628 /* Still processing requests, so just re-arm the timer. */
6629 mod_timer(&dev_priv->idle_timer, jiffies +
6630 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6631 return;
6632 }
652c393a 6633
ff7ea4c0 6634 dev_priv->busy = false;
01dfba93 6635 queue_work(dev_priv->wq, &dev_priv->idle_work);
652c393a
JB
6636}
6637
652c393a
JB
6638#define CRTC_IDLE_TIMEOUT 1000 /* ms */
6639
6640static void intel_crtc_idle_timer(unsigned long arg)
6641{
6642 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6643 struct drm_crtc *crtc = &intel_crtc->base;
6644 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
ff7ea4c0 6645 struct intel_framebuffer *intel_fb;
652c393a 6646
ff7ea4c0
CW
6647 intel_fb = to_intel_framebuffer(crtc->fb);
6648 if (intel_fb && intel_fb->obj->active) {
6649 /* The framebuffer is still being accessed by the GPU. */
6650 mod_timer(&intel_crtc->idle_timer, jiffies +
6651 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6652 return;
6653 }
652c393a 6654
ff7ea4c0 6655 intel_crtc->busy = false;
01dfba93 6656 queue_work(dev_priv->wq, &dev_priv->idle_work);
652c393a
JB
6657}
6658
3dec0095 6659static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6660{
6661 struct drm_device *dev = crtc->dev;
6662 drm_i915_private_t *dev_priv = dev->dev_private;
6663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6664 int pipe = intel_crtc->pipe;
dbdc6479
JB
6665 int dpll_reg = DPLL(pipe);
6666 int dpll;
652c393a 6667
bad720ff 6668 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6669 return;
6670
6671 if (!dev_priv->lvds_downclock_avail)
6672 return;
6673
dbdc6479 6674 dpll = I915_READ(dpll_reg);
652c393a 6675 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6676 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a
JB
6677
6678 /* Unlock panel regs */
dbdc6479
JB
6679 I915_WRITE(PP_CONTROL,
6680 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
652c393a
JB
6681
6682 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6683 I915_WRITE(dpll_reg, dpll);
9d0498a2 6684 intel_wait_for_vblank(dev, pipe);
dbdc6479 6685
652c393a
JB
6686 dpll = I915_READ(dpll_reg);
6687 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6688 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a
JB
6689
6690 /* ...and lock them again */
6691 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6692 }
6693
6694 /* Schedule downclock */
3dec0095
DV
6695 mod_timer(&intel_crtc->idle_timer, jiffies +
6696 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
652c393a
JB
6697}
6698
6699static void intel_decrease_pllclock(struct drm_crtc *crtc)
6700{
6701 struct drm_device *dev = crtc->dev;
6702 drm_i915_private_t *dev_priv = dev->dev_private;
6703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6704 int pipe = intel_crtc->pipe;
9db4a9c7 6705 int dpll_reg = DPLL(pipe);
652c393a
JB
6706 int dpll = I915_READ(dpll_reg);
6707
bad720ff 6708 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6709 return;
6710
6711 if (!dev_priv->lvds_downclock_avail)
6712 return;
6713
6714 /*
6715 * Since this is called by a timer, we should never get here in
6716 * the manual case.
6717 */
6718 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
44d98a61 6719 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a
JB
6720
6721 /* Unlock panel regs */
4a655f04
JB
6722 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6723 PANEL_UNLOCK_REGS);
652c393a
JB
6724
6725 dpll |= DISPLAY_RATE_SELECT_FPA1;
6726 I915_WRITE(dpll_reg, dpll);
9d0498a2 6727 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6728 dpll = I915_READ(dpll_reg);
6729 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6730 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6731
6732 /* ...and lock them again */
6733 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6734 }
6735
6736}
6737
6738/**
6739 * intel_idle_update - adjust clocks for idleness
6740 * @work: work struct
6741 *
6742 * Either the GPU or display (or both) went idle. Check the busy status
6743 * here and adjust the CRTC and GPU clocks as necessary.
6744 */
6745static void intel_idle_update(struct work_struct *work)
6746{
6747 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6748 idle_work);
6749 struct drm_device *dev = dev_priv->dev;
6750 struct drm_crtc *crtc;
6751 struct intel_crtc *intel_crtc;
6752
6753 if (!i915_powersave)
6754 return;
6755
6756 mutex_lock(&dev->struct_mutex);
6757
7648fa99
JB
6758 i915_update_gfx_val(dev_priv);
6759
652c393a
JB
6760 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6761 /* Skip inactive CRTCs */
6762 if (!crtc->fb)
6763 continue;
6764
6765 intel_crtc = to_intel_crtc(crtc);
6766 if (!intel_crtc->busy)
6767 intel_decrease_pllclock(crtc);
6768 }
6769
45ac22c8 6770
652c393a
JB
6771 mutex_unlock(&dev->struct_mutex);
6772}
6773
6774/**
6775 * intel_mark_busy - mark the GPU and possibly the display busy
6776 * @dev: drm device
6777 * @obj: object we're operating on
6778 *
6779 * Callers can use this function to indicate that the GPU is busy processing
6780 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6781 * buffer), we'll also mark the display as busy, so we know to increase its
6782 * clock frequency.
6783 */
05394f39 6784void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
652c393a
JB
6785{
6786 drm_i915_private_t *dev_priv = dev->dev_private;
6787 struct drm_crtc *crtc = NULL;
6788 struct intel_framebuffer *intel_fb;
6789 struct intel_crtc *intel_crtc;
6790
5e17ee74
ZW
6791 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6792 return;
6793
18b2190c 6794 if (!dev_priv->busy)
28cf798f 6795 dev_priv->busy = true;
18b2190c 6796 else
28cf798f
CW
6797 mod_timer(&dev_priv->idle_timer, jiffies +
6798 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
652c393a
JB
6799
6800 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6801 if (!crtc->fb)
6802 continue;
6803
6804 intel_crtc = to_intel_crtc(crtc);
6805 intel_fb = to_intel_framebuffer(crtc->fb);
6806 if (intel_fb->obj == obj) {
6807 if (!intel_crtc->busy) {
6808 /* Non-busy -> busy, upclock */
3dec0095 6809 intel_increase_pllclock(crtc);
652c393a
JB
6810 intel_crtc->busy = true;
6811 } else {
6812 /* Busy -> busy, put off timer */
6813 mod_timer(&intel_crtc->idle_timer, jiffies +
6814 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6815 }
6816 }
6817 }
6818}
6819
79e53945
JB
6820static void intel_crtc_destroy(struct drm_crtc *crtc)
6821{
6822 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
6823 struct drm_device *dev = crtc->dev;
6824 struct intel_unpin_work *work;
6825 unsigned long flags;
6826
6827 spin_lock_irqsave(&dev->event_lock, flags);
6828 work = intel_crtc->unpin_work;
6829 intel_crtc->unpin_work = NULL;
6830 spin_unlock_irqrestore(&dev->event_lock, flags);
6831
6832 if (work) {
6833 cancel_work_sync(&work->work);
6834 kfree(work);
6835 }
79e53945
JB
6836
6837 drm_crtc_cleanup(crtc);
67e77c5a 6838
79e53945
JB
6839 kfree(intel_crtc);
6840}
6841
6b95a207
KH
6842static void intel_unpin_work_fn(struct work_struct *__work)
6843{
6844 struct intel_unpin_work *work =
6845 container_of(__work, struct intel_unpin_work, work);
6846
6847 mutex_lock(&work->dev->struct_mutex);
b1b87f6b 6848 i915_gem_object_unpin(work->old_fb_obj);
05394f39
CW
6849 drm_gem_object_unreference(&work->pending_flip_obj->base);
6850 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 6851
7782de3b 6852 intel_update_fbc(work->dev);
6b95a207
KH
6853 mutex_unlock(&work->dev->struct_mutex);
6854 kfree(work);
6855}
6856
1afe3e9d 6857static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 6858 struct drm_crtc *crtc)
6b95a207
KH
6859{
6860 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
6861 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6862 struct intel_unpin_work *work;
05394f39 6863 struct drm_i915_gem_object *obj;
6b95a207 6864 struct drm_pending_vblank_event *e;
49b14a5c 6865 struct timeval tnow, tvbl;
6b95a207
KH
6866 unsigned long flags;
6867
6868 /* Ignore early vblank irqs */
6869 if (intel_crtc == NULL)
6870 return;
6871
49b14a5c
MK
6872 do_gettimeofday(&tnow);
6873
6b95a207
KH
6874 spin_lock_irqsave(&dev->event_lock, flags);
6875 work = intel_crtc->unpin_work;
6876 if (work == NULL || !work->pending) {
6877 spin_unlock_irqrestore(&dev->event_lock, flags);
6878 return;
6879 }
6880
6881 intel_crtc->unpin_work = NULL;
6b95a207
KH
6882
6883 if (work->event) {
6884 e = work->event;
49b14a5c 6885 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
0af7e4df
MK
6886
6887 /* Called before vblank count and timestamps have
6888 * been updated for the vblank interval of flip
6889 * completion? Need to increment vblank count and
6890 * add one videorefresh duration to returned timestamp
49b14a5c
MK
6891 * to account for this. We assume this happened if we
6892 * get called over 0.9 frame durations after the last
6893 * timestamped vblank.
6894 *
6895 * This calculation can not be used with vrefresh rates
6896 * below 5Hz (10Hz to be on the safe side) without
6897 * promoting to 64 integers.
0af7e4df 6898 */
49b14a5c
MK
6899 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6900 9 * crtc->framedur_ns) {
0af7e4df 6901 e->event.sequence++;
49b14a5c
MK
6902 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6903 crtc->framedur_ns);
0af7e4df
MK
6904 }
6905
49b14a5c
MK
6906 e->event.tv_sec = tvbl.tv_sec;
6907 e->event.tv_usec = tvbl.tv_usec;
0af7e4df 6908
6b95a207
KH
6909 list_add_tail(&e->base.link,
6910 &e->base.file_priv->event_list);
6911 wake_up_interruptible(&e->base.file_priv->event_wait);
6912 }
6913
0af7e4df
MK
6914 drm_vblank_put(dev, intel_crtc->pipe);
6915
6b95a207
KH
6916 spin_unlock_irqrestore(&dev->event_lock, flags);
6917
05394f39 6918 obj = work->old_fb_obj;
d9e86c0e 6919
e59f2bac 6920 atomic_clear_mask(1 << intel_crtc->plane,
05394f39
CW
6921 &obj->pending_flip.counter);
6922 if (atomic_read(&obj->pending_flip) == 0)
f787a5f5 6923 wake_up(&dev_priv->pending_flip_queue);
d9e86c0e 6924
6b95a207 6925 schedule_work(&work->work);
e5510fac
JB
6926
6927 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
6928}
6929
1afe3e9d
JB
6930void intel_finish_page_flip(struct drm_device *dev, int pipe)
6931{
6932 drm_i915_private_t *dev_priv = dev->dev_private;
6933 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6934
49b14a5c 6935 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6936}
6937
6938void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6939{
6940 drm_i915_private_t *dev_priv = dev->dev_private;
6941 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6942
49b14a5c 6943 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6944}
6945
6b95a207
KH
6946void intel_prepare_page_flip(struct drm_device *dev, int plane)
6947{
6948 drm_i915_private_t *dev_priv = dev->dev_private;
6949 struct intel_crtc *intel_crtc =
6950 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6951 unsigned long flags;
6952
6953 spin_lock_irqsave(&dev->event_lock, flags);
de3f440f 6954 if (intel_crtc->unpin_work) {
4e5359cd
SF
6955 if ((++intel_crtc->unpin_work->pending) > 1)
6956 DRM_ERROR("Prepared flip multiple times\n");
de3f440f
JB
6957 } else {
6958 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6959 }
6b95a207
KH
6960 spin_unlock_irqrestore(&dev->event_lock, flags);
6961}
6962
8c9f3aaf
JB
6963static int intel_gen2_queue_flip(struct drm_device *dev,
6964 struct drm_crtc *crtc,
6965 struct drm_framebuffer *fb,
6966 struct drm_i915_gem_object *obj)
6967{
6968 struct drm_i915_private *dev_priv = dev->dev_private;
6969 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6970 unsigned long offset;
6971 u32 flip_mask;
6972 int ret;
6973
6974 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6975 if (ret)
6976 goto out;
6977
6978 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6979 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6980
6981 ret = BEGIN_LP_RING(6);
6982 if (ret)
6983 goto out;
6984
6985 /* Can't queue multiple flips, so wait for the previous
6986 * one to finish before executing the next.
6987 */
6988 if (intel_crtc->plane)
6989 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6990 else
6991 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6992 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6993 OUT_RING(MI_NOOP);
6994 OUT_RING(MI_DISPLAY_FLIP |
6995 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6996 OUT_RING(fb->pitch);
6997 OUT_RING(obj->gtt_offset + offset);
6998 OUT_RING(MI_NOOP);
6999 ADVANCE_LP_RING();
7000out:
7001 return ret;
7002}
7003
7004static int intel_gen3_queue_flip(struct drm_device *dev,
7005 struct drm_crtc *crtc,
7006 struct drm_framebuffer *fb,
7007 struct drm_i915_gem_object *obj)
7008{
7009 struct drm_i915_private *dev_priv = dev->dev_private;
7010 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7011 unsigned long offset;
7012 u32 flip_mask;
7013 int ret;
7014
7015 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7016 if (ret)
7017 goto out;
7018
7019 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7020 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
7021
7022 ret = BEGIN_LP_RING(6);
7023 if (ret)
7024 goto out;
7025
7026 if (intel_crtc->plane)
7027 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7028 else
7029 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7030 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7031 OUT_RING(MI_NOOP);
7032 OUT_RING(MI_DISPLAY_FLIP_I915 |
7033 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7034 OUT_RING(fb->pitch);
7035 OUT_RING(obj->gtt_offset + offset);
7036 OUT_RING(MI_NOOP);
7037
7038 ADVANCE_LP_RING();
7039out:
7040 return ret;
7041}
7042
7043static int intel_gen4_queue_flip(struct drm_device *dev,
7044 struct drm_crtc *crtc,
7045 struct drm_framebuffer *fb,
7046 struct drm_i915_gem_object *obj)
7047{
7048 struct drm_i915_private *dev_priv = dev->dev_private;
7049 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7050 uint32_t pf, pipesrc;
7051 int ret;
7052
7053 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7054 if (ret)
7055 goto out;
7056
7057 ret = BEGIN_LP_RING(4);
7058 if (ret)
7059 goto out;
7060
7061 /* i965+ uses the linear or tiled offsets from the
7062 * Display Registers (which do not change across a page-flip)
7063 * so we need only reprogram the base address.
7064 */
7065 OUT_RING(MI_DISPLAY_FLIP |
7066 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7067 OUT_RING(fb->pitch);
7068 OUT_RING(obj->gtt_offset | obj->tiling_mode);
7069
7070 /* XXX Enabling the panel-fitter across page-flip is so far
7071 * untested on non-native modes, so ignore it for now.
7072 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7073 */
7074 pf = 0;
7075 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7076 OUT_RING(pf | pipesrc);
7077 ADVANCE_LP_RING();
7078out:
7079 return ret;
7080}
7081
7082static int intel_gen6_queue_flip(struct drm_device *dev,
7083 struct drm_crtc *crtc,
7084 struct drm_framebuffer *fb,
7085 struct drm_i915_gem_object *obj)
7086{
7087 struct drm_i915_private *dev_priv = dev->dev_private;
7088 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7089 uint32_t pf, pipesrc;
7090 int ret;
7091
7092 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7093 if (ret)
7094 goto out;
7095
7096 ret = BEGIN_LP_RING(4);
7097 if (ret)
7098 goto out;
7099
7100 OUT_RING(MI_DISPLAY_FLIP |
7101 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7102 OUT_RING(fb->pitch | obj->tiling_mode);
7103 OUT_RING(obj->gtt_offset);
7104
7105 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7106 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7107 OUT_RING(pf | pipesrc);
7108 ADVANCE_LP_RING();
7109out:
7110 return ret;
7111}
7112
7c9017e5
JB
7113/*
7114 * On gen7 we currently use the blit ring because (in early silicon at least)
7115 * the render ring doesn't give us interrpts for page flip completion, which
7116 * means clients will hang after the first flip is queued. Fortunately the
7117 * blit ring generates interrupts properly, so use it instead.
7118 */
7119static int intel_gen7_queue_flip(struct drm_device *dev,
7120 struct drm_crtc *crtc,
7121 struct drm_framebuffer *fb,
7122 struct drm_i915_gem_object *obj)
7123{
7124 struct drm_i915_private *dev_priv = dev->dev_private;
7125 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7126 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7127 int ret;
7128
7129 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7130 if (ret)
7131 goto out;
7132
7133 ret = intel_ring_begin(ring, 4);
7134 if (ret)
7135 goto out;
7136
7137 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7138 intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
7139 intel_ring_emit(ring, (obj->gtt_offset));
7140 intel_ring_emit(ring, (MI_NOOP));
7141 intel_ring_advance(ring);
7142out:
7143 return ret;
7144}
7145
8c9f3aaf
JB
7146static int intel_default_queue_flip(struct drm_device *dev,
7147 struct drm_crtc *crtc,
7148 struct drm_framebuffer *fb,
7149 struct drm_i915_gem_object *obj)
7150{
7151 return -ENODEV;
7152}
7153
6b95a207
KH
7154static int intel_crtc_page_flip(struct drm_crtc *crtc,
7155 struct drm_framebuffer *fb,
7156 struct drm_pending_vblank_event *event)
7157{
7158 struct drm_device *dev = crtc->dev;
7159 struct drm_i915_private *dev_priv = dev->dev_private;
7160 struct intel_framebuffer *intel_fb;
05394f39 7161 struct drm_i915_gem_object *obj;
6b95a207
KH
7162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7163 struct intel_unpin_work *work;
8c9f3aaf 7164 unsigned long flags;
52e68630 7165 int ret;
6b95a207
KH
7166
7167 work = kzalloc(sizeof *work, GFP_KERNEL);
7168 if (work == NULL)
7169 return -ENOMEM;
7170
6b95a207
KH
7171 work->event = event;
7172 work->dev = crtc->dev;
7173 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 7174 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
7175 INIT_WORK(&work->work, intel_unpin_work_fn);
7176
7177 /* We borrow the event spin lock for protecting unpin_work */
7178 spin_lock_irqsave(&dev->event_lock, flags);
7179 if (intel_crtc->unpin_work) {
7180 spin_unlock_irqrestore(&dev->event_lock, flags);
7181 kfree(work);
468f0b44
CW
7182
7183 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
7184 return -EBUSY;
7185 }
7186 intel_crtc->unpin_work = work;
7187 spin_unlock_irqrestore(&dev->event_lock, flags);
7188
7189 intel_fb = to_intel_framebuffer(fb);
7190 obj = intel_fb->obj;
7191
468f0b44 7192 mutex_lock(&dev->struct_mutex);
6b95a207 7193
75dfca80 7194 /* Reference the objects for the scheduled work. */
05394f39
CW
7195 drm_gem_object_reference(&work->old_fb_obj->base);
7196 drm_gem_object_reference(&obj->base);
6b95a207
KH
7197
7198 crtc->fb = fb;
96b099fd
CW
7199
7200 ret = drm_vblank_get(dev, intel_crtc->pipe);
7201 if (ret)
7202 goto cleanup_objs;
7203
e1f99ce6 7204 work->pending_flip_obj = obj;
e1f99ce6 7205
4e5359cd
SF
7206 work->enable_stall_check = true;
7207
e1f99ce6
CW
7208 /* Block clients from rendering to the new back buffer until
7209 * the flip occurs and the object is no longer visible.
7210 */
05394f39 7211 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
e1f99ce6 7212
8c9f3aaf
JB
7213 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7214 if (ret)
7215 goto cleanup_pending;
6b95a207 7216
7782de3b 7217 intel_disable_fbc(dev);
6b95a207
KH
7218 mutex_unlock(&dev->struct_mutex);
7219
e5510fac
JB
7220 trace_i915_flip_request(intel_crtc->plane, obj);
7221
6b95a207 7222 return 0;
96b099fd 7223
8c9f3aaf
JB
7224cleanup_pending:
7225 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
96b099fd 7226cleanup_objs:
05394f39
CW
7227 drm_gem_object_unreference(&work->old_fb_obj->base);
7228 drm_gem_object_unreference(&obj->base);
96b099fd
CW
7229 mutex_unlock(&dev->struct_mutex);
7230
7231 spin_lock_irqsave(&dev->event_lock, flags);
7232 intel_crtc->unpin_work = NULL;
7233 spin_unlock_irqrestore(&dev->event_lock, flags);
7234
7235 kfree(work);
7236
7237 return ret;
6b95a207
KH
7238}
7239
47f1c6c9
CW
7240static void intel_sanitize_modesetting(struct drm_device *dev,
7241 int pipe, int plane)
7242{
7243 struct drm_i915_private *dev_priv = dev->dev_private;
7244 u32 reg, val;
7245
7246 if (HAS_PCH_SPLIT(dev))
7247 return;
7248
7249 /* Who knows what state these registers were left in by the BIOS or
7250 * grub?
7251 *
7252 * If we leave the registers in a conflicting state (e.g. with the
7253 * display plane reading from the other pipe than the one we intend
7254 * to use) then when we attempt to teardown the active mode, we will
7255 * not disable the pipes and planes in the correct order -- leaving
7256 * a plane reading from a disabled pipe and possibly leading to
7257 * undefined behaviour.
7258 */
7259
7260 reg = DSPCNTR(plane);
7261 val = I915_READ(reg);
7262
7263 if ((val & DISPLAY_PLANE_ENABLE) == 0)
7264 return;
7265 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7266 return;
7267
7268 /* This display plane is active and attached to the other CPU pipe. */
7269 pipe = !pipe;
7270
7271 /* Disable the plane and wait for it to stop reading from the pipe. */
b24e7179
JB
7272 intel_disable_plane(dev_priv, plane, pipe);
7273 intel_disable_pipe(dev_priv, pipe);
47f1c6c9 7274}
79e53945 7275
f6e5b160
CW
7276static void intel_crtc_reset(struct drm_crtc *crtc)
7277{
7278 struct drm_device *dev = crtc->dev;
7279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7280
7281 /* Reset flags back to the 'unknown' status so that they
7282 * will be correctly set on the initial modeset.
7283 */
7284 intel_crtc->dpms_mode = -1;
7285
7286 /* We need to fix up any BIOS configuration that conflicts with
7287 * our expectations.
7288 */
7289 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7290}
7291
7292static struct drm_crtc_helper_funcs intel_helper_funcs = {
7293 .dpms = intel_crtc_dpms,
7294 .mode_fixup = intel_crtc_mode_fixup,
7295 .mode_set = intel_crtc_mode_set,
7296 .mode_set_base = intel_pipe_set_base,
7297 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7298 .load_lut = intel_crtc_load_lut,
7299 .disable = intel_crtc_disable,
7300};
7301
7302static const struct drm_crtc_funcs intel_crtc_funcs = {
7303 .reset = intel_crtc_reset,
7304 .cursor_set = intel_crtc_cursor_set,
7305 .cursor_move = intel_crtc_cursor_move,
7306 .gamma_set = intel_crtc_gamma_set,
7307 .set_config = drm_crtc_helper_set_config,
7308 .destroy = intel_crtc_destroy,
7309 .page_flip = intel_crtc_page_flip,
7310};
7311
b358d0a6 7312static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 7313{
22fd0fab 7314 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
7315 struct intel_crtc *intel_crtc;
7316 int i;
7317
7318 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7319 if (intel_crtc == NULL)
7320 return;
7321
7322 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7323
7324 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
7325 for (i = 0; i < 256; i++) {
7326 intel_crtc->lut_r[i] = i;
7327 intel_crtc->lut_g[i] = i;
7328 intel_crtc->lut_b[i] = i;
7329 }
7330
80824003
JB
7331 /* Swap pipes & planes for FBC on pre-965 */
7332 intel_crtc->pipe = pipe;
7333 intel_crtc->plane = pipe;
e2e767ab 7334 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 7335 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 7336 intel_crtc->plane = !pipe;
80824003
JB
7337 }
7338
22fd0fab
JB
7339 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7340 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7341 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7342 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7343
5d1d0cc8 7344 intel_crtc_reset(&intel_crtc->base);
04dbff52 7345 intel_crtc->active = true; /* force the pipe off on setup_init_config */
5a354204 7346 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3
JB
7347
7348 if (HAS_PCH_SPLIT(dev)) {
4b645f14
JB
7349 if (pipe == 2 && IS_IVYBRIDGE(dev))
7350 intel_crtc->no_pll = true;
7e7d76c3
JB
7351 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7352 intel_helper_funcs.commit = ironlake_crtc_commit;
7353 } else {
7354 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7355 intel_helper_funcs.commit = i9xx_crtc_commit;
7356 }
7357
79e53945
JB
7358 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7359
652c393a
JB
7360 intel_crtc->busy = false;
7361
7362 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7363 (unsigned long)intel_crtc);
79e53945
JB
7364}
7365
08d7b3d1 7366int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 7367 struct drm_file *file)
08d7b3d1
CW
7368{
7369 drm_i915_private_t *dev_priv = dev->dev_private;
7370 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
7371 struct drm_mode_object *drmmode_obj;
7372 struct intel_crtc *crtc;
08d7b3d1
CW
7373
7374 if (!dev_priv) {
7375 DRM_ERROR("called with no initialization\n");
7376 return -EINVAL;
7377 }
7378
c05422d5
DV
7379 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7380 DRM_MODE_OBJECT_CRTC);
08d7b3d1 7381
c05422d5 7382 if (!drmmode_obj) {
08d7b3d1
CW
7383 DRM_ERROR("no such CRTC id\n");
7384 return -EINVAL;
7385 }
7386
c05422d5
DV
7387 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7388 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 7389
c05422d5 7390 return 0;
08d7b3d1
CW
7391}
7392
c5e4df33 7393static int intel_encoder_clones(struct drm_device *dev, int type_mask)
79e53945 7394{
4ef69c7a 7395 struct intel_encoder *encoder;
79e53945 7396 int index_mask = 0;
79e53945
JB
7397 int entry = 0;
7398
4ef69c7a
CW
7399 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7400 if (type_mask & encoder->clone_mask)
79e53945
JB
7401 index_mask |= (1 << entry);
7402 entry++;
7403 }
4ef69c7a 7404
79e53945
JB
7405 return index_mask;
7406}
7407
4d302442
CW
7408static bool has_edp_a(struct drm_device *dev)
7409{
7410 struct drm_i915_private *dev_priv = dev->dev_private;
7411
7412 if (!IS_MOBILE(dev))
7413 return false;
7414
7415 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7416 return false;
7417
7418 if (IS_GEN5(dev) &&
7419 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7420 return false;
7421
7422 return true;
7423}
7424
79e53945
JB
7425static void intel_setup_outputs(struct drm_device *dev)
7426{
725e30ad 7427 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 7428 struct intel_encoder *encoder;
cb0953d7 7429 bool dpd_is_edp = false;
c5d1b51d 7430 bool has_lvds = false;
79e53945 7431
541998a1 7432 if (IS_MOBILE(dev) && !IS_I830(dev))
c5d1b51d
CW
7433 has_lvds = intel_lvds_init(dev);
7434 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7435 /* disable the panel fitter on everything but LVDS */
7436 I915_WRITE(PFIT_CONTROL, 0);
7437 }
79e53945 7438
bad720ff 7439 if (HAS_PCH_SPLIT(dev)) {
cb0953d7 7440 dpd_is_edp = intel_dpd_is_edp(dev);
30ad48b7 7441
4d302442 7442 if (has_edp_a(dev))
32f9d658
ZW
7443 intel_dp_init(dev, DP_A);
7444
cb0953d7
AJ
7445 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7446 intel_dp_init(dev, PCH_DP_D);
7447 }
7448
7449 intel_crt_init(dev);
7450
7451 if (HAS_PCH_SPLIT(dev)) {
7452 int found;
7453
30ad48b7 7454 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca
ZY
7455 /* PCH SDVOB multiplex with HDMIB */
7456 found = intel_sdvo_init(dev, PCH_SDVOB);
30ad48b7
ZW
7457 if (!found)
7458 intel_hdmi_init(dev, HDMIB);
5eb08b69
ZW
7459 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7460 intel_dp_init(dev, PCH_DP_B);
30ad48b7
ZW
7461 }
7462
7463 if (I915_READ(HDMIC) & PORT_DETECTED)
7464 intel_hdmi_init(dev, HDMIC);
7465
7466 if (I915_READ(HDMID) & PORT_DETECTED)
7467 intel_hdmi_init(dev, HDMID);
7468
5eb08b69
ZW
7469 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7470 intel_dp_init(dev, PCH_DP_C);
7471
cb0953d7 7472 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5eb08b69
ZW
7473 intel_dp_init(dev, PCH_DP_D);
7474
103a196f 7475 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 7476 bool found = false;
7d57382e 7477
725e30ad 7478 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 7479 DRM_DEBUG_KMS("probing SDVOB\n");
725e30ad 7480 found = intel_sdvo_init(dev, SDVOB);
b01f2c3a
JB
7481 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7482 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
725e30ad 7483 intel_hdmi_init(dev, SDVOB);
b01f2c3a 7484 }
27185ae1 7485
b01f2c3a
JB
7486 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7487 DRM_DEBUG_KMS("probing DP_B\n");
a4fc5ed6 7488 intel_dp_init(dev, DP_B);
b01f2c3a 7489 }
725e30ad 7490 }
13520b05
KH
7491
7492 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 7493
b01f2c3a
JB
7494 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7495 DRM_DEBUG_KMS("probing SDVOC\n");
725e30ad 7496 found = intel_sdvo_init(dev, SDVOC);
b01f2c3a 7497 }
27185ae1
ML
7498
7499 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7500
b01f2c3a
JB
7501 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7502 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
725e30ad 7503 intel_hdmi_init(dev, SDVOC);
b01f2c3a
JB
7504 }
7505 if (SUPPORTS_INTEGRATED_DP(dev)) {
7506 DRM_DEBUG_KMS("probing DP_C\n");
a4fc5ed6 7507 intel_dp_init(dev, DP_C);
b01f2c3a 7508 }
725e30ad 7509 }
27185ae1 7510
b01f2c3a
JB
7511 if (SUPPORTS_INTEGRATED_DP(dev) &&
7512 (I915_READ(DP_D) & DP_DETECTED)) {
7513 DRM_DEBUG_KMS("probing DP_D\n");
a4fc5ed6 7514 intel_dp_init(dev, DP_D);
b01f2c3a 7515 }
bad720ff 7516 } else if (IS_GEN2(dev))
79e53945
JB
7517 intel_dvo_init(dev);
7518
103a196f 7519 if (SUPPORTS_TV(dev))
79e53945
JB
7520 intel_tv_init(dev);
7521
4ef69c7a
CW
7522 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7523 encoder->base.possible_crtcs = encoder->crtc_mask;
7524 encoder->base.possible_clones =
7525 intel_encoder_clones(dev, encoder->clone_mask);
79e53945 7526 }
47356eb6 7527
2c7111db
CW
7528 /* disable all the possible outputs/crtcs before entering KMS mode */
7529 drm_helper_disable_unused_functions(dev);
9fb526db
KP
7530
7531 if (HAS_PCH_SPLIT(dev))
7532 ironlake_init_pch_refclk(dev);
79e53945
JB
7533}
7534
7535static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7536{
7537 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
7538
7539 drm_framebuffer_cleanup(fb);
05394f39 7540 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
7541
7542 kfree(intel_fb);
7543}
7544
7545static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 7546 struct drm_file *file,
79e53945
JB
7547 unsigned int *handle)
7548{
7549 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 7550 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 7551
05394f39 7552 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
7553}
7554
7555static const struct drm_framebuffer_funcs intel_fb_funcs = {
7556 .destroy = intel_user_framebuffer_destroy,
7557 .create_handle = intel_user_framebuffer_create_handle,
7558};
7559
38651674
DA
7560int intel_framebuffer_init(struct drm_device *dev,
7561 struct intel_framebuffer *intel_fb,
7562 struct drm_mode_fb_cmd *mode_cmd,
05394f39 7563 struct drm_i915_gem_object *obj)
79e53945 7564{
79e53945
JB
7565 int ret;
7566
05394f39 7567 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
7568 return -EINVAL;
7569
7570 if (mode_cmd->pitch & 63)
7571 return -EINVAL;
7572
7573 switch (mode_cmd->bpp) {
7574 case 8:
7575 case 16:
b5626747
JB
7576 /* Only pre-ILK can handle 5:5:5 */
7577 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7578 return -EINVAL;
7579 break;
7580
57cd6508
CW
7581 case 24:
7582 case 32:
7583 break;
7584 default:
7585 return -EINVAL;
7586 }
7587
79e53945
JB
7588 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7589 if (ret) {
7590 DRM_ERROR("framebuffer init failed %d\n", ret);
7591 return ret;
7592 }
7593
7594 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 7595 intel_fb->obj = obj;
79e53945
JB
7596 return 0;
7597}
7598
79e53945
JB
7599static struct drm_framebuffer *
7600intel_user_framebuffer_create(struct drm_device *dev,
7601 struct drm_file *filp,
7602 struct drm_mode_fb_cmd *mode_cmd)
7603{
05394f39 7604 struct drm_i915_gem_object *obj;
79e53945 7605
05394f39 7606 obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
c8725226 7607 if (&obj->base == NULL)
cce13ff7 7608 return ERR_PTR(-ENOENT);
79e53945 7609
d2dff872 7610 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
7611}
7612
79e53945 7613static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 7614 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 7615 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
7616};
7617
05394f39 7618static struct drm_i915_gem_object *
aa40d6bb 7619intel_alloc_context_page(struct drm_device *dev)
9ea8d059 7620{
05394f39 7621 struct drm_i915_gem_object *ctx;
9ea8d059
CW
7622 int ret;
7623
2c34b850
BW
7624 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7625
aa40d6bb
ZN
7626 ctx = i915_gem_alloc_object(dev, 4096);
7627 if (!ctx) {
9ea8d059
CW
7628 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7629 return NULL;
7630 }
7631
75e9e915 7632 ret = i915_gem_object_pin(ctx, 4096, true);
9ea8d059
CW
7633 if (ret) {
7634 DRM_ERROR("failed to pin power context: %d\n", ret);
7635 goto err_unref;
7636 }
7637
aa40d6bb 7638 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
9ea8d059
CW
7639 if (ret) {
7640 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7641 goto err_unpin;
7642 }
9ea8d059 7643
aa40d6bb 7644 return ctx;
9ea8d059
CW
7645
7646err_unpin:
aa40d6bb 7647 i915_gem_object_unpin(ctx);
9ea8d059 7648err_unref:
05394f39 7649 drm_gem_object_unreference(&ctx->base);
9ea8d059
CW
7650 mutex_unlock(&dev->struct_mutex);
7651 return NULL;
7652}
7653
7648fa99
JB
7654bool ironlake_set_drps(struct drm_device *dev, u8 val)
7655{
7656 struct drm_i915_private *dev_priv = dev->dev_private;
7657 u16 rgvswctl;
7658
7659 rgvswctl = I915_READ16(MEMSWCTL);
7660 if (rgvswctl & MEMCTL_CMD_STS) {
7661 DRM_DEBUG("gpu busy, RCS change rejected\n");
7662 return false; /* still busy with another command */
7663 }
7664
7665 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7666 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7667 I915_WRITE16(MEMSWCTL, rgvswctl);
7668 POSTING_READ16(MEMSWCTL);
7669
7670 rgvswctl |= MEMCTL_CMD_STS;
7671 I915_WRITE16(MEMSWCTL, rgvswctl);
7672
7673 return true;
7674}
7675
f97108d1
JB
7676void ironlake_enable_drps(struct drm_device *dev)
7677{
7678 struct drm_i915_private *dev_priv = dev->dev_private;
7648fa99 7679 u32 rgvmodectl = I915_READ(MEMMODECTL);
f97108d1 7680 u8 fmax, fmin, fstart, vstart;
f97108d1 7681
ea056c14
JB
7682 /* Enable temp reporting */
7683 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7684 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7685
f97108d1
JB
7686 /* 100ms RC evaluation intervals */
7687 I915_WRITE(RCUPEI, 100000);
7688 I915_WRITE(RCDNEI, 100000);
7689
7690 /* Set max/min thresholds to 90ms and 80ms respectively */
7691 I915_WRITE(RCBMAXAVG, 90000);
7692 I915_WRITE(RCBMINAVG, 80000);
7693
7694 I915_WRITE(MEMIHYST, 1);
7695
7696 /* Set up min, max, and cur for interrupt handling */
7697 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7698 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7699 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7700 MEMMODE_FSTART_SHIFT;
7648fa99 7701
f97108d1
JB
7702 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7703 PXVFREQ_PX_SHIFT;
7704
80dbf4b7 7705 dev_priv->fmax = fmax; /* IPS callback will increase this */
7648fa99
JB
7706 dev_priv->fstart = fstart;
7707
80dbf4b7 7708 dev_priv->max_delay = fstart;
f97108d1
JB
7709 dev_priv->min_delay = fmin;
7710 dev_priv->cur_delay = fstart;
7711
80dbf4b7
JB
7712 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7713 fmax, fmin, fstart);
7648fa99 7714
f97108d1
JB
7715 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7716
7717 /*
7718 * Interrupts will be enabled in ironlake_irq_postinstall
7719 */
7720
7721 I915_WRITE(VIDSTART, vstart);
7722 POSTING_READ(VIDSTART);
7723
7724 rgvmodectl |= MEMMODE_SWMODE_EN;
7725 I915_WRITE(MEMMODECTL, rgvmodectl);
7726
481b6af3 7727 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
913d8d11 7728 DRM_ERROR("stuck trying to change perf mode\n");
f97108d1
JB
7729 msleep(1);
7730
7648fa99 7731 ironlake_set_drps(dev, fstart);
f97108d1 7732
7648fa99
JB
7733 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7734 I915_READ(0x112e0);
7735 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7736 dev_priv->last_count2 = I915_READ(0x112f4);
7737 getrawmonotonic(&dev_priv->last_time2);
f97108d1
JB
7738}
7739
7740void ironlake_disable_drps(struct drm_device *dev)
7741{
7742 struct drm_i915_private *dev_priv = dev->dev_private;
7648fa99 7743 u16 rgvswctl = I915_READ16(MEMSWCTL);
f97108d1
JB
7744
7745 /* Ack interrupts, disable EFC interrupt */
7746 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7747 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7748 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7749 I915_WRITE(DEIIR, DE_PCU_EVENT);
7750 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7751
7752 /* Go back to the starting frequency */
7648fa99 7753 ironlake_set_drps(dev, dev_priv->fstart);
f97108d1
JB
7754 msleep(1);
7755 rgvswctl |= MEMCTL_CMD_STS;
7756 I915_WRITE(MEMSWCTL, rgvswctl);
7757 msleep(1);
7758
7759}
7760
3b8d8d91
JB
7761void gen6_set_rps(struct drm_device *dev, u8 val)
7762{
7763 struct drm_i915_private *dev_priv = dev->dev_private;
7764 u32 swreq;
7765
7766 swreq = (val & 0x3ff) << 25;
7767 I915_WRITE(GEN6_RPNSWREQ, swreq);
7768}
7769
7770void gen6_disable_rps(struct drm_device *dev)
7771{
7772 struct drm_i915_private *dev_priv = dev->dev_private;
7773
7774 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7775 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7776 I915_WRITE(GEN6_PMIER, 0);
6fdd4d98
DV
7777 /* Complete PM interrupt masking here doesn't race with the rps work
7778 * item again unmasking PM interrupts because that is using a different
7779 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
7780 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
4912d041
BW
7781
7782 spin_lock_irq(&dev_priv->rps_lock);
7783 dev_priv->pm_iir = 0;
7784 spin_unlock_irq(&dev_priv->rps_lock);
7785
3b8d8d91
JB
7786 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7787}
7788
7648fa99
JB
7789static unsigned long intel_pxfreq(u32 vidfreq)
7790{
7791 unsigned long freq;
7792 int div = (vidfreq & 0x3f0000) >> 16;
7793 int post = (vidfreq & 0x3000) >> 12;
7794 int pre = (vidfreq & 0x7);
7795
7796 if (!pre)
7797 return 0;
7798
7799 freq = ((div * 133333) / ((1<<post) * pre));
7800
7801 return freq;
7802}
7803
7804void intel_init_emon(struct drm_device *dev)
7805{
7806 struct drm_i915_private *dev_priv = dev->dev_private;
7807 u32 lcfuse;
7808 u8 pxw[16];
7809 int i;
7810
7811 /* Disable to program */
7812 I915_WRITE(ECR, 0);
7813 POSTING_READ(ECR);
7814
7815 /* Program energy weights for various events */
7816 I915_WRITE(SDEW, 0x15040d00);
7817 I915_WRITE(CSIEW0, 0x007f0000);
7818 I915_WRITE(CSIEW1, 0x1e220004);
7819 I915_WRITE(CSIEW2, 0x04000004);
7820
7821 for (i = 0; i < 5; i++)
7822 I915_WRITE(PEW + (i * 4), 0);
7823 for (i = 0; i < 3; i++)
7824 I915_WRITE(DEW + (i * 4), 0);
7825
7826 /* Program P-state weights to account for frequency power adjustment */
7827 for (i = 0; i < 16; i++) {
7828 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7829 unsigned long freq = intel_pxfreq(pxvidfreq);
7830 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7831 PXVFREQ_PX_SHIFT;
7832 unsigned long val;
7833
7834 val = vid * vid;
7835 val *= (freq / 1000);
7836 val *= 255;
7837 val /= (127*127*900);
7838 if (val > 0xff)
7839 DRM_ERROR("bad pxval: %ld\n", val);
7840 pxw[i] = val;
7841 }
7842 /* Render standby states get 0 weight */
7843 pxw[14] = 0;
7844 pxw[15] = 0;
7845
7846 for (i = 0; i < 4; i++) {
7847 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7848 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7849 I915_WRITE(PXW + (i * 4), val);
7850 }
7851
7852 /* Adjust magic regs to magic values (more experimental results) */
7853 I915_WRITE(OGW0, 0);
7854 I915_WRITE(OGW1, 0);
7855 I915_WRITE(EG0, 0x00007f00);
7856 I915_WRITE(EG1, 0x0000000e);
7857 I915_WRITE(EG2, 0x000e0000);
7858 I915_WRITE(EG3, 0x68000300);
7859 I915_WRITE(EG4, 0x42000000);
7860 I915_WRITE(EG5, 0x00140031);
7861 I915_WRITE(EG6, 0);
7862 I915_WRITE(EG7, 0);
7863
7864 for (i = 0; i < 8; i++)
7865 I915_WRITE(PXWL + (i * 4), 0);
7866
7867 /* Enable PMON + select events */
7868 I915_WRITE(ECR, 0x80000019);
7869
7870 lcfuse = I915_READ(LCFUSE02);
7871
7872 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7873}
7874
3b8d8d91 7875void gen6_enable_rps(struct drm_i915_private *dev_priv)
8fd26859 7876{
a6044e23
JB
7877 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7878 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7df8721b 7879 u32 pcu_mbox, rc6_mask = 0;
a6044e23 7880 int cur_freq, min_freq, max_freq;
8fd26859
CW
7881 int i;
7882
7883 /* Here begins a magic sequence of register writes to enable
7884 * auto-downclocking.
7885 *
7886 * Perhaps there might be some value in exposing these to
7887 * userspace...
7888 */
7889 I915_WRITE(GEN6_RC_STATE, 0);
d1ebd816 7890 mutex_lock(&dev_priv->dev->struct_mutex);
fcca7926 7891 gen6_gt_force_wake_get(dev_priv);
8fd26859 7892
3b8d8d91 7893 /* disable the counters and set deterministic thresholds */
8fd26859
CW
7894 I915_WRITE(GEN6_RC_CONTROL, 0);
7895
7896 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7897 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7898 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7899 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7900 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7901
7902 for (i = 0; i < I915_NUM_RINGS; i++)
7903 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7904
7905 I915_WRITE(GEN6_RC_SLEEP, 0);
7906 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7907 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7908 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7909 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7910
7df8721b
JB
7911 if (i915_enable_rc6)
7912 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7913 GEN6_RC_CTL_RC6_ENABLE;
7914
8fd26859 7915 I915_WRITE(GEN6_RC_CONTROL,
7df8721b 7916 rc6_mask |
9c3d2f7f 7917 GEN6_RC_CTL_EI_MODE(1) |
8fd26859
CW
7918 GEN6_RC_CTL_HW_ENABLE);
7919
3b8d8d91 7920 I915_WRITE(GEN6_RPNSWREQ,
8fd26859
CW
7921 GEN6_FREQUENCY(10) |
7922 GEN6_OFFSET(0) |
7923 GEN6_AGGRESSIVE_TURBO);
7924 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7925 GEN6_FREQUENCY(12));
7926
7927 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7928 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7929 18 << 24 |
7930 6 << 16);
ccab5c82
JB
7931 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7932 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8fd26859 7933 I915_WRITE(GEN6_RP_UP_EI, 100000);
ccab5c82 7934 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8fd26859
CW
7935 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7936 I915_WRITE(GEN6_RP_CONTROL,
7937 GEN6_RP_MEDIA_TURBO |
7938 GEN6_RP_USE_NORMAL_FREQ |
7939 GEN6_RP_MEDIA_IS_GFX |
7940 GEN6_RP_ENABLE |
ccab5c82
JB
7941 GEN6_RP_UP_BUSY_AVG |
7942 GEN6_RP_DOWN_IDLE_CONT);
8fd26859
CW
7943
7944 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7945 500))
7946 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7947
7948 I915_WRITE(GEN6_PCODE_DATA, 0);
7949 I915_WRITE(GEN6_PCODE_MAILBOX,
7950 GEN6_PCODE_READY |
7951 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7952 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7953 500))
7954 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7955
a6044e23
JB
7956 min_freq = (rp_state_cap & 0xff0000) >> 16;
7957 max_freq = rp_state_cap & 0xff;
7958 cur_freq = (gt_perf_status & 0xff00) >> 8;
7959
7960 /* Check for overclock support */
7961 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7962 500))
7963 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7964 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7965 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7966 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7967 500))
7968 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7969 if (pcu_mbox & (1<<31)) { /* OC supported */
7970 max_freq = pcu_mbox & 0xff;
e281fcaa 7971 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
a6044e23
JB
7972 }
7973
7974 /* In units of 100MHz */
7975 dev_priv->max_delay = max_freq;
7976 dev_priv->min_delay = min_freq;
7977 dev_priv->cur_delay = cur_freq;
7978
8fd26859
CW
7979 /* requires MSI enabled */
7980 I915_WRITE(GEN6_PMIER,
7981 GEN6_PM_MBOX_EVENT |
7982 GEN6_PM_THERMAL_EVENT |
7983 GEN6_PM_RP_DOWN_TIMEOUT |
7984 GEN6_PM_RP_UP_THRESHOLD |
7985 GEN6_PM_RP_DOWN_THRESHOLD |
7986 GEN6_PM_RP_UP_EI_EXPIRED |
7987 GEN6_PM_RP_DOWN_EI_EXPIRED);
4912d041
BW
7988 spin_lock_irq(&dev_priv->rps_lock);
7989 WARN_ON(dev_priv->pm_iir != 0);
3b8d8d91 7990 I915_WRITE(GEN6_PMIMR, 0);
4912d041 7991 spin_unlock_irq(&dev_priv->rps_lock);
3b8d8d91
JB
7992 /* enable all PM interrupts */
7993 I915_WRITE(GEN6_PMINTRMSK, 0);
8fd26859 7994
fcca7926 7995 gen6_gt_force_wake_put(dev_priv);
d1ebd816 7996 mutex_unlock(&dev_priv->dev->struct_mutex);
8fd26859
CW
7997}
7998
23b2f8bb
JB
7999void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8000{
8001 int min_freq = 15;
8002 int gpu_freq, ia_freq, max_ia_freq;
8003 int scaling_factor = 180;
8004
8005 max_ia_freq = cpufreq_quick_get_max(0);
8006 /*
8007 * Default to measured freq if none found, PCU will ensure we don't go
8008 * over
8009 */
8010 if (!max_ia_freq)
8011 max_ia_freq = tsc_khz;
8012
8013 /* Convert from kHz to MHz */
8014 max_ia_freq /= 1000;
8015
8016 mutex_lock(&dev_priv->dev->struct_mutex);
8017
8018 /*
8019 * For each potential GPU frequency, load a ring frequency we'd like
8020 * to use for memory access. We do this by specifying the IA frequency
8021 * the PCU should use as a reference to determine the ring frequency.
8022 */
8023 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8024 gpu_freq--) {
8025 int diff = dev_priv->max_delay - gpu_freq;
8026
8027 /*
8028 * For GPU frequencies less than 750MHz, just use the lowest
8029 * ring freq.
8030 */
8031 if (gpu_freq < min_freq)
8032 ia_freq = 800;
8033 else
8034 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8035 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8036
8037 I915_WRITE(GEN6_PCODE_DATA,
8038 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8039 gpu_freq);
8040 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8041 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8042 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8043 GEN6_PCODE_READY) == 0, 10)) {
8044 DRM_ERROR("pcode write of freq table timed out\n");
8045 continue;
8046 }
8047 }
8048
8049 mutex_unlock(&dev_priv->dev->struct_mutex);
8050}
8051
6067aaea
JB
8052static void ironlake_init_clock_gating(struct drm_device *dev)
8053{
8054 struct drm_i915_private *dev_priv = dev->dev_private;
8055 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8056
8057 /* Required for FBC */
8058 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8059 DPFCRUNIT_CLOCK_GATE_DISABLE |
8060 DPFDUNIT_CLOCK_GATE_DISABLE;
8061 /* Required for CxSR */
8062 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8063
8064 I915_WRITE(PCH_3DCGDIS0,
8065 MARIUNIT_CLOCK_GATE_DISABLE |
8066 SVSMUNIT_CLOCK_GATE_DISABLE);
8067 I915_WRITE(PCH_3DCGDIS1,
8068 VFMUNIT_CLOCK_GATE_DISABLE);
8069
8070 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8071
6067aaea
JB
8072 /*
8073 * According to the spec the following bits should be set in
8074 * order to enable memory self-refresh
8075 * The bit 22/21 of 0x42004
8076 * The bit 5 of 0x42020
8077 * The bit 15 of 0x45000
8078 */
8079 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8080 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8081 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8082 I915_WRITE(ILK_DSPCLK_GATE,
8083 (I915_READ(ILK_DSPCLK_GATE) |
8084 ILK_DPARB_CLK_GATE));
8085 I915_WRITE(DISP_ARB_CTL,
8086 (I915_READ(DISP_ARB_CTL) |
8087 DISP_FBC_WM_DIS));
8088 I915_WRITE(WM3_LP_ILK, 0);
8089 I915_WRITE(WM2_LP_ILK, 0);
8090 I915_WRITE(WM1_LP_ILK, 0);
8091
8092 /*
8093 * Based on the document from hardware guys the following bits
8094 * should be set unconditionally in order to enable FBC.
8095 * The bit 22 of 0x42000
8096 * The bit 22 of 0x42004
8097 * The bit 7,8,9 of 0x42020.
8098 */
8099 if (IS_IRONLAKE_M(dev)) {
8100 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8101 I915_READ(ILK_DISPLAY_CHICKEN1) |
8102 ILK_FBCQ_DIS);
8103 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8104 I915_READ(ILK_DISPLAY_CHICKEN2) |
8105 ILK_DPARB_GATE);
8106 I915_WRITE(ILK_DSPCLK_GATE,
8107 I915_READ(ILK_DSPCLK_GATE) |
8108 ILK_DPFC_DIS1 |
8109 ILK_DPFC_DIS2 |
8110 ILK_CLK_FBC);
8111 }
8112
8113 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8114 I915_READ(ILK_DISPLAY_CHICKEN2) |
8115 ILK_ELPIN_409_SELECT);
8116 I915_WRITE(_3D_CHICKEN2,
8117 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8118 _3D_CHICKEN2_WM_READ_PIPELINED);
8fd26859
CW
8119}
8120
6067aaea 8121static void gen6_init_clock_gating(struct drm_device *dev)
652c393a
JB
8122{
8123 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 8124 int pipe;
6067aaea
JB
8125 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8126
8127 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
652c393a 8128
6067aaea
JB
8129 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8130 I915_READ(ILK_DISPLAY_CHICKEN2) |
8131 ILK_ELPIN_409_SELECT);
8956c8bb 8132
6067aaea
JB
8133 I915_WRITE(WM3_LP_ILK, 0);
8134 I915_WRITE(WM2_LP_ILK, 0);
8135 I915_WRITE(WM1_LP_ILK, 0);
652c393a
JB
8136
8137 /*
6067aaea
JB
8138 * According to the spec the following bits should be
8139 * set in order to enable memory self-refresh and fbc:
8140 * The bit21 and bit22 of 0x42000
8141 * The bit21 and bit22 of 0x42004
8142 * The bit5 and bit7 of 0x42020
8143 * The bit14 of 0x70180
8144 * The bit14 of 0x71180
652c393a 8145 */
6067aaea
JB
8146 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8147 I915_READ(ILK_DISPLAY_CHICKEN1) |
8148 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8149 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8150 I915_READ(ILK_DISPLAY_CHICKEN2) |
8151 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8152 I915_WRITE(ILK_DSPCLK_GATE,
8153 I915_READ(ILK_DSPCLK_GATE) |
8154 ILK_DPARB_CLK_GATE |
8155 ILK_DPFD_CLK_GATE);
8956c8bb 8156
d74362c9 8157 for_each_pipe(pipe) {
6067aaea
JB
8158 I915_WRITE(DSPCNTR(pipe),
8159 I915_READ(DSPCNTR(pipe)) |
8160 DISPPLANE_TRICKLE_FEED_DISABLE);
d74362c9
KP
8161 intel_flush_display_plane(dev_priv, pipe);
8162 }
6067aaea 8163}
8956c8bb 8164
28963a3e
JB
8165static void ivybridge_init_clock_gating(struct drm_device *dev)
8166{
8167 struct drm_i915_private *dev_priv = dev->dev_private;
8168 int pipe;
8169 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7f8a8569 8170
28963a3e 8171 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
382b0936 8172
28963a3e
JB
8173 I915_WRITE(WM3_LP_ILK, 0);
8174 I915_WRITE(WM2_LP_ILK, 0);
8175 I915_WRITE(WM1_LP_ILK, 0);
de6e2eaf 8176
28963a3e 8177 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
67e92af0 8178
d74362c9 8179 for_each_pipe(pipe) {
28963a3e
JB
8180 I915_WRITE(DSPCNTR(pipe),
8181 I915_READ(DSPCNTR(pipe)) |
8182 DISPPLANE_TRICKLE_FEED_DISABLE);
d74362c9
KP
8183 intel_flush_display_plane(dev_priv, pipe);
8184 }
28963a3e
JB
8185}
8186
6067aaea
JB
8187static void g4x_init_clock_gating(struct drm_device *dev)
8188{
8189 struct drm_i915_private *dev_priv = dev->dev_private;
8190 uint32_t dspclk_gate;
8fd26859 8191
6067aaea
JB
8192 I915_WRITE(RENCLK_GATE_D1, 0);
8193 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8194 GS_UNIT_CLOCK_GATE_DISABLE |
8195 CL_UNIT_CLOCK_GATE_DISABLE);
8196 I915_WRITE(RAMCLK_GATE_D, 0);
8197 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8198 OVRUNIT_CLOCK_GATE_DISABLE |
8199 OVCUNIT_CLOCK_GATE_DISABLE;
8200 if (IS_GM45(dev))
8201 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8202 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8203}
1398261a 8204
6067aaea
JB
8205static void crestline_init_clock_gating(struct drm_device *dev)
8206{
8207 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8208
6067aaea
JB
8209 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8210 I915_WRITE(RENCLK_GATE_D2, 0);
8211 I915_WRITE(DSPCLK_GATE_D, 0);
8212 I915_WRITE(RAMCLK_GATE_D, 0);
8213 I915_WRITE16(DEUC, 0);
8214}
652c393a 8215
6067aaea
JB
8216static void broadwater_init_clock_gating(struct drm_device *dev)
8217{
8218 struct drm_i915_private *dev_priv = dev->dev_private;
8219
8220 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8221 I965_RCC_CLOCK_GATE_DISABLE |
8222 I965_RCPB_CLOCK_GATE_DISABLE |
8223 I965_ISC_CLOCK_GATE_DISABLE |
8224 I965_FBC_CLOCK_GATE_DISABLE);
8225 I915_WRITE(RENCLK_GATE_D2, 0);
8226}
8227
8228static void gen3_init_clock_gating(struct drm_device *dev)
8229{
8230 struct drm_i915_private *dev_priv = dev->dev_private;
8231 u32 dstate = I915_READ(D_STATE);
8232
8233 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8234 DSTATE_DOT_CLOCK_GATING;
8235 I915_WRITE(D_STATE, dstate);
8236}
8237
8238static void i85x_init_clock_gating(struct drm_device *dev)
8239{
8240 struct drm_i915_private *dev_priv = dev->dev_private;
8241
8242 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8243}
8244
8245static void i830_init_clock_gating(struct drm_device *dev)
8246{
8247 struct drm_i915_private *dev_priv = dev->dev_private;
8248
8249 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
652c393a
JB
8250}
8251
645c62a5
JB
8252static void ibx_init_clock_gating(struct drm_device *dev)
8253{
8254 struct drm_i915_private *dev_priv = dev->dev_private;
8255
8256 /*
8257 * On Ibex Peak and Cougar Point, we need to disable clock
8258 * gating for the panel power sequencer or it will fail to
8259 * start up when no ports are active.
8260 */
8261 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8262}
8263
8264static void cpt_init_clock_gating(struct drm_device *dev)
8265{
8266 struct drm_i915_private *dev_priv = dev->dev_private;
3bcf603f 8267 int pipe;
645c62a5
JB
8268
8269 /*
8270 * On Ibex Peak and Cougar Point, we need to disable clock
8271 * gating for the panel power sequencer or it will fail to
8272 * start up when no ports are active.
8273 */
8274 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8275 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8276 DPLS_EDP_PPS_FIX_DIS);
3bcf603f
JB
8277 /* Without this, mode sets may fail silently on FDI */
8278 for_each_pipe(pipe)
8279 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
652c393a
JB
8280}
8281
ac668088 8282static void ironlake_teardown_rc6(struct drm_device *dev)
0cdab21f
CW
8283{
8284 struct drm_i915_private *dev_priv = dev->dev_private;
8285
8286 if (dev_priv->renderctx) {
ac668088
CW
8287 i915_gem_object_unpin(dev_priv->renderctx);
8288 drm_gem_object_unreference(&dev_priv->renderctx->base);
0cdab21f
CW
8289 dev_priv->renderctx = NULL;
8290 }
8291
8292 if (dev_priv->pwrctx) {
ac668088
CW
8293 i915_gem_object_unpin(dev_priv->pwrctx);
8294 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8295 dev_priv->pwrctx = NULL;
8296 }
8297}
8298
8299static void ironlake_disable_rc6(struct drm_device *dev)
8300{
8301 struct drm_i915_private *dev_priv = dev->dev_private;
8302
8303 if (I915_READ(PWRCTXA)) {
8304 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8305 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8306 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8307 50);
0cdab21f
CW
8308
8309 I915_WRITE(PWRCTXA, 0);
8310 POSTING_READ(PWRCTXA);
8311
ac668088
CW
8312 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8313 POSTING_READ(RSTDBYCTL);
0cdab21f 8314 }
ac668088 8315
99507307 8316 ironlake_teardown_rc6(dev);
0cdab21f
CW
8317}
8318
ac668088 8319static int ironlake_setup_rc6(struct drm_device *dev)
d5bb081b
JB
8320{
8321 struct drm_i915_private *dev_priv = dev->dev_private;
8322
ac668088
CW
8323 if (dev_priv->renderctx == NULL)
8324 dev_priv->renderctx = intel_alloc_context_page(dev);
8325 if (!dev_priv->renderctx)
8326 return -ENOMEM;
8327
8328 if (dev_priv->pwrctx == NULL)
8329 dev_priv->pwrctx = intel_alloc_context_page(dev);
8330 if (!dev_priv->pwrctx) {
8331 ironlake_teardown_rc6(dev);
8332 return -ENOMEM;
8333 }
8334
8335 return 0;
d5bb081b
JB
8336}
8337
8338void ironlake_enable_rc6(struct drm_device *dev)
8339{
8340 struct drm_i915_private *dev_priv = dev->dev_private;
8341 int ret;
8342
ac668088
CW
8343 /* rc6 disabled by default due to repeated reports of hanging during
8344 * boot and resume.
8345 */
8346 if (!i915_enable_rc6)
8347 return;
8348
2c34b850 8349 mutex_lock(&dev->struct_mutex);
ac668088 8350 ret = ironlake_setup_rc6(dev);
2c34b850
BW
8351 if (ret) {
8352 mutex_unlock(&dev->struct_mutex);
ac668088 8353 return;
2c34b850 8354 }
ac668088 8355
d5bb081b
JB
8356 /*
8357 * GPU can automatically power down the render unit if given a page
8358 * to save state.
8359 */
8360 ret = BEGIN_LP_RING(6);
8361 if (ret) {
ac668088 8362 ironlake_teardown_rc6(dev);
2c34b850 8363 mutex_unlock(&dev->struct_mutex);
d5bb081b
JB
8364 return;
8365 }
ac668088 8366
d5bb081b
JB
8367 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8368 OUT_RING(MI_SET_CONTEXT);
8369 OUT_RING(dev_priv->renderctx->gtt_offset |
8370 MI_MM_SPACE_GTT |
8371 MI_SAVE_EXT_STATE_EN |
8372 MI_RESTORE_EXT_STATE_EN |
8373 MI_RESTORE_INHIBIT);
8374 OUT_RING(MI_SUSPEND_FLUSH);
8375 OUT_RING(MI_NOOP);
8376 OUT_RING(MI_FLUSH);
8377 ADVANCE_LP_RING();
8378
4a246cfc
BW
8379 /*
8380 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8381 * does an implicit flush, combined with MI_FLUSH above, it should be
8382 * safe to assume that renderctx is valid
8383 */
8384 ret = intel_wait_ring_idle(LP_RING(dev_priv));
8385 if (ret) {
8386 DRM_ERROR("failed to enable ironlake power power savings\n");
8387 ironlake_teardown_rc6(dev);
8388 mutex_unlock(&dev->struct_mutex);
8389 return;
8390 }
8391
d5bb081b
JB
8392 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8393 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2c34b850 8394 mutex_unlock(&dev->struct_mutex);
d5bb081b
JB
8395}
8396
645c62a5
JB
8397void intel_init_clock_gating(struct drm_device *dev)
8398{
8399 struct drm_i915_private *dev_priv = dev->dev_private;
8400
8401 dev_priv->display.init_clock_gating(dev);
8402
8403 if (dev_priv->display.init_pch_clock_gating)
8404 dev_priv->display.init_pch_clock_gating(dev);
8405}
ac668088 8406
e70236a8
JB
8407/* Set up chip specific display functions */
8408static void intel_init_display(struct drm_device *dev)
8409{
8410 struct drm_i915_private *dev_priv = dev->dev_private;
8411
8412 /* We always want a DPMS function */
f564048e 8413 if (HAS_PCH_SPLIT(dev)) {
f2b115e6 8414 dev_priv->display.dpms = ironlake_crtc_dpms;
f564048e 8415 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
17638cd6 8416 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 8417 } else {
e70236a8 8418 dev_priv->display.dpms = i9xx_crtc_dpms;
f564048e 8419 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
17638cd6 8420 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 8421 }
e70236a8 8422
ee5382ae 8423 if (I915_HAS_FBC(dev)) {
9c04f015 8424 if (HAS_PCH_SPLIT(dev)) {
b52eb4dc
ZY
8425 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8426 dev_priv->display.enable_fbc = ironlake_enable_fbc;
8427 dev_priv->display.disable_fbc = ironlake_disable_fbc;
8428 } else if (IS_GM45(dev)) {
74dff282
JB
8429 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8430 dev_priv->display.enable_fbc = g4x_enable_fbc;
8431 dev_priv->display.disable_fbc = g4x_disable_fbc;
a6c45cf0 8432 } else if (IS_CRESTLINE(dev)) {
e70236a8
JB
8433 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8434 dev_priv->display.enable_fbc = i8xx_enable_fbc;
8435 dev_priv->display.disable_fbc = i8xx_disable_fbc;
8436 }
74dff282 8437 /* 855GM needs testing */
e70236a8
JB
8438 }
8439
8440 /* Returns the core display clock speed */
0206e353 8441 if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
8442 dev_priv->display.get_display_clock_speed =
8443 i945_get_display_clock_speed;
8444 else if (IS_I915G(dev))
8445 dev_priv->display.get_display_clock_speed =
8446 i915_get_display_clock_speed;
f2b115e6 8447 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
8448 dev_priv->display.get_display_clock_speed =
8449 i9xx_misc_get_display_clock_speed;
8450 else if (IS_I915GM(dev))
8451 dev_priv->display.get_display_clock_speed =
8452 i915gm_get_display_clock_speed;
8453 else if (IS_I865G(dev))
8454 dev_priv->display.get_display_clock_speed =
8455 i865_get_display_clock_speed;
f0f8a9ce 8456 else if (IS_I85X(dev))
e70236a8
JB
8457 dev_priv->display.get_display_clock_speed =
8458 i855_get_display_clock_speed;
8459 else /* 852, 830 */
8460 dev_priv->display.get_display_clock_speed =
8461 i830_get_display_clock_speed;
8462
8463 /* For FIFO watermark updates */
7f8a8569 8464 if (HAS_PCH_SPLIT(dev)) {
645c62a5
JB
8465 if (HAS_PCH_IBX(dev))
8466 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8467 else if (HAS_PCH_CPT(dev))
8468 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8469
f00a3ddf 8470 if (IS_GEN5(dev)) {
7f8a8569
ZW
8471 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8472 dev_priv->display.update_wm = ironlake_update_wm;
8473 else {
8474 DRM_DEBUG_KMS("Failed to get proper latency. "
8475 "Disable CxSR\n");
8476 dev_priv->display.update_wm = NULL;
1398261a 8477 }
674cf967 8478 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
6067aaea 8479 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
e0dac65e 8480 dev_priv->display.write_eld = ironlake_write_eld;
1398261a
YL
8481 } else if (IS_GEN6(dev)) {
8482 if (SNB_READ_WM0_LATENCY()) {
8483 dev_priv->display.update_wm = sandybridge_update_wm;
8484 } else {
8485 DRM_DEBUG_KMS("Failed to read display plane latency. "
8486 "Disable CxSR\n");
8487 dev_priv->display.update_wm = NULL;
7f8a8569 8488 }
674cf967 8489 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
6067aaea 8490 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
e0dac65e 8491 dev_priv->display.write_eld = ironlake_write_eld;
357555c0
JB
8492 } else if (IS_IVYBRIDGE(dev)) {
8493 /* FIXME: detect B0+ stepping and use auto training */
8494 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
fe100d4d
JB
8495 if (SNB_READ_WM0_LATENCY()) {
8496 dev_priv->display.update_wm = sandybridge_update_wm;
8497 } else {
8498 DRM_DEBUG_KMS("Failed to read display plane latency. "
8499 "Disable CxSR\n");
8500 dev_priv->display.update_wm = NULL;
8501 }
28963a3e 8502 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
e0dac65e 8503 dev_priv->display.write_eld = ironlake_write_eld;
7f8a8569
ZW
8504 } else
8505 dev_priv->display.update_wm = NULL;
8506 } else if (IS_PINEVIEW(dev)) {
d4294342 8507 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
95534263 8508 dev_priv->is_ddr3,
d4294342
ZY
8509 dev_priv->fsb_freq,
8510 dev_priv->mem_freq)) {
8511 DRM_INFO("failed to find known CxSR latency "
95534263 8512 "(found ddr%s fsb freq %d, mem freq %d), "
d4294342 8513 "disabling CxSR\n",
0206e353 8514 (dev_priv->is_ddr3 == 1) ? "3" : "2",
d4294342
ZY
8515 dev_priv->fsb_freq, dev_priv->mem_freq);
8516 /* Disable CxSR and never update its watermark again */
8517 pineview_disable_cxsr(dev);
8518 dev_priv->display.update_wm = NULL;
8519 } else
8520 dev_priv->display.update_wm = pineview_update_wm;
95e0ee92 8521 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6067aaea 8522 } else if (IS_G4X(dev)) {
e0dac65e 8523 dev_priv->display.write_eld = g4x_write_eld;
e70236a8 8524 dev_priv->display.update_wm = g4x_update_wm;
6067aaea
JB
8525 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8526 } else if (IS_GEN4(dev)) {
e70236a8 8527 dev_priv->display.update_wm = i965_update_wm;
6067aaea
JB
8528 if (IS_CRESTLINE(dev))
8529 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8530 else if (IS_BROADWATER(dev))
8531 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8532 } else if (IS_GEN3(dev)) {
e70236a8
JB
8533 dev_priv->display.update_wm = i9xx_update_wm;
8534 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6067aaea
JB
8535 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8536 } else if (IS_I865G(dev)) {
8537 dev_priv->display.update_wm = i830_update_wm;
8538 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8539 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8f4695ed
AJ
8540 } else if (IS_I85X(dev)) {
8541 dev_priv->display.update_wm = i9xx_update_wm;
8542 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6067aaea 8543 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
e70236a8 8544 } else {
8f4695ed 8545 dev_priv->display.update_wm = i830_update_wm;
6067aaea 8546 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8f4695ed 8547 if (IS_845G(dev))
e70236a8
JB
8548 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8549 else
8550 dev_priv->display.get_fifo_size = i830_get_fifo_size;
e70236a8 8551 }
8c9f3aaf
JB
8552
8553 /* Default just returns -ENODEV to indicate unsupported */
8554 dev_priv->display.queue_flip = intel_default_queue_flip;
8555
8556 switch (INTEL_INFO(dev)->gen) {
8557 case 2:
8558 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8559 break;
8560
8561 case 3:
8562 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8563 break;
8564
8565 case 4:
8566 case 5:
8567 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8568 break;
8569
8570 case 6:
8571 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8572 break;
7c9017e5
JB
8573 case 7:
8574 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8575 break;
8c9f3aaf 8576 }
e70236a8
JB
8577}
8578
b690e96c
JB
8579/*
8580 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8581 * resume, or other times. This quirk makes sure that's the case for
8582 * affected systems.
8583 */
0206e353 8584static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
8585{
8586 struct drm_i915_private *dev_priv = dev->dev_private;
8587
8588 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8589 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8590}
8591
435793df
KP
8592/*
8593 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8594 */
8595static void quirk_ssc_force_disable(struct drm_device *dev)
8596{
8597 struct drm_i915_private *dev_priv = dev->dev_private;
8598 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8599}
8600
b690e96c
JB
8601struct intel_quirk {
8602 int device;
8603 int subsystem_vendor;
8604 int subsystem_device;
8605 void (*hook)(struct drm_device *dev);
8606};
8607
8608struct intel_quirk intel_quirks[] = {
8609 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8610 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8611 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 8612 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c
JB
8613
8614 /* Thinkpad R31 needs pipe A force quirk */
8615 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8616 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8617 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8618
8619 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8620 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
8621 /* ThinkPad X40 needs pipe A force quirk */
8622
8623 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8624 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8625
8626 /* 855 & before need to leave pipe A & dpll A up */
8627 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8628 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
8629
8630 /* Lenovo U160 cannot use SSC on LVDS */
8631 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
8632
8633 /* Sony Vaio Y cannot use SSC on LVDS */
8634 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
b690e96c
JB
8635};
8636
8637static void intel_init_quirks(struct drm_device *dev)
8638{
8639 struct pci_dev *d = dev->pdev;
8640 int i;
8641
8642 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8643 struct intel_quirk *q = &intel_quirks[i];
8644
8645 if (d->device == q->device &&
8646 (d->subsystem_vendor == q->subsystem_vendor ||
8647 q->subsystem_vendor == PCI_ANY_ID) &&
8648 (d->subsystem_device == q->subsystem_device ||
8649 q->subsystem_device == PCI_ANY_ID))
8650 q->hook(dev);
8651 }
8652}
8653
9cce37f4
JB
8654/* Disable the VGA plane that we never use */
8655static void i915_disable_vga(struct drm_device *dev)
8656{
8657 struct drm_i915_private *dev_priv = dev->dev_private;
8658 u8 sr1;
8659 u32 vga_reg;
8660
8661 if (HAS_PCH_SPLIT(dev))
8662 vga_reg = CPU_VGACNTRL;
8663 else
8664 vga_reg = VGACNTRL;
8665
8666 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8667 outb(1, VGA_SR_INDEX);
8668 sr1 = inb(VGA_SR_DATA);
8669 outb(sr1 | 1<<5, VGA_SR_DATA);
8670 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8671 udelay(300);
8672
8673 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8674 POSTING_READ(vga_reg);
8675}
8676
79e53945
JB
8677void intel_modeset_init(struct drm_device *dev)
8678{
652c393a 8679 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
8680 int i;
8681
8682 drm_mode_config_init(dev);
8683
8684 dev->mode_config.min_width = 0;
8685 dev->mode_config.min_height = 0;
8686
8687 dev->mode_config.funcs = (void *)&intel_mode_funcs;
8688
b690e96c
JB
8689 intel_init_quirks(dev);
8690
e70236a8
JB
8691 intel_init_display(dev);
8692
a6c45cf0
CW
8693 if (IS_GEN2(dev)) {
8694 dev->mode_config.max_width = 2048;
8695 dev->mode_config.max_height = 2048;
8696 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
8697 dev->mode_config.max_width = 4096;
8698 dev->mode_config.max_height = 4096;
79e53945 8699 } else {
a6c45cf0
CW
8700 dev->mode_config.max_width = 8192;
8701 dev->mode_config.max_height = 8192;
79e53945 8702 }
35c3047a 8703 dev->mode_config.fb_base = dev->agp->base;
79e53945 8704
28c97730 8705 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 8706 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 8707
a3524f1b 8708 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945
JB
8709 intel_crtc_init(dev, i);
8710 }
8711
9cce37f4
JB
8712 /* Just disable it once at startup */
8713 i915_disable_vga(dev);
79e53945 8714 intel_setup_outputs(dev);
652c393a 8715
645c62a5 8716 intel_init_clock_gating(dev);
9cce37f4 8717
7648fa99 8718 if (IS_IRONLAKE_M(dev)) {
f97108d1 8719 ironlake_enable_drps(dev);
7648fa99
JB
8720 intel_init_emon(dev);
8721 }
f97108d1 8722
1c70c0ce 8723 if (IS_GEN6(dev) || IS_GEN7(dev)) {
3b8d8d91 8724 gen6_enable_rps(dev_priv);
23b2f8bb
JB
8725 gen6_update_ring_freq(dev_priv);
8726 }
3b8d8d91 8727
652c393a
JB
8728 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8729 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8730 (unsigned long)dev);
2c7111db
CW
8731}
8732
8733void intel_modeset_gem_init(struct drm_device *dev)
8734{
8735 if (IS_IRONLAKE_M(dev))
8736 ironlake_enable_rc6(dev);
02e792fb
DV
8737
8738 intel_setup_overlay(dev);
79e53945
JB
8739}
8740
8741void intel_modeset_cleanup(struct drm_device *dev)
8742{
652c393a
JB
8743 struct drm_i915_private *dev_priv = dev->dev_private;
8744 struct drm_crtc *crtc;
8745 struct intel_crtc *intel_crtc;
8746
f87ea761 8747 drm_kms_helper_poll_fini(dev);
652c393a
JB
8748 mutex_lock(&dev->struct_mutex);
8749
723bfd70
JB
8750 intel_unregister_dsm_handler();
8751
8752
652c393a
JB
8753 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8754 /* Skip inactive CRTCs */
8755 if (!crtc->fb)
8756 continue;
8757
8758 intel_crtc = to_intel_crtc(crtc);
3dec0095 8759 intel_increase_pllclock(crtc);
652c393a
JB
8760 }
8761
973d04f9 8762 intel_disable_fbc(dev);
e70236a8 8763
f97108d1
JB
8764 if (IS_IRONLAKE_M(dev))
8765 ironlake_disable_drps(dev);
1c70c0ce 8766 if (IS_GEN6(dev) || IS_GEN7(dev))
3b8d8d91 8767 gen6_disable_rps(dev);
f97108d1 8768
d5bb081b
JB
8769 if (IS_IRONLAKE_M(dev))
8770 ironlake_disable_rc6(dev);
0cdab21f 8771
69341a5e
KH
8772 mutex_unlock(&dev->struct_mutex);
8773
6c0d9350
DV
8774 /* Disable the irq before mode object teardown, for the irq might
8775 * enqueue unpin/hotplug work. */
8776 drm_irq_uninstall(dev);
8777 cancel_work_sync(&dev_priv->hotplug_work);
6fdd4d98 8778 cancel_work_sync(&dev_priv->rps_work);
6c0d9350 8779
1630fe75
CW
8780 /* flush any delayed tasks or pending work */
8781 flush_scheduled_work();
8782
3dec0095
DV
8783 /* Shut off idle work before the crtcs get freed. */
8784 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8785 intel_crtc = to_intel_crtc(crtc);
8786 del_timer_sync(&intel_crtc->idle_timer);
8787 }
8788 del_timer_sync(&dev_priv->idle_timer);
8789 cancel_work_sync(&dev_priv->idle_work);
8790
79e53945
JB
8791 drm_mode_config_cleanup(dev);
8792}
8793
f1c79df3
ZW
8794/*
8795 * Return which encoder is currently attached for connector.
8796 */
df0e9248 8797struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 8798{
df0e9248
CW
8799 return &intel_attached_encoder(connector)->base;
8800}
f1c79df3 8801
df0e9248
CW
8802void intel_connector_attach_encoder(struct intel_connector *connector,
8803 struct intel_encoder *encoder)
8804{
8805 connector->encoder = encoder;
8806 drm_mode_connector_attach_encoder(&connector->base,
8807 &encoder->base);
79e53945 8808}
28d52043
DA
8809
8810/*
8811 * set vga decode state - true == enable VGA decode
8812 */
8813int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8814{
8815 struct drm_i915_private *dev_priv = dev->dev_private;
8816 u16 gmch_ctrl;
8817
8818 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8819 if (state)
8820 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8821 else
8822 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8823 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8824 return 0;
8825}
c4a1d9e4
CW
8826
8827#ifdef CONFIG_DEBUG_FS
8828#include <linux/seq_file.h>
8829
8830struct intel_display_error_state {
8831 struct intel_cursor_error_state {
8832 u32 control;
8833 u32 position;
8834 u32 base;
8835 u32 size;
8836 } cursor[2];
8837
8838 struct intel_pipe_error_state {
8839 u32 conf;
8840 u32 source;
8841
8842 u32 htotal;
8843 u32 hblank;
8844 u32 hsync;
8845 u32 vtotal;
8846 u32 vblank;
8847 u32 vsync;
8848 } pipe[2];
8849
8850 struct intel_plane_error_state {
8851 u32 control;
8852 u32 stride;
8853 u32 size;
8854 u32 pos;
8855 u32 addr;
8856 u32 surface;
8857 u32 tile_offset;
8858 } plane[2];
8859};
8860
8861struct intel_display_error_state *
8862intel_display_capture_error_state(struct drm_device *dev)
8863{
0206e353 8864 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
8865 struct intel_display_error_state *error;
8866 int i;
8867
8868 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8869 if (error == NULL)
8870 return NULL;
8871
8872 for (i = 0; i < 2; i++) {
8873 error->cursor[i].control = I915_READ(CURCNTR(i));
8874 error->cursor[i].position = I915_READ(CURPOS(i));
8875 error->cursor[i].base = I915_READ(CURBASE(i));
8876
8877 error->plane[i].control = I915_READ(DSPCNTR(i));
8878 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8879 error->plane[i].size = I915_READ(DSPSIZE(i));
0206e353 8880 error->plane[i].pos = I915_READ(DSPPOS(i));
c4a1d9e4
CW
8881 error->plane[i].addr = I915_READ(DSPADDR(i));
8882 if (INTEL_INFO(dev)->gen >= 4) {
8883 error->plane[i].surface = I915_READ(DSPSURF(i));
8884 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8885 }
8886
8887 error->pipe[i].conf = I915_READ(PIPECONF(i));
8888 error->pipe[i].source = I915_READ(PIPESRC(i));
8889 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8890 error->pipe[i].hblank = I915_READ(HBLANK(i));
8891 error->pipe[i].hsync = I915_READ(HSYNC(i));
8892 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8893 error->pipe[i].vblank = I915_READ(VBLANK(i));
8894 error->pipe[i].vsync = I915_READ(VSYNC(i));
8895 }
8896
8897 return error;
8898}
8899
8900void
8901intel_display_print_error_state(struct seq_file *m,
8902 struct drm_device *dev,
8903 struct intel_display_error_state *error)
8904{
8905 int i;
8906
8907 for (i = 0; i < 2; i++) {
8908 seq_printf(m, "Pipe [%d]:\n", i);
8909 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8910 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8911 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8912 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8913 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8914 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8915 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8916 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8917
8918 seq_printf(m, "Plane [%d]:\n", i);
8919 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8920 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8921 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8922 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8923 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8924 if (INTEL_INFO(dev)->gen >= 4) {
8925 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8926 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8927 }
8928
8929 seq_printf(m, "Cursor [%d]:\n", i);
8930 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8931 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8932 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8933 }
8934}
8935#endif