]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Leave LVDS registers unlocked
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
23b2f8bb 27#include <linux/cpufreq.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
79e53945
JB
34#include "drmP.h"
35#include "intel_drv.h"
36#include "i915_drm.h"
37#include "i915_drv.h"
e5510fac 38#include "i915_trace.h"
ab2c0672 39#include "drm_dp_helper.h"
79e53945
JB
40
41#include "drm_crtc_helper.h"
42
32f9d658
ZW
43#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44
79e53945 45bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
7662c8bd 46static void intel_update_watermarks(struct drm_device *dev);
3dec0095 47static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 48static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
49
50typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60} intel_clock_t;
61
62typedef struct {
63 int min, max;
64} intel_range_t;
65
66typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69} intel_p2_t;
70
71#define INTEL_P2_NUM 2
d4906093
ML
72typedef struct intel_limit intel_limit_t;
73struct intel_limit {
79e53945
JB
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
d4906093
ML
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *);
78};
79e53945 79
2377b741
JB
80/* FDI */
81#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
d4906093
ML
83static bool
84intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85 int target, int refclk, intel_clock_t *best_clock);
86static bool
87intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
88 int target, int refclk, intel_clock_t *best_clock);
79e53945 89
a4fc5ed6
KP
90static bool
91intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
92 int target, int refclk, intel_clock_t *best_clock);
5eb08b69 93static bool
f2b115e6
AJ
94intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
95 int target, int refclk, intel_clock_t *best_clock);
a4fc5ed6 96
021357ac
CW
97static inline u32 /* units of 100MHz */
98intel_fdi_link_freq(struct drm_device *dev)
99{
8b99e68c
CW
100 if (IS_GEN5(dev)) {
101 struct drm_i915_private *dev_priv = dev->dev_private;
102 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
103 } else
104 return 27;
021357ac
CW
105}
106
e4b36699 107static const intel_limit_t intel_limits_i8xx_dvo = {
273e27ca
EA
108 .dot = { .min = 25000, .max = 350000 },
109 .vco = { .min = 930000, .max = 1400000 },
110 .n = { .min = 3, .max = 16 },
111 .m = { .min = 96, .max = 140 },
112 .m1 = { .min = 18, .max = 26 },
113 .m2 = { .min = 6, .max = 16 },
114 .p = { .min = 4, .max = 128 },
115 .p1 = { .min = 2, .max = 33 },
116 .p2 = { .dot_limit = 165000,
117 .p2_slow = 4, .p2_fast = 2 },
d4906093 118 .find_pll = intel_find_best_PLL,
e4b36699
KP
119};
120
121static const intel_limit_t intel_limits_i8xx_lvds = {
273e27ca
EA
122 .dot = { .min = 25000, .max = 350000 },
123 .vco = { .min = 930000, .max = 1400000 },
124 .n = { .min = 3, .max = 16 },
125 .m = { .min = 96, .max = 140 },
126 .m1 = { .min = 18, .max = 26 },
127 .m2 = { .min = 6, .max = 16 },
128 .p = { .min = 4, .max = 128 },
129 .p1 = { .min = 1, .max = 6 },
130 .p2 = { .dot_limit = 165000,
131 .p2_slow = 14, .p2_fast = 7 },
d4906093 132 .find_pll = intel_find_best_PLL,
e4b36699 133};
273e27ca 134
e4b36699 135static const intel_limit_t intel_limits_i9xx_sdvo = {
273e27ca
EA
136 .dot = { .min = 20000, .max = 400000 },
137 .vco = { .min = 1400000, .max = 2800000 },
138 .n = { .min = 1, .max = 6 },
139 .m = { .min = 70, .max = 120 },
140 .m1 = { .min = 10, .max = 22 },
141 .m2 = { .min = 5, .max = 9 },
142 .p = { .min = 5, .max = 80 },
143 .p1 = { .min = 1, .max = 8 },
144 .p2 = { .dot_limit = 200000,
145 .p2_slow = 10, .p2_fast = 5 },
d4906093 146 .find_pll = intel_find_best_PLL,
e4b36699
KP
147};
148
149static const intel_limit_t intel_limits_i9xx_lvds = {
273e27ca
EA
150 .dot = { .min = 20000, .max = 400000 },
151 .vco = { .min = 1400000, .max = 2800000 },
152 .n = { .min = 1, .max = 6 },
153 .m = { .min = 70, .max = 120 },
154 .m1 = { .min = 10, .max = 22 },
155 .m2 = { .min = 5, .max = 9 },
156 .p = { .min = 7, .max = 98 },
157 .p1 = { .min = 1, .max = 8 },
158 .p2 = { .dot_limit = 112000,
159 .p2_slow = 14, .p2_fast = 7 },
d4906093 160 .find_pll = intel_find_best_PLL,
e4b36699
KP
161};
162
273e27ca 163
e4b36699 164static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
165 .dot = { .min = 25000, .max = 270000 },
166 .vco = { .min = 1750000, .max = 3500000},
167 .n = { .min = 1, .max = 4 },
168 .m = { .min = 104, .max = 138 },
169 .m1 = { .min = 17, .max = 23 },
170 .m2 = { .min = 5, .max = 11 },
171 .p = { .min = 10, .max = 30 },
172 .p1 = { .min = 1, .max = 3},
173 .p2 = { .dot_limit = 270000,
174 .p2_slow = 10,
175 .p2_fast = 10
044c7c41 176 },
d4906093 177 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
178};
179
180static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
181 .dot = { .min = 22000, .max = 400000 },
182 .vco = { .min = 1750000, .max = 3500000},
183 .n = { .min = 1, .max = 4 },
184 .m = { .min = 104, .max = 138 },
185 .m1 = { .min = 16, .max = 23 },
186 .m2 = { .min = 5, .max = 11 },
187 .p = { .min = 5, .max = 80 },
188 .p1 = { .min = 1, .max = 8},
189 .p2 = { .dot_limit = 165000,
190 .p2_slow = 10, .p2_fast = 5 },
d4906093 191 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
192};
193
194static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
195 .dot = { .min = 20000, .max = 115000 },
196 .vco = { .min = 1750000, .max = 3500000 },
197 .n = { .min = 1, .max = 3 },
198 .m = { .min = 104, .max = 138 },
199 .m1 = { .min = 17, .max = 23 },
200 .m2 = { .min = 5, .max = 11 },
201 .p = { .min = 28, .max = 112 },
202 .p1 = { .min = 2, .max = 8 },
203 .p2 = { .dot_limit = 0,
204 .p2_slow = 14, .p2_fast = 14
044c7c41 205 },
d4906093 206 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
207};
208
209static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
210 .dot = { .min = 80000, .max = 224000 },
211 .vco = { .min = 1750000, .max = 3500000 },
212 .n = { .min = 1, .max = 3 },
213 .m = { .min = 104, .max = 138 },
214 .m1 = { .min = 17, .max = 23 },
215 .m2 = { .min = 5, .max = 11 },
216 .p = { .min = 14, .max = 42 },
217 .p1 = { .min = 2, .max = 6 },
218 .p2 = { .dot_limit = 0,
219 .p2_slow = 7, .p2_fast = 7
044c7c41 220 },
d4906093 221 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
222};
223
224static const intel_limit_t intel_limits_g4x_display_port = {
273e27ca
EA
225 .dot = { .min = 161670, .max = 227000 },
226 .vco = { .min = 1750000, .max = 3500000},
227 .n = { .min = 1, .max = 2 },
228 .m = { .min = 97, .max = 108 },
229 .m1 = { .min = 0x10, .max = 0x12 },
230 .m2 = { .min = 0x05, .max = 0x06 },
231 .p = { .min = 10, .max = 20 },
232 .p1 = { .min = 1, .max = 2},
233 .p2 = { .dot_limit = 0,
234 .p2_slow = 10, .p2_fast = 10 },
a4fc5ed6 235 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
236};
237
f2b115e6 238static const intel_limit_t intel_limits_pineview_sdvo = {
273e27ca
EA
239 .dot = { .min = 20000, .max = 400000},
240 .vco = { .min = 1700000, .max = 3500000 },
241 /* Pineview's Ncounter is a ring counter */
242 .n = { .min = 3, .max = 6 },
243 .m = { .min = 2, .max = 256 },
244 /* Pineview only has one combined m divider, which we treat as m2. */
245 .m1 = { .min = 0, .max = 0 },
246 .m2 = { .min = 0, .max = 254 },
247 .p = { .min = 5, .max = 80 },
248 .p1 = { .min = 1, .max = 8 },
249 .p2 = { .dot_limit = 200000,
250 .p2_slow = 10, .p2_fast = 5 },
6115707b 251 .find_pll = intel_find_best_PLL,
e4b36699
KP
252};
253
f2b115e6 254static const intel_limit_t intel_limits_pineview_lvds = {
273e27ca
EA
255 .dot = { .min = 20000, .max = 400000 },
256 .vco = { .min = 1700000, .max = 3500000 },
257 .n = { .min = 3, .max = 6 },
258 .m = { .min = 2, .max = 256 },
259 .m1 = { .min = 0, .max = 0 },
260 .m2 = { .min = 0, .max = 254 },
261 .p = { .min = 7, .max = 112 },
262 .p1 = { .min = 1, .max = 8 },
263 .p2 = { .dot_limit = 112000,
264 .p2_slow = 14, .p2_fast = 14 },
6115707b 265 .find_pll = intel_find_best_PLL,
e4b36699
KP
266};
267
273e27ca
EA
268/* Ironlake / Sandybridge
269 *
270 * We calculate clock using (register_value + 2) for N/M1/M2, so here
271 * the range value for them is (actual_value - 2).
272 */
b91ad0ec 273static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
274 .dot = { .min = 25000, .max = 350000 },
275 .vco = { .min = 1760000, .max = 3510000 },
276 .n = { .min = 1, .max = 5 },
277 .m = { .min = 79, .max = 127 },
278 .m1 = { .min = 12, .max = 22 },
279 .m2 = { .min = 5, .max = 9 },
280 .p = { .min = 5, .max = 80 },
281 .p1 = { .min = 1, .max = 8 },
282 .p2 = { .dot_limit = 225000,
283 .p2_slow = 10, .p2_fast = 5 },
4547668a 284 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
285};
286
b91ad0ec 287static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
288 .dot = { .min = 25000, .max = 350000 },
289 .vco = { .min = 1760000, .max = 3510000 },
290 .n = { .min = 1, .max = 3 },
291 .m = { .min = 79, .max = 118 },
292 .m1 = { .min = 12, .max = 22 },
293 .m2 = { .min = 5, .max = 9 },
294 .p = { .min = 28, .max = 112 },
295 .p1 = { .min = 2, .max = 8 },
296 .p2 = { .dot_limit = 225000,
297 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
298 .find_pll = intel_g4x_find_best_PLL,
299};
300
301static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
302 .dot = { .min = 25000, .max = 350000 },
303 .vco = { .min = 1760000, .max = 3510000 },
304 .n = { .min = 1, .max = 3 },
305 .m = { .min = 79, .max = 127 },
306 .m1 = { .min = 12, .max = 22 },
307 .m2 = { .min = 5, .max = 9 },
308 .p = { .min = 14, .max = 56 },
309 .p1 = { .min = 2, .max = 8 },
310 .p2 = { .dot_limit = 225000,
311 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
312 .find_pll = intel_g4x_find_best_PLL,
313};
314
273e27ca 315/* LVDS 100mhz refclk limits. */
b91ad0ec 316static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 2 },
320 .m = { .min = 79, .max = 126 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2,.max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
327 .find_pll = intel_g4x_find_best_PLL,
328};
329
330static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
331 .dot = { .min = 25000, .max = 350000 },
332 .vco = { .min = 1760000, .max = 3510000 },
333 .n = { .min = 1, .max = 3 },
334 .m = { .min = 79, .max = 126 },
335 .m1 = { .min = 12, .max = 22 },
336 .m2 = { .min = 5, .max = 9 },
337 .p = { .min = 14, .max = 42 },
338 .p1 = { .min = 2,.max = 6 },
339 .p2 = { .dot_limit = 225000,
340 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
341 .find_pll = intel_g4x_find_best_PLL,
342};
343
344static const intel_limit_t intel_limits_ironlake_display_port = {
273e27ca
EA
345 .dot = { .min = 25000, .max = 350000 },
346 .vco = { .min = 1760000, .max = 3510000},
347 .n = { .min = 1, .max = 2 },
348 .m = { .min = 81, .max = 90 },
349 .m1 = { .min = 12, .max = 22 },
350 .m2 = { .min = 5, .max = 9 },
351 .p = { .min = 10, .max = 20 },
352 .p1 = { .min = 1, .max = 2},
353 .p2 = { .dot_limit = 0,
354 .p2_slow = 10, .p2_fast = 10 },
4547668a 355 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
356};
357
1b894b59
CW
358static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
359 int refclk)
2c07245f 360{
b91ad0ec
ZW
361 struct drm_device *dev = crtc->dev;
362 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 363 const intel_limit_t *limit;
b91ad0ec
ZW
364
365 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b91ad0ec
ZW
366 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
367 LVDS_CLKB_POWER_UP) {
368 /* LVDS dual channel */
1b894b59 369 if (refclk == 100000)
b91ad0ec
ZW
370 limit = &intel_limits_ironlake_dual_lvds_100m;
371 else
372 limit = &intel_limits_ironlake_dual_lvds;
373 } else {
1b894b59 374 if (refclk == 100000)
b91ad0ec
ZW
375 limit = &intel_limits_ironlake_single_lvds_100m;
376 else
377 limit = &intel_limits_ironlake_single_lvds;
378 }
379 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
4547668a
ZY
380 HAS_eDP)
381 limit = &intel_limits_ironlake_display_port;
2c07245f 382 else
b91ad0ec 383 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
384
385 return limit;
386}
387
044c7c41
ML
388static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
389{
390 struct drm_device *dev = crtc->dev;
391 struct drm_i915_private *dev_priv = dev->dev_private;
392 const intel_limit_t *limit;
393
394 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
395 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
396 LVDS_CLKB_POWER_UP)
397 /* LVDS with dual channel */
e4b36699 398 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
399 else
400 /* LVDS with dual channel */
e4b36699 401 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
402 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
403 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 404 limit = &intel_limits_g4x_hdmi;
044c7c41 405 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 406 limit = &intel_limits_g4x_sdvo;
a4fc5ed6 407 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 408 limit = &intel_limits_g4x_display_port;
044c7c41 409 } else /* The option is for other outputs */
e4b36699 410 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
411
412 return limit;
413}
414
1b894b59 415static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
416{
417 struct drm_device *dev = crtc->dev;
418 const intel_limit_t *limit;
419
bad720ff 420 if (HAS_PCH_SPLIT(dev))
1b894b59 421 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 422 else if (IS_G4X(dev)) {
044c7c41 423 limit = intel_g4x_limit(crtc);
f2b115e6 424 } else if (IS_PINEVIEW(dev)) {
2177832f 425 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 426 limit = &intel_limits_pineview_lvds;
2177832f 427 else
f2b115e6 428 limit = &intel_limits_pineview_sdvo;
a6c45cf0
CW
429 } else if (!IS_GEN2(dev)) {
430 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431 limit = &intel_limits_i9xx_lvds;
432 else
433 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
434 } else {
435 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 436 limit = &intel_limits_i8xx_lvds;
79e53945 437 else
e4b36699 438 limit = &intel_limits_i8xx_dvo;
79e53945
JB
439 }
440 return limit;
441}
442
f2b115e6
AJ
443/* m1 is reserved as 0 in Pineview, n is a ring counter */
444static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 445{
2177832f
SL
446 clock->m = clock->m2 + 2;
447 clock->p = clock->p1 * clock->p2;
448 clock->vco = refclk * clock->m / clock->n;
449 clock->dot = clock->vco / clock->p;
450}
451
452static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
453{
f2b115e6
AJ
454 if (IS_PINEVIEW(dev)) {
455 pineview_clock(refclk, clock);
2177832f
SL
456 return;
457 }
79e53945
JB
458 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
459 clock->p = clock->p1 * clock->p2;
460 clock->vco = refclk * clock->m / (clock->n + 2);
461 clock->dot = clock->vco / clock->p;
462}
463
79e53945
JB
464/**
465 * Returns whether any output on the specified pipe is of the specified type
466 */
4ef69c7a 467bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 468{
4ef69c7a
CW
469 struct drm_device *dev = crtc->dev;
470 struct drm_mode_config *mode_config = &dev->mode_config;
471 struct intel_encoder *encoder;
472
473 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
474 if (encoder->base.crtc == crtc && encoder->type == type)
475 return true;
476
477 return false;
79e53945
JB
478}
479
7c04d1d9 480#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
481/**
482 * Returns whether the given set of divisors are valid for a given refclk with
483 * the given connectors.
484 */
485
1b894b59
CW
486static bool intel_PLL_is_valid(struct drm_device *dev,
487 const intel_limit_t *limit,
488 const intel_clock_t *clock)
79e53945 489{
79e53945
JB
490 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
491 INTELPllInvalid ("p1 out of range\n");
492 if (clock->p < limit->p.min || limit->p.max < clock->p)
493 INTELPllInvalid ("p out of range\n");
494 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
495 INTELPllInvalid ("m2 out of range\n");
496 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
497 INTELPllInvalid ("m1 out of range\n");
f2b115e6 498 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
79e53945
JB
499 INTELPllInvalid ("m1 <= m2\n");
500 if (clock->m < limit->m.min || limit->m.max < clock->m)
501 INTELPllInvalid ("m out of range\n");
502 if (clock->n < limit->n.min || limit->n.max < clock->n)
503 INTELPllInvalid ("n out of range\n");
504 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
505 INTELPllInvalid ("vco out of range\n");
506 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
507 * connector, etc., rather than just a single range.
508 */
509 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
510 INTELPllInvalid ("dot out of range\n");
511
512 return true;
513}
514
d4906093
ML
515static bool
516intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
517 int target, int refclk, intel_clock_t *best_clock)
518
79e53945
JB
519{
520 struct drm_device *dev = crtc->dev;
521 struct drm_i915_private *dev_priv = dev->dev_private;
522 intel_clock_t clock;
79e53945
JB
523 int err = target;
524
bc5e5718 525 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 526 (I915_READ(LVDS)) != 0) {
79e53945
JB
527 /*
528 * For LVDS, if the panel is on, just rely on its current
529 * settings for dual-channel. We haven't figured out how to
530 * reliably set up different single/dual channel state, if we
531 * even can.
532 */
533 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
534 LVDS_CLKB_POWER_UP)
535 clock.p2 = limit->p2.p2_fast;
536 else
537 clock.p2 = limit->p2.p2_slow;
538 } else {
539 if (target < limit->p2.dot_limit)
540 clock.p2 = limit->p2.p2_slow;
541 else
542 clock.p2 = limit->p2.p2_fast;
543 }
544
545 memset (best_clock, 0, sizeof (*best_clock));
546
42158660
ZY
547 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
548 clock.m1++) {
549 for (clock.m2 = limit->m2.min;
550 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
551 /* m1 is always 0 in Pineview */
552 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
553 break;
554 for (clock.n = limit->n.min;
555 clock.n <= limit->n.max; clock.n++) {
556 for (clock.p1 = limit->p1.min;
557 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
558 int this_err;
559
2177832f 560 intel_clock(dev, refclk, &clock);
1b894b59
CW
561 if (!intel_PLL_is_valid(dev, limit,
562 &clock))
79e53945
JB
563 continue;
564
565 this_err = abs(clock.dot - target);
566 if (this_err < err) {
567 *best_clock = clock;
568 err = this_err;
569 }
570 }
571 }
572 }
573 }
574
575 return (err != target);
576}
577
d4906093
ML
578static bool
579intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
580 int target, int refclk, intel_clock_t *best_clock)
581{
582 struct drm_device *dev = crtc->dev;
583 struct drm_i915_private *dev_priv = dev->dev_private;
584 intel_clock_t clock;
585 int max_n;
586 bool found;
6ba770dc
AJ
587 /* approximately equals target * 0.00585 */
588 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
589 found = false;
590
591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
592 int lvds_reg;
593
c619eed4 594 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
595 lvds_reg = PCH_LVDS;
596 else
597 lvds_reg = LVDS;
598 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
599 LVDS_CLKB_POWER_UP)
600 clock.p2 = limit->p2.p2_fast;
601 else
602 clock.p2 = limit->p2.p2_slow;
603 } else {
604 if (target < limit->p2.dot_limit)
605 clock.p2 = limit->p2.p2_slow;
606 else
607 clock.p2 = limit->p2.p2_fast;
608 }
609
610 memset(best_clock, 0, sizeof(*best_clock));
611 max_n = limit->n.max;
f77f13e2 612 /* based on hardware requirement, prefer smaller n to precision */
d4906093 613 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 614 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
615 for (clock.m1 = limit->m1.max;
616 clock.m1 >= limit->m1.min; clock.m1--) {
617 for (clock.m2 = limit->m2.max;
618 clock.m2 >= limit->m2.min; clock.m2--) {
619 for (clock.p1 = limit->p1.max;
620 clock.p1 >= limit->p1.min; clock.p1--) {
621 int this_err;
622
2177832f 623 intel_clock(dev, refclk, &clock);
1b894b59
CW
624 if (!intel_PLL_is_valid(dev, limit,
625 &clock))
d4906093 626 continue;
1b894b59
CW
627
628 this_err = abs(clock.dot - target);
d4906093
ML
629 if (this_err < err_most) {
630 *best_clock = clock;
631 err_most = this_err;
632 max_n = clock.n;
633 found = true;
634 }
635 }
636 }
637 }
638 }
2c07245f
ZW
639 return found;
640}
641
5eb08b69 642static bool
f2b115e6
AJ
643intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
644 int target, int refclk, intel_clock_t *best_clock)
5eb08b69
ZW
645{
646 struct drm_device *dev = crtc->dev;
647 intel_clock_t clock;
4547668a 648
5eb08b69
ZW
649 if (target < 200000) {
650 clock.n = 1;
651 clock.p1 = 2;
652 clock.p2 = 10;
653 clock.m1 = 12;
654 clock.m2 = 9;
655 } else {
656 clock.n = 2;
657 clock.p1 = 1;
658 clock.p2 = 10;
659 clock.m1 = 14;
660 clock.m2 = 8;
661 }
662 intel_clock(dev, refclk, &clock);
663 memcpy(best_clock, &clock, sizeof(intel_clock_t));
664 return true;
665}
666
a4fc5ed6
KP
667/* DisplayPort has only two frequencies, 162MHz and 270MHz */
668static bool
669intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
670 int target, int refclk, intel_clock_t *best_clock)
671{
5eddb70b
CW
672 intel_clock_t clock;
673 if (target < 200000) {
674 clock.p1 = 2;
675 clock.p2 = 10;
676 clock.n = 2;
677 clock.m1 = 23;
678 clock.m2 = 8;
679 } else {
680 clock.p1 = 1;
681 clock.p2 = 10;
682 clock.n = 1;
683 clock.m1 = 14;
684 clock.m2 = 2;
685 }
686 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
687 clock.p = (clock.p1 * clock.p2);
688 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
689 clock.vco = 0;
690 memcpy(best_clock, &clock, sizeof(intel_clock_t));
691 return true;
a4fc5ed6
KP
692}
693
9d0498a2
JB
694/**
695 * intel_wait_for_vblank - wait for vblank on a given pipe
696 * @dev: drm device
697 * @pipe: pipe to wait for
698 *
699 * Wait for vblank to occur on a given pipe. Needed for various bits of
700 * mode setting code.
701 */
702void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 703{
9d0498a2 704 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 705 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 706
300387c0
CW
707 /* Clear existing vblank status. Note this will clear any other
708 * sticky status fields as well.
709 *
710 * This races with i915_driver_irq_handler() with the result
711 * that either function could miss a vblank event. Here it is not
712 * fatal, as we will either wait upon the next vblank interrupt or
713 * timeout. Generally speaking intel_wait_for_vblank() is only
714 * called during modeset at which time the GPU should be idle and
715 * should *not* be performing page flips and thus not waiting on
716 * vblanks...
717 * Currently, the result of us stealing a vblank from the irq
718 * handler is that a single frame will be skipped during swapbuffers.
719 */
720 I915_WRITE(pipestat_reg,
721 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
722
9d0498a2 723 /* Wait for vblank interrupt bit to set */
481b6af3
CW
724 if (wait_for(I915_READ(pipestat_reg) &
725 PIPE_VBLANK_INTERRUPT_STATUS,
726 50))
9d0498a2
JB
727 DRM_DEBUG_KMS("vblank wait timed out\n");
728}
729
ab7ad7f6
KP
730/*
731 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
732 * @dev: drm device
733 * @pipe: pipe to wait for
734 *
735 * After disabling a pipe, we can't wait for vblank in the usual way,
736 * spinning on the vblank interrupt status bit, since we won't actually
737 * see an interrupt when the pipe is disabled.
738 *
ab7ad7f6
KP
739 * On Gen4 and above:
740 * wait for the pipe register state bit to turn off
741 *
742 * Otherwise:
743 * wait for the display line value to settle (it usually
744 * ends up stopping at the start of the next frame).
58e10eb9 745 *
9d0498a2 746 */
58e10eb9 747void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
748{
749 struct drm_i915_private *dev_priv = dev->dev_private;
ab7ad7f6
KP
750
751 if (INTEL_INFO(dev)->gen >= 4) {
58e10eb9 752 int reg = PIPECONF(pipe);
ab7ad7f6
KP
753
754 /* Wait for the Pipe State to go off */
58e10eb9
CW
755 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
756 100))
ab7ad7f6
KP
757 DRM_DEBUG_KMS("pipe_off wait timed out\n");
758 } else {
759 u32 last_line;
58e10eb9 760 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
761 unsigned long timeout = jiffies + msecs_to_jiffies(100);
762
763 /* Wait for the display line to settle */
764 do {
58e10eb9 765 last_line = I915_READ(reg) & DSL_LINEMASK;
ab7ad7f6 766 mdelay(5);
58e10eb9 767 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
ab7ad7f6
KP
768 time_after(timeout, jiffies));
769 if (time_after(jiffies, timeout))
770 DRM_DEBUG_KMS("pipe_off wait timed out\n");
771 }
79e53945
JB
772}
773
b24e7179
JB
774static const char *state_string(bool enabled)
775{
776 return enabled ? "on" : "off";
777}
778
779/* Only for pre-ILK configs */
780static void assert_pll(struct drm_i915_private *dev_priv,
781 enum pipe pipe, bool state)
782{
783 int reg;
784 u32 val;
785 bool cur_state;
786
787 reg = DPLL(pipe);
788 val = I915_READ(reg);
789 cur_state = !!(val & DPLL_VCO_ENABLE);
790 WARN(cur_state != state,
791 "PLL state assertion failure (expected %s, current %s)\n",
792 state_string(state), state_string(cur_state));
793}
794#define assert_pll_enabled(d, p) assert_pll(d, p, true)
795#define assert_pll_disabled(d, p) assert_pll(d, p, false)
796
040484af
JB
797/* For ILK+ */
798static void assert_pch_pll(struct drm_i915_private *dev_priv,
799 enum pipe pipe, bool state)
800{
801 int reg;
802 u32 val;
803 bool cur_state;
804
805 reg = PCH_DPLL(pipe);
806 val = I915_READ(reg);
807 cur_state = !!(val & DPLL_VCO_ENABLE);
808 WARN(cur_state != state,
809 "PCH PLL state assertion failure (expected %s, current %s)\n",
810 state_string(state), state_string(cur_state));
811}
812#define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
813#define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
814
815static void assert_fdi_tx(struct drm_i915_private *dev_priv,
816 enum pipe pipe, bool state)
817{
818 int reg;
819 u32 val;
820 bool cur_state;
821
822 reg = FDI_TX_CTL(pipe);
823 val = I915_READ(reg);
824 cur_state = !!(val & FDI_TX_ENABLE);
825 WARN(cur_state != state,
826 "FDI TX state assertion failure (expected %s, current %s)\n",
827 state_string(state), state_string(cur_state));
828}
829#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
830#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
831
832static void assert_fdi_rx(struct drm_i915_private *dev_priv,
833 enum pipe pipe, bool state)
834{
835 int reg;
836 u32 val;
837 bool cur_state;
838
839 reg = FDI_RX_CTL(pipe);
840 val = I915_READ(reg);
841 cur_state = !!(val & FDI_RX_ENABLE);
842 WARN(cur_state != state,
843 "FDI RX state assertion failure (expected %s, current %s)\n",
844 state_string(state), state_string(cur_state));
845}
846#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
847#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
848
849static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
850 enum pipe pipe)
851{
852 int reg;
853 u32 val;
854
855 /* ILK FDI PLL is always enabled */
856 if (dev_priv->info->gen == 5)
857 return;
858
859 reg = FDI_TX_CTL(pipe);
860 val = I915_READ(reg);
861 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
862}
863
864static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
865 enum pipe pipe)
866{
867 int reg;
868 u32 val;
869
870 reg = FDI_RX_CTL(pipe);
871 val = I915_READ(reg);
872 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
873}
874
ea0760cf
JB
875static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
876 enum pipe pipe)
877{
878 int pp_reg, lvds_reg;
879 u32 val;
880 enum pipe panel_pipe = PIPE_A;
881 bool locked = locked;
882
883 if (HAS_PCH_SPLIT(dev_priv->dev)) {
884 pp_reg = PCH_PP_CONTROL;
885 lvds_reg = PCH_LVDS;
886 } else {
887 pp_reg = PP_CONTROL;
888 lvds_reg = LVDS;
889 }
890
891 val = I915_READ(pp_reg);
892 if (!(val & PANEL_POWER_ON) ||
893 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
894 locked = false;
895
896 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
897 panel_pipe = PIPE_B;
898
899 WARN(panel_pipe == pipe && locked,
900 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 901 pipe_name(pipe));
ea0760cf
JB
902}
903
63d7bbe9
JB
904static void assert_pipe(struct drm_i915_private *dev_priv,
905 enum pipe pipe, bool state)
b24e7179
JB
906{
907 int reg;
908 u32 val;
63d7bbe9 909 bool cur_state;
b24e7179
JB
910
911 reg = PIPECONF(pipe);
912 val = I915_READ(reg);
63d7bbe9
JB
913 cur_state = !!(val & PIPECONF_ENABLE);
914 WARN(cur_state != state,
915 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 916 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179 917}
63d7bbe9
JB
918#define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
919#define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
b24e7179
JB
920
921static void assert_plane_enabled(struct drm_i915_private *dev_priv,
922 enum plane plane)
923{
924 int reg;
925 u32 val;
926
927 reg = DSPCNTR(plane);
928 val = I915_READ(reg);
929 WARN(!(val & DISPLAY_PLANE_ENABLE),
930 "plane %c assertion failure, should be active but is disabled\n",
9db4a9c7 931 plane_name(plane));
b24e7179
JB
932}
933
934static void assert_planes_disabled(struct drm_i915_private *dev_priv,
935 enum pipe pipe)
936{
937 int reg, i;
938 u32 val;
939 int cur_pipe;
940
19ec1358
JB
941 /* Planes are fixed to pipes on ILK+ */
942 if (HAS_PCH_SPLIT(dev_priv->dev))
943 return;
944
b24e7179
JB
945 /* Need to check both planes against the pipe */
946 for (i = 0; i < 2; i++) {
947 reg = DSPCNTR(i);
948 val = I915_READ(reg);
949 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
950 DISPPLANE_SEL_PIPE_SHIFT;
951 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
952 "plane %c assertion failure, should be off on pipe %c but is still active\n",
953 plane_name(i), pipe_name(pipe));
b24e7179
JB
954 }
955}
956
92f2584a
JB
957static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
958{
959 u32 val;
960 bool enabled;
961
962 val = I915_READ(PCH_DREF_CONTROL);
963 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
964 DREF_SUPERSPREAD_SOURCE_MASK));
965 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
966}
967
968static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
969 enum pipe pipe)
970{
971 int reg;
972 u32 val;
973 bool enabled;
974
975 reg = TRANSCONF(pipe);
976 val = I915_READ(reg);
977 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
978 WARN(enabled,
979 "transcoder assertion failed, should be off on pipe %c but is still active\n",
980 pipe_name(pipe));
92f2584a
JB
981}
982
f0575e92
KP
983static bool dp_pipe_enabled(struct drm_i915_private *dev_priv, enum pipe pipe,
984 int reg, u32 port_sel, u32 val)
985{
986 if ((val & DP_PORT_EN) == 0)
987 return false;
988
989 if (HAS_PCH_CPT(dev_priv->dev)) {
990 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
991 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
992 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
993 return false;
994 } else {
995 if ((val & DP_PIPE_MASK) != (pipe << 30))
996 return false;
997 }
998 return true;
999}
1000
291906f1 1001static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1002 enum pipe pipe, int reg, u32 port_sel)
291906f1 1003{
47a05eca 1004 u32 val = I915_READ(reg);
f0575e92 1005 WARN(dp_pipe_enabled(dev_priv, pipe, reg, port_sel, val),
291906f1 1006 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1007 reg, pipe_name(pipe));
291906f1
JB
1008}
1009
1010static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1011 enum pipe pipe, int reg)
1012{
47a05eca
JB
1013 u32 val = I915_READ(reg);
1014 WARN(HDMI_PIPE_ENABLED(val, pipe),
291906f1 1015 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1016 reg, pipe_name(pipe));
291906f1
JB
1017}
1018
1019static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1020 enum pipe pipe)
1021{
1022 int reg;
1023 u32 val;
291906f1 1024
f0575e92
KP
1025 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1026 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1027 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1028
1029 reg = PCH_ADPA;
1030 val = I915_READ(reg);
47a05eca 1031 WARN(ADPA_PIPE_ENABLED(val, pipe),
291906f1 1032 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1033 pipe_name(pipe));
291906f1
JB
1034
1035 reg = PCH_LVDS;
1036 val = I915_READ(reg);
47a05eca 1037 WARN(LVDS_PIPE_ENABLED(val, pipe),
291906f1 1038 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1039 pipe_name(pipe));
291906f1
JB
1040
1041 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1042 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1043 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1044}
1045
63d7bbe9
JB
1046/**
1047 * intel_enable_pll - enable a PLL
1048 * @dev_priv: i915 private structure
1049 * @pipe: pipe PLL to enable
1050 *
1051 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1052 * make sure the PLL reg is writable first though, since the panel write
1053 * protect mechanism may be enabled.
1054 *
1055 * Note! This is for pre-ILK only.
1056 */
1057static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1058{
1059 int reg;
1060 u32 val;
1061
1062 /* No really, not for ILK+ */
1063 BUG_ON(dev_priv->info->gen >= 5);
1064
1065 /* PLL is protected by panel, make sure we can write it */
1066 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1067 assert_panel_unlocked(dev_priv, pipe);
1068
1069 reg = DPLL(pipe);
1070 val = I915_READ(reg);
1071 val |= DPLL_VCO_ENABLE;
1072
1073 /* We do this three times for luck */
1074 I915_WRITE(reg, val);
1075 POSTING_READ(reg);
1076 udelay(150); /* wait for warmup */
1077 I915_WRITE(reg, val);
1078 POSTING_READ(reg);
1079 udelay(150); /* wait for warmup */
1080 I915_WRITE(reg, val);
1081 POSTING_READ(reg);
1082 udelay(150); /* wait for warmup */
1083}
1084
1085/**
1086 * intel_disable_pll - disable a PLL
1087 * @dev_priv: i915 private structure
1088 * @pipe: pipe PLL to disable
1089 *
1090 * Disable the PLL for @pipe, making sure the pipe is off first.
1091 *
1092 * Note! This is for pre-ILK only.
1093 */
1094static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1095{
1096 int reg;
1097 u32 val;
1098
1099 /* Don't disable pipe A or pipe A PLLs if needed */
1100 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1101 return;
1102
1103 /* Make sure the pipe isn't still relying on us */
1104 assert_pipe_disabled(dev_priv, pipe);
1105
1106 reg = DPLL(pipe);
1107 val = I915_READ(reg);
1108 val &= ~DPLL_VCO_ENABLE;
1109 I915_WRITE(reg, val);
1110 POSTING_READ(reg);
1111}
1112
92f2584a
JB
1113/**
1114 * intel_enable_pch_pll - enable PCH PLL
1115 * @dev_priv: i915 private structure
1116 * @pipe: pipe PLL to enable
1117 *
1118 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1119 * drives the transcoder clock.
1120 */
1121static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1122 enum pipe pipe)
1123{
1124 int reg;
1125 u32 val;
1126
1127 /* PCH only available on ILK+ */
1128 BUG_ON(dev_priv->info->gen < 5);
1129
1130 /* PCH refclock must be enabled first */
1131 assert_pch_refclk_enabled(dev_priv);
1132
1133 reg = PCH_DPLL(pipe);
1134 val = I915_READ(reg);
1135 val |= DPLL_VCO_ENABLE;
1136 I915_WRITE(reg, val);
1137 POSTING_READ(reg);
1138 udelay(200);
1139}
1140
1141static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1142 enum pipe pipe)
1143{
1144 int reg;
1145 u32 val;
1146
1147 /* PCH only available on ILK+ */
1148 BUG_ON(dev_priv->info->gen < 5);
1149
1150 /* Make sure transcoder isn't still depending on us */
1151 assert_transcoder_disabled(dev_priv, pipe);
1152
1153 reg = PCH_DPLL(pipe);
1154 val = I915_READ(reg);
1155 val &= ~DPLL_VCO_ENABLE;
1156 I915_WRITE(reg, val);
1157 POSTING_READ(reg);
1158 udelay(200);
1159}
1160
040484af
JB
1161static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1162 enum pipe pipe)
1163{
1164 int reg;
1165 u32 val;
1166
1167 /* PCH only available on ILK+ */
1168 BUG_ON(dev_priv->info->gen < 5);
1169
1170 /* Make sure PCH DPLL is enabled */
1171 assert_pch_pll_enabled(dev_priv, pipe);
1172
1173 /* FDI must be feeding us bits for PCH ports */
1174 assert_fdi_tx_enabled(dev_priv, pipe);
1175 assert_fdi_rx_enabled(dev_priv, pipe);
1176
1177 reg = TRANSCONF(pipe);
1178 val = I915_READ(reg);
e9bcff5c
JB
1179
1180 if (HAS_PCH_IBX(dev_priv->dev)) {
1181 /*
1182 * make the BPC in transcoder be consistent with
1183 * that in pipeconf reg.
1184 */
1185 val &= ~PIPE_BPC_MASK;
1186 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1187 }
040484af
JB
1188 I915_WRITE(reg, val | TRANS_ENABLE);
1189 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1190 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1191}
1192
1193static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1194 enum pipe pipe)
1195{
1196 int reg;
1197 u32 val;
1198
1199 /* FDI relies on the transcoder */
1200 assert_fdi_tx_disabled(dev_priv, pipe);
1201 assert_fdi_rx_disabled(dev_priv, pipe);
1202
291906f1
JB
1203 /* Ports must be off as well */
1204 assert_pch_ports_disabled(dev_priv, pipe);
1205
040484af
JB
1206 reg = TRANSCONF(pipe);
1207 val = I915_READ(reg);
1208 val &= ~TRANS_ENABLE;
1209 I915_WRITE(reg, val);
1210 /* wait for PCH transcoder off, transcoder state */
1211 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1212 DRM_ERROR("failed to disable transcoder\n");
1213}
1214
b24e7179 1215/**
309cfea8 1216 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1217 * @dev_priv: i915 private structure
1218 * @pipe: pipe to enable
040484af 1219 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1220 *
1221 * Enable @pipe, making sure that various hardware specific requirements
1222 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1223 *
1224 * @pipe should be %PIPE_A or %PIPE_B.
1225 *
1226 * Will wait until the pipe is actually running (i.e. first vblank) before
1227 * returning.
1228 */
040484af
JB
1229static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1230 bool pch_port)
b24e7179
JB
1231{
1232 int reg;
1233 u32 val;
1234
1235 /*
1236 * A pipe without a PLL won't actually be able to drive bits from
1237 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1238 * need the check.
1239 */
1240 if (!HAS_PCH_SPLIT(dev_priv->dev))
1241 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1242 else {
1243 if (pch_port) {
1244 /* if driving the PCH, we need FDI enabled */
1245 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1246 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1247 }
1248 /* FIXME: assert CPU port conditions for SNB+ */
1249 }
b24e7179
JB
1250
1251 reg = PIPECONF(pipe);
1252 val = I915_READ(reg);
00d70b15
CW
1253 if (val & PIPECONF_ENABLE)
1254 return;
1255
1256 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1257 intel_wait_for_vblank(dev_priv->dev, pipe);
1258}
1259
1260/**
309cfea8 1261 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1262 * @dev_priv: i915 private structure
1263 * @pipe: pipe to disable
1264 *
1265 * Disable @pipe, making sure that various hardware specific requirements
1266 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1267 *
1268 * @pipe should be %PIPE_A or %PIPE_B.
1269 *
1270 * Will wait until the pipe has shut down before returning.
1271 */
1272static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1273 enum pipe pipe)
1274{
1275 int reg;
1276 u32 val;
1277
1278 /*
1279 * Make sure planes won't keep trying to pump pixels to us,
1280 * or we might hang the display.
1281 */
1282 assert_planes_disabled(dev_priv, pipe);
1283
1284 /* Don't disable pipe A or pipe A PLLs if needed */
1285 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1286 return;
1287
1288 reg = PIPECONF(pipe);
1289 val = I915_READ(reg);
00d70b15
CW
1290 if ((val & PIPECONF_ENABLE) == 0)
1291 return;
1292
1293 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1294 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1295}
1296
d74362c9
KP
1297/*
1298 * Plane regs are double buffered, going from enabled->disabled needs a
1299 * trigger in order to latch. The display address reg provides this.
1300 */
1301static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1302 enum plane plane)
1303{
1304 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1305 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1306}
1307
b24e7179
JB
1308/**
1309 * intel_enable_plane - enable a display plane on a given pipe
1310 * @dev_priv: i915 private structure
1311 * @plane: plane to enable
1312 * @pipe: pipe being fed
1313 *
1314 * Enable @plane on @pipe, making sure that @pipe is running first.
1315 */
1316static void intel_enable_plane(struct drm_i915_private *dev_priv,
1317 enum plane plane, enum pipe pipe)
1318{
1319 int reg;
1320 u32 val;
1321
1322 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1323 assert_pipe_enabled(dev_priv, pipe);
1324
1325 reg = DSPCNTR(plane);
1326 val = I915_READ(reg);
00d70b15
CW
1327 if (val & DISPLAY_PLANE_ENABLE)
1328 return;
1329
1330 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1331 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1332 intel_wait_for_vblank(dev_priv->dev, pipe);
1333}
1334
b24e7179
JB
1335/**
1336 * intel_disable_plane - disable a display plane
1337 * @dev_priv: i915 private structure
1338 * @plane: plane to disable
1339 * @pipe: pipe consuming the data
1340 *
1341 * Disable @plane; should be an independent operation.
1342 */
1343static void intel_disable_plane(struct drm_i915_private *dev_priv,
1344 enum plane plane, enum pipe pipe)
1345{
1346 int reg;
1347 u32 val;
1348
1349 reg = DSPCNTR(plane);
1350 val = I915_READ(reg);
00d70b15
CW
1351 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1352 return;
1353
1354 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1355 intel_flush_display_plane(dev_priv, plane);
1356 intel_wait_for_vblank(dev_priv->dev, pipe);
1357}
1358
47a05eca 1359static void disable_pch_dp(struct drm_i915_private *dev_priv,
f0575e92 1360 enum pipe pipe, int reg, u32 port_sel)
47a05eca
JB
1361{
1362 u32 val = I915_READ(reg);
f0575e92
KP
1363 if (dp_pipe_enabled(dev_priv, pipe, reg, port_sel, val)) {
1364 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
47a05eca 1365 I915_WRITE(reg, val & ~DP_PORT_EN);
f0575e92 1366 }
47a05eca
JB
1367}
1368
1369static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1370 enum pipe pipe, int reg)
1371{
1372 u32 val = I915_READ(reg);
f0575e92
KP
1373 if (HDMI_PIPE_ENABLED(val, pipe)) {
1374 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1375 reg, pipe);
47a05eca 1376 I915_WRITE(reg, val & ~PORT_ENABLE);
f0575e92 1377 }
47a05eca
JB
1378}
1379
1380/* Disable any ports connected to this transcoder */
1381static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1382 enum pipe pipe)
1383{
1384 u32 reg, val;
1385
1386 val = I915_READ(PCH_PP_CONTROL);
1387 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1388
f0575e92
KP
1389 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1390 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1391 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
47a05eca
JB
1392
1393 reg = PCH_ADPA;
1394 val = I915_READ(reg);
1395 if (ADPA_PIPE_ENABLED(val, pipe))
1396 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1397
1398 reg = PCH_LVDS;
1399 val = I915_READ(reg);
1400 if (LVDS_PIPE_ENABLED(val, pipe)) {
1401 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1402 POSTING_READ(reg);
1403 udelay(100);
1404 }
1405
1406 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1407 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1408 disable_pch_hdmi(dev_priv, pipe, HDMID);
1409}
1410
43a9539f
CW
1411static void i8xx_disable_fbc(struct drm_device *dev)
1412{
1413 struct drm_i915_private *dev_priv = dev->dev_private;
1414 u32 fbc_ctl;
1415
1416 /* Disable compression */
1417 fbc_ctl = I915_READ(FBC_CONTROL);
1418 if ((fbc_ctl & FBC_CTL_EN) == 0)
1419 return;
1420
1421 fbc_ctl &= ~FBC_CTL_EN;
1422 I915_WRITE(FBC_CONTROL, fbc_ctl);
1423
1424 /* Wait for compressing bit to clear */
1425 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1426 DRM_DEBUG_KMS("FBC idle timed out\n");
1427 return;
1428 }
1429
1430 DRM_DEBUG_KMS("disabled FBC\n");
1431}
1432
80824003
JB
1433static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1434{
1435 struct drm_device *dev = crtc->dev;
1436 struct drm_i915_private *dev_priv = dev->dev_private;
1437 struct drm_framebuffer *fb = crtc->fb;
1438 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1439 struct drm_i915_gem_object *obj = intel_fb->obj;
80824003 1440 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
016b9b61 1441 int cfb_pitch;
80824003
JB
1442 int plane, i;
1443 u32 fbc_ctl, fbc_ctl2;
1444
016b9b61
CW
1445 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1446 if (fb->pitch < cfb_pitch)
1447 cfb_pitch = fb->pitch;
80824003
JB
1448
1449 /* FBC_CTL wants 64B units */
016b9b61
CW
1450 cfb_pitch = (cfb_pitch / 64) - 1;
1451 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
80824003
JB
1452
1453 /* Clear old tags */
1454 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1455 I915_WRITE(FBC_TAG + (i * 4), 0);
1456
1457 /* Set it up... */
de568510
CW
1458 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1459 fbc_ctl2 |= plane;
80824003
JB
1460 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1461 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1462
1463 /* enable it... */
1464 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
ee25df2b 1465 if (IS_I945GM(dev))
49677901 1466 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
016b9b61 1467 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
80824003 1468 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
016b9b61 1469 fbc_ctl |= obj->fence_reg;
80824003
JB
1470 I915_WRITE(FBC_CONTROL, fbc_ctl);
1471
016b9b61
CW
1472 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1473 cfb_pitch, crtc->y, intel_crtc->plane);
80824003
JB
1474}
1475
ee5382ae 1476static bool i8xx_fbc_enabled(struct drm_device *dev)
80824003 1477{
80824003
JB
1478 struct drm_i915_private *dev_priv = dev->dev_private;
1479
1480 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1481}
1482
74dff282
JB
1483static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1484{
1485 struct drm_device *dev = crtc->dev;
1486 struct drm_i915_private *dev_priv = dev->dev_private;
1487 struct drm_framebuffer *fb = crtc->fb;
1488 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1489 struct drm_i915_gem_object *obj = intel_fb->obj;
74dff282 1490 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5eddb70b 1491 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
74dff282
JB
1492 unsigned long stall_watermark = 200;
1493 u32 dpfc_ctl;
1494
74dff282 1495 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
016b9b61 1496 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
de568510 1497 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
74dff282 1498
74dff282
JB
1499 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1500 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1501 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1502 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1503
1504 /* enable it... */
1505 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1506
28c97730 1507 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
74dff282
JB
1508}
1509
43a9539f 1510static void g4x_disable_fbc(struct drm_device *dev)
74dff282
JB
1511{
1512 struct drm_i915_private *dev_priv = dev->dev_private;
1513 u32 dpfc_ctl;
1514
1515 /* Disable compression */
1516 dpfc_ctl = I915_READ(DPFC_CONTROL);
bed4a673
CW
1517 if (dpfc_ctl & DPFC_CTL_EN) {
1518 dpfc_ctl &= ~DPFC_CTL_EN;
1519 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
74dff282 1520
bed4a673
CW
1521 DRM_DEBUG_KMS("disabled FBC\n");
1522 }
74dff282
JB
1523}
1524
ee5382ae 1525static bool g4x_fbc_enabled(struct drm_device *dev)
74dff282 1526{
74dff282
JB
1527 struct drm_i915_private *dev_priv = dev->dev_private;
1528
1529 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1530}
1531
4efe0708
JB
1532static void sandybridge_blit_fbc_update(struct drm_device *dev)
1533{
1534 struct drm_i915_private *dev_priv = dev->dev_private;
1535 u32 blt_ecoskpd;
1536
1537 /* Make sure blitter notifies FBC of writes */
fcca7926 1538 gen6_gt_force_wake_get(dev_priv);
4efe0708
JB
1539 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1540 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1541 GEN6_BLITTER_LOCK_SHIFT;
1542 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1543 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1544 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1545 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1546 GEN6_BLITTER_LOCK_SHIFT);
1547 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1548 POSTING_READ(GEN6_BLITTER_ECOSKPD);
fcca7926 1549 gen6_gt_force_wake_put(dev_priv);
4efe0708
JB
1550}
1551
b52eb4dc
ZY
1552static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1553{
1554 struct drm_device *dev = crtc->dev;
1555 struct drm_i915_private *dev_priv = dev->dev_private;
1556 struct drm_framebuffer *fb = crtc->fb;
1557 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1558 struct drm_i915_gem_object *obj = intel_fb->obj;
b52eb4dc 1559 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5eddb70b 1560 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
b52eb4dc
ZY
1561 unsigned long stall_watermark = 200;
1562 u32 dpfc_ctl;
1563
bed4a673 1564 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
b52eb4dc
ZY
1565 dpfc_ctl &= DPFC_RESERVED;
1566 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
9ce9d069
CW
1567 /* Set persistent mode for front-buffer rendering, ala X. */
1568 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
016b9b61 1569 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
de568510 1570 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
b52eb4dc 1571
b52eb4dc
ZY
1572 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1573 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1574 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1575 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
05394f39 1576 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
b52eb4dc 1577 /* enable it... */
bed4a673 1578 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
b52eb4dc 1579
9c04f015
YL
1580 if (IS_GEN6(dev)) {
1581 I915_WRITE(SNB_DPFC_CTL_SA,
016b9b61 1582 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
9c04f015 1583 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
4efe0708 1584 sandybridge_blit_fbc_update(dev);
9c04f015
YL
1585 }
1586
b52eb4dc
ZY
1587 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1588}
1589
43a9539f 1590static void ironlake_disable_fbc(struct drm_device *dev)
b52eb4dc
ZY
1591{
1592 struct drm_i915_private *dev_priv = dev->dev_private;
1593 u32 dpfc_ctl;
1594
1595 /* Disable compression */
1596 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
bed4a673
CW
1597 if (dpfc_ctl & DPFC_CTL_EN) {
1598 dpfc_ctl &= ~DPFC_CTL_EN;
1599 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
b52eb4dc 1600
bed4a673
CW
1601 DRM_DEBUG_KMS("disabled FBC\n");
1602 }
b52eb4dc
ZY
1603}
1604
1605static bool ironlake_fbc_enabled(struct drm_device *dev)
1606{
1607 struct drm_i915_private *dev_priv = dev->dev_private;
1608
1609 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1610}
1611
ee5382ae
AJ
1612bool intel_fbc_enabled(struct drm_device *dev)
1613{
1614 struct drm_i915_private *dev_priv = dev->dev_private;
1615
1616 if (!dev_priv->display.fbc_enabled)
1617 return false;
1618
1619 return dev_priv->display.fbc_enabled(dev);
1620}
1621
1630fe75
CW
1622static void intel_fbc_work_fn(struct work_struct *__work)
1623{
1624 struct intel_fbc_work *work =
1625 container_of(to_delayed_work(__work),
1626 struct intel_fbc_work, work);
1627 struct drm_device *dev = work->crtc->dev;
1628 struct drm_i915_private *dev_priv = dev->dev_private;
1629
1630 mutex_lock(&dev->struct_mutex);
1631 if (work == dev_priv->fbc_work) {
1632 /* Double check that we haven't switched fb without cancelling
1633 * the prior work.
1634 */
016b9b61 1635 if (work->crtc->fb == work->fb) {
1630fe75
CW
1636 dev_priv->display.enable_fbc(work->crtc,
1637 work->interval);
1638
016b9b61
CW
1639 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1640 dev_priv->cfb_fb = work->crtc->fb->base.id;
1641 dev_priv->cfb_y = work->crtc->y;
1642 }
1643
1630fe75
CW
1644 dev_priv->fbc_work = NULL;
1645 }
1646 mutex_unlock(&dev->struct_mutex);
1647
1648 kfree(work);
1649}
1650
1651static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1652{
1653 if (dev_priv->fbc_work == NULL)
1654 return;
1655
1656 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1657
1658 /* Synchronisation is provided by struct_mutex and checking of
1659 * dev_priv->fbc_work, so we can perform the cancellation
1660 * entirely asynchronously.
1661 */
1662 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1663 /* tasklet was killed before being run, clean up */
1664 kfree(dev_priv->fbc_work);
1665
1666 /* Mark the work as no longer wanted so that if it does
1667 * wake-up (because the work was already running and waiting
1668 * for our mutex), it will discover that is no longer
1669 * necessary to run.
1670 */
1671 dev_priv->fbc_work = NULL;
1672}
1673
43a9539f 1674static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
ee5382ae 1675{
1630fe75
CW
1676 struct intel_fbc_work *work;
1677 struct drm_device *dev = crtc->dev;
1678 struct drm_i915_private *dev_priv = dev->dev_private;
ee5382ae
AJ
1679
1680 if (!dev_priv->display.enable_fbc)
1681 return;
1682
1630fe75
CW
1683 intel_cancel_fbc_work(dev_priv);
1684
1685 work = kzalloc(sizeof *work, GFP_KERNEL);
1686 if (work == NULL) {
1687 dev_priv->display.enable_fbc(crtc, interval);
1688 return;
1689 }
1690
1691 work->crtc = crtc;
1692 work->fb = crtc->fb;
1693 work->interval = interval;
1694 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1695
1696 dev_priv->fbc_work = work;
1697
1698 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1699
1700 /* Delay the actual enabling to let pageflipping cease and the
016b9b61
CW
1701 * display to settle before starting the compression. Note that
1702 * this delay also serves a second purpose: it allows for a
1703 * vblank to pass after disabling the FBC before we attempt
1704 * to modify the control registers.
1630fe75
CW
1705 *
1706 * A more complicated solution would involve tracking vblanks
1707 * following the termination of the page-flipping sequence
1708 * and indeed performing the enable as a co-routine and not
1709 * waiting synchronously upon the vblank.
1710 */
1711 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
ee5382ae
AJ
1712}
1713
1714void intel_disable_fbc(struct drm_device *dev)
1715{
1716 struct drm_i915_private *dev_priv = dev->dev_private;
1717
1630fe75
CW
1718 intel_cancel_fbc_work(dev_priv);
1719
ee5382ae
AJ
1720 if (!dev_priv->display.disable_fbc)
1721 return;
1722
1723 dev_priv->display.disable_fbc(dev);
016b9b61 1724 dev_priv->cfb_plane = -1;
ee5382ae
AJ
1725}
1726
80824003
JB
1727/**
1728 * intel_update_fbc - enable/disable FBC as needed
bed4a673 1729 * @dev: the drm_device
80824003
JB
1730 *
1731 * Set up the framebuffer compression hardware at mode set time. We
1732 * enable it if possible:
1733 * - plane A only (on pre-965)
1734 * - no pixel mulitply/line duplication
1735 * - no alpha buffer discard
1736 * - no dual wide
1737 * - framebuffer <= 2048 in width, 1536 in height
1738 *
1739 * We can't assume that any compression will take place (worst case),
1740 * so the compressed buffer has to be the same size as the uncompressed
1741 * one. It also must reside (along with the line length buffer) in
1742 * stolen memory.
1743 *
1744 * We need to enable/disable FBC on a global basis.
1745 */
bed4a673 1746static void intel_update_fbc(struct drm_device *dev)
80824003 1747{
80824003 1748 struct drm_i915_private *dev_priv = dev->dev_private;
bed4a673
CW
1749 struct drm_crtc *crtc = NULL, *tmp_crtc;
1750 struct intel_crtc *intel_crtc;
1751 struct drm_framebuffer *fb;
80824003 1752 struct intel_framebuffer *intel_fb;
05394f39 1753 struct drm_i915_gem_object *obj;
9c928d16
JB
1754
1755 DRM_DEBUG_KMS("\n");
80824003
JB
1756
1757 if (!i915_powersave)
1758 return;
1759
ee5382ae 1760 if (!I915_HAS_FBC(dev))
e70236a8
JB
1761 return;
1762
80824003
JB
1763 /*
1764 * If FBC is already on, we just have to verify that we can
1765 * keep it that way...
1766 * Need to disable if:
9c928d16 1767 * - more than one pipe is active
80824003
JB
1768 * - changing FBC params (stride, fence, mode)
1769 * - new fb is too large to fit in compressed buffer
1770 * - going to an unsupported config (interlace, pixel multiply, etc.)
1771 */
9c928d16 1772 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
d210246a 1773 if (tmp_crtc->enabled && tmp_crtc->fb) {
bed4a673
CW
1774 if (crtc) {
1775 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1776 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1777 goto out_disable;
1778 }
1779 crtc = tmp_crtc;
1780 }
9c928d16 1781 }
bed4a673
CW
1782
1783 if (!crtc || crtc->fb == NULL) {
1784 DRM_DEBUG_KMS("no output, disabling\n");
1785 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
9c928d16
JB
1786 goto out_disable;
1787 }
bed4a673
CW
1788
1789 intel_crtc = to_intel_crtc(crtc);
1790 fb = crtc->fb;
1791 intel_fb = to_intel_framebuffer(fb);
05394f39 1792 obj = intel_fb->obj;
bed4a673 1793
c1a9f047
JB
1794 if (!i915_enable_fbc) {
1795 DRM_DEBUG_KMS("fbc disabled per module param (default off)\n");
1796 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1797 goto out_disable;
1798 }
05394f39 1799 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
28c97730 1800 DRM_DEBUG_KMS("framebuffer too large, disabling "
5eddb70b 1801 "compression\n");
b5e50c3f 1802 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
80824003
JB
1803 goto out_disable;
1804 }
bed4a673
CW
1805 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1806 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
28c97730 1807 DRM_DEBUG_KMS("mode incompatible with compression, "
5eddb70b 1808 "disabling\n");
b5e50c3f 1809 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
80824003
JB
1810 goto out_disable;
1811 }
bed4a673
CW
1812 if ((crtc->mode.hdisplay > 2048) ||
1813 (crtc->mode.vdisplay > 1536)) {
28c97730 1814 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
b5e50c3f 1815 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
80824003
JB
1816 goto out_disable;
1817 }
bed4a673 1818 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
28c97730 1819 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
b5e50c3f 1820 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
80824003
JB
1821 goto out_disable;
1822 }
de568510
CW
1823
1824 /* The use of a CPU fence is mandatory in order to detect writes
1825 * by the CPU to the scanout and trigger updates to the FBC.
1826 */
1827 if (obj->tiling_mode != I915_TILING_X ||
1828 obj->fence_reg == I915_FENCE_REG_NONE) {
1829 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
b5e50c3f 1830 dev_priv->no_fbc_reason = FBC_NOT_TILED;
80824003
JB
1831 goto out_disable;
1832 }
1833
c924b934
JW
1834 /* If the kernel debugger is active, always disable compression */
1835 if (in_dbg_master())
1836 goto out_disable;
1837
016b9b61
CW
1838 /* If the scanout has not changed, don't modify the FBC settings.
1839 * Note that we make the fundamental assumption that the fb->obj
1840 * cannot be unpinned (and have its GTT offset and fence revoked)
1841 * without first being decoupled from the scanout and FBC disabled.
1842 */
1843 if (dev_priv->cfb_plane == intel_crtc->plane &&
1844 dev_priv->cfb_fb == fb->base.id &&
1845 dev_priv->cfb_y == crtc->y)
1846 return;
1847
1848 if (intel_fbc_enabled(dev)) {
1849 /* We update FBC along two paths, after changing fb/crtc
1850 * configuration (modeswitching) and after page-flipping
1851 * finishes. For the latter, we know that not only did
1852 * we disable the FBC at the start of the page-flip
1853 * sequence, but also more than one vblank has passed.
1854 *
1855 * For the former case of modeswitching, it is possible
1856 * to switch between two FBC valid configurations
1857 * instantaneously so we do need to disable the FBC
1858 * before we can modify its control registers. We also
1859 * have to wait for the next vblank for that to take
1860 * effect. However, since we delay enabling FBC we can
1861 * assume that a vblank has passed since disabling and
1862 * that we can safely alter the registers in the deferred
1863 * callback.
1864 *
1865 * In the scenario that we go from a valid to invalid
1866 * and then back to valid FBC configuration we have
1867 * no strict enforcement that a vblank occurred since
1868 * disabling the FBC. However, along all current pipe
1869 * disabling paths we do need to wait for a vblank at
1870 * some point. And we wait before enabling FBC anyway.
1871 */
1872 DRM_DEBUG_KMS("disabling active FBC for update\n");
1873 intel_disable_fbc(dev);
1874 }
1875
bed4a673 1876 intel_enable_fbc(crtc, 500);
80824003
JB
1877 return;
1878
1879out_disable:
80824003 1880 /* Multiple disables should be harmless */
a939406f
CW
1881 if (intel_fbc_enabled(dev)) {
1882 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
ee5382ae 1883 intel_disable_fbc(dev);
a939406f 1884 }
80824003
JB
1885}
1886
127bd2ac 1887int
48b956c5 1888intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1889 struct drm_i915_gem_object *obj,
919926ae 1890 struct intel_ring_buffer *pipelined)
6b95a207 1891{
ce453d81 1892 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1893 u32 alignment;
1894 int ret;
1895
05394f39 1896 switch (obj->tiling_mode) {
6b95a207 1897 case I915_TILING_NONE:
534843da
CW
1898 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1899 alignment = 128 * 1024;
a6c45cf0 1900 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1901 alignment = 4 * 1024;
1902 else
1903 alignment = 64 * 1024;
6b95a207
KH
1904 break;
1905 case I915_TILING_X:
1906 /* pin() will align the object as required by fence */
1907 alignment = 0;
1908 break;
1909 case I915_TILING_Y:
1910 /* FIXME: Is this true? */
1911 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1912 return -EINVAL;
1913 default:
1914 BUG();
1915 }
1916
ce453d81 1917 dev_priv->mm.interruptible = false;
2da3b9b9 1918 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 1919 if (ret)
ce453d81 1920 goto err_interruptible;
6b95a207
KH
1921
1922 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1923 * fence, whereas 965+ only requires a fence if using
1924 * framebuffer compression. For simplicity, we always install
1925 * a fence as the cost is not that onerous.
1926 */
05394f39 1927 if (obj->tiling_mode != I915_TILING_NONE) {
ce453d81 1928 ret = i915_gem_object_get_fence(obj, pipelined);
48b956c5
CW
1929 if (ret)
1930 goto err_unpin;
6b95a207
KH
1931 }
1932
ce453d81 1933 dev_priv->mm.interruptible = true;
6b95a207 1934 return 0;
48b956c5
CW
1935
1936err_unpin:
1937 i915_gem_object_unpin(obj);
ce453d81
CW
1938err_interruptible:
1939 dev_priv->mm.interruptible = true;
48b956c5 1940 return ret;
6b95a207
KH
1941}
1942
17638cd6
JB
1943static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1944 int x, int y)
81255565
JB
1945{
1946 struct drm_device *dev = crtc->dev;
1947 struct drm_i915_private *dev_priv = dev->dev_private;
1948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1949 struct intel_framebuffer *intel_fb;
05394f39 1950 struct drm_i915_gem_object *obj;
81255565
JB
1951 int plane = intel_crtc->plane;
1952 unsigned long Start, Offset;
81255565 1953 u32 dspcntr;
5eddb70b 1954 u32 reg;
81255565
JB
1955
1956 switch (plane) {
1957 case 0:
1958 case 1:
1959 break;
1960 default:
1961 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1962 return -EINVAL;
1963 }
1964
1965 intel_fb = to_intel_framebuffer(fb);
1966 obj = intel_fb->obj;
81255565 1967
5eddb70b
CW
1968 reg = DSPCNTR(plane);
1969 dspcntr = I915_READ(reg);
81255565
JB
1970 /* Mask out pixel format bits in case we change it */
1971 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1972 switch (fb->bits_per_pixel) {
1973 case 8:
1974 dspcntr |= DISPPLANE_8BPP;
1975 break;
1976 case 16:
1977 if (fb->depth == 15)
1978 dspcntr |= DISPPLANE_15_16BPP;
1979 else
1980 dspcntr |= DISPPLANE_16BPP;
1981 break;
1982 case 24:
1983 case 32:
1984 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1985 break;
1986 default:
17638cd6 1987 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
81255565
JB
1988 return -EINVAL;
1989 }
a6c45cf0 1990 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 1991 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
1992 dspcntr |= DISPPLANE_TILED;
1993 else
1994 dspcntr &= ~DISPPLANE_TILED;
1995 }
1996
5eddb70b 1997 I915_WRITE(reg, dspcntr);
81255565 1998
05394f39 1999 Start = obj->gtt_offset;
81255565
JB
2000 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2001
4e6cfefc
CW
2002 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2003 Start, Offset, x, y, fb->pitch);
5eddb70b 2004 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
a6c45cf0 2005 if (INTEL_INFO(dev)->gen >= 4) {
5eddb70b
CW
2006 I915_WRITE(DSPSURF(plane), Start);
2007 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2008 I915_WRITE(DSPADDR(plane), Offset);
2009 } else
2010 I915_WRITE(DSPADDR(plane), Start + Offset);
2011 POSTING_READ(reg);
81255565 2012
17638cd6
JB
2013 return 0;
2014}
2015
2016static int ironlake_update_plane(struct drm_crtc *crtc,
2017 struct drm_framebuffer *fb, int x, int y)
2018{
2019 struct drm_device *dev = crtc->dev;
2020 struct drm_i915_private *dev_priv = dev->dev_private;
2021 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2022 struct intel_framebuffer *intel_fb;
2023 struct drm_i915_gem_object *obj;
2024 int plane = intel_crtc->plane;
2025 unsigned long Start, Offset;
2026 u32 dspcntr;
2027 u32 reg;
2028
2029 switch (plane) {
2030 case 0:
2031 case 1:
2032 break;
2033 default:
2034 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2035 return -EINVAL;
2036 }
2037
2038 intel_fb = to_intel_framebuffer(fb);
2039 obj = intel_fb->obj;
2040
2041 reg = DSPCNTR(plane);
2042 dspcntr = I915_READ(reg);
2043 /* Mask out pixel format bits in case we change it */
2044 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2045 switch (fb->bits_per_pixel) {
2046 case 8:
2047 dspcntr |= DISPPLANE_8BPP;
2048 break;
2049 case 16:
2050 if (fb->depth != 16)
2051 return -EINVAL;
2052
2053 dspcntr |= DISPPLANE_16BPP;
2054 break;
2055 case 24:
2056 case 32:
2057 if (fb->depth == 24)
2058 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2059 else if (fb->depth == 30)
2060 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2061 else
2062 return -EINVAL;
2063 break;
2064 default:
2065 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2066 return -EINVAL;
2067 }
2068
2069 if (obj->tiling_mode != I915_TILING_NONE)
2070 dspcntr |= DISPPLANE_TILED;
2071 else
2072 dspcntr &= ~DISPPLANE_TILED;
2073
2074 /* must disable */
2075 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2076
2077 I915_WRITE(reg, dspcntr);
2078
2079 Start = obj->gtt_offset;
2080 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2081
2082 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2083 Start, Offset, x, y, fb->pitch);
2084 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2085 I915_WRITE(DSPSURF(plane), Start);
2086 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2087 I915_WRITE(DSPADDR(plane), Offset);
2088 POSTING_READ(reg);
2089
2090 return 0;
2091}
2092
2093/* Assume fb object is pinned & idle & fenced and just update base pointers */
2094static int
2095intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2096 int x, int y, enum mode_set_atomic state)
2097{
2098 struct drm_device *dev = crtc->dev;
2099 struct drm_i915_private *dev_priv = dev->dev_private;
2100 int ret;
2101
2102 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2103 if (ret)
2104 return ret;
2105
bed4a673 2106 intel_update_fbc(dev);
3dec0095 2107 intel_increase_pllclock(crtc);
81255565
JB
2108
2109 return 0;
2110}
2111
5c3b82e2 2112static int
3c4fdcfb
KH
2113intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2114 struct drm_framebuffer *old_fb)
79e53945
JB
2115{
2116 struct drm_device *dev = crtc->dev;
79e53945
JB
2117 struct drm_i915_master_private *master_priv;
2118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5c3b82e2 2119 int ret;
79e53945
JB
2120
2121 /* no fb bound */
2122 if (!crtc->fb) {
a5071c2f 2123 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2124 return 0;
2125 }
2126
265db958 2127 switch (intel_crtc->plane) {
5c3b82e2
CW
2128 case 0:
2129 case 1:
2130 break;
2131 default:
a5071c2f 2132 DRM_ERROR("no plane for crtc\n");
5c3b82e2 2133 return -EINVAL;
79e53945
JB
2134 }
2135
5c3b82e2 2136 mutex_lock(&dev->struct_mutex);
265db958
CW
2137 ret = intel_pin_and_fence_fb_obj(dev,
2138 to_intel_framebuffer(crtc->fb)->obj,
919926ae 2139 NULL);
5c3b82e2
CW
2140 if (ret != 0) {
2141 mutex_unlock(&dev->struct_mutex);
a5071c2f 2142 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2143 return ret;
2144 }
79e53945 2145
265db958 2146 if (old_fb) {
e6c3a2a6 2147 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2148 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
265db958 2149
e6c3a2a6 2150 wait_event(dev_priv->pending_flip_queue,
01eec727 2151 atomic_read(&dev_priv->mm.wedged) ||
05394f39 2152 atomic_read(&obj->pending_flip) == 0);
85345517
CW
2153
2154 /* Big Hammer, we also need to ensure that any pending
2155 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2156 * current scanout is retired before unpinning the old
2157 * framebuffer.
01eec727
CW
2158 *
2159 * This should only fail upon a hung GPU, in which case we
2160 * can safely continue.
85345517 2161 */
a8198eea 2162 ret = i915_gem_object_finish_gpu(obj);
01eec727 2163 (void) ret;
265db958
CW
2164 }
2165
21c74a8e
JW
2166 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2167 LEAVE_ATOMIC_MODE_SET);
4e6cfefc 2168 if (ret) {
265db958 2169 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
5c3b82e2 2170 mutex_unlock(&dev->struct_mutex);
a5071c2f 2171 DRM_ERROR("failed to update base address\n");
4e6cfefc 2172 return ret;
79e53945 2173 }
3c4fdcfb 2174
b7f1de28
CW
2175 if (old_fb) {
2176 intel_wait_for_vblank(dev, intel_crtc->pipe);
265db958 2177 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2178 }
652c393a 2179
5c3b82e2 2180 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2181
2182 if (!dev->primary->master)
5c3b82e2 2183 return 0;
79e53945
JB
2184
2185 master_priv = dev->primary->master->driver_priv;
2186 if (!master_priv->sarea_priv)
5c3b82e2 2187 return 0;
79e53945 2188
265db958 2189 if (intel_crtc->pipe) {
79e53945
JB
2190 master_priv->sarea_priv->pipeB_x = x;
2191 master_priv->sarea_priv->pipeB_y = y;
5c3b82e2
CW
2192 } else {
2193 master_priv->sarea_priv->pipeA_x = x;
2194 master_priv->sarea_priv->pipeA_y = y;
79e53945 2195 }
5c3b82e2
CW
2196
2197 return 0;
79e53945
JB
2198}
2199
5eddb70b 2200static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2201{
2202 struct drm_device *dev = crtc->dev;
2203 struct drm_i915_private *dev_priv = dev->dev_private;
2204 u32 dpa_ctl;
2205
28c97730 2206 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2207 dpa_ctl = I915_READ(DP_A);
2208 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2209
2210 if (clock < 200000) {
2211 u32 temp;
2212 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2213 /* workaround for 160Mhz:
2214 1) program 0x4600c bits 15:0 = 0x8124
2215 2) program 0x46010 bit 0 = 1
2216 3) program 0x46034 bit 24 = 1
2217 4) program 0x64000 bit 14 = 1
2218 */
2219 temp = I915_READ(0x4600c);
2220 temp &= 0xffff0000;
2221 I915_WRITE(0x4600c, temp | 0x8124);
2222
2223 temp = I915_READ(0x46010);
2224 I915_WRITE(0x46010, temp | 1);
2225
2226 temp = I915_READ(0x46034);
2227 I915_WRITE(0x46034, temp | (1 << 24));
2228 } else {
2229 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2230 }
2231 I915_WRITE(DP_A, dpa_ctl);
2232
5eddb70b 2233 POSTING_READ(DP_A);
32f9d658
ZW
2234 udelay(500);
2235}
2236
5e84e1a4
ZW
2237static void intel_fdi_normal_train(struct drm_crtc *crtc)
2238{
2239 struct drm_device *dev = crtc->dev;
2240 struct drm_i915_private *dev_priv = dev->dev_private;
2241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2242 int pipe = intel_crtc->pipe;
2243 u32 reg, temp;
2244
2245 /* enable normal train */
2246 reg = FDI_TX_CTL(pipe);
2247 temp = I915_READ(reg);
61e499bf 2248 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2249 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2250 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2251 } else {
2252 temp &= ~FDI_LINK_TRAIN_NONE;
2253 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2254 }
5e84e1a4
ZW
2255 I915_WRITE(reg, temp);
2256
2257 reg = FDI_RX_CTL(pipe);
2258 temp = I915_READ(reg);
2259 if (HAS_PCH_CPT(dev)) {
2260 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2261 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2262 } else {
2263 temp &= ~FDI_LINK_TRAIN_NONE;
2264 temp |= FDI_LINK_TRAIN_NONE;
2265 }
2266 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2267
2268 /* wait one idle pattern time */
2269 POSTING_READ(reg);
2270 udelay(1000);
357555c0
JB
2271
2272 /* IVB wants error correction enabled */
2273 if (IS_IVYBRIDGE(dev))
2274 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2275 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2276}
2277
291427f5
JB
2278static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2279{
2280 struct drm_i915_private *dev_priv = dev->dev_private;
2281 u32 flags = I915_READ(SOUTH_CHICKEN1);
2282
2283 flags |= FDI_PHASE_SYNC_OVR(pipe);
2284 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2285 flags |= FDI_PHASE_SYNC_EN(pipe);
2286 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2287 POSTING_READ(SOUTH_CHICKEN1);
2288}
2289
8db9d77b
ZW
2290/* The FDI link training functions for ILK/Ibexpeak. */
2291static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2292{
2293 struct drm_device *dev = crtc->dev;
2294 struct drm_i915_private *dev_priv = dev->dev_private;
2295 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2296 int pipe = intel_crtc->pipe;
0fc932b8 2297 int plane = intel_crtc->plane;
5eddb70b 2298 u32 reg, temp, tries;
8db9d77b 2299
0fc932b8
JB
2300 /* FDI needs bits from pipe & plane first */
2301 assert_pipe_enabled(dev_priv, pipe);
2302 assert_plane_enabled(dev_priv, plane);
2303
e1a44743
AJ
2304 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2305 for train result */
5eddb70b
CW
2306 reg = FDI_RX_IMR(pipe);
2307 temp = I915_READ(reg);
e1a44743
AJ
2308 temp &= ~FDI_RX_SYMBOL_LOCK;
2309 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2310 I915_WRITE(reg, temp);
2311 I915_READ(reg);
e1a44743
AJ
2312 udelay(150);
2313
8db9d77b 2314 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2315 reg = FDI_TX_CTL(pipe);
2316 temp = I915_READ(reg);
77ffb597
AJ
2317 temp &= ~(7 << 19);
2318 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2319 temp &= ~FDI_LINK_TRAIN_NONE;
2320 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2321 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2322
5eddb70b
CW
2323 reg = FDI_RX_CTL(pipe);
2324 temp = I915_READ(reg);
8db9d77b
ZW
2325 temp &= ~FDI_LINK_TRAIN_NONE;
2326 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2327 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2328
2329 POSTING_READ(reg);
8db9d77b
ZW
2330 udelay(150);
2331
5b2adf89 2332 /* Ironlake workaround, enable clock pointer after FDI enable*/
6f06ce18
JB
2333 if (HAS_PCH_IBX(dev)) {
2334 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2335 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2336 FDI_RX_PHASE_SYNC_POINTER_EN);
2337 }
5b2adf89 2338
5eddb70b 2339 reg = FDI_RX_IIR(pipe);
e1a44743 2340 for (tries = 0; tries < 5; tries++) {
5eddb70b 2341 temp = I915_READ(reg);
8db9d77b
ZW
2342 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2343
2344 if ((temp & FDI_RX_BIT_LOCK)) {
2345 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2346 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2347 break;
2348 }
8db9d77b 2349 }
e1a44743 2350 if (tries == 5)
5eddb70b 2351 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2352
2353 /* Train 2 */
5eddb70b
CW
2354 reg = FDI_TX_CTL(pipe);
2355 temp = I915_READ(reg);
8db9d77b
ZW
2356 temp &= ~FDI_LINK_TRAIN_NONE;
2357 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2358 I915_WRITE(reg, temp);
8db9d77b 2359
5eddb70b
CW
2360 reg = FDI_RX_CTL(pipe);
2361 temp = I915_READ(reg);
8db9d77b
ZW
2362 temp &= ~FDI_LINK_TRAIN_NONE;
2363 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2364 I915_WRITE(reg, temp);
8db9d77b 2365
5eddb70b
CW
2366 POSTING_READ(reg);
2367 udelay(150);
8db9d77b 2368
5eddb70b 2369 reg = FDI_RX_IIR(pipe);
e1a44743 2370 for (tries = 0; tries < 5; tries++) {
5eddb70b 2371 temp = I915_READ(reg);
8db9d77b
ZW
2372 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2373
2374 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2375 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2376 DRM_DEBUG_KMS("FDI train 2 done.\n");
2377 break;
2378 }
8db9d77b 2379 }
e1a44743 2380 if (tries == 5)
5eddb70b 2381 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2382
2383 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2384
8db9d77b
ZW
2385}
2386
311bd68e 2387static const int snb_b_fdi_train_param [] = {
8db9d77b
ZW
2388 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2389 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2390 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2391 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2392};
2393
2394/* The FDI link training functions for SNB/Cougarpoint. */
2395static void gen6_fdi_link_train(struct drm_crtc *crtc)
2396{
2397 struct drm_device *dev = crtc->dev;
2398 struct drm_i915_private *dev_priv = dev->dev_private;
2399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2400 int pipe = intel_crtc->pipe;
5eddb70b 2401 u32 reg, temp, i;
8db9d77b 2402
e1a44743
AJ
2403 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2404 for train result */
5eddb70b
CW
2405 reg = FDI_RX_IMR(pipe);
2406 temp = I915_READ(reg);
e1a44743
AJ
2407 temp &= ~FDI_RX_SYMBOL_LOCK;
2408 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2409 I915_WRITE(reg, temp);
2410
2411 POSTING_READ(reg);
e1a44743
AJ
2412 udelay(150);
2413
8db9d77b 2414 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2415 reg = FDI_TX_CTL(pipe);
2416 temp = I915_READ(reg);
77ffb597
AJ
2417 temp &= ~(7 << 19);
2418 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2419 temp &= ~FDI_LINK_TRAIN_NONE;
2420 temp |= FDI_LINK_TRAIN_PATTERN_1;
2421 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2422 /* SNB-B */
2423 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2424 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2425
5eddb70b
CW
2426 reg = FDI_RX_CTL(pipe);
2427 temp = I915_READ(reg);
8db9d77b
ZW
2428 if (HAS_PCH_CPT(dev)) {
2429 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2430 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2431 } else {
2432 temp &= ~FDI_LINK_TRAIN_NONE;
2433 temp |= FDI_LINK_TRAIN_PATTERN_1;
2434 }
5eddb70b
CW
2435 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2436
2437 POSTING_READ(reg);
8db9d77b
ZW
2438 udelay(150);
2439
291427f5
JB
2440 if (HAS_PCH_CPT(dev))
2441 cpt_phase_pointer_enable(dev, pipe);
2442
8db9d77b 2443 for (i = 0; i < 4; i++ ) {
5eddb70b
CW
2444 reg = FDI_TX_CTL(pipe);
2445 temp = I915_READ(reg);
8db9d77b
ZW
2446 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2447 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2448 I915_WRITE(reg, temp);
2449
2450 POSTING_READ(reg);
8db9d77b
ZW
2451 udelay(500);
2452
5eddb70b
CW
2453 reg = FDI_RX_IIR(pipe);
2454 temp = I915_READ(reg);
8db9d77b
ZW
2455 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2456
2457 if (temp & FDI_RX_BIT_LOCK) {
5eddb70b 2458 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2459 DRM_DEBUG_KMS("FDI train 1 done.\n");
2460 break;
2461 }
2462 }
2463 if (i == 4)
5eddb70b 2464 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2465
2466 /* Train 2 */
5eddb70b
CW
2467 reg = FDI_TX_CTL(pipe);
2468 temp = I915_READ(reg);
8db9d77b
ZW
2469 temp &= ~FDI_LINK_TRAIN_NONE;
2470 temp |= FDI_LINK_TRAIN_PATTERN_2;
2471 if (IS_GEN6(dev)) {
2472 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2473 /* SNB-B */
2474 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2475 }
5eddb70b 2476 I915_WRITE(reg, temp);
8db9d77b 2477
5eddb70b
CW
2478 reg = FDI_RX_CTL(pipe);
2479 temp = I915_READ(reg);
8db9d77b
ZW
2480 if (HAS_PCH_CPT(dev)) {
2481 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2482 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2483 } else {
2484 temp &= ~FDI_LINK_TRAIN_NONE;
2485 temp |= FDI_LINK_TRAIN_PATTERN_2;
2486 }
5eddb70b
CW
2487 I915_WRITE(reg, temp);
2488
2489 POSTING_READ(reg);
8db9d77b
ZW
2490 udelay(150);
2491
2492 for (i = 0; i < 4; i++ ) {
5eddb70b
CW
2493 reg = FDI_TX_CTL(pipe);
2494 temp = I915_READ(reg);
8db9d77b
ZW
2495 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2496 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2497 I915_WRITE(reg, temp);
2498
2499 POSTING_READ(reg);
8db9d77b
ZW
2500 udelay(500);
2501
5eddb70b
CW
2502 reg = FDI_RX_IIR(pipe);
2503 temp = I915_READ(reg);
8db9d77b
ZW
2504 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2505
2506 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2507 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2508 DRM_DEBUG_KMS("FDI train 2 done.\n");
2509 break;
2510 }
2511 }
2512 if (i == 4)
5eddb70b 2513 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2514
2515 DRM_DEBUG_KMS("FDI train done.\n");
2516}
2517
357555c0
JB
2518/* Manual link training for Ivy Bridge A0 parts */
2519static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2520{
2521 struct drm_device *dev = crtc->dev;
2522 struct drm_i915_private *dev_priv = dev->dev_private;
2523 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2524 int pipe = intel_crtc->pipe;
2525 u32 reg, temp, i;
2526
2527 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2528 for train result */
2529 reg = FDI_RX_IMR(pipe);
2530 temp = I915_READ(reg);
2531 temp &= ~FDI_RX_SYMBOL_LOCK;
2532 temp &= ~FDI_RX_BIT_LOCK;
2533 I915_WRITE(reg, temp);
2534
2535 POSTING_READ(reg);
2536 udelay(150);
2537
2538 /* enable CPU FDI TX and PCH FDI RX */
2539 reg = FDI_TX_CTL(pipe);
2540 temp = I915_READ(reg);
2541 temp &= ~(7 << 19);
2542 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2543 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2544 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2545 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2546 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2547 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2548
2549 reg = FDI_RX_CTL(pipe);
2550 temp = I915_READ(reg);
2551 temp &= ~FDI_LINK_TRAIN_AUTO;
2552 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2553 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2554 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2555
2556 POSTING_READ(reg);
2557 udelay(150);
2558
291427f5
JB
2559 if (HAS_PCH_CPT(dev))
2560 cpt_phase_pointer_enable(dev, pipe);
2561
357555c0
JB
2562 for (i = 0; i < 4; i++ ) {
2563 reg = FDI_TX_CTL(pipe);
2564 temp = I915_READ(reg);
2565 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2566 temp |= snb_b_fdi_train_param[i];
2567 I915_WRITE(reg, temp);
2568
2569 POSTING_READ(reg);
2570 udelay(500);
2571
2572 reg = FDI_RX_IIR(pipe);
2573 temp = I915_READ(reg);
2574 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2575
2576 if (temp & FDI_RX_BIT_LOCK ||
2577 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2578 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2579 DRM_DEBUG_KMS("FDI train 1 done.\n");
2580 break;
2581 }
2582 }
2583 if (i == 4)
2584 DRM_ERROR("FDI train 1 fail!\n");
2585
2586 /* Train 2 */
2587 reg = FDI_TX_CTL(pipe);
2588 temp = I915_READ(reg);
2589 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2590 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2591 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2592 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2593 I915_WRITE(reg, temp);
2594
2595 reg = FDI_RX_CTL(pipe);
2596 temp = I915_READ(reg);
2597 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2598 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2599 I915_WRITE(reg, temp);
2600
2601 POSTING_READ(reg);
2602 udelay(150);
2603
2604 for (i = 0; i < 4; i++ ) {
2605 reg = FDI_TX_CTL(pipe);
2606 temp = I915_READ(reg);
2607 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2608 temp |= snb_b_fdi_train_param[i];
2609 I915_WRITE(reg, temp);
2610
2611 POSTING_READ(reg);
2612 udelay(500);
2613
2614 reg = FDI_RX_IIR(pipe);
2615 temp = I915_READ(reg);
2616 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2617
2618 if (temp & FDI_RX_SYMBOL_LOCK) {
2619 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2620 DRM_DEBUG_KMS("FDI train 2 done.\n");
2621 break;
2622 }
2623 }
2624 if (i == 4)
2625 DRM_ERROR("FDI train 2 fail!\n");
2626
2627 DRM_DEBUG_KMS("FDI train done.\n");
2628}
2629
2630static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2c07245f
ZW
2631{
2632 struct drm_device *dev = crtc->dev;
2633 struct drm_i915_private *dev_priv = dev->dev_private;
2634 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2635 int pipe = intel_crtc->pipe;
5eddb70b 2636 u32 reg, temp;
79e53945 2637
c64e311e 2638 /* Write the TU size bits so error detection works */
5eddb70b
CW
2639 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2640 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
c64e311e 2641
c98e9dcf 2642 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2643 reg = FDI_RX_CTL(pipe);
2644 temp = I915_READ(reg);
2645 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2646 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2647 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2648 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2649
2650 POSTING_READ(reg);
c98e9dcf
JB
2651 udelay(200);
2652
2653 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2654 temp = I915_READ(reg);
2655 I915_WRITE(reg, temp | FDI_PCDCLK);
2656
2657 POSTING_READ(reg);
c98e9dcf
JB
2658 udelay(200);
2659
2660 /* Enable CPU FDI TX PLL, always on for Ironlake */
5eddb70b
CW
2661 reg = FDI_TX_CTL(pipe);
2662 temp = I915_READ(reg);
c98e9dcf 2663 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5eddb70b
CW
2664 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2665
2666 POSTING_READ(reg);
c98e9dcf 2667 udelay(100);
6be4a607 2668 }
0e23b99d
JB
2669}
2670
291427f5
JB
2671static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2672{
2673 struct drm_i915_private *dev_priv = dev->dev_private;
2674 u32 flags = I915_READ(SOUTH_CHICKEN1);
2675
2676 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2677 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2678 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2679 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2680 POSTING_READ(SOUTH_CHICKEN1);
2681}
0fc932b8
JB
2682static void ironlake_fdi_disable(struct drm_crtc *crtc)
2683{
2684 struct drm_device *dev = crtc->dev;
2685 struct drm_i915_private *dev_priv = dev->dev_private;
2686 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2687 int pipe = intel_crtc->pipe;
2688 u32 reg, temp;
2689
2690 /* disable CPU FDI tx and PCH FDI rx */
2691 reg = FDI_TX_CTL(pipe);
2692 temp = I915_READ(reg);
2693 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2694 POSTING_READ(reg);
2695
2696 reg = FDI_RX_CTL(pipe);
2697 temp = I915_READ(reg);
2698 temp &= ~(0x7 << 16);
2699 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2700 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2701
2702 POSTING_READ(reg);
2703 udelay(100);
2704
2705 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2706 if (HAS_PCH_IBX(dev)) {
2707 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
2708 I915_WRITE(FDI_RX_CHICKEN(pipe),
2709 I915_READ(FDI_RX_CHICKEN(pipe) &
6f06ce18 2710 ~FDI_RX_PHASE_SYNC_POINTER_EN));
291427f5
JB
2711 } else if (HAS_PCH_CPT(dev)) {
2712 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2713 }
0fc932b8
JB
2714
2715 /* still set train pattern 1 */
2716 reg = FDI_TX_CTL(pipe);
2717 temp = I915_READ(reg);
2718 temp &= ~FDI_LINK_TRAIN_NONE;
2719 temp |= FDI_LINK_TRAIN_PATTERN_1;
2720 I915_WRITE(reg, temp);
2721
2722 reg = FDI_RX_CTL(pipe);
2723 temp = I915_READ(reg);
2724 if (HAS_PCH_CPT(dev)) {
2725 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2726 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2727 } else {
2728 temp &= ~FDI_LINK_TRAIN_NONE;
2729 temp |= FDI_LINK_TRAIN_PATTERN_1;
2730 }
2731 /* BPC in FDI rx is consistent with that in PIPECONF */
2732 temp &= ~(0x07 << 16);
2733 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2734 I915_WRITE(reg, temp);
2735
2736 POSTING_READ(reg);
2737 udelay(100);
2738}
2739
6b383a7f
CW
2740/*
2741 * When we disable a pipe, we need to clear any pending scanline wait events
2742 * to avoid hanging the ring, which we assume we are waiting on.
2743 */
2744static void intel_clear_scanline_wait(struct drm_device *dev)
2745{
2746 struct drm_i915_private *dev_priv = dev->dev_private;
8168bd48 2747 struct intel_ring_buffer *ring;
6b383a7f
CW
2748 u32 tmp;
2749
2750 if (IS_GEN2(dev))
2751 /* Can't break the hang on i8xx */
2752 return;
2753
1ec14ad3 2754 ring = LP_RING(dev_priv);
8168bd48
CW
2755 tmp = I915_READ_CTL(ring);
2756 if (tmp & RING_WAIT)
2757 I915_WRITE_CTL(ring, tmp);
6b383a7f
CW
2758}
2759
e6c3a2a6
CW
2760static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2761{
05394f39 2762 struct drm_i915_gem_object *obj;
e6c3a2a6
CW
2763 struct drm_i915_private *dev_priv;
2764
2765 if (crtc->fb == NULL)
2766 return;
2767
05394f39 2768 obj = to_intel_framebuffer(crtc->fb)->obj;
e6c3a2a6
CW
2769 dev_priv = crtc->dev->dev_private;
2770 wait_event(dev_priv->pending_flip_queue,
05394f39 2771 atomic_read(&obj->pending_flip) == 0);
e6c3a2a6
CW
2772}
2773
040484af
JB
2774static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2775{
2776 struct drm_device *dev = crtc->dev;
2777 struct drm_mode_config *mode_config = &dev->mode_config;
2778 struct intel_encoder *encoder;
2779
2780 /*
2781 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2782 * must be driven by its own crtc; no sharing is possible.
2783 */
2784 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2785 if (encoder->base.crtc != crtc)
2786 continue;
2787
2788 switch (encoder->type) {
2789 case INTEL_OUTPUT_EDP:
2790 if (!intel_encoder_is_pch_edp(&encoder->base))
2791 return false;
2792 continue;
2793 }
2794 }
2795
2796 return true;
2797}
2798
f67a559d
JB
2799/*
2800 * Enable PCH resources required for PCH ports:
2801 * - PCH PLLs
2802 * - FDI training & RX/TX
2803 * - update transcoder timings
2804 * - DP transcoding bits
2805 * - transcoder
2806 */
2807static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
2808{
2809 struct drm_device *dev = crtc->dev;
2810 struct drm_i915_private *dev_priv = dev->dev_private;
2811 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2812 int pipe = intel_crtc->pipe;
5eddb70b 2813 u32 reg, temp;
2c07245f 2814
c98e9dcf 2815 /* For PCH output, training FDI link */
674cf967 2816 dev_priv->display.fdi_link_train(crtc);
2c07245f 2817
92f2584a 2818 intel_enable_pch_pll(dev_priv, pipe);
8db9d77b 2819
c98e9dcf
JB
2820 if (HAS_PCH_CPT(dev)) {
2821 /* Be sure PCH DPLL SEL is set */
2822 temp = I915_READ(PCH_DPLL_SEL);
5eddb70b 2823 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
c98e9dcf 2824 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
5eddb70b 2825 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
c98e9dcf
JB
2826 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2827 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 2828 }
5eddb70b 2829
d9b6cb56
JB
2830 /* set transcoder timing, panel must allow it */
2831 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
2832 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2833 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2834 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 2835
5eddb70b
CW
2836 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2837 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2838 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
8db9d77b 2839
5e84e1a4
ZW
2840 intel_fdi_normal_train(crtc);
2841
c98e9dcf
JB
2842 /* For PCH DP, enable TRANS_DP_CTL */
2843 if (HAS_PCH_CPT(dev) &&
2844 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
9325c9f0 2845 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
2846 reg = TRANS_DP_CTL(pipe);
2847 temp = I915_READ(reg);
2848 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
2849 TRANS_DP_SYNC_MASK |
2850 TRANS_DP_BPC_MASK);
5eddb70b
CW
2851 temp |= (TRANS_DP_OUTPUT_ENABLE |
2852 TRANS_DP_ENH_FRAMING);
9325c9f0 2853 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
2854
2855 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 2856 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 2857 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 2858 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
2859
2860 switch (intel_trans_dp_port_sel(crtc)) {
2861 case PCH_DP_B:
5eddb70b 2862 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
2863 break;
2864 case PCH_DP_C:
5eddb70b 2865 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
2866 break;
2867 case PCH_DP_D:
5eddb70b 2868 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
2869 break;
2870 default:
2871 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
5eddb70b 2872 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 2873 break;
32f9d658 2874 }
2c07245f 2875
5eddb70b 2876 I915_WRITE(reg, temp);
6be4a607 2877 }
b52eb4dc 2878
040484af 2879 intel_enable_transcoder(dev_priv, pipe);
f67a559d
JB
2880}
2881
2882static void ironlake_crtc_enable(struct drm_crtc *crtc)
2883{
2884 struct drm_device *dev = crtc->dev;
2885 struct drm_i915_private *dev_priv = dev->dev_private;
2886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2887 int pipe = intel_crtc->pipe;
2888 int plane = intel_crtc->plane;
2889 u32 temp;
2890 bool is_pch_port;
2891
2892 if (intel_crtc->active)
2893 return;
2894
2895 intel_crtc->active = true;
2896 intel_update_watermarks(dev);
2897
2898 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2899 temp = I915_READ(PCH_LVDS);
2900 if ((temp & LVDS_PORT_EN) == 0)
2901 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2902 }
2903
2904 is_pch_port = intel_crtc_driving_pch(crtc);
2905
2906 if (is_pch_port)
357555c0 2907 ironlake_fdi_pll_enable(crtc);
f67a559d
JB
2908 else
2909 ironlake_fdi_disable(crtc);
2910
2911 /* Enable panel fitting for LVDS */
2912 if (dev_priv->pch_pf_size &&
2913 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2914 /* Force use of hard-coded filter coefficients
2915 * as some pre-programmed values are broken,
2916 * e.g. x201.
2917 */
9db4a9c7
JB
2918 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2919 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2920 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
2921 }
2922
9c54c0dd
JB
2923 /*
2924 * On ILK+ LUT must be loaded before the pipe is running but with
2925 * clocks enabled
2926 */
2927 intel_crtc_load_lut(crtc);
2928
f67a559d
JB
2929 intel_enable_pipe(dev_priv, pipe, is_pch_port);
2930 intel_enable_plane(dev_priv, plane, pipe);
2931
2932 if (is_pch_port)
2933 ironlake_pch_enable(crtc);
c98e9dcf 2934
d1ebd816 2935 mutex_lock(&dev->struct_mutex);
bed4a673 2936 intel_update_fbc(dev);
d1ebd816
BW
2937 mutex_unlock(&dev->struct_mutex);
2938
6b383a7f 2939 intel_crtc_update_cursor(crtc, true);
6be4a607
JB
2940}
2941
2942static void ironlake_crtc_disable(struct drm_crtc *crtc)
2943{
2944 struct drm_device *dev = crtc->dev;
2945 struct drm_i915_private *dev_priv = dev->dev_private;
2946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2947 int pipe = intel_crtc->pipe;
2948 int plane = intel_crtc->plane;
5eddb70b 2949 u32 reg, temp;
b52eb4dc 2950
f7abfe8b
CW
2951 if (!intel_crtc->active)
2952 return;
2953
e6c3a2a6 2954 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 2955 drm_vblank_off(dev, pipe);
6b383a7f 2956 intel_crtc_update_cursor(crtc, false);
5eddb70b 2957
b24e7179 2958 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 2959
973d04f9
CW
2960 if (dev_priv->cfb_plane == plane)
2961 intel_disable_fbc(dev);
2c07245f 2962
b24e7179 2963 intel_disable_pipe(dev_priv, pipe);
32f9d658 2964
6be4a607 2965 /* Disable PF */
9db4a9c7
JB
2966 I915_WRITE(PF_CTL(pipe), 0);
2967 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 2968
0fc932b8 2969 ironlake_fdi_disable(crtc);
2c07245f 2970
47a05eca
JB
2971 /* This is a horrible layering violation; we should be doing this in
2972 * the connector/encoder ->prepare instead, but we don't always have
2973 * enough information there about the config to know whether it will
2974 * actually be necessary or just cause undesired flicker.
2975 */
2976 intel_disable_pch_ports(dev_priv, pipe);
249c0e64 2977
040484af 2978 intel_disable_transcoder(dev_priv, pipe);
913d8d11 2979
6be4a607
JB
2980 if (HAS_PCH_CPT(dev)) {
2981 /* disable TRANS_DP_CTL */
5eddb70b
CW
2982 reg = TRANS_DP_CTL(pipe);
2983 temp = I915_READ(reg);
2984 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 2985 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 2986 I915_WRITE(reg, temp);
6be4a607
JB
2987
2988 /* disable DPLL_SEL */
2989 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
2990 switch (pipe) {
2991 case 0:
2992 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2993 break;
2994 case 1:
6be4a607 2995 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
2996 break;
2997 case 2:
2998 /* FIXME: manage transcoder PLLs? */
2999 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3000 break;
3001 default:
3002 BUG(); /* wtf */
3003 }
6be4a607 3004 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3005 }
e3421a18 3006
6be4a607 3007 /* disable PCH DPLL */
92f2584a 3008 intel_disable_pch_pll(dev_priv, pipe);
8db9d77b 3009
6be4a607 3010 /* Switch from PCDclk to Rawclk */
5eddb70b
CW
3011 reg = FDI_RX_CTL(pipe);
3012 temp = I915_READ(reg);
3013 I915_WRITE(reg, temp & ~FDI_PCDCLK);
8db9d77b 3014
6be4a607 3015 /* Disable CPU FDI TX PLL */
5eddb70b
CW
3016 reg = FDI_TX_CTL(pipe);
3017 temp = I915_READ(reg);
3018 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3019
3020 POSTING_READ(reg);
6be4a607 3021 udelay(100);
8db9d77b 3022
5eddb70b
CW
3023 reg = FDI_RX_CTL(pipe);
3024 temp = I915_READ(reg);
3025 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2c07245f 3026
6be4a607 3027 /* Wait for the clocks to turn off. */
5eddb70b 3028 POSTING_READ(reg);
6be4a607 3029 udelay(100);
6b383a7f 3030
f7abfe8b 3031 intel_crtc->active = false;
6b383a7f 3032 intel_update_watermarks(dev);
d1ebd816
BW
3033
3034 mutex_lock(&dev->struct_mutex);
6b383a7f
CW
3035 intel_update_fbc(dev);
3036 intel_clear_scanline_wait(dev);
d1ebd816 3037 mutex_unlock(&dev->struct_mutex);
6be4a607 3038}
1b3c7a47 3039
6be4a607
JB
3040static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3041{
3042 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3043 int pipe = intel_crtc->pipe;
3044 int plane = intel_crtc->plane;
8db9d77b 3045
6be4a607
JB
3046 /* XXX: When our outputs are all unaware of DPMS modes other than off
3047 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3048 */
3049 switch (mode) {
3050 case DRM_MODE_DPMS_ON:
3051 case DRM_MODE_DPMS_STANDBY:
3052 case DRM_MODE_DPMS_SUSPEND:
3053 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3054 ironlake_crtc_enable(crtc);
3055 break;
1b3c7a47 3056
6be4a607
JB
3057 case DRM_MODE_DPMS_OFF:
3058 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3059 ironlake_crtc_disable(crtc);
2c07245f
ZW
3060 break;
3061 }
3062}
3063
02e792fb
DV
3064static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3065{
02e792fb 3066 if (!enable && intel_crtc->overlay) {
23f09ce3 3067 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3068 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3069
23f09ce3 3070 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3071 dev_priv->mm.interruptible = false;
3072 (void) intel_overlay_switch_off(intel_crtc->overlay);
3073 dev_priv->mm.interruptible = true;
23f09ce3 3074 mutex_unlock(&dev->struct_mutex);
02e792fb 3075 }
02e792fb 3076
5dcdbcb0
CW
3077 /* Let userspace switch the overlay on again. In most cases userspace
3078 * has to recompute where to put it anyway.
3079 */
02e792fb
DV
3080}
3081
0b8765c6 3082static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3083{
3084 struct drm_device *dev = crtc->dev;
79e53945
JB
3085 struct drm_i915_private *dev_priv = dev->dev_private;
3086 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3087 int pipe = intel_crtc->pipe;
80824003 3088 int plane = intel_crtc->plane;
79e53945 3089
f7abfe8b
CW
3090 if (intel_crtc->active)
3091 return;
3092
3093 intel_crtc->active = true;
6b383a7f
CW
3094 intel_update_watermarks(dev);
3095
63d7bbe9 3096 intel_enable_pll(dev_priv, pipe);
040484af 3097 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3098 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3099
0b8765c6 3100 intel_crtc_load_lut(crtc);
bed4a673 3101 intel_update_fbc(dev);
79e53945 3102
0b8765c6
JB
3103 /* Give the overlay scaler a chance to enable if it's on this pipe */
3104 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3105 intel_crtc_update_cursor(crtc, true);
0b8765c6 3106}
79e53945 3107
0b8765c6
JB
3108static void i9xx_crtc_disable(struct drm_crtc *crtc)
3109{
3110 struct drm_device *dev = crtc->dev;
3111 struct drm_i915_private *dev_priv = dev->dev_private;
3112 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3113 int pipe = intel_crtc->pipe;
3114 int plane = intel_crtc->plane;
b690e96c 3115
f7abfe8b
CW
3116 if (!intel_crtc->active)
3117 return;
3118
0b8765c6 3119 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3120 intel_crtc_wait_for_pending_flips(crtc);
3121 drm_vblank_off(dev, pipe);
0b8765c6 3122 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3123 intel_crtc_update_cursor(crtc, false);
0b8765c6 3124
973d04f9
CW
3125 if (dev_priv->cfb_plane == plane)
3126 intel_disable_fbc(dev);
79e53945 3127
b24e7179 3128 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3129 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3130 intel_disable_pll(dev_priv, pipe);
0b8765c6 3131
f7abfe8b 3132 intel_crtc->active = false;
6b383a7f
CW
3133 intel_update_fbc(dev);
3134 intel_update_watermarks(dev);
3135 intel_clear_scanline_wait(dev);
0b8765c6
JB
3136}
3137
3138static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3139{
3140 /* XXX: When our outputs are all unaware of DPMS modes other than off
3141 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3142 */
3143 switch (mode) {
3144 case DRM_MODE_DPMS_ON:
3145 case DRM_MODE_DPMS_STANDBY:
3146 case DRM_MODE_DPMS_SUSPEND:
3147 i9xx_crtc_enable(crtc);
3148 break;
3149 case DRM_MODE_DPMS_OFF:
3150 i9xx_crtc_disable(crtc);
79e53945
JB
3151 break;
3152 }
2c07245f
ZW
3153}
3154
3155/**
3156 * Sets the power management mode of the pipe and plane.
2c07245f
ZW
3157 */
3158static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3159{
3160 struct drm_device *dev = crtc->dev;
e70236a8 3161 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f
ZW
3162 struct drm_i915_master_private *master_priv;
3163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3164 int pipe = intel_crtc->pipe;
3165 bool enabled;
3166
032d2a0d
CW
3167 if (intel_crtc->dpms_mode == mode)
3168 return;
3169
65655d4a 3170 intel_crtc->dpms_mode = mode;
debcaddc 3171
e70236a8 3172 dev_priv->display.dpms(crtc, mode);
79e53945
JB
3173
3174 if (!dev->primary->master)
3175 return;
3176
3177 master_priv = dev->primary->master->driver_priv;
3178 if (!master_priv->sarea_priv)
3179 return;
3180
3181 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3182
3183 switch (pipe) {
3184 case 0:
3185 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3186 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3187 break;
3188 case 1:
3189 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3190 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3191 break;
3192 default:
9db4a9c7 3193 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3194 break;
3195 }
79e53945
JB
3196}
3197
cdd59983
CW
3198static void intel_crtc_disable(struct drm_crtc *crtc)
3199{
3200 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3201 struct drm_device *dev = crtc->dev;
3202
3203 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3204
3205 if (crtc->fb) {
3206 mutex_lock(&dev->struct_mutex);
3207 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3208 mutex_unlock(&dev->struct_mutex);
3209 }
3210}
3211
7e7d76c3
JB
3212/* Prepare for a mode set.
3213 *
3214 * Note we could be a lot smarter here. We need to figure out which outputs
3215 * will be enabled, which disabled (in short, how the config will changes)
3216 * and perform the minimum necessary steps to accomplish that, e.g. updating
3217 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3218 * panel fitting is in the proper state, etc.
3219 */
3220static void i9xx_crtc_prepare(struct drm_crtc *crtc)
79e53945 3221{
7e7d76c3 3222 i9xx_crtc_disable(crtc);
79e53945
JB
3223}
3224
7e7d76c3 3225static void i9xx_crtc_commit(struct drm_crtc *crtc)
79e53945 3226{
7e7d76c3 3227 i9xx_crtc_enable(crtc);
7e7d76c3
JB
3228}
3229
3230static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3231{
7e7d76c3 3232 ironlake_crtc_disable(crtc);
7e7d76c3
JB
3233}
3234
3235static void ironlake_crtc_commit(struct drm_crtc *crtc)
3236{
7e7d76c3 3237 ironlake_crtc_enable(crtc);
79e53945
JB
3238}
3239
3240void intel_encoder_prepare (struct drm_encoder *encoder)
3241{
3242 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3243 /* lvds has its own version of prepare see intel_lvds_prepare */
3244 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3245}
3246
3247void intel_encoder_commit (struct drm_encoder *encoder)
3248{
3249 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3250 /* lvds has its own version of commit see intel_lvds_commit */
3251 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3252}
3253
ea5b213a
CW
3254void intel_encoder_destroy(struct drm_encoder *encoder)
3255{
4ef69c7a 3256 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3257
ea5b213a
CW
3258 drm_encoder_cleanup(encoder);
3259 kfree(intel_encoder);
3260}
3261
79e53945
JB
3262static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3263 struct drm_display_mode *mode,
3264 struct drm_display_mode *adjusted_mode)
3265{
2c07245f 3266 struct drm_device *dev = crtc->dev;
89749350 3267
bad720ff 3268 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3269 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3270 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3271 return false;
2c07245f 3272 }
89749350
CW
3273
3274 /* XXX some encoders set the crtcinfo, others don't.
3275 * Obviously we need some form of conflict resolution here...
3276 */
3277 if (adjusted_mode->crtc_htotal == 0)
3278 drm_mode_set_crtcinfo(adjusted_mode, 0);
3279
79e53945
JB
3280 return true;
3281}
3282
e70236a8
JB
3283static int i945_get_display_clock_speed(struct drm_device *dev)
3284{
3285 return 400000;
3286}
79e53945 3287
e70236a8 3288static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3289{
e70236a8
JB
3290 return 333000;
3291}
79e53945 3292
e70236a8
JB
3293static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3294{
3295 return 200000;
3296}
79e53945 3297
e70236a8
JB
3298static int i915gm_get_display_clock_speed(struct drm_device *dev)
3299{
3300 u16 gcfgc = 0;
79e53945 3301
e70236a8
JB
3302 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3303
3304 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3305 return 133000;
3306 else {
3307 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3308 case GC_DISPLAY_CLOCK_333_MHZ:
3309 return 333000;
3310 default:
3311 case GC_DISPLAY_CLOCK_190_200_MHZ:
3312 return 190000;
79e53945 3313 }
e70236a8
JB
3314 }
3315}
3316
3317static int i865_get_display_clock_speed(struct drm_device *dev)
3318{
3319 return 266000;
3320}
3321
3322static int i855_get_display_clock_speed(struct drm_device *dev)
3323{
3324 u16 hpllcc = 0;
3325 /* Assume that the hardware is in the high speed state. This
3326 * should be the default.
3327 */
3328 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3329 case GC_CLOCK_133_200:
3330 case GC_CLOCK_100_200:
3331 return 200000;
3332 case GC_CLOCK_166_250:
3333 return 250000;
3334 case GC_CLOCK_100_133:
79e53945 3335 return 133000;
e70236a8 3336 }
79e53945 3337
e70236a8
JB
3338 /* Shouldn't happen */
3339 return 0;
3340}
79e53945 3341
e70236a8
JB
3342static int i830_get_display_clock_speed(struct drm_device *dev)
3343{
3344 return 133000;
79e53945
JB
3345}
3346
2c07245f
ZW
3347struct fdi_m_n {
3348 u32 tu;
3349 u32 gmch_m;
3350 u32 gmch_n;
3351 u32 link_m;
3352 u32 link_n;
3353};
3354
3355static void
3356fdi_reduce_ratio(u32 *num, u32 *den)
3357{
3358 while (*num > 0xffffff || *den > 0xffffff) {
3359 *num >>= 1;
3360 *den >>= 1;
3361 }
3362}
3363
2c07245f 3364static void
f2b115e6
AJ
3365ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3366 int link_clock, struct fdi_m_n *m_n)
2c07245f 3367{
2c07245f
ZW
3368 m_n->tu = 64; /* default size */
3369
22ed1113
CW
3370 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3371 m_n->gmch_m = bits_per_pixel * pixel_clock;
3372 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
3373 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3374
22ed1113
CW
3375 m_n->link_m = pixel_clock;
3376 m_n->link_n = link_clock;
2c07245f
ZW
3377 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3378}
3379
3380
7662c8bd
SL
3381struct intel_watermark_params {
3382 unsigned long fifo_size;
3383 unsigned long max_wm;
3384 unsigned long default_wm;
3385 unsigned long guard_size;
3386 unsigned long cacheline_size;
3387};
3388
f2b115e6 3389/* Pineview has different values for various configs */
d210246a 3390static const struct intel_watermark_params pineview_display_wm = {
f2b115e6
AJ
3391 PINEVIEW_DISPLAY_FIFO,
3392 PINEVIEW_MAX_WM,
3393 PINEVIEW_DFT_WM,
3394 PINEVIEW_GUARD_WM,
3395 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3396};
d210246a 3397static const struct intel_watermark_params pineview_display_hplloff_wm = {
f2b115e6
AJ
3398 PINEVIEW_DISPLAY_FIFO,
3399 PINEVIEW_MAX_WM,
3400 PINEVIEW_DFT_HPLLOFF_WM,
3401 PINEVIEW_GUARD_WM,
3402 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3403};
d210246a 3404static const struct intel_watermark_params pineview_cursor_wm = {
f2b115e6
AJ
3405 PINEVIEW_CURSOR_FIFO,
3406 PINEVIEW_CURSOR_MAX_WM,
3407 PINEVIEW_CURSOR_DFT_WM,
3408 PINEVIEW_CURSOR_GUARD_WM,
3409 PINEVIEW_FIFO_LINE_SIZE,
7662c8bd 3410};
d210246a 3411static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
f2b115e6
AJ
3412 PINEVIEW_CURSOR_FIFO,
3413 PINEVIEW_CURSOR_MAX_WM,
3414 PINEVIEW_CURSOR_DFT_WM,
3415 PINEVIEW_CURSOR_GUARD_WM,
3416 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3417};
d210246a 3418static const struct intel_watermark_params g4x_wm_info = {
0e442c60
JB
3419 G4X_FIFO_SIZE,
3420 G4X_MAX_WM,
3421 G4X_MAX_WM,
3422 2,
3423 G4X_FIFO_LINE_SIZE,
3424};
d210246a 3425static const struct intel_watermark_params g4x_cursor_wm_info = {
4fe5e611
ZY
3426 I965_CURSOR_FIFO,
3427 I965_CURSOR_MAX_WM,
3428 I965_CURSOR_DFT_WM,
3429 2,
3430 G4X_FIFO_LINE_SIZE,
3431};
d210246a 3432static const struct intel_watermark_params i965_cursor_wm_info = {
4fe5e611
ZY
3433 I965_CURSOR_FIFO,
3434 I965_CURSOR_MAX_WM,
3435 I965_CURSOR_DFT_WM,
3436 2,
3437 I915_FIFO_LINE_SIZE,
3438};
d210246a 3439static const struct intel_watermark_params i945_wm_info = {
dff33cfc 3440 I945_FIFO_SIZE,
7662c8bd
SL
3441 I915_MAX_WM,
3442 1,
dff33cfc
JB
3443 2,
3444 I915_FIFO_LINE_SIZE
7662c8bd 3445};
d210246a 3446static const struct intel_watermark_params i915_wm_info = {
dff33cfc 3447 I915_FIFO_SIZE,
7662c8bd
SL
3448 I915_MAX_WM,
3449 1,
dff33cfc 3450 2,
7662c8bd
SL
3451 I915_FIFO_LINE_SIZE
3452};
d210246a 3453static const struct intel_watermark_params i855_wm_info = {
7662c8bd
SL
3454 I855GM_FIFO_SIZE,
3455 I915_MAX_WM,
3456 1,
dff33cfc 3457 2,
7662c8bd
SL
3458 I830_FIFO_LINE_SIZE
3459};
d210246a 3460static const struct intel_watermark_params i830_wm_info = {
7662c8bd
SL
3461 I830_FIFO_SIZE,
3462 I915_MAX_WM,
3463 1,
dff33cfc 3464 2,
7662c8bd
SL
3465 I830_FIFO_LINE_SIZE
3466};
3467
d210246a 3468static const struct intel_watermark_params ironlake_display_wm_info = {
7f8a8569
ZW
3469 ILK_DISPLAY_FIFO,
3470 ILK_DISPLAY_MAXWM,
3471 ILK_DISPLAY_DFTWM,
3472 2,
3473 ILK_FIFO_LINE_SIZE
3474};
d210246a 3475static const struct intel_watermark_params ironlake_cursor_wm_info = {
c936f44d
ZY
3476 ILK_CURSOR_FIFO,
3477 ILK_CURSOR_MAXWM,
3478 ILK_CURSOR_DFTWM,
3479 2,
3480 ILK_FIFO_LINE_SIZE
3481};
d210246a 3482static const struct intel_watermark_params ironlake_display_srwm_info = {
7f8a8569
ZW
3483 ILK_DISPLAY_SR_FIFO,
3484 ILK_DISPLAY_MAX_SRWM,
3485 ILK_DISPLAY_DFT_SRWM,
3486 2,
3487 ILK_FIFO_LINE_SIZE
3488};
d210246a 3489static const struct intel_watermark_params ironlake_cursor_srwm_info = {
7f8a8569
ZW
3490 ILK_CURSOR_SR_FIFO,
3491 ILK_CURSOR_MAX_SRWM,
3492 ILK_CURSOR_DFT_SRWM,
3493 2,
3494 ILK_FIFO_LINE_SIZE
3495};
3496
d210246a 3497static const struct intel_watermark_params sandybridge_display_wm_info = {
1398261a
YL
3498 SNB_DISPLAY_FIFO,
3499 SNB_DISPLAY_MAXWM,
3500 SNB_DISPLAY_DFTWM,
3501 2,
3502 SNB_FIFO_LINE_SIZE
3503};
d210246a 3504static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1398261a
YL
3505 SNB_CURSOR_FIFO,
3506 SNB_CURSOR_MAXWM,
3507 SNB_CURSOR_DFTWM,
3508 2,
3509 SNB_FIFO_LINE_SIZE
3510};
d210246a 3511static const struct intel_watermark_params sandybridge_display_srwm_info = {
1398261a
YL
3512 SNB_DISPLAY_SR_FIFO,
3513 SNB_DISPLAY_MAX_SRWM,
3514 SNB_DISPLAY_DFT_SRWM,
3515 2,
3516 SNB_FIFO_LINE_SIZE
3517};
d210246a 3518static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1398261a
YL
3519 SNB_CURSOR_SR_FIFO,
3520 SNB_CURSOR_MAX_SRWM,
3521 SNB_CURSOR_DFT_SRWM,
3522 2,
3523 SNB_FIFO_LINE_SIZE
3524};
3525
3526
dff33cfc
JB
3527/**
3528 * intel_calculate_wm - calculate watermark level
3529 * @clock_in_khz: pixel clock
3530 * @wm: chip FIFO params
3531 * @pixel_size: display pixel size
3532 * @latency_ns: memory latency for the platform
3533 *
3534 * Calculate the watermark level (the level at which the display plane will
3535 * start fetching from memory again). Each chip has a different display
3536 * FIFO size and allocation, so the caller needs to figure that out and pass
3537 * in the correct intel_watermark_params structure.
3538 *
3539 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3540 * on the pixel size. When it reaches the watermark level, it'll start
3541 * fetching FIFO line sized based chunks from memory until the FIFO fills
3542 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3543 * will occur, and a display engine hang could result.
3544 */
7662c8bd 3545static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
d210246a
CW
3546 const struct intel_watermark_params *wm,
3547 int fifo_size,
7662c8bd
SL
3548 int pixel_size,
3549 unsigned long latency_ns)
3550{
390c4dd4 3551 long entries_required, wm_size;
dff33cfc 3552
d660467c
JB
3553 /*
3554 * Note: we need to make sure we don't overflow for various clock &
3555 * latency values.
3556 * clocks go from a few thousand to several hundred thousand.
3557 * latency is usually a few thousand
3558 */
3559 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3560 1000;
8de9b311 3561 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
7662c8bd 3562
bbb0aef5 3563 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
dff33cfc 3564
d210246a 3565 wm_size = fifo_size - (entries_required + wm->guard_size);
dff33cfc 3566
bbb0aef5 3567 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
7662c8bd 3568
390c4dd4
JB
3569 /* Don't promote wm_size to unsigned... */
3570 if (wm_size > (long)wm->max_wm)
7662c8bd 3571 wm_size = wm->max_wm;
c3add4b6 3572 if (wm_size <= 0)
7662c8bd
SL
3573 wm_size = wm->default_wm;
3574 return wm_size;
3575}
3576
3577struct cxsr_latency {
3578 int is_desktop;
95534263 3579 int is_ddr3;
7662c8bd
SL
3580 unsigned long fsb_freq;
3581 unsigned long mem_freq;
3582 unsigned long display_sr;
3583 unsigned long display_hpll_disable;
3584 unsigned long cursor_sr;
3585 unsigned long cursor_hpll_disable;
3586};
3587
403c89ff 3588static const struct cxsr_latency cxsr_latency_table[] = {
95534263
LP
3589 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3590 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3591 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3592 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3593 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3594
3595 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3596 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3597 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3598 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3599 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3600
3601 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3602 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3603 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3604 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3605 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3606
3607 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3608 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3609 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3610 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3611 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3612
3613 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3614 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3615 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3616 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3617 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3618
3619 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3620 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3621 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3622 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3623 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
7662c8bd
SL
3624};
3625
403c89ff
CW
3626static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3627 int is_ddr3,
3628 int fsb,
3629 int mem)
7662c8bd 3630{
403c89ff 3631 const struct cxsr_latency *latency;
7662c8bd 3632 int i;
7662c8bd
SL
3633
3634 if (fsb == 0 || mem == 0)
3635 return NULL;
3636
3637 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3638 latency = &cxsr_latency_table[i];
3639 if (is_desktop == latency->is_desktop &&
95534263 3640 is_ddr3 == latency->is_ddr3 &&
decbbcda
JSR
3641 fsb == latency->fsb_freq && mem == latency->mem_freq)
3642 return latency;
7662c8bd 3643 }
decbbcda 3644
28c97730 3645 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
decbbcda
JSR
3646
3647 return NULL;
7662c8bd
SL
3648}
3649
f2b115e6 3650static void pineview_disable_cxsr(struct drm_device *dev)
7662c8bd
SL
3651{
3652 struct drm_i915_private *dev_priv = dev->dev_private;
7662c8bd
SL
3653
3654 /* deactivate cxsr */
3e33d94d 3655 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
7662c8bd
SL
3656}
3657
bcc24fb4
JB
3658/*
3659 * Latency for FIFO fetches is dependent on several factors:
3660 * - memory configuration (speed, channels)
3661 * - chipset
3662 * - current MCH state
3663 * It can be fairly high in some situations, so here we assume a fairly
3664 * pessimal value. It's a tradeoff between extra memory fetches (if we
3665 * set this value too high, the FIFO will fetch frequently to stay full)
3666 * and power consumption (set it too low to save power and we might see
3667 * FIFO underruns and display "flicker").
3668 *
3669 * A value of 5us seems to be a good balance; safe for very low end
3670 * platforms but not overly aggressive on lower latency configs.
3671 */
69e302a9 3672static const int latency_ns = 5000;
7662c8bd 3673
e70236a8 3674static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
dff33cfc
JB
3675{
3676 struct drm_i915_private *dev_priv = dev->dev_private;
3677 uint32_t dsparb = I915_READ(DSPARB);
3678 int size;
3679
8de9b311
CW
3680 size = dsparb & 0x7f;
3681 if (plane)
3682 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
dff33cfc 3683
28c97730 3684 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3685 plane ? "B" : "A", size);
dff33cfc
JB
3686
3687 return size;
3688}
7662c8bd 3689
e70236a8
JB
3690static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3691{
3692 struct drm_i915_private *dev_priv = dev->dev_private;
3693 uint32_t dsparb = I915_READ(DSPARB);
3694 int size;
3695
8de9b311
CW
3696 size = dsparb & 0x1ff;
3697 if (plane)
3698 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
e70236a8 3699 size >>= 1; /* Convert to cachelines */
dff33cfc 3700
28c97730 3701 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3702 plane ? "B" : "A", size);
dff33cfc
JB
3703
3704 return size;
3705}
7662c8bd 3706
e70236a8
JB
3707static int i845_get_fifo_size(struct drm_device *dev, int plane)
3708{
3709 struct drm_i915_private *dev_priv = dev->dev_private;
3710 uint32_t dsparb = I915_READ(DSPARB);
3711 int size;
3712
3713 size = dsparb & 0x7f;
3714 size >>= 2; /* Convert to cachelines */
3715
28c97730 3716 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b
CW
3717 plane ? "B" : "A",
3718 size);
e70236a8
JB
3719
3720 return size;
3721}
3722
3723static int i830_get_fifo_size(struct drm_device *dev, int plane)
3724{
3725 struct drm_i915_private *dev_priv = dev->dev_private;
3726 uint32_t dsparb = I915_READ(DSPARB);
3727 int size;
3728
3729 size = dsparb & 0x7f;
3730 size >>= 1; /* Convert to cachelines */
3731
28c97730 3732 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3733 plane ? "B" : "A", size);
e70236a8
JB
3734
3735 return size;
3736}
3737
d210246a
CW
3738static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3739{
3740 struct drm_crtc *crtc, *enabled = NULL;
3741
3742 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3743 if (crtc->enabled && crtc->fb) {
3744 if (enabled)
3745 return NULL;
3746 enabled = crtc;
3747 }
3748 }
3749
3750 return enabled;
3751}
3752
3753static void pineview_update_wm(struct drm_device *dev)
d4294342
ZY
3754{
3755 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a 3756 struct drm_crtc *crtc;
403c89ff 3757 const struct cxsr_latency *latency;
d4294342
ZY
3758 u32 reg;
3759 unsigned long wm;
d4294342 3760
403c89ff 3761 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
95534263 3762 dev_priv->fsb_freq, dev_priv->mem_freq);
d4294342
ZY
3763 if (!latency) {
3764 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3765 pineview_disable_cxsr(dev);
3766 return;
3767 }
3768
d210246a
CW
3769 crtc = single_enabled_crtc(dev);
3770 if (crtc) {
3771 int clock = crtc->mode.clock;
3772 int pixel_size = crtc->fb->bits_per_pixel / 8;
d4294342
ZY
3773
3774 /* Display SR */
d210246a
CW
3775 wm = intel_calculate_wm(clock, &pineview_display_wm,
3776 pineview_display_wm.fifo_size,
d4294342
ZY
3777 pixel_size, latency->display_sr);
3778 reg = I915_READ(DSPFW1);
3779 reg &= ~DSPFW_SR_MASK;
3780 reg |= wm << DSPFW_SR_SHIFT;
3781 I915_WRITE(DSPFW1, reg);
3782 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3783
3784 /* cursor SR */
d210246a
CW
3785 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3786 pineview_display_wm.fifo_size,
d4294342
ZY
3787 pixel_size, latency->cursor_sr);
3788 reg = I915_READ(DSPFW3);
3789 reg &= ~DSPFW_CURSOR_SR_MASK;
3790 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3791 I915_WRITE(DSPFW3, reg);
3792
3793 /* Display HPLL off SR */
d210246a
CW
3794 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3795 pineview_display_hplloff_wm.fifo_size,
d4294342
ZY
3796 pixel_size, latency->display_hpll_disable);
3797 reg = I915_READ(DSPFW3);
3798 reg &= ~DSPFW_HPLL_SR_MASK;
3799 reg |= wm & DSPFW_HPLL_SR_MASK;
3800 I915_WRITE(DSPFW3, reg);
3801
3802 /* cursor HPLL off SR */
d210246a
CW
3803 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3804 pineview_display_hplloff_wm.fifo_size,
d4294342
ZY
3805 pixel_size, latency->cursor_hpll_disable);
3806 reg = I915_READ(DSPFW3);
3807 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3808 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3809 I915_WRITE(DSPFW3, reg);
3810 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3811
3812 /* activate cxsr */
3e33d94d
CW
3813 I915_WRITE(DSPFW3,
3814 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
d4294342
ZY
3815 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3816 } else {
3817 pineview_disable_cxsr(dev);
3818 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3819 }
3820}
3821
417ae147
CW
3822static bool g4x_compute_wm0(struct drm_device *dev,
3823 int plane,
3824 const struct intel_watermark_params *display,
3825 int display_latency_ns,
3826 const struct intel_watermark_params *cursor,
3827 int cursor_latency_ns,
3828 int *plane_wm,
3829 int *cursor_wm)
3830{
3831 struct drm_crtc *crtc;
3832 int htotal, hdisplay, clock, pixel_size;
3833 int line_time_us, line_count;
3834 int entries, tlb_miss;
3835
3836 crtc = intel_get_crtc_for_plane(dev, plane);
5c72d064
CW
3837 if (crtc->fb == NULL || !crtc->enabled) {
3838 *cursor_wm = cursor->guard_size;
3839 *plane_wm = display->guard_size;
417ae147 3840 return false;
5c72d064 3841 }
417ae147
CW
3842
3843 htotal = crtc->mode.htotal;
3844 hdisplay = crtc->mode.hdisplay;
3845 clock = crtc->mode.clock;
3846 pixel_size = crtc->fb->bits_per_pixel / 8;
3847
3848 /* Use the small buffer method to calculate plane watermark */
3849 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3850 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3851 if (tlb_miss > 0)
3852 entries += tlb_miss;
3853 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3854 *plane_wm = entries + display->guard_size;
3855 if (*plane_wm > (int)display->max_wm)
3856 *plane_wm = display->max_wm;
3857
3858 /* Use the large buffer method to calculate cursor watermark */
3859 line_time_us = ((htotal * 1000) / clock);
3860 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3861 entries = line_count * 64 * pixel_size;
3862 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3863 if (tlb_miss > 0)
3864 entries += tlb_miss;
3865 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3866 *cursor_wm = entries + cursor->guard_size;
3867 if (*cursor_wm > (int)cursor->max_wm)
3868 *cursor_wm = (int)cursor->max_wm;
3869
3870 return true;
3871}
3872
3873/*
3874 * Check the wm result.
3875 *
3876 * If any calculated watermark values is larger than the maximum value that
3877 * can be programmed into the associated watermark register, that watermark
3878 * must be disabled.
3879 */
3880static bool g4x_check_srwm(struct drm_device *dev,
3881 int display_wm, int cursor_wm,
3882 const struct intel_watermark_params *display,
3883 const struct intel_watermark_params *cursor)
652c393a 3884{
417ae147
CW
3885 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3886 display_wm, cursor_wm);
652c393a 3887
417ae147 3888 if (display_wm > display->max_wm) {
bbb0aef5 3889 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
417ae147
CW
3890 display_wm, display->max_wm);
3891 return false;
3892 }
0e442c60 3893
417ae147 3894 if (cursor_wm > cursor->max_wm) {
bbb0aef5 3895 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
417ae147
CW
3896 cursor_wm, cursor->max_wm);
3897 return false;
3898 }
0e442c60 3899
417ae147
CW
3900 if (!(display_wm || cursor_wm)) {
3901 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3902 return false;
3903 }
0e442c60 3904
417ae147
CW
3905 return true;
3906}
0e442c60 3907
417ae147 3908static bool g4x_compute_srwm(struct drm_device *dev,
d210246a
CW
3909 int plane,
3910 int latency_ns,
417ae147
CW
3911 const struct intel_watermark_params *display,
3912 const struct intel_watermark_params *cursor,
3913 int *display_wm, int *cursor_wm)
3914{
d210246a
CW
3915 struct drm_crtc *crtc;
3916 int hdisplay, htotal, pixel_size, clock;
417ae147
CW
3917 unsigned long line_time_us;
3918 int line_count, line_size;
3919 int small, large;
3920 int entries;
0e442c60 3921
417ae147
CW
3922 if (!latency_ns) {
3923 *display_wm = *cursor_wm = 0;
3924 return false;
3925 }
0e442c60 3926
d210246a
CW
3927 crtc = intel_get_crtc_for_plane(dev, plane);
3928 hdisplay = crtc->mode.hdisplay;
3929 htotal = crtc->mode.htotal;
3930 clock = crtc->mode.clock;
3931 pixel_size = crtc->fb->bits_per_pixel / 8;
3932
417ae147
CW
3933 line_time_us = (htotal * 1000) / clock;
3934 line_count = (latency_ns / line_time_us + 1000) / 1000;
3935 line_size = hdisplay * pixel_size;
0e442c60 3936
417ae147
CW
3937 /* Use the minimum of the small and large buffer method for primary */
3938 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3939 large = line_count * line_size;
0e442c60 3940
417ae147
CW
3941 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3942 *display_wm = entries + display->guard_size;
4fe5e611 3943
417ae147
CW
3944 /* calculate the self-refresh watermark for display cursor */
3945 entries = line_count * pixel_size * 64;
3946 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3947 *cursor_wm = entries + cursor->guard_size;
4fe5e611 3948
417ae147
CW
3949 return g4x_check_srwm(dev,
3950 *display_wm, *cursor_wm,
3951 display, cursor);
3952}
4fe5e611 3953
7ccb4a53 3954#define single_plane_enabled(mask) is_power_of_2(mask)
d210246a
CW
3955
3956static void g4x_update_wm(struct drm_device *dev)
417ae147
CW
3957{
3958 static const int sr_latency_ns = 12000;
3959 struct drm_i915_private *dev_priv = dev->dev_private;
3960 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
d210246a
CW
3961 int plane_sr, cursor_sr;
3962 unsigned int enabled = 0;
417ae147
CW
3963
3964 if (g4x_compute_wm0(dev, 0,
3965 &g4x_wm_info, latency_ns,
3966 &g4x_cursor_wm_info, latency_ns,
3967 &planea_wm, &cursora_wm))
d210246a 3968 enabled |= 1;
417ae147
CW
3969
3970 if (g4x_compute_wm0(dev, 1,
3971 &g4x_wm_info, latency_ns,
3972 &g4x_cursor_wm_info, latency_ns,
3973 &planeb_wm, &cursorb_wm))
d210246a 3974 enabled |= 2;
417ae147
CW
3975
3976 plane_sr = cursor_sr = 0;
d210246a
CW
3977 if (single_plane_enabled(enabled) &&
3978 g4x_compute_srwm(dev, ffs(enabled) - 1,
3979 sr_latency_ns,
417ae147
CW
3980 &g4x_wm_info,
3981 &g4x_cursor_wm_info,
3982 &plane_sr, &cursor_sr))
0e442c60 3983 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
417ae147
CW
3984 else
3985 I915_WRITE(FW_BLC_SELF,
3986 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
0e442c60 3987
308977ac
CW
3988 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3989 planea_wm, cursora_wm,
3990 planeb_wm, cursorb_wm,
3991 plane_sr, cursor_sr);
0e442c60 3992
417ae147
CW
3993 I915_WRITE(DSPFW1,
3994 (plane_sr << DSPFW_SR_SHIFT) |
0e442c60 3995 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
417ae147
CW
3996 (planeb_wm << DSPFW_PLANEB_SHIFT) |
3997 planea_wm);
3998 I915_WRITE(DSPFW2,
3999 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
0e442c60
JB
4000 (cursora_wm << DSPFW_CURSORA_SHIFT));
4001 /* HPLL off in SR has some issues on G4x... disable it */
417ae147
CW
4002 I915_WRITE(DSPFW3,
4003 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
0e442c60 4004 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
652c393a
JB
4005}
4006
d210246a 4007static void i965_update_wm(struct drm_device *dev)
7662c8bd
SL
4008{
4009 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4010 struct drm_crtc *crtc;
4011 int srwm = 1;
4fe5e611 4012 int cursor_sr = 16;
1dc7546d
JB
4013
4014 /* Calc sr entries for one plane configs */
d210246a
CW
4015 crtc = single_enabled_crtc(dev);
4016 if (crtc) {
1dc7546d 4017 /* self-refresh has much higher latency */
69e302a9 4018 static const int sr_latency_ns = 12000;
d210246a
CW
4019 int clock = crtc->mode.clock;
4020 int htotal = crtc->mode.htotal;
4021 int hdisplay = crtc->mode.hdisplay;
4022 int pixel_size = crtc->fb->bits_per_pixel / 8;
4023 unsigned long line_time_us;
4024 int entries;
1dc7546d 4025
d210246a 4026 line_time_us = ((htotal * 1000) / clock);
1dc7546d
JB
4027
4028 /* Use ns/us then divide to preserve precision */
d210246a
CW
4029 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4030 pixel_size * hdisplay;
4031 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
d210246a 4032 srwm = I965_FIFO_SIZE - entries;
1dc7546d
JB
4033 if (srwm < 0)
4034 srwm = 1;
1b07e04e 4035 srwm &= 0x1ff;
308977ac
CW
4036 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4037 entries, srwm);
4fe5e611 4038
d210246a 4039 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
5eddb70b 4040 pixel_size * 64;
d210246a 4041 entries = DIV_ROUND_UP(entries,
8de9b311 4042 i965_cursor_wm_info.cacheline_size);
4fe5e611 4043 cursor_sr = i965_cursor_wm_info.fifo_size -
d210246a 4044 (entries + i965_cursor_wm_info.guard_size);
4fe5e611
ZY
4045
4046 if (cursor_sr > i965_cursor_wm_info.max_wm)
4047 cursor_sr = i965_cursor_wm_info.max_wm;
4048
4049 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4050 "cursor %d\n", srwm, cursor_sr);
4051
a6c45cf0 4052 if (IS_CRESTLINE(dev))
adcdbc66 4053 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
33c5fd12
DJ
4054 } else {
4055 /* Turn off self refresh if both pipes are enabled */
a6c45cf0 4056 if (IS_CRESTLINE(dev))
adcdbc66
JB
4057 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4058 & ~FW_BLC_SELF_EN);
1dc7546d 4059 }
7662c8bd 4060
1dc7546d
JB
4061 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4062 srwm);
7662c8bd
SL
4063
4064 /* 965 has limitations... */
417ae147
CW
4065 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4066 (8 << 16) | (8 << 8) | (8 << 0));
7662c8bd 4067 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4fe5e611
ZY
4068 /* update cursor SR watermark */
4069 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
7662c8bd
SL
4070}
4071
d210246a 4072static void i9xx_update_wm(struct drm_device *dev)
7662c8bd
SL
4073{
4074 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a 4075 const struct intel_watermark_params *wm_info;
dff33cfc
JB
4076 uint32_t fwater_lo;
4077 uint32_t fwater_hi;
d210246a
CW
4078 int cwm, srwm = 1;
4079 int fifo_size;
dff33cfc 4080 int planea_wm, planeb_wm;
d210246a 4081 struct drm_crtc *crtc, *enabled = NULL;
7662c8bd 4082
72557b4f 4083 if (IS_I945GM(dev))
d210246a 4084 wm_info = &i945_wm_info;
a6c45cf0 4085 else if (!IS_GEN2(dev))
d210246a 4086 wm_info = &i915_wm_info;
7662c8bd 4087 else
d210246a
CW
4088 wm_info = &i855_wm_info;
4089
4090 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4091 crtc = intel_get_crtc_for_plane(dev, 0);
4092 if (crtc->enabled && crtc->fb) {
4093 planea_wm = intel_calculate_wm(crtc->mode.clock,
4094 wm_info, fifo_size,
4095 crtc->fb->bits_per_pixel / 8,
4096 latency_ns);
4097 enabled = crtc;
4098 } else
4099 planea_wm = fifo_size - wm_info->guard_size;
4100
4101 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4102 crtc = intel_get_crtc_for_plane(dev, 1);
4103 if (crtc->enabled && crtc->fb) {
4104 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4105 wm_info, fifo_size,
4106 crtc->fb->bits_per_pixel / 8,
4107 latency_ns);
4108 if (enabled == NULL)
4109 enabled = crtc;
4110 else
4111 enabled = NULL;
4112 } else
4113 planeb_wm = fifo_size - wm_info->guard_size;
7662c8bd 4114
28c97730 4115 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
7662c8bd
SL
4116
4117 /*
4118 * Overlay gets an aggressive default since video jitter is bad.
4119 */
4120 cwm = 2;
4121
18b2190c
AL
4122 /* Play safe and disable self-refresh before adjusting watermarks. */
4123 if (IS_I945G(dev) || IS_I945GM(dev))
4124 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4125 else if (IS_I915GM(dev))
4126 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4127
dff33cfc 4128 /* Calc sr entries for one plane configs */
d210246a 4129 if (HAS_FW_BLC(dev) && enabled) {
dff33cfc 4130 /* self-refresh has much higher latency */
69e302a9 4131 static const int sr_latency_ns = 6000;
d210246a
CW
4132 int clock = enabled->mode.clock;
4133 int htotal = enabled->mode.htotal;
4134 int hdisplay = enabled->mode.hdisplay;
4135 int pixel_size = enabled->fb->bits_per_pixel / 8;
4136 unsigned long line_time_us;
4137 int entries;
dff33cfc 4138
d210246a 4139 line_time_us = (htotal * 1000) / clock;
dff33cfc
JB
4140
4141 /* Use ns/us then divide to preserve precision */
d210246a
CW
4142 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4143 pixel_size * hdisplay;
4144 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4145 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4146 srwm = wm_info->fifo_size - entries;
dff33cfc
JB
4147 if (srwm < 0)
4148 srwm = 1;
ee980b80
LP
4149
4150 if (IS_I945G(dev) || IS_I945GM(dev))
18b2190c
AL
4151 I915_WRITE(FW_BLC_SELF,
4152 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4153 else if (IS_I915GM(dev))
ee980b80 4154 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
7662c8bd
SL
4155 }
4156
28c97730 4157 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
5eddb70b 4158 planea_wm, planeb_wm, cwm, srwm);
7662c8bd 4159
dff33cfc
JB
4160 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4161 fwater_hi = (cwm & 0x1f);
4162
4163 /* Set request length to 8 cachelines per fetch */
4164 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4165 fwater_hi = fwater_hi | (1 << 8);
7662c8bd
SL
4166
4167 I915_WRITE(FW_BLC, fwater_lo);
4168 I915_WRITE(FW_BLC2, fwater_hi);
18b2190c 4169
d210246a
CW
4170 if (HAS_FW_BLC(dev)) {
4171 if (enabled) {
4172 if (IS_I945G(dev) || IS_I945GM(dev))
4173 I915_WRITE(FW_BLC_SELF,
4174 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4175 else if (IS_I915GM(dev))
4176 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4177 DRM_DEBUG_KMS("memory self refresh enabled\n");
4178 } else
4179 DRM_DEBUG_KMS("memory self refresh disabled\n");
4180 }
7662c8bd
SL
4181}
4182
d210246a 4183static void i830_update_wm(struct drm_device *dev)
7662c8bd
SL
4184{
4185 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4186 struct drm_crtc *crtc;
4187 uint32_t fwater_lo;
dff33cfc 4188 int planea_wm;
7662c8bd 4189
d210246a
CW
4190 crtc = single_enabled_crtc(dev);
4191 if (crtc == NULL)
4192 return;
7662c8bd 4193
d210246a
CW
4194 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4195 dev_priv->display.get_fifo_size(dev, 0),
4196 crtc->fb->bits_per_pixel / 8,
4197 latency_ns);
4198 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
f3601326
JB
4199 fwater_lo |= (3<<8) | planea_wm;
4200
28c97730 4201 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
7662c8bd
SL
4202
4203 I915_WRITE(FW_BLC, fwater_lo);
4204}
4205
7f8a8569 4206#define ILK_LP0_PLANE_LATENCY 700
c936f44d 4207#define ILK_LP0_CURSOR_LATENCY 1300
7f8a8569 4208
1398261a
YL
4209/*
4210 * Check the wm result.
4211 *
4212 * If any calculated watermark values is larger than the maximum value that
4213 * can be programmed into the associated watermark register, that watermark
4214 * must be disabled.
1398261a 4215 */
b79d4990
JB
4216static bool ironlake_check_srwm(struct drm_device *dev, int level,
4217 int fbc_wm, int display_wm, int cursor_wm,
4218 const struct intel_watermark_params *display,
4219 const struct intel_watermark_params *cursor)
1398261a
YL
4220{
4221 struct drm_i915_private *dev_priv = dev->dev_private;
4222
4223 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4224 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4225
4226 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4227 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4228 fbc_wm, SNB_FBC_MAX_SRWM, level);
1398261a
YL
4229
4230 /* fbc has it's own way to disable FBC WM */
4231 I915_WRITE(DISP_ARB_CTL,
4232 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4233 return false;
4234 }
4235
b79d4990 4236 if (display_wm > display->max_wm) {
1398261a 4237 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4238 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1398261a
YL
4239 return false;
4240 }
4241
b79d4990 4242 if (cursor_wm > cursor->max_wm) {
1398261a 4243 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4244 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1398261a
YL
4245 return false;
4246 }
4247
4248 if (!(fbc_wm || display_wm || cursor_wm)) {
4249 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4250 return false;
4251 }
4252
4253 return true;
4254}
4255
4256/*
4257 * Compute watermark values of WM[1-3],
4258 */
d210246a
CW
4259static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4260 int latency_ns,
b79d4990
JB
4261 const struct intel_watermark_params *display,
4262 const struct intel_watermark_params *cursor,
4263 int *fbc_wm, int *display_wm, int *cursor_wm)
1398261a 4264{
d210246a 4265 struct drm_crtc *crtc;
1398261a 4266 unsigned long line_time_us;
d210246a 4267 int hdisplay, htotal, pixel_size, clock;
b79d4990 4268 int line_count, line_size;
1398261a
YL
4269 int small, large;
4270 int entries;
1398261a
YL
4271
4272 if (!latency_ns) {
4273 *fbc_wm = *display_wm = *cursor_wm = 0;
4274 return false;
4275 }
4276
d210246a
CW
4277 crtc = intel_get_crtc_for_plane(dev, plane);
4278 hdisplay = crtc->mode.hdisplay;
4279 htotal = crtc->mode.htotal;
4280 clock = crtc->mode.clock;
4281 pixel_size = crtc->fb->bits_per_pixel / 8;
4282
1398261a
YL
4283 line_time_us = (htotal * 1000) / clock;
4284 line_count = (latency_ns / line_time_us + 1000) / 1000;
4285 line_size = hdisplay * pixel_size;
4286
4287 /* Use the minimum of the small and large buffer method for primary */
4288 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4289 large = line_count * line_size;
4290
b79d4990
JB
4291 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4292 *display_wm = entries + display->guard_size;
1398261a
YL
4293
4294 /*
b79d4990 4295 * Spec says:
1398261a
YL
4296 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4297 */
4298 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4299
4300 /* calculate the self-refresh watermark for display cursor */
4301 entries = line_count * pixel_size * 64;
b79d4990
JB
4302 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4303 *cursor_wm = entries + cursor->guard_size;
1398261a 4304
b79d4990
JB
4305 return ironlake_check_srwm(dev, level,
4306 *fbc_wm, *display_wm, *cursor_wm,
4307 display, cursor);
4308}
4309
d210246a 4310static void ironlake_update_wm(struct drm_device *dev)
b79d4990
JB
4311{
4312 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4313 int fbc_wm, plane_wm, cursor_wm;
4314 unsigned int enabled;
b79d4990
JB
4315
4316 enabled = 0;
9f405100
CW
4317 if (g4x_compute_wm0(dev, 0,
4318 &ironlake_display_wm_info,
4319 ILK_LP0_PLANE_LATENCY,
4320 &ironlake_cursor_wm_info,
4321 ILK_LP0_CURSOR_LATENCY,
4322 &plane_wm, &cursor_wm)) {
b79d4990
JB
4323 I915_WRITE(WM0_PIPEA_ILK,
4324 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4325 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4326 " plane %d, " "cursor: %d\n",
4327 plane_wm, cursor_wm);
d210246a 4328 enabled |= 1;
b79d4990
JB
4329 }
4330
9f405100
CW
4331 if (g4x_compute_wm0(dev, 1,
4332 &ironlake_display_wm_info,
4333 ILK_LP0_PLANE_LATENCY,
4334 &ironlake_cursor_wm_info,
4335 ILK_LP0_CURSOR_LATENCY,
4336 &plane_wm, &cursor_wm)) {
b79d4990
JB
4337 I915_WRITE(WM0_PIPEB_ILK,
4338 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4339 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4340 " plane %d, cursor: %d\n",
4341 plane_wm, cursor_wm);
d210246a 4342 enabled |= 2;
b79d4990
JB
4343 }
4344
4345 /*
4346 * Calculate and update the self-refresh watermark only when one
4347 * display plane is used.
4348 */
4349 I915_WRITE(WM3_LP_ILK, 0);
4350 I915_WRITE(WM2_LP_ILK, 0);
4351 I915_WRITE(WM1_LP_ILK, 0);
4352
d210246a 4353 if (!single_plane_enabled(enabled))
b79d4990 4354 return;
d210246a 4355 enabled = ffs(enabled) - 1;
b79d4990
JB
4356
4357 /* WM1 */
d210246a
CW
4358 if (!ironlake_compute_srwm(dev, 1, enabled,
4359 ILK_READ_WM1_LATENCY() * 500,
b79d4990
JB
4360 &ironlake_display_srwm_info,
4361 &ironlake_cursor_srwm_info,
4362 &fbc_wm, &plane_wm, &cursor_wm))
4363 return;
4364
4365 I915_WRITE(WM1_LP_ILK,
4366 WM1_LP_SR_EN |
4367 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4368 (fbc_wm << WM1_LP_FBC_SHIFT) |
4369 (plane_wm << WM1_LP_SR_SHIFT) |
4370 cursor_wm);
4371
4372 /* WM2 */
d210246a
CW
4373 if (!ironlake_compute_srwm(dev, 2, enabled,
4374 ILK_READ_WM2_LATENCY() * 500,
b79d4990
JB
4375 &ironlake_display_srwm_info,
4376 &ironlake_cursor_srwm_info,
4377 &fbc_wm, &plane_wm, &cursor_wm))
4378 return;
4379
4380 I915_WRITE(WM2_LP_ILK,
4381 WM2_LP_EN |
4382 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4383 (fbc_wm << WM1_LP_FBC_SHIFT) |
4384 (plane_wm << WM1_LP_SR_SHIFT) |
4385 cursor_wm);
4386
4387 /*
4388 * WM3 is unsupported on ILK, probably because we don't have latency
4389 * data for that power state
4390 */
1398261a
YL
4391}
4392
d210246a 4393static void sandybridge_update_wm(struct drm_device *dev)
1398261a
YL
4394{
4395 struct drm_i915_private *dev_priv = dev->dev_private;
a0fa62d3 4396 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
d210246a
CW
4397 int fbc_wm, plane_wm, cursor_wm;
4398 unsigned int enabled;
1398261a
YL
4399
4400 enabled = 0;
9f405100
CW
4401 if (g4x_compute_wm0(dev, 0,
4402 &sandybridge_display_wm_info, latency,
4403 &sandybridge_cursor_wm_info, latency,
4404 &plane_wm, &cursor_wm)) {
1398261a
YL
4405 I915_WRITE(WM0_PIPEA_ILK,
4406 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4407 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4408 " plane %d, " "cursor: %d\n",
4409 plane_wm, cursor_wm);
d210246a 4410 enabled |= 1;
1398261a
YL
4411 }
4412
9f405100
CW
4413 if (g4x_compute_wm0(dev, 1,
4414 &sandybridge_display_wm_info, latency,
4415 &sandybridge_cursor_wm_info, latency,
4416 &plane_wm, &cursor_wm)) {
1398261a
YL
4417 I915_WRITE(WM0_PIPEB_ILK,
4418 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4419 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4420 " plane %d, cursor: %d\n",
4421 plane_wm, cursor_wm);
d210246a 4422 enabled |= 2;
1398261a
YL
4423 }
4424
4425 /*
4426 * Calculate and update the self-refresh watermark only when one
4427 * display plane is used.
4428 *
4429 * SNB support 3 levels of watermark.
4430 *
4431 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4432 * and disabled in the descending order
4433 *
4434 */
4435 I915_WRITE(WM3_LP_ILK, 0);
4436 I915_WRITE(WM2_LP_ILK, 0);
4437 I915_WRITE(WM1_LP_ILK, 0);
4438
d210246a 4439 if (!single_plane_enabled(enabled))
1398261a 4440 return;
d210246a 4441 enabled = ffs(enabled) - 1;
1398261a
YL
4442
4443 /* WM1 */
d210246a
CW
4444 if (!ironlake_compute_srwm(dev, 1, enabled,
4445 SNB_READ_WM1_LATENCY() * 500,
b79d4990
JB
4446 &sandybridge_display_srwm_info,
4447 &sandybridge_cursor_srwm_info,
4448 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4449 return;
4450
4451 I915_WRITE(WM1_LP_ILK,
4452 WM1_LP_SR_EN |
4453 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4454 (fbc_wm << WM1_LP_FBC_SHIFT) |
4455 (plane_wm << WM1_LP_SR_SHIFT) |
4456 cursor_wm);
4457
4458 /* WM2 */
d210246a
CW
4459 if (!ironlake_compute_srwm(dev, 2, enabled,
4460 SNB_READ_WM2_LATENCY() * 500,
b79d4990
JB
4461 &sandybridge_display_srwm_info,
4462 &sandybridge_cursor_srwm_info,
4463 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4464 return;
4465
4466 I915_WRITE(WM2_LP_ILK,
4467 WM2_LP_EN |
4468 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4469 (fbc_wm << WM1_LP_FBC_SHIFT) |
4470 (plane_wm << WM1_LP_SR_SHIFT) |
4471 cursor_wm);
4472
4473 /* WM3 */
d210246a
CW
4474 if (!ironlake_compute_srwm(dev, 3, enabled,
4475 SNB_READ_WM3_LATENCY() * 500,
b79d4990
JB
4476 &sandybridge_display_srwm_info,
4477 &sandybridge_cursor_srwm_info,
4478 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4479 return;
4480
4481 I915_WRITE(WM3_LP_ILK,
4482 WM3_LP_EN |
4483 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4484 (fbc_wm << WM1_LP_FBC_SHIFT) |
4485 (plane_wm << WM1_LP_SR_SHIFT) |
4486 cursor_wm);
4487}
4488
7662c8bd
SL
4489/**
4490 * intel_update_watermarks - update FIFO watermark values based on current modes
4491 *
4492 * Calculate watermark values for the various WM regs based on current mode
4493 * and plane configuration.
4494 *
4495 * There are several cases to deal with here:
4496 * - normal (i.e. non-self-refresh)
4497 * - self-refresh (SR) mode
4498 * - lines are large relative to FIFO size (buffer can hold up to 2)
4499 * - lines are small relative to FIFO size (buffer can hold more than 2
4500 * lines), so need to account for TLB latency
4501 *
4502 * The normal calculation is:
4503 * watermark = dotclock * bytes per pixel * latency
4504 * where latency is platform & configuration dependent (we assume pessimal
4505 * values here).
4506 *
4507 * The SR calculation is:
4508 * watermark = (trunc(latency/line time)+1) * surface width *
4509 * bytes per pixel
4510 * where
4511 * line time = htotal / dotclock
fa143215 4512 * surface width = hdisplay for normal plane and 64 for cursor
7662c8bd
SL
4513 * and latency is assumed to be high, as above.
4514 *
4515 * The final value programmed to the register should always be rounded up,
4516 * and include an extra 2 entries to account for clock crossings.
4517 *
4518 * We don't use the sprite, so we can ignore that. And on Crestline we have
4519 * to set the non-SR watermarks to 8.
5eddb70b 4520 */
7662c8bd
SL
4521static void intel_update_watermarks(struct drm_device *dev)
4522{
e70236a8 4523 struct drm_i915_private *dev_priv = dev->dev_private;
7662c8bd 4524
d210246a
CW
4525 if (dev_priv->display.update_wm)
4526 dev_priv->display.update_wm(dev);
7662c8bd
SL
4527}
4528
a7615030
CW
4529static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4530{
435793df
KP
4531 return dev_priv->lvds_use_ssc && i915_panel_use_ssc
4532 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
4533}
4534
5a354204
JB
4535/**
4536 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4537 * @crtc: CRTC structure
4538 *
4539 * A pipe may be connected to one or more outputs. Based on the depth of the
4540 * attached framebuffer, choose a good color depth to use on the pipe.
4541 *
4542 * If possible, match the pipe depth to the fb depth. In some cases, this
4543 * isn't ideal, because the connected output supports a lesser or restricted
4544 * set of depths. Resolve that here:
4545 * LVDS typically supports only 6bpc, so clamp down in that case
4546 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4547 * Displays may support a restricted set as well, check EDID and clamp as
4548 * appropriate.
4549 *
4550 * RETURNS:
4551 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4552 * true if they don't match).
4553 */
4554static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4555 unsigned int *pipe_bpp)
4556{
4557 struct drm_device *dev = crtc->dev;
4558 struct drm_i915_private *dev_priv = dev->dev_private;
4559 struct drm_encoder *encoder;
4560 struct drm_connector *connector;
4561 unsigned int display_bpc = UINT_MAX, bpc;
4562
4563 /* Walk the encoders & connectors on this crtc, get min bpc */
4564 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4565 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4566
4567 if (encoder->crtc != crtc)
4568 continue;
4569
4570 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4571 unsigned int lvds_bpc;
4572
4573 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4574 LVDS_A3_POWER_UP)
4575 lvds_bpc = 8;
4576 else
4577 lvds_bpc = 6;
4578
4579 if (lvds_bpc < display_bpc) {
4580 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4581 display_bpc = lvds_bpc;
4582 }
4583 continue;
4584 }
4585
4586 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4587 /* Use VBT settings if we have an eDP panel */
4588 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4589
4590 if (edp_bpc < display_bpc) {
4591 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4592 display_bpc = edp_bpc;
4593 }
4594 continue;
4595 }
4596
4597 /* Not one of the known troublemakers, check the EDID */
4598 list_for_each_entry(connector, &dev->mode_config.connector_list,
4599 head) {
4600 if (connector->encoder != encoder)
4601 continue;
4602
62ac41a6
JB
4603 /* Don't use an invalid EDID bpc value */
4604 if (connector->display_info.bpc &&
4605 connector->display_info.bpc < display_bpc) {
5a354204
JB
4606 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4607 display_bpc = connector->display_info.bpc;
4608 }
4609 }
4610
4611 /*
4612 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4613 * through, clamp it down. (Note: >12bpc will be caught below.)
4614 */
4615 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4616 if (display_bpc > 8 && display_bpc < 12) {
4617 DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
4618 display_bpc = 12;
4619 } else {
4620 DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
4621 display_bpc = 8;
4622 }
4623 }
4624 }
4625
4626 /*
4627 * We could just drive the pipe at the highest bpc all the time and
4628 * enable dithering as needed, but that costs bandwidth. So choose
4629 * the minimum value that expresses the full color range of the fb but
4630 * also stays within the max display bpc discovered above.
4631 */
4632
4633 switch (crtc->fb->depth) {
4634 case 8:
4635 bpc = 8; /* since we go through a colormap */
4636 break;
4637 case 15:
4638 case 16:
4639 bpc = 6; /* min is 18bpp */
4640 break;
4641 case 24:
4642 bpc = min((unsigned int)8, display_bpc);
4643 break;
4644 case 30:
4645 bpc = min((unsigned int)10, display_bpc);
4646 break;
4647 case 48:
4648 bpc = min((unsigned int)12, display_bpc);
4649 break;
4650 default:
4651 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4652 bpc = min((unsigned int)8, display_bpc);
4653 break;
4654 }
4655
4656 DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
4657 bpc, display_bpc);
4658
4659 *pipe_bpp = bpc * 3;
4660
4661 return display_bpc != bpc;
4662}
4663
f564048e
EA
4664static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4665 struct drm_display_mode *mode,
4666 struct drm_display_mode *adjusted_mode,
4667 int x, int y,
4668 struct drm_framebuffer *old_fb)
79e53945
JB
4669{
4670 struct drm_device *dev = crtc->dev;
4671 struct drm_i915_private *dev_priv = dev->dev_private;
4672 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4673 int pipe = intel_crtc->pipe;
80824003 4674 int plane = intel_crtc->plane;
c751ce4f 4675 int refclk, num_connectors = 0;
652c393a 4676 intel_clock_t clock, reduced_clock;
5eddb70b 4677 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
652c393a 4678 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
a4fc5ed6 4679 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
79e53945 4680 struct drm_mode_config *mode_config = &dev->mode_config;
5eddb70b 4681 struct intel_encoder *encoder;
d4906093 4682 const intel_limit_t *limit;
5c3b82e2 4683 int ret;
fae14981 4684 u32 temp;
aa9b500d 4685 u32 lvds_sync = 0;
79e53945 4686
5eddb70b
CW
4687 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4688 if (encoder->base.crtc != crtc)
79e53945
JB
4689 continue;
4690
5eddb70b 4691 switch (encoder->type) {
79e53945
JB
4692 case INTEL_OUTPUT_LVDS:
4693 is_lvds = true;
4694 break;
4695 case INTEL_OUTPUT_SDVO:
7d57382e 4696 case INTEL_OUTPUT_HDMI:
79e53945 4697 is_sdvo = true;
5eddb70b 4698 if (encoder->needs_tv_clock)
e2f0ba97 4699 is_tv = true;
79e53945
JB
4700 break;
4701 case INTEL_OUTPUT_DVO:
4702 is_dvo = true;
4703 break;
4704 case INTEL_OUTPUT_TVOUT:
4705 is_tv = true;
4706 break;
4707 case INTEL_OUTPUT_ANALOG:
4708 is_crt = true;
4709 break;
a4fc5ed6
KP
4710 case INTEL_OUTPUT_DISPLAYPORT:
4711 is_dp = true;
4712 break;
79e53945 4713 }
43565a06 4714
c751ce4f 4715 num_connectors++;
79e53945
JB
4716 }
4717
a7615030 4718 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
43565a06 4719 refclk = dev_priv->lvds_ssc_freq * 1000;
28c97730 4720 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5eddb70b 4721 refclk / 1000);
a6c45cf0 4722 } else if (!IS_GEN2(dev)) {
79e53945
JB
4723 refclk = 96000;
4724 } else {
4725 refclk = 48000;
4726 }
4727
d4906093
ML
4728 /*
4729 * Returns a set of divisors for the desired target clock with the given
4730 * refclk, or FALSE. The returned values represent the clock equation:
4731 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4732 */
1b894b59 4733 limit = intel_limit(crtc, refclk);
d4906093 4734 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
79e53945
JB
4735 if (!ok) {
4736 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4737 return -EINVAL;
79e53945
JB
4738 }
4739
cda4b7d3 4740 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4741 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4742
ddc9003c
ZY
4743 if (is_lvds && dev_priv->lvds_downclock_avail) {
4744 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
4745 dev_priv->lvds_downclock,
4746 refclk,
4747 &reduced_clock);
18f9ed12
ZY
4748 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4749 /*
4750 * If the different P is found, it means that we can't
4751 * switch the display clock by using the FP0/FP1.
4752 * In such case we will disable the LVDS downclock
4753 * feature.
4754 */
4755 DRM_DEBUG_KMS("Different P is found for "
5eddb70b 4756 "LVDS clock/downclock\n");
18f9ed12
ZY
4757 has_reduced_clock = 0;
4758 }
652c393a 4759 }
7026d4ac
ZW
4760 /* SDVO TV has fixed PLL values depend on its clock range,
4761 this mirrors vbios setting. */
4762 if (is_sdvo && is_tv) {
4763 if (adjusted_mode->clock >= 100000
5eddb70b 4764 && adjusted_mode->clock < 140500) {
7026d4ac
ZW
4765 clock.p1 = 2;
4766 clock.p2 = 10;
4767 clock.n = 3;
4768 clock.m1 = 16;
4769 clock.m2 = 8;
4770 } else if (adjusted_mode->clock >= 140500
5eddb70b 4771 && adjusted_mode->clock <= 200000) {
7026d4ac
ZW
4772 clock.p1 = 1;
4773 clock.p2 = 10;
4774 clock.n = 6;
4775 clock.m1 = 12;
4776 clock.m2 = 8;
4777 }
4778 }
4779
f2b115e6 4780 if (IS_PINEVIEW(dev)) {
2177832f 4781 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
652c393a
JB
4782 if (has_reduced_clock)
4783 fp2 = (1 << reduced_clock.n) << 16 |
4784 reduced_clock.m1 << 8 | reduced_clock.m2;
4785 } else {
2177832f 4786 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
652c393a
JB
4787 if (has_reduced_clock)
4788 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4789 reduced_clock.m2;
4790 }
79e53945 4791
929c77fb 4792 dpll = DPLL_VGA_MODE_DIS;
2c07245f 4793
a6c45cf0 4794 if (!IS_GEN2(dev)) {
79e53945
JB
4795 if (is_lvds)
4796 dpll |= DPLLB_MODE_LVDS;
4797 else
4798 dpll |= DPLLB_MODE_DAC_SERIAL;
4799 if (is_sdvo) {
6c9547ff
CW
4800 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4801 if (pixel_multiplier > 1) {
4802 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4803 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
6c9547ff 4804 }
79e53945 4805 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 4806 }
929c77fb 4807 if (is_dp)
a4fc5ed6 4808 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945
JB
4809
4810 /* compute bitmask from p1 value */
f2b115e6
AJ
4811 if (IS_PINEVIEW(dev))
4812 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
2c07245f 4813 else {
2177832f 4814 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
652c393a
JB
4815 if (IS_G4X(dev) && has_reduced_clock)
4816 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2c07245f 4817 }
79e53945
JB
4818 switch (clock.p2) {
4819 case 5:
4820 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4821 break;
4822 case 7:
4823 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4824 break;
4825 case 10:
4826 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4827 break;
4828 case 14:
4829 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4830 break;
4831 }
929c77fb 4832 if (INTEL_INFO(dev)->gen >= 4)
79e53945
JB
4833 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4834 } else {
4835 if (is_lvds) {
4836 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4837 } else {
4838 if (clock.p1 == 2)
4839 dpll |= PLL_P1_DIVIDE_BY_TWO;
4840 else
4841 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4842 if (clock.p2 == 4)
4843 dpll |= PLL_P2_DIVIDE_BY_4;
4844 }
4845 }
4846
43565a06
KH
4847 if (is_sdvo && is_tv)
4848 dpll |= PLL_REF_INPUT_TVCLKINBC;
4849 else if (is_tv)
79e53945 4850 /* XXX: just matching BIOS for now */
43565a06 4851 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 4852 dpll |= 3;
a7615030 4853 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 4854 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
4855 else
4856 dpll |= PLL_REF_INPUT_DREFCLK;
4857
4858 /* setup pipeconf */
5eddb70b 4859 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
4860
4861 /* Set up the display plane register */
4862 dspcntr = DISPPLANE_GAMMA_ENABLE;
4863
f2b115e6 4864 /* Ironlake's plane is forced to pipe, bit 24 is to
2c07245f 4865 enable color space conversion */
929c77fb
EA
4866 if (pipe == 0)
4867 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4868 else
4869 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 4870
a6c45cf0 4871 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
4872 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4873 * core speed.
4874 *
4875 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4876 * pipe == 0 check?
4877 */
e70236a8
JB
4878 if (mode->clock >
4879 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 4880 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 4881 else
5eddb70b 4882 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
4883 }
4884
929c77fb 4885 dpll |= DPLL_VCO_ENABLE;
8d86dc6a 4886
28c97730 4887 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
4888 drm_mode_debug_printmodeline(mode);
4889
fae14981
EA
4890 I915_WRITE(FP0(pipe), fp);
4891 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5eddb70b 4892
fae14981 4893 POSTING_READ(DPLL(pipe));
c713bb08 4894 udelay(150);
8db9d77b 4895
79e53945
JB
4896 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4897 * This is an exception to the general rule that mode_set doesn't turn
4898 * things on.
4899 */
4900 if (is_lvds) {
fae14981 4901 temp = I915_READ(LVDS);
5eddb70b 4902 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
b3b095b3 4903 if (pipe == 1) {
929c77fb 4904 temp |= LVDS_PIPEB_SELECT;
b3b095b3 4905 } else {
929c77fb 4906 temp &= ~LVDS_PIPEB_SELECT;
b3b095b3 4907 }
a3e17eb8 4908 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 4909 temp |= dev_priv->lvds_border_bits;
79e53945
JB
4910 /* Set the B0-B3 data pairs corresponding to whether we're going to
4911 * set the DPLLs for dual-channel mode or not.
4912 */
4913 if (clock.p2 == 7)
5eddb70b 4914 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 4915 else
5eddb70b 4916 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
4917
4918 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4919 * appropriately here, but we need to look more thoroughly into how
4920 * panels behave in the two modes.
4921 */
929c77fb
EA
4922 /* set the dithering flag on LVDS as needed */
4923 if (INTEL_INFO(dev)->gen >= 4) {
434ed097 4924 if (dev_priv->lvds_dither)
5eddb70b 4925 temp |= LVDS_ENABLE_DITHER;
434ed097 4926 else
5eddb70b 4927 temp &= ~LVDS_ENABLE_DITHER;
898822ce 4928 }
aa9b500d
BF
4929 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4930 lvds_sync |= LVDS_HSYNC_POLARITY;
4931 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4932 lvds_sync |= LVDS_VSYNC_POLARITY;
4933 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4934 != lvds_sync) {
4935 char flags[2] = "-+";
4936 DRM_INFO("Changing LVDS panel from "
4937 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4938 flags[!(temp & LVDS_HSYNC_POLARITY)],
4939 flags[!(temp & LVDS_VSYNC_POLARITY)],
4940 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4941 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4942 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4943 temp |= lvds_sync;
4944 }
fae14981 4945 I915_WRITE(LVDS, temp);
79e53945 4946 }
434ed097 4947
929c77fb 4948 if (is_dp) {
a4fc5ed6 4949 intel_dp_set_m_n(crtc, mode, adjusted_mode);
434ed097
JB
4950 }
4951
fae14981 4952 I915_WRITE(DPLL(pipe), dpll);
5eddb70b 4953
c713bb08 4954 /* Wait for the clocks to stabilize. */
fae14981 4955 POSTING_READ(DPLL(pipe));
c713bb08 4956 udelay(150);
32f9d658 4957
c713bb08
EA
4958 if (INTEL_INFO(dev)->gen >= 4) {
4959 temp = 0;
4960 if (is_sdvo) {
4961 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4962 if (temp > 1)
4963 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4964 else
4965 temp = 0;
32f9d658 4966 }
c713bb08
EA
4967 I915_WRITE(DPLL_MD(pipe), temp);
4968 } else {
4969 /* The pixel multiplier can only be updated once the
4970 * DPLL is enabled and the clocks are stable.
4971 *
4972 * So write it again.
4973 */
fae14981 4974 I915_WRITE(DPLL(pipe), dpll);
79e53945 4975 }
79e53945 4976
5eddb70b 4977 intel_crtc->lowfreq_avail = false;
652c393a 4978 if (is_lvds && has_reduced_clock && i915_powersave) {
fae14981 4979 I915_WRITE(FP1(pipe), fp2);
652c393a
JB
4980 intel_crtc->lowfreq_avail = true;
4981 if (HAS_PIPE_CXSR(dev)) {
28c97730 4982 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a
JB
4983 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4984 }
4985 } else {
fae14981 4986 I915_WRITE(FP1(pipe), fp);
652c393a 4987 if (HAS_PIPE_CXSR(dev)) {
28c97730 4988 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
4989 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4990 }
4991 }
4992
734b4157
KH
4993 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4994 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4995 /* the chip adds 2 halflines automatically */
4996 adjusted_mode->crtc_vdisplay -= 1;
4997 adjusted_mode->crtc_vtotal -= 1;
4998 adjusted_mode->crtc_vblank_start -= 1;
4999 adjusted_mode->crtc_vblank_end -= 1;
5000 adjusted_mode->crtc_vsync_end -= 1;
5001 adjusted_mode->crtc_vsync_start -= 1;
5002 } else
5003 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5004
5eddb70b
CW
5005 I915_WRITE(HTOTAL(pipe),
5006 (adjusted_mode->crtc_hdisplay - 1) |
79e53945 5007 ((adjusted_mode->crtc_htotal - 1) << 16));
5eddb70b
CW
5008 I915_WRITE(HBLANK(pipe),
5009 (adjusted_mode->crtc_hblank_start - 1) |
79e53945 5010 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5eddb70b
CW
5011 I915_WRITE(HSYNC(pipe),
5012 (adjusted_mode->crtc_hsync_start - 1) |
79e53945 5013 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5eddb70b
CW
5014
5015 I915_WRITE(VTOTAL(pipe),
5016 (adjusted_mode->crtc_vdisplay - 1) |
79e53945 5017 ((adjusted_mode->crtc_vtotal - 1) << 16));
5eddb70b
CW
5018 I915_WRITE(VBLANK(pipe),
5019 (adjusted_mode->crtc_vblank_start - 1) |
79e53945 5020 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5eddb70b
CW
5021 I915_WRITE(VSYNC(pipe),
5022 (adjusted_mode->crtc_vsync_start - 1) |
79e53945 5023 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5eddb70b
CW
5024
5025 /* pipesrc and dspsize control the size that is scaled from,
5026 * which should always be the user's requested size.
79e53945 5027 */
929c77fb
EA
5028 I915_WRITE(DSPSIZE(plane),
5029 ((mode->vdisplay - 1) << 16) |
5030 (mode->hdisplay - 1));
5031 I915_WRITE(DSPPOS(plane), 0);
5eddb70b
CW
5032 I915_WRITE(PIPESRC(pipe),
5033 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f 5034
f564048e
EA
5035 I915_WRITE(PIPECONF(pipe), pipeconf);
5036 POSTING_READ(PIPECONF(pipe));
929c77fb 5037 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
5038
5039 intel_wait_for_vblank(dev, pipe);
5040
f564048e
EA
5041 I915_WRITE(DSPCNTR(plane), dspcntr);
5042 POSTING_READ(DSPCNTR(plane));
284d9529 5043 intel_enable_plane(dev_priv, plane, pipe);
f564048e
EA
5044
5045 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5046
5047 intel_update_watermarks(dev);
5048
f564048e
EA
5049 return ret;
5050}
5051
5052static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5053 struct drm_display_mode *mode,
5054 struct drm_display_mode *adjusted_mode,
5055 int x, int y,
5056 struct drm_framebuffer *old_fb)
79e53945
JB
5057{
5058 struct drm_device *dev = crtc->dev;
5059 struct drm_i915_private *dev_priv = dev->dev_private;
5060 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5061 int pipe = intel_crtc->pipe;
80824003 5062 int plane = intel_crtc->plane;
c751ce4f 5063 int refclk, num_connectors = 0;
652c393a 5064 intel_clock_t clock, reduced_clock;
5eddb70b 5065 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
a07d6787 5066 bool ok, has_reduced_clock = false, is_sdvo = false;
a4fc5ed6 5067 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
8e647a27 5068 struct intel_encoder *has_edp_encoder = NULL;
79e53945 5069 struct drm_mode_config *mode_config = &dev->mode_config;
5eddb70b 5070 struct intel_encoder *encoder;
d4906093 5071 const intel_limit_t *limit;
5c3b82e2 5072 int ret;
2c07245f 5073 struct fdi_m_n m_n = {0};
fae14981 5074 u32 temp;
aa9b500d 5075 u32 lvds_sync = 0;
5a354204
JB
5076 int target_clock, pixel_multiplier, lane, link_bw, factor;
5077 unsigned int pipe_bpp;
5078 bool dither;
79e53945 5079
5eddb70b
CW
5080 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5081 if (encoder->base.crtc != crtc)
79e53945
JB
5082 continue;
5083
5eddb70b 5084 switch (encoder->type) {
79e53945
JB
5085 case INTEL_OUTPUT_LVDS:
5086 is_lvds = true;
5087 break;
5088 case INTEL_OUTPUT_SDVO:
7d57382e 5089 case INTEL_OUTPUT_HDMI:
79e53945 5090 is_sdvo = true;
5eddb70b 5091 if (encoder->needs_tv_clock)
e2f0ba97 5092 is_tv = true;
79e53945 5093 break;
79e53945
JB
5094 case INTEL_OUTPUT_TVOUT:
5095 is_tv = true;
5096 break;
5097 case INTEL_OUTPUT_ANALOG:
5098 is_crt = true;
5099 break;
a4fc5ed6
KP
5100 case INTEL_OUTPUT_DISPLAYPORT:
5101 is_dp = true;
5102 break;
32f9d658 5103 case INTEL_OUTPUT_EDP:
5eddb70b 5104 has_edp_encoder = encoder;
32f9d658 5105 break;
79e53945 5106 }
43565a06 5107
c751ce4f 5108 num_connectors++;
79e53945
JB
5109 }
5110
a7615030 5111 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
43565a06 5112 refclk = dev_priv->lvds_ssc_freq * 1000;
28c97730 5113 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5eddb70b 5114 refclk / 1000);
a07d6787 5115 } else {
79e53945 5116 refclk = 96000;
8febb297
EA
5117 if (!has_edp_encoder ||
5118 intel_encoder_is_pch_edp(&has_edp_encoder->base))
2c07245f 5119 refclk = 120000; /* 120Mhz refclk */
79e53945
JB
5120 }
5121
d4906093
ML
5122 /*
5123 * Returns a set of divisors for the desired target clock with the given
5124 * refclk, or FALSE. The returned values represent the clock equation:
5125 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5126 */
1b894b59 5127 limit = intel_limit(crtc, refclk);
d4906093 5128 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
79e53945
JB
5129 if (!ok) {
5130 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 5131 return -EINVAL;
79e53945
JB
5132 }
5133
cda4b7d3 5134 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 5135 intel_crtc_update_cursor(crtc, true);
cda4b7d3 5136
ddc9003c
ZY
5137 if (is_lvds && dev_priv->lvds_downclock_avail) {
5138 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
5139 dev_priv->lvds_downclock,
5140 refclk,
5141 &reduced_clock);
18f9ed12
ZY
5142 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5143 /*
5144 * If the different P is found, it means that we can't
5145 * switch the display clock by using the FP0/FP1.
5146 * In such case we will disable the LVDS downclock
5147 * feature.
5148 */
5149 DRM_DEBUG_KMS("Different P is found for "
5eddb70b 5150 "LVDS clock/downclock\n");
18f9ed12
ZY
5151 has_reduced_clock = 0;
5152 }
652c393a 5153 }
7026d4ac
ZW
5154 /* SDVO TV has fixed PLL values depend on its clock range,
5155 this mirrors vbios setting. */
5156 if (is_sdvo && is_tv) {
5157 if (adjusted_mode->clock >= 100000
5eddb70b 5158 && adjusted_mode->clock < 140500) {
7026d4ac
ZW
5159 clock.p1 = 2;
5160 clock.p2 = 10;
5161 clock.n = 3;
5162 clock.m1 = 16;
5163 clock.m2 = 8;
5164 } else if (adjusted_mode->clock >= 140500
5eddb70b 5165 && adjusted_mode->clock <= 200000) {
7026d4ac
ZW
5166 clock.p1 = 1;
5167 clock.p2 = 10;
5168 clock.n = 6;
5169 clock.m1 = 12;
5170 clock.m2 = 8;
5171 }
5172 }
5173
2c07245f 5174 /* FDI link */
8febb297
EA
5175 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5176 lane = 0;
5177 /* CPU eDP doesn't require FDI link, so just set DP M/N
5178 according to current link config */
5179 if (has_edp_encoder &&
5180 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5181 target_clock = mode->clock;
5182 intel_edp_link_config(has_edp_encoder,
5183 &lane, &link_bw);
5184 } else {
5185 /* [e]DP over FDI requires target mode clock
5186 instead of link clock */
5187 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5eb08b69 5188 target_clock = mode->clock;
8febb297
EA
5189 else
5190 target_clock = adjusted_mode->clock;
5191
5192 /* FDI is a binary signal running at ~2.7GHz, encoding
5193 * each output octet as 10 bits. The actual frequency
5194 * is stored as a divider into a 100MHz clock, and the
5195 * mode pixel clock is stored in units of 1KHz.
5196 * Hence the bw of each lane in terms of the mode signal
5197 * is:
5198 */
5199 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5200 }
58a27471 5201
8febb297
EA
5202 /* determine panel color depth */
5203 temp = I915_READ(PIPECONF(pipe));
5204 temp &= ~PIPE_BPC_MASK;
5a354204
JB
5205 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
5206 switch (pipe_bpp) {
5207 case 18:
5208 temp |= PIPE_6BPC;
8febb297 5209 break;
5a354204
JB
5210 case 24:
5211 temp |= PIPE_8BPC;
8febb297 5212 break;
5a354204
JB
5213 case 30:
5214 temp |= PIPE_10BPC;
8febb297 5215 break;
5a354204
JB
5216 case 36:
5217 temp |= PIPE_12BPC;
8febb297
EA
5218 break;
5219 default:
62ac41a6
JB
5220 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5221 pipe_bpp);
5a354204
JB
5222 temp |= PIPE_8BPC;
5223 pipe_bpp = 24;
5224 break;
8febb297 5225 }
77ffb597 5226
5a354204
JB
5227 intel_crtc->bpp = pipe_bpp;
5228 I915_WRITE(PIPECONF(pipe), temp);
5229
8febb297
EA
5230 if (!lane) {
5231 /*
5232 * Account for spread spectrum to avoid
5233 * oversubscribing the link. Max center spread
5234 * is 2.5%; use 5% for safety's sake.
5235 */
5a354204 5236 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
8febb297 5237 lane = bps / (link_bw * 8) + 1;
5eb08b69 5238 }
2c07245f 5239
8febb297
EA
5240 intel_crtc->fdi_lanes = lane;
5241
5242 if (pixel_multiplier > 1)
5243 link_bw *= pixel_multiplier;
5a354204
JB
5244 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5245 &m_n);
8febb297 5246
c038e51e
ZW
5247 /* Ironlake: try to setup display ref clock before DPLL
5248 * enabling. This is only under driver's control after
5249 * PCH B stepping, previous chipset stepping should be
5250 * ignoring this setting.
5251 */
8febb297
EA
5252 temp = I915_READ(PCH_DREF_CONTROL);
5253 /* Always enable nonspread source */
5254 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5255 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5256 temp &= ~DREF_SSC_SOURCE_MASK;
5257 temp |= DREF_SSC_SOURCE_ENABLE;
5258 I915_WRITE(PCH_DREF_CONTROL, temp);
5259
5260 POSTING_READ(PCH_DREF_CONTROL);
5261 udelay(200);
fc9a2228 5262
8febb297
EA
5263 if (has_edp_encoder) {
5264 if (intel_panel_use_ssc(dev_priv)) {
5265 temp |= DREF_SSC1_ENABLE;
fc9a2228 5266 I915_WRITE(PCH_DREF_CONTROL, temp);
8febb297 5267
fc9a2228
CW
5268 POSTING_READ(PCH_DREF_CONTROL);
5269 udelay(200);
5270 }
8febb297
EA
5271 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5272
5273 /* Enable CPU source on CPU attached eDP */
5274 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5275 if (intel_panel_use_ssc(dev_priv))
5276 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5277 else
5278 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5279 } else {
5280 /* Enable SSC on PCH eDP if needed */
5281 if (intel_panel_use_ssc(dev_priv)) {
5282 DRM_ERROR("enabling SSC on PCH\n");
5283 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
5284 }
5285 }
5286 I915_WRITE(PCH_DREF_CONTROL, temp);
5287 POSTING_READ(PCH_DREF_CONTROL);
5288 udelay(200);
fc9a2228 5289 }
c038e51e 5290
a07d6787
EA
5291 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5292 if (has_reduced_clock)
5293 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5294 reduced_clock.m2;
79e53945 5295
c1858123 5296 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
5297 factor = 21;
5298 if (is_lvds) {
5299 if ((intel_panel_use_ssc(dev_priv) &&
5300 dev_priv->lvds_ssc_freq == 100) ||
5301 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5302 factor = 25;
5303 } else if (is_sdvo && is_tv)
5304 factor = 20;
c1858123 5305
cb0e0931 5306 if (clock.m < factor * clock.n)
8febb297 5307 fp |= FP_CB_TUNE;
2c07245f 5308
5eddb70b 5309 dpll = 0;
2c07245f 5310
a07d6787
EA
5311 if (is_lvds)
5312 dpll |= DPLLB_MODE_LVDS;
5313 else
5314 dpll |= DPLLB_MODE_DAC_SERIAL;
5315 if (is_sdvo) {
5316 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5317 if (pixel_multiplier > 1) {
5318 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 5319 }
a07d6787
EA
5320 dpll |= DPLL_DVO_HIGH_SPEED;
5321 }
5322 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5323 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 5324
a07d6787
EA
5325 /* compute bitmask from p1 value */
5326 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5327 /* also FPA1 */
5328 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5329
5330 switch (clock.p2) {
5331 case 5:
5332 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5333 break;
5334 case 7:
5335 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5336 break;
5337 case 10:
5338 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5339 break;
5340 case 14:
5341 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5342 break;
79e53945
JB
5343 }
5344
43565a06
KH
5345 if (is_sdvo && is_tv)
5346 dpll |= PLL_REF_INPUT_TVCLKINBC;
5347 else if (is_tv)
79e53945 5348 /* XXX: just matching BIOS for now */
43565a06 5349 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5350 dpll |= 3;
a7615030 5351 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5352 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5353 else
5354 dpll |= PLL_REF_INPUT_DREFCLK;
5355
5356 /* setup pipeconf */
5eddb70b 5357 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
5358
5359 /* Set up the display plane register */
5360 dspcntr = DISPPLANE_GAMMA_ENABLE;
5361
28c97730 5362 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
5363 drm_mode_debug_printmodeline(mode);
5364
5c5313c8
JB
5365 /* PCH eDP needs FDI, but CPU eDP does not */
5366 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
fae14981
EA
5367 I915_WRITE(PCH_FP0(pipe), fp);
5368 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5eddb70b 5369
fae14981 5370 POSTING_READ(PCH_DPLL(pipe));
79e53945
JB
5371 udelay(150);
5372 }
5373
8db9d77b
ZW
5374 /* enable transcoder DPLL */
5375 if (HAS_PCH_CPT(dev)) {
5376 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
5377 switch (pipe) {
5378 case 0:
5eddb70b 5379 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
9db4a9c7
JB
5380 break;
5381 case 1:
5eddb70b 5382 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
9db4a9c7
JB
5383 break;
5384 case 2:
5385 /* FIXME: manage transcoder PLLs? */
5386 temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
5387 break;
5388 default:
5389 BUG();
32f9d658 5390 }
8db9d77b 5391 I915_WRITE(PCH_DPLL_SEL, temp);
5eddb70b
CW
5392
5393 POSTING_READ(PCH_DPLL_SEL);
8db9d77b
ZW
5394 udelay(150);
5395 }
5396
79e53945
JB
5397 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5398 * This is an exception to the general rule that mode_set doesn't turn
5399 * things on.
5400 */
5401 if (is_lvds) {
fae14981 5402 temp = I915_READ(PCH_LVDS);
5eddb70b 5403 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
b3b095b3
ZW
5404 if (pipe == 1) {
5405 if (HAS_PCH_CPT(dev))
5eddb70b 5406 temp |= PORT_TRANS_B_SEL_CPT;
b3b095b3 5407 else
5eddb70b 5408 temp |= LVDS_PIPEB_SELECT;
b3b095b3
ZW
5409 } else {
5410 if (HAS_PCH_CPT(dev))
5eddb70b 5411 temp &= ~PORT_TRANS_SEL_MASK;
b3b095b3 5412 else
5eddb70b 5413 temp &= ~LVDS_PIPEB_SELECT;
b3b095b3 5414 }
a3e17eb8 5415 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5416 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5417 /* Set the B0-B3 data pairs corresponding to whether we're going to
5418 * set the DPLLs for dual-channel mode or not.
5419 */
5420 if (clock.p2 == 7)
5eddb70b 5421 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5422 else
5eddb70b 5423 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5424
5425 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5426 * appropriately here, but we need to look more thoroughly into how
5427 * panels behave in the two modes.
5428 */
aa9b500d
BF
5429 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5430 lvds_sync |= LVDS_HSYNC_POLARITY;
5431 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5432 lvds_sync |= LVDS_VSYNC_POLARITY;
5433 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5434 != lvds_sync) {
5435 char flags[2] = "-+";
5436 DRM_INFO("Changing LVDS panel from "
5437 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5438 flags[!(temp & LVDS_HSYNC_POLARITY)],
5439 flags[!(temp & LVDS_VSYNC_POLARITY)],
5440 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5441 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5442 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5443 temp |= lvds_sync;
5444 }
fae14981 5445 I915_WRITE(PCH_LVDS, temp);
79e53945 5446 }
434ed097 5447
8febb297
EA
5448 pipeconf &= ~PIPECONF_DITHER_EN;
5449 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5a354204 5450 if ((is_lvds && dev_priv->lvds_dither) || dither) {
8febb297
EA
5451 pipeconf |= PIPECONF_DITHER_EN;
5452 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
434ed097 5453 }
5c5313c8 5454 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
a4fc5ed6 5455 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5456 } else {
8db9d77b 5457 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5458 I915_WRITE(TRANSDATA_M1(pipe), 0);
5459 I915_WRITE(TRANSDATA_N1(pipe), 0);
5460 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5461 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5462 }
79e53945 5463
8febb297
EA
5464 if (!has_edp_encoder ||
5465 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
fae14981 5466 I915_WRITE(PCH_DPLL(pipe), dpll);
5eddb70b 5467
32f9d658 5468 /* Wait for the clocks to stabilize. */
fae14981 5469 POSTING_READ(PCH_DPLL(pipe));
32f9d658
ZW
5470 udelay(150);
5471
8febb297
EA
5472 /* The pixel multiplier can only be updated once the
5473 * DPLL is enabled and the clocks are stable.
5474 *
5475 * So write it again.
5476 */
fae14981 5477 I915_WRITE(PCH_DPLL(pipe), dpll);
79e53945 5478 }
79e53945 5479
5eddb70b 5480 intel_crtc->lowfreq_avail = false;
652c393a 5481 if (is_lvds && has_reduced_clock && i915_powersave) {
fae14981 5482 I915_WRITE(PCH_FP1(pipe), fp2);
652c393a
JB
5483 intel_crtc->lowfreq_avail = true;
5484 if (HAS_PIPE_CXSR(dev)) {
28c97730 5485 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a
JB
5486 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5487 }
5488 } else {
fae14981 5489 I915_WRITE(PCH_FP1(pipe), fp);
652c393a 5490 if (HAS_PIPE_CXSR(dev)) {
28c97730 5491 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
5492 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5493 }
5494 }
5495
734b4157
KH
5496 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5497 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5498 /* the chip adds 2 halflines automatically */
5499 adjusted_mode->crtc_vdisplay -= 1;
5500 adjusted_mode->crtc_vtotal -= 1;
5501 adjusted_mode->crtc_vblank_start -= 1;
5502 adjusted_mode->crtc_vblank_end -= 1;
5503 adjusted_mode->crtc_vsync_end -= 1;
5504 adjusted_mode->crtc_vsync_start -= 1;
5505 } else
5506 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5507
5eddb70b
CW
5508 I915_WRITE(HTOTAL(pipe),
5509 (adjusted_mode->crtc_hdisplay - 1) |
79e53945 5510 ((adjusted_mode->crtc_htotal - 1) << 16));
5eddb70b
CW
5511 I915_WRITE(HBLANK(pipe),
5512 (adjusted_mode->crtc_hblank_start - 1) |
79e53945 5513 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5eddb70b
CW
5514 I915_WRITE(HSYNC(pipe),
5515 (adjusted_mode->crtc_hsync_start - 1) |
79e53945 5516 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5eddb70b
CW
5517
5518 I915_WRITE(VTOTAL(pipe),
5519 (adjusted_mode->crtc_vdisplay - 1) |
79e53945 5520 ((adjusted_mode->crtc_vtotal - 1) << 16));
5eddb70b
CW
5521 I915_WRITE(VBLANK(pipe),
5522 (adjusted_mode->crtc_vblank_start - 1) |
79e53945 5523 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5eddb70b
CW
5524 I915_WRITE(VSYNC(pipe),
5525 (adjusted_mode->crtc_vsync_start - 1) |
79e53945 5526 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5eddb70b 5527
8febb297
EA
5528 /* pipesrc controls the size that is scaled from, which should
5529 * always be the user's requested size.
79e53945 5530 */
5eddb70b
CW
5531 I915_WRITE(PIPESRC(pipe),
5532 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f 5533
8febb297
EA
5534 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5535 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5536 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5537 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
2c07245f 5538
8febb297
EA
5539 if (has_edp_encoder &&
5540 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5541 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f
ZW
5542 }
5543
5eddb70b
CW
5544 I915_WRITE(PIPECONF(pipe), pipeconf);
5545 POSTING_READ(PIPECONF(pipe));
79e53945 5546
9d0498a2 5547 intel_wait_for_vblank(dev, pipe);
79e53945 5548
f00a3ddf 5549 if (IS_GEN5(dev)) {
553bd149
ZW
5550 /* enable address swizzle for tiling buffer */
5551 temp = I915_READ(DISP_ARB_CTL);
5552 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5553 }
5554
5eddb70b 5555 I915_WRITE(DSPCNTR(plane), dspcntr);
b24e7179 5556 POSTING_READ(DSPCNTR(plane));
79e53945 5557
5c3b82e2 5558 ret = intel_pipe_set_base(crtc, x, y, old_fb);
7662c8bd
SL
5559
5560 intel_update_watermarks(dev);
5561
1f803ee5 5562 return ret;
79e53945
JB
5563}
5564
f564048e
EA
5565static int intel_crtc_mode_set(struct drm_crtc *crtc,
5566 struct drm_display_mode *mode,
5567 struct drm_display_mode *adjusted_mode,
5568 int x, int y,
5569 struct drm_framebuffer *old_fb)
5570{
5571 struct drm_device *dev = crtc->dev;
5572 struct drm_i915_private *dev_priv = dev->dev_private;
0b701d27
EA
5573 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5574 int pipe = intel_crtc->pipe;
f564048e
EA
5575 int ret;
5576
0b701d27 5577 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5578
f564048e
EA
5579 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5580 x, y, old_fb);
7662c8bd 5581
79e53945 5582 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5583
120eced9
KP
5584 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
5585
1f803ee5 5586 return ret;
79e53945
JB
5587}
5588
5589/** Loads the palette/gamma unit for the CRTC with the prepared values */
5590void intel_crtc_load_lut(struct drm_crtc *crtc)
5591{
5592 struct drm_device *dev = crtc->dev;
5593 struct drm_i915_private *dev_priv = dev->dev_private;
5594 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 5595 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
5596 int i;
5597
5598 /* The clocks have to be on to load the palette. */
5599 if (!crtc->enabled)
5600 return;
5601
f2b115e6 5602 /* use legacy palette for Ironlake */
bad720ff 5603 if (HAS_PCH_SPLIT(dev))
9db4a9c7 5604 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 5605
79e53945
JB
5606 for (i = 0; i < 256; i++) {
5607 I915_WRITE(palreg + 4 * i,
5608 (intel_crtc->lut_r[i] << 16) |
5609 (intel_crtc->lut_g[i] << 8) |
5610 intel_crtc->lut_b[i]);
5611 }
5612}
5613
560b85bb
CW
5614static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5615{
5616 struct drm_device *dev = crtc->dev;
5617 struct drm_i915_private *dev_priv = dev->dev_private;
5618 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5619 bool visible = base != 0;
5620 u32 cntl;
5621
5622 if (intel_crtc->cursor_visible == visible)
5623 return;
5624
9db4a9c7 5625 cntl = I915_READ(_CURACNTR);
560b85bb
CW
5626 if (visible) {
5627 /* On these chipsets we can only modify the base whilst
5628 * the cursor is disabled.
5629 */
9db4a9c7 5630 I915_WRITE(_CURABASE, base);
560b85bb
CW
5631
5632 cntl &= ~(CURSOR_FORMAT_MASK);
5633 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5634 cntl |= CURSOR_ENABLE |
5635 CURSOR_GAMMA_ENABLE |
5636 CURSOR_FORMAT_ARGB;
5637 } else
5638 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 5639 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
5640
5641 intel_crtc->cursor_visible = visible;
5642}
5643
5644static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5645{
5646 struct drm_device *dev = crtc->dev;
5647 struct drm_i915_private *dev_priv = dev->dev_private;
5648 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5649 int pipe = intel_crtc->pipe;
5650 bool visible = base != 0;
5651
5652 if (intel_crtc->cursor_visible != visible) {
548f245b 5653 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
5654 if (base) {
5655 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5656 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5657 cntl |= pipe << 28; /* Connect to correct pipe */
5658 } else {
5659 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5660 cntl |= CURSOR_MODE_DISABLE;
5661 }
9db4a9c7 5662 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
5663
5664 intel_crtc->cursor_visible = visible;
5665 }
5666 /* and commit changes on next vblank */
9db4a9c7 5667 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
5668}
5669
cda4b7d3 5670/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
5671static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5672 bool on)
cda4b7d3
CW
5673{
5674 struct drm_device *dev = crtc->dev;
5675 struct drm_i915_private *dev_priv = dev->dev_private;
5676 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5677 int pipe = intel_crtc->pipe;
5678 int x = intel_crtc->cursor_x;
5679 int y = intel_crtc->cursor_y;
560b85bb 5680 u32 base, pos;
cda4b7d3
CW
5681 bool visible;
5682
5683 pos = 0;
5684
6b383a7f 5685 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
5686 base = intel_crtc->cursor_addr;
5687 if (x > (int) crtc->fb->width)
5688 base = 0;
5689
5690 if (y > (int) crtc->fb->height)
5691 base = 0;
5692 } else
5693 base = 0;
5694
5695 if (x < 0) {
5696 if (x + intel_crtc->cursor_width < 0)
5697 base = 0;
5698
5699 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5700 x = -x;
5701 }
5702 pos |= x << CURSOR_X_SHIFT;
5703
5704 if (y < 0) {
5705 if (y + intel_crtc->cursor_height < 0)
5706 base = 0;
5707
5708 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5709 y = -y;
5710 }
5711 pos |= y << CURSOR_Y_SHIFT;
5712
5713 visible = base != 0;
560b85bb 5714 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
5715 return;
5716
9db4a9c7 5717 I915_WRITE(CURPOS(pipe), pos);
560b85bb
CW
5718 if (IS_845G(dev) || IS_I865G(dev))
5719 i845_update_cursor(crtc, base);
5720 else
5721 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
5722
5723 if (visible)
5724 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5725}
5726
79e53945 5727static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 5728 struct drm_file *file,
79e53945
JB
5729 uint32_t handle,
5730 uint32_t width, uint32_t height)
5731{
5732 struct drm_device *dev = crtc->dev;
5733 struct drm_i915_private *dev_priv = dev->dev_private;
5734 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 5735 struct drm_i915_gem_object *obj;
cda4b7d3 5736 uint32_t addr;
3f8bc370 5737 int ret;
79e53945 5738
28c97730 5739 DRM_DEBUG_KMS("\n");
79e53945
JB
5740
5741 /* if we want to turn off the cursor ignore width and height */
5742 if (!handle) {
28c97730 5743 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 5744 addr = 0;
05394f39 5745 obj = NULL;
5004417d 5746 mutex_lock(&dev->struct_mutex);
3f8bc370 5747 goto finish;
79e53945
JB
5748 }
5749
5750 /* Currently we only support 64x64 cursors */
5751 if (width != 64 || height != 64) {
5752 DRM_ERROR("we currently only support 64x64 cursors\n");
5753 return -EINVAL;
5754 }
5755
05394f39 5756 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 5757 if (&obj->base == NULL)
79e53945
JB
5758 return -ENOENT;
5759
05394f39 5760 if (obj->base.size < width * height * 4) {
79e53945 5761 DRM_ERROR("buffer is to small\n");
34b8686e
DA
5762 ret = -ENOMEM;
5763 goto fail;
79e53945
JB
5764 }
5765
71acb5eb 5766 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 5767 mutex_lock(&dev->struct_mutex);
b295d1b6 5768 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
5769 if (obj->tiling_mode) {
5770 DRM_ERROR("cursor cannot be tiled\n");
5771 ret = -EINVAL;
5772 goto fail_locked;
5773 }
5774
2da3b9b9 5775 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
5776 if (ret) {
5777 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 5778 goto fail_locked;
e7b526bb
CW
5779 }
5780
d9e86c0e
CW
5781 ret = i915_gem_object_put_fence(obj);
5782 if (ret) {
2da3b9b9 5783 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
5784 goto fail_unpin;
5785 }
5786
05394f39 5787 addr = obj->gtt_offset;
71acb5eb 5788 } else {
6eeefaf3 5789 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 5790 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
5791 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5792 align);
71acb5eb
DA
5793 if (ret) {
5794 DRM_ERROR("failed to attach phys object\n");
7f9872e0 5795 goto fail_locked;
71acb5eb 5796 }
05394f39 5797 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
5798 }
5799
a6c45cf0 5800 if (IS_GEN2(dev))
14b60391
JB
5801 I915_WRITE(CURSIZE, (height << 12) | width);
5802
3f8bc370 5803 finish:
3f8bc370 5804 if (intel_crtc->cursor_bo) {
b295d1b6 5805 if (dev_priv->info->cursor_needs_physical) {
05394f39 5806 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
5807 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5808 } else
5809 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 5810 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 5811 }
80824003 5812
7f9872e0 5813 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
5814
5815 intel_crtc->cursor_addr = addr;
05394f39 5816 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
5817 intel_crtc->cursor_width = width;
5818 intel_crtc->cursor_height = height;
5819
6b383a7f 5820 intel_crtc_update_cursor(crtc, true);
3f8bc370 5821
79e53945 5822 return 0;
e7b526bb 5823fail_unpin:
05394f39 5824 i915_gem_object_unpin(obj);
7f9872e0 5825fail_locked:
34b8686e 5826 mutex_unlock(&dev->struct_mutex);
bc9025bd 5827fail:
05394f39 5828 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 5829 return ret;
79e53945
JB
5830}
5831
5832static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5833{
79e53945 5834 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 5835
cda4b7d3
CW
5836 intel_crtc->cursor_x = x;
5837 intel_crtc->cursor_y = y;
652c393a 5838
6b383a7f 5839 intel_crtc_update_cursor(crtc, true);
79e53945
JB
5840
5841 return 0;
5842}
5843
5844/** Sets the color ramps on behalf of RandR */
5845void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5846 u16 blue, int regno)
5847{
5848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5849
5850 intel_crtc->lut_r[regno] = red >> 8;
5851 intel_crtc->lut_g[regno] = green >> 8;
5852 intel_crtc->lut_b[regno] = blue >> 8;
5853}
5854
b8c00ac5
DA
5855void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5856 u16 *blue, int regno)
5857{
5858 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5859
5860 *red = intel_crtc->lut_r[regno] << 8;
5861 *green = intel_crtc->lut_g[regno] << 8;
5862 *blue = intel_crtc->lut_b[regno] << 8;
5863}
5864
79e53945 5865static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 5866 u16 *blue, uint32_t start, uint32_t size)
79e53945 5867{
7203425a 5868 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 5869 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 5870
7203425a 5871 for (i = start; i < end; i++) {
79e53945
JB
5872 intel_crtc->lut_r[i] = red[i] >> 8;
5873 intel_crtc->lut_g[i] = green[i] >> 8;
5874 intel_crtc->lut_b[i] = blue[i] >> 8;
5875 }
5876
5877 intel_crtc_load_lut(crtc);
5878}
5879
5880/**
5881 * Get a pipe with a simple mode set on it for doing load-based monitor
5882 * detection.
5883 *
5884 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 5885 * its requirements. The pipe will be connected to no other encoders.
79e53945 5886 *
c751ce4f 5887 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
5888 * configured for it. In the future, it could choose to temporarily disable
5889 * some outputs to free up a pipe for its use.
5890 *
5891 * \return crtc, or NULL if no pipes are available.
5892 */
5893
5894/* VESA 640x480x72Hz mode to set on the pipe */
5895static struct drm_display_mode load_detect_mode = {
5896 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5897 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5898};
5899
d2dff872
CW
5900static struct drm_framebuffer *
5901intel_framebuffer_create(struct drm_device *dev,
5902 struct drm_mode_fb_cmd *mode_cmd,
5903 struct drm_i915_gem_object *obj)
5904{
5905 struct intel_framebuffer *intel_fb;
5906 int ret;
5907
5908 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5909 if (!intel_fb) {
5910 drm_gem_object_unreference_unlocked(&obj->base);
5911 return ERR_PTR(-ENOMEM);
5912 }
5913
5914 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5915 if (ret) {
5916 drm_gem_object_unreference_unlocked(&obj->base);
5917 kfree(intel_fb);
5918 return ERR_PTR(ret);
5919 }
5920
5921 return &intel_fb->base;
5922}
5923
5924static u32
5925intel_framebuffer_pitch_for_width(int width, int bpp)
5926{
5927 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5928 return ALIGN(pitch, 64);
5929}
5930
5931static u32
5932intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5933{
5934 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5935 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5936}
5937
5938static struct drm_framebuffer *
5939intel_framebuffer_create_for_mode(struct drm_device *dev,
5940 struct drm_display_mode *mode,
5941 int depth, int bpp)
5942{
5943 struct drm_i915_gem_object *obj;
5944 struct drm_mode_fb_cmd mode_cmd;
5945
5946 obj = i915_gem_alloc_object(dev,
5947 intel_framebuffer_size_for_mode(mode, bpp));
5948 if (obj == NULL)
5949 return ERR_PTR(-ENOMEM);
5950
5951 mode_cmd.width = mode->hdisplay;
5952 mode_cmd.height = mode->vdisplay;
5953 mode_cmd.depth = depth;
5954 mode_cmd.bpp = bpp;
5955 mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
5956
5957 return intel_framebuffer_create(dev, &mode_cmd, obj);
5958}
5959
5960static struct drm_framebuffer *
5961mode_fits_in_fbdev(struct drm_device *dev,
5962 struct drm_display_mode *mode)
5963{
5964 struct drm_i915_private *dev_priv = dev->dev_private;
5965 struct drm_i915_gem_object *obj;
5966 struct drm_framebuffer *fb;
5967
5968 if (dev_priv->fbdev == NULL)
5969 return NULL;
5970
5971 obj = dev_priv->fbdev->ifb.obj;
5972 if (obj == NULL)
5973 return NULL;
5974
5975 fb = &dev_priv->fbdev->ifb.base;
5976 if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
5977 fb->bits_per_pixel))
5978 return NULL;
5979
5980 if (obj->base.size < mode->vdisplay * fb->pitch)
5981 return NULL;
5982
5983 return fb;
5984}
5985
7173188d
CW
5986bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5987 struct drm_connector *connector,
5988 struct drm_display_mode *mode,
8261b191 5989 struct intel_load_detect_pipe *old)
79e53945
JB
5990{
5991 struct intel_crtc *intel_crtc;
5992 struct drm_crtc *possible_crtc;
4ef69c7a 5993 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
5994 struct drm_crtc *crtc = NULL;
5995 struct drm_device *dev = encoder->dev;
d2dff872 5996 struct drm_framebuffer *old_fb;
79e53945
JB
5997 int i = -1;
5998
d2dff872
CW
5999 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6000 connector->base.id, drm_get_connector_name(connector),
6001 encoder->base.id, drm_get_encoder_name(encoder));
6002
79e53945
JB
6003 /*
6004 * Algorithm gets a little messy:
7a5e4805 6005 *
79e53945
JB
6006 * - if the connector already has an assigned crtc, use it (but make
6007 * sure it's on first)
7a5e4805 6008 *
79e53945
JB
6009 * - try to find the first unused crtc that can drive this connector,
6010 * and use that if we find one
79e53945
JB
6011 */
6012
6013 /* See if we already have a CRTC for this connector */
6014 if (encoder->crtc) {
6015 crtc = encoder->crtc;
8261b191 6016
79e53945 6017 intel_crtc = to_intel_crtc(crtc);
8261b191
CW
6018 old->dpms_mode = intel_crtc->dpms_mode;
6019 old->load_detect_temp = false;
6020
6021 /* Make sure the crtc and connector are running */
79e53945 6022 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6492711d
CW
6023 struct drm_encoder_helper_funcs *encoder_funcs;
6024 struct drm_crtc_helper_funcs *crtc_funcs;
6025
79e53945
JB
6026 crtc_funcs = crtc->helper_private;
6027 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6492711d
CW
6028
6029 encoder_funcs = encoder->helper_private;
79e53945
JB
6030 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6031 }
8261b191 6032
7173188d 6033 return true;
79e53945
JB
6034 }
6035
6036 /* Find an unused one (if possible) */
6037 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6038 i++;
6039 if (!(encoder->possible_crtcs & (1 << i)))
6040 continue;
6041 if (!possible_crtc->enabled) {
6042 crtc = possible_crtc;
6043 break;
6044 }
79e53945
JB
6045 }
6046
6047 /*
6048 * If we didn't find an unused CRTC, don't use any.
6049 */
6050 if (!crtc) {
7173188d
CW
6051 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6052 return false;
79e53945
JB
6053 }
6054
6055 encoder->crtc = crtc;
c1c43977 6056 connector->encoder = encoder;
79e53945
JB
6057
6058 intel_crtc = to_intel_crtc(crtc);
8261b191
CW
6059 old->dpms_mode = intel_crtc->dpms_mode;
6060 old->load_detect_temp = true;
d2dff872 6061 old->release_fb = NULL;
79e53945 6062
6492711d
CW
6063 if (!mode)
6064 mode = &load_detect_mode;
79e53945 6065
d2dff872
CW
6066 old_fb = crtc->fb;
6067
6068 /* We need a framebuffer large enough to accommodate all accesses
6069 * that the plane may generate whilst we perform load detection.
6070 * We can not rely on the fbcon either being present (we get called
6071 * during its initialisation to detect all boot displays, or it may
6072 * not even exist) or that it is large enough to satisfy the
6073 * requested mode.
6074 */
6075 crtc->fb = mode_fits_in_fbdev(dev, mode);
6076 if (crtc->fb == NULL) {
6077 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6078 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6079 old->release_fb = crtc->fb;
6080 } else
6081 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6082 if (IS_ERR(crtc->fb)) {
6083 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6084 crtc->fb = old_fb;
6085 return false;
79e53945 6086 }
79e53945 6087
d2dff872 6088 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6492711d 6089 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
6090 if (old->release_fb)
6091 old->release_fb->funcs->destroy(old->release_fb);
6092 crtc->fb = old_fb;
6492711d 6093 return false;
79e53945 6094 }
7173188d 6095
79e53945 6096 /* let the connector get through one full cycle before testing */
9d0498a2 6097 intel_wait_for_vblank(dev, intel_crtc->pipe);
79e53945 6098
7173188d 6099 return true;
79e53945
JB
6100}
6101
c1c43977 6102void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
8261b191
CW
6103 struct drm_connector *connector,
6104 struct intel_load_detect_pipe *old)
79e53945 6105{
4ef69c7a 6106 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6107 struct drm_device *dev = encoder->dev;
6108 struct drm_crtc *crtc = encoder->crtc;
6109 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6110 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6111
d2dff872
CW
6112 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6113 connector->base.id, drm_get_connector_name(connector),
6114 encoder->base.id, drm_get_encoder_name(encoder));
6115
8261b191 6116 if (old->load_detect_temp) {
c1c43977 6117 connector->encoder = NULL;
79e53945 6118 drm_helper_disable_unused_functions(dev);
d2dff872
CW
6119
6120 if (old->release_fb)
6121 old->release_fb->funcs->destroy(old->release_fb);
6122
0622a53c 6123 return;
79e53945
JB
6124 }
6125
c751ce4f 6126 /* Switch crtc and encoder back off if necessary */
0622a53c
CW
6127 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6128 encoder_funcs->dpms(encoder, old->dpms_mode);
8261b191 6129 crtc_funcs->dpms(crtc, old->dpms_mode);
79e53945
JB
6130 }
6131}
6132
6133/* Returns the clock of the currently programmed mode of the given pipe. */
6134static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6135{
6136 struct drm_i915_private *dev_priv = dev->dev_private;
6137 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6138 int pipe = intel_crtc->pipe;
548f245b 6139 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
6140 u32 fp;
6141 intel_clock_t clock;
6142
6143 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 6144 fp = I915_READ(FP0(pipe));
79e53945 6145 else
39adb7a5 6146 fp = I915_READ(FP1(pipe));
79e53945
JB
6147
6148 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
6149 if (IS_PINEVIEW(dev)) {
6150 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6151 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
6152 } else {
6153 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6154 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6155 }
6156
a6c45cf0 6157 if (!IS_GEN2(dev)) {
f2b115e6
AJ
6158 if (IS_PINEVIEW(dev))
6159 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6160 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
6161 else
6162 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
6163 DPLL_FPA01_P1_POST_DIV_SHIFT);
6164
6165 switch (dpll & DPLL_MODE_MASK) {
6166 case DPLLB_MODE_DAC_SERIAL:
6167 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6168 5 : 10;
6169 break;
6170 case DPLLB_MODE_LVDS:
6171 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6172 7 : 14;
6173 break;
6174 default:
28c97730 6175 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6176 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6177 return 0;
6178 }
6179
6180 /* XXX: Handle the 100Mhz refclk */
2177832f 6181 intel_clock(dev, 96000, &clock);
79e53945
JB
6182 } else {
6183 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6184
6185 if (is_lvds) {
6186 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6187 DPLL_FPA01_P1_POST_DIV_SHIFT);
6188 clock.p2 = 14;
6189
6190 if ((dpll & PLL_REF_INPUT_MASK) ==
6191 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6192 /* XXX: might not be 66MHz */
2177832f 6193 intel_clock(dev, 66000, &clock);
79e53945 6194 } else
2177832f 6195 intel_clock(dev, 48000, &clock);
79e53945
JB
6196 } else {
6197 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6198 clock.p1 = 2;
6199 else {
6200 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6201 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6202 }
6203 if (dpll & PLL_P2_DIVIDE_BY_4)
6204 clock.p2 = 4;
6205 else
6206 clock.p2 = 2;
6207
2177832f 6208 intel_clock(dev, 48000, &clock);
79e53945
JB
6209 }
6210 }
6211
6212 /* XXX: It would be nice to validate the clocks, but we can't reuse
6213 * i830PllIsValid() because it relies on the xf86_config connector
6214 * configuration being accurate, which it isn't necessarily.
6215 */
6216
6217 return clock.dot;
6218}
6219
6220/** Returns the currently programmed mode of the given pipe. */
6221struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6222 struct drm_crtc *crtc)
6223{
548f245b 6224 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
6225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6226 int pipe = intel_crtc->pipe;
6227 struct drm_display_mode *mode;
548f245b
JB
6228 int htot = I915_READ(HTOTAL(pipe));
6229 int hsync = I915_READ(HSYNC(pipe));
6230 int vtot = I915_READ(VTOTAL(pipe));
6231 int vsync = I915_READ(VSYNC(pipe));
79e53945
JB
6232
6233 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6234 if (!mode)
6235 return NULL;
6236
6237 mode->clock = intel_crtc_clock_get(dev, crtc);
6238 mode->hdisplay = (htot & 0xffff) + 1;
6239 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6240 mode->hsync_start = (hsync & 0xffff) + 1;
6241 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6242 mode->vdisplay = (vtot & 0xffff) + 1;
6243 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6244 mode->vsync_start = (vsync & 0xffff) + 1;
6245 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6246
6247 drm_mode_set_name(mode);
6248 drm_mode_set_crtcinfo(mode, 0);
6249
6250 return mode;
6251}
6252
652c393a
JB
6253#define GPU_IDLE_TIMEOUT 500 /* ms */
6254
6255/* When this timer fires, we've been idle for awhile */
6256static void intel_gpu_idle_timer(unsigned long arg)
6257{
6258 struct drm_device *dev = (struct drm_device *)arg;
6259 drm_i915_private_t *dev_priv = dev->dev_private;
6260
ff7ea4c0
CW
6261 if (!list_empty(&dev_priv->mm.active_list)) {
6262 /* Still processing requests, so just re-arm the timer. */
6263 mod_timer(&dev_priv->idle_timer, jiffies +
6264 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6265 return;
6266 }
652c393a 6267
ff7ea4c0 6268 dev_priv->busy = false;
01dfba93 6269 queue_work(dev_priv->wq, &dev_priv->idle_work);
652c393a
JB
6270}
6271
652c393a
JB
6272#define CRTC_IDLE_TIMEOUT 1000 /* ms */
6273
6274static void intel_crtc_idle_timer(unsigned long arg)
6275{
6276 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6277 struct drm_crtc *crtc = &intel_crtc->base;
6278 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
ff7ea4c0 6279 struct intel_framebuffer *intel_fb;
652c393a 6280
ff7ea4c0
CW
6281 intel_fb = to_intel_framebuffer(crtc->fb);
6282 if (intel_fb && intel_fb->obj->active) {
6283 /* The framebuffer is still being accessed by the GPU. */
6284 mod_timer(&intel_crtc->idle_timer, jiffies +
6285 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6286 return;
6287 }
652c393a 6288
ff7ea4c0 6289 intel_crtc->busy = false;
01dfba93 6290 queue_work(dev_priv->wq, &dev_priv->idle_work);
652c393a
JB
6291}
6292
3dec0095 6293static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6294{
6295 struct drm_device *dev = crtc->dev;
6296 drm_i915_private_t *dev_priv = dev->dev_private;
6297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6298 int pipe = intel_crtc->pipe;
dbdc6479
JB
6299 int dpll_reg = DPLL(pipe);
6300 int dpll;
652c393a 6301
bad720ff 6302 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6303 return;
6304
6305 if (!dev_priv->lvds_downclock_avail)
6306 return;
6307
dbdc6479 6308 dpll = I915_READ(dpll_reg);
652c393a 6309 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6310 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a
JB
6311
6312 /* Unlock panel regs */
dbdc6479
JB
6313 I915_WRITE(PP_CONTROL,
6314 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
652c393a
JB
6315
6316 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6317 I915_WRITE(dpll_reg, dpll);
9d0498a2 6318 intel_wait_for_vblank(dev, pipe);
dbdc6479 6319
652c393a
JB
6320 dpll = I915_READ(dpll_reg);
6321 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6322 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a
JB
6323
6324 /* ...and lock them again */
6325 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6326 }
6327
6328 /* Schedule downclock */
3dec0095
DV
6329 mod_timer(&intel_crtc->idle_timer, jiffies +
6330 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
652c393a
JB
6331}
6332
6333static void intel_decrease_pllclock(struct drm_crtc *crtc)
6334{
6335 struct drm_device *dev = crtc->dev;
6336 drm_i915_private_t *dev_priv = dev->dev_private;
6337 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6338 int pipe = intel_crtc->pipe;
9db4a9c7 6339 int dpll_reg = DPLL(pipe);
652c393a
JB
6340 int dpll = I915_READ(dpll_reg);
6341
bad720ff 6342 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6343 return;
6344
6345 if (!dev_priv->lvds_downclock_avail)
6346 return;
6347
6348 /*
6349 * Since this is called by a timer, we should never get here in
6350 * the manual case.
6351 */
6352 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
44d98a61 6353 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a
JB
6354
6355 /* Unlock panel regs */
4a655f04
JB
6356 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6357 PANEL_UNLOCK_REGS);
652c393a
JB
6358
6359 dpll |= DISPLAY_RATE_SELECT_FPA1;
6360 I915_WRITE(dpll_reg, dpll);
9d0498a2 6361 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6362 dpll = I915_READ(dpll_reg);
6363 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6364 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6365
6366 /* ...and lock them again */
6367 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6368 }
6369
6370}
6371
6372/**
6373 * intel_idle_update - adjust clocks for idleness
6374 * @work: work struct
6375 *
6376 * Either the GPU or display (or both) went idle. Check the busy status
6377 * here and adjust the CRTC and GPU clocks as necessary.
6378 */
6379static void intel_idle_update(struct work_struct *work)
6380{
6381 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6382 idle_work);
6383 struct drm_device *dev = dev_priv->dev;
6384 struct drm_crtc *crtc;
6385 struct intel_crtc *intel_crtc;
6386
6387 if (!i915_powersave)
6388 return;
6389
6390 mutex_lock(&dev->struct_mutex);
6391
7648fa99
JB
6392 i915_update_gfx_val(dev_priv);
6393
652c393a
JB
6394 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6395 /* Skip inactive CRTCs */
6396 if (!crtc->fb)
6397 continue;
6398
6399 intel_crtc = to_intel_crtc(crtc);
6400 if (!intel_crtc->busy)
6401 intel_decrease_pllclock(crtc);
6402 }
6403
45ac22c8 6404
652c393a
JB
6405 mutex_unlock(&dev->struct_mutex);
6406}
6407
6408/**
6409 * intel_mark_busy - mark the GPU and possibly the display busy
6410 * @dev: drm device
6411 * @obj: object we're operating on
6412 *
6413 * Callers can use this function to indicate that the GPU is busy processing
6414 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6415 * buffer), we'll also mark the display as busy, so we know to increase its
6416 * clock frequency.
6417 */
05394f39 6418void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
652c393a
JB
6419{
6420 drm_i915_private_t *dev_priv = dev->dev_private;
6421 struct drm_crtc *crtc = NULL;
6422 struct intel_framebuffer *intel_fb;
6423 struct intel_crtc *intel_crtc;
6424
5e17ee74
ZW
6425 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6426 return;
6427
18b2190c 6428 if (!dev_priv->busy)
28cf798f 6429 dev_priv->busy = true;
18b2190c 6430 else
28cf798f
CW
6431 mod_timer(&dev_priv->idle_timer, jiffies +
6432 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
652c393a
JB
6433
6434 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6435 if (!crtc->fb)
6436 continue;
6437
6438 intel_crtc = to_intel_crtc(crtc);
6439 intel_fb = to_intel_framebuffer(crtc->fb);
6440 if (intel_fb->obj == obj) {
6441 if (!intel_crtc->busy) {
6442 /* Non-busy -> busy, upclock */
3dec0095 6443 intel_increase_pllclock(crtc);
652c393a
JB
6444 intel_crtc->busy = true;
6445 } else {
6446 /* Busy -> busy, put off timer */
6447 mod_timer(&intel_crtc->idle_timer, jiffies +
6448 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6449 }
6450 }
6451 }
6452}
6453
79e53945
JB
6454static void intel_crtc_destroy(struct drm_crtc *crtc)
6455{
6456 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
6457 struct drm_device *dev = crtc->dev;
6458 struct intel_unpin_work *work;
6459 unsigned long flags;
6460
6461 spin_lock_irqsave(&dev->event_lock, flags);
6462 work = intel_crtc->unpin_work;
6463 intel_crtc->unpin_work = NULL;
6464 spin_unlock_irqrestore(&dev->event_lock, flags);
6465
6466 if (work) {
6467 cancel_work_sync(&work->work);
6468 kfree(work);
6469 }
79e53945
JB
6470
6471 drm_crtc_cleanup(crtc);
67e77c5a 6472
79e53945
JB
6473 kfree(intel_crtc);
6474}
6475
6b95a207
KH
6476static void intel_unpin_work_fn(struct work_struct *__work)
6477{
6478 struct intel_unpin_work *work =
6479 container_of(__work, struct intel_unpin_work, work);
6480
6481 mutex_lock(&work->dev->struct_mutex);
b1b87f6b 6482 i915_gem_object_unpin(work->old_fb_obj);
05394f39
CW
6483 drm_gem_object_unreference(&work->pending_flip_obj->base);
6484 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 6485
7782de3b 6486 intel_update_fbc(work->dev);
6b95a207
KH
6487 mutex_unlock(&work->dev->struct_mutex);
6488 kfree(work);
6489}
6490
1afe3e9d 6491static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 6492 struct drm_crtc *crtc)
6b95a207
KH
6493{
6494 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
6495 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6496 struct intel_unpin_work *work;
05394f39 6497 struct drm_i915_gem_object *obj;
6b95a207 6498 struct drm_pending_vblank_event *e;
49b14a5c 6499 struct timeval tnow, tvbl;
6b95a207
KH
6500 unsigned long flags;
6501
6502 /* Ignore early vblank irqs */
6503 if (intel_crtc == NULL)
6504 return;
6505
49b14a5c
MK
6506 do_gettimeofday(&tnow);
6507
6b95a207
KH
6508 spin_lock_irqsave(&dev->event_lock, flags);
6509 work = intel_crtc->unpin_work;
6510 if (work == NULL || !work->pending) {
6511 spin_unlock_irqrestore(&dev->event_lock, flags);
6512 return;
6513 }
6514
6515 intel_crtc->unpin_work = NULL;
6b95a207
KH
6516
6517 if (work->event) {
6518 e = work->event;
49b14a5c 6519 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
0af7e4df
MK
6520
6521 /* Called before vblank count and timestamps have
6522 * been updated for the vblank interval of flip
6523 * completion? Need to increment vblank count and
6524 * add one videorefresh duration to returned timestamp
49b14a5c
MK
6525 * to account for this. We assume this happened if we
6526 * get called over 0.9 frame durations after the last
6527 * timestamped vblank.
6528 *
6529 * This calculation can not be used with vrefresh rates
6530 * below 5Hz (10Hz to be on the safe side) without
6531 * promoting to 64 integers.
0af7e4df 6532 */
49b14a5c
MK
6533 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6534 9 * crtc->framedur_ns) {
0af7e4df 6535 e->event.sequence++;
49b14a5c
MK
6536 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6537 crtc->framedur_ns);
0af7e4df
MK
6538 }
6539
49b14a5c
MK
6540 e->event.tv_sec = tvbl.tv_sec;
6541 e->event.tv_usec = tvbl.tv_usec;
0af7e4df 6542
6b95a207
KH
6543 list_add_tail(&e->base.link,
6544 &e->base.file_priv->event_list);
6545 wake_up_interruptible(&e->base.file_priv->event_wait);
6546 }
6547
0af7e4df
MK
6548 drm_vblank_put(dev, intel_crtc->pipe);
6549
6b95a207
KH
6550 spin_unlock_irqrestore(&dev->event_lock, flags);
6551
05394f39 6552 obj = work->old_fb_obj;
d9e86c0e 6553
e59f2bac 6554 atomic_clear_mask(1 << intel_crtc->plane,
05394f39
CW
6555 &obj->pending_flip.counter);
6556 if (atomic_read(&obj->pending_flip) == 0)
f787a5f5 6557 wake_up(&dev_priv->pending_flip_queue);
d9e86c0e 6558
6b95a207 6559 schedule_work(&work->work);
e5510fac
JB
6560
6561 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
6562}
6563
1afe3e9d
JB
6564void intel_finish_page_flip(struct drm_device *dev, int pipe)
6565{
6566 drm_i915_private_t *dev_priv = dev->dev_private;
6567 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6568
49b14a5c 6569 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6570}
6571
6572void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6573{
6574 drm_i915_private_t *dev_priv = dev->dev_private;
6575 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6576
49b14a5c 6577 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6578}
6579
6b95a207
KH
6580void intel_prepare_page_flip(struct drm_device *dev, int plane)
6581{
6582 drm_i915_private_t *dev_priv = dev->dev_private;
6583 struct intel_crtc *intel_crtc =
6584 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6585 unsigned long flags;
6586
6587 spin_lock_irqsave(&dev->event_lock, flags);
de3f440f 6588 if (intel_crtc->unpin_work) {
4e5359cd
SF
6589 if ((++intel_crtc->unpin_work->pending) > 1)
6590 DRM_ERROR("Prepared flip multiple times\n");
de3f440f
JB
6591 } else {
6592 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6593 }
6b95a207
KH
6594 spin_unlock_irqrestore(&dev->event_lock, flags);
6595}
6596
8c9f3aaf
JB
6597static int intel_gen2_queue_flip(struct drm_device *dev,
6598 struct drm_crtc *crtc,
6599 struct drm_framebuffer *fb,
6600 struct drm_i915_gem_object *obj)
6601{
6602 struct drm_i915_private *dev_priv = dev->dev_private;
6603 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6604 unsigned long offset;
6605 u32 flip_mask;
6606 int ret;
6607
6608 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6609 if (ret)
6610 goto out;
6611
6612 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6613 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6614
6615 ret = BEGIN_LP_RING(6);
6616 if (ret)
6617 goto out;
6618
6619 /* Can't queue multiple flips, so wait for the previous
6620 * one to finish before executing the next.
6621 */
6622 if (intel_crtc->plane)
6623 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6624 else
6625 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6626 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6627 OUT_RING(MI_NOOP);
6628 OUT_RING(MI_DISPLAY_FLIP |
6629 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6630 OUT_RING(fb->pitch);
6631 OUT_RING(obj->gtt_offset + offset);
6632 OUT_RING(MI_NOOP);
6633 ADVANCE_LP_RING();
6634out:
6635 return ret;
6636}
6637
6638static int intel_gen3_queue_flip(struct drm_device *dev,
6639 struct drm_crtc *crtc,
6640 struct drm_framebuffer *fb,
6641 struct drm_i915_gem_object *obj)
6642{
6643 struct drm_i915_private *dev_priv = dev->dev_private;
6644 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6645 unsigned long offset;
6646 u32 flip_mask;
6647 int ret;
6648
6649 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6650 if (ret)
6651 goto out;
6652
6653 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6654 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6655
6656 ret = BEGIN_LP_RING(6);
6657 if (ret)
6658 goto out;
6659
6660 if (intel_crtc->plane)
6661 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6662 else
6663 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6664 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6665 OUT_RING(MI_NOOP);
6666 OUT_RING(MI_DISPLAY_FLIP_I915 |
6667 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6668 OUT_RING(fb->pitch);
6669 OUT_RING(obj->gtt_offset + offset);
6670 OUT_RING(MI_NOOP);
6671
6672 ADVANCE_LP_RING();
6673out:
6674 return ret;
6675}
6676
6677static int intel_gen4_queue_flip(struct drm_device *dev,
6678 struct drm_crtc *crtc,
6679 struct drm_framebuffer *fb,
6680 struct drm_i915_gem_object *obj)
6681{
6682 struct drm_i915_private *dev_priv = dev->dev_private;
6683 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6684 uint32_t pf, pipesrc;
6685 int ret;
6686
6687 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6688 if (ret)
6689 goto out;
6690
6691 ret = BEGIN_LP_RING(4);
6692 if (ret)
6693 goto out;
6694
6695 /* i965+ uses the linear or tiled offsets from the
6696 * Display Registers (which do not change across a page-flip)
6697 * so we need only reprogram the base address.
6698 */
6699 OUT_RING(MI_DISPLAY_FLIP |
6700 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6701 OUT_RING(fb->pitch);
6702 OUT_RING(obj->gtt_offset | obj->tiling_mode);
6703
6704 /* XXX Enabling the panel-fitter across page-flip is so far
6705 * untested on non-native modes, so ignore it for now.
6706 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6707 */
6708 pf = 0;
6709 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6710 OUT_RING(pf | pipesrc);
6711 ADVANCE_LP_RING();
6712out:
6713 return ret;
6714}
6715
6716static int intel_gen6_queue_flip(struct drm_device *dev,
6717 struct drm_crtc *crtc,
6718 struct drm_framebuffer *fb,
6719 struct drm_i915_gem_object *obj)
6720{
6721 struct drm_i915_private *dev_priv = dev->dev_private;
6722 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6723 uint32_t pf, pipesrc;
6724 int ret;
6725
6726 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6727 if (ret)
6728 goto out;
6729
6730 ret = BEGIN_LP_RING(4);
6731 if (ret)
6732 goto out;
6733
6734 OUT_RING(MI_DISPLAY_FLIP |
6735 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6736 OUT_RING(fb->pitch | obj->tiling_mode);
6737 OUT_RING(obj->gtt_offset);
6738
6739 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6740 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6741 OUT_RING(pf | pipesrc);
6742 ADVANCE_LP_RING();
6743out:
6744 return ret;
6745}
6746
7c9017e5
JB
6747/*
6748 * On gen7 we currently use the blit ring because (in early silicon at least)
6749 * the render ring doesn't give us interrpts for page flip completion, which
6750 * means clients will hang after the first flip is queued. Fortunately the
6751 * blit ring generates interrupts properly, so use it instead.
6752 */
6753static int intel_gen7_queue_flip(struct drm_device *dev,
6754 struct drm_crtc *crtc,
6755 struct drm_framebuffer *fb,
6756 struct drm_i915_gem_object *obj)
6757{
6758 struct drm_i915_private *dev_priv = dev->dev_private;
6759 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6760 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6761 int ret;
6762
6763 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6764 if (ret)
6765 goto out;
6766
6767 ret = intel_ring_begin(ring, 4);
6768 if (ret)
6769 goto out;
6770
6771 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
6772 intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
6773 intel_ring_emit(ring, (obj->gtt_offset));
6774 intel_ring_emit(ring, (MI_NOOP));
6775 intel_ring_advance(ring);
6776out:
6777 return ret;
6778}
6779
8c9f3aaf
JB
6780static int intel_default_queue_flip(struct drm_device *dev,
6781 struct drm_crtc *crtc,
6782 struct drm_framebuffer *fb,
6783 struct drm_i915_gem_object *obj)
6784{
6785 return -ENODEV;
6786}
6787
6b95a207
KH
6788static int intel_crtc_page_flip(struct drm_crtc *crtc,
6789 struct drm_framebuffer *fb,
6790 struct drm_pending_vblank_event *event)
6791{
6792 struct drm_device *dev = crtc->dev;
6793 struct drm_i915_private *dev_priv = dev->dev_private;
6794 struct intel_framebuffer *intel_fb;
05394f39 6795 struct drm_i915_gem_object *obj;
6b95a207
KH
6796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6797 struct intel_unpin_work *work;
8c9f3aaf 6798 unsigned long flags;
52e68630 6799 int ret;
6b95a207
KH
6800
6801 work = kzalloc(sizeof *work, GFP_KERNEL);
6802 if (work == NULL)
6803 return -ENOMEM;
6804
6b95a207
KH
6805 work->event = event;
6806 work->dev = crtc->dev;
6807 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 6808 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
6809 INIT_WORK(&work->work, intel_unpin_work_fn);
6810
6811 /* We borrow the event spin lock for protecting unpin_work */
6812 spin_lock_irqsave(&dev->event_lock, flags);
6813 if (intel_crtc->unpin_work) {
6814 spin_unlock_irqrestore(&dev->event_lock, flags);
6815 kfree(work);
468f0b44
CW
6816
6817 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
6818 return -EBUSY;
6819 }
6820 intel_crtc->unpin_work = work;
6821 spin_unlock_irqrestore(&dev->event_lock, flags);
6822
6823 intel_fb = to_intel_framebuffer(fb);
6824 obj = intel_fb->obj;
6825
468f0b44 6826 mutex_lock(&dev->struct_mutex);
6b95a207 6827
75dfca80 6828 /* Reference the objects for the scheduled work. */
05394f39
CW
6829 drm_gem_object_reference(&work->old_fb_obj->base);
6830 drm_gem_object_reference(&obj->base);
6b95a207
KH
6831
6832 crtc->fb = fb;
96b099fd
CW
6833
6834 ret = drm_vblank_get(dev, intel_crtc->pipe);
6835 if (ret)
6836 goto cleanup_objs;
6837
e1f99ce6 6838 work->pending_flip_obj = obj;
e1f99ce6 6839
4e5359cd
SF
6840 work->enable_stall_check = true;
6841
e1f99ce6
CW
6842 /* Block clients from rendering to the new back buffer until
6843 * the flip occurs and the object is no longer visible.
6844 */
05394f39 6845 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
e1f99ce6 6846
8c9f3aaf
JB
6847 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6848 if (ret)
6849 goto cleanup_pending;
6b95a207 6850
7782de3b 6851 intel_disable_fbc(dev);
6b95a207
KH
6852 mutex_unlock(&dev->struct_mutex);
6853
e5510fac
JB
6854 trace_i915_flip_request(intel_crtc->plane, obj);
6855
6b95a207 6856 return 0;
96b099fd 6857
8c9f3aaf
JB
6858cleanup_pending:
6859 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
96b099fd 6860cleanup_objs:
05394f39
CW
6861 drm_gem_object_unreference(&work->old_fb_obj->base);
6862 drm_gem_object_unreference(&obj->base);
96b099fd
CW
6863 mutex_unlock(&dev->struct_mutex);
6864
6865 spin_lock_irqsave(&dev->event_lock, flags);
6866 intel_crtc->unpin_work = NULL;
6867 spin_unlock_irqrestore(&dev->event_lock, flags);
6868
6869 kfree(work);
6870
6871 return ret;
6b95a207
KH
6872}
6873
47f1c6c9
CW
6874static void intel_sanitize_modesetting(struct drm_device *dev,
6875 int pipe, int plane)
6876{
6877 struct drm_i915_private *dev_priv = dev->dev_private;
6878 u32 reg, val;
6879
6880 if (HAS_PCH_SPLIT(dev))
6881 return;
6882
6883 /* Who knows what state these registers were left in by the BIOS or
6884 * grub?
6885 *
6886 * If we leave the registers in a conflicting state (e.g. with the
6887 * display plane reading from the other pipe than the one we intend
6888 * to use) then when we attempt to teardown the active mode, we will
6889 * not disable the pipes and planes in the correct order -- leaving
6890 * a plane reading from a disabled pipe and possibly leading to
6891 * undefined behaviour.
6892 */
6893
6894 reg = DSPCNTR(plane);
6895 val = I915_READ(reg);
6896
6897 if ((val & DISPLAY_PLANE_ENABLE) == 0)
6898 return;
6899 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6900 return;
6901
6902 /* This display plane is active and attached to the other CPU pipe. */
6903 pipe = !pipe;
6904
6905 /* Disable the plane and wait for it to stop reading from the pipe. */
b24e7179
JB
6906 intel_disable_plane(dev_priv, plane, pipe);
6907 intel_disable_pipe(dev_priv, pipe);
47f1c6c9 6908}
79e53945 6909
f6e5b160
CW
6910static void intel_crtc_reset(struct drm_crtc *crtc)
6911{
6912 struct drm_device *dev = crtc->dev;
6913 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6914
6915 /* Reset flags back to the 'unknown' status so that they
6916 * will be correctly set on the initial modeset.
6917 */
6918 intel_crtc->dpms_mode = -1;
6919
6920 /* We need to fix up any BIOS configuration that conflicts with
6921 * our expectations.
6922 */
6923 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6924}
6925
6926static struct drm_crtc_helper_funcs intel_helper_funcs = {
6927 .dpms = intel_crtc_dpms,
6928 .mode_fixup = intel_crtc_mode_fixup,
6929 .mode_set = intel_crtc_mode_set,
6930 .mode_set_base = intel_pipe_set_base,
6931 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6932 .load_lut = intel_crtc_load_lut,
6933 .disable = intel_crtc_disable,
6934};
6935
6936static const struct drm_crtc_funcs intel_crtc_funcs = {
6937 .reset = intel_crtc_reset,
6938 .cursor_set = intel_crtc_cursor_set,
6939 .cursor_move = intel_crtc_cursor_move,
6940 .gamma_set = intel_crtc_gamma_set,
6941 .set_config = drm_crtc_helper_set_config,
6942 .destroy = intel_crtc_destroy,
6943 .page_flip = intel_crtc_page_flip,
6944};
6945
b358d0a6 6946static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 6947{
22fd0fab 6948 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
6949 struct intel_crtc *intel_crtc;
6950 int i;
6951
6952 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6953 if (intel_crtc == NULL)
6954 return;
6955
6956 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6957
6958 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
6959 for (i = 0; i < 256; i++) {
6960 intel_crtc->lut_r[i] = i;
6961 intel_crtc->lut_g[i] = i;
6962 intel_crtc->lut_b[i] = i;
6963 }
6964
80824003
JB
6965 /* Swap pipes & planes for FBC on pre-965 */
6966 intel_crtc->pipe = pipe;
6967 intel_crtc->plane = pipe;
e2e767ab 6968 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 6969 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 6970 intel_crtc->plane = !pipe;
80824003
JB
6971 }
6972
22fd0fab
JB
6973 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6974 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6975 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6976 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6977
5d1d0cc8 6978 intel_crtc_reset(&intel_crtc->base);
04dbff52 6979 intel_crtc->active = true; /* force the pipe off on setup_init_config */
5a354204 6980 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3
JB
6981
6982 if (HAS_PCH_SPLIT(dev)) {
6983 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6984 intel_helper_funcs.commit = ironlake_crtc_commit;
6985 } else {
6986 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6987 intel_helper_funcs.commit = i9xx_crtc_commit;
6988 }
6989
79e53945
JB
6990 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6991
652c393a
JB
6992 intel_crtc->busy = false;
6993
6994 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6995 (unsigned long)intel_crtc);
79e53945
JB
6996}
6997
08d7b3d1 6998int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 6999 struct drm_file *file)
08d7b3d1
CW
7000{
7001 drm_i915_private_t *dev_priv = dev->dev_private;
7002 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
7003 struct drm_mode_object *drmmode_obj;
7004 struct intel_crtc *crtc;
08d7b3d1
CW
7005
7006 if (!dev_priv) {
7007 DRM_ERROR("called with no initialization\n");
7008 return -EINVAL;
7009 }
7010
c05422d5
DV
7011 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7012 DRM_MODE_OBJECT_CRTC);
08d7b3d1 7013
c05422d5 7014 if (!drmmode_obj) {
08d7b3d1
CW
7015 DRM_ERROR("no such CRTC id\n");
7016 return -EINVAL;
7017 }
7018
c05422d5
DV
7019 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7020 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 7021
c05422d5 7022 return 0;
08d7b3d1
CW
7023}
7024
c5e4df33 7025static int intel_encoder_clones(struct drm_device *dev, int type_mask)
79e53945 7026{
4ef69c7a 7027 struct intel_encoder *encoder;
79e53945 7028 int index_mask = 0;
79e53945
JB
7029 int entry = 0;
7030
4ef69c7a
CW
7031 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7032 if (type_mask & encoder->clone_mask)
79e53945
JB
7033 index_mask |= (1 << entry);
7034 entry++;
7035 }
4ef69c7a 7036
79e53945
JB
7037 return index_mask;
7038}
7039
4d302442
CW
7040static bool has_edp_a(struct drm_device *dev)
7041{
7042 struct drm_i915_private *dev_priv = dev->dev_private;
7043
7044 if (!IS_MOBILE(dev))
7045 return false;
7046
7047 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7048 return false;
7049
7050 if (IS_GEN5(dev) &&
7051 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7052 return false;
7053
7054 return true;
7055}
7056
79e53945
JB
7057static void intel_setup_outputs(struct drm_device *dev)
7058{
725e30ad 7059 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 7060 struct intel_encoder *encoder;
cb0953d7 7061 bool dpd_is_edp = false;
c5d1b51d 7062 bool has_lvds = false;
79e53945 7063
541998a1 7064 if (IS_MOBILE(dev) && !IS_I830(dev))
c5d1b51d
CW
7065 has_lvds = intel_lvds_init(dev);
7066 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7067 /* disable the panel fitter on everything but LVDS */
7068 I915_WRITE(PFIT_CONTROL, 0);
7069 }
79e53945 7070
bad720ff 7071 if (HAS_PCH_SPLIT(dev)) {
cb0953d7 7072 dpd_is_edp = intel_dpd_is_edp(dev);
30ad48b7 7073
4d302442 7074 if (has_edp_a(dev))
32f9d658
ZW
7075 intel_dp_init(dev, DP_A);
7076
cb0953d7
AJ
7077 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7078 intel_dp_init(dev, PCH_DP_D);
7079 }
7080
7081 intel_crt_init(dev);
7082
7083 if (HAS_PCH_SPLIT(dev)) {
7084 int found;
7085
30ad48b7 7086 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca
ZY
7087 /* PCH SDVOB multiplex with HDMIB */
7088 found = intel_sdvo_init(dev, PCH_SDVOB);
30ad48b7
ZW
7089 if (!found)
7090 intel_hdmi_init(dev, HDMIB);
5eb08b69
ZW
7091 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7092 intel_dp_init(dev, PCH_DP_B);
30ad48b7
ZW
7093 }
7094
7095 if (I915_READ(HDMIC) & PORT_DETECTED)
7096 intel_hdmi_init(dev, HDMIC);
7097
7098 if (I915_READ(HDMID) & PORT_DETECTED)
7099 intel_hdmi_init(dev, HDMID);
7100
5eb08b69
ZW
7101 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7102 intel_dp_init(dev, PCH_DP_C);
7103
cb0953d7 7104 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5eb08b69
ZW
7105 intel_dp_init(dev, PCH_DP_D);
7106
103a196f 7107 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 7108 bool found = false;
7d57382e 7109
725e30ad 7110 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 7111 DRM_DEBUG_KMS("probing SDVOB\n");
725e30ad 7112 found = intel_sdvo_init(dev, SDVOB);
b01f2c3a
JB
7113 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7114 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
725e30ad 7115 intel_hdmi_init(dev, SDVOB);
b01f2c3a 7116 }
27185ae1 7117
b01f2c3a
JB
7118 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7119 DRM_DEBUG_KMS("probing DP_B\n");
a4fc5ed6 7120 intel_dp_init(dev, DP_B);
b01f2c3a 7121 }
725e30ad 7122 }
13520b05
KH
7123
7124 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 7125
b01f2c3a
JB
7126 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7127 DRM_DEBUG_KMS("probing SDVOC\n");
725e30ad 7128 found = intel_sdvo_init(dev, SDVOC);
b01f2c3a 7129 }
27185ae1
ML
7130
7131 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7132
b01f2c3a
JB
7133 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7134 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
725e30ad 7135 intel_hdmi_init(dev, SDVOC);
b01f2c3a
JB
7136 }
7137 if (SUPPORTS_INTEGRATED_DP(dev)) {
7138 DRM_DEBUG_KMS("probing DP_C\n");
a4fc5ed6 7139 intel_dp_init(dev, DP_C);
b01f2c3a 7140 }
725e30ad 7141 }
27185ae1 7142
b01f2c3a
JB
7143 if (SUPPORTS_INTEGRATED_DP(dev) &&
7144 (I915_READ(DP_D) & DP_DETECTED)) {
7145 DRM_DEBUG_KMS("probing DP_D\n");
a4fc5ed6 7146 intel_dp_init(dev, DP_D);
b01f2c3a 7147 }
bad720ff 7148 } else if (IS_GEN2(dev))
79e53945
JB
7149 intel_dvo_init(dev);
7150
103a196f 7151 if (SUPPORTS_TV(dev))
79e53945
JB
7152 intel_tv_init(dev);
7153
4ef69c7a
CW
7154 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7155 encoder->base.possible_crtcs = encoder->crtc_mask;
7156 encoder->base.possible_clones =
7157 intel_encoder_clones(dev, encoder->clone_mask);
79e53945 7158 }
47356eb6
CW
7159
7160 intel_panel_setup_backlight(dev);
2c7111db
CW
7161
7162 /* disable all the possible outputs/crtcs before entering KMS mode */
7163 drm_helper_disable_unused_functions(dev);
79e53945
JB
7164}
7165
7166static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7167{
7168 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
7169
7170 drm_framebuffer_cleanup(fb);
05394f39 7171 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
7172
7173 kfree(intel_fb);
7174}
7175
7176static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 7177 struct drm_file *file,
79e53945
JB
7178 unsigned int *handle)
7179{
7180 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 7181 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 7182
05394f39 7183 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
7184}
7185
7186static const struct drm_framebuffer_funcs intel_fb_funcs = {
7187 .destroy = intel_user_framebuffer_destroy,
7188 .create_handle = intel_user_framebuffer_create_handle,
7189};
7190
38651674
DA
7191int intel_framebuffer_init(struct drm_device *dev,
7192 struct intel_framebuffer *intel_fb,
7193 struct drm_mode_fb_cmd *mode_cmd,
05394f39 7194 struct drm_i915_gem_object *obj)
79e53945 7195{
79e53945
JB
7196 int ret;
7197
05394f39 7198 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
7199 return -EINVAL;
7200
7201 if (mode_cmd->pitch & 63)
7202 return -EINVAL;
7203
7204 switch (mode_cmd->bpp) {
7205 case 8:
7206 case 16:
b5626747
JB
7207 /* Only pre-ILK can handle 5:5:5 */
7208 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7209 return -EINVAL;
7210 break;
7211
57cd6508
CW
7212 case 24:
7213 case 32:
7214 break;
7215 default:
7216 return -EINVAL;
7217 }
7218
79e53945
JB
7219 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7220 if (ret) {
7221 DRM_ERROR("framebuffer init failed %d\n", ret);
7222 return ret;
7223 }
7224
7225 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 7226 intel_fb->obj = obj;
79e53945
JB
7227 return 0;
7228}
7229
79e53945
JB
7230static struct drm_framebuffer *
7231intel_user_framebuffer_create(struct drm_device *dev,
7232 struct drm_file *filp,
7233 struct drm_mode_fb_cmd *mode_cmd)
7234{
05394f39 7235 struct drm_i915_gem_object *obj;
79e53945 7236
05394f39 7237 obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
c8725226 7238 if (&obj->base == NULL)
cce13ff7 7239 return ERR_PTR(-ENOENT);
79e53945 7240
d2dff872 7241 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
7242}
7243
79e53945 7244static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 7245 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 7246 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
7247};
7248
05394f39 7249static struct drm_i915_gem_object *
aa40d6bb 7250intel_alloc_context_page(struct drm_device *dev)
9ea8d059 7251{
05394f39 7252 struct drm_i915_gem_object *ctx;
9ea8d059
CW
7253 int ret;
7254
2c34b850
BW
7255 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7256
aa40d6bb
ZN
7257 ctx = i915_gem_alloc_object(dev, 4096);
7258 if (!ctx) {
9ea8d059
CW
7259 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7260 return NULL;
7261 }
7262
75e9e915 7263 ret = i915_gem_object_pin(ctx, 4096, true);
9ea8d059
CW
7264 if (ret) {
7265 DRM_ERROR("failed to pin power context: %d\n", ret);
7266 goto err_unref;
7267 }
7268
aa40d6bb 7269 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
9ea8d059
CW
7270 if (ret) {
7271 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7272 goto err_unpin;
7273 }
9ea8d059 7274
aa40d6bb 7275 return ctx;
9ea8d059
CW
7276
7277err_unpin:
aa40d6bb 7278 i915_gem_object_unpin(ctx);
9ea8d059 7279err_unref:
05394f39 7280 drm_gem_object_unreference(&ctx->base);
9ea8d059
CW
7281 mutex_unlock(&dev->struct_mutex);
7282 return NULL;
7283}
7284
7648fa99
JB
7285bool ironlake_set_drps(struct drm_device *dev, u8 val)
7286{
7287 struct drm_i915_private *dev_priv = dev->dev_private;
7288 u16 rgvswctl;
7289
7290 rgvswctl = I915_READ16(MEMSWCTL);
7291 if (rgvswctl & MEMCTL_CMD_STS) {
7292 DRM_DEBUG("gpu busy, RCS change rejected\n");
7293 return false; /* still busy with another command */
7294 }
7295
7296 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7297 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7298 I915_WRITE16(MEMSWCTL, rgvswctl);
7299 POSTING_READ16(MEMSWCTL);
7300
7301 rgvswctl |= MEMCTL_CMD_STS;
7302 I915_WRITE16(MEMSWCTL, rgvswctl);
7303
7304 return true;
7305}
7306
f97108d1
JB
7307void ironlake_enable_drps(struct drm_device *dev)
7308{
7309 struct drm_i915_private *dev_priv = dev->dev_private;
7648fa99 7310 u32 rgvmodectl = I915_READ(MEMMODECTL);
f97108d1 7311 u8 fmax, fmin, fstart, vstart;
f97108d1 7312
ea056c14
JB
7313 /* Enable temp reporting */
7314 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7315 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7316
f97108d1
JB
7317 /* 100ms RC evaluation intervals */
7318 I915_WRITE(RCUPEI, 100000);
7319 I915_WRITE(RCDNEI, 100000);
7320
7321 /* Set max/min thresholds to 90ms and 80ms respectively */
7322 I915_WRITE(RCBMAXAVG, 90000);
7323 I915_WRITE(RCBMINAVG, 80000);
7324
7325 I915_WRITE(MEMIHYST, 1);
7326
7327 /* Set up min, max, and cur for interrupt handling */
7328 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7329 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7330 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7331 MEMMODE_FSTART_SHIFT;
7648fa99 7332
f97108d1
JB
7333 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7334 PXVFREQ_PX_SHIFT;
7335
80dbf4b7 7336 dev_priv->fmax = fmax; /* IPS callback will increase this */
7648fa99
JB
7337 dev_priv->fstart = fstart;
7338
80dbf4b7 7339 dev_priv->max_delay = fstart;
f97108d1
JB
7340 dev_priv->min_delay = fmin;
7341 dev_priv->cur_delay = fstart;
7342
80dbf4b7
JB
7343 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7344 fmax, fmin, fstart);
7648fa99 7345
f97108d1
JB
7346 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7347
7348 /*
7349 * Interrupts will be enabled in ironlake_irq_postinstall
7350 */
7351
7352 I915_WRITE(VIDSTART, vstart);
7353 POSTING_READ(VIDSTART);
7354
7355 rgvmodectl |= MEMMODE_SWMODE_EN;
7356 I915_WRITE(MEMMODECTL, rgvmodectl);
7357
481b6af3 7358 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
913d8d11 7359 DRM_ERROR("stuck trying to change perf mode\n");
f97108d1
JB
7360 msleep(1);
7361
7648fa99 7362 ironlake_set_drps(dev, fstart);
f97108d1 7363
7648fa99
JB
7364 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7365 I915_READ(0x112e0);
7366 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7367 dev_priv->last_count2 = I915_READ(0x112f4);
7368 getrawmonotonic(&dev_priv->last_time2);
f97108d1
JB
7369}
7370
7371void ironlake_disable_drps(struct drm_device *dev)
7372{
7373 struct drm_i915_private *dev_priv = dev->dev_private;
7648fa99 7374 u16 rgvswctl = I915_READ16(MEMSWCTL);
f97108d1
JB
7375
7376 /* Ack interrupts, disable EFC interrupt */
7377 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7378 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7379 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7380 I915_WRITE(DEIIR, DE_PCU_EVENT);
7381 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7382
7383 /* Go back to the starting frequency */
7648fa99 7384 ironlake_set_drps(dev, dev_priv->fstart);
f97108d1
JB
7385 msleep(1);
7386 rgvswctl |= MEMCTL_CMD_STS;
7387 I915_WRITE(MEMSWCTL, rgvswctl);
7388 msleep(1);
7389
7390}
7391
3b8d8d91
JB
7392void gen6_set_rps(struct drm_device *dev, u8 val)
7393{
7394 struct drm_i915_private *dev_priv = dev->dev_private;
7395 u32 swreq;
7396
7397 swreq = (val & 0x3ff) << 25;
7398 I915_WRITE(GEN6_RPNSWREQ, swreq);
7399}
7400
7401void gen6_disable_rps(struct drm_device *dev)
7402{
7403 struct drm_i915_private *dev_priv = dev->dev_private;
7404
7405 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7406 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7407 I915_WRITE(GEN6_PMIER, 0);
4912d041
BW
7408
7409 spin_lock_irq(&dev_priv->rps_lock);
7410 dev_priv->pm_iir = 0;
7411 spin_unlock_irq(&dev_priv->rps_lock);
7412
3b8d8d91
JB
7413 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7414}
7415
7648fa99
JB
7416static unsigned long intel_pxfreq(u32 vidfreq)
7417{
7418 unsigned long freq;
7419 int div = (vidfreq & 0x3f0000) >> 16;
7420 int post = (vidfreq & 0x3000) >> 12;
7421 int pre = (vidfreq & 0x7);
7422
7423 if (!pre)
7424 return 0;
7425
7426 freq = ((div * 133333) / ((1<<post) * pre));
7427
7428 return freq;
7429}
7430
7431void intel_init_emon(struct drm_device *dev)
7432{
7433 struct drm_i915_private *dev_priv = dev->dev_private;
7434 u32 lcfuse;
7435 u8 pxw[16];
7436 int i;
7437
7438 /* Disable to program */
7439 I915_WRITE(ECR, 0);
7440 POSTING_READ(ECR);
7441
7442 /* Program energy weights for various events */
7443 I915_WRITE(SDEW, 0x15040d00);
7444 I915_WRITE(CSIEW0, 0x007f0000);
7445 I915_WRITE(CSIEW1, 0x1e220004);
7446 I915_WRITE(CSIEW2, 0x04000004);
7447
7448 for (i = 0; i < 5; i++)
7449 I915_WRITE(PEW + (i * 4), 0);
7450 for (i = 0; i < 3; i++)
7451 I915_WRITE(DEW + (i * 4), 0);
7452
7453 /* Program P-state weights to account for frequency power adjustment */
7454 for (i = 0; i < 16; i++) {
7455 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7456 unsigned long freq = intel_pxfreq(pxvidfreq);
7457 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7458 PXVFREQ_PX_SHIFT;
7459 unsigned long val;
7460
7461 val = vid * vid;
7462 val *= (freq / 1000);
7463 val *= 255;
7464 val /= (127*127*900);
7465 if (val > 0xff)
7466 DRM_ERROR("bad pxval: %ld\n", val);
7467 pxw[i] = val;
7468 }
7469 /* Render standby states get 0 weight */
7470 pxw[14] = 0;
7471 pxw[15] = 0;
7472
7473 for (i = 0; i < 4; i++) {
7474 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7475 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7476 I915_WRITE(PXW + (i * 4), val);
7477 }
7478
7479 /* Adjust magic regs to magic values (more experimental results) */
7480 I915_WRITE(OGW0, 0);
7481 I915_WRITE(OGW1, 0);
7482 I915_WRITE(EG0, 0x00007f00);
7483 I915_WRITE(EG1, 0x0000000e);
7484 I915_WRITE(EG2, 0x000e0000);
7485 I915_WRITE(EG3, 0x68000300);
7486 I915_WRITE(EG4, 0x42000000);
7487 I915_WRITE(EG5, 0x00140031);
7488 I915_WRITE(EG6, 0);
7489 I915_WRITE(EG7, 0);
7490
7491 for (i = 0; i < 8; i++)
7492 I915_WRITE(PXWL + (i * 4), 0);
7493
7494 /* Enable PMON + select events */
7495 I915_WRITE(ECR, 0x80000019);
7496
7497 lcfuse = I915_READ(LCFUSE02);
7498
7499 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7500}
7501
3b8d8d91 7502void gen6_enable_rps(struct drm_i915_private *dev_priv)
8fd26859 7503{
a6044e23
JB
7504 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7505 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7df8721b 7506 u32 pcu_mbox, rc6_mask = 0;
a6044e23 7507 int cur_freq, min_freq, max_freq;
8fd26859
CW
7508 int i;
7509
7510 /* Here begins a magic sequence of register writes to enable
7511 * auto-downclocking.
7512 *
7513 * Perhaps there might be some value in exposing these to
7514 * userspace...
7515 */
7516 I915_WRITE(GEN6_RC_STATE, 0);
d1ebd816 7517 mutex_lock(&dev_priv->dev->struct_mutex);
fcca7926 7518 gen6_gt_force_wake_get(dev_priv);
8fd26859 7519
3b8d8d91 7520 /* disable the counters and set deterministic thresholds */
8fd26859
CW
7521 I915_WRITE(GEN6_RC_CONTROL, 0);
7522
7523 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7524 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7525 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7526 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7527 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7528
7529 for (i = 0; i < I915_NUM_RINGS; i++)
7530 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7531
7532 I915_WRITE(GEN6_RC_SLEEP, 0);
7533 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7534 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7535 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7536 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7537
7df8721b
JB
7538 if (i915_enable_rc6)
7539 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7540 GEN6_RC_CTL_RC6_ENABLE;
7541
8fd26859 7542 I915_WRITE(GEN6_RC_CONTROL,
7df8721b 7543 rc6_mask |
9c3d2f7f 7544 GEN6_RC_CTL_EI_MODE(1) |
8fd26859
CW
7545 GEN6_RC_CTL_HW_ENABLE);
7546
3b8d8d91 7547 I915_WRITE(GEN6_RPNSWREQ,
8fd26859
CW
7548 GEN6_FREQUENCY(10) |
7549 GEN6_OFFSET(0) |
7550 GEN6_AGGRESSIVE_TURBO);
7551 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7552 GEN6_FREQUENCY(12));
7553
7554 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7555 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7556 18 << 24 |
7557 6 << 16);
ccab5c82
JB
7558 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7559 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8fd26859 7560 I915_WRITE(GEN6_RP_UP_EI, 100000);
ccab5c82 7561 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8fd26859
CW
7562 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7563 I915_WRITE(GEN6_RP_CONTROL,
7564 GEN6_RP_MEDIA_TURBO |
7565 GEN6_RP_USE_NORMAL_FREQ |
7566 GEN6_RP_MEDIA_IS_GFX |
7567 GEN6_RP_ENABLE |
ccab5c82
JB
7568 GEN6_RP_UP_BUSY_AVG |
7569 GEN6_RP_DOWN_IDLE_CONT);
8fd26859
CW
7570
7571 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7572 500))
7573 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7574
7575 I915_WRITE(GEN6_PCODE_DATA, 0);
7576 I915_WRITE(GEN6_PCODE_MAILBOX,
7577 GEN6_PCODE_READY |
7578 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7579 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7580 500))
7581 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7582
a6044e23
JB
7583 min_freq = (rp_state_cap & 0xff0000) >> 16;
7584 max_freq = rp_state_cap & 0xff;
7585 cur_freq = (gt_perf_status & 0xff00) >> 8;
7586
7587 /* Check for overclock support */
7588 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7589 500))
7590 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7591 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7592 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7593 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7594 500))
7595 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7596 if (pcu_mbox & (1<<31)) { /* OC supported */
7597 max_freq = pcu_mbox & 0xff;
e281fcaa 7598 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
a6044e23
JB
7599 }
7600
7601 /* In units of 100MHz */
7602 dev_priv->max_delay = max_freq;
7603 dev_priv->min_delay = min_freq;
7604 dev_priv->cur_delay = cur_freq;
7605
8fd26859
CW
7606 /* requires MSI enabled */
7607 I915_WRITE(GEN6_PMIER,
7608 GEN6_PM_MBOX_EVENT |
7609 GEN6_PM_THERMAL_EVENT |
7610 GEN6_PM_RP_DOWN_TIMEOUT |
7611 GEN6_PM_RP_UP_THRESHOLD |
7612 GEN6_PM_RP_DOWN_THRESHOLD |
7613 GEN6_PM_RP_UP_EI_EXPIRED |
7614 GEN6_PM_RP_DOWN_EI_EXPIRED);
4912d041
BW
7615 spin_lock_irq(&dev_priv->rps_lock);
7616 WARN_ON(dev_priv->pm_iir != 0);
3b8d8d91 7617 I915_WRITE(GEN6_PMIMR, 0);
4912d041 7618 spin_unlock_irq(&dev_priv->rps_lock);
3b8d8d91
JB
7619 /* enable all PM interrupts */
7620 I915_WRITE(GEN6_PMINTRMSK, 0);
8fd26859 7621
fcca7926 7622 gen6_gt_force_wake_put(dev_priv);
d1ebd816 7623 mutex_unlock(&dev_priv->dev->struct_mutex);
8fd26859
CW
7624}
7625
23b2f8bb
JB
7626void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7627{
7628 int min_freq = 15;
7629 int gpu_freq, ia_freq, max_ia_freq;
7630 int scaling_factor = 180;
7631
7632 max_ia_freq = cpufreq_quick_get_max(0);
7633 /*
7634 * Default to measured freq if none found, PCU will ensure we don't go
7635 * over
7636 */
7637 if (!max_ia_freq)
7638 max_ia_freq = tsc_khz;
7639
7640 /* Convert from kHz to MHz */
7641 max_ia_freq /= 1000;
7642
7643 mutex_lock(&dev_priv->dev->struct_mutex);
7644
7645 /*
7646 * For each potential GPU frequency, load a ring frequency we'd like
7647 * to use for memory access. We do this by specifying the IA frequency
7648 * the PCU should use as a reference to determine the ring frequency.
7649 */
7650 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
7651 gpu_freq--) {
7652 int diff = dev_priv->max_delay - gpu_freq;
7653
7654 /*
7655 * For GPU frequencies less than 750MHz, just use the lowest
7656 * ring freq.
7657 */
7658 if (gpu_freq < min_freq)
7659 ia_freq = 800;
7660 else
7661 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7662 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7663
7664 I915_WRITE(GEN6_PCODE_DATA,
7665 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
7666 gpu_freq);
7667 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
7668 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7669 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
7670 GEN6_PCODE_READY) == 0, 10)) {
7671 DRM_ERROR("pcode write of freq table timed out\n");
7672 continue;
7673 }
7674 }
7675
7676 mutex_unlock(&dev_priv->dev->struct_mutex);
7677}
7678
6067aaea
JB
7679static void ironlake_init_clock_gating(struct drm_device *dev)
7680{
7681 struct drm_i915_private *dev_priv = dev->dev_private;
7682 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7683
7684 /* Required for FBC */
7685 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7686 DPFCRUNIT_CLOCK_GATE_DISABLE |
7687 DPFDUNIT_CLOCK_GATE_DISABLE;
7688 /* Required for CxSR */
7689 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7690
7691 I915_WRITE(PCH_3DCGDIS0,
7692 MARIUNIT_CLOCK_GATE_DISABLE |
7693 SVSMUNIT_CLOCK_GATE_DISABLE);
7694 I915_WRITE(PCH_3DCGDIS1,
7695 VFMUNIT_CLOCK_GATE_DISABLE);
7696
7697 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7698
6067aaea
JB
7699 /*
7700 * According to the spec the following bits should be set in
7701 * order to enable memory self-refresh
7702 * The bit 22/21 of 0x42004
7703 * The bit 5 of 0x42020
7704 * The bit 15 of 0x45000
7705 */
7706 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7707 (I915_READ(ILK_DISPLAY_CHICKEN2) |
7708 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7709 I915_WRITE(ILK_DSPCLK_GATE,
7710 (I915_READ(ILK_DSPCLK_GATE) |
7711 ILK_DPARB_CLK_GATE));
7712 I915_WRITE(DISP_ARB_CTL,
7713 (I915_READ(DISP_ARB_CTL) |
7714 DISP_FBC_WM_DIS));
7715 I915_WRITE(WM3_LP_ILK, 0);
7716 I915_WRITE(WM2_LP_ILK, 0);
7717 I915_WRITE(WM1_LP_ILK, 0);
7718
7719 /*
7720 * Based on the document from hardware guys the following bits
7721 * should be set unconditionally in order to enable FBC.
7722 * The bit 22 of 0x42000
7723 * The bit 22 of 0x42004
7724 * The bit 7,8,9 of 0x42020.
7725 */
7726 if (IS_IRONLAKE_M(dev)) {
7727 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7728 I915_READ(ILK_DISPLAY_CHICKEN1) |
7729 ILK_FBCQ_DIS);
7730 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7731 I915_READ(ILK_DISPLAY_CHICKEN2) |
7732 ILK_DPARB_GATE);
7733 I915_WRITE(ILK_DSPCLK_GATE,
7734 I915_READ(ILK_DSPCLK_GATE) |
7735 ILK_DPFC_DIS1 |
7736 ILK_DPFC_DIS2 |
7737 ILK_CLK_FBC);
7738 }
7739
7740 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7741 I915_READ(ILK_DISPLAY_CHICKEN2) |
7742 ILK_ELPIN_409_SELECT);
7743 I915_WRITE(_3D_CHICKEN2,
7744 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7745 _3D_CHICKEN2_WM_READ_PIPELINED);
8fd26859
CW
7746}
7747
6067aaea 7748static void gen6_init_clock_gating(struct drm_device *dev)
652c393a
JB
7749{
7750 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 7751 int pipe;
6067aaea
JB
7752 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7753
7754 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
652c393a 7755
6067aaea
JB
7756 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7757 I915_READ(ILK_DISPLAY_CHICKEN2) |
7758 ILK_ELPIN_409_SELECT);
8956c8bb 7759
6067aaea
JB
7760 I915_WRITE(WM3_LP_ILK, 0);
7761 I915_WRITE(WM2_LP_ILK, 0);
7762 I915_WRITE(WM1_LP_ILK, 0);
652c393a
JB
7763
7764 /*
6067aaea
JB
7765 * According to the spec the following bits should be
7766 * set in order to enable memory self-refresh and fbc:
7767 * The bit21 and bit22 of 0x42000
7768 * The bit21 and bit22 of 0x42004
7769 * The bit5 and bit7 of 0x42020
7770 * The bit14 of 0x70180
7771 * The bit14 of 0x71180
652c393a 7772 */
6067aaea
JB
7773 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7774 I915_READ(ILK_DISPLAY_CHICKEN1) |
7775 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7776 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7777 I915_READ(ILK_DISPLAY_CHICKEN2) |
7778 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7779 I915_WRITE(ILK_DSPCLK_GATE,
7780 I915_READ(ILK_DSPCLK_GATE) |
7781 ILK_DPARB_CLK_GATE |
7782 ILK_DPFD_CLK_GATE);
8956c8bb 7783
d74362c9 7784 for_each_pipe(pipe) {
6067aaea
JB
7785 I915_WRITE(DSPCNTR(pipe),
7786 I915_READ(DSPCNTR(pipe)) |
7787 DISPPLANE_TRICKLE_FEED_DISABLE);
d74362c9
KP
7788 intel_flush_display_plane(dev_priv, pipe);
7789 }
6067aaea 7790}
8956c8bb 7791
28963a3e
JB
7792static void ivybridge_init_clock_gating(struct drm_device *dev)
7793{
7794 struct drm_i915_private *dev_priv = dev->dev_private;
7795 int pipe;
7796 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7f8a8569 7797
28963a3e 7798 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
382b0936 7799
28963a3e
JB
7800 I915_WRITE(WM3_LP_ILK, 0);
7801 I915_WRITE(WM2_LP_ILK, 0);
7802 I915_WRITE(WM1_LP_ILK, 0);
de6e2eaf 7803
28963a3e 7804 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
67e92af0 7805
d74362c9 7806 for_each_pipe(pipe) {
28963a3e
JB
7807 I915_WRITE(DSPCNTR(pipe),
7808 I915_READ(DSPCNTR(pipe)) |
7809 DISPPLANE_TRICKLE_FEED_DISABLE);
d74362c9
KP
7810 intel_flush_display_plane(dev_priv, pipe);
7811 }
28963a3e
JB
7812}
7813
6067aaea
JB
7814static void g4x_init_clock_gating(struct drm_device *dev)
7815{
7816 struct drm_i915_private *dev_priv = dev->dev_private;
7817 uint32_t dspclk_gate;
8fd26859 7818
6067aaea
JB
7819 I915_WRITE(RENCLK_GATE_D1, 0);
7820 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7821 GS_UNIT_CLOCK_GATE_DISABLE |
7822 CL_UNIT_CLOCK_GATE_DISABLE);
7823 I915_WRITE(RAMCLK_GATE_D, 0);
7824 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7825 OVRUNIT_CLOCK_GATE_DISABLE |
7826 OVCUNIT_CLOCK_GATE_DISABLE;
7827 if (IS_GM45(dev))
7828 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7829 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7830}
1398261a 7831
6067aaea
JB
7832static void crestline_init_clock_gating(struct drm_device *dev)
7833{
7834 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 7835
6067aaea
JB
7836 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7837 I915_WRITE(RENCLK_GATE_D2, 0);
7838 I915_WRITE(DSPCLK_GATE_D, 0);
7839 I915_WRITE(RAMCLK_GATE_D, 0);
7840 I915_WRITE16(DEUC, 0);
7841}
652c393a 7842
6067aaea
JB
7843static void broadwater_init_clock_gating(struct drm_device *dev)
7844{
7845 struct drm_i915_private *dev_priv = dev->dev_private;
7846
7847 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7848 I965_RCC_CLOCK_GATE_DISABLE |
7849 I965_RCPB_CLOCK_GATE_DISABLE |
7850 I965_ISC_CLOCK_GATE_DISABLE |
7851 I965_FBC_CLOCK_GATE_DISABLE);
7852 I915_WRITE(RENCLK_GATE_D2, 0);
7853}
7854
7855static void gen3_init_clock_gating(struct drm_device *dev)
7856{
7857 struct drm_i915_private *dev_priv = dev->dev_private;
7858 u32 dstate = I915_READ(D_STATE);
7859
7860 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7861 DSTATE_DOT_CLOCK_GATING;
7862 I915_WRITE(D_STATE, dstate);
7863}
7864
7865static void i85x_init_clock_gating(struct drm_device *dev)
7866{
7867 struct drm_i915_private *dev_priv = dev->dev_private;
7868
7869 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7870}
7871
7872static void i830_init_clock_gating(struct drm_device *dev)
7873{
7874 struct drm_i915_private *dev_priv = dev->dev_private;
7875
7876 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
652c393a
JB
7877}
7878
645c62a5
JB
7879static void ibx_init_clock_gating(struct drm_device *dev)
7880{
7881 struct drm_i915_private *dev_priv = dev->dev_private;
7882
7883 /*
7884 * On Ibex Peak and Cougar Point, we need to disable clock
7885 * gating for the panel power sequencer or it will fail to
7886 * start up when no ports are active.
7887 */
7888 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7889}
7890
7891static void cpt_init_clock_gating(struct drm_device *dev)
7892{
7893 struct drm_i915_private *dev_priv = dev->dev_private;
3bcf603f 7894 int pipe;
645c62a5
JB
7895
7896 /*
7897 * On Ibex Peak and Cougar Point, we need to disable clock
7898 * gating for the panel power sequencer or it will fail to
7899 * start up when no ports are active.
7900 */
7901 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7902 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7903 DPLS_EDP_PPS_FIX_DIS);
3bcf603f
JB
7904 /* Without this, mode sets may fail silently on FDI */
7905 for_each_pipe(pipe)
7906 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
652c393a
JB
7907}
7908
ac668088 7909static void ironlake_teardown_rc6(struct drm_device *dev)
0cdab21f
CW
7910{
7911 struct drm_i915_private *dev_priv = dev->dev_private;
7912
7913 if (dev_priv->renderctx) {
ac668088
CW
7914 i915_gem_object_unpin(dev_priv->renderctx);
7915 drm_gem_object_unreference(&dev_priv->renderctx->base);
0cdab21f
CW
7916 dev_priv->renderctx = NULL;
7917 }
7918
7919 if (dev_priv->pwrctx) {
ac668088
CW
7920 i915_gem_object_unpin(dev_priv->pwrctx);
7921 drm_gem_object_unreference(&dev_priv->pwrctx->base);
7922 dev_priv->pwrctx = NULL;
7923 }
7924}
7925
7926static void ironlake_disable_rc6(struct drm_device *dev)
7927{
7928 struct drm_i915_private *dev_priv = dev->dev_private;
7929
7930 if (I915_READ(PWRCTXA)) {
7931 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7932 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
7933 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
7934 50);
0cdab21f
CW
7935
7936 I915_WRITE(PWRCTXA, 0);
7937 POSTING_READ(PWRCTXA);
7938
ac668088
CW
7939 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7940 POSTING_READ(RSTDBYCTL);
0cdab21f 7941 }
ac668088 7942
99507307 7943 ironlake_teardown_rc6(dev);
0cdab21f
CW
7944}
7945
ac668088 7946static int ironlake_setup_rc6(struct drm_device *dev)
d5bb081b
JB
7947{
7948 struct drm_i915_private *dev_priv = dev->dev_private;
7949
ac668088
CW
7950 if (dev_priv->renderctx == NULL)
7951 dev_priv->renderctx = intel_alloc_context_page(dev);
7952 if (!dev_priv->renderctx)
7953 return -ENOMEM;
7954
7955 if (dev_priv->pwrctx == NULL)
7956 dev_priv->pwrctx = intel_alloc_context_page(dev);
7957 if (!dev_priv->pwrctx) {
7958 ironlake_teardown_rc6(dev);
7959 return -ENOMEM;
7960 }
7961
7962 return 0;
d5bb081b
JB
7963}
7964
7965void ironlake_enable_rc6(struct drm_device *dev)
7966{
7967 struct drm_i915_private *dev_priv = dev->dev_private;
7968 int ret;
7969
ac668088
CW
7970 /* rc6 disabled by default due to repeated reports of hanging during
7971 * boot and resume.
7972 */
7973 if (!i915_enable_rc6)
7974 return;
7975
2c34b850 7976 mutex_lock(&dev->struct_mutex);
ac668088 7977 ret = ironlake_setup_rc6(dev);
2c34b850
BW
7978 if (ret) {
7979 mutex_unlock(&dev->struct_mutex);
ac668088 7980 return;
2c34b850 7981 }
ac668088 7982
d5bb081b
JB
7983 /*
7984 * GPU can automatically power down the render unit if given a page
7985 * to save state.
7986 */
7987 ret = BEGIN_LP_RING(6);
7988 if (ret) {
ac668088 7989 ironlake_teardown_rc6(dev);
2c34b850 7990 mutex_unlock(&dev->struct_mutex);
d5bb081b
JB
7991 return;
7992 }
ac668088 7993
d5bb081b
JB
7994 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
7995 OUT_RING(MI_SET_CONTEXT);
7996 OUT_RING(dev_priv->renderctx->gtt_offset |
7997 MI_MM_SPACE_GTT |
7998 MI_SAVE_EXT_STATE_EN |
7999 MI_RESTORE_EXT_STATE_EN |
8000 MI_RESTORE_INHIBIT);
8001 OUT_RING(MI_SUSPEND_FLUSH);
8002 OUT_RING(MI_NOOP);
8003 OUT_RING(MI_FLUSH);
8004 ADVANCE_LP_RING();
8005
4a246cfc
BW
8006 /*
8007 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8008 * does an implicit flush, combined with MI_FLUSH above, it should be
8009 * safe to assume that renderctx is valid
8010 */
8011 ret = intel_wait_ring_idle(LP_RING(dev_priv));
8012 if (ret) {
8013 DRM_ERROR("failed to enable ironlake power power savings\n");
8014 ironlake_teardown_rc6(dev);
8015 mutex_unlock(&dev->struct_mutex);
8016 return;
8017 }
8018
d5bb081b
JB
8019 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8020 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2c34b850 8021 mutex_unlock(&dev->struct_mutex);
d5bb081b
JB
8022}
8023
645c62a5
JB
8024void intel_init_clock_gating(struct drm_device *dev)
8025{
8026 struct drm_i915_private *dev_priv = dev->dev_private;
8027
8028 dev_priv->display.init_clock_gating(dev);
8029
8030 if (dev_priv->display.init_pch_clock_gating)
8031 dev_priv->display.init_pch_clock_gating(dev);
8032}
ac668088 8033
e70236a8
JB
8034/* Set up chip specific display functions */
8035static void intel_init_display(struct drm_device *dev)
8036{
8037 struct drm_i915_private *dev_priv = dev->dev_private;
8038
8039 /* We always want a DPMS function */
f564048e 8040 if (HAS_PCH_SPLIT(dev)) {
f2b115e6 8041 dev_priv->display.dpms = ironlake_crtc_dpms;
f564048e 8042 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
17638cd6 8043 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 8044 } else {
e70236a8 8045 dev_priv->display.dpms = i9xx_crtc_dpms;
f564048e 8046 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
17638cd6 8047 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 8048 }
e70236a8 8049
ee5382ae 8050 if (I915_HAS_FBC(dev)) {
9c04f015 8051 if (HAS_PCH_SPLIT(dev)) {
b52eb4dc
ZY
8052 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8053 dev_priv->display.enable_fbc = ironlake_enable_fbc;
8054 dev_priv->display.disable_fbc = ironlake_disable_fbc;
8055 } else if (IS_GM45(dev)) {
74dff282
JB
8056 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8057 dev_priv->display.enable_fbc = g4x_enable_fbc;
8058 dev_priv->display.disable_fbc = g4x_disable_fbc;
a6c45cf0 8059 } else if (IS_CRESTLINE(dev)) {
e70236a8
JB
8060 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8061 dev_priv->display.enable_fbc = i8xx_enable_fbc;
8062 dev_priv->display.disable_fbc = i8xx_disable_fbc;
8063 }
74dff282 8064 /* 855GM needs testing */
e70236a8
JB
8065 }
8066
8067 /* Returns the core display clock speed */
f2b115e6 8068 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
e70236a8
JB
8069 dev_priv->display.get_display_clock_speed =
8070 i945_get_display_clock_speed;
8071 else if (IS_I915G(dev))
8072 dev_priv->display.get_display_clock_speed =
8073 i915_get_display_clock_speed;
f2b115e6 8074 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
8075 dev_priv->display.get_display_clock_speed =
8076 i9xx_misc_get_display_clock_speed;
8077 else if (IS_I915GM(dev))
8078 dev_priv->display.get_display_clock_speed =
8079 i915gm_get_display_clock_speed;
8080 else if (IS_I865G(dev))
8081 dev_priv->display.get_display_clock_speed =
8082 i865_get_display_clock_speed;
f0f8a9ce 8083 else if (IS_I85X(dev))
e70236a8
JB
8084 dev_priv->display.get_display_clock_speed =
8085 i855_get_display_clock_speed;
8086 else /* 852, 830 */
8087 dev_priv->display.get_display_clock_speed =
8088 i830_get_display_clock_speed;
8089
8090 /* For FIFO watermark updates */
7f8a8569 8091 if (HAS_PCH_SPLIT(dev)) {
645c62a5
JB
8092 if (HAS_PCH_IBX(dev))
8093 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8094 else if (HAS_PCH_CPT(dev))
8095 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8096
f00a3ddf 8097 if (IS_GEN5(dev)) {
7f8a8569
ZW
8098 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8099 dev_priv->display.update_wm = ironlake_update_wm;
8100 else {
8101 DRM_DEBUG_KMS("Failed to get proper latency. "
8102 "Disable CxSR\n");
8103 dev_priv->display.update_wm = NULL;
1398261a 8104 }
674cf967 8105 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
6067aaea 8106 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
1398261a
YL
8107 } else if (IS_GEN6(dev)) {
8108 if (SNB_READ_WM0_LATENCY()) {
8109 dev_priv->display.update_wm = sandybridge_update_wm;
8110 } else {
8111 DRM_DEBUG_KMS("Failed to read display plane latency. "
8112 "Disable CxSR\n");
8113 dev_priv->display.update_wm = NULL;
7f8a8569 8114 }
674cf967 8115 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
6067aaea 8116 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
357555c0
JB
8117 } else if (IS_IVYBRIDGE(dev)) {
8118 /* FIXME: detect B0+ stepping and use auto training */
8119 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
fe100d4d
JB
8120 if (SNB_READ_WM0_LATENCY()) {
8121 dev_priv->display.update_wm = sandybridge_update_wm;
8122 } else {
8123 DRM_DEBUG_KMS("Failed to read display plane latency. "
8124 "Disable CxSR\n");
8125 dev_priv->display.update_wm = NULL;
8126 }
28963a3e 8127 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6067aaea 8128
7f8a8569
ZW
8129 } else
8130 dev_priv->display.update_wm = NULL;
8131 } else if (IS_PINEVIEW(dev)) {
d4294342 8132 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
95534263 8133 dev_priv->is_ddr3,
d4294342
ZY
8134 dev_priv->fsb_freq,
8135 dev_priv->mem_freq)) {
8136 DRM_INFO("failed to find known CxSR latency "
95534263 8137 "(found ddr%s fsb freq %d, mem freq %d), "
d4294342 8138 "disabling CxSR\n",
95534263 8139 (dev_priv->is_ddr3 == 1) ? "3": "2",
d4294342
ZY
8140 dev_priv->fsb_freq, dev_priv->mem_freq);
8141 /* Disable CxSR and never update its watermark again */
8142 pineview_disable_cxsr(dev);
8143 dev_priv->display.update_wm = NULL;
8144 } else
8145 dev_priv->display.update_wm = pineview_update_wm;
95e0ee92 8146 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6067aaea 8147 } else if (IS_G4X(dev)) {
e70236a8 8148 dev_priv->display.update_wm = g4x_update_wm;
6067aaea
JB
8149 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8150 } else if (IS_GEN4(dev)) {
e70236a8 8151 dev_priv->display.update_wm = i965_update_wm;
6067aaea
JB
8152 if (IS_CRESTLINE(dev))
8153 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8154 else if (IS_BROADWATER(dev))
8155 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8156 } else if (IS_GEN3(dev)) {
e70236a8
JB
8157 dev_priv->display.update_wm = i9xx_update_wm;
8158 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6067aaea
JB
8159 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8160 } else if (IS_I865G(dev)) {
8161 dev_priv->display.update_wm = i830_update_wm;
8162 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8163 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8f4695ed
AJ
8164 } else if (IS_I85X(dev)) {
8165 dev_priv->display.update_wm = i9xx_update_wm;
8166 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6067aaea 8167 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
e70236a8 8168 } else {
8f4695ed 8169 dev_priv->display.update_wm = i830_update_wm;
6067aaea 8170 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8f4695ed 8171 if (IS_845G(dev))
e70236a8
JB
8172 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8173 else
8174 dev_priv->display.get_fifo_size = i830_get_fifo_size;
e70236a8 8175 }
8c9f3aaf
JB
8176
8177 /* Default just returns -ENODEV to indicate unsupported */
8178 dev_priv->display.queue_flip = intel_default_queue_flip;
8179
8180 switch (INTEL_INFO(dev)->gen) {
8181 case 2:
8182 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8183 break;
8184
8185 case 3:
8186 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8187 break;
8188
8189 case 4:
8190 case 5:
8191 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8192 break;
8193
8194 case 6:
8195 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8196 break;
7c9017e5
JB
8197 case 7:
8198 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8199 break;
8c9f3aaf 8200 }
e70236a8
JB
8201}
8202
b690e96c
JB
8203/*
8204 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8205 * resume, or other times. This quirk makes sure that's the case for
8206 * affected systems.
8207 */
8208static void quirk_pipea_force (struct drm_device *dev)
8209{
8210 struct drm_i915_private *dev_priv = dev->dev_private;
8211
8212 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8213 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8214}
8215
435793df
KP
8216/*
8217 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8218 */
8219static void quirk_ssc_force_disable(struct drm_device *dev)
8220{
8221 struct drm_i915_private *dev_priv = dev->dev_private;
8222 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8223}
8224
b690e96c
JB
8225struct intel_quirk {
8226 int device;
8227 int subsystem_vendor;
8228 int subsystem_device;
8229 void (*hook)(struct drm_device *dev);
8230};
8231
8232struct intel_quirk intel_quirks[] = {
8233 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8234 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8235 /* HP Mini needs pipe A force quirk (LP: #322104) */
8236 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
8237
8238 /* Thinkpad R31 needs pipe A force quirk */
8239 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8240 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8241 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8242
8243 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8244 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
8245 /* ThinkPad X40 needs pipe A force quirk */
8246
8247 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8248 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8249
8250 /* 855 & before need to leave pipe A & dpll A up */
8251 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8252 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
8253
8254 /* Lenovo U160 cannot use SSC on LVDS */
8255 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
8256
8257 /* Sony Vaio Y cannot use SSC on LVDS */
8258 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
b690e96c
JB
8259};
8260
8261static void intel_init_quirks(struct drm_device *dev)
8262{
8263 struct pci_dev *d = dev->pdev;
8264 int i;
8265
8266 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8267 struct intel_quirk *q = &intel_quirks[i];
8268
8269 if (d->device == q->device &&
8270 (d->subsystem_vendor == q->subsystem_vendor ||
8271 q->subsystem_vendor == PCI_ANY_ID) &&
8272 (d->subsystem_device == q->subsystem_device ||
8273 q->subsystem_device == PCI_ANY_ID))
8274 q->hook(dev);
8275 }
8276}
8277
9cce37f4
JB
8278/* Disable the VGA plane that we never use */
8279static void i915_disable_vga(struct drm_device *dev)
8280{
8281 struct drm_i915_private *dev_priv = dev->dev_private;
8282 u8 sr1;
8283 u32 vga_reg;
8284
8285 if (HAS_PCH_SPLIT(dev))
8286 vga_reg = CPU_VGACNTRL;
8287 else
8288 vga_reg = VGACNTRL;
8289
8290 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8291 outb(1, VGA_SR_INDEX);
8292 sr1 = inb(VGA_SR_DATA);
8293 outb(sr1 | 1<<5, VGA_SR_DATA);
8294 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8295 udelay(300);
8296
8297 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8298 POSTING_READ(vga_reg);
8299}
8300
79e53945
JB
8301void intel_modeset_init(struct drm_device *dev)
8302{
652c393a 8303 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
8304 int i;
8305
8306 drm_mode_config_init(dev);
8307
8308 dev->mode_config.min_width = 0;
8309 dev->mode_config.min_height = 0;
8310
8311 dev->mode_config.funcs = (void *)&intel_mode_funcs;
8312
b690e96c
JB
8313 intel_init_quirks(dev);
8314
e70236a8
JB
8315 intel_init_display(dev);
8316
a6c45cf0
CW
8317 if (IS_GEN2(dev)) {
8318 dev->mode_config.max_width = 2048;
8319 dev->mode_config.max_height = 2048;
8320 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
8321 dev->mode_config.max_width = 4096;
8322 dev->mode_config.max_height = 4096;
79e53945 8323 } else {
a6c45cf0
CW
8324 dev->mode_config.max_width = 8192;
8325 dev->mode_config.max_height = 8192;
79e53945 8326 }
35c3047a 8327 dev->mode_config.fb_base = dev->agp->base;
79e53945 8328
28c97730 8329 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 8330 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 8331
a3524f1b 8332 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945
JB
8333 intel_crtc_init(dev, i);
8334 }
8335
9cce37f4
JB
8336 /* Just disable it once at startup */
8337 i915_disable_vga(dev);
79e53945 8338 intel_setup_outputs(dev);
652c393a 8339
645c62a5 8340 intel_init_clock_gating(dev);
9cce37f4 8341
7648fa99 8342 if (IS_IRONLAKE_M(dev)) {
f97108d1 8343 ironlake_enable_drps(dev);
7648fa99
JB
8344 intel_init_emon(dev);
8345 }
f97108d1 8346
1c70c0ce 8347 if (IS_GEN6(dev) || IS_GEN7(dev)) {
3b8d8d91 8348 gen6_enable_rps(dev_priv);
23b2f8bb
JB
8349 gen6_update_ring_freq(dev_priv);
8350 }
3b8d8d91 8351
652c393a
JB
8352 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8353 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8354 (unsigned long)dev);
2c7111db
CW
8355}
8356
8357void intel_modeset_gem_init(struct drm_device *dev)
8358{
8359 if (IS_IRONLAKE_M(dev))
8360 ironlake_enable_rc6(dev);
02e792fb
DV
8361
8362 intel_setup_overlay(dev);
79e53945
JB
8363}
8364
8365void intel_modeset_cleanup(struct drm_device *dev)
8366{
652c393a
JB
8367 struct drm_i915_private *dev_priv = dev->dev_private;
8368 struct drm_crtc *crtc;
8369 struct intel_crtc *intel_crtc;
8370
f87ea761 8371 drm_kms_helper_poll_fini(dev);
652c393a
JB
8372 mutex_lock(&dev->struct_mutex);
8373
723bfd70
JB
8374 intel_unregister_dsm_handler();
8375
8376
652c393a
JB
8377 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8378 /* Skip inactive CRTCs */
8379 if (!crtc->fb)
8380 continue;
8381
8382 intel_crtc = to_intel_crtc(crtc);
3dec0095 8383 intel_increase_pllclock(crtc);
652c393a
JB
8384 }
8385
973d04f9 8386 intel_disable_fbc(dev);
e70236a8 8387
f97108d1
JB
8388 if (IS_IRONLAKE_M(dev))
8389 ironlake_disable_drps(dev);
1c70c0ce 8390 if (IS_GEN6(dev) || IS_GEN7(dev))
3b8d8d91 8391 gen6_disable_rps(dev);
f97108d1 8392
d5bb081b
JB
8393 if (IS_IRONLAKE_M(dev))
8394 ironlake_disable_rc6(dev);
0cdab21f 8395
69341a5e
KH
8396 mutex_unlock(&dev->struct_mutex);
8397
6c0d9350
DV
8398 /* Disable the irq before mode object teardown, for the irq might
8399 * enqueue unpin/hotplug work. */
8400 drm_irq_uninstall(dev);
8401 cancel_work_sync(&dev_priv->hotplug_work);
8402
1630fe75
CW
8403 /* flush any delayed tasks or pending work */
8404 flush_scheduled_work();
8405
3dec0095
DV
8406 /* Shut off idle work before the crtcs get freed. */
8407 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8408 intel_crtc = to_intel_crtc(crtc);
8409 del_timer_sync(&intel_crtc->idle_timer);
8410 }
8411 del_timer_sync(&dev_priv->idle_timer);
8412 cancel_work_sync(&dev_priv->idle_work);
8413
79e53945
JB
8414 drm_mode_config_cleanup(dev);
8415}
8416
f1c79df3
ZW
8417/*
8418 * Return which encoder is currently attached for connector.
8419 */
df0e9248 8420struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 8421{
df0e9248
CW
8422 return &intel_attached_encoder(connector)->base;
8423}
f1c79df3 8424
df0e9248
CW
8425void intel_connector_attach_encoder(struct intel_connector *connector,
8426 struct intel_encoder *encoder)
8427{
8428 connector->encoder = encoder;
8429 drm_mode_connector_attach_encoder(&connector->base,
8430 &encoder->base);
79e53945 8431}
28d52043
DA
8432
8433/*
8434 * set vga decode state - true == enable VGA decode
8435 */
8436int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8437{
8438 struct drm_i915_private *dev_priv = dev->dev_private;
8439 u16 gmch_ctrl;
8440
8441 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8442 if (state)
8443 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8444 else
8445 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8446 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8447 return 0;
8448}
c4a1d9e4
CW
8449
8450#ifdef CONFIG_DEBUG_FS
8451#include <linux/seq_file.h>
8452
8453struct intel_display_error_state {
8454 struct intel_cursor_error_state {
8455 u32 control;
8456 u32 position;
8457 u32 base;
8458 u32 size;
8459 } cursor[2];
8460
8461 struct intel_pipe_error_state {
8462 u32 conf;
8463 u32 source;
8464
8465 u32 htotal;
8466 u32 hblank;
8467 u32 hsync;
8468 u32 vtotal;
8469 u32 vblank;
8470 u32 vsync;
8471 } pipe[2];
8472
8473 struct intel_plane_error_state {
8474 u32 control;
8475 u32 stride;
8476 u32 size;
8477 u32 pos;
8478 u32 addr;
8479 u32 surface;
8480 u32 tile_offset;
8481 } plane[2];
8482};
8483
8484struct intel_display_error_state *
8485intel_display_capture_error_state(struct drm_device *dev)
8486{
8487 drm_i915_private_t *dev_priv = dev->dev_private;
8488 struct intel_display_error_state *error;
8489 int i;
8490
8491 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8492 if (error == NULL)
8493 return NULL;
8494
8495 for (i = 0; i < 2; i++) {
8496 error->cursor[i].control = I915_READ(CURCNTR(i));
8497 error->cursor[i].position = I915_READ(CURPOS(i));
8498 error->cursor[i].base = I915_READ(CURBASE(i));
8499
8500 error->plane[i].control = I915_READ(DSPCNTR(i));
8501 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8502 error->plane[i].size = I915_READ(DSPSIZE(i));
8503 error->plane[i].pos= I915_READ(DSPPOS(i));
8504 error->plane[i].addr = I915_READ(DSPADDR(i));
8505 if (INTEL_INFO(dev)->gen >= 4) {
8506 error->plane[i].surface = I915_READ(DSPSURF(i));
8507 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8508 }
8509
8510 error->pipe[i].conf = I915_READ(PIPECONF(i));
8511 error->pipe[i].source = I915_READ(PIPESRC(i));
8512 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8513 error->pipe[i].hblank = I915_READ(HBLANK(i));
8514 error->pipe[i].hsync = I915_READ(HSYNC(i));
8515 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8516 error->pipe[i].vblank = I915_READ(VBLANK(i));
8517 error->pipe[i].vsync = I915_READ(VSYNC(i));
8518 }
8519
8520 return error;
8521}
8522
8523void
8524intel_display_print_error_state(struct seq_file *m,
8525 struct drm_device *dev,
8526 struct intel_display_error_state *error)
8527{
8528 int i;
8529
8530 for (i = 0; i < 2; i++) {
8531 seq_printf(m, "Pipe [%d]:\n", i);
8532 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8533 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8534 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8535 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8536 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8537 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8538 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8539 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8540
8541 seq_printf(m, "Plane [%d]:\n", i);
8542 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8543 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8544 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8545 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8546 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8547 if (INTEL_INFO(dev)->gen >= 4) {
8548 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8549 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8550 }
8551
8552 seq_printf(m, "Cursor [%d]:\n", i);
8553 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8554 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8555 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8556 }
8557}
8558#endif