]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_dp.c
drm/i915: Finish any pending operations on the framebuffer before disabling
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
CommitLineData
a4fc5ed6
KP
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
5a0e3ad6 29#include <linux/slab.h>
2d1a8a48 30#include <linux/export.h>
a4fc5ed6
KP
31#include "drmP.h"
32#include "drm.h"
33#include "drm_crtc.h"
34#include "drm_crtc_helper.h"
35#include "intel_drv.h"
36#include "i915_drm.h"
37#include "i915_drv.h"
ab2c0672 38#include "drm_dp_helper.h"
a4fc5ed6 39
a2006cf5 40#define DP_RECEIVER_CAP_SIZE 0xf
a4fc5ed6
KP
41#define DP_LINK_STATUS_SIZE 6
42#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44#define DP_LINK_CONFIGURATION_SIZE 9
45
ea5b213a
CW
46struct intel_dp {
47 struct intel_encoder base;
a4fc5ed6
KP
48 uint32_t output_reg;
49 uint32_t DP;
50 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
a4fc5ed6 51 bool has_audio;
c3e5f67b 52 enum hdmi_force_audio force_audio;
e953fd7b 53 uint32_t color_range;
d2b996ac 54 int dpms_mode;
a4fc5ed6
KP
55 uint8_t link_bw;
56 uint8_t lane_count;
a2006cf5 57 uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
a4fc5ed6
KP
58 struct i2c_adapter adapter;
59 struct i2c_algo_dp_aux_data algo;
f0917379 60 bool is_pch_edp;
33a34e4e 61 uint8_t train_set[4];
f01eca2e
KP
62 int panel_power_up_delay;
63 int panel_power_down_delay;
64 int panel_power_cycle_delay;
65 int backlight_on_delay;
66 int backlight_off_delay;
d15456de 67 struct drm_display_mode *panel_fixed_mode; /* for eDP */
bd943159
KP
68 struct delayed_work panel_vdd_work;
69 bool want_panel_vdd;
a4fc5ed6
KP
70};
71
cfcb0fc9
JB
72/**
73 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
74 * @intel_dp: DP struct
75 *
76 * If a CPU or PCH DP output is attached to an eDP panel, this function
77 * will return true, and false otherwise.
78 */
79static bool is_edp(struct intel_dp *intel_dp)
80{
81 return intel_dp->base.type == INTEL_OUTPUT_EDP;
82}
83
84/**
85 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
86 * @intel_dp: DP struct
87 *
88 * Returns true if the given DP struct corresponds to a PCH DP port attached
89 * to an eDP panel, false otherwise. Helpful for determining whether we
90 * may need FDI resources for a given DP output or not.
91 */
92static bool is_pch_edp(struct intel_dp *intel_dp)
93{
94 return intel_dp->is_pch_edp;
95}
96
1c95822a
AJ
97/**
98 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
99 * @intel_dp: DP struct
100 *
101 * Returns true if the given DP struct corresponds to a CPU eDP port.
102 */
103static bool is_cpu_edp(struct intel_dp *intel_dp)
104{
105 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
106}
107
ea5b213a
CW
108static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
109{
4ef69c7a 110 return container_of(encoder, struct intel_dp, base.base);
ea5b213a 111}
a4fc5ed6 112
df0e9248
CW
113static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
114{
115 return container_of(intel_attached_encoder(connector),
116 struct intel_dp, base);
117}
118
814948ad
JB
119/**
120 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
121 * @encoder: DRM encoder
122 *
123 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
124 * by intel_display.c.
125 */
126bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
127{
128 struct intel_dp *intel_dp;
129
130 if (!encoder)
131 return false;
132
133 intel_dp = enc_to_intel_dp(encoder);
134
135 return is_pch_edp(intel_dp);
136}
137
33a34e4e
JB
138static void intel_dp_start_link_train(struct intel_dp *intel_dp);
139static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
ea5b213a 140static void intel_dp_link_down(struct intel_dp *intel_dp);
a4fc5ed6 141
32f9d658 142void
0206e353 143intel_edp_link_config(struct intel_encoder *intel_encoder,
ea5b213a 144 int *lane_num, int *link_bw)
32f9d658 145{
ea5b213a 146 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
32f9d658 147
ea5b213a
CW
148 *lane_num = intel_dp->lane_count;
149 if (intel_dp->link_bw == DP_LINK_BW_1_62)
32f9d658 150 *link_bw = 162000;
ea5b213a 151 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
32f9d658
ZW
152 *link_bw = 270000;
153}
154
a4fc5ed6 155static int
ea5b213a 156intel_dp_max_lane_count(struct intel_dp *intel_dp)
a4fc5ed6 157{
9a10f401
KP
158 int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
159 switch (max_lane_count) {
160 case 1: case 2: case 4:
161 break;
162 default:
163 max_lane_count = 4;
a4fc5ed6
KP
164 }
165 return max_lane_count;
166}
167
168static int
ea5b213a 169intel_dp_max_link_bw(struct intel_dp *intel_dp)
a4fc5ed6 170{
7183dc29 171 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
a4fc5ed6
KP
172
173 switch (max_link_bw) {
174 case DP_LINK_BW_1_62:
175 case DP_LINK_BW_2_7:
176 break;
177 default:
178 max_link_bw = DP_LINK_BW_1_62;
179 break;
180 }
181 return max_link_bw;
182}
183
184static int
185intel_dp_link_clock(uint8_t link_bw)
186{
187 if (link_bw == DP_LINK_BW_2_7)
188 return 270000;
189 else
190 return 162000;
191}
192
cd9dde44
AJ
193/*
194 * The units on the numbers in the next two are... bizarre. Examples will
195 * make it clearer; this one parallels an example in the eDP spec.
196 *
197 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
198 *
199 * 270000 * 1 * 8 / 10 == 216000
200 *
201 * The actual data capacity of that configuration is 2.16Gbit/s, so the
202 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
203 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
204 * 119000. At 18bpp that's 2142000 kilobits per second.
205 *
206 * Thus the strange-looking division by 10 in intel_dp_link_required, to
207 * get the result in decakilobits instead of kilobits.
208 */
209
a4fc5ed6 210static int
c898261c 211intel_dp_link_required(int pixel_clock, int bpp)
a4fc5ed6 212{
cd9dde44 213 return (pixel_clock * bpp + 9) / 10;
a4fc5ed6
KP
214}
215
fe27d53e
DA
216static int
217intel_dp_max_data_rate(int max_link_clock, int max_lanes)
218{
219 return (max_link_clock * max_lanes * 8) / 10;
220}
221
a4fc5ed6
KP
222static int
223intel_dp_mode_valid(struct drm_connector *connector,
224 struct drm_display_mode *mode)
225{
df0e9248 226 struct intel_dp *intel_dp = intel_attached_dp(connector);
ea5b213a
CW
227 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
228 int max_lanes = intel_dp_max_lane_count(intel_dp);
3b5c78a3 229 int max_rate, mode_rate;
a4fc5ed6 230
d15456de
KP
231 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
232 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
7de56f43
ZY
233 return MODE_PANEL;
234
d15456de 235 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
7de56f43
ZY
236 return MODE_PANEL;
237 }
238
c898261c 239 mode_rate = intel_dp_link_required(mode->clock, 24);
3b5c78a3
AJ
240 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
241
242 if (mode_rate > max_rate) {
c898261c 243 mode_rate = intel_dp_link_required(mode->clock, 18);
3b5c78a3
AJ
244 if (mode_rate > max_rate)
245 return MODE_CLOCK_HIGH;
246 else
247 mode->private_flags |= INTEL_MODE_DP_FORCE_6BPC;
248 }
a4fc5ed6
KP
249
250 if (mode->clock < 10000)
251 return MODE_CLOCK_LOW;
252
253 return MODE_OK;
254}
255
256static uint32_t
257pack_aux(uint8_t *src, int src_bytes)
258{
259 int i;
260 uint32_t v = 0;
261
262 if (src_bytes > 4)
263 src_bytes = 4;
264 for (i = 0; i < src_bytes; i++)
265 v |= ((uint32_t) src[i]) << ((3-i) * 8);
266 return v;
267}
268
269static void
270unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
271{
272 int i;
273 if (dst_bytes > 4)
274 dst_bytes = 4;
275 for (i = 0; i < dst_bytes; i++)
276 dst[i] = src >> ((3-i) * 8);
277}
278
fb0f8fbf
KP
279/* hrawclock is 1/4 the FSB frequency */
280static int
281intel_hrawclk(struct drm_device *dev)
282{
283 struct drm_i915_private *dev_priv = dev->dev_private;
284 uint32_t clkcfg;
285
286 clkcfg = I915_READ(CLKCFG);
287 switch (clkcfg & CLKCFG_FSB_MASK) {
288 case CLKCFG_FSB_400:
289 return 100;
290 case CLKCFG_FSB_533:
291 return 133;
292 case CLKCFG_FSB_667:
293 return 166;
294 case CLKCFG_FSB_800:
295 return 200;
296 case CLKCFG_FSB_1067:
297 return 266;
298 case CLKCFG_FSB_1333:
299 return 333;
300 /* these two are just a guess; one of them might be right */
301 case CLKCFG_FSB_1600:
302 case CLKCFG_FSB_1600_ALT:
303 return 400;
304 default:
305 return 133;
306 }
307}
308
ebf33b18
KP
309static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
310{
311 struct drm_device *dev = intel_dp->base.base.dev;
312 struct drm_i915_private *dev_priv = dev->dev_private;
313
314 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
315}
316
317static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
318{
319 struct drm_device *dev = intel_dp->base.base.dev;
320 struct drm_i915_private *dev_priv = dev->dev_private;
321
322 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
323}
324
9b984dae
KP
325static void
326intel_dp_check_edp(struct intel_dp *intel_dp)
327{
328 struct drm_device *dev = intel_dp->base.base.dev;
329 struct drm_i915_private *dev_priv = dev->dev_private;
ebf33b18 330
9b984dae
KP
331 if (!is_edp(intel_dp))
332 return;
ebf33b18 333 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
9b984dae
KP
334 WARN(1, "eDP powered off while attempting aux channel communication.\n");
335 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
ebf33b18 336 I915_READ(PCH_PP_STATUS),
9b984dae
KP
337 I915_READ(PCH_PP_CONTROL));
338 }
339}
340
a4fc5ed6 341static int
ea5b213a 342intel_dp_aux_ch(struct intel_dp *intel_dp,
a4fc5ed6
KP
343 uint8_t *send, int send_bytes,
344 uint8_t *recv, int recv_size)
345{
ea5b213a 346 uint32_t output_reg = intel_dp->output_reg;
4ef69c7a 347 struct drm_device *dev = intel_dp->base.base.dev;
a4fc5ed6
KP
348 struct drm_i915_private *dev_priv = dev->dev_private;
349 uint32_t ch_ctl = output_reg + 0x10;
350 uint32_t ch_data = ch_ctl + 4;
351 int i;
352 int recv_bytes;
a4fc5ed6 353 uint32_t status;
fb0f8fbf 354 uint32_t aux_clock_divider;
092945e1 355 int try, precharge = 5;
a4fc5ed6 356
9b984dae 357 intel_dp_check_edp(intel_dp);
a4fc5ed6 358 /* The clock divider is based off the hrawclk,
fb0f8fbf
KP
359 * and would like to run at 2MHz. So, take the
360 * hrawclk value and divide by 2 and use that
6176b8f9
JB
361 *
362 * Note that PCH attached eDP panels should use a 125MHz input
363 * clock divider.
a4fc5ed6 364 */
1c95822a 365 if (is_cpu_edp(intel_dp)) {
1a2eb460
KP
366 if (IS_GEN6(dev) || IS_GEN7(dev))
367 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
e3421a18
ZW
368 else
369 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
370 } else if (HAS_PCH_SPLIT(dev))
6919132e 371 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
5eb08b69
ZW
372 else
373 aux_clock_divider = intel_hrawclk(dev) / 2;
374
11bee43e
JB
375 /* Try to wait for any previous AUX channel activity */
376 for (try = 0; try < 3; try++) {
377 status = I915_READ(ch_ctl);
378 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
379 break;
380 msleep(1);
381 }
382
383 if (try == 3) {
384 WARN(1, "dp_aux_ch not started status 0x%08x\n",
385 I915_READ(ch_ctl));
4f7f7b7e
CW
386 return -EBUSY;
387 }
388
fb0f8fbf
KP
389 /* Must try at least 3 times according to DP spec */
390 for (try = 0; try < 5; try++) {
391 /* Load the send data into the aux channel data registers */
4f7f7b7e
CW
392 for (i = 0; i < send_bytes; i += 4)
393 I915_WRITE(ch_data + i,
394 pack_aux(send + i, send_bytes - i));
0206e353 395
fb0f8fbf 396 /* Send the command and wait for it to complete */
4f7f7b7e
CW
397 I915_WRITE(ch_ctl,
398 DP_AUX_CH_CTL_SEND_BUSY |
399 DP_AUX_CH_CTL_TIME_OUT_400us |
400 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
401 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
402 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
403 DP_AUX_CH_CTL_DONE |
404 DP_AUX_CH_CTL_TIME_OUT_ERROR |
405 DP_AUX_CH_CTL_RECEIVE_ERROR);
fb0f8fbf 406 for (;;) {
fb0f8fbf
KP
407 status = I915_READ(ch_ctl);
408 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
409 break;
4f7f7b7e 410 udelay(100);
fb0f8fbf 411 }
0206e353 412
fb0f8fbf 413 /* Clear done status and any errors */
4f7f7b7e
CW
414 I915_WRITE(ch_ctl,
415 status |
416 DP_AUX_CH_CTL_DONE |
417 DP_AUX_CH_CTL_TIME_OUT_ERROR |
418 DP_AUX_CH_CTL_RECEIVE_ERROR);
d7e96fea
AJ
419
420 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
421 DP_AUX_CH_CTL_RECEIVE_ERROR))
422 continue;
4f7f7b7e 423 if (status & DP_AUX_CH_CTL_DONE)
a4fc5ed6
KP
424 break;
425 }
426
a4fc5ed6 427 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1ae8c0a5 428 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
a5b3da54 429 return -EBUSY;
a4fc5ed6
KP
430 }
431
432 /* Check for timeout or receive error.
433 * Timeouts occur when the sink is not connected
434 */
a5b3da54 435 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1ae8c0a5 436 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
a5b3da54
KP
437 return -EIO;
438 }
1ae8c0a5
KP
439
440 /* Timeouts occur when the device isn't connected, so they're
441 * "normal" -- don't fill the kernel log with these */
a5b3da54 442 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
28c97730 443 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
a5b3da54 444 return -ETIMEDOUT;
a4fc5ed6
KP
445 }
446
447 /* Unload any bytes sent back from the other side */
448 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
449 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
a4fc5ed6
KP
450 if (recv_bytes > recv_size)
451 recv_bytes = recv_size;
0206e353 452
4f7f7b7e
CW
453 for (i = 0; i < recv_bytes; i += 4)
454 unpack_aux(I915_READ(ch_data + i),
455 recv + i, recv_bytes - i);
a4fc5ed6
KP
456
457 return recv_bytes;
458}
459
460/* Write data to the aux channel in native mode */
461static int
ea5b213a 462intel_dp_aux_native_write(struct intel_dp *intel_dp,
a4fc5ed6
KP
463 uint16_t address, uint8_t *send, int send_bytes)
464{
465 int ret;
466 uint8_t msg[20];
467 int msg_bytes;
468 uint8_t ack;
469
9b984dae 470 intel_dp_check_edp(intel_dp);
a4fc5ed6
KP
471 if (send_bytes > 16)
472 return -1;
473 msg[0] = AUX_NATIVE_WRITE << 4;
474 msg[1] = address >> 8;
eebc863e 475 msg[2] = address & 0xff;
a4fc5ed6
KP
476 msg[3] = send_bytes - 1;
477 memcpy(&msg[4], send, send_bytes);
478 msg_bytes = send_bytes + 4;
479 for (;;) {
ea5b213a 480 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
a4fc5ed6
KP
481 if (ret < 0)
482 return ret;
483 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
484 break;
485 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
486 udelay(100);
487 else
a5b3da54 488 return -EIO;
a4fc5ed6
KP
489 }
490 return send_bytes;
491}
492
493/* Write a single byte to the aux channel in native mode */
494static int
ea5b213a 495intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
a4fc5ed6
KP
496 uint16_t address, uint8_t byte)
497{
ea5b213a 498 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
a4fc5ed6
KP
499}
500
501/* read bytes from a native aux channel */
502static int
ea5b213a 503intel_dp_aux_native_read(struct intel_dp *intel_dp,
a4fc5ed6
KP
504 uint16_t address, uint8_t *recv, int recv_bytes)
505{
506 uint8_t msg[4];
507 int msg_bytes;
508 uint8_t reply[20];
509 int reply_bytes;
510 uint8_t ack;
511 int ret;
512
9b984dae 513 intel_dp_check_edp(intel_dp);
a4fc5ed6
KP
514 msg[0] = AUX_NATIVE_READ << 4;
515 msg[1] = address >> 8;
516 msg[2] = address & 0xff;
517 msg[3] = recv_bytes - 1;
518
519 msg_bytes = 4;
520 reply_bytes = recv_bytes + 1;
521
522 for (;;) {
ea5b213a 523 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
a4fc5ed6 524 reply, reply_bytes);
a5b3da54
KP
525 if (ret == 0)
526 return -EPROTO;
527 if (ret < 0)
a4fc5ed6
KP
528 return ret;
529 ack = reply[0];
530 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
531 memcpy(recv, reply + 1, ret - 1);
532 return ret - 1;
533 }
534 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
535 udelay(100);
536 else
a5b3da54 537 return -EIO;
a4fc5ed6
KP
538 }
539}
540
541static int
ab2c0672
DA
542intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
543 uint8_t write_byte, uint8_t *read_byte)
a4fc5ed6 544{
ab2c0672 545 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
ea5b213a
CW
546 struct intel_dp *intel_dp = container_of(adapter,
547 struct intel_dp,
548 adapter);
ab2c0672
DA
549 uint16_t address = algo_data->address;
550 uint8_t msg[5];
551 uint8_t reply[2];
8316f337 552 unsigned retry;
ab2c0672
DA
553 int msg_bytes;
554 int reply_bytes;
555 int ret;
556
9b984dae 557 intel_dp_check_edp(intel_dp);
ab2c0672
DA
558 /* Set up the command byte */
559 if (mode & MODE_I2C_READ)
560 msg[0] = AUX_I2C_READ << 4;
561 else
562 msg[0] = AUX_I2C_WRITE << 4;
563
564 if (!(mode & MODE_I2C_STOP))
565 msg[0] |= AUX_I2C_MOT << 4;
a4fc5ed6 566
ab2c0672
DA
567 msg[1] = address >> 8;
568 msg[2] = address;
569
570 switch (mode) {
571 case MODE_I2C_WRITE:
572 msg[3] = 0;
573 msg[4] = write_byte;
574 msg_bytes = 5;
575 reply_bytes = 1;
576 break;
577 case MODE_I2C_READ:
578 msg[3] = 0;
579 msg_bytes = 4;
580 reply_bytes = 2;
581 break;
582 default:
583 msg_bytes = 3;
584 reply_bytes = 1;
585 break;
586 }
587
8316f337
DF
588 for (retry = 0; retry < 5; retry++) {
589 ret = intel_dp_aux_ch(intel_dp,
590 msg, msg_bytes,
591 reply, reply_bytes);
ab2c0672 592 if (ret < 0) {
3ff99164 593 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
ab2c0672
DA
594 return ret;
595 }
8316f337
DF
596
597 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
598 case AUX_NATIVE_REPLY_ACK:
599 /* I2C-over-AUX Reply field is only valid
600 * when paired with AUX ACK.
601 */
602 break;
603 case AUX_NATIVE_REPLY_NACK:
604 DRM_DEBUG_KMS("aux_ch native nack\n");
605 return -EREMOTEIO;
606 case AUX_NATIVE_REPLY_DEFER:
607 udelay(100);
608 continue;
609 default:
610 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
611 reply[0]);
612 return -EREMOTEIO;
613 }
614
ab2c0672
DA
615 switch (reply[0] & AUX_I2C_REPLY_MASK) {
616 case AUX_I2C_REPLY_ACK:
617 if (mode == MODE_I2C_READ) {
618 *read_byte = reply[1];
619 }
620 return reply_bytes - 1;
621 case AUX_I2C_REPLY_NACK:
8316f337 622 DRM_DEBUG_KMS("aux_i2c nack\n");
ab2c0672
DA
623 return -EREMOTEIO;
624 case AUX_I2C_REPLY_DEFER:
8316f337 625 DRM_DEBUG_KMS("aux_i2c defer\n");
ab2c0672
DA
626 udelay(100);
627 break;
628 default:
8316f337 629 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
ab2c0672
DA
630 return -EREMOTEIO;
631 }
632 }
8316f337
DF
633
634 DRM_ERROR("too many retries, giving up\n");
635 return -EREMOTEIO;
a4fc5ed6
KP
636}
637
0b5c541b 638static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
bd943159 639static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
0b5c541b 640
a4fc5ed6 641static int
ea5b213a 642intel_dp_i2c_init(struct intel_dp *intel_dp,
55f78c43 643 struct intel_connector *intel_connector, const char *name)
a4fc5ed6 644{
0b5c541b
KP
645 int ret;
646
d54e9d28 647 DRM_DEBUG_KMS("i2c_init %s\n", name);
ea5b213a
CW
648 intel_dp->algo.running = false;
649 intel_dp->algo.address = 0;
650 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
651
0206e353 652 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
ea5b213a
CW
653 intel_dp->adapter.owner = THIS_MODULE;
654 intel_dp->adapter.class = I2C_CLASS_DDC;
0206e353 655 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
ea5b213a
CW
656 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
657 intel_dp->adapter.algo_data = &intel_dp->algo;
658 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
659
0b5c541b
KP
660 ironlake_edp_panel_vdd_on(intel_dp);
661 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
bd943159 662 ironlake_edp_panel_vdd_off(intel_dp, false);
0b5c541b 663 return ret;
a4fc5ed6
KP
664}
665
666static bool
667intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
668 struct drm_display_mode *adjusted_mode)
669{
0d3a1bee 670 struct drm_device *dev = encoder->dev;
ea5b213a 671 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
a4fc5ed6 672 int lane_count, clock;
ea5b213a
CW
673 int max_lane_count = intel_dp_max_lane_count(intel_dp);
674 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
c898261c 675 int bpp = mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
a4fc5ed6
KP
676 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
677
d15456de
KP
678 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
679 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
1d8e1c75
CW
680 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
681 mode, adjusted_mode);
0d3a1bee
ZY
682 /*
683 * the mode->clock is used to calculate the Data&Link M/N
684 * of the pipe. For the eDP the fixed clock should be used.
685 */
d15456de 686 mode->clock = intel_dp->panel_fixed_mode->clock;
0d3a1bee
ZY
687 }
688
a4fc5ed6
KP
689 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
690 for (clock = 0; clock <= max_clock; clock++) {
fe27d53e 691 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
a4fc5ed6 692
c898261c 693 if (intel_dp_link_required(mode->clock, bpp)
885a5fb5 694 <= link_avail) {
ea5b213a
CW
695 intel_dp->link_bw = bws[clock];
696 intel_dp->lane_count = lane_count;
697 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
28c97730
ZY
698 DRM_DEBUG_KMS("Display port link bw %02x lane "
699 "count %d clock %d\n",
ea5b213a 700 intel_dp->link_bw, intel_dp->lane_count,
a4fc5ed6
KP
701 adjusted_mode->clock);
702 return true;
703 }
704 }
705 }
fe27d53e 706
a4fc5ed6
KP
707 return false;
708}
709
710struct intel_dp_m_n {
711 uint32_t tu;
712 uint32_t gmch_m;
713 uint32_t gmch_n;
714 uint32_t link_m;
715 uint32_t link_n;
716};
717
718static void
719intel_reduce_ratio(uint32_t *num, uint32_t *den)
720{
721 while (*num > 0xffffff || *den > 0xffffff) {
722 *num >>= 1;
723 *den >>= 1;
724 }
725}
726
727static void
36e83a18 728intel_dp_compute_m_n(int bpp,
a4fc5ed6
KP
729 int nlanes,
730 int pixel_clock,
731 int link_clock,
732 struct intel_dp_m_n *m_n)
733{
734 m_n->tu = 64;
36e83a18 735 m_n->gmch_m = (pixel_clock * bpp) >> 3;
a4fc5ed6
KP
736 m_n->gmch_n = link_clock * nlanes;
737 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
738 m_n->link_m = pixel_clock;
739 m_n->link_n = link_clock;
740 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
741}
742
743void
744intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
745 struct drm_display_mode *adjusted_mode)
746{
747 struct drm_device *dev = crtc->dev;
748 struct drm_mode_config *mode_config = &dev->mode_config;
55f78c43 749 struct drm_encoder *encoder;
a4fc5ed6
KP
750 struct drm_i915_private *dev_priv = dev->dev_private;
751 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
858fa035 752 int lane_count = 4;
a4fc5ed6 753 struct intel_dp_m_n m_n;
9db4a9c7 754 int pipe = intel_crtc->pipe;
a4fc5ed6
KP
755
756 /*
21d40d37 757 * Find the lane count in the intel_encoder private
a4fc5ed6 758 */
55f78c43 759 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
ea5b213a 760 struct intel_dp *intel_dp;
a4fc5ed6 761
d8201ab6 762 if (encoder->crtc != crtc)
a4fc5ed6
KP
763 continue;
764
ea5b213a 765 intel_dp = enc_to_intel_dp(encoder);
9a10f401
KP
766 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
767 intel_dp->base.type == INTEL_OUTPUT_EDP)
768 {
ea5b213a 769 lane_count = intel_dp->lane_count;
51190667 770 break;
a4fc5ed6
KP
771 }
772 }
773
774 /*
775 * Compute the GMCH and Link ratios. The '3' here is
776 * the number of bytes_per_pixel post-LUT, which we always
777 * set up for 8-bits of R/G/B, or 3 bytes total.
778 */
858fa035 779 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
a4fc5ed6
KP
780 mode->clock, adjusted_mode->clock, &m_n);
781
c619eed4 782 if (HAS_PCH_SPLIT(dev)) {
9db4a9c7
JB
783 I915_WRITE(TRANSDATA_M1(pipe),
784 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
785 m_n.gmch_m);
786 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
787 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
788 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
a4fc5ed6 789 } else {
9db4a9c7
JB
790 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
791 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
792 m_n.gmch_m);
793 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
794 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
795 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
a4fc5ed6
KP
796 }
797}
798
f01eca2e
KP
799static void ironlake_edp_pll_on(struct drm_encoder *encoder);
800static void ironlake_edp_pll_off(struct drm_encoder *encoder);
801
a4fc5ed6
KP
802static void
803intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
804 struct drm_display_mode *adjusted_mode)
805{
e3421a18 806 struct drm_device *dev = encoder->dev;
417e822d 807 struct drm_i915_private *dev_priv = dev->dev_private;
ea5b213a 808 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4ef69c7a 809 struct drm_crtc *crtc = intel_dp->base.base.crtc;
a4fc5ed6
KP
810 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
811
f01eca2e
KP
812 /* Turn on the eDP PLL if needed */
813 if (is_edp(intel_dp)) {
814 if (!is_pch_edp(intel_dp))
815 ironlake_edp_pll_on(encoder);
816 else
817 ironlake_edp_pll_off(encoder);
818 }
819
417e822d 820 /*
1a2eb460 821 * There are four kinds of DP registers:
417e822d
KP
822 *
823 * IBX PCH
1a2eb460
KP
824 * SNB CPU
825 * IVB CPU
417e822d
KP
826 * CPT PCH
827 *
828 * IBX PCH and CPU are the same for almost everything,
829 * except that the CPU DP PLL is configured in this
830 * register
831 *
832 * CPT PCH is quite different, having many bits moved
833 * to the TRANS_DP_CTL register instead. That
834 * configuration happens (oddly) in ironlake_pch_enable
835 */
9c9e7927 836
417e822d
KP
837 /* Preserve the BIOS-computed detected bit. This is
838 * supposed to be read-only.
839 */
840 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
841 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
a4fc5ed6 842
417e822d
KP
843 /* Handle DP bits in common between all three register formats */
844
845 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
a4fc5ed6 846
ea5b213a 847 switch (intel_dp->lane_count) {
a4fc5ed6 848 case 1:
ea5b213a 849 intel_dp->DP |= DP_PORT_WIDTH_1;
a4fc5ed6
KP
850 break;
851 case 2:
ea5b213a 852 intel_dp->DP |= DP_PORT_WIDTH_2;
a4fc5ed6
KP
853 break;
854 case 4:
ea5b213a 855 intel_dp->DP |= DP_PORT_WIDTH_4;
a4fc5ed6
KP
856 break;
857 }
e0dac65e
WF
858 if (intel_dp->has_audio) {
859 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
860 pipe_name(intel_crtc->pipe));
ea5b213a 861 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
e0dac65e
WF
862 intel_write_eld(encoder, adjusted_mode);
863 }
ea5b213a
CW
864 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
865 intel_dp->link_configuration[0] = intel_dp->link_bw;
866 intel_dp->link_configuration[1] = intel_dp->lane_count;
a2cab1b2 867 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
a4fc5ed6 868 /*
9962c925 869 * Check for DPCD version > 1.1 and enhanced framing support
a4fc5ed6 870 */
7183dc29
JB
871 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
872 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
ea5b213a 873 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
a4fc5ed6
KP
874 }
875
417e822d 876 /* Split out the IBX/CPU vs CPT settings */
32f9d658 877
1a2eb460
KP
878 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
879 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
880 intel_dp->DP |= DP_SYNC_HS_HIGH;
881 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
882 intel_dp->DP |= DP_SYNC_VS_HIGH;
883 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
884
885 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
886 intel_dp->DP |= DP_ENHANCED_FRAMING;
887
888 intel_dp->DP |= intel_crtc->pipe << 29;
889
890 /* don't miss out required setting for eDP */
891 intel_dp->DP |= DP_PLL_ENABLE;
892 if (adjusted_mode->clock < 200000)
893 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
894 else
895 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
896 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
417e822d
KP
897 intel_dp->DP |= intel_dp->color_range;
898
899 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
900 intel_dp->DP |= DP_SYNC_HS_HIGH;
901 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
902 intel_dp->DP |= DP_SYNC_VS_HIGH;
903 intel_dp->DP |= DP_LINK_TRAIN_OFF;
904
905 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
906 intel_dp->DP |= DP_ENHANCED_FRAMING;
907
908 if (intel_crtc->pipe == 1)
909 intel_dp->DP |= DP_PIPEB_SELECT;
910
911 if (is_cpu_edp(intel_dp)) {
912 /* don't miss out required setting for eDP */
913 intel_dp->DP |= DP_PLL_ENABLE;
914 if (adjusted_mode->clock < 200000)
915 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
916 else
917 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
918 }
919 } else {
920 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
32f9d658 921 }
a4fc5ed6
KP
922}
923
99ea7127
KP
924#define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
925#define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
926
927#define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
928#define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
929
930#define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
931#define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
932
933static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
934 u32 mask,
935 u32 value)
bd943159 936{
99ea7127
KP
937 struct drm_device *dev = intel_dp->base.base.dev;
938 struct drm_i915_private *dev_priv = dev->dev_private;
32ce697c 939
99ea7127
KP
940 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
941 mask, value,
942 I915_READ(PCH_PP_STATUS),
943 I915_READ(PCH_PP_CONTROL));
32ce697c 944
99ea7127
KP
945 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
946 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
947 I915_READ(PCH_PP_STATUS),
948 I915_READ(PCH_PP_CONTROL));
32ce697c 949 }
99ea7127 950}
32ce697c 951
99ea7127
KP
952static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
953{
954 DRM_DEBUG_KMS("Wait for panel power on\n");
955 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
bd943159
KP
956}
957
99ea7127
KP
958static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
959{
960 DRM_DEBUG_KMS("Wait for panel power off time\n");
961 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
962}
963
964static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
965{
966 DRM_DEBUG_KMS("Wait for panel power cycle\n");
967 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
968}
969
970
832dd3c1
KP
971/* Read the current pp_control value, unlocking the register if it
972 * is locked
973 */
974
975static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
976{
977 u32 control = I915_READ(PCH_PP_CONTROL);
978
979 control &= ~PANEL_UNLOCK_MASK;
980 control |= PANEL_UNLOCK_REGS;
981 return control;
bd943159
KP
982}
983
5d613501
JB
984static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
985{
986 struct drm_device *dev = intel_dp->base.base.dev;
987 struct drm_i915_private *dev_priv = dev->dev_private;
988 u32 pp;
989
97af61f5
KP
990 if (!is_edp(intel_dp))
991 return;
f01eca2e 992 DRM_DEBUG_KMS("Turn eDP VDD on\n");
5d613501 993
bd943159
KP
994 WARN(intel_dp->want_panel_vdd,
995 "eDP VDD already requested on\n");
996
997 intel_dp->want_panel_vdd = true;
99ea7127 998
bd943159
KP
999 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1000 DRM_DEBUG_KMS("eDP VDD already on\n");
1001 return;
1002 }
1003
99ea7127
KP
1004 if (!ironlake_edp_have_panel_power(intel_dp))
1005 ironlake_wait_panel_power_cycle(intel_dp);
1006
832dd3c1 1007 pp = ironlake_get_pp_control(dev_priv);
5d613501
JB
1008 pp |= EDP_FORCE_VDD;
1009 I915_WRITE(PCH_PP_CONTROL, pp);
1010 POSTING_READ(PCH_PP_CONTROL);
f01eca2e
KP
1011 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1012 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
ebf33b18
KP
1013
1014 /*
1015 * If the panel wasn't on, delay before accessing aux channel
1016 */
1017 if (!ironlake_edp_have_panel_power(intel_dp)) {
bd943159 1018 DRM_DEBUG_KMS("eDP was not running\n");
f01eca2e 1019 msleep(intel_dp->panel_power_up_delay);
f01eca2e 1020 }
5d613501
JB
1021}
1022
bd943159 1023static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
5d613501
JB
1024{
1025 struct drm_device *dev = intel_dp->base.base.dev;
1026 struct drm_i915_private *dev_priv = dev->dev_private;
1027 u32 pp;
1028
bd943159 1029 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
832dd3c1 1030 pp = ironlake_get_pp_control(dev_priv);
bd943159
KP
1031 pp &= ~EDP_FORCE_VDD;
1032 I915_WRITE(PCH_PP_CONTROL, pp);
1033 POSTING_READ(PCH_PP_CONTROL);
1034
1035 /* Make sure sequencer is idle before allowing subsequent activity */
1036 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1037 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
99ea7127
KP
1038
1039 msleep(intel_dp->panel_power_down_delay);
bd943159
KP
1040 }
1041}
5d613501 1042
bd943159
KP
1043static void ironlake_panel_vdd_work(struct work_struct *__work)
1044{
1045 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1046 struct intel_dp, panel_vdd_work);
1047 struct drm_device *dev = intel_dp->base.base.dev;
1048
627f7675 1049 mutex_lock(&dev->mode_config.mutex);
bd943159 1050 ironlake_panel_vdd_off_sync(intel_dp);
627f7675 1051 mutex_unlock(&dev->mode_config.mutex);
bd943159
KP
1052}
1053
1054static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1055{
97af61f5
KP
1056 if (!is_edp(intel_dp))
1057 return;
5d613501 1058
bd943159
KP
1059 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1060 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
f2e8b18a 1061
bd943159
KP
1062 intel_dp->want_panel_vdd = false;
1063
1064 if (sync) {
1065 ironlake_panel_vdd_off_sync(intel_dp);
1066 } else {
1067 /*
1068 * Queue the timer to fire a long
1069 * time from now (relative to the power down delay)
1070 * to keep the panel power up across a sequence of operations
1071 */
1072 schedule_delayed_work(&intel_dp->panel_vdd_work,
1073 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1074 }
5d613501
JB
1075}
1076
86a3073e 1077static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
9934c132 1078{
01cb9ea6 1079 struct drm_device *dev = intel_dp->base.base.dev;
9934c132 1080 struct drm_i915_private *dev_priv = dev->dev_private;
99ea7127 1081 u32 pp;
9934c132 1082
97af61f5 1083 if (!is_edp(intel_dp))
bd943159 1084 return;
99ea7127
KP
1085
1086 DRM_DEBUG_KMS("Turn eDP power on\n");
1087
1088 if (ironlake_edp_have_panel_power(intel_dp)) {
1089 DRM_DEBUG_KMS("eDP power already on\n");
7d639f35 1090 return;
99ea7127 1091 }
9934c132 1092
99ea7127 1093 ironlake_wait_panel_power_cycle(intel_dp);
37c6c9b0 1094
99ea7127 1095 pp = ironlake_get_pp_control(dev_priv);
05ce1a49
KP
1096 if (IS_GEN5(dev)) {
1097 /* ILK workaround: disable reset around power sequence */
1098 pp &= ~PANEL_POWER_RESET;
1099 I915_WRITE(PCH_PP_CONTROL, pp);
1100 POSTING_READ(PCH_PP_CONTROL);
1101 }
37c6c9b0 1102
1c0ae80a 1103 pp |= POWER_TARGET_ON;
99ea7127
KP
1104 if (!IS_GEN5(dev))
1105 pp |= PANEL_POWER_RESET;
1106
9934c132 1107 I915_WRITE(PCH_PP_CONTROL, pp);
01cb9ea6 1108 POSTING_READ(PCH_PP_CONTROL);
9934c132 1109
99ea7127 1110 ironlake_wait_panel_on(intel_dp);
9934c132 1111
05ce1a49
KP
1112 if (IS_GEN5(dev)) {
1113 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1114 I915_WRITE(PCH_PP_CONTROL, pp);
1115 POSTING_READ(PCH_PP_CONTROL);
1116 }
9934c132
JB
1117}
1118
99ea7127 1119static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
9934c132 1120{
99ea7127 1121 struct drm_device *dev = intel_dp->base.base.dev;
9934c132 1122 struct drm_i915_private *dev_priv = dev->dev_private;
99ea7127 1123 u32 pp;
9934c132 1124
97af61f5
KP
1125 if (!is_edp(intel_dp))
1126 return;
37c6c9b0 1127
99ea7127 1128 DRM_DEBUG_KMS("Turn eDP power off\n");
37c6c9b0 1129
99ea7127 1130 WARN(intel_dp->want_panel_vdd, "Cannot turn power off while VDD is on\n");
37c6c9b0 1131
99ea7127
KP
1132 pp = ironlake_get_pp_control(dev_priv);
1133 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1134 I915_WRITE(PCH_PP_CONTROL, pp);
1135 POSTING_READ(PCH_PP_CONTROL);
9934c132 1136
99ea7127 1137 ironlake_wait_panel_off(intel_dp);
9934c132
JB
1138}
1139
86a3073e 1140static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
32f9d658 1141{
f01eca2e 1142 struct drm_device *dev = intel_dp->base.base.dev;
32f9d658
ZW
1143 struct drm_i915_private *dev_priv = dev->dev_private;
1144 u32 pp;
1145
f01eca2e
KP
1146 if (!is_edp(intel_dp))
1147 return;
1148
28c97730 1149 DRM_DEBUG_KMS("\n");
01cb9ea6
JB
1150 /*
1151 * If we enable the backlight right away following a panel power
1152 * on, we may see slight flicker as the panel syncs with the eDP
1153 * link. So delay a bit to make sure the image is solid before
1154 * allowing it to appear.
1155 */
f01eca2e 1156 msleep(intel_dp->backlight_on_delay);
832dd3c1 1157 pp = ironlake_get_pp_control(dev_priv);
32f9d658
ZW
1158 pp |= EDP_BLC_ENABLE;
1159 I915_WRITE(PCH_PP_CONTROL, pp);
f01eca2e 1160 POSTING_READ(PCH_PP_CONTROL);
32f9d658
ZW
1161}
1162
86a3073e 1163static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
32f9d658 1164{
f01eca2e 1165 struct drm_device *dev = intel_dp->base.base.dev;
32f9d658
ZW
1166 struct drm_i915_private *dev_priv = dev->dev_private;
1167 u32 pp;
1168
f01eca2e
KP
1169 if (!is_edp(intel_dp))
1170 return;
1171
28c97730 1172 DRM_DEBUG_KMS("\n");
832dd3c1 1173 pp = ironlake_get_pp_control(dev_priv);
32f9d658
ZW
1174 pp &= ~EDP_BLC_ENABLE;
1175 I915_WRITE(PCH_PP_CONTROL, pp);
f01eca2e
KP
1176 POSTING_READ(PCH_PP_CONTROL);
1177 msleep(intel_dp->backlight_off_delay);
32f9d658 1178}
a4fc5ed6 1179
d240f20f
JB
1180static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1181{
1182 struct drm_device *dev = encoder->dev;
1183 struct drm_i915_private *dev_priv = dev->dev_private;
1184 u32 dpa_ctl;
1185
1186 DRM_DEBUG_KMS("\n");
1187 dpa_ctl = I915_READ(DP_A);
298b0b39 1188 dpa_ctl |= DP_PLL_ENABLE;
d240f20f 1189 I915_WRITE(DP_A, dpa_ctl);
298b0b39
JB
1190 POSTING_READ(DP_A);
1191 udelay(200);
d240f20f
JB
1192}
1193
1194static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1195{
1196 struct drm_device *dev = encoder->dev;
1197 struct drm_i915_private *dev_priv = dev->dev_private;
1198 u32 dpa_ctl;
1199
1200 dpa_ctl = I915_READ(DP_A);
298b0b39 1201 dpa_ctl &= ~DP_PLL_ENABLE;
d240f20f 1202 I915_WRITE(DP_A, dpa_ctl);
1af5fa1b 1203 POSTING_READ(DP_A);
d240f20f
JB
1204 udelay(200);
1205}
1206
c7ad3810
JB
1207/* If the sink supports it, try to set the power state appropriately */
1208static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1209{
1210 int ret, i;
1211
1212 /* Should have a valid DPCD by this point */
1213 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1214 return;
1215
1216 if (mode != DRM_MODE_DPMS_ON) {
1217 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1218 DP_SET_POWER_D3);
1219 if (ret != 1)
1220 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1221 } else {
1222 /*
1223 * When turning on, we need to retry for 1ms to give the sink
1224 * time to wake up.
1225 */
1226 for (i = 0; i < 3; i++) {
1227 ret = intel_dp_aux_native_write_1(intel_dp,
1228 DP_SET_POWER,
1229 DP_SET_POWER_D0);
1230 if (ret == 1)
1231 break;
1232 msleep(1);
1233 }
1234 }
1235}
1236
d240f20f
JB
1237static void intel_dp_prepare(struct drm_encoder *encoder)
1238{
1239 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
d240f20f 1240
21264c63
KP
1241 ironlake_edp_backlight_off(intel_dp);
1242 ironlake_edp_panel_off(intel_dp);
1243
c7ad3810 1244 /* Wake up the sink first */
f58ff854 1245 ironlake_edp_panel_vdd_on(intel_dp);
c7ad3810 1246 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
21264c63 1247 intel_dp_link_down(intel_dp);
bd943159 1248 ironlake_edp_panel_vdd_off(intel_dp, false);
c7ad3810 1249
f01eca2e
KP
1250 /* Make sure the panel is off before trying to
1251 * change the mode
1252 */
d240f20f
JB
1253}
1254
1255static void intel_dp_commit(struct drm_encoder *encoder)
1256{
1257 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
d4270e57
JB
1258 struct drm_device *dev = encoder->dev;
1259 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
5d613501 1260
97af61f5 1261 ironlake_edp_panel_vdd_on(intel_dp);
f01eca2e 1262 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
33a34e4e 1263 intel_dp_start_link_train(intel_dp);
97af61f5 1264 ironlake_edp_panel_on(intel_dp);
bd943159 1265 ironlake_edp_panel_vdd_off(intel_dp, true);
33a34e4e 1266 intel_dp_complete_link_train(intel_dp);
f01eca2e 1267 ironlake_edp_backlight_on(intel_dp);
d2b996ac
KP
1268
1269 intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
d4270e57
JB
1270
1271 if (HAS_PCH_CPT(dev))
1272 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
d240f20f
JB
1273}
1274
a4fc5ed6
KP
1275static void
1276intel_dp_dpms(struct drm_encoder *encoder, int mode)
1277{
ea5b213a 1278 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
55f78c43 1279 struct drm_device *dev = encoder->dev;
a4fc5ed6 1280 struct drm_i915_private *dev_priv = dev->dev_private;
ea5b213a 1281 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
a4fc5ed6
KP
1282
1283 if (mode != DRM_MODE_DPMS_ON) {
21264c63
KP
1284 ironlake_edp_backlight_off(intel_dp);
1285 ironlake_edp_panel_off(intel_dp);
1286
245e2708 1287 ironlake_edp_panel_vdd_on(intel_dp);
c7ad3810 1288 intel_dp_sink_dpms(intel_dp, mode);
736085bc 1289 intel_dp_link_down(intel_dp);
bd943159 1290 ironlake_edp_panel_vdd_off(intel_dp, false);
21264c63
KP
1291
1292 if (is_cpu_edp(intel_dp))
1293 ironlake_edp_pll_off(encoder);
a4fc5ed6 1294 } else {
21264c63
KP
1295 if (is_cpu_edp(intel_dp))
1296 ironlake_edp_pll_on(encoder);
1297
97af61f5 1298 ironlake_edp_panel_vdd_on(intel_dp);
c7ad3810 1299 intel_dp_sink_dpms(intel_dp, mode);
32f9d658 1300 if (!(dp_reg & DP_PORT_EN)) {
01cb9ea6 1301 intel_dp_start_link_train(intel_dp);
97af61f5 1302 ironlake_edp_panel_on(intel_dp);
bd943159 1303 ironlake_edp_panel_vdd_off(intel_dp, true);
33a34e4e 1304 intel_dp_complete_link_train(intel_dp);
bee7eb2d 1305 } else
bd943159
KP
1306 ironlake_edp_panel_vdd_off(intel_dp, false);
1307 ironlake_edp_backlight_on(intel_dp);
a4fc5ed6 1308 }
d2b996ac 1309 intel_dp->dpms_mode = mode;
a4fc5ed6
KP
1310}
1311
1312/*
df0c237d
JB
1313 * Native read with retry for link status and receiver capability reads for
1314 * cases where the sink may still be asleep.
a4fc5ed6
KP
1315 */
1316static bool
df0c237d
JB
1317intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1318 uint8_t *recv, int recv_bytes)
a4fc5ed6 1319{
61da5fab
JB
1320 int ret, i;
1321
df0c237d
JB
1322 /*
1323 * Sinks are *supposed* to come up within 1ms from an off state,
1324 * but we're also supposed to retry 3 times per the spec.
1325 */
61da5fab 1326 for (i = 0; i < 3; i++) {
df0c237d
JB
1327 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1328 recv_bytes);
1329 if (ret == recv_bytes)
61da5fab
JB
1330 return true;
1331 msleep(1);
1332 }
a4fc5ed6 1333
61da5fab 1334 return false;
a4fc5ed6
KP
1335}
1336
1337/*
1338 * Fetch AUX CH registers 0x202 - 0x207 which contain
1339 * link status information
1340 */
1341static bool
93f62dad 1342intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
a4fc5ed6 1343{
df0c237d
JB
1344 return intel_dp_aux_native_read_retry(intel_dp,
1345 DP_LANE0_1_STATUS,
93f62dad 1346 link_status,
df0c237d 1347 DP_LINK_STATUS_SIZE);
a4fc5ed6
KP
1348}
1349
1350static uint8_t
1351intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1352 int r)
1353{
1354 return link_status[r - DP_LANE0_1_STATUS];
1355}
1356
a4fc5ed6 1357static uint8_t
93f62dad 1358intel_get_adjust_request_voltage(uint8_t adjust_request[2],
a4fc5ed6
KP
1359 int lane)
1360{
a4fc5ed6
KP
1361 int s = ((lane & 1) ?
1362 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1363 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
93f62dad 1364 uint8_t l = adjust_request[lane>>1];
a4fc5ed6
KP
1365
1366 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1367}
1368
1369static uint8_t
93f62dad 1370intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
a4fc5ed6
KP
1371 int lane)
1372{
a4fc5ed6
KP
1373 int s = ((lane & 1) ?
1374 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1375 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
93f62dad 1376 uint8_t l = adjust_request[lane>>1];
a4fc5ed6
KP
1377
1378 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1379}
1380
1381
1382#if 0
1383static char *voltage_names[] = {
1384 "0.4V", "0.6V", "0.8V", "1.2V"
1385};
1386static char *pre_emph_names[] = {
1387 "0dB", "3.5dB", "6dB", "9.5dB"
1388};
1389static char *link_train_names[] = {
1390 "pattern 1", "pattern 2", "idle", "off"
1391};
1392#endif
1393
1394/*
1395 * These are source-specific values; current Intel hardware supports
1396 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1397 */
a4fc5ed6
KP
1398
1399static uint8_t
1a2eb460 1400intel_dp_voltage_max(struct intel_dp *intel_dp)
a4fc5ed6 1401{
1a2eb460
KP
1402 struct drm_device *dev = intel_dp->base.base.dev;
1403
1404 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1405 return DP_TRAIN_VOLTAGE_SWING_800;
1406 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1407 return DP_TRAIN_VOLTAGE_SWING_1200;
1408 else
1409 return DP_TRAIN_VOLTAGE_SWING_800;
1410}
1411
1412static uint8_t
1413intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1414{
1415 struct drm_device *dev = intel_dp->base.base.dev;
1416
1417 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1418 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1419 case DP_TRAIN_VOLTAGE_SWING_400:
1420 return DP_TRAIN_PRE_EMPHASIS_6;
1421 case DP_TRAIN_VOLTAGE_SWING_600:
1422 case DP_TRAIN_VOLTAGE_SWING_800:
1423 return DP_TRAIN_PRE_EMPHASIS_3_5;
1424 default:
1425 return DP_TRAIN_PRE_EMPHASIS_0;
1426 }
1427 } else {
1428 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1429 case DP_TRAIN_VOLTAGE_SWING_400:
1430 return DP_TRAIN_PRE_EMPHASIS_6;
1431 case DP_TRAIN_VOLTAGE_SWING_600:
1432 return DP_TRAIN_PRE_EMPHASIS_6;
1433 case DP_TRAIN_VOLTAGE_SWING_800:
1434 return DP_TRAIN_PRE_EMPHASIS_3_5;
1435 case DP_TRAIN_VOLTAGE_SWING_1200:
1436 default:
1437 return DP_TRAIN_PRE_EMPHASIS_0;
1438 }
a4fc5ed6
KP
1439 }
1440}
1441
1442static void
93f62dad 1443intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
a4fc5ed6
KP
1444{
1445 uint8_t v = 0;
1446 uint8_t p = 0;
1447 int lane;
93f62dad 1448 uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1a2eb460
KP
1449 uint8_t voltage_max;
1450 uint8_t preemph_max;
a4fc5ed6 1451
33a34e4e 1452 for (lane = 0; lane < intel_dp->lane_count; lane++) {
93f62dad
KP
1453 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1454 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
a4fc5ed6
KP
1455
1456 if (this_v > v)
1457 v = this_v;
1458 if (this_p > p)
1459 p = this_p;
1460 }
1461
1a2eb460 1462 voltage_max = intel_dp_voltage_max(intel_dp);
417e822d
KP
1463 if (v >= voltage_max)
1464 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
a4fc5ed6 1465
1a2eb460
KP
1466 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1467 if (p >= preemph_max)
1468 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
a4fc5ed6
KP
1469
1470 for (lane = 0; lane < 4; lane++)
33a34e4e 1471 intel_dp->train_set[lane] = v | p;
a4fc5ed6
KP
1472}
1473
1474static uint32_t
93f62dad 1475intel_dp_signal_levels(uint8_t train_set)
a4fc5ed6 1476{
3cf2efb1 1477 uint32_t signal_levels = 0;
a4fc5ed6 1478
3cf2efb1 1479 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
a4fc5ed6
KP
1480 case DP_TRAIN_VOLTAGE_SWING_400:
1481 default:
1482 signal_levels |= DP_VOLTAGE_0_4;
1483 break;
1484 case DP_TRAIN_VOLTAGE_SWING_600:
1485 signal_levels |= DP_VOLTAGE_0_6;
1486 break;
1487 case DP_TRAIN_VOLTAGE_SWING_800:
1488 signal_levels |= DP_VOLTAGE_0_8;
1489 break;
1490 case DP_TRAIN_VOLTAGE_SWING_1200:
1491 signal_levels |= DP_VOLTAGE_1_2;
1492 break;
1493 }
3cf2efb1 1494 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
a4fc5ed6
KP
1495 case DP_TRAIN_PRE_EMPHASIS_0:
1496 default:
1497 signal_levels |= DP_PRE_EMPHASIS_0;
1498 break;
1499 case DP_TRAIN_PRE_EMPHASIS_3_5:
1500 signal_levels |= DP_PRE_EMPHASIS_3_5;
1501 break;
1502 case DP_TRAIN_PRE_EMPHASIS_6:
1503 signal_levels |= DP_PRE_EMPHASIS_6;
1504 break;
1505 case DP_TRAIN_PRE_EMPHASIS_9_5:
1506 signal_levels |= DP_PRE_EMPHASIS_9_5;
1507 break;
1508 }
1509 return signal_levels;
1510}
1511
e3421a18
ZW
1512/* Gen6's DP voltage swing and pre-emphasis control */
1513static uint32_t
1514intel_gen6_edp_signal_levels(uint8_t train_set)
1515{
3c5a62b5
YL
1516 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1517 DP_TRAIN_PRE_EMPHASIS_MASK);
1518 switch (signal_levels) {
e3421a18 1519 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
3c5a62b5
YL
1520 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1521 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1522 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1523 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
e3421a18 1524 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
3c5a62b5
YL
1525 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1526 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
e3421a18 1527 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
3c5a62b5
YL
1528 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1529 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
e3421a18 1530 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
3c5a62b5
YL
1531 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1532 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
e3421a18 1533 default:
3c5a62b5
YL
1534 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1535 "0x%x\n", signal_levels);
1536 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
e3421a18
ZW
1537 }
1538}
1539
1a2eb460
KP
1540/* Gen7's DP voltage swing and pre-emphasis control */
1541static uint32_t
1542intel_gen7_edp_signal_levels(uint8_t train_set)
1543{
1544 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1545 DP_TRAIN_PRE_EMPHASIS_MASK);
1546 switch (signal_levels) {
1547 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1548 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1549 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1550 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1551 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1552 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1553
1554 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1555 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1556 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1557 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1558
1559 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1560 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1561 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1562 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1563
1564 default:
1565 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1566 "0x%x\n", signal_levels);
1567 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1568 }
1569}
1570
a4fc5ed6
KP
1571static uint8_t
1572intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1573 int lane)
1574{
a4fc5ed6 1575 int s = (lane & 1) * 4;
93f62dad 1576 uint8_t l = link_status[lane>>1];
a4fc5ed6
KP
1577
1578 return (l >> s) & 0xf;
1579}
1580
1581/* Check for clock recovery is done on all channels */
1582static bool
1583intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1584{
1585 int lane;
1586 uint8_t lane_status;
1587
1588 for (lane = 0; lane < lane_count; lane++) {
1589 lane_status = intel_get_lane_status(link_status, lane);
1590 if ((lane_status & DP_LANE_CR_DONE) == 0)
1591 return false;
1592 }
1593 return true;
1594}
1595
1596/* Check to see if channel eq is done on all channels */
1597#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1598 DP_LANE_CHANNEL_EQ_DONE|\
1599 DP_LANE_SYMBOL_LOCKED)
1600static bool
93f62dad 1601intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
a4fc5ed6
KP
1602{
1603 uint8_t lane_align;
1604 uint8_t lane_status;
1605 int lane;
1606
93f62dad 1607 lane_align = intel_dp_link_status(link_status,
a4fc5ed6
KP
1608 DP_LANE_ALIGN_STATUS_UPDATED);
1609 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1610 return false;
33a34e4e 1611 for (lane = 0; lane < intel_dp->lane_count; lane++) {
93f62dad 1612 lane_status = intel_get_lane_status(link_status, lane);
a4fc5ed6
KP
1613 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1614 return false;
1615 }
1616 return true;
1617}
1618
1619static bool
ea5b213a 1620intel_dp_set_link_train(struct intel_dp *intel_dp,
a4fc5ed6 1621 uint32_t dp_reg_value,
58e10eb9 1622 uint8_t dp_train_pat)
a4fc5ed6 1623{
4ef69c7a 1624 struct drm_device *dev = intel_dp->base.base.dev;
a4fc5ed6 1625 struct drm_i915_private *dev_priv = dev->dev_private;
a4fc5ed6
KP
1626 int ret;
1627
ea5b213a
CW
1628 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1629 POSTING_READ(intel_dp->output_reg);
a4fc5ed6 1630
ea5b213a 1631 intel_dp_aux_native_write_1(intel_dp,
a4fc5ed6
KP
1632 DP_TRAINING_PATTERN_SET,
1633 dp_train_pat);
1634
ea5b213a 1635 ret = intel_dp_aux_native_write(intel_dp,
58e10eb9 1636 DP_TRAINING_LANE0_SET,
b34f1f09
KP
1637 intel_dp->train_set,
1638 intel_dp->lane_count);
1639 if (ret != intel_dp->lane_count)
a4fc5ed6
KP
1640 return false;
1641
1642 return true;
1643}
1644
33a34e4e 1645/* Enable corresponding port and start training pattern 1 */
a4fc5ed6 1646static void
33a34e4e 1647intel_dp_start_link_train(struct intel_dp *intel_dp)
a4fc5ed6 1648{
4ef69c7a 1649 struct drm_device *dev = intel_dp->base.base.dev;
a4fc5ed6 1650 struct drm_i915_private *dev_priv = dev->dev_private;
58e10eb9 1651 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
a4fc5ed6
KP
1652 int i;
1653 uint8_t voltage;
1654 bool clock_recovery = false;
cdb0e95b 1655 int voltage_tries, loop_tries;
e3421a18 1656 u32 reg;
ea5b213a 1657 uint32_t DP = intel_dp->DP;
a4fc5ed6 1658
e8519464
AJ
1659 /*
1660 * On CPT we have to enable the port in training pattern 1, which
1661 * will happen below in intel_dp_set_link_train. Otherwise, enable
1662 * the port and wait for it to become active.
1663 */
1664 if (!HAS_PCH_CPT(dev)) {
1665 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1666 POSTING_READ(intel_dp->output_reg);
1667 intel_wait_for_vblank(dev, intel_crtc->pipe);
1668 }
a4fc5ed6 1669
3cf2efb1
CW
1670 /* Write the link configuration data */
1671 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1672 intel_dp->link_configuration,
1673 DP_LINK_CONFIGURATION_SIZE);
a4fc5ed6
KP
1674
1675 DP |= DP_PORT_EN;
1a2eb460
KP
1676
1677 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
e3421a18
ZW
1678 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1679 else
1680 DP &= ~DP_LINK_TRAIN_MASK;
33a34e4e 1681 memset(intel_dp->train_set, 0, 4);
a4fc5ed6 1682 voltage = 0xff;
cdb0e95b
KP
1683 voltage_tries = 0;
1684 loop_tries = 0;
a4fc5ed6
KP
1685 clock_recovery = false;
1686 for (;;) {
33a34e4e 1687 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
93f62dad 1688 uint8_t link_status[DP_LINK_STATUS_SIZE];
e3421a18 1689 uint32_t signal_levels;
417e822d 1690
1a2eb460
KP
1691
1692 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1693 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1694 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1695 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
33a34e4e 1696 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
e3421a18
ZW
1697 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1698 } else {
93f62dad
KP
1699 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1700 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
e3421a18
ZW
1701 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1702 }
a4fc5ed6 1703
1a2eb460 1704 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
e3421a18
ZW
1705 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1706 else
1707 reg = DP | DP_LINK_TRAIN_PAT_1;
1708
ea5b213a 1709 if (!intel_dp_set_link_train(intel_dp, reg,
81055854
AJ
1710 DP_TRAINING_PATTERN_1 |
1711 DP_LINK_SCRAMBLING_DISABLE))
a4fc5ed6 1712 break;
a4fc5ed6
KP
1713 /* Set training pattern 1 */
1714
3cf2efb1 1715 udelay(100);
93f62dad
KP
1716 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1717 DRM_ERROR("failed to get link status\n");
a4fc5ed6 1718 break;
93f62dad 1719 }
a4fc5ed6 1720
93f62dad
KP
1721 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1722 DRM_DEBUG_KMS("clock recovery OK\n");
3cf2efb1
CW
1723 clock_recovery = true;
1724 break;
1725 }
1726
1727 /* Check to see if we've tried the max voltage */
1728 for (i = 0; i < intel_dp->lane_count; i++)
1729 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
a4fc5ed6 1730 break;
cdb0e95b
KP
1731 if (i == intel_dp->lane_count) {
1732 ++loop_tries;
1733 if (loop_tries == 5) {
1734 DRM_DEBUG_KMS("too many full retries, give up\n");
1735 break;
1736 }
1737 memset(intel_dp->train_set, 0, 4);
1738 voltage_tries = 0;
1739 continue;
1740 }
a4fc5ed6 1741
3cf2efb1
CW
1742 /* Check to see if we've tried the same voltage 5 times */
1743 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
cdb0e95b
KP
1744 ++voltage_tries;
1745 if (voltage_tries == 5) {
1746 DRM_DEBUG_KMS("too many voltage retries, give up\n");
a4fc5ed6 1747 break;
cdb0e95b 1748 }
3cf2efb1 1749 } else
cdb0e95b 1750 voltage_tries = 0;
3cf2efb1 1751 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
a4fc5ed6 1752
3cf2efb1 1753 /* Compute new intel_dp->train_set as requested by target */
93f62dad 1754 intel_get_adjust_train(intel_dp, link_status);
a4fc5ed6
KP
1755 }
1756
33a34e4e
JB
1757 intel_dp->DP = DP;
1758}
1759
1760static void
1761intel_dp_complete_link_train(struct intel_dp *intel_dp)
1762{
4ef69c7a 1763 struct drm_device *dev = intel_dp->base.base.dev;
33a34e4e
JB
1764 struct drm_i915_private *dev_priv = dev->dev_private;
1765 bool channel_eq = false;
37f80975 1766 int tries, cr_tries;
33a34e4e
JB
1767 u32 reg;
1768 uint32_t DP = intel_dp->DP;
1769
a4fc5ed6
KP
1770 /* channel equalization */
1771 tries = 0;
37f80975 1772 cr_tries = 0;
a4fc5ed6
KP
1773 channel_eq = false;
1774 for (;;) {
33a34e4e 1775 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
e3421a18 1776 uint32_t signal_levels;
93f62dad 1777 uint8_t link_status[DP_LINK_STATUS_SIZE];
e3421a18 1778
37f80975
JB
1779 if (cr_tries > 5) {
1780 DRM_ERROR("failed to train DP, aborting\n");
1781 intel_dp_link_down(intel_dp);
1782 break;
1783 }
1784
1a2eb460
KP
1785 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1786 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1787 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1788 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
33a34e4e 1789 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
e3421a18
ZW
1790 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1791 } else {
93f62dad 1792 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
e3421a18
ZW
1793 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1794 }
1795
1a2eb460 1796 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
e3421a18
ZW
1797 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1798 else
1799 reg = DP | DP_LINK_TRAIN_PAT_2;
a4fc5ed6
KP
1800
1801 /* channel eq pattern */
ea5b213a 1802 if (!intel_dp_set_link_train(intel_dp, reg,
81055854
AJ
1803 DP_TRAINING_PATTERN_2 |
1804 DP_LINK_SCRAMBLING_DISABLE))
a4fc5ed6
KP
1805 break;
1806
3cf2efb1 1807 udelay(400);
93f62dad 1808 if (!intel_dp_get_link_status(intel_dp, link_status))
a4fc5ed6 1809 break;
a4fc5ed6 1810
37f80975 1811 /* Make sure clock is still ok */
93f62dad 1812 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
37f80975
JB
1813 intel_dp_start_link_train(intel_dp);
1814 cr_tries++;
1815 continue;
1816 }
1817
93f62dad 1818 if (intel_channel_eq_ok(intel_dp, link_status)) {
3cf2efb1
CW
1819 channel_eq = true;
1820 break;
1821 }
a4fc5ed6 1822
37f80975
JB
1823 /* Try 5 times, then try clock recovery if that fails */
1824 if (tries > 5) {
1825 intel_dp_link_down(intel_dp);
1826 intel_dp_start_link_train(intel_dp);
1827 tries = 0;
1828 cr_tries++;
1829 continue;
1830 }
a4fc5ed6 1831
3cf2efb1 1832 /* Compute new intel_dp->train_set as requested by target */
93f62dad 1833 intel_get_adjust_train(intel_dp, link_status);
3cf2efb1 1834 ++tries;
869184a6 1835 }
3cf2efb1 1836
1a2eb460 1837 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
e3421a18
ZW
1838 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1839 else
1840 reg = DP | DP_LINK_TRAIN_OFF;
1841
ea5b213a
CW
1842 I915_WRITE(intel_dp->output_reg, reg);
1843 POSTING_READ(intel_dp->output_reg);
1844 intel_dp_aux_native_write_1(intel_dp,
a4fc5ed6
KP
1845 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1846}
1847
1848static void
ea5b213a 1849intel_dp_link_down(struct intel_dp *intel_dp)
a4fc5ed6 1850{
4ef69c7a 1851 struct drm_device *dev = intel_dp->base.base.dev;
a4fc5ed6 1852 struct drm_i915_private *dev_priv = dev->dev_private;
ea5b213a 1853 uint32_t DP = intel_dp->DP;
a4fc5ed6 1854
1b39d6f3
CW
1855 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1856 return;
1857
28c97730 1858 DRM_DEBUG_KMS("\n");
32f9d658 1859
cfcb0fc9 1860 if (is_edp(intel_dp)) {
32f9d658 1861 DP &= ~DP_PLL_ENABLE;
ea5b213a
CW
1862 I915_WRITE(intel_dp->output_reg, DP);
1863 POSTING_READ(intel_dp->output_reg);
32f9d658
ZW
1864 udelay(100);
1865 }
1866
1a2eb460 1867 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
e3421a18 1868 DP &= ~DP_LINK_TRAIN_MASK_CPT;
ea5b213a 1869 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
e3421a18
ZW
1870 } else {
1871 DP &= ~DP_LINK_TRAIN_MASK;
ea5b213a 1872 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
e3421a18 1873 }
fe255d00 1874 POSTING_READ(intel_dp->output_reg);
5eb08b69 1875
fe255d00 1876 msleep(17);
5eb08b69 1877
417e822d 1878 if (is_edp(intel_dp)) {
1a2eb460 1879 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
417e822d
KP
1880 DP |= DP_LINK_TRAIN_OFF_CPT;
1881 else
1882 DP |= DP_LINK_TRAIN_OFF;
1883 }
5bddd17f 1884
1b39d6f3
CW
1885 if (!HAS_PCH_CPT(dev) &&
1886 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
31acbcc4
CW
1887 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1888
5bddd17f
EA
1889 /* Hardware workaround: leaving our transcoder select
1890 * set to transcoder B while it's off will prevent the
1891 * corresponding HDMI output on transcoder A.
1892 *
1893 * Combine this with another hardware workaround:
1894 * transcoder select bit can only be cleared while the
1895 * port is enabled.
1896 */
1897 DP &= ~DP_PIPEB_SELECT;
1898 I915_WRITE(intel_dp->output_reg, DP);
1899
1900 /* Changes to enable or select take place the vblank
1901 * after being written.
1902 */
31acbcc4
CW
1903 if (crtc == NULL) {
1904 /* We can arrive here never having been attached
1905 * to a CRTC, for instance, due to inheriting
1906 * random state from the BIOS.
1907 *
1908 * If the pipe is not running, play safe and
1909 * wait for the clocks to stabilise before
1910 * continuing.
1911 */
1912 POSTING_READ(intel_dp->output_reg);
1913 msleep(50);
1914 } else
1915 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
5bddd17f
EA
1916 }
1917
832afda6 1918 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
ea5b213a
CW
1919 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1920 POSTING_READ(intel_dp->output_reg);
f01eca2e 1921 msleep(intel_dp->panel_power_down_delay);
a4fc5ed6
KP
1922}
1923
26d61aad
KP
1924static bool
1925intel_dp_get_dpcd(struct intel_dp *intel_dp)
92fd8fd1 1926{
92fd8fd1 1927 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
0206e353 1928 sizeof(intel_dp->dpcd)) &&
92fd8fd1 1929 (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
26d61aad 1930 return true;
92fd8fd1
KP
1931 }
1932
26d61aad 1933 return false;
92fd8fd1
KP
1934}
1935
a60f0e38
JB
1936static bool
1937intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1938{
1939 int ret;
1940
1941 ret = intel_dp_aux_native_read_retry(intel_dp,
1942 DP_DEVICE_SERVICE_IRQ_VECTOR,
1943 sink_irq_vector, 1);
1944 if (!ret)
1945 return false;
1946
1947 return true;
1948}
1949
1950static void
1951intel_dp_handle_test_request(struct intel_dp *intel_dp)
1952{
1953 /* NAK by default */
1954 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1955}
1956
a4fc5ed6
KP
1957/*
1958 * According to DP spec
1959 * 5.1.2:
1960 * 1. Read DPCD
1961 * 2. Configure link according to Receiver Capabilities
1962 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1963 * 4. Check link status on receipt of hot-plug interrupt
1964 */
1965
1966static void
ea5b213a 1967intel_dp_check_link_status(struct intel_dp *intel_dp)
a4fc5ed6 1968{
a60f0e38 1969 u8 sink_irq_vector;
93f62dad 1970 u8 link_status[DP_LINK_STATUS_SIZE];
a60f0e38 1971
d2b996ac
KP
1972 if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1973 return;
59cd09e1 1974
4ef69c7a 1975 if (!intel_dp->base.base.crtc)
a4fc5ed6
KP
1976 return;
1977
92fd8fd1 1978 /* Try to read receiver status if the link appears to be up */
93f62dad 1979 if (!intel_dp_get_link_status(intel_dp, link_status)) {
ea5b213a 1980 intel_dp_link_down(intel_dp);
a4fc5ed6
KP
1981 return;
1982 }
1983
92fd8fd1 1984 /* Now read the DPCD to see if it's actually running */
26d61aad 1985 if (!intel_dp_get_dpcd(intel_dp)) {
59cd09e1
JB
1986 intel_dp_link_down(intel_dp);
1987 return;
1988 }
1989
a60f0e38
JB
1990 /* Try to read the source of the interrupt */
1991 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1992 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1993 /* Clear interrupt source */
1994 intel_dp_aux_native_write_1(intel_dp,
1995 DP_DEVICE_SERVICE_IRQ_VECTOR,
1996 sink_irq_vector);
1997
1998 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
1999 intel_dp_handle_test_request(intel_dp);
2000 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2001 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2002 }
2003
93f62dad 2004 if (!intel_channel_eq_ok(intel_dp, link_status)) {
92fd8fd1
KP
2005 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2006 drm_get_encoder_name(&intel_dp->base.base));
33a34e4e
JB
2007 intel_dp_start_link_train(intel_dp);
2008 intel_dp_complete_link_train(intel_dp);
2009 }
a4fc5ed6 2010}
a4fc5ed6 2011
71ba9000 2012static enum drm_connector_status
26d61aad 2013intel_dp_detect_dpcd(struct intel_dp *intel_dp)
71ba9000 2014{
26d61aad
KP
2015 if (intel_dp_get_dpcd(intel_dp))
2016 return connector_status_connected;
2017 return connector_status_disconnected;
71ba9000
AJ
2018}
2019
5eb08b69 2020static enum drm_connector_status
a9756bb5 2021ironlake_dp_detect(struct intel_dp *intel_dp)
5eb08b69 2022{
5eb08b69
ZW
2023 enum drm_connector_status status;
2024
fe16d949
CW
2025 /* Can't disconnect eDP, but you can close the lid... */
2026 if (is_edp(intel_dp)) {
2027 status = intel_panel_detect(intel_dp->base.base.dev);
2028 if (status == connector_status_unknown)
2029 status = connector_status_connected;
2030 return status;
2031 }
01cb9ea6 2032
26d61aad 2033 return intel_dp_detect_dpcd(intel_dp);
5eb08b69
ZW
2034}
2035
a4fc5ed6 2036static enum drm_connector_status
a9756bb5 2037g4x_dp_detect(struct intel_dp *intel_dp)
a4fc5ed6 2038{
4ef69c7a 2039 struct drm_device *dev = intel_dp->base.base.dev;
a4fc5ed6 2040 struct drm_i915_private *dev_priv = dev->dev_private;
a9756bb5 2041 uint32_t temp, bit;
5eb08b69 2042
ea5b213a 2043 switch (intel_dp->output_reg) {
a4fc5ed6
KP
2044 case DP_B:
2045 bit = DPB_HOTPLUG_INT_STATUS;
2046 break;
2047 case DP_C:
2048 bit = DPC_HOTPLUG_INT_STATUS;
2049 break;
2050 case DP_D:
2051 bit = DPD_HOTPLUG_INT_STATUS;
2052 break;
2053 default:
2054 return connector_status_unknown;
2055 }
2056
2057 temp = I915_READ(PORT_HOTPLUG_STAT);
2058
2059 if ((temp & bit) == 0)
2060 return connector_status_disconnected;
2061
26d61aad 2062 return intel_dp_detect_dpcd(intel_dp);
a9756bb5
ZW
2063}
2064
8c241fef
KP
2065static struct edid *
2066intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2067{
2068 struct intel_dp *intel_dp = intel_attached_dp(connector);
2069 struct edid *edid;
2070
2071 ironlake_edp_panel_vdd_on(intel_dp);
2072 edid = drm_get_edid(connector, adapter);
bd943159 2073 ironlake_edp_panel_vdd_off(intel_dp, false);
8c241fef
KP
2074 return edid;
2075}
2076
2077static int
2078intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2079{
2080 struct intel_dp *intel_dp = intel_attached_dp(connector);
2081 int ret;
2082
2083 ironlake_edp_panel_vdd_on(intel_dp);
2084 ret = intel_ddc_get_modes(connector, adapter);
bd943159 2085 ironlake_edp_panel_vdd_off(intel_dp, false);
8c241fef
KP
2086 return ret;
2087}
2088
2089
a9756bb5
ZW
2090/**
2091 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2092 *
2093 * \return true if DP port is connected.
2094 * \return false if DP port is disconnected.
2095 */
2096static enum drm_connector_status
2097intel_dp_detect(struct drm_connector *connector, bool force)
2098{
2099 struct intel_dp *intel_dp = intel_attached_dp(connector);
2100 struct drm_device *dev = intel_dp->base.base.dev;
2101 enum drm_connector_status status;
2102 struct edid *edid = NULL;
2103
2104 intel_dp->has_audio = false;
2105
2106 if (HAS_PCH_SPLIT(dev))
2107 status = ironlake_dp_detect(intel_dp);
2108 else
2109 status = g4x_dp_detect(intel_dp);
1b9be9d0 2110
ac66ae83
AJ
2111 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2112 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2113 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2114 intel_dp->dpcd[6], intel_dp->dpcd[7]);
1b9be9d0 2115
a9756bb5
ZW
2116 if (status != connector_status_connected)
2117 return status;
2118
c3e5f67b
DV
2119 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2120 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
f684960e 2121 } else {
8c241fef 2122 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
f684960e
CW
2123 if (edid) {
2124 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2125 connector->display_info.raw_edid = NULL;
2126 kfree(edid);
2127 }
a9756bb5
ZW
2128 }
2129
2130 return connector_status_connected;
a4fc5ed6
KP
2131}
2132
2133static int intel_dp_get_modes(struct drm_connector *connector)
2134{
df0e9248 2135 struct intel_dp *intel_dp = intel_attached_dp(connector);
4ef69c7a 2136 struct drm_device *dev = intel_dp->base.base.dev;
32f9d658
ZW
2137 struct drm_i915_private *dev_priv = dev->dev_private;
2138 int ret;
a4fc5ed6
KP
2139
2140 /* We should parse the EDID data and find out if it has an audio sink
2141 */
2142
8c241fef 2143 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
b9efc480 2144 if (ret) {
d15456de 2145 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
b9efc480
ZY
2146 struct drm_display_mode *newmode;
2147 list_for_each_entry(newmode, &connector->probed_modes,
2148 head) {
d15456de
KP
2149 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2150 intel_dp->panel_fixed_mode =
b9efc480
ZY
2151 drm_mode_duplicate(dev, newmode);
2152 break;
2153 }
2154 }
2155 }
32f9d658 2156 return ret;
b9efc480 2157 }
32f9d658
ZW
2158
2159 /* if eDP has no EDID, try to use fixed panel mode from VBT */
4d926461 2160 if (is_edp(intel_dp)) {
47f0eb22 2161 /* initialize panel mode from VBT if available for eDP */
d15456de
KP
2162 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2163 intel_dp->panel_fixed_mode =
47f0eb22 2164 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
d15456de
KP
2165 if (intel_dp->panel_fixed_mode) {
2166 intel_dp->panel_fixed_mode->type |=
47f0eb22
KP
2167 DRM_MODE_TYPE_PREFERRED;
2168 }
2169 }
d15456de 2170 if (intel_dp->panel_fixed_mode) {
32f9d658 2171 struct drm_display_mode *mode;
d15456de 2172 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
32f9d658
ZW
2173 drm_mode_probed_add(connector, mode);
2174 return 1;
2175 }
2176 }
2177 return 0;
a4fc5ed6
KP
2178}
2179
1aad7ac0
CW
2180static bool
2181intel_dp_detect_audio(struct drm_connector *connector)
2182{
2183 struct intel_dp *intel_dp = intel_attached_dp(connector);
2184 struct edid *edid;
2185 bool has_audio = false;
2186
8c241fef 2187 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
1aad7ac0
CW
2188 if (edid) {
2189 has_audio = drm_detect_monitor_audio(edid);
2190
2191 connector->display_info.raw_edid = NULL;
2192 kfree(edid);
2193 }
2194
2195 return has_audio;
2196}
2197
f684960e
CW
2198static int
2199intel_dp_set_property(struct drm_connector *connector,
2200 struct drm_property *property,
2201 uint64_t val)
2202{
e953fd7b 2203 struct drm_i915_private *dev_priv = connector->dev->dev_private;
f684960e
CW
2204 struct intel_dp *intel_dp = intel_attached_dp(connector);
2205 int ret;
2206
2207 ret = drm_connector_property_set_value(connector, property, val);
2208 if (ret)
2209 return ret;
2210
3f43c48d 2211 if (property == dev_priv->force_audio_property) {
1aad7ac0
CW
2212 int i = val;
2213 bool has_audio;
2214
2215 if (i == intel_dp->force_audio)
f684960e
CW
2216 return 0;
2217
1aad7ac0 2218 intel_dp->force_audio = i;
f684960e 2219
c3e5f67b 2220 if (i == HDMI_AUDIO_AUTO)
1aad7ac0
CW
2221 has_audio = intel_dp_detect_audio(connector);
2222 else
c3e5f67b 2223 has_audio = (i == HDMI_AUDIO_ON);
1aad7ac0
CW
2224
2225 if (has_audio == intel_dp->has_audio)
f684960e
CW
2226 return 0;
2227
1aad7ac0 2228 intel_dp->has_audio = has_audio;
f684960e
CW
2229 goto done;
2230 }
2231
e953fd7b
CW
2232 if (property == dev_priv->broadcast_rgb_property) {
2233 if (val == !!intel_dp->color_range)
2234 return 0;
2235
2236 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2237 goto done;
2238 }
2239
f684960e
CW
2240 return -EINVAL;
2241
2242done:
2243 if (intel_dp->base.base.crtc) {
2244 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2245 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2246 crtc->x, crtc->y,
2247 crtc->fb);
2248 }
2249
2250 return 0;
2251}
2252
a4fc5ed6 2253static void
0206e353 2254intel_dp_destroy(struct drm_connector *connector)
a4fc5ed6 2255{
aaa6fd2a
MG
2256 struct drm_device *dev = connector->dev;
2257
2258 if (intel_dpd_is_edp(dev))
2259 intel_panel_destroy_backlight(dev);
2260
a4fc5ed6
KP
2261 drm_sysfs_connector_remove(connector);
2262 drm_connector_cleanup(connector);
55f78c43 2263 kfree(connector);
a4fc5ed6
KP
2264}
2265
24d05927
DV
2266static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2267{
2268 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2269
2270 i2c_del_adapter(&intel_dp->adapter);
2271 drm_encoder_cleanup(encoder);
bd943159
KP
2272 if (is_edp(intel_dp)) {
2273 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2274 ironlake_panel_vdd_off_sync(intel_dp);
2275 }
24d05927
DV
2276 kfree(intel_dp);
2277}
2278
a4fc5ed6
KP
2279static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2280 .dpms = intel_dp_dpms,
2281 .mode_fixup = intel_dp_mode_fixup,
d240f20f 2282 .prepare = intel_dp_prepare,
a4fc5ed6 2283 .mode_set = intel_dp_mode_set,
d240f20f 2284 .commit = intel_dp_commit,
a4fc5ed6
KP
2285};
2286
2287static const struct drm_connector_funcs intel_dp_connector_funcs = {
2288 .dpms = drm_helper_connector_dpms,
a4fc5ed6
KP
2289 .detect = intel_dp_detect,
2290 .fill_modes = drm_helper_probe_single_connector_modes,
f684960e 2291 .set_property = intel_dp_set_property,
a4fc5ed6
KP
2292 .destroy = intel_dp_destroy,
2293};
2294
2295static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2296 .get_modes = intel_dp_get_modes,
2297 .mode_valid = intel_dp_mode_valid,
df0e9248 2298 .best_encoder = intel_best_encoder,
a4fc5ed6
KP
2299};
2300
a4fc5ed6 2301static const struct drm_encoder_funcs intel_dp_enc_funcs = {
24d05927 2302 .destroy = intel_dp_encoder_destroy,
a4fc5ed6
KP
2303};
2304
995b6762 2305static void
21d40d37 2306intel_dp_hot_plug(struct intel_encoder *intel_encoder)
c8110e52 2307{
ea5b213a 2308 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
c8110e52 2309
885a5014 2310 intel_dp_check_link_status(intel_dp);
c8110e52 2311}
6207937d 2312
e3421a18
ZW
2313/* Return which DP Port should be selected for Transcoder DP control */
2314int
0206e353 2315intel_trans_dp_port_sel(struct drm_crtc *crtc)
e3421a18
ZW
2316{
2317 struct drm_device *dev = crtc->dev;
2318 struct drm_mode_config *mode_config = &dev->mode_config;
2319 struct drm_encoder *encoder;
e3421a18
ZW
2320
2321 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
ea5b213a
CW
2322 struct intel_dp *intel_dp;
2323
d8201ab6 2324 if (encoder->crtc != crtc)
e3421a18
ZW
2325 continue;
2326
ea5b213a 2327 intel_dp = enc_to_intel_dp(encoder);
417e822d
KP
2328 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2329 intel_dp->base.type == INTEL_OUTPUT_EDP)
ea5b213a 2330 return intel_dp->output_reg;
e3421a18 2331 }
ea5b213a 2332
e3421a18
ZW
2333 return -1;
2334}
2335
36e83a18 2336/* check the VBT to see whether the eDP is on DP-D port */
cb0953d7 2337bool intel_dpd_is_edp(struct drm_device *dev)
36e83a18
ZY
2338{
2339 struct drm_i915_private *dev_priv = dev->dev_private;
2340 struct child_device_config *p_child;
2341 int i;
2342
2343 if (!dev_priv->child_dev_num)
2344 return false;
2345
2346 for (i = 0; i < dev_priv->child_dev_num; i++) {
2347 p_child = dev_priv->child_dev + i;
2348
2349 if (p_child->dvo_port == PORT_IDPD &&
2350 p_child->device_type == DEVICE_TYPE_eDP)
2351 return true;
2352 }
2353 return false;
2354}
2355
f684960e
CW
2356static void
2357intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2358{
3f43c48d 2359 intel_attach_force_audio_property(connector);
e953fd7b 2360 intel_attach_broadcast_rgb_property(connector);
f684960e
CW
2361}
2362
a4fc5ed6
KP
2363void
2364intel_dp_init(struct drm_device *dev, int output_reg)
2365{
2366 struct drm_i915_private *dev_priv = dev->dev_private;
2367 struct drm_connector *connector;
ea5b213a 2368 struct intel_dp *intel_dp;
21d40d37 2369 struct intel_encoder *intel_encoder;
55f78c43 2370 struct intel_connector *intel_connector;
5eb08b69 2371 const char *name = NULL;
b329530c 2372 int type;
a4fc5ed6 2373
ea5b213a
CW
2374 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2375 if (!intel_dp)
a4fc5ed6
KP
2376 return;
2377
3d3dc149 2378 intel_dp->output_reg = output_reg;
d2b996ac 2379 intel_dp->dpms_mode = -1;
3d3dc149 2380
55f78c43
ZW
2381 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2382 if (!intel_connector) {
ea5b213a 2383 kfree(intel_dp);
55f78c43
ZW
2384 return;
2385 }
ea5b213a 2386 intel_encoder = &intel_dp->base;
55f78c43 2387
ea5b213a 2388 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
b329530c 2389 if (intel_dpd_is_edp(dev))
ea5b213a 2390 intel_dp->is_pch_edp = true;
b329530c 2391
cfcb0fc9 2392 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
b329530c
AJ
2393 type = DRM_MODE_CONNECTOR_eDP;
2394 intel_encoder->type = INTEL_OUTPUT_EDP;
2395 } else {
2396 type = DRM_MODE_CONNECTOR_DisplayPort;
2397 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2398 }
2399
55f78c43 2400 connector = &intel_connector->base;
b329530c 2401 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
a4fc5ed6
KP
2402 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2403
eb1f8e4f
DA
2404 connector->polled = DRM_CONNECTOR_POLL_HPD;
2405
652af9d7 2406 if (output_reg == DP_B || output_reg == PCH_DP_B)
21d40d37 2407 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
652af9d7 2408 else if (output_reg == DP_C || output_reg == PCH_DP_C)
21d40d37 2409 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
652af9d7 2410 else if (output_reg == DP_D || output_reg == PCH_DP_D)
21d40d37 2411 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
f8aed700 2412
bd943159 2413 if (is_edp(intel_dp)) {
21d40d37 2414 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
bd943159
KP
2415 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2416 ironlake_panel_vdd_work);
2417 }
6251ec0a 2418
27f8227b 2419 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
a4fc5ed6
KP
2420 connector->interlace_allowed = true;
2421 connector->doublescan_allowed = 0;
2422
4ef69c7a 2423 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
a4fc5ed6 2424 DRM_MODE_ENCODER_TMDS);
4ef69c7a 2425 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
a4fc5ed6 2426
df0e9248 2427 intel_connector_attach_encoder(intel_connector, intel_encoder);
a4fc5ed6
KP
2428 drm_sysfs_connector_add(connector);
2429
2430 /* Set up the DDC bus. */
5eb08b69 2431 switch (output_reg) {
32f9d658
ZW
2432 case DP_A:
2433 name = "DPDDC-A";
2434 break;
5eb08b69
ZW
2435 case DP_B:
2436 case PCH_DP_B:
b01f2c3a
JB
2437 dev_priv->hotplug_supported_mask |=
2438 HDMIB_HOTPLUG_INT_STATUS;
5eb08b69
ZW
2439 name = "DPDDC-B";
2440 break;
2441 case DP_C:
2442 case PCH_DP_C:
b01f2c3a
JB
2443 dev_priv->hotplug_supported_mask |=
2444 HDMIC_HOTPLUG_INT_STATUS;
5eb08b69
ZW
2445 name = "DPDDC-C";
2446 break;
2447 case DP_D:
2448 case PCH_DP_D:
b01f2c3a
JB
2449 dev_priv->hotplug_supported_mask |=
2450 HDMID_HOTPLUG_INT_STATUS;
5eb08b69
ZW
2451 name = "DPDDC-D";
2452 break;
2453 }
2454
89667383
JB
2455 /* Cache some DPCD data in the eDP case */
2456 if (is_edp(intel_dp)) {
59f3e272 2457 bool ret;
f01eca2e
KP
2458 struct edp_power_seq cur, vbt;
2459 u32 pp_on, pp_off, pp_div;
5d613501
JB
2460
2461 pp_on = I915_READ(PCH_PP_ON_DELAYS);
f01eca2e 2462 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
5d613501 2463 pp_div = I915_READ(PCH_PP_DIVISOR);
89667383 2464
f01eca2e
KP
2465 /* Pull timing values out of registers */
2466 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2467 PANEL_POWER_UP_DELAY_SHIFT;
2468
2469 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2470 PANEL_LIGHT_ON_DELAY_SHIFT;
f2e8b18a 2471
f01eca2e
KP
2472 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2473 PANEL_LIGHT_OFF_DELAY_SHIFT;
2474
2475 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2476 PANEL_POWER_DOWN_DELAY_SHIFT;
2477
2478 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2479 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2480
2481 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2482 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2483
2484 vbt = dev_priv->edp.pps;
2485
2486 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2487 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2488
2489#define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2490
2491 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2492 intel_dp->backlight_on_delay = get_delay(t8);
2493 intel_dp->backlight_off_delay = get_delay(t9);
2494 intel_dp->panel_power_down_delay = get_delay(t10);
2495 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2496
2497 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2498 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2499 intel_dp->panel_power_cycle_delay);
2500
2501 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2502 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5d613501
JB
2503
2504 ironlake_edp_panel_vdd_on(intel_dp);
59f3e272 2505 ret = intel_dp_get_dpcd(intel_dp);
bd943159 2506 ironlake_edp_panel_vdd_off(intel_dp, false);
99ea7127 2507
59f3e272 2508 if (ret) {
7183dc29
JB
2509 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2510 dev_priv->no_aux_handshake =
2511 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
89667383
JB
2512 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2513 } else {
3d3dc149 2514 /* if this fails, presume the device is a ghost */
48898b03 2515 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3d3dc149 2516 intel_dp_encoder_destroy(&intel_dp->base.base);
48898b03 2517 intel_dp_destroy(&intel_connector->base);
3d3dc149 2518 return;
89667383 2519 }
89667383
JB
2520 }
2521
552fb0b7
KP
2522 intel_dp_i2c_init(intel_dp, intel_connector, name);
2523
21d40d37 2524 intel_encoder->hot_plug = intel_dp_hot_plug;
a4fc5ed6 2525
4d926461 2526 if (is_edp(intel_dp)) {
aaa6fd2a
MG
2527 dev_priv->int_edp_connector = connector;
2528 intel_panel_setup_backlight(dev);
32f9d658
ZW
2529 }
2530
f684960e
CW
2531 intel_dp_add_properties(intel_dp, connector);
2532
a4fc5ed6
KP
2533 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2534 * 0xd. Failure to do so will result in spurious interrupts being
2535 * generated on the port when a cable is not attached.
2536 */
2537 if (IS_G4X(dev) && !IS_GM45(dev)) {
2538 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2539 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2540 }
2541}