]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/intel_dp.c
drm/i915/dp: Zero the DPCD data before connection probe
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
CommitLineData
a4fc5ed6
KP
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
5a0e3ad6 29#include <linux/slab.h>
a4fc5ed6
KP
30#include "drmP.h"
31#include "drm.h"
32#include "drm_crtc.h"
33#include "drm_crtc_helper.h"
34#include "intel_drv.h"
35#include "i915_drm.h"
36#include "i915_drv.h"
ab2c0672 37#include "drm_dp_helper.h"
a4fc5ed6 38
ae266c98 39
a4fc5ed6
KP
40#define DP_LINK_STATUS_SIZE 6
41#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43#define DP_LINK_CONFIGURATION_SIZE 9
44
ea5b213a
CW
45struct intel_dp {
46 struct intel_encoder base;
a4fc5ed6
KP
47 uint32_t output_reg;
48 uint32_t DP;
49 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
a4fc5ed6 50 bool has_audio;
f684960e 51 int force_audio;
e953fd7b 52 uint32_t color_range;
a4fc5ed6
KP
53 uint8_t link_bw;
54 uint8_t lane_count;
55 uint8_t dpcd[4];
a4fc5ed6
KP
56 struct i2c_adapter adapter;
57 struct i2c_algo_dp_aux_data algo;
f0917379 58 bool is_pch_edp;
33a34e4e
JB
59 uint8_t train_set[4];
60 uint8_t link_status[DP_LINK_STATUS_SIZE];
a4fc5ed6
KP
61};
62
cfcb0fc9
JB
63/**
64 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
65 * @intel_dp: DP struct
66 *
67 * If a CPU or PCH DP output is attached to an eDP panel, this function
68 * will return true, and false otherwise.
69 */
70static bool is_edp(struct intel_dp *intel_dp)
71{
72 return intel_dp->base.type == INTEL_OUTPUT_EDP;
73}
74
75/**
76 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
77 * @intel_dp: DP struct
78 *
79 * Returns true if the given DP struct corresponds to a PCH DP port attached
80 * to an eDP panel, false otherwise. Helpful for determining whether we
81 * may need FDI resources for a given DP output or not.
82 */
83static bool is_pch_edp(struct intel_dp *intel_dp)
84{
85 return intel_dp->is_pch_edp;
86}
87
ea5b213a
CW
88static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
89{
4ef69c7a 90 return container_of(encoder, struct intel_dp, base.base);
ea5b213a 91}
a4fc5ed6 92
df0e9248
CW
93static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
94{
95 return container_of(intel_attached_encoder(connector),
96 struct intel_dp, base);
97}
98
814948ad
JB
99/**
100 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
101 * @encoder: DRM encoder
102 *
103 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
104 * by intel_display.c.
105 */
106bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
107{
108 struct intel_dp *intel_dp;
109
110 if (!encoder)
111 return false;
112
113 intel_dp = enc_to_intel_dp(encoder);
114
115 return is_pch_edp(intel_dp);
116}
117
33a34e4e
JB
118static void intel_dp_start_link_train(struct intel_dp *intel_dp);
119static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
ea5b213a 120static void intel_dp_link_down(struct intel_dp *intel_dp);
a4fc5ed6 121
32f9d658 122void
21d40d37 123intel_edp_link_config (struct intel_encoder *intel_encoder,
ea5b213a 124 int *lane_num, int *link_bw)
32f9d658 125{
ea5b213a 126 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
32f9d658 127
ea5b213a
CW
128 *lane_num = intel_dp->lane_count;
129 if (intel_dp->link_bw == DP_LINK_BW_1_62)
32f9d658 130 *link_bw = 162000;
ea5b213a 131 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
32f9d658
ZW
132 *link_bw = 270000;
133}
134
a4fc5ed6 135static int
ea5b213a 136intel_dp_max_lane_count(struct intel_dp *intel_dp)
a4fc5ed6 137{
a4fc5ed6
KP
138 int max_lane_count = 4;
139
7183dc29
JB
140 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
141 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
a4fc5ed6
KP
142 switch (max_lane_count) {
143 case 1: case 2: case 4:
144 break;
145 default:
146 max_lane_count = 4;
147 }
148 }
149 return max_lane_count;
150}
151
152static int
ea5b213a 153intel_dp_max_link_bw(struct intel_dp *intel_dp)
a4fc5ed6 154{
7183dc29 155 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
a4fc5ed6
KP
156
157 switch (max_link_bw) {
158 case DP_LINK_BW_1_62:
159 case DP_LINK_BW_2_7:
160 break;
161 default:
162 max_link_bw = DP_LINK_BW_1_62;
163 break;
164 }
165 return max_link_bw;
166}
167
168static int
169intel_dp_link_clock(uint8_t link_bw)
170{
171 if (link_bw == DP_LINK_BW_2_7)
172 return 270000;
173 else
174 return 162000;
175}
176
177/* I think this is a fiction */
178static int
ea5b213a 179intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
a4fc5ed6 180{
885a5fb5
ZW
181 struct drm_i915_private *dev_priv = dev->dev_private;
182
4d926461 183 if (is_edp(intel_dp))
5ceb0f9b 184 return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
885a5fb5
ZW
185 else
186 return pixel_clock * 3;
a4fc5ed6
KP
187}
188
fe27d53e
DA
189static int
190intel_dp_max_data_rate(int max_link_clock, int max_lanes)
191{
192 return (max_link_clock * max_lanes * 8) / 10;
193}
194
a4fc5ed6
KP
195static int
196intel_dp_mode_valid(struct drm_connector *connector,
197 struct drm_display_mode *mode)
198{
df0e9248 199 struct intel_dp *intel_dp = intel_attached_dp(connector);
7de56f43
ZY
200 struct drm_device *dev = connector->dev;
201 struct drm_i915_private *dev_priv = dev->dev_private;
ea5b213a
CW
202 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
203 int max_lanes = intel_dp_max_lane_count(intel_dp);
a4fc5ed6 204
4d926461 205 if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
7de56f43
ZY
206 if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
207 return MODE_PANEL;
208
209 if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
210 return MODE_PANEL;
211 }
212
25985edc 213 /* only refuse the mode on non eDP since we have seen some weird eDP panels
fe27d53e 214 which are outside spec tolerances but somehow work by magic */
cfcb0fc9 215 if (!is_edp(intel_dp) &&
ea5b213a 216 (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
fe27d53e 217 > intel_dp_max_data_rate(max_link_clock, max_lanes)))
a4fc5ed6
KP
218 return MODE_CLOCK_HIGH;
219
220 if (mode->clock < 10000)
221 return MODE_CLOCK_LOW;
222
223 return MODE_OK;
224}
225
226static uint32_t
227pack_aux(uint8_t *src, int src_bytes)
228{
229 int i;
230 uint32_t v = 0;
231
232 if (src_bytes > 4)
233 src_bytes = 4;
234 for (i = 0; i < src_bytes; i++)
235 v |= ((uint32_t) src[i]) << ((3-i) * 8);
236 return v;
237}
238
239static void
240unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
241{
242 int i;
243 if (dst_bytes > 4)
244 dst_bytes = 4;
245 for (i = 0; i < dst_bytes; i++)
246 dst[i] = src >> ((3-i) * 8);
247}
248
fb0f8fbf
KP
249/* hrawclock is 1/4 the FSB frequency */
250static int
251intel_hrawclk(struct drm_device *dev)
252{
253 struct drm_i915_private *dev_priv = dev->dev_private;
254 uint32_t clkcfg;
255
256 clkcfg = I915_READ(CLKCFG);
257 switch (clkcfg & CLKCFG_FSB_MASK) {
258 case CLKCFG_FSB_400:
259 return 100;
260 case CLKCFG_FSB_533:
261 return 133;
262 case CLKCFG_FSB_667:
263 return 166;
264 case CLKCFG_FSB_800:
265 return 200;
266 case CLKCFG_FSB_1067:
267 return 266;
268 case CLKCFG_FSB_1333:
269 return 333;
270 /* these two are just a guess; one of them might be right */
271 case CLKCFG_FSB_1600:
272 case CLKCFG_FSB_1600_ALT:
273 return 400;
274 default:
275 return 133;
276 }
277}
278
a4fc5ed6 279static int
ea5b213a 280intel_dp_aux_ch(struct intel_dp *intel_dp,
a4fc5ed6
KP
281 uint8_t *send, int send_bytes,
282 uint8_t *recv, int recv_size)
283{
ea5b213a 284 uint32_t output_reg = intel_dp->output_reg;
4ef69c7a 285 struct drm_device *dev = intel_dp->base.base.dev;
a4fc5ed6
KP
286 struct drm_i915_private *dev_priv = dev->dev_private;
287 uint32_t ch_ctl = output_reg + 0x10;
288 uint32_t ch_data = ch_ctl + 4;
289 int i;
290 int recv_bytes;
a4fc5ed6 291 uint32_t status;
fb0f8fbf 292 uint32_t aux_clock_divider;
e3421a18 293 int try, precharge;
a4fc5ed6
KP
294
295 /* The clock divider is based off the hrawclk,
fb0f8fbf
KP
296 * and would like to run at 2MHz. So, take the
297 * hrawclk value and divide by 2 and use that
6176b8f9
JB
298 *
299 * Note that PCH attached eDP panels should use a 125MHz input
300 * clock divider.
a4fc5ed6 301 */
cfcb0fc9 302 if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
e3421a18
ZW
303 if (IS_GEN6(dev))
304 aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
305 else
306 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
307 } else if (HAS_PCH_SPLIT(dev))
f2b115e6 308 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
5eb08b69
ZW
309 else
310 aux_clock_divider = intel_hrawclk(dev) / 2;
311
e3421a18
ZW
312 if (IS_GEN6(dev))
313 precharge = 3;
314 else
315 precharge = 5;
316
4f7f7b7e
CW
317 if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
318 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
319 I915_READ(ch_ctl));
320 return -EBUSY;
321 }
322
fb0f8fbf
KP
323 /* Must try at least 3 times according to DP spec */
324 for (try = 0; try < 5; try++) {
325 /* Load the send data into the aux channel data registers */
4f7f7b7e
CW
326 for (i = 0; i < send_bytes; i += 4)
327 I915_WRITE(ch_data + i,
328 pack_aux(send + i, send_bytes - i));
fb0f8fbf
KP
329
330 /* Send the command and wait for it to complete */
4f7f7b7e
CW
331 I915_WRITE(ch_ctl,
332 DP_AUX_CH_CTL_SEND_BUSY |
333 DP_AUX_CH_CTL_TIME_OUT_400us |
334 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
335 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
336 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
337 DP_AUX_CH_CTL_DONE |
338 DP_AUX_CH_CTL_TIME_OUT_ERROR |
339 DP_AUX_CH_CTL_RECEIVE_ERROR);
fb0f8fbf 340 for (;;) {
fb0f8fbf
KP
341 status = I915_READ(ch_ctl);
342 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
343 break;
4f7f7b7e 344 udelay(100);
fb0f8fbf
KP
345 }
346
347 /* Clear done status and any errors */
4f7f7b7e
CW
348 I915_WRITE(ch_ctl,
349 status |
350 DP_AUX_CH_CTL_DONE |
351 DP_AUX_CH_CTL_TIME_OUT_ERROR |
352 DP_AUX_CH_CTL_RECEIVE_ERROR);
353 if (status & DP_AUX_CH_CTL_DONE)
a4fc5ed6
KP
354 break;
355 }
356
a4fc5ed6 357 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1ae8c0a5 358 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
a5b3da54 359 return -EBUSY;
a4fc5ed6
KP
360 }
361
362 /* Check for timeout or receive error.
363 * Timeouts occur when the sink is not connected
364 */
a5b3da54 365 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1ae8c0a5 366 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
a5b3da54
KP
367 return -EIO;
368 }
1ae8c0a5
KP
369
370 /* Timeouts occur when the device isn't connected, so they're
371 * "normal" -- don't fill the kernel log with these */
a5b3da54 372 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
28c97730 373 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
a5b3da54 374 return -ETIMEDOUT;
a4fc5ed6
KP
375 }
376
377 /* Unload any bytes sent back from the other side */
378 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
379 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
a4fc5ed6
KP
380 if (recv_bytes > recv_size)
381 recv_bytes = recv_size;
382
4f7f7b7e
CW
383 for (i = 0; i < recv_bytes; i += 4)
384 unpack_aux(I915_READ(ch_data + i),
385 recv + i, recv_bytes - i);
a4fc5ed6
KP
386
387 return recv_bytes;
388}
389
390/* Write data to the aux channel in native mode */
391static int
ea5b213a 392intel_dp_aux_native_write(struct intel_dp *intel_dp,
a4fc5ed6
KP
393 uint16_t address, uint8_t *send, int send_bytes)
394{
395 int ret;
396 uint8_t msg[20];
397 int msg_bytes;
398 uint8_t ack;
399
400 if (send_bytes > 16)
401 return -1;
402 msg[0] = AUX_NATIVE_WRITE << 4;
403 msg[1] = address >> 8;
eebc863e 404 msg[2] = address & 0xff;
a4fc5ed6
KP
405 msg[3] = send_bytes - 1;
406 memcpy(&msg[4], send, send_bytes);
407 msg_bytes = send_bytes + 4;
408 for (;;) {
ea5b213a 409 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
a4fc5ed6
KP
410 if (ret < 0)
411 return ret;
412 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
413 break;
414 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
415 udelay(100);
416 else
a5b3da54 417 return -EIO;
a4fc5ed6
KP
418 }
419 return send_bytes;
420}
421
422/* Write a single byte to the aux channel in native mode */
423static int
ea5b213a 424intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
a4fc5ed6
KP
425 uint16_t address, uint8_t byte)
426{
ea5b213a 427 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
a4fc5ed6
KP
428}
429
430/* read bytes from a native aux channel */
431static int
ea5b213a 432intel_dp_aux_native_read(struct intel_dp *intel_dp,
a4fc5ed6
KP
433 uint16_t address, uint8_t *recv, int recv_bytes)
434{
435 uint8_t msg[4];
436 int msg_bytes;
437 uint8_t reply[20];
438 int reply_bytes;
439 uint8_t ack;
440 int ret;
441
442 msg[0] = AUX_NATIVE_READ << 4;
443 msg[1] = address >> 8;
444 msg[2] = address & 0xff;
445 msg[3] = recv_bytes - 1;
446
447 msg_bytes = 4;
448 reply_bytes = recv_bytes + 1;
449
450 for (;;) {
ea5b213a 451 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
a4fc5ed6 452 reply, reply_bytes);
a5b3da54
KP
453 if (ret == 0)
454 return -EPROTO;
455 if (ret < 0)
a4fc5ed6
KP
456 return ret;
457 ack = reply[0];
458 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
459 memcpy(recv, reply + 1, ret - 1);
460 return ret - 1;
461 }
462 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
463 udelay(100);
464 else
a5b3da54 465 return -EIO;
a4fc5ed6
KP
466 }
467}
468
469static int
ab2c0672
DA
470intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
471 uint8_t write_byte, uint8_t *read_byte)
a4fc5ed6 472{
ab2c0672 473 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
ea5b213a
CW
474 struct intel_dp *intel_dp = container_of(adapter,
475 struct intel_dp,
476 adapter);
ab2c0672
DA
477 uint16_t address = algo_data->address;
478 uint8_t msg[5];
479 uint8_t reply[2];
8316f337 480 unsigned retry;
ab2c0672
DA
481 int msg_bytes;
482 int reply_bytes;
483 int ret;
484
485 /* Set up the command byte */
486 if (mode & MODE_I2C_READ)
487 msg[0] = AUX_I2C_READ << 4;
488 else
489 msg[0] = AUX_I2C_WRITE << 4;
490
491 if (!(mode & MODE_I2C_STOP))
492 msg[0] |= AUX_I2C_MOT << 4;
a4fc5ed6 493
ab2c0672
DA
494 msg[1] = address >> 8;
495 msg[2] = address;
496
497 switch (mode) {
498 case MODE_I2C_WRITE:
499 msg[3] = 0;
500 msg[4] = write_byte;
501 msg_bytes = 5;
502 reply_bytes = 1;
503 break;
504 case MODE_I2C_READ:
505 msg[3] = 0;
506 msg_bytes = 4;
507 reply_bytes = 2;
508 break;
509 default:
510 msg_bytes = 3;
511 reply_bytes = 1;
512 break;
513 }
514
8316f337
DF
515 for (retry = 0; retry < 5; retry++) {
516 ret = intel_dp_aux_ch(intel_dp,
517 msg, msg_bytes,
518 reply, reply_bytes);
ab2c0672 519 if (ret < 0) {
3ff99164 520 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
ab2c0672
DA
521 return ret;
522 }
8316f337
DF
523
524 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
525 case AUX_NATIVE_REPLY_ACK:
526 /* I2C-over-AUX Reply field is only valid
527 * when paired with AUX ACK.
528 */
529 break;
530 case AUX_NATIVE_REPLY_NACK:
531 DRM_DEBUG_KMS("aux_ch native nack\n");
532 return -EREMOTEIO;
533 case AUX_NATIVE_REPLY_DEFER:
534 udelay(100);
535 continue;
536 default:
537 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
538 reply[0]);
539 return -EREMOTEIO;
540 }
541
ab2c0672
DA
542 switch (reply[0] & AUX_I2C_REPLY_MASK) {
543 case AUX_I2C_REPLY_ACK:
544 if (mode == MODE_I2C_READ) {
545 *read_byte = reply[1];
546 }
547 return reply_bytes - 1;
548 case AUX_I2C_REPLY_NACK:
8316f337 549 DRM_DEBUG_KMS("aux_i2c nack\n");
ab2c0672
DA
550 return -EREMOTEIO;
551 case AUX_I2C_REPLY_DEFER:
8316f337 552 DRM_DEBUG_KMS("aux_i2c defer\n");
ab2c0672
DA
553 udelay(100);
554 break;
555 default:
8316f337 556 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
ab2c0672
DA
557 return -EREMOTEIO;
558 }
559 }
8316f337
DF
560
561 DRM_ERROR("too many retries, giving up\n");
562 return -EREMOTEIO;
a4fc5ed6
KP
563}
564
565static int
ea5b213a 566intel_dp_i2c_init(struct intel_dp *intel_dp,
55f78c43 567 struct intel_connector *intel_connector, const char *name)
a4fc5ed6 568{
d54e9d28 569 DRM_DEBUG_KMS("i2c_init %s\n", name);
ea5b213a
CW
570 intel_dp->algo.running = false;
571 intel_dp->algo.address = 0;
572 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
573
574 memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
575 intel_dp->adapter.owner = THIS_MODULE;
576 intel_dp->adapter.class = I2C_CLASS_DDC;
577 strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
578 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
579 intel_dp->adapter.algo_data = &intel_dp->algo;
580 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
581
582 return i2c_dp_aux_add_bus(&intel_dp->adapter);
a4fc5ed6
KP
583}
584
585static bool
586intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
587 struct drm_display_mode *adjusted_mode)
588{
0d3a1bee
ZY
589 struct drm_device *dev = encoder->dev;
590 struct drm_i915_private *dev_priv = dev->dev_private;
ea5b213a 591 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
a4fc5ed6 592 int lane_count, clock;
ea5b213a
CW
593 int max_lane_count = intel_dp_max_lane_count(intel_dp);
594 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
a4fc5ed6
KP
595 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
596
4d926461 597 if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
1d8e1c75
CW
598 intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
599 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
600 mode, adjusted_mode);
0d3a1bee
ZY
601 /*
602 * the mode->clock is used to calculate the Data&Link M/N
603 * of the pipe. For the eDP the fixed clock should be used.
604 */
605 mode->clock = dev_priv->panel_fixed_mode->clock;
606 }
607
a4fc5ed6
KP
608 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
609 for (clock = 0; clock <= max_clock; clock++) {
fe27d53e 610 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
a4fc5ed6 611
ea5b213a 612 if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
885a5fb5 613 <= link_avail) {
ea5b213a
CW
614 intel_dp->link_bw = bws[clock];
615 intel_dp->lane_count = lane_count;
616 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
28c97730
ZY
617 DRM_DEBUG_KMS("Display port link bw %02x lane "
618 "count %d clock %d\n",
ea5b213a 619 intel_dp->link_bw, intel_dp->lane_count,
a4fc5ed6
KP
620 adjusted_mode->clock);
621 return true;
622 }
623 }
624 }
fe27d53e 625
3cf2efb1
CW
626 if (is_edp(intel_dp)) {
627 /* okay we failed just pick the highest */
628 intel_dp->lane_count = max_lane_count;
629 intel_dp->link_bw = bws[max_clock];
630 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
631 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
632 "count %d clock %d\n",
633 intel_dp->link_bw, intel_dp->lane_count,
634 adjusted_mode->clock);
635
636 return true;
637 }
638
a4fc5ed6
KP
639 return false;
640}
641
642struct intel_dp_m_n {
643 uint32_t tu;
644 uint32_t gmch_m;
645 uint32_t gmch_n;
646 uint32_t link_m;
647 uint32_t link_n;
648};
649
650static void
651intel_reduce_ratio(uint32_t *num, uint32_t *den)
652{
653 while (*num > 0xffffff || *den > 0xffffff) {
654 *num >>= 1;
655 *den >>= 1;
656 }
657}
658
659static void
36e83a18 660intel_dp_compute_m_n(int bpp,
a4fc5ed6
KP
661 int nlanes,
662 int pixel_clock,
663 int link_clock,
664 struct intel_dp_m_n *m_n)
665{
666 m_n->tu = 64;
36e83a18 667 m_n->gmch_m = (pixel_clock * bpp) >> 3;
a4fc5ed6
KP
668 m_n->gmch_n = link_clock * nlanes;
669 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
670 m_n->link_m = pixel_clock;
671 m_n->link_n = link_clock;
672 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
673}
674
675void
676intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
677 struct drm_display_mode *adjusted_mode)
678{
679 struct drm_device *dev = crtc->dev;
680 struct drm_mode_config *mode_config = &dev->mode_config;
55f78c43 681 struct drm_encoder *encoder;
a4fc5ed6
KP
682 struct drm_i915_private *dev_priv = dev->dev_private;
683 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
36e83a18 684 int lane_count = 4, bpp = 24;
a4fc5ed6 685 struct intel_dp_m_n m_n;
9db4a9c7 686 int pipe = intel_crtc->pipe;
a4fc5ed6
KP
687
688 /*
21d40d37 689 * Find the lane count in the intel_encoder private
a4fc5ed6 690 */
55f78c43 691 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
ea5b213a 692 struct intel_dp *intel_dp;
a4fc5ed6 693
d8201ab6 694 if (encoder->crtc != crtc)
a4fc5ed6
KP
695 continue;
696
ea5b213a
CW
697 intel_dp = enc_to_intel_dp(encoder);
698 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
699 lane_count = intel_dp->lane_count;
51190667
JB
700 break;
701 } else if (is_edp(intel_dp)) {
702 lane_count = dev_priv->edp.lanes;
703 bpp = dev_priv->edp.bpp;
a4fc5ed6
KP
704 break;
705 }
706 }
707
708 /*
709 * Compute the GMCH and Link ratios. The '3' here is
710 * the number of bytes_per_pixel post-LUT, which we always
711 * set up for 8-bits of R/G/B, or 3 bytes total.
712 */
36e83a18 713 intel_dp_compute_m_n(bpp, lane_count,
a4fc5ed6
KP
714 mode->clock, adjusted_mode->clock, &m_n);
715
c619eed4 716 if (HAS_PCH_SPLIT(dev)) {
9db4a9c7
JB
717 I915_WRITE(TRANSDATA_M1(pipe),
718 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
719 m_n.gmch_m);
720 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
721 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
722 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
a4fc5ed6 723 } else {
9db4a9c7
JB
724 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
725 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
726 m_n.gmch_m);
727 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
728 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
729 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
a4fc5ed6
KP
730 }
731}
732
733static void
734intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
735 struct drm_display_mode *adjusted_mode)
736{
e3421a18 737 struct drm_device *dev = encoder->dev;
ea5b213a 738 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4ef69c7a 739 struct drm_crtc *crtc = intel_dp->base.base.crtc;
a4fc5ed6
KP
740 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
741
e953fd7b
CW
742 intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
743 intel_dp->DP |= intel_dp->color_range;
9c9e7927
AJ
744
745 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
ea5b213a 746 intel_dp->DP |= DP_SYNC_HS_HIGH;
9c9e7927 747 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
ea5b213a 748 intel_dp->DP |= DP_SYNC_VS_HIGH;
a4fc5ed6 749
cfcb0fc9 750 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
ea5b213a 751 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
e3421a18 752 else
ea5b213a 753 intel_dp->DP |= DP_LINK_TRAIN_OFF;
a4fc5ed6 754
ea5b213a 755 switch (intel_dp->lane_count) {
a4fc5ed6 756 case 1:
ea5b213a 757 intel_dp->DP |= DP_PORT_WIDTH_1;
a4fc5ed6
KP
758 break;
759 case 2:
ea5b213a 760 intel_dp->DP |= DP_PORT_WIDTH_2;
a4fc5ed6
KP
761 break;
762 case 4:
ea5b213a 763 intel_dp->DP |= DP_PORT_WIDTH_4;
a4fc5ed6
KP
764 break;
765 }
ea5b213a
CW
766 if (intel_dp->has_audio)
767 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
a4fc5ed6 768
ea5b213a
CW
769 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
770 intel_dp->link_configuration[0] = intel_dp->link_bw;
771 intel_dp->link_configuration[1] = intel_dp->lane_count;
a4fc5ed6
KP
772
773 /*
9962c925 774 * Check for DPCD version > 1.1 and enhanced framing support
a4fc5ed6 775 */
7183dc29
JB
776 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
777 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
ea5b213a
CW
778 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
779 intel_dp->DP |= DP_ENHANCED_FRAMING;
a4fc5ed6
KP
780 }
781
e3421a18
ZW
782 /* CPT DP's pipe select is decided in TRANS_DP_CTL */
783 if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
ea5b213a 784 intel_dp->DP |= DP_PIPEB_SELECT;
32f9d658 785
895692be 786 if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
32f9d658 787 /* don't miss out required setting for eDP */
ea5b213a 788 intel_dp->DP |= DP_PLL_ENABLE;
32f9d658 789 if (adjusted_mode->clock < 200000)
ea5b213a 790 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
32f9d658 791 else
ea5b213a 792 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
32f9d658 793 }
a4fc5ed6
KP
794}
795
5d613501
JB
796static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
797{
798 struct drm_device *dev = intel_dp->base.base.dev;
799 struct drm_i915_private *dev_priv = dev->dev_private;
800 u32 pp;
801
802 /*
803 * If the panel wasn't on, make sure there's not a currently
804 * active PP sequence before enabling AUX VDD.
805 */
806 if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
807 msleep(dev_priv->panel_t3);
808
809 pp = I915_READ(PCH_PP_CONTROL);
810 pp |= EDP_FORCE_VDD;
811 I915_WRITE(PCH_PP_CONTROL, pp);
812 POSTING_READ(PCH_PP_CONTROL);
813}
814
815static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
816{
817 struct drm_device *dev = intel_dp->base.base.dev;
818 struct drm_i915_private *dev_priv = dev->dev_private;
819 u32 pp;
820
821 pp = I915_READ(PCH_PP_CONTROL);
822 pp &= ~EDP_FORCE_VDD;
823 I915_WRITE(PCH_PP_CONTROL, pp);
824 POSTING_READ(PCH_PP_CONTROL);
825
826 /* Make sure sequencer is idle before allowing subsequent activity */
827 msleep(dev_priv->panel_t12);
828}
829
7eaf5547 830/* Returns true if the panel was already on when called */
01cb9ea6 831static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
9934c132 832{
01cb9ea6 833 struct drm_device *dev = intel_dp->base.base.dev;
9934c132 834 struct drm_i915_private *dev_priv = dev->dev_private;
01cb9ea6 835 u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
9934c132 836
913d8d11 837 if (I915_READ(PCH_PP_STATUS) & PP_ON)
7eaf5547 838 return true;
9934c132
JB
839
840 pp = I915_READ(PCH_PP_CONTROL);
37c6c9b0
JB
841
842 /* ILK workaround: disable reset around power sequence */
843 pp &= ~PANEL_POWER_RESET;
844 I915_WRITE(PCH_PP_CONTROL, pp);
845 POSTING_READ(PCH_PP_CONTROL);
846
01cb9ea6 847 pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
9934c132 848 I915_WRITE(PCH_PP_CONTROL, pp);
01cb9ea6 849 POSTING_READ(PCH_PP_CONTROL);
9934c132 850
01cb9ea6
JB
851 if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
852 5000))
913d8d11
CW
853 DRM_ERROR("panel on wait timed out: 0x%08x\n",
854 I915_READ(PCH_PP_STATUS));
9934c132 855
37c6c9b0 856 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
9934c132 857 I915_WRITE(PCH_PP_CONTROL, pp);
37c6c9b0 858 POSTING_READ(PCH_PP_CONTROL);
7eaf5547
JB
859
860 return false;
9934c132
JB
861}
862
863static void ironlake_edp_panel_off (struct drm_device *dev)
864{
865 struct drm_i915_private *dev_priv = dev->dev_private;
01cb9ea6
JB
866 u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
867 PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
9934c132
JB
868
869 pp = I915_READ(PCH_PP_CONTROL);
37c6c9b0
JB
870
871 /* ILK workaround: disable reset around power sequence */
872 pp &= ~PANEL_POWER_RESET;
873 I915_WRITE(PCH_PP_CONTROL, pp);
874 POSTING_READ(PCH_PP_CONTROL);
875
9934c132
JB
876 pp &= ~POWER_TARGET_ON;
877 I915_WRITE(PCH_PP_CONTROL, pp);
01cb9ea6 878 POSTING_READ(PCH_PP_CONTROL);
9934c132 879
01cb9ea6 880 if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
913d8d11
CW
881 DRM_ERROR("panel off wait timed out: 0x%08x\n",
882 I915_READ(PCH_PP_STATUS));
9934c132 883
3969c9c9 884 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
9934c132 885 I915_WRITE(PCH_PP_CONTROL, pp);
37c6c9b0 886 POSTING_READ(PCH_PP_CONTROL);
9934c132
JB
887}
888
f2b115e6 889static void ironlake_edp_backlight_on (struct drm_device *dev)
32f9d658
ZW
890{
891 struct drm_i915_private *dev_priv = dev->dev_private;
892 u32 pp;
893
28c97730 894 DRM_DEBUG_KMS("\n");
01cb9ea6
JB
895 /*
896 * If we enable the backlight right away following a panel power
897 * on, we may see slight flicker as the panel syncs with the eDP
898 * link. So delay a bit to make sure the image is solid before
899 * allowing it to appear.
900 */
901 msleep(300);
32f9d658
ZW
902 pp = I915_READ(PCH_PP_CONTROL);
903 pp |= EDP_BLC_ENABLE;
904 I915_WRITE(PCH_PP_CONTROL, pp);
905}
906
f2b115e6 907static void ironlake_edp_backlight_off (struct drm_device *dev)
32f9d658
ZW
908{
909 struct drm_i915_private *dev_priv = dev->dev_private;
910 u32 pp;
911
28c97730 912 DRM_DEBUG_KMS("\n");
32f9d658
ZW
913 pp = I915_READ(PCH_PP_CONTROL);
914 pp &= ~EDP_BLC_ENABLE;
915 I915_WRITE(PCH_PP_CONTROL, pp);
916}
a4fc5ed6 917
d240f20f
JB
918static void ironlake_edp_pll_on(struct drm_encoder *encoder)
919{
920 struct drm_device *dev = encoder->dev;
921 struct drm_i915_private *dev_priv = dev->dev_private;
922 u32 dpa_ctl;
923
924 DRM_DEBUG_KMS("\n");
925 dpa_ctl = I915_READ(DP_A);
298b0b39 926 dpa_ctl |= DP_PLL_ENABLE;
d240f20f 927 I915_WRITE(DP_A, dpa_ctl);
298b0b39
JB
928 POSTING_READ(DP_A);
929 udelay(200);
d240f20f
JB
930}
931
932static void ironlake_edp_pll_off(struct drm_encoder *encoder)
933{
934 struct drm_device *dev = encoder->dev;
935 struct drm_i915_private *dev_priv = dev->dev_private;
936 u32 dpa_ctl;
937
938 dpa_ctl = I915_READ(DP_A);
298b0b39 939 dpa_ctl &= ~DP_PLL_ENABLE;
d240f20f 940 I915_WRITE(DP_A, dpa_ctl);
1af5fa1b 941 POSTING_READ(DP_A);
d240f20f
JB
942 udelay(200);
943}
944
c7ad3810
JB
945/* If the sink supports it, try to set the power state appropriately */
946static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
947{
948 int ret, i;
949
950 /* Should have a valid DPCD by this point */
951 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
952 return;
953
954 if (mode != DRM_MODE_DPMS_ON) {
955 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
956 DP_SET_POWER_D3);
957 if (ret != 1)
958 DRM_DEBUG_DRIVER("failed to write sink power state\n");
959 } else {
960 /*
961 * When turning on, we need to retry for 1ms to give the sink
962 * time to wake up.
963 */
964 for (i = 0; i < 3; i++) {
965 ret = intel_dp_aux_native_write_1(intel_dp,
966 DP_SET_POWER,
967 DP_SET_POWER_D0);
968 if (ret == 1)
969 break;
970 msleep(1);
971 }
972 }
973}
974
d240f20f
JB
975static void intel_dp_prepare(struct drm_encoder *encoder)
976{
977 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
978 struct drm_device *dev = encoder->dev;
d240f20f 979
c7ad3810
JB
980 /* Wake up the sink first */
981 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
982
4d926461 983 if (is_edp(intel_dp)) {
d240f20f 984 ironlake_edp_backlight_off(dev);
5d613501 985 ironlake_edp_panel_off(dev);
01cb9ea6
JB
986 if (!is_pch_edp(intel_dp))
987 ironlake_edp_pll_on(encoder);
988 else
989 ironlake_edp_pll_off(encoder);
d240f20f 990 }
736085bc 991 intel_dp_link_down(intel_dp);
d240f20f
JB
992}
993
994static void intel_dp_commit(struct drm_encoder *encoder)
995{
996 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
997 struct drm_device *dev = encoder->dev;
d240f20f 998
5d613501
JB
999 if (is_edp(intel_dp))
1000 ironlake_edp_panel_vdd_on(intel_dp);
1001
33a34e4e
JB
1002 intel_dp_start_link_train(intel_dp);
1003
5d613501 1004 if (is_edp(intel_dp)) {
01cb9ea6 1005 ironlake_edp_panel_on(intel_dp);
5d613501
JB
1006 ironlake_edp_panel_vdd_off(intel_dp);
1007 }
33a34e4e
JB
1008
1009 intel_dp_complete_link_train(intel_dp);
1010
4d926461 1011 if (is_edp(intel_dp))
d240f20f
JB
1012 ironlake_edp_backlight_on(dev);
1013}
1014
a4fc5ed6
KP
1015static void
1016intel_dp_dpms(struct drm_encoder *encoder, int mode)
1017{
ea5b213a 1018 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
55f78c43 1019 struct drm_device *dev = encoder->dev;
a4fc5ed6 1020 struct drm_i915_private *dev_priv = dev->dev_private;
ea5b213a 1021 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
a4fc5ed6
KP
1022
1023 if (mode != DRM_MODE_DPMS_ON) {
01cb9ea6 1024 if (is_edp(intel_dp))
7643a7fa 1025 ironlake_edp_backlight_off(dev);
c7ad3810 1026 intel_dp_sink_dpms(intel_dp, mode);
736085bc 1027 intel_dp_link_down(intel_dp);
4d926461 1028 if (is_edp(intel_dp))
01cb9ea6
JB
1029 ironlake_edp_panel_off(dev);
1030 if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
d240f20f 1031 ironlake_edp_pll_off(encoder);
a4fc5ed6 1032 } else {
736085bc 1033 if (is_edp(intel_dp))
5d613501 1034 ironlake_edp_panel_vdd_on(intel_dp);
c7ad3810 1035 intel_dp_sink_dpms(intel_dp, mode);
32f9d658 1036 if (!(dp_reg & DP_PORT_EN)) {
01cb9ea6 1037 intel_dp_start_link_train(intel_dp);
5d613501
JB
1038 if (is_edp(intel_dp)) {
1039 ironlake_edp_panel_on(intel_dp);
1040 ironlake_edp_panel_vdd_off(intel_dp);
1041 }
33a34e4e 1042 intel_dp_complete_link_train(intel_dp);
32f9d658 1043 }
736085bc
JB
1044 if (is_edp(intel_dp))
1045 ironlake_edp_backlight_on(dev);
a4fc5ed6
KP
1046 }
1047}
1048
1049/*
df0c237d
JB
1050 * Native read with retry for link status and receiver capability reads for
1051 * cases where the sink may still be asleep.
a4fc5ed6
KP
1052 */
1053static bool
df0c237d
JB
1054intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1055 uint8_t *recv, int recv_bytes)
a4fc5ed6 1056{
61da5fab
JB
1057 int ret, i;
1058
df0c237d
JB
1059 /*
1060 * Sinks are *supposed* to come up within 1ms from an off state,
1061 * but we're also supposed to retry 3 times per the spec.
1062 */
61da5fab 1063 for (i = 0; i < 3; i++) {
df0c237d
JB
1064 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1065 recv_bytes);
1066 if (ret == recv_bytes)
61da5fab
JB
1067 return true;
1068 msleep(1);
1069 }
a4fc5ed6 1070
61da5fab 1071 return false;
a4fc5ed6
KP
1072}
1073
df0c237d
JB
1074/*
1075 * Fetch AUX CH registers 0x202 - 0x207 which contain
1076 * link status information
1077 */
1078static bool
1079intel_dp_get_link_status(struct intel_dp *intel_dp)
1080{
1081 return intel_dp_aux_native_read_retry(intel_dp,
1082 DP_LANE0_1_STATUS,
1083 intel_dp->link_status,
1084 DP_LINK_STATUS_SIZE);
1085}
1086
a4fc5ed6
KP
1087static uint8_t
1088intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1089 int r)
1090{
1091 return link_status[r - DP_LANE0_1_STATUS];
1092}
1093
a4fc5ed6
KP
1094static uint8_t
1095intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1096 int lane)
1097{
1098 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1099 int s = ((lane & 1) ?
1100 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1101 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1102 uint8_t l = intel_dp_link_status(link_status, i);
1103
1104 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1105}
1106
1107static uint8_t
1108intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1109 int lane)
1110{
1111 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1112 int s = ((lane & 1) ?
1113 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1114 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1115 uint8_t l = intel_dp_link_status(link_status, i);
1116
1117 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1118}
1119
1120
1121#if 0
1122static char *voltage_names[] = {
1123 "0.4V", "0.6V", "0.8V", "1.2V"
1124};
1125static char *pre_emph_names[] = {
1126 "0dB", "3.5dB", "6dB", "9.5dB"
1127};
1128static char *link_train_names[] = {
1129 "pattern 1", "pattern 2", "idle", "off"
1130};
1131#endif
1132
1133/*
1134 * These are source-specific values; current Intel hardware supports
1135 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1136 */
1137#define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
1138
1139static uint8_t
1140intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1141{
1142 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1143 case DP_TRAIN_VOLTAGE_SWING_400:
1144 return DP_TRAIN_PRE_EMPHASIS_6;
1145 case DP_TRAIN_VOLTAGE_SWING_600:
1146 return DP_TRAIN_PRE_EMPHASIS_6;
1147 case DP_TRAIN_VOLTAGE_SWING_800:
1148 return DP_TRAIN_PRE_EMPHASIS_3_5;
1149 case DP_TRAIN_VOLTAGE_SWING_1200:
1150 default:
1151 return DP_TRAIN_PRE_EMPHASIS_0;
1152 }
1153}
1154
1155static void
33a34e4e 1156intel_get_adjust_train(struct intel_dp *intel_dp)
a4fc5ed6
KP
1157{
1158 uint8_t v = 0;
1159 uint8_t p = 0;
1160 int lane;
1161
33a34e4e
JB
1162 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1163 uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1164 uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
a4fc5ed6
KP
1165
1166 if (this_v > v)
1167 v = this_v;
1168 if (this_p > p)
1169 p = this_p;
1170 }
1171
1172 if (v >= I830_DP_VOLTAGE_MAX)
1173 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1174
1175 if (p >= intel_dp_pre_emphasis_max(v))
1176 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1177
1178 for (lane = 0; lane < 4; lane++)
33a34e4e 1179 intel_dp->train_set[lane] = v | p;
a4fc5ed6
KP
1180}
1181
1182static uint32_t
3cf2efb1 1183intel_dp_signal_levels(uint8_t train_set, int lane_count)
a4fc5ed6 1184{
3cf2efb1 1185 uint32_t signal_levels = 0;
a4fc5ed6 1186
3cf2efb1 1187 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
a4fc5ed6
KP
1188 case DP_TRAIN_VOLTAGE_SWING_400:
1189 default:
1190 signal_levels |= DP_VOLTAGE_0_4;
1191 break;
1192 case DP_TRAIN_VOLTAGE_SWING_600:
1193 signal_levels |= DP_VOLTAGE_0_6;
1194 break;
1195 case DP_TRAIN_VOLTAGE_SWING_800:
1196 signal_levels |= DP_VOLTAGE_0_8;
1197 break;
1198 case DP_TRAIN_VOLTAGE_SWING_1200:
1199 signal_levels |= DP_VOLTAGE_1_2;
1200 break;
1201 }
3cf2efb1 1202 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
a4fc5ed6
KP
1203 case DP_TRAIN_PRE_EMPHASIS_0:
1204 default:
1205 signal_levels |= DP_PRE_EMPHASIS_0;
1206 break;
1207 case DP_TRAIN_PRE_EMPHASIS_3_5:
1208 signal_levels |= DP_PRE_EMPHASIS_3_5;
1209 break;
1210 case DP_TRAIN_PRE_EMPHASIS_6:
1211 signal_levels |= DP_PRE_EMPHASIS_6;
1212 break;
1213 case DP_TRAIN_PRE_EMPHASIS_9_5:
1214 signal_levels |= DP_PRE_EMPHASIS_9_5;
1215 break;
1216 }
1217 return signal_levels;
1218}
1219
e3421a18
ZW
1220/* Gen6's DP voltage swing and pre-emphasis control */
1221static uint32_t
1222intel_gen6_edp_signal_levels(uint8_t train_set)
1223{
3c5a62b5
YL
1224 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1225 DP_TRAIN_PRE_EMPHASIS_MASK);
1226 switch (signal_levels) {
e3421a18 1227 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
3c5a62b5
YL
1228 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1229 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1230 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1231 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
e3421a18 1232 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
3c5a62b5
YL
1233 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1234 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
e3421a18 1235 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
3c5a62b5
YL
1236 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1237 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
e3421a18 1238 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
3c5a62b5
YL
1239 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1240 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
e3421a18 1241 default:
3c5a62b5
YL
1242 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1243 "0x%x\n", signal_levels);
1244 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
e3421a18
ZW
1245 }
1246}
1247
a4fc5ed6
KP
1248static uint8_t
1249intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1250 int lane)
1251{
1252 int i = DP_LANE0_1_STATUS + (lane >> 1);
1253 int s = (lane & 1) * 4;
1254 uint8_t l = intel_dp_link_status(link_status, i);
1255
1256 return (l >> s) & 0xf;
1257}
1258
1259/* Check for clock recovery is done on all channels */
1260static bool
1261intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1262{
1263 int lane;
1264 uint8_t lane_status;
1265
1266 for (lane = 0; lane < lane_count; lane++) {
1267 lane_status = intel_get_lane_status(link_status, lane);
1268 if ((lane_status & DP_LANE_CR_DONE) == 0)
1269 return false;
1270 }
1271 return true;
1272}
1273
1274/* Check to see if channel eq is done on all channels */
1275#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1276 DP_LANE_CHANNEL_EQ_DONE|\
1277 DP_LANE_SYMBOL_LOCKED)
1278static bool
33a34e4e 1279intel_channel_eq_ok(struct intel_dp *intel_dp)
a4fc5ed6
KP
1280{
1281 uint8_t lane_align;
1282 uint8_t lane_status;
1283 int lane;
1284
33a34e4e 1285 lane_align = intel_dp_link_status(intel_dp->link_status,
a4fc5ed6
KP
1286 DP_LANE_ALIGN_STATUS_UPDATED);
1287 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1288 return false;
33a34e4e
JB
1289 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1290 lane_status = intel_get_lane_status(intel_dp->link_status, lane);
a4fc5ed6
KP
1291 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1292 return false;
1293 }
1294 return true;
1295}
1296
1297static bool
ea5b213a 1298intel_dp_set_link_train(struct intel_dp *intel_dp,
a4fc5ed6 1299 uint32_t dp_reg_value,
58e10eb9 1300 uint8_t dp_train_pat)
a4fc5ed6 1301{
4ef69c7a 1302 struct drm_device *dev = intel_dp->base.base.dev;
a4fc5ed6 1303 struct drm_i915_private *dev_priv = dev->dev_private;
a4fc5ed6
KP
1304 int ret;
1305
ea5b213a
CW
1306 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1307 POSTING_READ(intel_dp->output_reg);
a4fc5ed6 1308
ea5b213a 1309 intel_dp_aux_native_write_1(intel_dp,
a4fc5ed6
KP
1310 DP_TRAINING_PATTERN_SET,
1311 dp_train_pat);
1312
ea5b213a 1313 ret = intel_dp_aux_native_write(intel_dp,
58e10eb9
CW
1314 DP_TRAINING_LANE0_SET,
1315 intel_dp->train_set, 4);
a4fc5ed6
KP
1316 if (ret != 4)
1317 return false;
1318
1319 return true;
1320}
1321
33a34e4e 1322/* Enable corresponding port and start training pattern 1 */
a4fc5ed6 1323static void
33a34e4e 1324intel_dp_start_link_train(struct intel_dp *intel_dp)
a4fc5ed6 1325{
4ef69c7a 1326 struct drm_device *dev = intel_dp->base.base.dev;
a4fc5ed6 1327 struct drm_i915_private *dev_priv = dev->dev_private;
58e10eb9 1328 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
a4fc5ed6
KP
1329 int i;
1330 uint8_t voltage;
1331 bool clock_recovery = false;
a4fc5ed6 1332 int tries;
e3421a18 1333 u32 reg;
ea5b213a 1334 uint32_t DP = intel_dp->DP;
a4fc5ed6 1335
b99a9d9b
KP
1336 /* Enable output, wait for it to become active */
1337 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1338 POSTING_READ(intel_dp->output_reg);
1339 intel_wait_for_vblank(dev, intel_crtc->pipe);
a4fc5ed6 1340
3cf2efb1
CW
1341 /* Write the link configuration data */
1342 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1343 intel_dp->link_configuration,
1344 DP_LINK_CONFIGURATION_SIZE);
a4fc5ed6
KP
1345
1346 DP |= DP_PORT_EN;
cfcb0fc9 1347 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
e3421a18
ZW
1348 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1349 else
1350 DP &= ~DP_LINK_TRAIN_MASK;
33a34e4e 1351 memset(intel_dp->train_set, 0, 4);
a4fc5ed6
KP
1352 voltage = 0xff;
1353 tries = 0;
1354 clock_recovery = false;
1355 for (;;) {
33a34e4e 1356 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
e3421a18 1357 uint32_t signal_levels;
cfcb0fc9 1358 if (IS_GEN6(dev) && is_edp(intel_dp)) {
33a34e4e 1359 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
e3421a18
ZW
1360 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1361 } else {
3cf2efb1 1362 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
e3421a18
ZW
1363 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1364 }
a4fc5ed6 1365
cfcb0fc9 1366 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
e3421a18
ZW
1367 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1368 else
1369 reg = DP | DP_LINK_TRAIN_PAT_1;
1370
ea5b213a 1371 if (!intel_dp_set_link_train(intel_dp, reg,
58e10eb9 1372 DP_TRAINING_PATTERN_1))
a4fc5ed6 1373 break;
a4fc5ed6
KP
1374 /* Set training pattern 1 */
1375
3cf2efb1
CW
1376 udelay(100);
1377 if (!intel_dp_get_link_status(intel_dp))
a4fc5ed6 1378 break;
a4fc5ed6 1379
3cf2efb1
CW
1380 if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1381 clock_recovery = true;
1382 break;
1383 }
1384
1385 /* Check to see if we've tried the max voltage */
1386 for (i = 0; i < intel_dp->lane_count; i++)
1387 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
a4fc5ed6 1388 break;
3cf2efb1
CW
1389 if (i == intel_dp->lane_count)
1390 break;
a4fc5ed6 1391
3cf2efb1
CW
1392 /* Check to see if we've tried the same voltage 5 times */
1393 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1394 ++tries;
1395 if (tries == 5)
a4fc5ed6 1396 break;
3cf2efb1
CW
1397 } else
1398 tries = 0;
1399 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
a4fc5ed6 1400
3cf2efb1
CW
1401 /* Compute new intel_dp->train_set as requested by target */
1402 intel_get_adjust_train(intel_dp);
a4fc5ed6
KP
1403 }
1404
33a34e4e
JB
1405 intel_dp->DP = DP;
1406}
1407
1408static void
1409intel_dp_complete_link_train(struct intel_dp *intel_dp)
1410{
4ef69c7a 1411 struct drm_device *dev = intel_dp->base.base.dev;
33a34e4e
JB
1412 struct drm_i915_private *dev_priv = dev->dev_private;
1413 bool channel_eq = false;
37f80975 1414 int tries, cr_tries;
33a34e4e
JB
1415 u32 reg;
1416 uint32_t DP = intel_dp->DP;
1417
a4fc5ed6
KP
1418 /* channel equalization */
1419 tries = 0;
37f80975 1420 cr_tries = 0;
a4fc5ed6
KP
1421 channel_eq = false;
1422 for (;;) {
33a34e4e 1423 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
e3421a18
ZW
1424 uint32_t signal_levels;
1425
37f80975
JB
1426 if (cr_tries > 5) {
1427 DRM_ERROR("failed to train DP, aborting\n");
1428 intel_dp_link_down(intel_dp);
1429 break;
1430 }
1431
cfcb0fc9 1432 if (IS_GEN6(dev) && is_edp(intel_dp)) {
33a34e4e 1433 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
e3421a18
ZW
1434 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1435 } else {
3cf2efb1 1436 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
e3421a18
ZW
1437 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1438 }
1439
cfcb0fc9 1440 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
e3421a18
ZW
1441 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1442 else
1443 reg = DP | DP_LINK_TRAIN_PAT_2;
a4fc5ed6
KP
1444
1445 /* channel eq pattern */
ea5b213a 1446 if (!intel_dp_set_link_train(intel_dp, reg,
58e10eb9 1447 DP_TRAINING_PATTERN_2))
a4fc5ed6
KP
1448 break;
1449
3cf2efb1
CW
1450 udelay(400);
1451 if (!intel_dp_get_link_status(intel_dp))
a4fc5ed6 1452 break;
a4fc5ed6 1453
37f80975
JB
1454 /* Make sure clock is still ok */
1455 if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1456 intel_dp_start_link_train(intel_dp);
1457 cr_tries++;
1458 continue;
1459 }
1460
3cf2efb1
CW
1461 if (intel_channel_eq_ok(intel_dp)) {
1462 channel_eq = true;
1463 break;
1464 }
a4fc5ed6 1465
37f80975
JB
1466 /* Try 5 times, then try clock recovery if that fails */
1467 if (tries > 5) {
1468 intel_dp_link_down(intel_dp);
1469 intel_dp_start_link_train(intel_dp);
1470 tries = 0;
1471 cr_tries++;
1472 continue;
1473 }
a4fc5ed6 1474
3cf2efb1
CW
1475 /* Compute new intel_dp->train_set as requested by target */
1476 intel_get_adjust_train(intel_dp);
1477 ++tries;
869184a6 1478 }
3cf2efb1 1479
cfcb0fc9 1480 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
e3421a18
ZW
1481 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1482 else
1483 reg = DP | DP_LINK_TRAIN_OFF;
1484
ea5b213a
CW
1485 I915_WRITE(intel_dp->output_reg, reg);
1486 POSTING_READ(intel_dp->output_reg);
1487 intel_dp_aux_native_write_1(intel_dp,
a4fc5ed6
KP
1488 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1489}
1490
1491static void
ea5b213a 1492intel_dp_link_down(struct intel_dp *intel_dp)
a4fc5ed6 1493{
4ef69c7a 1494 struct drm_device *dev = intel_dp->base.base.dev;
a4fc5ed6 1495 struct drm_i915_private *dev_priv = dev->dev_private;
ea5b213a 1496 uint32_t DP = intel_dp->DP;
a4fc5ed6 1497
1b39d6f3
CW
1498 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1499 return;
1500
28c97730 1501 DRM_DEBUG_KMS("\n");
32f9d658 1502
cfcb0fc9 1503 if (is_edp(intel_dp)) {
32f9d658 1504 DP &= ~DP_PLL_ENABLE;
ea5b213a
CW
1505 I915_WRITE(intel_dp->output_reg, DP);
1506 POSTING_READ(intel_dp->output_reg);
32f9d658
ZW
1507 udelay(100);
1508 }
1509
cfcb0fc9 1510 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
e3421a18 1511 DP &= ~DP_LINK_TRAIN_MASK_CPT;
ea5b213a 1512 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
e3421a18
ZW
1513 } else {
1514 DP &= ~DP_LINK_TRAIN_MASK;
ea5b213a 1515 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
e3421a18 1516 }
fe255d00 1517 POSTING_READ(intel_dp->output_reg);
5eb08b69 1518
fe255d00 1519 msleep(17);
5eb08b69 1520
cfcb0fc9 1521 if (is_edp(intel_dp))
32f9d658 1522 DP |= DP_LINK_TRAIN_OFF;
5bddd17f 1523
1b39d6f3
CW
1524 if (!HAS_PCH_CPT(dev) &&
1525 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
31acbcc4
CW
1526 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1527
5bddd17f
EA
1528 /* Hardware workaround: leaving our transcoder select
1529 * set to transcoder B while it's off will prevent the
1530 * corresponding HDMI output on transcoder A.
1531 *
1532 * Combine this with another hardware workaround:
1533 * transcoder select bit can only be cleared while the
1534 * port is enabled.
1535 */
1536 DP &= ~DP_PIPEB_SELECT;
1537 I915_WRITE(intel_dp->output_reg, DP);
1538
1539 /* Changes to enable or select take place the vblank
1540 * after being written.
1541 */
31acbcc4
CW
1542 if (crtc == NULL) {
1543 /* We can arrive here never having been attached
1544 * to a CRTC, for instance, due to inheriting
1545 * random state from the BIOS.
1546 *
1547 * If the pipe is not running, play safe and
1548 * wait for the clocks to stabilise before
1549 * continuing.
1550 */
1551 POSTING_READ(intel_dp->output_reg);
1552 msleep(50);
1553 } else
1554 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
5bddd17f
EA
1555 }
1556
ea5b213a
CW
1557 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1558 POSTING_READ(intel_dp->output_reg);
a4fc5ed6
KP
1559}
1560
a4fc5ed6
KP
1561/*
1562 * According to DP spec
1563 * 5.1.2:
1564 * 1. Read DPCD
1565 * 2. Configure link according to Receiver Capabilities
1566 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1567 * 4. Check link status on receipt of hot-plug interrupt
1568 */
1569
1570static void
ea5b213a 1571intel_dp_check_link_status(struct intel_dp *intel_dp)
a4fc5ed6 1572{
59cd09e1
JB
1573 int ret;
1574
4ef69c7a 1575 if (!intel_dp->base.base.crtc)
a4fc5ed6
KP
1576 return;
1577
33a34e4e 1578 if (!intel_dp_get_link_status(intel_dp)) {
ea5b213a 1579 intel_dp_link_down(intel_dp);
a4fc5ed6
KP
1580 return;
1581 }
1582
59cd09e1
JB
1583 /* Try to read receiver status if the link appears to be up */
1584 ret = intel_dp_aux_native_read(intel_dp,
1585 0x000, intel_dp->dpcd,
1586 sizeof (intel_dp->dpcd));
1587 if (ret != sizeof(intel_dp->dpcd)) {
1588 intel_dp_link_down(intel_dp);
1589 return;
1590 }
1591
33a34e4e
JB
1592 if (!intel_channel_eq_ok(intel_dp)) {
1593 intel_dp_start_link_train(intel_dp);
1594 intel_dp_complete_link_train(intel_dp);
1595 }
a4fc5ed6 1596}
a4fc5ed6 1597
5eb08b69 1598static enum drm_connector_status
a9756bb5 1599ironlake_dp_detect(struct intel_dp *intel_dp)
5eb08b69 1600{
5eb08b69 1601 enum drm_connector_status status;
df0c237d 1602 bool ret;
5eb08b69 1603
fe16d949
CW
1604 /* Can't disconnect eDP, but you can close the lid... */
1605 if (is_edp(intel_dp)) {
1606 status = intel_panel_detect(intel_dp->base.base.dev);
1607 if (status == connector_status_unknown)
1608 status = connector_status_connected;
1609 return status;
1610 }
01cb9ea6 1611
5eb08b69 1612 status = connector_status_disconnected;
df0c237d
JB
1613 ret = intel_dp_aux_native_read_retry(intel_dp,
1614 0x000, intel_dp->dpcd,
1615 sizeof (intel_dp->dpcd));
1616 if (ret && intel_dp->dpcd[DP_DPCD_REV] != 0)
1617 status = connector_status_connected;
ea5b213a
CW
1618 DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
1619 intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
5eb08b69
ZW
1620 return status;
1621}
1622
a4fc5ed6 1623static enum drm_connector_status
a9756bb5 1624g4x_dp_detect(struct intel_dp *intel_dp)
a4fc5ed6 1625{
4ef69c7a 1626 struct drm_device *dev = intel_dp->base.base.dev;
a4fc5ed6 1627 struct drm_i915_private *dev_priv = dev->dev_private;
a4fc5ed6 1628 enum drm_connector_status status;
a9756bb5 1629 uint32_t temp, bit;
5eb08b69 1630
ea5b213a 1631 switch (intel_dp->output_reg) {
a4fc5ed6
KP
1632 case DP_B:
1633 bit = DPB_HOTPLUG_INT_STATUS;
1634 break;
1635 case DP_C:
1636 bit = DPC_HOTPLUG_INT_STATUS;
1637 break;
1638 case DP_D:
1639 bit = DPD_HOTPLUG_INT_STATUS;
1640 break;
1641 default:
1642 return connector_status_unknown;
1643 }
1644
1645 temp = I915_READ(PORT_HOTPLUG_STAT);
1646
1647 if ((temp & bit) == 0)
1648 return connector_status_disconnected;
1649
1650 status = connector_status_disconnected;
a9756bb5 1651 if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
ea5b213a 1652 sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
a4fc5ed6 1653 {
7183dc29 1654 if (intel_dp->dpcd[DP_DPCD_REV] != 0)
a4fc5ed6
KP
1655 status = connector_status_connected;
1656 }
a9756bb5 1657
dd2b379f 1658 return status;
a9756bb5
ZW
1659}
1660
1661/**
1662 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1663 *
1664 * \return true if DP port is connected.
1665 * \return false if DP port is disconnected.
1666 */
1667static enum drm_connector_status
1668intel_dp_detect(struct drm_connector *connector, bool force)
1669{
1670 struct intel_dp *intel_dp = intel_attached_dp(connector);
1671 struct drm_device *dev = intel_dp->base.base.dev;
1672 enum drm_connector_status status;
1673 struct edid *edid = NULL;
1674
1675 intel_dp->has_audio = false;
97cdd710 1676 memset(intel_dp->dpcd, 0, sizeof(intel_dp->dpcd));
a9756bb5
ZW
1677
1678 if (HAS_PCH_SPLIT(dev))
1679 status = ironlake_dp_detect(intel_dp);
1680 else
1681 status = g4x_dp_detect(intel_dp);
1682 if (status != connector_status_connected)
1683 return status;
1684
f684960e
CW
1685 if (intel_dp->force_audio) {
1686 intel_dp->has_audio = intel_dp->force_audio > 0;
1687 } else {
1688 edid = drm_get_edid(connector, &intel_dp->adapter);
1689 if (edid) {
1690 intel_dp->has_audio = drm_detect_monitor_audio(edid);
1691 connector->display_info.raw_edid = NULL;
1692 kfree(edid);
1693 }
a9756bb5
ZW
1694 }
1695
1696 return connector_status_connected;
a4fc5ed6
KP
1697}
1698
1699static int intel_dp_get_modes(struct drm_connector *connector)
1700{
df0e9248 1701 struct intel_dp *intel_dp = intel_attached_dp(connector);
4ef69c7a 1702 struct drm_device *dev = intel_dp->base.base.dev;
32f9d658
ZW
1703 struct drm_i915_private *dev_priv = dev->dev_private;
1704 int ret;
a4fc5ed6
KP
1705
1706 /* We should parse the EDID data and find out if it has an audio sink
1707 */
1708
f899fc64 1709 ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
b9efc480 1710 if (ret) {
4d926461 1711 if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
b9efc480
ZY
1712 struct drm_display_mode *newmode;
1713 list_for_each_entry(newmode, &connector->probed_modes,
1714 head) {
1715 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1716 dev_priv->panel_fixed_mode =
1717 drm_mode_duplicate(dev, newmode);
1718 break;
1719 }
1720 }
1721 }
1722
32f9d658 1723 return ret;
b9efc480 1724 }
32f9d658
ZW
1725
1726 /* if eDP has no EDID, try to use fixed panel mode from VBT */
4d926461 1727 if (is_edp(intel_dp)) {
32f9d658
ZW
1728 if (dev_priv->panel_fixed_mode != NULL) {
1729 struct drm_display_mode *mode;
1730 mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1731 drm_mode_probed_add(connector, mode);
1732 return 1;
1733 }
1734 }
1735 return 0;
a4fc5ed6
KP
1736}
1737
1aad7ac0
CW
1738static bool
1739intel_dp_detect_audio(struct drm_connector *connector)
1740{
1741 struct intel_dp *intel_dp = intel_attached_dp(connector);
1742 struct edid *edid;
1743 bool has_audio = false;
1744
1745 edid = drm_get_edid(connector, &intel_dp->adapter);
1746 if (edid) {
1747 has_audio = drm_detect_monitor_audio(edid);
1748
1749 connector->display_info.raw_edid = NULL;
1750 kfree(edid);
1751 }
1752
1753 return has_audio;
1754}
1755
f684960e
CW
1756static int
1757intel_dp_set_property(struct drm_connector *connector,
1758 struct drm_property *property,
1759 uint64_t val)
1760{
e953fd7b 1761 struct drm_i915_private *dev_priv = connector->dev->dev_private;
f684960e
CW
1762 struct intel_dp *intel_dp = intel_attached_dp(connector);
1763 int ret;
1764
1765 ret = drm_connector_property_set_value(connector, property, val);
1766 if (ret)
1767 return ret;
1768
3f43c48d 1769 if (property == dev_priv->force_audio_property) {
1aad7ac0
CW
1770 int i = val;
1771 bool has_audio;
1772
1773 if (i == intel_dp->force_audio)
f684960e
CW
1774 return 0;
1775
1aad7ac0 1776 intel_dp->force_audio = i;
f684960e 1777
1aad7ac0
CW
1778 if (i == 0)
1779 has_audio = intel_dp_detect_audio(connector);
1780 else
1781 has_audio = i > 0;
1782
1783 if (has_audio == intel_dp->has_audio)
f684960e
CW
1784 return 0;
1785
1aad7ac0 1786 intel_dp->has_audio = has_audio;
f684960e
CW
1787 goto done;
1788 }
1789
e953fd7b
CW
1790 if (property == dev_priv->broadcast_rgb_property) {
1791 if (val == !!intel_dp->color_range)
1792 return 0;
1793
1794 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1795 goto done;
1796 }
1797
f684960e
CW
1798 return -EINVAL;
1799
1800done:
1801 if (intel_dp->base.base.crtc) {
1802 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1803 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1804 crtc->x, crtc->y,
1805 crtc->fb);
1806 }
1807
1808 return 0;
1809}
1810
a4fc5ed6
KP
1811static void
1812intel_dp_destroy (struct drm_connector *connector)
1813{
a4fc5ed6
KP
1814 drm_sysfs_connector_remove(connector);
1815 drm_connector_cleanup(connector);
55f78c43 1816 kfree(connector);
a4fc5ed6
KP
1817}
1818
24d05927
DV
1819static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1820{
1821 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1822
1823 i2c_del_adapter(&intel_dp->adapter);
1824 drm_encoder_cleanup(encoder);
1825 kfree(intel_dp);
1826}
1827
a4fc5ed6
KP
1828static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1829 .dpms = intel_dp_dpms,
1830 .mode_fixup = intel_dp_mode_fixup,
d240f20f 1831 .prepare = intel_dp_prepare,
a4fc5ed6 1832 .mode_set = intel_dp_mode_set,
d240f20f 1833 .commit = intel_dp_commit,
a4fc5ed6
KP
1834};
1835
1836static const struct drm_connector_funcs intel_dp_connector_funcs = {
1837 .dpms = drm_helper_connector_dpms,
a4fc5ed6
KP
1838 .detect = intel_dp_detect,
1839 .fill_modes = drm_helper_probe_single_connector_modes,
f684960e 1840 .set_property = intel_dp_set_property,
a4fc5ed6
KP
1841 .destroy = intel_dp_destroy,
1842};
1843
1844static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1845 .get_modes = intel_dp_get_modes,
1846 .mode_valid = intel_dp_mode_valid,
df0e9248 1847 .best_encoder = intel_best_encoder,
a4fc5ed6
KP
1848};
1849
a4fc5ed6 1850static const struct drm_encoder_funcs intel_dp_enc_funcs = {
24d05927 1851 .destroy = intel_dp_encoder_destroy,
a4fc5ed6
KP
1852};
1853
995b6762 1854static void
21d40d37 1855intel_dp_hot_plug(struct intel_encoder *intel_encoder)
c8110e52 1856{
ea5b213a 1857 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
c8110e52 1858
885a5014 1859 intel_dp_check_link_status(intel_dp);
c8110e52 1860}
6207937d 1861
e3421a18
ZW
1862/* Return which DP Port should be selected for Transcoder DP control */
1863int
1864intel_trans_dp_port_sel (struct drm_crtc *crtc)
1865{
1866 struct drm_device *dev = crtc->dev;
1867 struct drm_mode_config *mode_config = &dev->mode_config;
1868 struct drm_encoder *encoder;
e3421a18
ZW
1869
1870 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
ea5b213a
CW
1871 struct intel_dp *intel_dp;
1872
d8201ab6 1873 if (encoder->crtc != crtc)
e3421a18
ZW
1874 continue;
1875
ea5b213a
CW
1876 intel_dp = enc_to_intel_dp(encoder);
1877 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1878 return intel_dp->output_reg;
e3421a18 1879 }
ea5b213a 1880
e3421a18
ZW
1881 return -1;
1882}
1883
36e83a18 1884/* check the VBT to see whether the eDP is on DP-D port */
cb0953d7 1885bool intel_dpd_is_edp(struct drm_device *dev)
36e83a18
ZY
1886{
1887 struct drm_i915_private *dev_priv = dev->dev_private;
1888 struct child_device_config *p_child;
1889 int i;
1890
1891 if (!dev_priv->child_dev_num)
1892 return false;
1893
1894 for (i = 0; i < dev_priv->child_dev_num; i++) {
1895 p_child = dev_priv->child_dev + i;
1896
1897 if (p_child->dvo_port == PORT_IDPD &&
1898 p_child->device_type == DEVICE_TYPE_eDP)
1899 return true;
1900 }
1901 return false;
1902}
1903
f684960e
CW
1904static void
1905intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1906{
3f43c48d 1907 intel_attach_force_audio_property(connector);
e953fd7b 1908 intel_attach_broadcast_rgb_property(connector);
f684960e
CW
1909}
1910
a4fc5ed6
KP
1911void
1912intel_dp_init(struct drm_device *dev, int output_reg)
1913{
1914 struct drm_i915_private *dev_priv = dev->dev_private;
1915 struct drm_connector *connector;
ea5b213a 1916 struct intel_dp *intel_dp;
21d40d37 1917 struct intel_encoder *intel_encoder;
55f78c43 1918 struct intel_connector *intel_connector;
5eb08b69 1919 const char *name = NULL;
b329530c 1920 int type;
a4fc5ed6 1921
ea5b213a
CW
1922 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1923 if (!intel_dp)
a4fc5ed6
KP
1924 return;
1925
3d3dc149 1926 intel_dp->output_reg = output_reg;
3d3dc149 1927
55f78c43
ZW
1928 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1929 if (!intel_connector) {
ea5b213a 1930 kfree(intel_dp);
55f78c43
ZW
1931 return;
1932 }
ea5b213a 1933 intel_encoder = &intel_dp->base;
55f78c43 1934
ea5b213a 1935 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
b329530c 1936 if (intel_dpd_is_edp(dev))
ea5b213a 1937 intel_dp->is_pch_edp = true;
b329530c 1938
cfcb0fc9 1939 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
b329530c
AJ
1940 type = DRM_MODE_CONNECTOR_eDP;
1941 intel_encoder->type = INTEL_OUTPUT_EDP;
1942 } else {
1943 type = DRM_MODE_CONNECTOR_DisplayPort;
1944 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1945 }
1946
55f78c43 1947 connector = &intel_connector->base;
b329530c 1948 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
a4fc5ed6
KP
1949 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1950
eb1f8e4f
DA
1951 connector->polled = DRM_CONNECTOR_POLL_HPD;
1952
652af9d7 1953 if (output_reg == DP_B || output_reg == PCH_DP_B)
21d40d37 1954 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
652af9d7 1955 else if (output_reg == DP_C || output_reg == PCH_DP_C)
21d40d37 1956 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
652af9d7 1957 else if (output_reg == DP_D || output_reg == PCH_DP_D)
21d40d37 1958 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
f8aed700 1959
cfcb0fc9 1960 if (is_edp(intel_dp))
21d40d37 1961 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
6251ec0a 1962
21d40d37 1963 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
a4fc5ed6
KP
1964 connector->interlace_allowed = true;
1965 connector->doublescan_allowed = 0;
1966
4ef69c7a 1967 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
a4fc5ed6 1968 DRM_MODE_ENCODER_TMDS);
4ef69c7a 1969 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
a4fc5ed6 1970
df0e9248 1971 intel_connector_attach_encoder(intel_connector, intel_encoder);
a4fc5ed6
KP
1972 drm_sysfs_connector_add(connector);
1973
1974 /* Set up the DDC bus. */
5eb08b69 1975 switch (output_reg) {
32f9d658
ZW
1976 case DP_A:
1977 name = "DPDDC-A";
1978 break;
5eb08b69
ZW
1979 case DP_B:
1980 case PCH_DP_B:
b01f2c3a
JB
1981 dev_priv->hotplug_supported_mask |=
1982 HDMIB_HOTPLUG_INT_STATUS;
5eb08b69
ZW
1983 name = "DPDDC-B";
1984 break;
1985 case DP_C:
1986 case PCH_DP_C:
b01f2c3a
JB
1987 dev_priv->hotplug_supported_mask |=
1988 HDMIC_HOTPLUG_INT_STATUS;
5eb08b69
ZW
1989 name = "DPDDC-C";
1990 break;
1991 case DP_D:
1992 case PCH_DP_D:
b01f2c3a
JB
1993 dev_priv->hotplug_supported_mask |=
1994 HDMID_HOTPLUG_INT_STATUS;
5eb08b69
ZW
1995 name = "DPDDC-D";
1996 break;
1997 }
1998
ea5b213a 1999 intel_dp_i2c_init(intel_dp, intel_connector, name);
32f9d658 2000
89667383
JB
2001 /* Cache some DPCD data in the eDP case */
2002 if (is_edp(intel_dp)) {
2003 int ret;
5d613501
JB
2004 u32 pp_on, pp_div;
2005
2006 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2007 pp_div = I915_READ(PCH_PP_DIVISOR);
89667383 2008
5d613501
JB
2009 /* Get T3 & T12 values (note: VESA not bspec terminology) */
2010 dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
2011 dev_priv->panel_t3 /= 10; /* t3 in 100us units */
2012 dev_priv->panel_t12 = pp_div & 0xf;
2013 dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
2014
2015 ironlake_edp_panel_vdd_on(intel_dp);
89667383
JB
2016 ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
2017 intel_dp->dpcd,
2018 sizeof(intel_dp->dpcd));
3d3dc149 2019 ironlake_edp_panel_vdd_off(intel_dp);
89667383 2020 if (ret == sizeof(intel_dp->dpcd)) {
7183dc29
JB
2021 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2022 dev_priv->no_aux_handshake =
2023 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
89667383
JB
2024 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2025 } else {
3d3dc149 2026 /* if this fails, presume the device is a ghost */
48898b03 2027 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3d3dc149 2028 intel_dp_encoder_destroy(&intel_dp->base.base);
48898b03 2029 intel_dp_destroy(&intel_connector->base);
3d3dc149 2030 return;
89667383 2031 }
89667383
JB
2032 }
2033
21d40d37 2034 intel_encoder->hot_plug = intel_dp_hot_plug;
a4fc5ed6 2035
4d926461 2036 if (is_edp(intel_dp)) {
32f9d658
ZW
2037 /* initialize panel mode from VBT if available for eDP */
2038 if (dev_priv->lfp_lvds_vbt_mode) {
2039 dev_priv->panel_fixed_mode =
2040 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2041 if (dev_priv->panel_fixed_mode) {
2042 dev_priv->panel_fixed_mode->type |=
2043 DRM_MODE_TYPE_PREFERRED;
2044 }
2045 }
2046 }
2047
f684960e
CW
2048 intel_dp_add_properties(intel_dp, connector);
2049
a4fc5ed6
KP
2050 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2051 * 0xd. Failure to do so will result in spurious interrupts being
2052 * generated on the port when a cable is not attached.
2053 */
2054 if (IS_G4X(dev) && !IS_GM45(dev)) {
2055 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2056 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2057 }
2058}