]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Compact a few pipe config debug lines
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 158
70c2a24d
CW
159#define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
8670d6f9
OM
164#define CTX_LRI_HEADER_0 0x01
165#define CTX_CONTEXT_CONTROL 0x02
166#define CTX_RING_HEAD 0x04
167#define CTX_RING_TAIL 0x06
168#define CTX_RING_BUFFER_START 0x08
169#define CTX_RING_BUFFER_CONTROL 0x0a
170#define CTX_BB_HEAD_U 0x0c
171#define CTX_BB_HEAD_L 0x0e
172#define CTX_BB_STATE 0x10
173#define CTX_SECOND_BB_HEAD_U 0x12
174#define CTX_SECOND_BB_HEAD_L 0x14
175#define CTX_SECOND_BB_STATE 0x16
176#define CTX_BB_PER_CTX_PTR 0x18
177#define CTX_RCS_INDIRECT_CTX 0x1a
178#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179#define CTX_LRI_HEADER_1 0x21
180#define CTX_CTX_TIMESTAMP 0x22
181#define CTX_PDP3_UDW 0x24
182#define CTX_PDP3_LDW 0x26
183#define CTX_PDP2_UDW 0x28
184#define CTX_PDP2_LDW 0x2a
185#define CTX_PDP1_UDW 0x2c
186#define CTX_PDP1_LDW 0x2e
187#define CTX_PDP0_UDW 0x30
188#define CTX_PDP0_LDW 0x32
189#define CTX_LRI_HEADER_2 0x41
190#define CTX_R_PWR_CLK_STATE 0x42
191#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
84b790f8
BW
193#define GEN8_CTX_VALID (1<<0)
194#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195#define GEN8_CTX_FORCE_RESTORE (1<<2)
196#define GEN8_CTX_L3LLC_COHERENT (1<<5)
197#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 198
0d925ea0 199#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 200 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
201 (reg_state)[(pos)+1] = (val); \
202} while (0)
203
204#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 205 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
206 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 208} while (0)
e5815a2e 209
9244a817 210#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
211 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 213} while (0)
2dba3239 214
84b790f8
BW
215enum {
216 FAULT_AND_HANG = 0,
217 FAULT_AND_HALT, /* Debug only */
218 FAULT_AND_STREAM,
219 FAULT_AND_CONTINUE /* Unsupported */
220};
221#define GEN8_CTX_ID_SHIFT 32
7069b144 222#define GEN8_CTX_ID_WIDTH 21
71562919
MT
223#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
224#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 225
0e93cdd4
CW
226/* Typical size of the average request (2 pipecontrols and a MI_BB) */
227#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
a3aabe86
CW
229#define WA_TAIL_DWORDS 2
230
e2efd130 231static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 232 struct intel_engine_cs *engine);
e2efd130 233static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 234 struct intel_engine_cs *engine);
a3aabe86
CW
235static void execlists_init_reg_state(u32 *reg_state,
236 struct i915_gem_context *ctx,
237 struct intel_engine_cs *engine,
238 struct intel_ring *ring);
7ba717cf 239
73e4d07f
OM
240/**
241 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 242 * @dev_priv: i915 device private
73e4d07f
OM
243 * @enable_execlists: value of i915.enable_execlists module parameter.
244 *
245 * Only certain platforms support Execlists (the prerequisites being
27401d12 246 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
247 *
248 * Return: 1 if Execlists is supported and has to be enabled.
249 */
c033666a 250int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 251{
a0bd6c31
ZL
252 /* On platforms with execlist available, vGPU will only
253 * support execlist mode, no ring buffer mode.
254 */
c033666a 255 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
256 return 1;
257
c033666a 258 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
259 return 1;
260
127f1003
OM
261 if (enable_execlists == 0)
262 return 0;
263
5a21b665
DV
264 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
265 USES_PPGTT(dev_priv) &&
266 i915.use_mmio_flip >= 0)
127f1003
OM
267 return 1;
268
269 return 0;
270}
ede7d42b 271
ca82580c 272static void
0bc40be8 273logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 274{
c033666a 275 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 276
70c2a24d 277 engine->disable_lite_restore_wa =
a117f378 278 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
70c2a24d 279 (engine->id == VCS || engine->id == VCS2);
ca82580c 280
0bc40be8 281 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 282 if (IS_GEN8(dev_priv))
0bc40be8
TU
283 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
284 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
285
286 /* TODO: WaDisableLiteRestore when we start using semaphore
287 * signalling between Command Streamers */
288 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
289
290 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
291 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
292 if (engine->disable_lite_restore_wa)
293 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
294}
295
73e4d07f 296/**
ca82580c
TU
297 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
298 * descriptor for a pinned context
ca82580c 299 * @ctx: Context to work on
9021ad03 300 * @engine: Engine the descriptor will be used with
73e4d07f 301 *
ca82580c
TU
302 * The context descriptor encodes various attributes of a context,
303 * including its GTT address and some flags. Because it's fairly
304 * expensive to calculate, we'll just do it once and cache the result,
305 * which remains valid until the context is unpinned.
306 *
6e5248b5
DV
307 * This is what a descriptor looks like, from LSB to MSB::
308 *
309 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
310 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
311 * bits 32-52: ctx ID, a globally unique tag
312 * bits 53-54: mbz, reserved for use by hardware
313 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 314 */
ca82580c 315static void
e2efd130 316intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 317 struct intel_engine_cs *engine)
84b790f8 318{
9021ad03 319 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 320 u64 desc;
84b790f8 321
7069b144 322 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 323
c01fc532
ZW
324 desc = ctx->desc_template; /* bits 3-4 */
325 desc |= engine->ctx_desc_template; /* bits 0-11 */
bde13ebd 326 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 327 /* bits 12-31 */
7069b144 328 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 329
9021ad03 330 ce->lrc_desc = desc;
5af05fef
MT
331}
332
e2efd130 333uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 334 struct intel_engine_cs *engine)
84b790f8 335{
0bc40be8 336 return ctx->engine[engine->id].lrc_desc;
ca82580c 337}
203a571b 338
bbd6c47e
CW
339static inline void
340execlists_context_status_change(struct drm_i915_gem_request *rq,
341 unsigned long status)
84b790f8 342{
bbd6c47e
CW
343 /*
344 * Only used when GVT-g is enabled now. When GVT-g is disabled,
345 * The compiler should eliminate this function as dead-code.
346 */
347 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
348 return;
6daccb0b 349
bbd6c47e 350 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
84b790f8
BW
351}
352
c6a2ac71
TU
353static void
354execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
355{
356 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
357 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
358 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
359 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
360}
361
70c2a24d 362static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 363{
70c2a24d 364 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
05d9824b 365 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
70c2a24d 366 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 367
caddfe71 368 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 369
c6a2ac71
TU
370 /* True 32b PPGTT with dynamic page allocation: update PDP
371 * registers and point the unallocated PDPs to scratch page.
372 * PML4 is allocated during ppgtt init, so this is not needed
373 * in 48-bit mode.
374 */
375 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
376 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
377
378 return ce->lrc_desc;
ae1250b9
OM
379}
380
70c2a24d 381static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 382{
70c2a24d
CW
383 struct drm_i915_private *dev_priv = engine->i915;
384 struct execlist_port *port = engine->execlist_port;
bbd6c47e
CW
385 u32 __iomem *elsp =
386 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
387 u64 desc[2];
388
70c2a24d
CW
389 if (!port[0].count)
390 execlists_context_status_change(port[0].request,
391 INTEL_CONTEXT_SCHEDULE_IN);
392 desc[0] = execlists_update_context(port[0].request);
393 engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
394
395 if (port[1].request) {
396 GEM_BUG_ON(port[1].count);
397 execlists_context_status_change(port[1].request,
398 INTEL_CONTEXT_SCHEDULE_IN);
399 desc[1] = execlists_update_context(port[1].request);
400 port[1].count = 1;
bbd6c47e
CW
401 } else {
402 desc[1] = 0;
403 }
70c2a24d 404 GEM_BUG_ON(desc[0] == desc[1]);
bbd6c47e
CW
405
406 /* You must always write both descriptors in the order below. */
407 writel(upper_32_bits(desc[1]), elsp);
408 writel(lower_32_bits(desc[1]), elsp);
409
410 writel(upper_32_bits(desc[0]), elsp);
411 /* The context is automatically loaded after the following */
412 writel(lower_32_bits(desc[0]), elsp);
413}
414
70c2a24d 415static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 416{
70c2a24d
CW
417 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
418 ctx->execlists_force_single_submission);
419}
84b790f8 420
70c2a24d
CW
421static bool can_merge_ctx(const struct i915_gem_context *prev,
422 const struct i915_gem_context *next)
423{
424 if (prev != next)
425 return false;
26720ab9 426
70c2a24d
CW
427 if (ctx_single_port_submission(prev))
428 return false;
26720ab9 429
70c2a24d 430 return true;
84b790f8
BW
431}
432
70c2a24d 433static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 434{
20311bd3 435 struct drm_i915_gem_request *last;
70c2a24d 436 struct execlist_port *port = engine->execlist_port;
d55ac5bf 437 unsigned long flags;
20311bd3 438 struct rb_node *rb;
70c2a24d
CW
439 bool submit = false;
440
441 last = port->request;
442 if (last)
443 /* WaIdleLiteRestore:bdw,skl
444 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
9b81d556 445 * as we resubmit the request. See gen8_emit_breadcrumb()
70c2a24d
CW
446 * for where we prepare the padding after the end of the
447 * request.
448 */
449 last->tail = last->wa_tail;
e981e7b1 450
70c2a24d 451 GEM_BUG_ON(port[1].request);
acdd884a 452
70c2a24d
CW
453 /* Hardware submission is through 2 ports. Conceptually each port
454 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
455 * static for a context, and unique to each, so we only execute
456 * requests belonging to a single context from each ring. RING_HEAD
457 * is maintained by the CS in the context image, it marks the place
458 * where it got up to last time, and through RING_TAIL we tell the CS
459 * where we want to execute up to this time.
460 *
461 * In this list the requests are in order of execution. Consecutive
462 * requests from the same context are adjacent in the ringbuffer. We
463 * can combine these requests into a single RING_TAIL update:
464 *
465 * RING_HEAD...req1...req2
466 * ^- RING_TAIL
467 * since to execute req2 the CS must first execute req1.
468 *
469 * Our goal then is to point each port to the end of a consecutive
470 * sequence of requests as being the most optimal (fewest wake ups
471 * and context switches) submission.
779949f4 472 */
acdd884a 473
d55ac5bf 474 spin_lock_irqsave(&engine->timeline->lock, flags);
20311bd3
CW
475 rb = engine->execlist_first;
476 while (rb) {
477 struct drm_i915_gem_request *cursor =
478 rb_entry(rb, typeof(*cursor), priotree.node);
479
70c2a24d
CW
480 /* Can we combine this request with the current port? It has to
481 * be the same context/ringbuffer and not have any exceptions
482 * (e.g. GVT saying never to combine contexts).
c6a2ac71 483 *
70c2a24d
CW
484 * If we can combine the requests, we can execute both by
485 * updating the RING_TAIL to point to the end of the second
486 * request, and so we never need to tell the hardware about
487 * the first.
53292cdb 488 */
70c2a24d
CW
489 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
490 /* If we are on the second port and cannot combine
491 * this request with the last, then we are done.
492 */
493 if (port != engine->execlist_port)
494 break;
495
496 /* If GVT overrides us we only ever submit port[0],
497 * leaving port[1] empty. Note that we also have
498 * to be careful that we don't queue the same
499 * context (even though a different request) to
500 * the second port.
501 */
d7ab992c
MH
502 if (ctx_single_port_submission(last->ctx) ||
503 ctx_single_port_submission(cursor->ctx))
70c2a24d
CW
504 break;
505
506 GEM_BUG_ON(last->ctx == cursor->ctx);
507
508 i915_gem_request_assign(&port->request, last);
509 port++;
510 }
d55ac5bf 511
20311bd3
CW
512 rb = rb_next(rb);
513 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
514 RB_CLEAR_NODE(&cursor->priotree.node);
515 cursor->priotree.priority = INT_MAX;
516
d55ac5bf
CW
517 /* We keep the previous context alive until we retire the
518 * following request. This ensures that any the context object
519 * is still pinned for any residual writes the HW makes into it
520 * on the context switch into the next object following the
521 * breadcrumb. Otherwise, we may retire the context too early.
522 */
523 cursor->previous_context = engine->last_context;
524 engine->last_context = cursor->ctx;
525
526 __i915_gem_request_submit(cursor);
70c2a24d
CW
527 last = cursor;
528 submit = true;
529 }
530 if (submit) {
70c2a24d 531 i915_gem_request_assign(&port->request, last);
20311bd3 532 engine->execlist_first = rb;
53292cdb 533 }
d55ac5bf 534 spin_unlock_irqrestore(&engine->timeline->lock, flags);
53292cdb 535
70c2a24d
CW
536 if (submit)
537 execlists_submit_ports(engine);
acdd884a
MT
538}
539
70c2a24d 540static bool execlists_elsp_idle(struct intel_engine_cs *engine)
e981e7b1 541{
70c2a24d 542 return !engine->execlist_port[0].request;
e981e7b1
TD
543}
544
0cb5670b
ID
545/**
546 * intel_execlists_idle() - Determine if all engine submission ports are idle
547 * @dev_priv: i915 device private
548 *
549 * Return true if there are no requests pending on any of the submission ports
550 * of any engines.
551 */
552bool intel_execlists_idle(struct drm_i915_private *dev_priv)
553{
554 struct intel_engine_cs *engine;
555 enum intel_engine_id id;
556
557 if (!i915.enable_execlists)
558 return true;
559
560 for_each_engine(engine, dev_priv, id)
561 if (!execlists_elsp_idle(engine))
562 return false;
563
564 return true;
565}
566
70c2a24d 567static bool execlists_elsp_ready(struct intel_engine_cs *engine)
91a41032 568{
70c2a24d 569 int port;
91a41032 570
70c2a24d
CW
571 port = 1; /* wait for a free slot */
572 if (engine->disable_lite_restore_wa || engine->preempt_wa)
573 port = 0; /* wait for GPU to be idle before continuing */
c6a2ac71 574
70c2a24d 575 return !engine->execlist_port[port].request;
91a41032
BW
576}
577
6e5248b5 578/*
73e4d07f
OM
579 * Check the unread Context Status Buffers and manage the submission of new
580 * contexts to the ELSP accordingly.
581 */
27af5eea 582static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 583{
27af5eea 584 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 585 struct execlist_port *port = engine->execlist_port;
c033666a 586 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 587
3756685a 588 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 589
70c2a24d
CW
590 if (!execlists_elsp_idle(engine)) {
591 u32 __iomem *csb_mmio =
592 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
593 u32 __iomem *buf =
594 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
595 unsigned int csb, head, tail;
596
597 csb = readl(csb_mmio);
598 head = GEN8_CSB_READ_PTR(csb);
599 tail = GEN8_CSB_WRITE_PTR(csb);
600 if (tail < head)
601 tail += GEN8_CSB_ENTRIES;
602 while (head < tail) {
603 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
604 unsigned int status = readl(buf + 2 * idx);
605
606 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
607 continue;
608
609 GEM_BUG_ON(port[0].count == 0);
610 if (--port[0].count == 0) {
611 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
612 execlists_context_status_change(port[0].request,
613 INTEL_CONTEXT_SCHEDULE_OUT);
614
615 i915_gem_request_put(port[0].request);
616 port[0] = port[1];
617 memset(&port[1], 0, sizeof(port[1]));
618
619 engine->preempt_wa = false;
620 }
26720ab9 621
70c2a24d
CW
622 GEM_BUG_ON(port[0].count == 0 &&
623 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
e1fee72c
OM
624 }
625
70c2a24d
CW
626 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
627 GEN8_CSB_WRITE_PTR(csb) << 8),
628 csb_mmio);
e981e7b1
TD
629 }
630
70c2a24d
CW
631 if (execlists_elsp_ready(engine))
632 execlists_dequeue(engine);
c6a2ac71 633
70c2a24d 634 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
635}
636
20311bd3
CW
637static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
638{
639 struct rb_node **p, *rb;
640 bool first = true;
641
642 /* most positive priority is scheduled first, equal priorities fifo */
643 rb = NULL;
644 p = &root->rb_node;
645 while (*p) {
646 struct i915_priotree *pos;
647
648 rb = *p;
649 pos = rb_entry(rb, typeof(*pos), node);
650 if (pt->priority > pos->priority) {
651 p = &rb->rb_left;
652 } else {
653 p = &rb->rb_right;
654 first = false;
655 }
656 }
657 rb_link_node(&pt->node, rb, p);
658 rb_insert_color(&pt->node, root);
659
660 return first;
661}
662
f4ea6bdd 663static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 664{
4a570db5 665 struct intel_engine_cs *engine = request->engine;
5590af3e 666 unsigned long flags;
acdd884a 667
663f71e7
CW
668 /* Will be called from irq-context when using foreign fences. */
669 spin_lock_irqsave(&engine->timeline->lock, flags);
acdd884a 670
20311bd3
CW
671 if (insert_request(&request->priotree, &engine->execlist_queue))
672 engine->execlist_first = &request->priotree.node;
70c2a24d
CW
673 if (execlists_elsp_idle(engine))
674 tasklet_hi_schedule(&engine->irq_tasklet);
acdd884a 675
663f71e7 676 spin_unlock_irqrestore(&engine->timeline->lock, flags);
acdd884a
MT
677}
678
20311bd3
CW
679static struct intel_engine_cs *
680pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
681{
682 struct intel_engine_cs *engine;
683
684 engine = container_of(pt,
685 struct drm_i915_gem_request,
686 priotree)->engine;
687 if (engine != locked) {
688 if (locked)
689 spin_unlock_irq(&locked->timeline->lock);
690 spin_lock_irq(&engine->timeline->lock);
691 }
692
693 return engine;
694}
695
696static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
697{
27745e82 698 static DEFINE_MUTEX(lock);
20311bd3
CW
699 struct intel_engine_cs *engine = NULL;
700 struct i915_dependency *dep, *p;
701 struct i915_dependency stack;
702 LIST_HEAD(dfs);
703
704 if (prio <= READ_ONCE(request->priotree.priority))
705 return;
706
27745e82
CW
707 /* Need global lock to use the temporary link inside i915_dependency */
708 mutex_lock(&lock);
20311bd3
CW
709
710 stack.signaler = &request->priotree;
711 list_add(&stack.dfs_link, &dfs);
712
713 /* Recursively bump all dependent priorities to match the new request.
714 *
715 * A naive approach would be to use recursion:
716 * static void update_priorities(struct i915_priotree *pt, prio) {
717 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
718 * update_priorities(dep->signal, prio)
719 * insert_request(pt);
720 * }
721 * but that may have unlimited recursion depth and so runs a very
722 * real risk of overunning the kernel stack. Instead, we build
723 * a flat list of all dependencies starting with the current request.
724 * As we walk the list of dependencies, we add all of its dependencies
725 * to the end of the list (this may include an already visited
726 * request) and continue to walk onwards onto the new dependencies. The
727 * end result is a topological list of requests in reverse order, the
728 * last element in the list is the request we must execute first.
729 */
730 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
731 struct i915_priotree *pt = dep->signaler;
732
733 list_for_each_entry(p, &pt->signalers_list, signal_link)
734 if (prio > READ_ONCE(p->signaler->priority))
735 list_move_tail(&p->dfs_link, &dfs);
736
737 p = list_next_entry(dep, dfs_link);
738 if (!RB_EMPTY_NODE(&pt->node))
739 continue;
740
741 engine = pt_lock_engine(pt, engine);
742
743 /* If it is not already in the rbtree, we can update the
744 * priority inplace and skip over it (and its dependencies)
745 * if it is referenced *again* as we descend the dfs.
746 */
747 if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
748 pt->priority = prio;
749 list_del_init(&dep->dfs_link);
750 }
751 }
752
753 /* Fifo and depth-first replacement ensure our deps execute before us */
754 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
755 struct i915_priotree *pt = dep->signaler;
756
757 INIT_LIST_HEAD(&dep->dfs_link);
758
759 engine = pt_lock_engine(pt, engine);
760
761 if (prio <= pt->priority)
762 continue;
763
764 GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
765
766 pt->priority = prio;
767 rb_erase(&pt->node, &engine->execlist_queue);
768 if (insert_request(pt, &engine->execlist_queue))
769 engine->execlist_first = &pt->node;
770 }
771
772 if (engine)
773 spin_unlock_irq(&engine->timeline->lock);
774
27745e82
CW
775 mutex_unlock(&lock);
776
20311bd3
CW
777 /* XXX Do we need to preempt to make room for us and our deps? */
778}
779
40e895ce 780int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 781{
24f1d3cc 782 struct intel_engine_cs *engine = request->engine;
9021ad03 783 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 784 int ret;
bc0dce3f 785
6310346e
CW
786 /* Flush enough space to reduce the likelihood of waiting after
787 * we start building the request - in which case we will just
788 * have to repeat work.
789 */
0e93cdd4 790 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 791
9021ad03 792 if (!ce->state) {
978f1e09
CW
793 ret = execlists_context_deferred_alloc(request->ctx, engine);
794 if (ret)
795 return ret;
796 }
797
dca33ecc 798 request->ring = ce->ring;
f3cc01f0 799
5ba89908
CW
800 ret = intel_lr_context_pin(request->ctx, engine);
801 if (ret)
802 return ret;
803
a7e02199
AD
804 if (i915.enable_guc_submission) {
805 /*
806 * Check that the GuC has space for the request before
807 * going any further, as the i915_add_request() call
808 * later on mustn't fail ...
809 */
7a9347f9 810 ret = i915_guc_wq_reserve(request);
a7e02199 811 if (ret)
5ba89908 812 goto err_unpin;
a7e02199
AD
813 }
814
bfa01200
CW
815 ret = intel_ring_begin(request, 0);
816 if (ret)
5ba89908 817 goto err_unreserve;
bfa01200 818
9021ad03 819 if (!ce->initialised) {
24f1d3cc
CW
820 ret = engine->init_context(request);
821 if (ret)
5ba89908 822 goto err_unreserve;
24f1d3cc 823
9021ad03 824 ce->initialised = true;
24f1d3cc
CW
825 }
826
827 /* Note that after this point, we have committed to using
828 * this request as it is being used to both track the
829 * state of engine initialisation and liveness of the
830 * golden renderstate above. Think twice before you try
831 * to cancel/unwind this request now.
832 */
833
0e93cdd4 834 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
835 return 0;
836
5ba89908
CW
837err_unreserve:
838 if (i915.enable_guc_submission)
839 i915_guc_wq_unreserve(request);
bfa01200 840err_unpin:
24f1d3cc 841 intel_lr_context_unpin(request->ctx, engine);
e28e404c 842 return ret;
bc0dce3f
JH
843}
844
e2efd130 845static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 846 struct intel_engine_cs *engine)
dcb4c12a 847{
9021ad03 848 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac 849 void *vaddr;
ca82580c 850 int ret;
dcb4c12a 851
91c8a326 852 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 853
9021ad03 854 if (ce->pin_count++)
24f1d3cc
CW
855 return 0;
856
bf3783e5
CW
857 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
858 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
e84fe803 859 if (ret)
24f1d3cc 860 goto err;
7ba717cf 861
bf3783e5 862 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
863 if (IS_ERR(vaddr)) {
864 ret = PTR_ERR(vaddr);
bf3783e5 865 goto unpin_vma;
82352e90
TU
866 }
867
aad29fbb 868 ret = intel_ring_pin(ce->ring);
e84fe803 869 if (ret)
7d774cac 870 goto unpin_map;
d1675198 871
0bc40be8 872 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 873
a3aabe86
CW
874 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
875 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 876 i915_ggtt_offset(ce->ring->vma);
a3aabe86 877
a4f5ea64 878 ce->state->obj->mm.dirty = true;
e93c28f3 879
e84fe803 880 /* Invalidate GuC TLB. */
bf3783e5
CW
881 if (i915.enable_guc_submission) {
882 struct drm_i915_private *dev_priv = ctx->i915;
e84fe803 883 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
bf3783e5 884 }
dcb4c12a 885
9a6feaf0 886 i915_gem_context_get(ctx);
24f1d3cc 887 return 0;
7ba717cf 888
7d774cac 889unpin_map:
bf3783e5
CW
890 i915_gem_object_unpin_map(ce->state->obj);
891unpin_vma:
892 __i915_vma_unpin(ce->state);
24f1d3cc 893err:
9021ad03 894 ce->pin_count = 0;
e84fe803
NH
895 return ret;
896}
897
e2efd130 898void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 899 struct intel_engine_cs *engine)
e84fe803 900{
9021ad03 901 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 902
91c8a326 903 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 904 GEM_BUG_ON(ce->pin_count == 0);
321fe304 905
9021ad03 906 if (--ce->pin_count)
24f1d3cc 907 return;
e84fe803 908
aad29fbb 909 intel_ring_unpin(ce->ring);
dcb4c12a 910
bf3783e5
CW
911 i915_gem_object_unpin_map(ce->state->obj);
912 i915_vma_unpin(ce->state);
321fe304 913
9a6feaf0 914 i915_gem_context_put(ctx);
dcb4c12a
OM
915}
916
e2be4faf 917static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
918{
919 int ret, i;
7e37f889 920 struct intel_ring *ring = req->ring;
c033666a 921 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 922
cd7feaaa 923 if (w->count == 0)
771b9a53
MT
924 return 0;
925
7c9cf4e3 926 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
927 if (ret)
928 return ret;
929
987046ad 930 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
931 if (ret)
932 return ret;
933
1dae2dfb 934 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
771b9a53 935 for (i = 0; i < w->count; i++) {
1dae2dfb
CW
936 intel_ring_emit_reg(ring, w->reg[i].addr);
937 intel_ring_emit(ring, w->reg[i].value);
771b9a53 938 }
1dae2dfb 939 intel_ring_emit(ring, MI_NOOP);
771b9a53 940
1dae2dfb 941 intel_ring_advance(ring);
771b9a53 942
7c9cf4e3 943 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
944 if (ret)
945 return ret;
946
947 return 0;
948}
949
83b8a982 950#define wa_ctx_emit(batch, index, cmd) \
17ee950d 951 do { \
83b8a982
AS
952 int __index = (index)++; \
953 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
954 return -ENOSPC; \
955 } \
83b8a982 956 batch[__index] = (cmd); \
17ee950d
AS
957 } while (0)
958
8f40db77 959#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 960 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
961
962/*
963 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
964 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
965 * but there is a slight complication as this is applied in WA batch where the
966 * values are only initialized once so we cannot take register value at the
967 * beginning and reuse it further; hence we save its value to memory, upload a
968 * constant value with bit21 set and then we restore it back with the saved value.
969 * To simplify the WA, a constant value is formed by using the default value
970 * of this register. This shouldn't be a problem because we are only modifying
971 * it for a short period and this batch in non-premptible. We can ofcourse
972 * use additional instructions that read the actual value of the register
973 * at that time and set our bit of interest but it makes the WA complicated.
974 *
975 * This WA is also required for Gen9 so extracting as a function avoids
976 * code duplication.
977 */
0bc40be8 978static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
6e5248b5 979 uint32_t *batch,
9e000847
AS
980 uint32_t index)
981{
5e580523 982 struct drm_i915_private *dev_priv = engine->i915;
9e000847
AS
983 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
984
a4106a78 985 /*
3be192e9 986 * WaDisableLSQCROPERFforOCL:kbl
a4106a78
AS
987 * This WA is implemented in skl_init_clock_gating() but since
988 * this batch updates GEN8_L3SQCREG4 with default value we need to
989 * set this bit here to retain the WA during flush.
990 */
3be192e9 991 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
a4106a78
AS
992 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
993
f1afe24f 994 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 995 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 996 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 997 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982
AS
998 wa_ctx_emit(batch, index, 0);
999
1000 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1001 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1002 wa_ctx_emit(batch, index, l3sqc4_flush);
1003
1004 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1005 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1006 PIPE_CONTROL_DC_FLUSH_ENABLE));
1007 wa_ctx_emit(batch, index, 0);
1008 wa_ctx_emit(batch, index, 0);
1009 wa_ctx_emit(batch, index, 0);
1010 wa_ctx_emit(batch, index, 0);
1011
f1afe24f 1012 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1013 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1014 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 1015 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982 1016 wa_ctx_emit(batch, index, 0);
9e000847
AS
1017
1018 return index;
1019}
1020
17ee950d
AS
1021static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1022 uint32_t offset,
1023 uint32_t start_alignment)
1024{
1025 return wa_ctx->offset = ALIGN(offset, start_alignment);
1026}
1027
1028static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1029 uint32_t offset,
1030 uint32_t size_alignment)
1031{
1032 wa_ctx->size = offset - wa_ctx->offset;
1033
1034 WARN(wa_ctx->size % size_alignment,
1035 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1036 wa_ctx->size, size_alignment);
1037 return 0;
1038}
1039
6e5248b5
DV
1040/*
1041 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1042 * initialized at the beginning and shared across all contexts but this field
1043 * helps us to have multiple batches at different offsets and select them based
1044 * on a criteria. At the moment this batch always start at the beginning of the page
1045 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 1046 *
6e5248b5
DV
1047 * The number of WA applied are not known at the beginning; we use this field
1048 * to return the no of DWORDS written.
17ee950d 1049 *
6e5248b5
DV
1050 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1051 * so it adds NOOPs as padding to make it cacheline aligned.
1052 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1053 * makes a complete batch buffer.
17ee950d 1054 */
0bc40be8 1055static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d 1056 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1057 uint32_t *batch,
17ee950d
AS
1058 uint32_t *offset)
1059{
0160f055 1060 uint32_t scratch_addr;
17ee950d
AS
1061 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1062
7ad00d1a 1063 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1064 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1065
c82435bb 1066 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 1067 if (IS_BROADWELL(engine->i915)) {
0bc40be8 1068 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1069 if (rc < 0)
1070 return rc;
1071 index = rc;
c82435bb
AS
1072 }
1073
0160f055
AS
1074 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1075 /* Actual scratch location is at 128 bytes offset */
bde13ebd 1076 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0160f055 1077
83b8a982
AS
1078 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1079 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1080 PIPE_CONTROL_GLOBAL_GTT_IVB |
1081 PIPE_CONTROL_CS_STALL |
1082 PIPE_CONTROL_QW_WRITE));
1083 wa_ctx_emit(batch, index, scratch_addr);
1084 wa_ctx_emit(batch, index, 0);
1085 wa_ctx_emit(batch, index, 0);
1086 wa_ctx_emit(batch, index, 0);
0160f055 1087
17ee950d
AS
1088 /* Pad to end of cacheline */
1089 while (index % CACHELINE_DWORDS)
83b8a982 1090 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1091
1092 /*
1093 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1094 * execution depends on the length specified in terms of cache lines
1095 * in the register CTX_RCS_INDIRECT_CTX
1096 */
1097
1098 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1099}
1100
6e5248b5
DV
1101/*
1102 * This batch is started immediately after indirect_ctx batch. Since we ensure
1103 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 1104 *
6e5248b5 1105 * The number of DWORDS written are returned using this field.
17ee950d
AS
1106 *
1107 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1108 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1109 */
0bc40be8 1110static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d 1111 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1112 uint32_t *batch,
17ee950d
AS
1113 uint32_t *offset)
1114{
1115 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1116
7ad00d1a 1117 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1118 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1119
83b8a982 1120 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1121
1122 return wa_ctx_end(wa_ctx, *offset = index, 1);
1123}
1124
0bc40be8 1125static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc 1126 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1127 uint32_t *batch,
0504cffc
AS
1128 uint32_t *offset)
1129{
a4106a78 1130 int ret;
5e580523 1131 struct drm_i915_private *dev_priv = engine->i915;
0504cffc
AS
1132 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1133
9fc736e8
JN
1134 /* WaDisableCtxRestoreArbitration:bxt */
1135 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
0907c8f7 1136 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1137
a4106a78 1138 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1139 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1140 if (ret < 0)
1141 return ret;
1142 index = ret;
1143
873e8171
MK
1144 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1145 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1146 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1147 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1148 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1149 wa_ctx_emit(batch, index, MI_NOOP);
1150
066d4628
MK
1151 /* WaClearSlmSpaceAtContextSwitch:kbl */
1152 /* Actual scratch location is at 128 bytes offset */
703d1282 1153 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
56c0f1a7 1154 u32 scratch_addr =
bde13ebd 1155 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
066d4628
MK
1156
1157 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1158 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1159 PIPE_CONTROL_GLOBAL_GTT_IVB |
1160 PIPE_CONTROL_CS_STALL |
1161 PIPE_CONTROL_QW_WRITE));
1162 wa_ctx_emit(batch, index, scratch_addr);
1163 wa_ctx_emit(batch, index, 0);
1164 wa_ctx_emit(batch, index, 0);
1165 wa_ctx_emit(batch, index, 0);
1166 }
3485d99e
TG
1167
1168 /* WaMediaPoolStateCmdInWABB:bxt */
1169 if (HAS_POOLED_EU(engine->i915)) {
1170 /*
1171 * EU pool configuration is setup along with golden context
1172 * during context initialization. This value depends on
1173 * device type (2x6 or 3x6) and needs to be updated based
1174 * on which subslice is disabled especially for 2x6
1175 * devices, however it is safe to load default
1176 * configuration of 3x6 device instead of masking off
1177 * corresponding bits because HW ignores bits of a disabled
1178 * subslice and drops down to appropriate config. Please
1179 * see render_state_setup() in i915_gem_render_state.c for
1180 * possible configurations, to avoid duplication they are
1181 * not shown here again.
1182 */
1183 u32 eu_pool_config = 0x00777000;
1184 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1185 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1186 wa_ctx_emit(batch, index, eu_pool_config);
1187 wa_ctx_emit(batch, index, 0);
1188 wa_ctx_emit(batch, index, 0);
1189 wa_ctx_emit(batch, index, 0);
1190 }
1191
0504cffc
AS
1192 /* Pad to end of cacheline */
1193 while (index % CACHELINE_DWORDS)
1194 wa_ctx_emit(batch, index, MI_NOOP);
1195
1196 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1197}
1198
0bc40be8 1199static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc 1200 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1201 uint32_t *batch,
0504cffc
AS
1202 uint32_t *offset)
1203{
1204 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1205
a117f378
JN
1206 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1207 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1208 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1209 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1210 wa_ctx_emit(batch, index,
1211 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1212 wa_ctx_emit(batch, index, MI_NOOP);
1213 }
1214
b1e429fe 1215 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1216 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1217 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1218
1219 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1220 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1221
1222 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1223 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1224
1225 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1226 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1227
1228 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1229 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1230 wa_ctx_emit(batch, index, 0x0);
1231 wa_ctx_emit(batch, index, MI_NOOP);
1232 }
1233
9fc736e8
JN
1234 /* WaDisableCtxRestoreArbitration:bxt */
1235 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1236 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1237
0504cffc
AS
1238 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1239
1240 return wa_ctx_end(wa_ctx, *offset = index, 1);
1241}
1242
0bc40be8 1243static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d 1244{
48bb74e4
CW
1245 struct drm_i915_gem_object *obj;
1246 struct i915_vma *vma;
1247 int err;
17ee950d 1248
48bb74e4
CW
1249 obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1250 if (IS_ERR(obj))
1251 return PTR_ERR(obj);
17ee950d 1252
48bb74e4
CW
1253 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1254 if (IS_ERR(vma)) {
1255 err = PTR_ERR(vma);
1256 goto err;
17ee950d
AS
1257 }
1258
48bb74e4
CW
1259 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1260 if (err)
1261 goto err;
1262
1263 engine->wa_ctx.vma = vma;
17ee950d 1264 return 0;
48bb74e4
CW
1265
1266err:
1267 i915_gem_object_put(obj);
1268 return err;
17ee950d
AS
1269}
1270
0bc40be8 1271static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1272{
19880c4a 1273 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1274}
1275
0bc40be8 1276static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1277{
48bb74e4 1278 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
1279 uint32_t *batch;
1280 uint32_t offset;
1281 struct page *page;
48bb74e4 1282 int ret;
17ee950d 1283
0bc40be8 1284 WARN_ON(engine->id != RCS);
17ee950d 1285
5e60d790 1286 /* update this when WA for higher Gen are added */
c033666a 1287 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1288 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1289 INTEL_GEN(engine->i915));
5e60d790 1290 return 0;
0504cffc 1291 }
5e60d790 1292
c4db7599 1293 /* some WA perform writes to scratch page, ensure it is valid */
56c0f1a7 1294 if (!engine->scratch) {
0bc40be8 1295 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1296 return -EINVAL;
1297 }
1298
0bc40be8 1299 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1300 if (ret) {
1301 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1302 return ret;
1303 }
1304
48bb74e4 1305 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
17ee950d
AS
1306 batch = kmap_atomic(page);
1307 offset = 0;
1308
c033666a 1309 if (IS_GEN8(engine->i915)) {
0bc40be8 1310 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1311 &wa_ctx->indirect_ctx,
1312 batch,
1313 &offset);
1314 if (ret)
1315 goto out;
1316
0bc40be8 1317 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1318 &wa_ctx->per_ctx,
1319 batch,
1320 &offset);
1321 if (ret)
1322 goto out;
c033666a 1323 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1324 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1325 &wa_ctx->indirect_ctx,
1326 batch,
1327 &offset);
1328 if (ret)
1329 goto out;
1330
0bc40be8 1331 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1332 &wa_ctx->per_ctx,
1333 batch,
1334 &offset);
1335 if (ret)
1336 goto out;
17ee950d
AS
1337 }
1338
1339out:
1340 kunmap_atomic(batch);
1341 if (ret)
0bc40be8 1342 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1343
1344 return ret;
1345}
1346
04794adb
TU
1347static void lrc_init_hws(struct intel_engine_cs *engine)
1348{
c033666a 1349 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1350
1351 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
57e88531 1352 engine->status_page.ggtt_offset);
04794adb
TU
1353 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1354}
1355
0bc40be8 1356static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1357{
c033666a 1358 struct drm_i915_private *dev_priv = engine->i915;
821ed7df
CW
1359 int ret;
1360
1361 ret = intel_mocs_init_engine(engine);
1362 if (ret)
1363 return ret;
9b1136d5 1364
04794adb 1365 lrc_init_hws(engine);
e84fe803 1366
ad07dfcd 1367 intel_engine_reset_breadcrumbs(engine);
821ed7df 1368
0bc40be8 1369 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1370
0bc40be8 1371 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1372 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1373 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
dfc53c5e 1374
0bc40be8 1375 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1376
fc0768ce 1377 intel_engine_init_hangcheck(engine);
9b1136d5 1378
c87d50cc
CW
1379 /* After a GPU reset, we may have requests to replay */
1380 if (!execlists_elsp_idle(engine)) {
1381 engine->execlist_port[0].count = 0;
1382 engine->execlist_port[1].count = 0;
821ed7df 1383 execlists_submit_ports(engine);
c87d50cc 1384 }
821ed7df
CW
1385
1386 return 0;
9b1136d5
OM
1387}
1388
0bc40be8 1389static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1390{
c033666a 1391 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1392 int ret;
1393
0bc40be8 1394 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1395 if (ret)
1396 return ret;
1397
1398 /* We need to disable the AsyncFlip performance optimisations in order
1399 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1400 * programmed to '1' on all products.
1401 *
1402 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1403 */
1404 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1405
9b1136d5
OM
1406 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1407
0bc40be8 1408 return init_workarounds_ring(engine);
9b1136d5
OM
1409}
1410
0bc40be8 1411static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1412{
1413 int ret;
1414
0bc40be8 1415 ret = gen8_init_common_ring(engine);
82ef822e
DL
1416 if (ret)
1417 return ret;
1418
0bc40be8 1419 return init_workarounds_ring(engine);
82ef822e
DL
1420}
1421
821ed7df
CW
1422static void reset_common_ring(struct intel_engine_cs *engine,
1423 struct drm_i915_gem_request *request)
1424{
1425 struct drm_i915_private *dev_priv = engine->i915;
1426 struct execlist_port *port = engine->execlist_port;
1427 struct intel_context *ce = &request->ctx->engine[engine->id];
1428
a3aabe86
CW
1429 /* We want a simple context + ring to execute the breadcrumb update.
1430 * We cannot rely on the context being intact across the GPU hang,
1431 * so clear it and rebuild just what we need for the breadcrumb.
1432 * All pending requests for this context will be zapped, and any
1433 * future request will be after userspace has had the opportunity
1434 * to recreate its own state.
1435 */
1436 execlists_init_reg_state(ce->lrc_reg_state,
1437 request->ctx, engine, ce->ring);
1438
821ed7df 1439 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1440 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1441 i915_ggtt_offset(ce->ring->vma);
821ed7df 1442 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1443
821ed7df
CW
1444 request->ring->head = request->postfix;
1445 request->ring->last_retired_head = -1;
1446 intel_ring_update_space(request->ring);
1447
1448 if (i915.enable_guc_submission)
1449 return;
1450
1451 /* Catch up with any missed context-switch interrupts */
1452 I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1453 if (request->ctx != port[0].request->ctx) {
1454 i915_gem_request_put(port[0].request);
1455 port[0] = port[1];
1456 memset(&port[1], 0, sizeof(port[1]));
1457 }
1458
821ed7df 1459 GEM_BUG_ON(request->ctx != port[0].request->ctx);
a3aabe86
CW
1460
1461 /* Reset WaIdleLiteRestore:bdw,skl as well */
1462 request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
821ed7df
CW
1463}
1464
7a01a0a2
MT
1465static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1466{
1467 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
7e37f889 1468 struct intel_ring *ring = req->ring;
4a570db5 1469 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1470 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1471 int i, ret;
1472
987046ad 1473 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1474 if (ret)
1475 return ret;
1476
b5321f30 1477 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
7a01a0a2
MT
1478 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1479 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1480
b5321f30
CW
1481 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1482 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1483 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1484 intel_ring_emit(ring, lower_32_bits(pd_daddr));
7a01a0a2
MT
1485 }
1486
b5321f30
CW
1487 intel_ring_emit(ring, MI_NOOP);
1488 intel_ring_advance(ring);
7a01a0a2
MT
1489
1490 return 0;
1491}
1492
be795fc1 1493static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba
CW
1494 u64 offset, u32 len,
1495 unsigned int dispatch_flags)
15648585 1496{
7e37f889 1497 struct intel_ring *ring = req->ring;
8e004efc 1498 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1499 int ret;
1500
7a01a0a2
MT
1501 /* Don't rely in hw updating PDPs, specially in lite-restore.
1502 * Ideally, we should set Force PD Restore in ctx descriptor,
1503 * but we can't. Force Restore would be a second option, but
1504 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1505 * not idle). PML4 is allocated during ppgtt init so this is
1506 * not needed in 48-bit.*/
7a01a0a2 1507 if (req->ctx->ppgtt &&
666796da 1508 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1509 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1510 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1511 ret = intel_logical_ring_emit_pdps(req);
1512 if (ret)
1513 return ret;
1514 }
7a01a0a2 1515
666796da 1516 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1517 }
1518
987046ad 1519 ret = intel_ring_begin(req, 4);
15648585
OM
1520 if (ret)
1521 return ret;
1522
1523 /* FIXME(BDW): Address space and security selectors. */
b5321f30
CW
1524 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1525 (ppgtt<<8) |
1526 (dispatch_flags & I915_DISPATCH_RS ?
1527 MI_BATCH_RESOURCE_STREAMER : 0));
1528 intel_ring_emit(ring, lower_32_bits(offset));
1529 intel_ring_emit(ring, upper_32_bits(offset));
1530 intel_ring_emit(ring, MI_NOOP);
1531 intel_ring_advance(ring);
15648585
OM
1532
1533 return 0;
1534}
1535
31bb59cc 1536static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1537{
c033666a 1538 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1539 I915_WRITE_IMR(engine,
1540 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1541 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1542}
1543
31bb59cc 1544static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1545{
c033666a 1546 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1547 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1548}
1549
7c9cf4e3 1550static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1551{
7e37f889
CW
1552 struct intel_ring *ring = request->ring;
1553 u32 cmd;
4712274c
OM
1554 int ret;
1555
987046ad 1556 ret = intel_ring_begin(request, 4);
4712274c
OM
1557 if (ret)
1558 return ret;
1559
1560 cmd = MI_FLUSH_DW + 1;
1561
f0a1fb10
CW
1562 /* We always require a command barrier so that subsequent
1563 * commands, such as breadcrumb interrupts, are strictly ordered
1564 * wrt the contents of the write cache being flushed to memory
1565 * (and thus being coherent from the CPU).
1566 */
1567 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1568
7c9cf4e3 1569 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1570 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1571 if (request->engine->id == VCS)
f0a1fb10 1572 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1573 }
1574
b5321f30
CW
1575 intel_ring_emit(ring, cmd);
1576 intel_ring_emit(ring,
1577 I915_GEM_HWS_SCRATCH_ADDR |
1578 MI_FLUSH_DW_USE_GTT);
1579 intel_ring_emit(ring, 0); /* upper addr */
1580 intel_ring_emit(ring, 0); /* value */
1581 intel_ring_advance(ring);
4712274c
OM
1582
1583 return 0;
1584}
1585
7deb4d39 1586static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1587 u32 mode)
4712274c 1588{
7e37f889 1589 struct intel_ring *ring = request->ring;
b5321f30 1590 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1591 u32 scratch_addr =
1592 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1593 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1594 u32 flags = 0;
1595 int ret;
0b2d0934 1596 int len;
4712274c
OM
1597
1598 flags |= PIPE_CONTROL_CS_STALL;
1599
7c9cf4e3 1600 if (mode & EMIT_FLUSH) {
4712274c
OM
1601 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1602 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1603 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1604 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1605 }
1606
7c9cf4e3 1607 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1608 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1609 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1610 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1611 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1612 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1613 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1614 flags |= PIPE_CONTROL_QW_WRITE;
1615 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1616
1a5a9ce7
BW
1617 /*
1618 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1619 * pipe control.
1620 */
c033666a 1621 if (IS_GEN9(request->i915))
1a5a9ce7 1622 vf_flush_wa = true;
0b2d0934
MK
1623
1624 /* WaForGAMHang:kbl */
1625 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1626 dc_flush_wa = true;
1a5a9ce7 1627 }
9647ff36 1628
0b2d0934
MK
1629 len = 6;
1630
1631 if (vf_flush_wa)
1632 len += 6;
1633
1634 if (dc_flush_wa)
1635 len += 12;
1636
1637 ret = intel_ring_begin(request, len);
4712274c
OM
1638 if (ret)
1639 return ret;
1640
9647ff36 1641 if (vf_flush_wa) {
b5321f30
CW
1642 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1643 intel_ring_emit(ring, 0);
1644 intel_ring_emit(ring, 0);
1645 intel_ring_emit(ring, 0);
1646 intel_ring_emit(ring, 0);
1647 intel_ring_emit(ring, 0);
9647ff36
ID
1648 }
1649
0b2d0934 1650 if (dc_flush_wa) {
b5321f30
CW
1651 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1652 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1653 intel_ring_emit(ring, 0);
1654 intel_ring_emit(ring, 0);
1655 intel_ring_emit(ring, 0);
1656 intel_ring_emit(ring, 0);
0b2d0934
MK
1657 }
1658
b5321f30
CW
1659 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1660 intel_ring_emit(ring, flags);
1661 intel_ring_emit(ring, scratch_addr);
1662 intel_ring_emit(ring, 0);
1663 intel_ring_emit(ring, 0);
1664 intel_ring_emit(ring, 0);
0b2d0934
MK
1665
1666 if (dc_flush_wa) {
b5321f30
CW
1667 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1668 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1669 intel_ring_emit(ring, 0);
1670 intel_ring_emit(ring, 0);
1671 intel_ring_emit(ring, 0);
1672 intel_ring_emit(ring, 0);
0b2d0934
MK
1673 }
1674
b5321f30 1675 intel_ring_advance(ring);
4712274c
OM
1676
1677 return 0;
1678}
1679
c04e0f3b 1680static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1681{
319404df
ID
1682 /*
1683 * On BXT A steppings there is a HW coherency issue whereby the
1684 * MI_STORE_DATA_IMM storing the completed request's seqno
1685 * occasionally doesn't invalidate the CPU cache. Work around this by
1686 * clflushing the corresponding cacheline whenever the caller wants
1687 * the coherency to be guaranteed. Note that this cacheline is known
1688 * to be clean at this point, since we only write it in
1689 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1690 * this clflush in practice becomes an invalidate operation.
1691 */
c04e0f3b 1692 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1693}
1694
7c17d377
CW
1695/*
1696 * Reserve space for 2 NOOPs at the end of each request to be
1697 * used as a workaround for not being allowed to do lite
1698 * restore with HEAD==TAIL (WaIdleLiteRestore).
1699 */
caddfe71 1700static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
4da46e1e 1701{
caddfe71
CW
1702 *out++ = MI_NOOP;
1703 *out++ = MI_NOOP;
1704 request->wa_tail = intel_ring_offset(request->ring, out);
1705}
4da46e1e 1706
caddfe71
CW
1707static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
1708 u32 *out)
1709{
7c17d377
CW
1710 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1711 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1712
caddfe71
CW
1713 *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1714 *out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1715 *out++ = 0;
1716 *out++ = request->global_seqno;
1717 *out++ = MI_USER_INTERRUPT;
1718 *out++ = MI_NOOP;
1719 request->tail = intel_ring_offset(request->ring, out);
1720
1721 gen8_emit_wa_tail(request, out);
7c17d377 1722}
4da46e1e 1723
98f29e8d
CW
1724static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1725
caddfe71
CW
1726static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1727 u32 *out)
7c17d377 1728{
ce81a65c
MW
1729 /* We're using qword write, seqno should be aligned to 8 bytes. */
1730 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1731
7c17d377
CW
1732 /* w/a for post sync ops following a GPGPU operation we
1733 * need a prior CS_STALL, which is emitted by the flush
1734 * following the batch.
1735 */
caddfe71
CW
1736 *out++ = GFX_OP_PIPE_CONTROL(6);
1737 *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1738 PIPE_CONTROL_CS_STALL |
1739 PIPE_CONTROL_QW_WRITE);
1740 *out++ = intel_hws_seqno_address(request->engine);
1741 *out++ = 0;
1742 *out++ = request->global_seqno;
ce81a65c 1743 /* We're thrashing one dword of HWS. */
caddfe71
CW
1744 *out++ = 0;
1745 *out++ = MI_USER_INTERRUPT;
1746 *out++ = MI_NOOP;
1747 request->tail = intel_ring_offset(request->ring, out);
1748
1749 gen8_emit_wa_tail(request, out);
4da46e1e
OM
1750}
1751
98f29e8d
CW
1752static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1753
8753181e 1754static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1755{
1756 int ret;
1757
e2be4faf 1758 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1759 if (ret)
1760 return ret;
1761
3bbaba0c
PA
1762 ret = intel_rcs_context_init_mocs(req);
1763 /*
1764 * Failing to program the MOCS is non-fatal.The system will not
1765 * run at peak performance. So generate an error and carry on.
1766 */
1767 if (ret)
1768 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1769
4e50f082 1770 return i915_gem_render_state_emit(req);
e7778be1
TD
1771}
1772
73e4d07f
OM
1773/**
1774 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1775 * @engine: Engine Command Streamer.
73e4d07f 1776 */
0bc40be8 1777void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1778{
6402c330 1779 struct drm_i915_private *dev_priv;
9832b9da 1780
27af5eea
TU
1781 /*
1782 * Tasklet cannot be active at this point due intel_mark_active/idle
1783 * so this is just for documentation.
1784 */
1785 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1786 tasklet_kill(&engine->irq_tasklet);
1787
c033666a 1788 dev_priv = engine->i915;
6402c330 1789
0bc40be8 1790 if (engine->buffer) {
0bc40be8 1791 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1792 }
48d82387 1793
0bc40be8
TU
1794 if (engine->cleanup)
1795 engine->cleanup(engine);
48d82387 1796
96a945aa 1797 intel_engine_cleanup_common(engine);
688e6c72 1798
57e88531
CW
1799 if (engine->status_page.vma) {
1800 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1801 engine->status_page.vma = NULL;
48d82387 1802 }
24f1d3cc 1803 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1804
0bc40be8 1805 lrc_destroy_wa_ctx_obj(engine);
c033666a 1806 engine->i915 = NULL;
3b3f1650
AG
1807 dev_priv->engine[engine->id] = NULL;
1808 kfree(engine);
454afebd
OM
1809}
1810
ddd66c51
CW
1811void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1812{
1813 struct intel_engine_cs *engine;
3b3f1650 1814 enum intel_engine_id id;
ddd66c51 1815
20311bd3 1816 for_each_engine(engine, dev_priv, id) {
f4ea6bdd 1817 engine->submit_request = execlists_submit_request;
20311bd3
CW
1818 engine->schedule = execlists_schedule;
1819 }
ddd66c51
CW
1820}
1821
c9cacf93 1822static void
e1382efb 1823logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1824{
1825 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1826 engine->init_hw = gen8_init_common_ring;
821ed7df 1827 engine->reset_hw = reset_common_ring;
0bc40be8 1828 engine->emit_flush = gen8_emit_flush;
9b81d556 1829 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1830 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
f4ea6bdd 1831 engine->submit_request = execlists_submit_request;
20311bd3 1832 engine->schedule = execlists_schedule;
ddd66c51 1833
31bb59cc
CW
1834 engine->irq_enable = gen8_logical_ring_enable_irq;
1835 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1836 engine->emit_bb_start = gen8_emit_bb_start;
1b7744e7 1837 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
c04e0f3b 1838 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
c9cacf93
TU
1839}
1840
d9f3af96 1841static inline void
c2c7f240 1842logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1843{
c2c7f240 1844 unsigned shift = engine->irq_shift;
0bc40be8
TU
1845 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1846 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1847}
1848
7d774cac 1849static int
bf3783e5 1850lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1851{
57e88531 1852 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1853 void *hws;
04794adb
TU
1854
1855 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1856 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1857 if (IS_ERR(hws))
1858 return PTR_ERR(hws);
57e88531
CW
1859
1860 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1861 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1862 engine->status_page.vma = vma;
7d774cac
TU
1863
1864 return 0;
04794adb
TU
1865}
1866
bb45438f
TU
1867static void
1868logical_ring_setup(struct intel_engine_cs *engine)
1869{
1870 struct drm_i915_private *dev_priv = engine->i915;
1871 enum forcewake_domains fw_domains;
1872
019bf277
TU
1873 intel_engine_setup_common(engine);
1874
bb45438f
TU
1875 /* Intentionally left blank. */
1876 engine->buffer = NULL;
1877
1878 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1879 RING_ELSP(engine),
1880 FW_REG_WRITE);
1881
1882 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1883 RING_CONTEXT_STATUS_PTR(engine),
1884 FW_REG_READ | FW_REG_WRITE);
1885
1886 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1887 RING_CONTEXT_STATUS_BUF_BASE(engine),
1888 FW_REG_READ);
1889
1890 engine->fw_domains = fw_domains;
1891
bb45438f
TU
1892 tasklet_init(&engine->irq_tasklet,
1893 intel_lrc_irq_handler, (unsigned long)engine);
1894
1895 logical_ring_init_platform_invariants(engine);
1896 logical_ring_default_vfuncs(engine);
1897 logical_ring_default_irqs(engine);
bb45438f
TU
1898}
1899
a19d6ff2
TU
1900static int
1901logical_ring_init(struct intel_engine_cs *engine)
1902{
1903 struct i915_gem_context *dctx = engine->i915->kernel_context;
1904 int ret;
1905
019bf277 1906 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1907 if (ret)
1908 goto error;
1909
1910 ret = execlists_context_deferred_alloc(dctx, engine);
1911 if (ret)
1912 goto error;
1913
1914 /* As this is the default context, always pin it */
1915 ret = intel_lr_context_pin(dctx, engine);
1916 if (ret) {
1917 DRM_ERROR("Failed to pin context for %s: %d\n",
1918 engine->name, ret);
1919 goto error;
1920 }
1921
1922 /* And setup the hardware status page. */
1923 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1924 if (ret) {
1925 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1926 goto error;
1927 }
1928
1929 return 0;
1930
1931error:
1932 intel_logical_ring_cleanup(engine);
1933 return ret;
1934}
1935
88d2ba2e 1936int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1937{
1938 struct drm_i915_private *dev_priv = engine->i915;
1939 int ret;
1940
bb45438f
TU
1941 logical_ring_setup(engine);
1942
a19d6ff2
TU
1943 if (HAS_L3_DPF(dev_priv))
1944 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1945
1946 /* Override some for render ring. */
1947 if (INTEL_GEN(dev_priv) >= 9)
1948 engine->init_hw = gen9_init_render_ring;
1949 else
1950 engine->init_hw = gen8_init_render_ring;
1951 engine->init_context = gen8_init_rcs_context;
a19d6ff2 1952 engine->emit_flush = gen8_emit_flush_render;
9b81d556 1953 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
98f29e8d 1954 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
a19d6ff2 1955
56c0f1a7 1956 ret = intel_engine_create_scratch(engine, 4096);
a19d6ff2
TU
1957 if (ret)
1958 return ret;
1959
1960 ret = intel_init_workaround_bb(engine);
1961 if (ret) {
1962 /*
1963 * We continue even if we fail to initialize WA batch
1964 * because we only expect rare glitches but nothing
1965 * critical to prevent us from using GPU
1966 */
1967 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1968 ret);
1969 }
1970
1971 ret = logical_ring_init(engine);
1972 if (ret) {
1973 lrc_destroy_wa_ctx_obj(engine);
1974 }
1975
1976 return ret;
1977}
1978
88d2ba2e 1979int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1980{
1981 logical_ring_setup(engine);
1982
1983 return logical_ring_init(engine);
454afebd
OM
1984}
1985
0cea6502 1986static u32
c033666a 1987make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1988{
1989 u32 rpcs = 0;
1990
1991 /*
1992 * No explicit RPCS request is needed to ensure full
1993 * slice/subslice/EU enablement prior to Gen9.
1994 */
c033666a 1995 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1996 return 0;
1997
1998 /*
1999 * Starting in Gen9, render power gating can leave
2000 * slice/subslice/EU in a partially enabled state. We
2001 * must make an explicit request through RPCS for full
2002 * enablement.
2003 */
43b67998 2004 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 2005 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 2006 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
2007 GEN8_RPCS_S_CNT_SHIFT;
2008 rpcs |= GEN8_RPCS_ENABLE;
2009 }
2010
43b67998 2011 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 2012 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 2013 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
2014 GEN8_RPCS_SS_CNT_SHIFT;
2015 rpcs |= GEN8_RPCS_ENABLE;
2016 }
2017
43b67998
ID
2018 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2019 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 2020 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 2021 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
2022 GEN8_RPCS_EU_MAX_SHIFT;
2023 rpcs |= GEN8_RPCS_ENABLE;
2024 }
2025
2026 return rpcs;
2027}
2028
0bc40be8 2029static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2030{
2031 u32 indirect_ctx_offset;
2032
c033666a 2033 switch (INTEL_GEN(engine->i915)) {
71562919 2034 default:
c033666a 2035 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
2036 /* fall through */
2037 case 9:
2038 indirect_ctx_offset =
2039 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2040 break;
2041 case 8:
2042 indirect_ctx_offset =
2043 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2044 break;
2045 }
2046
2047 return indirect_ctx_offset;
2048}
2049
a3aabe86
CW
2050static void execlists_init_reg_state(u32 *reg_state,
2051 struct i915_gem_context *ctx,
2052 struct intel_engine_cs *engine,
2053 struct intel_ring *ring)
8670d6f9 2054{
a3aabe86
CW
2055 struct drm_i915_private *dev_priv = engine->i915;
2056 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
8670d6f9
OM
2057
2058 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2059 * commands followed by (reg, value) pairs. The values we are setting here are
2060 * only for the first context restore: on a subsequent save, the GPU will
2061 * recreate this batchbuffer with new values (including all the missing
2062 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2063 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2064 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2065 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2066 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2067 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2068 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 2069 (HAS_RESOURCE_STREAMER(dev_priv) ?
a3aabe86 2070 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2071 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2072 0);
2073 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2074 0);
0bc40be8
TU
2075 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2076 RING_START(engine->mmio_base), 0);
2077 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2078 RING_CTL(engine->mmio_base),
62ae14b1 2079 RING_CTL_SIZE(ring->size) | RING_VALID);
0bc40be8
TU
2080 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2081 RING_BBADDR_UDW(engine->mmio_base), 0);
2082 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2083 RING_BBADDR(engine->mmio_base), 0);
2084 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2085 RING_BBSTATE(engine->mmio_base),
0d925ea0 2086 RING_BB_PPGTT);
0bc40be8
TU
2087 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2088 RING_SBBADDR_UDW(engine->mmio_base), 0);
2089 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2090 RING_SBBADDR(engine->mmio_base), 0);
2091 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2092 RING_SBBSTATE(engine->mmio_base), 0);
2093 if (engine->id == RCS) {
2094 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2095 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2096 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2097 RING_INDIRECT_CTX(engine->mmio_base), 0);
2098 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2099 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
48bb74e4 2100 if (engine->wa_ctx.vma) {
0bc40be8 2101 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 2102 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d
AS
2103
2104 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2105 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2106 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2107
2108 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2109 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2110
2111 reg_state[CTX_BB_PER_CTX_PTR+1] =
2112 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2113 0x01;
2114 }
8670d6f9 2115 }
0d925ea0 2116 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2117 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2118 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2119 /* PDP values well be assigned later if needed */
0bc40be8
TU
2120 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2121 0);
2122 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2123 0);
2124 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2125 0);
2126 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2127 0);
2128 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2129 0);
2130 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2131 0);
2132 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2133 0);
2134 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2135 0);
d7b2633d 2136
2dba3239
MT
2137 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2138 /* 64b PPGTT (48bit canonical)
2139 * PDP0_DESCRIPTOR contains the base address to PML4 and
2140 * other PDP Descriptors are ignored.
2141 */
2142 ASSIGN_CTX_PML4(ppgtt, reg_state);
2143 } else {
2144 /* 32b PPGTT
2145 * PDP*_DESCRIPTOR contains the base address of space supported.
2146 * With dynamic page allocation, PDPs may not be allocated at
2147 * this point. Point the unallocated PDPs to the scratch page
2148 */
c6a2ac71 2149 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2150 }
2151
0bc40be8 2152 if (engine->id == RCS) {
8670d6f9 2153 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2154 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2155 make_rpcs(dev_priv));
8670d6f9 2156 }
a3aabe86
CW
2157}
2158
2159static int
2160populate_lr_context(struct i915_gem_context *ctx,
2161 struct drm_i915_gem_object *ctx_obj,
2162 struct intel_engine_cs *engine,
2163 struct intel_ring *ring)
2164{
2165 void *vaddr;
2166 int ret;
2167
2168 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2169 if (ret) {
2170 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2171 return ret;
2172 }
2173
2174 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2175 if (IS_ERR(vaddr)) {
2176 ret = PTR_ERR(vaddr);
2177 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2178 return ret;
2179 }
a4f5ea64 2180 ctx_obj->mm.dirty = true;
a3aabe86
CW
2181
2182 /* The second page of the context object contains some fields which must
2183 * be set up prior to the first execution. */
2184
2185 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2186 ctx, engine, ring);
8670d6f9 2187
7d774cac 2188 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2189
2190 return 0;
2191}
2192
c5d46ee2
DG
2193/**
2194 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2195 * @engine: which engine to find the context size for
c5d46ee2
DG
2196 *
2197 * Each engine may require a different amount of space for a context image,
2198 * so when allocating (or copying) an image, this function can be used to
2199 * find the right size for the specific engine.
2200 *
2201 * Return: size (in bytes) of an engine-specific context image
2202 *
2203 * Note: this size includes the HWSP, which is part of the context image
2204 * in LRC mode, but does not include the "shared data page" used with
2205 * GuC submission. The caller should account for this if using the GuC.
2206 */
0bc40be8 2207uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2208{
2209 int ret = 0;
2210
c033666a 2211 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2212
0bc40be8 2213 switch (engine->id) {
8c857917 2214 case RCS:
c033666a 2215 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2216 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2217 else
2218 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2219 break;
2220 case VCS:
2221 case BCS:
2222 case VECS:
2223 case VCS2:
2224 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2225 break;
2226 }
2227
2228 return ret;
ede7d42b
OM
2229}
2230
e2efd130 2231static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2232 struct intel_engine_cs *engine)
ede7d42b 2233{
8c857917 2234 struct drm_i915_gem_object *ctx_obj;
9021ad03 2235 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 2236 struct i915_vma *vma;
8c857917 2237 uint32_t context_size;
7e37f889 2238 struct intel_ring *ring;
8c857917
OM
2239 int ret;
2240
9021ad03 2241 WARN_ON(ce->state);
ede7d42b 2242
0bc40be8 2243 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2244
d1675198
AD
2245 /* One extra page as the sharing data between driver and GuC */
2246 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2247
91c8a326 2248 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
fe3db79b 2249 if (IS_ERR(ctx_obj)) {
3126a660 2250 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2251 return PTR_ERR(ctx_obj);
8c857917
OM
2252 }
2253
bf3783e5
CW
2254 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2255 if (IS_ERR(vma)) {
2256 ret = PTR_ERR(vma);
2257 goto error_deref_obj;
2258 }
2259
7e37f889 2260 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2261 if (IS_ERR(ring)) {
2262 ret = PTR_ERR(ring);
e84fe803 2263 goto error_deref_obj;
8670d6f9
OM
2264 }
2265
dca33ecc 2266 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2267 if (ret) {
2268 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2269 goto error_ring_free;
84c2377f
OM
2270 }
2271
dca33ecc 2272 ce->ring = ring;
bf3783e5 2273 ce->state = vma;
9021ad03 2274 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2275
2276 return 0;
8670d6f9 2277
dca33ecc 2278error_ring_free:
7e37f889 2279 intel_ring_free(ring);
e84fe803 2280error_deref_obj:
f8c417cd 2281 i915_gem_object_put(ctx_obj);
8670d6f9 2282 return ret;
ede7d42b 2283}
3e5b6f05 2284
821ed7df 2285void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2286{
e2f80391 2287 struct intel_engine_cs *engine;
bafb2f7d 2288 struct i915_gem_context *ctx;
3b3f1650 2289 enum intel_engine_id id;
bafb2f7d
CW
2290
2291 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2292 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2293 * that stored in context. As we only write new commands from
2294 * ce->ring->tail onwards, everything before that is junk. If the GPU
2295 * starts reading from its RING_HEAD from the context, it may try to
2296 * execute that junk and die.
2297 *
2298 * So to avoid that we reset the context images upon resume. For
2299 * simplicity, we just zero everything out.
2300 */
2301 list_for_each_entry(ctx, &dev_priv->context_list, link) {
3b3f1650 2302 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
2303 struct intel_context *ce = &ctx->engine[engine->id];
2304 u32 *reg;
3e5b6f05 2305
bafb2f7d
CW
2306 if (!ce->state)
2307 continue;
7d774cac 2308
bafb2f7d
CW
2309 reg = i915_gem_object_pin_map(ce->state->obj,
2310 I915_MAP_WB);
2311 if (WARN_ON(IS_ERR(reg)))
2312 continue;
3e5b6f05 2313
bafb2f7d
CW
2314 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2315 reg[CTX_RING_HEAD+1] = 0;
2316 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2317
a4f5ea64 2318 ce->state->obj->mm.dirty = true;
bafb2f7d 2319 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2320
bafb2f7d
CW
2321 ce->ring->head = ce->ring->tail = 0;
2322 ce->ring->last_retired_head = -1;
2323 intel_ring_update_space(ce->ring);
2324 }
3e5b6f05
TD
2325 }
2326}