]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Remove the identical implementations of request space reservation
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 ADVANCED_CONTEXT = 0,
2dba3239 212 LEGACY_32B_CONTEXT,
84b790f8
BW
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215};
2dba3239
MT
216#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
84b790f8
BW
220enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225};
226#define GEN8_CTX_ID_SHIFT 32
71562919
MT
227#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
228#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 229
e5292823
TU
230static int intel_lr_context_pin(struct intel_context *ctx,
231 struct intel_engine_cs *engine);
7ba717cf 232
73e4d07f
OM
233/**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
27401d12 239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
127f1003
OM
243int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244{
bd84b1e9
DV
245 WARN_ON(i915.enable_ppgtt == -1);
246
a0bd6c31
ZL
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
70ee45e1
DL
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
127f1003
OM
256 if (enable_execlists == 0)
257 return 0;
258
14bf993e
OM
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
127f1003
OM
261 return 1;
262
263 return 0;
264}
ede7d42b 265
ca82580c 266static void
0bc40be8 267logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 268{
0bc40be8 269 struct drm_device *dev = engine->dev;
ca82580c 270
c6a2ac71 271 if (IS_GEN8(dev) || IS_GEN9(dev))
0bc40be8 272 engine->idle_lite_restore_wa = ~0;
c6a2ac71 273
0bc40be8 274 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
ca82580c 275 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
0bc40be8 276 (engine->id == VCS || engine->id == VCS2);
ca82580c 277
0bc40be8
TU
278 engine->ctx_desc_template = GEN8_CTX_VALID;
279 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
ca82580c
TU
280 GEN8_CTX_ADDRESSING_MODE_SHIFT;
281 if (IS_GEN8(dev))
0bc40be8
TU
282 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
283 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
284
285 /* TODO: WaDisableLiteRestore when we start using semaphore
286 * signalling between Command Streamers */
287 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
288
289 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
290 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
291 if (engine->disable_lite_restore_wa)
292 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
293}
294
73e4d07f 295/**
ca82580c
TU
296 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
297 * descriptor for a pinned context
73e4d07f 298 *
ca82580c
TU
299 * @ctx: Context to work on
300 * @ring: Engine the descriptor will be used with
73e4d07f 301 *
ca82580c
TU
302 * The context descriptor encodes various attributes of a context,
303 * including its GTT address and some flags. Because it's fairly
304 * expensive to calculate, we'll just do it once and cache the result,
305 * which remains valid until the context is unpinned.
306 *
307 * This is what a descriptor looks like, from LSB to MSB:
308 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
309 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
310 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
311 * bits 52-63: reserved, may encode the engine ID (for GuC)
73e4d07f 312 */
ca82580c
TU
313static void
314intel_lr_context_descriptor_update(struct intel_context *ctx,
0bc40be8 315 struct intel_engine_cs *engine)
84b790f8 316{
ca82580c 317 uint64_t lrca, desc;
84b790f8 318
0bc40be8 319 lrca = ctx->engine[engine->id].lrc_vma->node.start +
ca82580c 320 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8 321
0bc40be8 322 desc = engine->ctx_desc_template; /* bits 0-11 */
ca82580c
TU
323 desc |= lrca; /* bits 12-31 */
324 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
5af05fef 325
0bc40be8 326 ctx->engine[engine->id].lrc_desc = desc;
5af05fef
MT
327}
328
919f1f55 329uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
0bc40be8 330 struct intel_engine_cs *engine)
84b790f8 331{
0bc40be8 332 return ctx->engine[engine->id].lrc_desc;
ca82580c 333}
203a571b 334
ca82580c
TU
335/**
336 * intel_execlists_ctx_id() - get the Execlists Context ID
337 * @ctx: Context to get the ID for
338 * @ring: Engine to get the ID for
339 *
340 * Do not confuse with ctx->id! Unfortunately we have a name overload
341 * here: the old context ID we pass to userspace as a handler so that
342 * they can refer to a context, and the new context ID we pass to the
343 * ELSP so that the GPU can inform us of the context status via
344 * interrupts.
345 *
346 * The context ID is a portion of the context descriptor, so we can
347 * just extract the required part from the cached descriptor.
348 *
349 * Return: 20-bits globally unique context ID.
350 */
351u32 intel_execlists_ctx_id(struct intel_context *ctx,
0bc40be8 352 struct intel_engine_cs *engine)
ca82580c 353{
0bc40be8 354 return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
84b790f8
BW
355}
356
cc3c4253
MK
357static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
358 struct drm_i915_gem_request *rq1)
84b790f8 359{
cc3c4253 360
4a570db5 361 struct intel_engine_cs *engine = rq0->engine;
e2f80391 362 struct drm_device *dev = engine->dev;
6e7cc470 363 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 364 uint64_t desc[2];
84b790f8 365
1cff8cc3 366 if (rq1) {
4a570db5 367 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
368 rq1->elsp_submitted++;
369 } else {
370 desc[1] = 0;
371 }
84b790f8 372
4a570db5 373 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 374 rq0->elsp_submitted++;
84b790f8 375
1cff8cc3 376 /* You must always write both descriptors in the order below. */
e2f80391
TU
377 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
378 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 379
e2f80391 380 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 381 /* The context is automatically loaded after the following */
e2f80391 382 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 383
1cff8cc3 384 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 385 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
386}
387
c6a2ac71
TU
388static void
389execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
390{
391 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
392 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
393 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
394 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
395}
396
397static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 398{
4a570db5 399 struct intel_engine_cs *engine = rq->engine;
05d9824b 400 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 401 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 402
05d9824b 403 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 404
c6a2ac71
TU
405 /* True 32b PPGTT with dynamic page allocation: update PDP
406 * registers and point the unallocated PDPs to scratch page.
407 * PML4 is allocated during ppgtt init, so this is not needed
408 * in 48-bit mode.
409 */
410 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
411 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
412}
413
d8cb8875
MK
414static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
415 struct drm_i915_gem_request *rq1)
84b790f8 416{
26720ab9 417 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 418 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 419
05d9824b 420 execlists_update_context(rq0);
d8cb8875 421
cc3c4253 422 if (rq1)
05d9824b 423 execlists_update_context(rq1);
84b790f8 424
27af5eea 425 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 426 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 427
cc3c4253 428 execlists_elsp_write(rq0, rq1);
26720ab9 429
3756685a 430 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 431 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
432}
433
26720ab9 434static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 435{
6d3d8274 436 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 437 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 438
0bc40be8 439 assert_spin_locked(&engine->execlist_lock);
acdd884a 440
779949f4
PA
441 /*
442 * If irqs are not active generate a warning as batches that finish
443 * without the irqs may get lost and a GPU Hang may occur.
444 */
0bc40be8 445 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
779949f4 446
acdd884a 447 /* Try to read in pairs */
0bc40be8 448 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
449 execlist_link) {
450 if (!req0) {
451 req0 = cursor;
6d3d8274 452 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
453 /* Same ctx: ignore first request, as second request
454 * will update tail past first request's workload */
e1fee72c 455 cursor->elsp_submitted = req0->elsp_submitted;
7eb08a25 456 list_move_tail(&req0->execlist_link,
0bc40be8 457 &engine->execlist_retired_req_list);
acdd884a
MT
458 req0 = cursor;
459 } else {
460 req1 = cursor;
c6a2ac71 461 WARN_ON(req1->elsp_submitted);
acdd884a
MT
462 break;
463 }
464 }
465
c6a2ac71
TU
466 if (unlikely(!req0))
467 return;
468
0bc40be8 469 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 470 /*
c6a2ac71
TU
471 * WaIdleLiteRestore: make sure we never cause a lite restore
472 * with HEAD==TAIL.
473 *
474 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
475 * resubmit the request. See gen8_emit_request() for where we
476 * prepare the padding after the end of the request.
53292cdb 477 */
c6a2ac71 478 struct intel_ringbuffer *ringbuf;
53292cdb 479
0bc40be8 480 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
481 req0->tail += 8;
482 req0->tail &= ringbuf->size - 1;
53292cdb
MT
483 }
484
d8cb8875 485 execlists_submit_requests(req0, req1);
acdd884a
MT
486}
487
c6a2ac71 488static unsigned int
0bc40be8 489execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
e981e7b1 490{
6d3d8274 491 struct drm_i915_gem_request *head_req;
e981e7b1 492
0bc40be8 493 assert_spin_locked(&engine->execlist_lock);
e981e7b1 494
0bc40be8 495 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 496 struct drm_i915_gem_request,
e981e7b1
TD
497 execlist_link);
498
c6a2ac71
TU
499 if (!head_req)
500 return 0;
e1fee72c 501
0bc40be8 502 if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
c6a2ac71
TU
503 return 0;
504
505 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
506
507 if (--head_req->elsp_submitted > 0)
508 return 0;
509
510 list_move_tail(&head_req->execlist_link,
0bc40be8 511 &engine->execlist_retired_req_list);
e981e7b1 512
c6a2ac71 513 return 1;
e981e7b1
TD
514}
515
c6a2ac71 516static u32
0bc40be8 517get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 518 u32 *context_id)
91a41032 519{
0bc40be8 520 struct drm_i915_private *dev_priv = engine->dev->dev_private;
c6a2ac71 521 u32 status;
91a41032 522
c6a2ac71
TU
523 read_pointer %= GEN8_CSB_ENTRIES;
524
0bc40be8 525 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
526
527 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
528 return 0;
91a41032 529
0bc40be8 530 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
531 read_pointer));
532
533 return status;
91a41032
BW
534}
535
73e4d07f 536/**
3f7531c3 537 * intel_lrc_irq_handler() - handle Context Switch interrupts
27af5eea 538 * @engine: Engine Command Streamer to handle.
73e4d07f
OM
539 *
540 * Check the unread Context Status Buffers and manage the submission of new
541 * contexts to the ELSP accordingly.
542 */
27af5eea 543static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 544{
27af5eea 545 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
0bc40be8 546 struct drm_i915_private *dev_priv = engine->dev->dev_private;
e981e7b1 547 u32 status_pointer;
c6a2ac71 548 unsigned int read_pointer, write_pointer;
26720ab9
TU
549 u32 csb[GEN8_CSB_ENTRIES][2];
550 unsigned int csb_read = 0, i;
c6a2ac71
TU
551 unsigned int submit_contexts = 0;
552
3756685a 553 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 554
0bc40be8 555 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 556
0bc40be8 557 read_pointer = engine->next_context_status_buffer;
5590a5f0 558 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 559 if (read_pointer > write_pointer)
dfc53c5e 560 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 561
e981e7b1 562 while (read_pointer < write_pointer) {
26720ab9
TU
563 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
564 break;
565 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
566 &csb[csb_read][1]);
567 csb_read++;
568 }
91a41032 569
26720ab9
TU
570 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
571
572 /* Update the read pointer to the old write pointer. Manual ringbuffer
573 * management ftw </sarcasm> */
574 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
575 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
576 engine->next_context_status_buffer << 8));
577
3756685a 578 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
579
580 spin_lock(&engine->execlist_lock);
581
582 for (i = 0; i < csb_read; i++) {
583 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
584 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
585 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
586 WARN(1, "Lite Restored request removed from queue\n");
587 } else
588 WARN(1, "Preemption without Lite Restore\n");
589 }
590
26720ab9 591 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
592 GEN8_CTX_STATUS_ELEMENT_SWITCH))
593 submit_contexts +=
26720ab9 594 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
595 }
596
c6a2ac71 597 if (submit_contexts) {
0bc40be8 598 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
599 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
600 execlists_context_unqueue(engine);
5af05fef 601 }
e981e7b1 602
0bc40be8 603 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
604
605 if (unlikely(submit_contexts > 2))
606 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
607}
608
c6a2ac71 609static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 610{
4a570db5 611 struct intel_engine_cs *engine = request->engine;
6d3d8274 612 struct drm_i915_gem_request *cursor;
f1ad5a1f 613 int num_elements = 0;
acdd884a 614
ed54c1a1 615 if (request->ctx != request->i915->kernel_context)
e2f80391 616 intel_lr_context_pin(request->ctx, engine);
af3302b9 617
9bb1af44
JH
618 i915_gem_request_reference(request);
619
27af5eea 620 spin_lock_bh(&engine->execlist_lock);
acdd884a 621
e2f80391 622 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
623 if (++num_elements > 2)
624 break;
625
626 if (num_elements > 2) {
6d3d8274 627 struct drm_i915_gem_request *tail_req;
f1ad5a1f 628
e2f80391 629 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 630 struct drm_i915_gem_request,
f1ad5a1f
OM
631 execlist_link);
632
ae70797d 633 if (request->ctx == tail_req->ctx) {
f1ad5a1f 634 WARN(tail_req->elsp_submitted != 0,
7ba717cf 635 "More than 2 already-submitted reqs queued\n");
7eb08a25 636 list_move_tail(&tail_req->execlist_link,
e2f80391 637 &engine->execlist_retired_req_list);
f1ad5a1f
OM
638 }
639 }
640
e2f80391 641 list_add_tail(&request->execlist_link, &engine->execlist_queue);
f1ad5a1f 642 if (num_elements == 0)
e2f80391 643 execlists_context_unqueue(engine);
acdd884a 644
27af5eea 645 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
646}
647
2f20055d 648static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 649{
4a570db5 650 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
651 uint32_t flush_domains;
652 int ret;
653
654 flush_domains = 0;
e2f80391 655 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
656 flush_domains = I915_GEM_GPU_DOMAINS;
657
e2f80391 658 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
659 if (ret)
660 return ret;
661
e2f80391 662 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
663 return 0;
664}
665
535fbe82 666static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
667 struct list_head *vmas)
668{
666796da 669 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
670 struct i915_vma *vma;
671 uint32_t flush_domains = 0;
672 bool flush_chipset = false;
673 int ret;
674
675 list_for_each_entry(vma, vmas, exec_list) {
676 struct drm_i915_gem_object *obj = vma->obj;
677
03ade511 678 if (obj->active & other_rings) {
4a570db5 679 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
680 if (ret)
681 return ret;
682 }
ba8b7ccb
OM
683
684 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
685 flush_chipset |= i915_gem_clflush_object(obj, false);
686
687 flush_domains |= obj->base.write_domain;
688 }
689
690 if (flush_domains & I915_GEM_DOMAIN_GTT)
691 wmb();
692
693 /* Unconditionally invalidate gpu caches and ensure that we do flush
694 * any residual writes from the previous batch.
695 */
2f20055d 696 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
697}
698
40e895ce 699int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 700{
e28e404c 701 int ret = 0;
bc0dce3f 702
4a570db5 703 request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
f3cc01f0 704
a7e02199
AD
705 if (i915.enable_guc_submission) {
706 /*
707 * Check that the GuC has space for the request before
708 * going any further, as the i915_add_request() call
709 * later on mustn't fail ...
710 */
711 struct intel_guc *guc = &request->i915->guc;
712
713 ret = i915_guc_wq_check_space(guc->execbuf_client);
714 if (ret)
715 return ret;
716 }
717
e28e404c 718 if (request->ctx != request->i915->kernel_context)
4a570db5 719 ret = intel_lr_context_pin(request->ctx, request->engine);
e28e404c
DG
720
721 return ret;
bc0dce3f
JH
722}
723
bc0dce3f
JH
724/*
725 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 726 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
727 *
728 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
729 * really happens during submission is that the context and current tail will be placed
730 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
731 * point, the tail *inside* the context is updated and the ELSP written to.
732 */
7c17d377 733static int
ae70797d 734intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 735{
7c17d377 736 struct intel_ringbuffer *ringbuf = request->ringbuf;
d1675198 737 struct drm_i915_private *dev_priv = request->i915;
4a570db5 738 struct intel_engine_cs *engine = request->engine;
bc0dce3f 739
7c17d377
CW
740 intel_logical_ring_advance(ringbuf);
741 request->tail = ringbuf->tail;
bc0dce3f 742
7c17d377
CW
743 /*
744 * Here we add two extra NOOPs as padding to avoid
745 * lite restore of a context with HEAD==TAIL.
746 *
747 * Caller must reserve WA_TAIL_DWORDS for us!
748 */
749 intel_logical_ring_emit(ringbuf, MI_NOOP);
750 intel_logical_ring_emit(ringbuf, MI_NOOP);
751 intel_logical_ring_advance(ringbuf);
d1675198 752
117897f4 753 if (intel_engine_stopped(engine))
7c17d377 754 return 0;
bc0dce3f 755
f4e2dece
TU
756 if (engine->last_context != request->ctx) {
757 if (engine->last_context)
758 intel_lr_context_unpin(engine->last_context, engine);
759 if (request->ctx != request->i915->kernel_context) {
760 intel_lr_context_pin(request->ctx, engine);
761 engine->last_context = request->ctx;
762 } else {
763 engine->last_context = NULL;
764 }
765 }
766
d1675198
AD
767 if (dev_priv->guc.execbuf_client)
768 i915_guc_submit(dev_priv->guc.execbuf_client, request);
769 else
770 execlists_context_queue(request);
7c17d377
CW
771
772 return 0;
bc0dce3f
JH
773}
774
73e4d07f
OM
775/**
776 * execlists_submission() - submit a batchbuffer for execution, Execlists style
777 * @dev: DRM device.
778 * @file: DRM file.
779 * @ring: Engine Command Streamer to submit to.
780 * @ctx: Context to employ for this submission.
781 * @args: execbuffer call arguments.
782 * @vmas: list of vmas.
783 * @batch_obj: the batchbuffer to submit.
784 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 785 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
786 *
787 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
788 * away the submission details of the execbuffer ioctl call.
789 *
790 * Return: non-zero if the submission fails.
791 */
5f19e2bf 792int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 793 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 794 struct list_head *vmas)
454afebd 795{
5f19e2bf 796 struct drm_device *dev = params->dev;
4a570db5 797 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 798 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 799 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 800 u64 exec_start;
ba8b7ccb
OM
801 int instp_mode;
802 u32 instp_mask;
803 int ret;
804
805 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
806 instp_mask = I915_EXEC_CONSTANTS_MASK;
807 switch (instp_mode) {
808 case I915_EXEC_CONSTANTS_REL_GENERAL:
809 case I915_EXEC_CONSTANTS_ABSOLUTE:
810 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 811 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
812 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
813 return -EINVAL;
814 }
815
816 if (instp_mode != dev_priv->relative_constants_mode) {
817 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
818 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
819 return -EINVAL;
820 }
821
822 /* The HW changed the meaning on this bit on gen6 */
823 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
824 }
825 break;
826 default:
827 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
828 return -EINVAL;
829 }
830
ba8b7ccb
OM
831 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
832 DRM_DEBUG("sol reset is gen7 only\n");
833 return -EINVAL;
834 }
835
535fbe82 836 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
837 if (ret)
838 return ret;
839
4a570db5 840 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 841 instp_mode != dev_priv->relative_constants_mode) {
987046ad 842 ret = intel_ring_begin(params->request, 4);
ba8b7ccb
OM
843 if (ret)
844 return ret;
845
846 intel_logical_ring_emit(ringbuf, MI_NOOP);
847 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 848 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
849 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
850 intel_logical_ring_advance(ringbuf);
851
852 dev_priv->relative_constants_mode = instp_mode;
853 }
854
5f19e2bf
JH
855 exec_start = params->batch_obj_vm_offset +
856 args->batch_start_offset;
857
e2f80391 858 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
859 if (ret)
860 return ret;
861
95c24161 862 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 863
8a8edb59 864 i915_gem_execbuffer_move_to_active(vmas, params->request);
ba8b7ccb 865
454afebd
OM
866 return 0;
867}
868
0bc40be8 869void intel_execlists_retire_requests(struct intel_engine_cs *engine)
c86ee3a9 870{
6d3d8274 871 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
872 struct list_head retired_list;
873
0bc40be8
TU
874 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
875 if (list_empty(&engine->execlist_retired_req_list))
c86ee3a9
TD
876 return;
877
878 INIT_LIST_HEAD(&retired_list);
27af5eea 879 spin_lock_bh(&engine->execlist_lock);
0bc40be8 880 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
27af5eea 881 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9
TD
882
883 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
af3302b9
DV
884 struct intel_context *ctx = req->ctx;
885 struct drm_i915_gem_object *ctx_obj =
0bc40be8 886 ctx->engine[engine->id].state;
af3302b9 887
ed54c1a1 888 if (ctx_obj && (ctx != req->i915->kernel_context))
0bc40be8 889 intel_lr_context_unpin(ctx, engine);
e5292823 890
c86ee3a9 891 list_del(&req->execlist_link);
f8210795 892 i915_gem_request_unreference(req);
c86ee3a9
TD
893 }
894}
895
0bc40be8 896void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 897{
0bc40be8 898 struct drm_i915_private *dev_priv = engine->dev->dev_private;
9832b9da
OM
899 int ret;
900
117897f4 901 if (!intel_engine_initialized(engine))
9832b9da
OM
902 return;
903
666796da 904 ret = intel_engine_idle(engine);
f4457ae7 905 if (ret)
9832b9da 906 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 907 engine->name, ret);
9832b9da
OM
908
909 /* TODO: Is this correct with Execlists enabled? */
0bc40be8
TU
910 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
911 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
912 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
913 return;
914 }
0bc40be8 915 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
916}
917
4866d729 918int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 919{
4a570db5 920 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
921 int ret;
922
e2f80391 923 if (!engine->gpu_caches_dirty)
48e29f55
OM
924 return 0;
925
e2f80391 926 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
927 if (ret)
928 return ret;
929
e2f80391 930 engine->gpu_caches_dirty = false;
48e29f55
OM
931 return 0;
932}
933
e5292823 934static int intel_lr_context_do_pin(struct intel_context *ctx,
0bc40be8 935 struct intel_engine_cs *engine)
dcb4c12a 936{
0bc40be8 937 struct drm_device *dev = engine->dev;
e84fe803 938 struct drm_i915_private *dev_priv = dev->dev_private;
0bc40be8
TU
939 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
940 struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
7d774cac
TU
941 void *vaddr;
942 u32 *lrc_reg_state;
ca82580c 943 int ret;
dcb4c12a 944
0bc40be8 945 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
ca82580c 946
e84fe803
NH
947 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
948 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
949 if (ret)
950 return ret;
7ba717cf 951
7d774cac
TU
952 vaddr = i915_gem_object_pin_map(ctx_obj);
953 if (IS_ERR(vaddr)) {
954 ret = PTR_ERR(vaddr);
82352e90
TU
955 goto unpin_ctx_obj;
956 }
957
7d774cac
TU
958 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
959
0bc40be8 960 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
e84fe803 961 if (ret)
7d774cac 962 goto unpin_map;
d1675198 963
0bc40be8
TU
964 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
965 intel_lr_context_descriptor_update(ctx, engine);
77b04a04 966 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
0bc40be8 967 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
e84fe803 968 ctx_obj->dirty = true;
e93c28f3 969
e84fe803
NH
970 /* Invalidate GuC TLB. */
971 if (i915.enable_guc_submission)
972 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 973
7ba717cf
TD
974 return ret;
975
7d774cac
TU
976unpin_map:
977 i915_gem_object_unpin_map(ctx_obj);
7ba717cf
TD
978unpin_ctx_obj:
979 i915_gem_object_ggtt_unpin(ctx_obj);
e84fe803
NH
980
981 return ret;
982}
983
e5292823
TU
984static int intel_lr_context_pin(struct intel_context *ctx,
985 struct intel_engine_cs *engine)
e84fe803
NH
986{
987 int ret = 0;
e84fe803 988
e5292823
TU
989 if (ctx->engine[engine->id].pin_count++ == 0) {
990 ret = intel_lr_context_do_pin(ctx, engine);
e84fe803
NH
991 if (ret)
992 goto reset_pin_count;
321fe304
TU
993
994 i915_gem_context_reference(ctx);
e84fe803
NH
995 }
996 return ret;
997
a7cbedec 998reset_pin_count:
e5292823 999 ctx->engine[engine->id].pin_count = 0;
dcb4c12a
OM
1000 return ret;
1001}
1002
e5292823
TU
1003void intel_lr_context_unpin(struct intel_context *ctx,
1004 struct intel_engine_cs *engine)
dcb4c12a 1005{
e5292823 1006 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
af3302b9 1007
f4e2dece 1008 WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
e5292823 1009 if (--ctx->engine[engine->id].pin_count == 0) {
7d774cac 1010 i915_gem_object_unpin_map(ctx_obj);
e5292823 1011 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
82352e90 1012 i915_gem_object_ggtt_unpin(ctx_obj);
e5292823
TU
1013 ctx->engine[engine->id].lrc_vma = NULL;
1014 ctx->engine[engine->id].lrc_desc = 0;
1015 ctx->engine[engine->id].lrc_reg_state = NULL;
321fe304
TU
1016
1017 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1018 }
1019}
1020
e2be4faf 1021static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1022{
1023 int ret, i;
4a570db5 1024 struct intel_engine_cs *engine = req->engine;
e2be4faf 1025 struct intel_ringbuffer *ringbuf = req->ringbuf;
e2f80391 1026 struct drm_device *dev = engine->dev;
771b9a53
MT
1027 struct drm_i915_private *dev_priv = dev->dev_private;
1028 struct i915_workarounds *w = &dev_priv->workarounds;
1029
cd7feaaa 1030 if (w->count == 0)
771b9a53
MT
1031 return 0;
1032
e2f80391 1033 engine->gpu_caches_dirty = true;
4866d729 1034 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1035 if (ret)
1036 return ret;
1037
987046ad 1038 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1039 if (ret)
1040 return ret;
1041
1042 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1043 for (i = 0; i < w->count; i++) {
f92a9162 1044 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1045 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1046 }
1047 intel_logical_ring_emit(ringbuf, MI_NOOP);
1048
1049 intel_logical_ring_advance(ringbuf);
1050
e2f80391 1051 engine->gpu_caches_dirty = true;
4866d729 1052 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1053 if (ret)
1054 return ret;
1055
1056 return 0;
1057}
1058
83b8a982 1059#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1060 do { \
83b8a982
AS
1061 int __index = (index)++; \
1062 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1063 return -ENOSPC; \
1064 } \
83b8a982 1065 batch[__index] = (cmd); \
17ee950d
AS
1066 } while (0)
1067
8f40db77 1068#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1069 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1070
1071/*
1072 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1073 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1074 * but there is a slight complication as this is applied in WA batch where the
1075 * values are only initialized once so we cannot take register value at the
1076 * beginning and reuse it further; hence we save its value to memory, upload a
1077 * constant value with bit21 set and then we restore it back with the saved value.
1078 * To simplify the WA, a constant value is formed by using the default value
1079 * of this register. This shouldn't be a problem because we are only modifying
1080 * it for a short period and this batch in non-premptible. We can ofcourse
1081 * use additional instructions that read the actual value of the register
1082 * at that time and set our bit of interest but it makes the WA complicated.
1083 *
1084 * This WA is also required for Gen9 so extracting as a function avoids
1085 * code duplication.
1086 */
0bc40be8 1087static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1088 uint32_t *const batch,
1089 uint32_t index)
1090{
1091 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1092
a4106a78
AS
1093 /*
1094 * WaDisableLSQCROPERFforOCL:skl
1095 * This WA is implemented in skl_init_clock_gating() but since
1096 * this batch updates GEN8_L3SQCREG4 with default value we need to
1097 * set this bit here to retain the WA during flush.
1098 */
0bc40be8 1099 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
a4106a78
AS
1100 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1101
f1afe24f 1102 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1103 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1104 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1105 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1106 wa_ctx_emit(batch, index, 0);
1107
1108 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1109 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1110 wa_ctx_emit(batch, index, l3sqc4_flush);
1111
1112 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1113 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1114 PIPE_CONTROL_DC_FLUSH_ENABLE));
1115 wa_ctx_emit(batch, index, 0);
1116 wa_ctx_emit(batch, index, 0);
1117 wa_ctx_emit(batch, index, 0);
1118 wa_ctx_emit(batch, index, 0);
1119
f1afe24f 1120 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1121 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1122 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1123 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1124 wa_ctx_emit(batch, index, 0);
9e000847
AS
1125
1126 return index;
1127}
1128
17ee950d
AS
1129static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1130 uint32_t offset,
1131 uint32_t start_alignment)
1132{
1133 return wa_ctx->offset = ALIGN(offset, start_alignment);
1134}
1135
1136static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1137 uint32_t offset,
1138 uint32_t size_alignment)
1139{
1140 wa_ctx->size = offset - wa_ctx->offset;
1141
1142 WARN(wa_ctx->size % size_alignment,
1143 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1144 wa_ctx->size, size_alignment);
1145 return 0;
1146}
1147
1148/**
1149 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1150 *
1151 * @ring: only applicable for RCS
1152 * @wa_ctx: structure representing wa_ctx
1153 * offset: specifies start of the batch, should be cache-aligned. This is updated
1154 * with the offset value received as input.
1155 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1156 * @batch: page in which WA are loaded
1157 * @offset: This field specifies the start of the batch, it should be
1158 * cache-aligned otherwise it is adjusted accordingly.
1159 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1160 * initialized at the beginning and shared across all contexts but this field
1161 * helps us to have multiple batches at different offsets and select them based
1162 * on a criteria. At the moment this batch always start at the beginning of the page
1163 * and at this point we don't have multiple wa_ctx batch buffers.
1164 *
1165 * The number of WA applied are not known at the beginning; we use this field
1166 * to return the no of DWORDS written.
4d78c8dc 1167 *
17ee950d
AS
1168 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1169 * so it adds NOOPs as padding to make it cacheline aligned.
1170 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1171 * makes a complete batch buffer.
1172 *
1173 * Return: non-zero if we exceed the PAGE_SIZE limit.
1174 */
1175
0bc40be8 1176static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1177 struct i915_wa_ctx_bb *wa_ctx,
1178 uint32_t *const batch,
1179 uint32_t *offset)
1180{
0160f055 1181 uint32_t scratch_addr;
17ee950d
AS
1182 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1183
7ad00d1a 1184 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1185 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1186
c82435bb 1187 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
0bc40be8
TU
1188 if (IS_BROADWELL(engine->dev)) {
1189 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1190 if (rc < 0)
1191 return rc;
1192 index = rc;
c82435bb
AS
1193 }
1194
0160f055
AS
1195 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1196 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1197 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1198
83b8a982
AS
1199 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1200 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1201 PIPE_CONTROL_GLOBAL_GTT_IVB |
1202 PIPE_CONTROL_CS_STALL |
1203 PIPE_CONTROL_QW_WRITE));
1204 wa_ctx_emit(batch, index, scratch_addr);
1205 wa_ctx_emit(batch, index, 0);
1206 wa_ctx_emit(batch, index, 0);
1207 wa_ctx_emit(batch, index, 0);
0160f055 1208
17ee950d
AS
1209 /* Pad to end of cacheline */
1210 while (index % CACHELINE_DWORDS)
83b8a982 1211 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1212
1213 /*
1214 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1215 * execution depends on the length specified in terms of cache lines
1216 * in the register CTX_RCS_INDIRECT_CTX
1217 */
1218
1219 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1220}
1221
1222/**
1223 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1224 *
1225 * @ring: only applicable for RCS
1226 * @wa_ctx: structure representing wa_ctx
1227 * offset: specifies start of the batch, should be cache-aligned.
1228 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1229 * @batch: page in which WA are loaded
17ee950d
AS
1230 * @offset: This field specifies the start of this batch.
1231 * This batch is started immediately after indirect_ctx batch. Since we ensure
1232 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1233 *
1234 * The number of DWORDS written are returned using this field.
1235 *
1236 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1237 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1238 */
0bc40be8 1239static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1240 struct i915_wa_ctx_bb *wa_ctx,
1241 uint32_t *const batch,
1242 uint32_t *offset)
1243{
1244 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1245
7ad00d1a 1246 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1247 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1248
83b8a982 1249 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1250
1251 return wa_ctx_end(wa_ctx, *offset = index, 1);
1252}
1253
0bc40be8 1254static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1255 struct i915_wa_ctx_bb *wa_ctx,
1256 uint32_t *const batch,
1257 uint32_t *offset)
1258{
a4106a78 1259 int ret;
0bc40be8 1260 struct drm_device *dev = engine->dev;
0504cffc
AS
1261 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1262
0907c8f7 1263 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1264 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1265 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1266 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1267
a4106a78 1268 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1269 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1270 if (ret < 0)
1271 return ret;
1272 index = ret;
1273
0504cffc
AS
1274 /* Pad to end of cacheline */
1275 while (index % CACHELINE_DWORDS)
1276 wa_ctx_emit(batch, index, MI_NOOP);
1277
1278 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1279}
1280
0bc40be8 1281static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1282 struct i915_wa_ctx_bb *wa_ctx,
1283 uint32_t *const batch,
1284 uint32_t *offset)
1285{
0bc40be8 1286 struct drm_device *dev = engine->dev;
0504cffc
AS
1287 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1288
9b01435d 1289 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1290 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1291 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1292 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1293 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1294 wa_ctx_emit(batch, index,
1295 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1296 wa_ctx_emit(batch, index, MI_NOOP);
1297 }
1298
b1e429fe
TG
1299 /* WaClearTdlStateAckDirtyBits:bxt */
1300 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1301 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1302
1303 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1304 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1305
1306 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1307 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1308
1309 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1310 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1311
1312 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1313 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1314 wa_ctx_emit(batch, index, 0x0);
1315 wa_ctx_emit(batch, index, MI_NOOP);
1316 }
1317
0907c8f7 1318 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1319 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1320 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1321 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1322
0504cffc
AS
1323 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1324
1325 return wa_ctx_end(wa_ctx, *offset = index, 1);
1326}
1327
0bc40be8 1328static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1329{
1330 int ret;
1331
d37cd8a8 1332 engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
0bc40be8 1333 PAGE_ALIGN(size));
fe3db79b 1334 if (IS_ERR(engine->wa_ctx.obj)) {
17ee950d 1335 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
fe3db79b
CW
1336 ret = PTR_ERR(engine->wa_ctx.obj);
1337 engine->wa_ctx.obj = NULL;
1338 return ret;
17ee950d
AS
1339 }
1340
0bc40be8 1341 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1342 if (ret) {
1343 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1344 ret);
0bc40be8 1345 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1346 return ret;
1347 }
1348
1349 return 0;
1350}
1351
0bc40be8 1352static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1353{
0bc40be8
TU
1354 if (engine->wa_ctx.obj) {
1355 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1356 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1357 engine->wa_ctx.obj = NULL;
17ee950d
AS
1358 }
1359}
1360
0bc40be8 1361static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1362{
1363 int ret;
1364 uint32_t *batch;
1365 uint32_t offset;
1366 struct page *page;
0bc40be8 1367 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1368
0bc40be8 1369 WARN_ON(engine->id != RCS);
17ee950d 1370
5e60d790 1371 /* update this when WA for higher Gen are added */
0bc40be8 1372 if (INTEL_INFO(engine->dev)->gen > 9) {
0504cffc 1373 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
0bc40be8 1374 INTEL_INFO(engine->dev)->gen);
5e60d790 1375 return 0;
0504cffc 1376 }
5e60d790 1377
c4db7599 1378 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1379 if (engine->scratch.obj == NULL) {
1380 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1381 return -EINVAL;
1382 }
1383
0bc40be8 1384 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1385 if (ret) {
1386 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1387 return ret;
1388 }
1389
033908ae 1390 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1391 batch = kmap_atomic(page);
1392 offset = 0;
1393
0bc40be8
TU
1394 if (INTEL_INFO(engine->dev)->gen == 8) {
1395 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1396 &wa_ctx->indirect_ctx,
1397 batch,
1398 &offset);
1399 if (ret)
1400 goto out;
1401
0bc40be8 1402 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1403 &wa_ctx->per_ctx,
1404 batch,
1405 &offset);
1406 if (ret)
1407 goto out;
0bc40be8
TU
1408 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1409 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1410 &wa_ctx->indirect_ctx,
1411 batch,
1412 &offset);
1413 if (ret)
1414 goto out;
1415
0bc40be8 1416 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1417 &wa_ctx->per_ctx,
1418 batch,
1419 &offset);
1420 if (ret)
1421 goto out;
17ee950d
AS
1422 }
1423
1424out:
1425 kunmap_atomic(batch);
1426 if (ret)
0bc40be8 1427 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1428
1429 return ret;
1430}
1431
04794adb
TU
1432static void lrc_init_hws(struct intel_engine_cs *engine)
1433{
1434 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1435
1436 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1437 (u32)engine->status_page.gfx_addr);
1438 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1439}
1440
0bc40be8 1441static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1442{
0bc40be8 1443 struct drm_device *dev = engine->dev;
9b1136d5 1444 struct drm_i915_private *dev_priv = dev->dev_private;
c6a2ac71 1445 unsigned int next_context_status_buffer_hw;
9b1136d5 1446
04794adb 1447 lrc_init_hws(engine);
e84fe803 1448
0bc40be8
TU
1449 I915_WRITE_IMR(engine,
1450 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1451 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1452
0bc40be8 1453 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1454 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1455 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1456 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1457
1458 /*
1459 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1460 * zero, we need to read the write pointer from hardware and use its
1461 * value because "this register is power context save restored".
1462 * Effectively, these states have been observed:
1463 *
1464 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1465 * BDW | CSB regs not reset | CSB regs reset |
1466 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1467 * SKL | ? | ? |
1468 * BXT | ? | ? |
dfc53c5e 1469 */
5590a5f0 1470 next_context_status_buffer_hw =
0bc40be8 1471 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1472
1473 /*
1474 * When the CSB registers are reset (also after power-up / gpu reset),
1475 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1476 * this special case, so the first element read is CSB[0].
1477 */
1478 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1479 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1480
0bc40be8
TU
1481 engine->next_context_status_buffer = next_context_status_buffer_hw;
1482 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1483
fc0768ce 1484 intel_engine_init_hangcheck(engine);
9b1136d5 1485
0ccdacf6 1486 return intel_mocs_init_engine(engine);
9b1136d5
OM
1487}
1488
0bc40be8 1489static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1490{
0bc40be8 1491 struct drm_device *dev = engine->dev;
9b1136d5
OM
1492 struct drm_i915_private *dev_priv = dev->dev_private;
1493 int ret;
1494
0bc40be8 1495 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1496 if (ret)
1497 return ret;
1498
1499 /* We need to disable the AsyncFlip performance optimisations in order
1500 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1501 * programmed to '1' on all products.
1502 *
1503 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1504 */
1505 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1506
9b1136d5
OM
1507 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1508
0bc40be8 1509 return init_workarounds_ring(engine);
9b1136d5
OM
1510}
1511
0bc40be8 1512static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1513{
1514 int ret;
1515
0bc40be8 1516 ret = gen8_init_common_ring(engine);
82ef822e
DL
1517 if (ret)
1518 return ret;
1519
0bc40be8 1520 return init_workarounds_ring(engine);
82ef822e
DL
1521}
1522
7a01a0a2
MT
1523static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1524{
1525 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1526 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1527 struct intel_ringbuffer *ringbuf = req->ringbuf;
1528 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1529 int i, ret;
1530
987046ad 1531 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1532 if (ret)
1533 return ret;
1534
1535 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1536 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1537 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1538
e2f80391
TU
1539 intel_logical_ring_emit_reg(ringbuf,
1540 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1541 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1542 intel_logical_ring_emit_reg(ringbuf,
1543 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1544 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1545 }
1546
1547 intel_logical_ring_emit(ringbuf, MI_NOOP);
1548 intel_logical_ring_advance(ringbuf);
1549
1550 return 0;
1551}
1552
be795fc1 1553static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1554 u64 offset, unsigned dispatch_flags)
15648585 1555{
be795fc1 1556 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1557 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1558 int ret;
1559
7a01a0a2
MT
1560 /* Don't rely in hw updating PDPs, specially in lite-restore.
1561 * Ideally, we should set Force PD Restore in ctx descriptor,
1562 * but we can't. Force Restore would be a second option, but
1563 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1564 * not idle). PML4 is allocated during ppgtt init so this is
1565 * not needed in 48-bit.*/
7a01a0a2 1566 if (req->ctx->ppgtt &&
666796da 1567 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1568 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1569 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1570 ret = intel_logical_ring_emit_pdps(req);
1571 if (ret)
1572 return ret;
1573 }
7a01a0a2 1574
666796da 1575 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1576 }
1577
987046ad 1578 ret = intel_ring_begin(req, 4);
15648585
OM
1579 if (ret)
1580 return ret;
1581
1582 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1583 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1584 (ppgtt<<8) |
1585 (dispatch_flags & I915_DISPATCH_RS ?
1586 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1587 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1588 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1589 intel_logical_ring_emit(ringbuf, MI_NOOP);
1590 intel_logical_ring_advance(ringbuf);
1591
1592 return 0;
1593}
1594
0bc40be8 1595static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
73d477f6 1596{
0bc40be8 1597 struct drm_device *dev = engine->dev;
73d477f6
OM
1598 struct drm_i915_private *dev_priv = dev->dev_private;
1599 unsigned long flags;
1600
7cd512f1 1601 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1602 return false;
1603
1604 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1605 if (engine->irq_refcount++ == 0) {
1606 I915_WRITE_IMR(engine,
1607 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1608 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1609 }
1610 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1611
1612 return true;
1613}
1614
0bc40be8 1615static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
73d477f6 1616{
0bc40be8 1617 struct drm_device *dev = engine->dev;
73d477f6
OM
1618 struct drm_i915_private *dev_priv = dev->dev_private;
1619 unsigned long flags;
1620
1621 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1622 if (--engine->irq_refcount == 0) {
1623 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1624 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1625 }
1626 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1627}
1628
7deb4d39 1629static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1630 u32 invalidate_domains,
1631 u32 unused)
1632{
7deb4d39 1633 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1634 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1635 struct drm_device *dev = engine->dev;
4712274c
OM
1636 struct drm_i915_private *dev_priv = dev->dev_private;
1637 uint32_t cmd;
1638 int ret;
1639
987046ad 1640 ret = intel_ring_begin(request, 4);
4712274c
OM
1641 if (ret)
1642 return ret;
1643
1644 cmd = MI_FLUSH_DW + 1;
1645
f0a1fb10
CW
1646 /* We always require a command barrier so that subsequent
1647 * commands, such as breadcrumb interrupts, are strictly ordered
1648 * wrt the contents of the write cache being flushed to memory
1649 * (and thus being coherent from the CPU).
1650 */
1651 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1652
1653 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1654 cmd |= MI_INVALIDATE_TLB;
4a570db5 1655 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1656 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1657 }
1658
1659 intel_logical_ring_emit(ringbuf, cmd);
1660 intel_logical_ring_emit(ringbuf,
1661 I915_GEM_HWS_SCRATCH_ADDR |
1662 MI_FLUSH_DW_USE_GTT);
1663 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1664 intel_logical_ring_emit(ringbuf, 0); /* value */
1665 intel_logical_ring_advance(ringbuf);
1666
1667 return 0;
1668}
1669
7deb4d39 1670static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1671 u32 invalidate_domains,
1672 u32 flush_domains)
1673{
7deb4d39 1674 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1675 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1676 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1677 bool vf_flush_wa = false;
4712274c
OM
1678 u32 flags = 0;
1679 int ret;
1680
1681 flags |= PIPE_CONTROL_CS_STALL;
1682
1683 if (flush_domains) {
1684 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1685 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1686 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1687 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1688 }
1689
1690 if (invalidate_domains) {
1691 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1692 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1693 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1694 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1695 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1696 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1697 flags |= PIPE_CONTROL_QW_WRITE;
1698 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1699
1a5a9ce7
BW
1700 /*
1701 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1702 * pipe control.
1703 */
e2f80391 1704 if (IS_GEN9(engine->dev))
1a5a9ce7
BW
1705 vf_flush_wa = true;
1706 }
9647ff36 1707
987046ad 1708 ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1709 if (ret)
1710 return ret;
1711
9647ff36
ID
1712 if (vf_flush_wa) {
1713 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1714 intel_logical_ring_emit(ringbuf, 0);
1715 intel_logical_ring_emit(ringbuf, 0);
1716 intel_logical_ring_emit(ringbuf, 0);
1717 intel_logical_ring_emit(ringbuf, 0);
1718 intel_logical_ring_emit(ringbuf, 0);
1719 }
1720
4712274c
OM
1721 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1722 intel_logical_ring_emit(ringbuf, flags);
1723 intel_logical_ring_emit(ringbuf, scratch_addr);
1724 intel_logical_ring_emit(ringbuf, 0);
1725 intel_logical_ring_emit(ringbuf, 0);
1726 intel_logical_ring_emit(ringbuf, 0);
1727 intel_logical_ring_advance(ringbuf);
1728
1729 return 0;
1730}
1731
c04e0f3b 1732static u32 gen8_get_seqno(struct intel_engine_cs *engine)
e94e37ad 1733{
0bc40be8 1734 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
e94e37ad
OM
1735}
1736
0bc40be8 1737static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
e94e37ad 1738{
0bc40be8 1739 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
e94e37ad
OM
1740}
1741
c04e0f3b 1742static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1743{
319404df
ID
1744 /*
1745 * On BXT A steppings there is a HW coherency issue whereby the
1746 * MI_STORE_DATA_IMM storing the completed request's seqno
1747 * occasionally doesn't invalidate the CPU cache. Work around this by
1748 * clflushing the corresponding cacheline whenever the caller wants
1749 * the coherency to be guaranteed. Note that this cacheline is known
1750 * to be clean at this point, since we only write it in
1751 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1752 * this clflush in practice becomes an invalidate operation.
1753 */
c04e0f3b 1754 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1755}
1756
0bc40be8 1757static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
319404df 1758{
0bc40be8 1759 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
319404df
ID
1760
1761 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
0bc40be8 1762 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1763}
1764
7c17d377
CW
1765/*
1766 * Reserve space for 2 NOOPs at the end of each request to be
1767 * used as a workaround for not being allowed to do lite
1768 * restore with HEAD==TAIL (WaIdleLiteRestore).
1769 */
1770#define WA_TAIL_DWORDS 2
1771
1772static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1773{
1774 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1775}
1776
c4e76638 1777static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1778{
c4e76638 1779 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1780 int ret;
1781
987046ad 1782 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1783 if (ret)
1784 return ret;
1785
7c17d377
CW
1786 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1787 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1788
4da46e1e 1789 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1790 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1791 intel_logical_ring_emit(ringbuf,
4a570db5 1792 hws_seqno_address(request->engine) |
7c17d377 1793 MI_FLUSH_DW_USE_GTT);
4da46e1e 1794 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1795 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1796 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1797 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1798 return intel_logical_ring_advance_and_submit(request);
1799}
4da46e1e 1800
7c17d377
CW
1801static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1802{
1803 struct intel_ringbuffer *ringbuf = request->ringbuf;
1804 int ret;
53292cdb 1805
987046ad 1806 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1807 if (ret)
1808 return ret;
1809
ce81a65c
MW
1810 /* We're using qword write, seqno should be aligned to 8 bytes. */
1811 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1812
7c17d377
CW
1813 /* w/a for post sync ops following a GPGPU operation we
1814 * need a prior CS_STALL, which is emitted by the flush
1815 * following the batch.
1816 */
ce81a65c 1817 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
7c17d377
CW
1818 intel_logical_ring_emit(ringbuf,
1819 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1820 PIPE_CONTROL_CS_STALL |
1821 PIPE_CONTROL_QW_WRITE));
4a570db5 1822 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
7c17d377
CW
1823 intel_logical_ring_emit(ringbuf, 0);
1824 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
ce81a65c
MW
1825 /* We're thrashing one dword of HWS. */
1826 intel_logical_ring_emit(ringbuf, 0);
7c17d377 1827 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
ce81a65c 1828 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377 1829 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1830}
1831
be01363f 1832static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1833{
cef437ad 1834 struct render_state so;
cef437ad
DL
1835 int ret;
1836
4a570db5 1837 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1838 if (ret)
1839 return ret;
1840
1841 if (so.rodata == NULL)
1842 return 0;
1843
4a570db5 1844 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1845 I915_DISPATCH_SECURE);
cef437ad
DL
1846 if (ret)
1847 goto out;
1848
4a570db5 1849 ret = req->engine->emit_bb_start(req,
84e81020
AS
1850 (so.ggtt_offset + so.aux_batch_offset),
1851 I915_DISPATCH_SECURE);
1852 if (ret)
1853 goto out;
1854
b2af0376 1855 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1856
cef437ad
DL
1857out:
1858 i915_gem_render_state_fini(&so);
1859 return ret;
1860}
1861
8753181e 1862static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1863{
1864 int ret;
1865
e2be4faf 1866 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1867 if (ret)
1868 return ret;
1869
3bbaba0c
PA
1870 ret = intel_rcs_context_init_mocs(req);
1871 /*
1872 * Failing to program the MOCS is non-fatal.The system will not
1873 * run at peak performance. So generate an error and carry on.
1874 */
1875 if (ret)
1876 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1877
be01363f 1878 return intel_lr_context_render_state_init(req);
e7778be1
TD
1879}
1880
73e4d07f
OM
1881/**
1882 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1883 *
1884 * @ring: Engine Command Streamer.
1885 *
1886 */
0bc40be8 1887void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1888{
6402c330 1889 struct drm_i915_private *dev_priv;
9832b9da 1890
117897f4 1891 if (!intel_engine_initialized(engine))
48d82387
OM
1892 return;
1893
27af5eea
TU
1894 /*
1895 * Tasklet cannot be active at this point due intel_mark_active/idle
1896 * so this is just for documentation.
1897 */
1898 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1899 tasklet_kill(&engine->irq_tasklet);
1900
0bc40be8 1901 dev_priv = engine->dev->dev_private;
6402c330 1902
0bc40be8
TU
1903 if (engine->buffer) {
1904 intel_logical_ring_stop(engine);
1905 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1906 }
48d82387 1907
0bc40be8
TU
1908 if (engine->cleanup)
1909 engine->cleanup(engine);
48d82387 1910
0bc40be8
TU
1911 i915_cmd_parser_fini_ring(engine);
1912 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 1913
0bc40be8 1914 if (engine->status_page.obj) {
7d774cac 1915 i915_gem_object_unpin_map(engine->status_page.obj);
0bc40be8 1916 engine->status_page.obj = NULL;
48d82387 1917 }
17ee950d 1918
0bc40be8
TU
1919 engine->idle_lite_restore_wa = 0;
1920 engine->disable_lite_restore_wa = false;
1921 engine->ctx_desc_template = 0;
ca82580c 1922
0bc40be8
TU
1923 lrc_destroy_wa_ctx_obj(engine);
1924 engine->dev = NULL;
454afebd
OM
1925}
1926
c9cacf93
TU
1927static void
1928logical_ring_default_vfuncs(struct drm_device *dev,
0bc40be8 1929 struct intel_engine_cs *engine)
c9cacf93
TU
1930{
1931 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
1932 engine->init_hw = gen8_init_common_ring;
1933 engine->emit_request = gen8_emit_request;
1934 engine->emit_flush = gen8_emit_flush;
1935 engine->irq_get = gen8_logical_ring_get_irq;
1936 engine->irq_put = gen8_logical_ring_put_irq;
1937 engine->emit_bb_start = gen8_emit_bb_start;
c04e0f3b
CW
1938 engine->get_seqno = gen8_get_seqno;
1939 engine->set_seqno = gen8_set_seqno;
c9cacf93 1940 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
c04e0f3b 1941 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
0bc40be8 1942 engine->set_seqno = bxt_a_set_seqno;
c9cacf93
TU
1943 }
1944}
1945
d9f3af96 1946static inline void
0bc40be8 1947logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 1948{
0bc40be8
TU
1949 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1950 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1951}
1952
7d774cac 1953static int
04794adb
TU
1954lrc_setup_hws(struct intel_engine_cs *engine,
1955 struct drm_i915_gem_object *dctx_obj)
1956{
7d774cac 1957 void *hws;
04794adb
TU
1958
1959 /* The HWSP is part of the default context object in LRC mode. */
1960 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1961 LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac
TU
1962 hws = i915_gem_object_pin_map(dctx_obj);
1963 if (IS_ERR(hws))
1964 return PTR_ERR(hws);
1965 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
04794adb 1966 engine->status_page.obj = dctx_obj;
7d774cac
TU
1967
1968 return 0;
04794adb
TU
1969}
1970
c9cacf93 1971static int
0bc40be8 1972logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
454afebd 1973{
3756685a
TU
1974 struct drm_i915_private *dev_priv = to_i915(dev);
1975 struct intel_context *dctx = dev_priv->kernel_context;
1976 enum forcewake_domains fw_domains;
48d82387 1977 int ret;
48d82387
OM
1978
1979 /* Intentionally left blank. */
0bc40be8 1980 engine->buffer = NULL;
48d82387 1981
0bc40be8
TU
1982 engine->dev = dev;
1983 INIT_LIST_HEAD(&engine->active_list);
1984 INIT_LIST_HEAD(&engine->request_list);
1985 i915_gem_batch_pool_init(dev, &engine->batch_pool);
1986 init_waitqueue_head(&engine->irq_queue);
48d82387 1987
0bc40be8
TU
1988 INIT_LIST_HEAD(&engine->buffers);
1989 INIT_LIST_HEAD(&engine->execlist_queue);
1990 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
1991 spin_lock_init(&engine->execlist_lock);
acdd884a 1992
27af5eea
TU
1993 tasklet_init(&engine->irq_tasklet,
1994 intel_lrc_irq_handler, (unsigned long)engine);
1995
0bc40be8 1996 logical_ring_init_platform_invariants(engine);
ca82580c 1997
3756685a
TU
1998 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1999 RING_ELSP(engine),
2000 FW_REG_WRITE);
2001
2002 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2003 RING_CONTEXT_STATUS_PTR(engine),
2004 FW_REG_READ | FW_REG_WRITE);
2005
2006 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2007 RING_CONTEXT_STATUS_BUF_BASE(engine),
2008 FW_REG_READ);
2009
2010 engine->fw_domains = fw_domains;
2011
0bc40be8 2012 ret = i915_cmd_parser_init_ring(engine);
48d82387 2013 if (ret)
b0366a54 2014 goto error;
48d82387 2015
0bc40be8 2016 ret = intel_lr_context_deferred_alloc(dctx, engine);
e84fe803 2017 if (ret)
b0366a54 2018 goto error;
e84fe803
NH
2019
2020 /* As this is the default context, always pin it */
0bc40be8 2021 ret = intel_lr_context_do_pin(dctx, engine);
e84fe803
NH
2022 if (ret) {
2023 DRM_ERROR(
2024 "Failed to pin and map ringbuffer %s: %d\n",
0bc40be8 2025 engine->name, ret);
b0366a54 2026 goto error;
e84fe803 2027 }
564ddb2f 2028
04794adb 2029 /* And setup the hardware status page. */
7d774cac
TU
2030 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2031 if (ret) {
2032 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2033 goto error;
2034 }
04794adb 2035
b0366a54
DG
2036 return 0;
2037
2038error:
0bc40be8 2039 intel_logical_ring_cleanup(engine);
564ddb2f 2040 return ret;
454afebd
OM
2041}
2042
2043static int logical_render_ring_init(struct drm_device *dev)
2044{
2045 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2046 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
99be1dfe 2047 int ret;
454afebd 2048
e2f80391
TU
2049 engine->name = "render ring";
2050 engine->id = RCS;
2051 engine->exec_id = I915_EXEC_RENDER;
2052 engine->guc_id = GUC_RENDER_ENGINE;
2053 engine->mmio_base = RENDER_RING_BASE;
d9f3af96 2054
e2f80391 2055 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
73d477f6 2056 if (HAS_L3_DPF(dev))
e2f80391 2057 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2058
e2f80391 2059 logical_ring_default_vfuncs(dev, engine);
c9cacf93
TU
2060
2061 /* Override some for render ring. */
82ef822e 2062 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2063 engine->init_hw = gen9_init_render_ring;
82ef822e 2064 else
e2f80391
TU
2065 engine->init_hw = gen8_init_render_ring;
2066 engine->init_context = gen8_init_rcs_context;
2067 engine->cleanup = intel_fini_pipe_control;
2068 engine->emit_flush = gen8_emit_flush_render;
2069 engine->emit_request = gen8_emit_request_render;
9b1136d5 2070
e2f80391 2071 engine->dev = dev;
c4db7599 2072
e2f80391 2073 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2074 if (ret)
2075 return ret;
2076
e2f80391 2077 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2078 if (ret) {
2079 /*
2080 * We continue even if we fail to initialize WA batch
2081 * because we only expect rare glitches but nothing
2082 * critical to prevent us from using GPU
2083 */
2084 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2085 ret);
2086 }
2087
e2f80391 2088 ret = logical_ring_init(dev, engine);
c4db7599 2089 if (ret) {
e2f80391 2090 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2091 }
17ee950d
AS
2092
2093 return ret;
454afebd
OM
2094}
2095
2096static int logical_bsd_ring_init(struct drm_device *dev)
2097{
2098 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2099 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
454afebd 2100
e2f80391
TU
2101 engine->name = "bsd ring";
2102 engine->id = VCS;
2103 engine->exec_id = I915_EXEC_BSD;
2104 engine->guc_id = GUC_VIDEO_ENGINE;
2105 engine->mmio_base = GEN6_BSD_RING_BASE;
454afebd 2106
e2f80391
TU
2107 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2108 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2109
e2f80391 2110 return logical_ring_init(dev, engine);
454afebd
OM
2111}
2112
2113static int logical_bsd2_ring_init(struct drm_device *dev)
2114{
2115 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2116 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
454afebd 2117
e2f80391
TU
2118 engine->name = "bsd2 ring";
2119 engine->id = VCS2;
2120 engine->exec_id = I915_EXEC_BSD;
2121 engine->guc_id = GUC_VIDEO_ENGINE2;
2122 engine->mmio_base = GEN8_BSD2_RING_BASE;
454afebd 2123
e2f80391
TU
2124 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2125 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2126
e2f80391 2127 return logical_ring_init(dev, engine);
454afebd
OM
2128}
2129
2130static int logical_blt_ring_init(struct drm_device *dev)
2131{
2132 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2133 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
454afebd 2134
e2f80391
TU
2135 engine->name = "blitter ring";
2136 engine->id = BCS;
2137 engine->exec_id = I915_EXEC_BLT;
2138 engine->guc_id = GUC_BLITTER_ENGINE;
2139 engine->mmio_base = BLT_RING_BASE;
454afebd 2140
e2f80391
TU
2141 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2142 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2143
e2f80391 2144 return logical_ring_init(dev, engine);
454afebd
OM
2145}
2146
2147static int logical_vebox_ring_init(struct drm_device *dev)
2148{
2149 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2150 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
454afebd 2151
e2f80391
TU
2152 engine->name = "video enhancement ring";
2153 engine->id = VECS;
2154 engine->exec_id = I915_EXEC_VEBOX;
2155 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2156 engine->mmio_base = VEBOX_RING_BASE;
454afebd 2157
e2f80391
TU
2158 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2159 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2160
e2f80391 2161 return logical_ring_init(dev, engine);
454afebd
OM
2162}
2163
73e4d07f
OM
2164/**
2165 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2166 * @dev: DRM device.
2167 *
2168 * This function inits the engines for an Execlists submission style (the equivalent in the
117897f4 2169 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
73e4d07f
OM
2170 * those engines that are present in the hardware.
2171 *
2172 * Return: non-zero if the initialization failed.
2173 */
454afebd
OM
2174int intel_logical_rings_init(struct drm_device *dev)
2175{
2176 struct drm_i915_private *dev_priv = dev->dev_private;
2177 int ret;
2178
2179 ret = logical_render_ring_init(dev);
2180 if (ret)
2181 return ret;
2182
2183 if (HAS_BSD(dev)) {
2184 ret = logical_bsd_ring_init(dev);
2185 if (ret)
2186 goto cleanup_render_ring;
2187 }
2188
2189 if (HAS_BLT(dev)) {
2190 ret = logical_blt_ring_init(dev);
2191 if (ret)
2192 goto cleanup_bsd_ring;
2193 }
2194
2195 if (HAS_VEBOX(dev)) {
2196 ret = logical_vebox_ring_init(dev);
2197 if (ret)
2198 goto cleanup_blt_ring;
2199 }
2200
2201 if (HAS_BSD2(dev)) {
2202 ret = logical_bsd2_ring_init(dev);
2203 if (ret)
2204 goto cleanup_vebox_ring;
2205 }
2206
454afebd
OM
2207 return 0;
2208
454afebd 2209cleanup_vebox_ring:
4a570db5 2210 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
454afebd 2211cleanup_blt_ring:
4a570db5 2212 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
454afebd 2213cleanup_bsd_ring:
4a570db5 2214 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
454afebd 2215cleanup_render_ring:
4a570db5 2216 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
454afebd
OM
2217
2218 return ret;
2219}
2220
0cea6502
JM
2221static u32
2222make_rpcs(struct drm_device *dev)
2223{
2224 u32 rpcs = 0;
2225
2226 /*
2227 * No explicit RPCS request is needed to ensure full
2228 * slice/subslice/EU enablement prior to Gen9.
2229 */
2230 if (INTEL_INFO(dev)->gen < 9)
2231 return 0;
2232
2233 /*
2234 * Starting in Gen9, render power gating can leave
2235 * slice/subslice/EU in a partially enabled state. We
2236 * must make an explicit request through RPCS for full
2237 * enablement.
2238 */
2239 if (INTEL_INFO(dev)->has_slice_pg) {
2240 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2241 rpcs |= INTEL_INFO(dev)->slice_total <<
2242 GEN8_RPCS_S_CNT_SHIFT;
2243 rpcs |= GEN8_RPCS_ENABLE;
2244 }
2245
2246 if (INTEL_INFO(dev)->has_subslice_pg) {
2247 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2248 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2249 GEN8_RPCS_SS_CNT_SHIFT;
2250 rpcs |= GEN8_RPCS_ENABLE;
2251 }
2252
2253 if (INTEL_INFO(dev)->has_eu_pg) {
2254 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2255 GEN8_RPCS_EU_MIN_SHIFT;
2256 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2257 GEN8_RPCS_EU_MAX_SHIFT;
2258 rpcs |= GEN8_RPCS_ENABLE;
2259 }
2260
2261 return rpcs;
2262}
2263
0bc40be8 2264static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2265{
2266 u32 indirect_ctx_offset;
2267
0bc40be8 2268 switch (INTEL_INFO(engine->dev)->gen) {
71562919 2269 default:
0bc40be8 2270 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
71562919
MT
2271 /* fall through */
2272 case 9:
2273 indirect_ctx_offset =
2274 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2275 break;
2276 case 8:
2277 indirect_ctx_offset =
2278 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2279 break;
2280 }
2281
2282 return indirect_ctx_offset;
2283}
2284
8670d6f9 2285static int
7d774cac
TU
2286populate_lr_context(struct intel_context *ctx,
2287 struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2288 struct intel_engine_cs *engine,
2289 struct intel_ringbuffer *ringbuf)
8670d6f9 2290{
0bc40be8 2291 struct drm_device *dev = engine->dev;
2d965536 2292 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2293 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
2294 void *vaddr;
2295 u32 *reg_state;
8670d6f9
OM
2296 int ret;
2297
2d965536
TD
2298 if (!ppgtt)
2299 ppgtt = dev_priv->mm.aliasing_ppgtt;
2300
8670d6f9
OM
2301 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2302 if (ret) {
2303 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2304 return ret;
2305 }
2306
7d774cac
TU
2307 vaddr = i915_gem_object_pin_map(ctx_obj);
2308 if (IS_ERR(vaddr)) {
2309 ret = PTR_ERR(vaddr);
2310 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
2311 return ret;
2312 }
7d774cac 2313 ctx_obj->dirty = true;
8670d6f9
OM
2314
2315 /* The second page of the context object contains some fields which must
2316 * be set up prior to the first execution. */
7d774cac 2317 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
2318
2319 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2320 * commands followed by (reg, value) pairs. The values we are setting here are
2321 * only for the first context restore: on a subsequent save, the GPU will
2322 * recreate this batchbuffer with new values (including all the missing
2323 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2324 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2325 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2326 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2327 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2328 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2329 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
99cf8ea1
MT
2330 (HAS_RESOURCE_STREAMER(dev) ?
2331 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2332 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2333 0);
2334 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2335 0);
7ba717cf
TD
2336 /* Ring buffer start address is not known until the buffer is pinned.
2337 * It is written to the context image in execlists_update_context()
2338 */
0bc40be8
TU
2339 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2340 RING_START(engine->mmio_base), 0);
2341 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2342 RING_CTL(engine->mmio_base),
0d925ea0 2343 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2344 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2345 RING_BBADDR_UDW(engine->mmio_base), 0);
2346 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2347 RING_BBADDR(engine->mmio_base), 0);
2348 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2349 RING_BBSTATE(engine->mmio_base),
0d925ea0 2350 RING_BB_PPGTT);
0bc40be8
TU
2351 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2352 RING_SBBADDR_UDW(engine->mmio_base), 0);
2353 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2354 RING_SBBADDR(engine->mmio_base), 0);
2355 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2356 RING_SBBSTATE(engine->mmio_base), 0);
2357 if (engine->id == RCS) {
2358 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2359 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2360 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2361 RING_INDIRECT_CTX(engine->mmio_base), 0);
2362 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2363 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2364 if (engine->wa_ctx.obj) {
2365 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2366 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2367
2368 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2369 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2370 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2371
2372 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2373 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2374
2375 reg_state[CTX_BB_PER_CTX_PTR+1] =
2376 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2377 0x01;
2378 }
8670d6f9 2379 }
0d925ea0 2380 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2381 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2382 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2383 /* PDP values well be assigned later if needed */
0bc40be8
TU
2384 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2385 0);
2386 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2387 0);
2388 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2389 0);
2390 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2391 0);
2392 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2393 0);
2394 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2395 0);
2396 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2397 0);
2398 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2399 0);
d7b2633d 2400
2dba3239
MT
2401 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2402 /* 64b PPGTT (48bit canonical)
2403 * PDP0_DESCRIPTOR contains the base address to PML4 and
2404 * other PDP Descriptors are ignored.
2405 */
2406 ASSIGN_CTX_PML4(ppgtt, reg_state);
2407 } else {
2408 /* 32b PPGTT
2409 * PDP*_DESCRIPTOR contains the base address of space supported.
2410 * With dynamic page allocation, PDPs may not be allocated at
2411 * this point. Point the unallocated PDPs to the scratch page
2412 */
c6a2ac71 2413 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2414 }
2415
0bc40be8 2416 if (engine->id == RCS) {
8670d6f9 2417 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2418 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2419 make_rpcs(dev));
8670d6f9
OM
2420 }
2421
7d774cac 2422 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2423
2424 return 0;
2425}
2426
73e4d07f
OM
2427/**
2428 * intel_lr_context_free() - free the LRC specific bits of a context
2429 * @ctx: the LR context to free.
2430 *
2431 * The real context freeing is done in i915_gem_context_free: this only
2432 * takes care of the bits that are LRC related: the per-engine backing
2433 * objects and the logical ringbuffer.
2434 */
ede7d42b
OM
2435void intel_lr_context_free(struct intel_context *ctx)
2436{
8c857917
OM
2437 int i;
2438
666796da 2439 for (i = I915_NUM_ENGINES; --i >= 0; ) {
e28e404c 2440 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
8c857917 2441 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2442
e28e404c
DG
2443 if (!ctx_obj)
2444 continue;
dcb4c12a 2445
e28e404c
DG
2446 if (ctx == ctx->i915->kernel_context) {
2447 intel_unpin_ringbuffer_obj(ringbuf);
2448 i915_gem_object_ggtt_unpin(ctx_obj);
7d774cac 2449 i915_gem_object_unpin_map(ctx_obj);
8c857917 2450 }
e28e404c
DG
2451
2452 WARN_ON(ctx->engine[i].pin_count);
2453 intel_ringbuffer_free(ringbuf);
2454 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2455 }
2456}
2457
c5d46ee2
DG
2458/**
2459 * intel_lr_context_size() - return the size of the context for an engine
2460 * @ring: which engine to find the context size for
2461 *
2462 * Each engine may require a different amount of space for a context image,
2463 * so when allocating (or copying) an image, this function can be used to
2464 * find the right size for the specific engine.
2465 *
2466 * Return: size (in bytes) of an engine-specific context image
2467 *
2468 * Note: this size includes the HWSP, which is part of the context image
2469 * in LRC mode, but does not include the "shared data page" used with
2470 * GuC submission. The caller should account for this if using the GuC.
2471 */
0bc40be8 2472uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2473{
2474 int ret = 0;
2475
0bc40be8 2476 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
8c857917 2477
0bc40be8 2478 switch (engine->id) {
8c857917 2479 case RCS:
0bc40be8 2480 if (INTEL_INFO(engine->dev)->gen >= 9)
468c6816
MN
2481 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2482 else
2483 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2484 break;
2485 case VCS:
2486 case BCS:
2487 case VECS:
2488 case VCS2:
2489 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2490 break;
2491 }
2492
2493 return ret;
ede7d42b
OM
2494}
2495
73e4d07f 2496/**
e84fe803 2497 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2498 * @ctx: LR context to create.
2499 * @ring: engine to be used with the context.
2500 *
2501 * This function can be called more than once, with different engines, if we plan
2502 * to use the context with them. The context backing objects and the ringbuffers
2503 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2504 * the creation is a deferred call: it's better to make sure first that we need to use
2505 * a given ring with the context.
2506 *
32197aab 2507 * Return: non-zero on error.
73e4d07f 2508 */
e84fe803
NH
2509
2510int intel_lr_context_deferred_alloc(struct intel_context *ctx,
0bc40be8 2511 struct intel_engine_cs *engine)
ede7d42b 2512{
0bc40be8 2513 struct drm_device *dev = engine->dev;
8c857917
OM
2514 struct drm_i915_gem_object *ctx_obj;
2515 uint32_t context_size;
84c2377f 2516 struct intel_ringbuffer *ringbuf;
8c857917
OM
2517 int ret;
2518
ede7d42b 2519 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
0bc40be8 2520 WARN_ON(ctx->engine[engine->id].state);
ede7d42b 2521
0bc40be8 2522 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2523
d1675198
AD
2524 /* One extra page as the sharing data between driver and GuC */
2525 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2526
d37cd8a8 2527 ctx_obj = i915_gem_object_create(dev, context_size);
fe3db79b 2528 if (IS_ERR(ctx_obj)) {
3126a660 2529 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2530 return PTR_ERR(ctx_obj);
8c857917
OM
2531 }
2532
0bc40be8 2533 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
01101fa7
CW
2534 if (IS_ERR(ringbuf)) {
2535 ret = PTR_ERR(ringbuf);
e84fe803 2536 goto error_deref_obj;
8670d6f9
OM
2537 }
2538
0bc40be8 2539 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2540 if (ret) {
2541 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2542 goto error_ringbuf;
84c2377f
OM
2543 }
2544
0bc40be8
TU
2545 ctx->engine[engine->id].ringbuf = ringbuf;
2546 ctx->engine[engine->id].state = ctx_obj;
ede7d42b 2547
0bc40be8 2548 if (ctx != ctx->i915->kernel_context && engine->init_context) {
e84fe803 2549 struct drm_i915_gem_request *req;
76c39168 2550
0bc40be8 2551 req = i915_gem_request_alloc(engine, ctx);
26827088
DG
2552 if (IS_ERR(req)) {
2553 ret = PTR_ERR(req);
2554 DRM_ERROR("ring create req: %d\n", ret);
e84fe803 2555 goto error_ringbuf;
771b9a53
MT
2556 }
2557
0bc40be8 2558 ret = engine->init_context(req);
aa9b7810 2559 i915_add_request_no_flush(req);
e84fe803
NH
2560 if (ret) {
2561 DRM_ERROR("ring init context: %d\n",
2562 ret);
e84fe803
NH
2563 goto error_ringbuf;
2564 }
564ddb2f 2565 }
ede7d42b 2566 return 0;
8670d6f9 2567
01101fa7
CW
2568error_ringbuf:
2569 intel_ringbuffer_free(ringbuf);
e84fe803 2570error_deref_obj:
8670d6f9 2571 drm_gem_object_unreference(&ctx_obj->base);
0bc40be8
TU
2572 ctx->engine[engine->id].ringbuf = NULL;
2573 ctx->engine[engine->id].state = NULL;
8670d6f9 2574 return ret;
ede7d42b 2575}
3e5b6f05 2576
7d774cac
TU
2577void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2578 struct intel_context *ctx)
3e5b6f05 2579{
e2f80391 2580 struct intel_engine_cs *engine;
3e5b6f05 2581
b4ac5afc 2582 for_each_engine(engine, dev_priv) {
3e5b6f05 2583 struct drm_i915_gem_object *ctx_obj =
e2f80391 2584 ctx->engine[engine->id].state;
3e5b6f05 2585 struct intel_ringbuffer *ringbuf =
e2f80391 2586 ctx->engine[engine->id].ringbuf;
7d774cac 2587 void *vaddr;
3e5b6f05 2588 uint32_t *reg_state;
3e5b6f05
TD
2589
2590 if (!ctx_obj)
2591 continue;
2592
7d774cac
TU
2593 vaddr = i915_gem_object_pin_map(ctx_obj);
2594 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2595 continue;
7d774cac
TU
2596
2597 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2598 ctx_obj->dirty = true;
3e5b6f05
TD
2599
2600 reg_state[CTX_RING_HEAD+1] = 0;
2601 reg_state[CTX_RING_TAIL+1] = 0;
2602
7d774cac 2603 i915_gem_object_unpin_map(ctx_obj);
3e5b6f05
TD
2604
2605 ringbuf->head = 0;
2606 ringbuf->tail = 0;
2607 }
2608}