]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Use engine->context_pin() to report the intel_ring
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
e981e7b1
TD
141#define RING_EXECLIST_QFULL (1 << 0x2)
142#define RING_EXECLIST1_VALID (1 << 0x3)
143#define RING_EXECLIST0_VALID (1 << 0x4)
144#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
145#define RING_EXECLIST1_ACTIVE (1 << 0x11)
146#define RING_EXECLIST0_ACTIVE (1 << 0x12)
147
148#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
149#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
150#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
151#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
152#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
153#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 154
70c2a24d
CW
155#define GEN8_CTX_STATUS_COMPLETED_MASK \
156 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
157 GEN8_CTX_STATUS_PREEMPTED | \
158 GEN8_CTX_STATUS_ELEMENT_SWITCH)
159
8670d6f9
OM
160#define CTX_LRI_HEADER_0 0x01
161#define CTX_CONTEXT_CONTROL 0x02
162#define CTX_RING_HEAD 0x04
163#define CTX_RING_TAIL 0x06
164#define CTX_RING_BUFFER_START 0x08
165#define CTX_RING_BUFFER_CONTROL 0x0a
166#define CTX_BB_HEAD_U 0x0c
167#define CTX_BB_HEAD_L 0x0e
168#define CTX_BB_STATE 0x10
169#define CTX_SECOND_BB_HEAD_U 0x12
170#define CTX_SECOND_BB_HEAD_L 0x14
171#define CTX_SECOND_BB_STATE 0x16
172#define CTX_BB_PER_CTX_PTR 0x18
173#define CTX_RCS_INDIRECT_CTX 0x1a
174#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
175#define CTX_LRI_HEADER_1 0x21
176#define CTX_CTX_TIMESTAMP 0x22
177#define CTX_PDP3_UDW 0x24
178#define CTX_PDP3_LDW 0x26
179#define CTX_PDP2_UDW 0x28
180#define CTX_PDP2_LDW 0x2a
181#define CTX_PDP1_UDW 0x2c
182#define CTX_PDP1_LDW 0x2e
183#define CTX_PDP0_UDW 0x30
184#define CTX_PDP0_LDW 0x32
185#define CTX_LRI_HEADER_2 0x41
186#define CTX_R_PWR_CLK_STATE 0x42
187#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
188
56e51bf0 189#define CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 190 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
191 (reg_state)[(pos)+1] = (val); \
192} while (0)
193
194#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 195 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 198} while (0)
e5815a2e 199
9244a817 200#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
201 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
202 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 203} while (0)
2dba3239 204
71562919
MT
205#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
206#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 207
0e93cdd4
CW
208/* Typical size of the average request (2 pipecontrols and a MI_BB) */
209#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
210
a3aabe86
CW
211#define WA_TAIL_DWORDS 2
212
e2efd130 213static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 214 struct intel_engine_cs *engine);
a3aabe86
CW
215static void execlists_init_reg_state(u32 *reg_state,
216 struct i915_gem_context *ctx,
217 struct intel_engine_cs *engine,
218 struct intel_ring *ring);
7ba717cf 219
73e4d07f
OM
220/**
221 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 222 * @dev_priv: i915 device private
73e4d07f
OM
223 * @enable_execlists: value of i915.enable_execlists module parameter.
224 *
225 * Only certain platforms support Execlists (the prerequisites being
27401d12 226 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
227 *
228 * Return: 1 if Execlists is supported and has to be enabled.
229 */
c033666a 230int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 231{
a0bd6c31
ZL
232 /* On platforms with execlist available, vGPU will only
233 * support execlist mode, no ring buffer mode.
234 */
c033666a 235 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
236 return 1;
237
c033666a 238 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
239 return 1;
240
127f1003
OM
241 if (enable_execlists == 0)
242 return 0;
243
5a21b665
DV
244 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
245 USES_PPGTT(dev_priv) &&
246 i915.use_mmio_flip >= 0)
127f1003
OM
247 return 1;
248
249 return 0;
250}
ede7d42b 251
73e4d07f 252/**
ca82580c
TU
253 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
254 * descriptor for a pinned context
ca82580c 255 * @ctx: Context to work on
9021ad03 256 * @engine: Engine the descriptor will be used with
73e4d07f 257 *
ca82580c
TU
258 * The context descriptor encodes various attributes of a context,
259 * including its GTT address and some flags. Because it's fairly
260 * expensive to calculate, we'll just do it once and cache the result,
261 * which remains valid until the context is unpinned.
262 *
6e5248b5
DV
263 * This is what a descriptor looks like, from LSB to MSB::
264 *
2355cf08 265 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
6e5248b5
DV
266 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
267 * bits 32-52: ctx ID, a globally unique tag
268 * bits 53-54: mbz, reserved for use by hardware
269 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 270 */
ca82580c 271static void
e2efd130 272intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 273 struct intel_engine_cs *engine)
84b790f8 274{
9021ad03 275 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 276 u64 desc;
84b790f8 277
7069b144 278 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 279
2355cf08 280 desc = ctx->desc_template; /* bits 0-11 */
bde13ebd 281 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 282 /* bits 12-31 */
7069b144 283 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 284
9021ad03 285 ce->lrc_desc = desc;
5af05fef
MT
286}
287
e2efd130 288uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 289 struct intel_engine_cs *engine)
84b790f8 290{
0bc40be8 291 return ctx->engine[engine->id].lrc_desc;
ca82580c 292}
203a571b 293
bbd6c47e
CW
294static inline void
295execlists_context_status_change(struct drm_i915_gem_request *rq,
296 unsigned long status)
84b790f8 297{
bbd6c47e
CW
298 /*
299 * Only used when GVT-g is enabled now. When GVT-g is disabled,
300 * The compiler should eliminate this function as dead-code.
301 */
302 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
303 return;
6daccb0b 304
3fc03069
CD
305 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
306 status, rq);
84b790f8
BW
307}
308
c6a2ac71
TU
309static void
310execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
311{
312 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
313 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
314 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
315 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
316}
317
70c2a24d 318static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 319{
70c2a24d 320 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
04da811b
ZW
321 struct i915_hw_ppgtt *ppgtt =
322 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
70c2a24d 323 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 324
e6ba9992 325 reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
ae1250b9 326
c6a2ac71
TU
327 /* True 32b PPGTT with dynamic page allocation: update PDP
328 * registers and point the unallocated PDPs to scratch page.
329 * PML4 is allocated during ppgtt init, so this is not needed
330 * in 48-bit mode.
331 */
949e8ab3 332 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
c6a2ac71 333 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
334
335 return ce->lrc_desc;
ae1250b9
OM
336}
337
70c2a24d 338static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 339{
70c2a24d
CW
340 struct drm_i915_private *dev_priv = engine->i915;
341 struct execlist_port *port = engine->execlist_port;
bbd6c47e
CW
342 u32 __iomem *elsp =
343 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
344 u64 desc[2];
345
c816e605 346 GEM_BUG_ON(port[0].count > 1);
70c2a24d
CW
347 if (!port[0].count)
348 execlists_context_status_change(port[0].request,
349 INTEL_CONTEXT_SCHEDULE_IN);
350 desc[0] = execlists_update_context(port[0].request);
ae9a043b 351 GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
816ee798 352 port[0].count++;
70c2a24d
CW
353
354 if (port[1].request) {
355 GEM_BUG_ON(port[1].count);
356 execlists_context_status_change(port[1].request,
357 INTEL_CONTEXT_SCHEDULE_IN);
358 desc[1] = execlists_update_context(port[1].request);
ae9a043b 359 GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
70c2a24d 360 port[1].count = 1;
bbd6c47e
CW
361 } else {
362 desc[1] = 0;
363 }
70c2a24d 364 GEM_BUG_ON(desc[0] == desc[1]);
bbd6c47e
CW
365
366 /* You must always write both descriptors in the order below. */
367 writel(upper_32_bits(desc[1]), elsp);
368 writel(lower_32_bits(desc[1]), elsp);
369
370 writel(upper_32_bits(desc[0]), elsp);
371 /* The context is automatically loaded after the following */
372 writel(lower_32_bits(desc[0]), elsp);
373}
374
70c2a24d 375static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 376{
70c2a24d 377 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
6095868a 378 i915_gem_context_force_single_submission(ctx));
70c2a24d 379}
84b790f8 380
70c2a24d
CW
381static bool can_merge_ctx(const struct i915_gem_context *prev,
382 const struct i915_gem_context *next)
383{
384 if (prev != next)
385 return false;
26720ab9 386
70c2a24d
CW
387 if (ctx_single_port_submission(prev))
388 return false;
26720ab9 389
70c2a24d 390 return true;
84b790f8
BW
391}
392
70c2a24d 393static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 394{
20311bd3 395 struct drm_i915_gem_request *last;
70c2a24d 396 struct execlist_port *port = engine->execlist_port;
20311bd3 397 struct rb_node *rb;
70c2a24d
CW
398 bool submit = false;
399
400 last = port->request;
401 if (last)
402 /* WaIdleLiteRestore:bdw,skl
403 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
9b81d556 404 * as we resubmit the request. See gen8_emit_breadcrumb()
70c2a24d
CW
405 * for where we prepare the padding after the end of the
406 * request.
407 */
408 last->tail = last->wa_tail;
e981e7b1 409
70c2a24d 410 GEM_BUG_ON(port[1].request);
acdd884a 411
70c2a24d
CW
412 /* Hardware submission is through 2 ports. Conceptually each port
413 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
414 * static for a context, and unique to each, so we only execute
415 * requests belonging to a single context from each ring. RING_HEAD
416 * is maintained by the CS in the context image, it marks the place
417 * where it got up to last time, and through RING_TAIL we tell the CS
418 * where we want to execute up to this time.
419 *
420 * In this list the requests are in order of execution. Consecutive
421 * requests from the same context are adjacent in the ringbuffer. We
422 * can combine these requests into a single RING_TAIL update:
423 *
424 * RING_HEAD...req1...req2
425 * ^- RING_TAIL
426 * since to execute req2 the CS must first execute req1.
427 *
428 * Our goal then is to point each port to the end of a consecutive
429 * sequence of requests as being the most optimal (fewest wake ups
430 * and context switches) submission.
779949f4 431 */
acdd884a 432
9f7886d0 433 spin_lock_irq(&engine->timeline->lock);
20311bd3
CW
434 rb = engine->execlist_first;
435 while (rb) {
436 struct drm_i915_gem_request *cursor =
437 rb_entry(rb, typeof(*cursor), priotree.node);
438
70c2a24d
CW
439 /* Can we combine this request with the current port? It has to
440 * be the same context/ringbuffer and not have any exceptions
441 * (e.g. GVT saying never to combine contexts).
c6a2ac71 442 *
70c2a24d
CW
443 * If we can combine the requests, we can execute both by
444 * updating the RING_TAIL to point to the end of the second
445 * request, and so we never need to tell the hardware about
446 * the first.
53292cdb 447 */
70c2a24d
CW
448 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
449 /* If we are on the second port and cannot combine
450 * this request with the last, then we are done.
451 */
452 if (port != engine->execlist_port)
453 break;
454
455 /* If GVT overrides us we only ever submit port[0],
456 * leaving port[1] empty. Note that we also have
457 * to be careful that we don't queue the same
458 * context (even though a different request) to
459 * the second port.
460 */
d7ab992c
MH
461 if (ctx_single_port_submission(last->ctx) ||
462 ctx_single_port_submission(cursor->ctx))
70c2a24d
CW
463 break;
464
465 GEM_BUG_ON(last->ctx == cursor->ctx);
466
467 i915_gem_request_assign(&port->request, last);
468 port++;
469 }
d55ac5bf 470
20311bd3
CW
471 rb = rb_next(rb);
472 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
473 RB_CLEAR_NODE(&cursor->priotree.node);
474 cursor->priotree.priority = INT_MAX;
475
d55ac5bf 476 __i915_gem_request_submit(cursor);
d7d96833 477 trace_i915_gem_request_in(cursor, port - engine->execlist_port);
70c2a24d
CW
478 last = cursor;
479 submit = true;
480 }
481 if (submit) {
70c2a24d 482 i915_gem_request_assign(&port->request, last);
20311bd3 483 engine->execlist_first = rb;
53292cdb 484 }
9f7886d0 485 spin_unlock_irq(&engine->timeline->lock);
53292cdb 486
70c2a24d
CW
487 if (submit)
488 execlists_submit_ports(engine);
acdd884a
MT
489}
490
70c2a24d 491static bool execlists_elsp_idle(struct intel_engine_cs *engine)
e981e7b1 492{
70c2a24d 493 return !engine->execlist_port[0].request;
e981e7b1
TD
494}
495
816ee798 496static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
91a41032 497{
816ee798 498 const struct execlist_port *port = engine->execlist_port;
91a41032 499
816ee798 500 return port[0].count + port[1].count < 2;
91a41032
BW
501}
502
6e5248b5 503/*
73e4d07f
OM
504 * Check the unread Context Status Buffers and manage the submission of new
505 * contexts to the ELSP accordingly.
506 */
27af5eea 507static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 508{
27af5eea 509 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 510 struct execlist_port *port = engine->execlist_port;
c033666a 511 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 512
48921260
CW
513 /* We can skip acquiring intel_runtime_pm_get() here as it was taken
514 * on our behalf by the request (see i915_gem_mark_busy()) and it will
515 * not be relinquished until the device is idle (see
516 * i915_gem_idle_work_handler()). As a precaution, we make sure
517 * that all ELSP are drained i.e. we have processed the CSB,
518 * before allowing ourselves to idle and calling intel_runtime_pm_put().
519 */
520 GEM_BUG_ON(!dev_priv->gt.awake);
521
3756685a 522 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 523
899f6204
CW
524 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
525 * imposing the cost of a locked atomic transaction when submitting a
526 * new request (outside of the context-switch interrupt).
527 */
528 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
70c2a24d
CW
529 u32 __iomem *csb_mmio =
530 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
531 u32 __iomem *buf =
532 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
4af0d727 533 unsigned int head, tail;
70c2a24d 534
2e70b8c6
CW
535 /* The write will be ordered by the uncached read (itself
536 * a memory barrier), so we do not need another in the form
537 * of a locked instruction. The race between the interrupt
538 * handler and the split test/clear is harmless as we order
539 * our clear before the CSB read. If the interrupt arrived
540 * first between the test and the clear, we read the updated
541 * CSB and clear the bit. If the interrupt arrives as we read
542 * the CSB or later (i.e. after we had cleared the bit) the bit
543 * is set and we do a new loop.
544 */
545 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
4af0d727
CW
546 head = readl(csb_mmio);
547 tail = GEN8_CSB_WRITE_PTR(head);
548 head = GEN8_CSB_READ_PTR(head);
549 while (head != tail) {
550 unsigned int status;
551
552 if (++head == GEN8_CSB_ENTRIES)
553 head = 0;
70c2a24d 554
2ffe80aa
CW
555 /* We are flying near dragons again.
556 *
557 * We hold a reference to the request in execlist_port[]
558 * but no more than that. We are operating in softirq
559 * context and so cannot hold any mutex or sleep. That
560 * prevents us stopping the requests we are processing
561 * in port[] from being retired simultaneously (the
562 * breadcrumb will be complete before we see the
563 * context-switch). As we only hold the reference to the
564 * request, any pointer chasing underneath the request
565 * is subject to a potential use-after-free. Thus we
566 * store all of the bookkeeping within port[] as
567 * required, and avoid using unguarded pointers beneath
568 * request itself. The same applies to the atomic
569 * status notifier.
570 */
571
4af0d727 572 status = readl(buf + 2 * head);
70c2a24d
CW
573 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
574 continue;
575
86aa7e76 576 /* Check the context/desc id for this event matches */
4af0d727 577 GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
ae9a043b 578 port[0].context_id);
86aa7e76 579
70c2a24d
CW
580 GEM_BUG_ON(port[0].count == 0);
581 if (--port[0].count == 0) {
582 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
fe9ae7a3 583 GEM_BUG_ON(!i915_gem_request_completed(port[0].request));
70c2a24d
CW
584 execlists_context_status_change(port[0].request,
585 INTEL_CONTEXT_SCHEDULE_OUT);
586
d7d96833 587 trace_i915_gem_request_out(port[0].request);
70c2a24d
CW
588 i915_gem_request_put(port[0].request);
589 port[0] = port[1];
590 memset(&port[1], 0, sizeof(port[1]));
70c2a24d 591 }
26720ab9 592
70c2a24d
CW
593 GEM_BUG_ON(port[0].count == 0 &&
594 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
4af0d727 595 }
e1fee72c 596
4af0d727 597 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
70c2a24d 598 csb_mmio);
e981e7b1
TD
599 }
600
70c2a24d
CW
601 if (execlists_elsp_ready(engine))
602 execlists_dequeue(engine);
c6a2ac71 603
70c2a24d 604 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
605}
606
20311bd3
CW
607static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
608{
609 struct rb_node **p, *rb;
610 bool first = true;
611
612 /* most positive priority is scheduled first, equal priorities fifo */
613 rb = NULL;
614 p = &root->rb_node;
615 while (*p) {
616 struct i915_priotree *pos;
617
618 rb = *p;
619 pos = rb_entry(rb, typeof(*pos), node);
620 if (pt->priority > pos->priority) {
621 p = &rb->rb_left;
622 } else {
623 p = &rb->rb_right;
624 first = false;
625 }
626 }
627 rb_link_node(&pt->node, rb, p);
628 rb_insert_color(&pt->node, root);
629
630 return first;
631}
632
f4ea6bdd 633static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 634{
4a570db5 635 struct intel_engine_cs *engine = request->engine;
5590af3e 636 unsigned long flags;
acdd884a 637
663f71e7
CW
638 /* Will be called from irq-context when using foreign fences. */
639 spin_lock_irqsave(&engine->timeline->lock, flags);
acdd884a 640
3833281a 641 if (insert_request(&request->priotree, &engine->execlist_queue)) {
20311bd3 642 engine->execlist_first = &request->priotree.node;
48ea2554 643 if (execlists_elsp_ready(engine))
3833281a
CW
644 tasklet_hi_schedule(&engine->irq_tasklet);
645 }
acdd884a 646
663f71e7 647 spin_unlock_irqrestore(&engine->timeline->lock, flags);
acdd884a
MT
648}
649
20311bd3
CW
650static struct intel_engine_cs *
651pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
652{
a79a524e
CW
653 struct intel_engine_cs *engine =
654 container_of(pt, struct drm_i915_gem_request, priotree)->engine;
655
656 GEM_BUG_ON(!locked);
20311bd3 657
20311bd3 658 if (engine != locked) {
a79a524e
CW
659 spin_unlock(&locked->timeline->lock);
660 spin_lock(&engine->timeline->lock);
20311bd3
CW
661 }
662
663 return engine;
664}
665
666static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
667{
a79a524e 668 struct intel_engine_cs *engine;
20311bd3
CW
669 struct i915_dependency *dep, *p;
670 struct i915_dependency stack;
671 LIST_HEAD(dfs);
672
673 if (prio <= READ_ONCE(request->priotree.priority))
674 return;
675
70cd1476
CW
676 /* Need BKL in order to use the temporary link inside i915_dependency */
677 lockdep_assert_held(&request->i915->drm.struct_mutex);
20311bd3
CW
678
679 stack.signaler = &request->priotree;
680 list_add(&stack.dfs_link, &dfs);
681
682 /* Recursively bump all dependent priorities to match the new request.
683 *
684 * A naive approach would be to use recursion:
685 * static void update_priorities(struct i915_priotree *pt, prio) {
686 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
687 * update_priorities(dep->signal, prio)
688 * insert_request(pt);
689 * }
690 * but that may have unlimited recursion depth and so runs a very
691 * real risk of overunning the kernel stack. Instead, we build
692 * a flat list of all dependencies starting with the current request.
693 * As we walk the list of dependencies, we add all of its dependencies
694 * to the end of the list (this may include an already visited
695 * request) and continue to walk onwards onto the new dependencies. The
696 * end result is a topological list of requests in reverse order, the
697 * last element in the list is the request we must execute first.
698 */
699 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
700 struct i915_priotree *pt = dep->signaler;
701
a79a524e
CW
702 /* Within an engine, there can be no cycle, but we may
703 * refer to the same dependency chain multiple times
704 * (redundant dependencies are not eliminated) and across
705 * engines.
706 */
707 list_for_each_entry(p, &pt->signalers_list, signal_link) {
708 GEM_BUG_ON(p->signaler->priority < pt->priority);
20311bd3
CW
709 if (prio > READ_ONCE(p->signaler->priority))
710 list_move_tail(&p->dfs_link, &dfs);
a79a524e 711 }
20311bd3 712
0798cff4 713 list_safe_reset_next(dep, p, dfs_link);
20311bd3
CW
714 }
715
a79a524e
CW
716 engine = request->engine;
717 spin_lock_irq(&engine->timeline->lock);
718
20311bd3
CW
719 /* Fifo and depth-first replacement ensure our deps execute before us */
720 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
721 struct i915_priotree *pt = dep->signaler;
722
723 INIT_LIST_HEAD(&dep->dfs_link);
724
725 engine = pt_lock_engine(pt, engine);
726
727 if (prio <= pt->priority)
728 continue;
729
20311bd3 730 pt->priority = prio;
a79a524e
CW
731 if (!RB_EMPTY_NODE(&pt->node)) {
732 rb_erase(&pt->node, &engine->execlist_queue);
733 if (insert_request(pt, &engine->execlist_queue))
734 engine->execlist_first = &pt->node;
735 }
20311bd3
CW
736 }
737
a79a524e 738 spin_unlock_irq(&engine->timeline->lock);
20311bd3
CW
739
740 /* XXX Do we need to preempt to make room for us and our deps? */
741}
742
266a240b
CW
743static struct intel_ring *
744execlists_context_pin(struct intel_engine_cs *engine,
745 struct i915_gem_context *ctx)
dcb4c12a 746{
9021ad03 747 struct intel_context *ce = &ctx->engine[engine->id];
2947e408 748 unsigned int flags;
7d774cac 749 void *vaddr;
ca82580c 750 int ret;
dcb4c12a 751
91c8a326 752 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 753
266a240b
CW
754 if (likely(ce->pin_count++))
755 goto out;
a533b4ba 756 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
24f1d3cc 757
e8a9c58f
CW
758 if (!ce->state) {
759 ret = execlists_context_deferred_alloc(ctx, engine);
760 if (ret)
761 goto err;
762 }
56f6e0a7 763 GEM_BUG_ON(!ce->state);
e8a9c58f 764
72b72ae4 765 flags = PIN_GLOBAL | PIN_HIGH;
feef2a7c
DCS
766 if (ctx->ggtt_offset_bias)
767 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
2947e408
CW
768
769 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
e84fe803 770 if (ret)
24f1d3cc 771 goto err;
7ba717cf 772
bf3783e5 773 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
774 if (IS_ERR(vaddr)) {
775 ret = PTR_ERR(vaddr);
bf3783e5 776 goto unpin_vma;
82352e90
TU
777 }
778
d822bb18 779 ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
e84fe803 780 if (ret)
7d774cac 781 goto unpin_map;
d1675198 782
0bc40be8 783 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 784
a3aabe86
CW
785 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
786 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 787 i915_ggtt_offset(ce->ring->vma);
a3aabe86 788
a4f5ea64 789 ce->state->obj->mm.dirty = true;
e93c28f3 790
9a6feaf0 791 i915_gem_context_get(ctx);
266a240b
CW
792out:
793 return ce->ring;
7ba717cf 794
7d774cac 795unpin_map:
bf3783e5
CW
796 i915_gem_object_unpin_map(ce->state->obj);
797unpin_vma:
798 __i915_vma_unpin(ce->state);
24f1d3cc 799err:
9021ad03 800 ce->pin_count = 0;
266a240b 801 return ERR_PTR(ret);
e84fe803
NH
802}
803
e8a9c58f
CW
804static void execlists_context_unpin(struct intel_engine_cs *engine,
805 struct i915_gem_context *ctx)
e84fe803 806{
9021ad03 807 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 808
91c8a326 809 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 810 GEM_BUG_ON(ce->pin_count == 0);
321fe304 811
9021ad03 812 if (--ce->pin_count)
24f1d3cc 813 return;
e84fe803 814
aad29fbb 815 intel_ring_unpin(ce->ring);
dcb4c12a 816
bf3783e5
CW
817 i915_gem_object_unpin_map(ce->state->obj);
818 i915_vma_unpin(ce->state);
321fe304 819
9a6feaf0 820 i915_gem_context_put(ctx);
dcb4c12a
OM
821}
822
f73e7399 823static int execlists_request_alloc(struct drm_i915_gem_request *request)
ef11c01d
CW
824{
825 struct intel_engine_cs *engine = request->engine;
826 struct intel_context *ce = &request->ctx->engine[engine->id];
73dec95e 827 u32 *cs;
ef11c01d
CW
828 int ret;
829
e8a9c58f
CW
830 GEM_BUG_ON(!ce->pin_count);
831
ef11c01d
CW
832 /* Flush enough space to reduce the likelihood of waiting after
833 * we start building the request - in which case we will just
834 * have to repeat work.
835 */
836 request->reserved_space += EXECLISTS_REQUEST_SIZE;
837
ef11c01d
CW
838 if (i915.enable_guc_submission) {
839 /*
840 * Check that the GuC has space for the request before
841 * going any further, as the i915_add_request() call
842 * later on mustn't fail ...
843 */
844 ret = i915_guc_wq_reserve(request);
845 if (ret)
e8a9c58f 846 goto err;
ef11c01d
CW
847 }
848
73dec95e
TU
849 cs = intel_ring_begin(request, 0);
850 if (IS_ERR(cs)) {
851 ret = PTR_ERR(cs);
ef11c01d 852 goto err_unreserve;
73dec95e 853 }
ef11c01d
CW
854
855 if (!ce->initialised) {
856 ret = engine->init_context(request);
857 if (ret)
858 goto err_unreserve;
859
860 ce->initialised = true;
861 }
862
863 /* Note that after this point, we have committed to using
864 * this request as it is being used to both track the
865 * state of engine initialisation and liveness of the
866 * golden renderstate above. Think twice before you try
867 * to cancel/unwind this request now.
868 */
869
870 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
871 return 0;
872
873err_unreserve:
874 if (i915.enable_guc_submission)
875 i915_guc_wq_unreserve(request);
e8a9c58f 876err:
ef11c01d
CW
877 return ret;
878}
879
9e000847
AS
880/*
881 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
882 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
883 * but there is a slight complication as this is applied in WA batch where the
884 * values are only initialized once so we cannot take register value at the
885 * beginning and reuse it further; hence we save its value to memory, upload a
886 * constant value with bit21 set and then we restore it back with the saved value.
887 * To simplify the WA, a constant value is formed by using the default value
888 * of this register. This shouldn't be a problem because we are only modifying
889 * it for a short period and this batch in non-premptible. We can ofcourse
890 * use additional instructions that read the actual value of the register
891 * at that time and set our bit of interest but it makes the WA complicated.
892 *
893 * This WA is also required for Gen9 so extracting as a function avoids
894 * code duplication.
895 */
097d4f1c
TU
896static u32 *
897gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
17ee950d 898{
097d4f1c
TU
899 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
900 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
901 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
902 *batch++ = 0;
903
904 *batch++ = MI_LOAD_REGISTER_IMM(1);
905 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
906 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
907
9f235dfa
TU
908 batch = gen8_emit_pipe_control(batch,
909 PIPE_CONTROL_CS_STALL |
910 PIPE_CONTROL_DC_FLUSH_ENABLE,
911 0);
097d4f1c
TU
912
913 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
914 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
915 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
916 *batch++ = 0;
917
918 return batch;
17ee950d
AS
919}
920
6e5248b5
DV
921/*
922 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
923 * initialized at the beginning and shared across all contexts but this field
924 * helps us to have multiple batches at different offsets and select them based
925 * on a criteria. At the moment this batch always start at the beginning of the page
926 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 927 *
6e5248b5
DV
928 * The number of WA applied are not known at the beginning; we use this field
929 * to return the no of DWORDS written.
17ee950d 930 *
6e5248b5
DV
931 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
932 * so it adds NOOPs as padding to make it cacheline aligned.
933 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
934 * makes a complete batch buffer.
17ee950d 935 */
097d4f1c 936static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 937{
7ad00d1a 938 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c 939 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
17ee950d 940
c82435bb 941 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
097d4f1c
TU
942 if (IS_BROADWELL(engine->i915))
943 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
c82435bb 944
0160f055
AS
945 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
946 /* Actual scratch location is at 128 bytes offset */
9f235dfa
TU
947 batch = gen8_emit_pipe_control(batch,
948 PIPE_CONTROL_FLUSH_L3 |
949 PIPE_CONTROL_GLOBAL_GTT_IVB |
950 PIPE_CONTROL_CS_STALL |
951 PIPE_CONTROL_QW_WRITE,
952 i915_ggtt_offset(engine->scratch) +
953 2 * CACHELINE_BYTES);
0160f055 954
17ee950d 955 /* Pad to end of cacheline */
097d4f1c
TU
956 while ((unsigned long)batch % CACHELINE_BYTES)
957 *batch++ = MI_NOOP;
17ee950d
AS
958
959 /*
960 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
961 * execution depends on the length specified in terms of cache lines
962 * in the register CTX_RCS_INDIRECT_CTX
963 */
964
097d4f1c 965 return batch;
17ee950d
AS
966}
967
6e5248b5
DV
968/*
969 * This batch is started immediately after indirect_ctx batch. Since we ensure
970 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 971 *
6e5248b5 972 * The number of DWORDS written are returned using this field.
17ee950d
AS
973 *
974 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
975 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
976 */
097d4f1c 977static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 978{
7ad00d1a 979 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c
TU
980 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
981 *batch++ = MI_BATCH_BUFFER_END;
17ee950d 982
097d4f1c 983 return batch;
17ee950d
AS
984}
985
097d4f1c 986static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 987{
9fb5026f 988 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
097d4f1c 989 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
a4106a78 990
9fb5026f 991 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
097d4f1c
TU
992 *batch++ = MI_LOAD_REGISTER_IMM(1);
993 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
994 *batch++ = _MASKED_BIT_DISABLE(
995 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
996 *batch++ = MI_NOOP;
873e8171 997
066d4628
MK
998 /* WaClearSlmSpaceAtContextSwitch:kbl */
999 /* Actual scratch location is at 128 bytes offset */
097d4f1c 1000 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
9f235dfa
TU
1001 batch = gen8_emit_pipe_control(batch,
1002 PIPE_CONTROL_FLUSH_L3 |
1003 PIPE_CONTROL_GLOBAL_GTT_IVB |
1004 PIPE_CONTROL_CS_STALL |
1005 PIPE_CONTROL_QW_WRITE,
1006 i915_ggtt_offset(engine->scratch)
1007 + 2 * CACHELINE_BYTES);
066d4628 1008 }
3485d99e 1009
9fb5026f 1010 /* WaMediaPoolStateCmdInWABB:bxt,glk */
3485d99e
TG
1011 if (HAS_POOLED_EU(engine->i915)) {
1012 /*
1013 * EU pool configuration is setup along with golden context
1014 * during context initialization. This value depends on
1015 * device type (2x6 or 3x6) and needs to be updated based
1016 * on which subslice is disabled especially for 2x6
1017 * devices, however it is safe to load default
1018 * configuration of 3x6 device instead of masking off
1019 * corresponding bits because HW ignores bits of a disabled
1020 * subslice and drops down to appropriate config. Please
1021 * see render_state_setup() in i915_gem_render_state.c for
1022 * possible configurations, to avoid duplication they are
1023 * not shown here again.
1024 */
097d4f1c
TU
1025 *batch++ = GEN9_MEDIA_POOL_STATE;
1026 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1027 *batch++ = 0x00777000;
1028 *batch++ = 0;
1029 *batch++ = 0;
1030 *batch++ = 0;
3485d99e
TG
1031 }
1032
0504cffc 1033 /* Pad to end of cacheline */
097d4f1c
TU
1034 while ((unsigned long)batch % CACHELINE_BYTES)
1035 *batch++ = MI_NOOP;
0504cffc 1036
097d4f1c 1037 return batch;
0504cffc
AS
1038}
1039
097d4f1c 1040static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 1041{
097d4f1c 1042 *batch++ = MI_BATCH_BUFFER_END;
0504cffc 1043
097d4f1c 1044 return batch;
0504cffc
AS
1045}
1046
097d4f1c
TU
1047#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1048
1049static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1050{
48bb74e4
CW
1051 struct drm_i915_gem_object *obj;
1052 struct i915_vma *vma;
1053 int err;
17ee950d 1054
097d4f1c 1055 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
48bb74e4
CW
1056 if (IS_ERR(obj))
1057 return PTR_ERR(obj);
17ee950d 1058
a01cb37a 1059 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
48bb74e4
CW
1060 if (IS_ERR(vma)) {
1061 err = PTR_ERR(vma);
1062 goto err;
17ee950d
AS
1063 }
1064
48bb74e4
CW
1065 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1066 if (err)
1067 goto err;
1068
1069 engine->wa_ctx.vma = vma;
17ee950d 1070 return 0;
48bb74e4
CW
1071
1072err:
1073 i915_gem_object_put(obj);
1074 return err;
17ee950d
AS
1075}
1076
097d4f1c 1077static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1078{
19880c4a 1079 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1080}
1081
097d4f1c
TU
1082typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1083
0bc40be8 1084static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1085{
48bb74e4 1086 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
097d4f1c
TU
1087 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1088 &wa_ctx->per_ctx };
1089 wa_bb_func_t wa_bb_fn[2];
17ee950d 1090 struct page *page;
097d4f1c
TU
1091 void *batch, *batch_ptr;
1092 unsigned int i;
48bb74e4 1093 int ret;
17ee950d 1094
097d4f1c
TU
1095 if (WARN_ON(engine->id != RCS || !engine->scratch))
1096 return -EINVAL;
17ee950d 1097
097d4f1c
TU
1098 switch (INTEL_GEN(engine->i915)) {
1099 case 9:
1100 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1101 wa_bb_fn[1] = gen9_init_perctx_bb;
1102 break;
1103 case 8:
1104 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1105 wa_bb_fn[1] = gen8_init_perctx_bb;
1106 break;
1107 default:
1108 MISSING_CASE(INTEL_GEN(engine->i915));
5e60d790 1109 return 0;
0504cffc 1110 }
5e60d790 1111
097d4f1c 1112 ret = lrc_setup_wa_ctx(engine);
17ee950d
AS
1113 if (ret) {
1114 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1115 return ret;
1116 }
1117
48bb74e4 1118 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
097d4f1c 1119 batch = batch_ptr = kmap_atomic(page);
17ee950d 1120
097d4f1c
TU
1121 /*
1122 * Emit the two workaround batch buffers, recording the offset from the
1123 * start of the workaround batch buffer object for each and their
1124 * respective sizes.
1125 */
1126 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1127 wa_bb[i]->offset = batch_ptr - batch;
1128 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1129 ret = -EINVAL;
1130 break;
1131 }
1132 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1133 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
17ee950d
AS
1134 }
1135
097d4f1c
TU
1136 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1137
17ee950d
AS
1138 kunmap_atomic(batch);
1139 if (ret)
097d4f1c 1140 lrc_destroy_wa_ctx(engine);
17ee950d
AS
1141
1142 return ret;
1143}
1144
0bc40be8 1145static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1146{
c033666a 1147 struct drm_i915_private *dev_priv = engine->i915;
6b764a59
CW
1148 struct execlist_port *port = engine->execlist_port;
1149 unsigned int n;
821ed7df
CW
1150 int ret;
1151
1152 ret = intel_mocs_init_engine(engine);
1153 if (ret)
1154 return ret;
9b1136d5 1155
ad07dfcd 1156 intel_engine_reset_breadcrumbs(engine);
f3b8f912 1157 intel_engine_init_hangcheck(engine);
821ed7df 1158
0bc40be8 1159 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
0bc40be8 1160 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5 1161 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
f3b8f912
CW
1162 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1163 engine->status_page.ggtt_offset);
1164 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
dfc53c5e 1165
0bc40be8 1166 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1167
c87d50cc 1168 /* After a GPU reset, we may have requests to replay */
f747026c 1169 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
6b764a59
CW
1170
1171 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
1172 if (!port[n].request)
1173 break;
1174
1175 DRM_DEBUG_DRIVER("Restarting %s:%d from 0x%x\n",
1176 engine->name, n,
1177 port[n].request->global_seqno);
1178
1179 /* Discard the current inflight count */
1180 port[n].count = 0;
c87d50cc 1181 }
821ed7df 1182
6b764a59
CW
1183 if (!i915.enable_guc_submission && !execlists_elsp_idle(engine))
1184 execlists_submit_ports(engine);
1185
821ed7df 1186 return 0;
9b1136d5
OM
1187}
1188
0bc40be8 1189static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1190{
c033666a 1191 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1192 int ret;
1193
0bc40be8 1194 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1195 if (ret)
1196 return ret;
1197
1198 /* We need to disable the AsyncFlip performance optimisations in order
1199 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1200 * programmed to '1' on all products.
1201 *
1202 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1203 */
1204 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1205
9b1136d5
OM
1206 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1207
0bc40be8 1208 return init_workarounds_ring(engine);
9b1136d5
OM
1209}
1210
0bc40be8 1211static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1212{
1213 int ret;
1214
0bc40be8 1215 ret = gen8_init_common_ring(engine);
82ef822e
DL
1216 if (ret)
1217 return ret;
1218
0bc40be8 1219 return init_workarounds_ring(engine);
82ef822e
DL
1220}
1221
821ed7df
CW
1222static void reset_common_ring(struct intel_engine_cs *engine,
1223 struct drm_i915_gem_request *request)
1224{
821ed7df 1225 struct execlist_port *port = engine->execlist_port;
c0dcb203
CW
1226 struct intel_context *ce;
1227
1228 /* If the request was innocent, we leave the request in the ELSP
1229 * and will try to replay it on restarting. The context image may
1230 * have been corrupted by the reset, in which case we may have
1231 * to service a new GPU hang, but more likely we can continue on
1232 * without impact.
1233 *
1234 * If the request was guilty, we presume the context is corrupt
1235 * and have to at least restore the RING register in the context
1236 * image back to the expected values to skip over the guilty request.
1237 */
1238 if (!request || request->fence.error != -EIO)
1239 return;
821ed7df 1240
a3aabe86
CW
1241 /* We want a simple context + ring to execute the breadcrumb update.
1242 * We cannot rely on the context being intact across the GPU hang,
1243 * so clear it and rebuild just what we need for the breadcrumb.
1244 * All pending requests for this context will be zapped, and any
1245 * future request will be after userspace has had the opportunity
1246 * to recreate its own state.
1247 */
c0dcb203 1248 ce = &request->ctx->engine[engine->id];
a3aabe86
CW
1249 execlists_init_reg_state(ce->lrc_reg_state,
1250 request->ctx, engine, ce->ring);
1251
821ed7df 1252 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1253 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1254 i915_ggtt_offset(ce->ring->vma);
821ed7df 1255 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1256
821ed7df 1257 request->ring->head = request->postfix;
821ed7df
CW
1258 intel_ring_update_space(request->ring);
1259
821ed7df 1260 /* Catch up with any missed context-switch interrupts */
821ed7df
CW
1261 if (request->ctx != port[0].request->ctx) {
1262 i915_gem_request_put(port[0].request);
1263 port[0] = port[1];
1264 memset(&port[1], 0, sizeof(port[1]));
1265 }
1266
821ed7df 1267 GEM_BUG_ON(request->ctx != port[0].request->ctx);
a3aabe86
CW
1268
1269 /* Reset WaIdleLiteRestore:bdw,skl as well */
450362d3
CW
1270 request->tail =
1271 intel_ring_wrap(request->ring,
1272 request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
ed1501d4 1273 assert_ring_tail_valid(request->ring, request->tail);
821ed7df
CW
1274}
1275
7a01a0a2
MT
1276static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1277{
1278 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1279 struct intel_engine_cs *engine = req->engine;
e7167769 1280 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
73dec95e
TU
1281 u32 *cs;
1282 int i;
7a01a0a2 1283
73dec95e
TU
1284 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1285 if (IS_ERR(cs))
1286 return PTR_ERR(cs);
7a01a0a2 1287
73dec95e 1288 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
e7167769 1289 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
7a01a0a2
MT
1290 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1291
73dec95e
TU
1292 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1293 *cs++ = upper_32_bits(pd_daddr);
1294 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1295 *cs++ = lower_32_bits(pd_daddr);
7a01a0a2
MT
1296 }
1297
73dec95e
TU
1298 *cs++ = MI_NOOP;
1299 intel_ring_advance(req, cs);
7a01a0a2
MT
1300
1301 return 0;
1302}
1303
be795fc1 1304static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba 1305 u64 offset, u32 len,
54af56db 1306 const unsigned int flags)
15648585 1307{
73dec95e 1308 u32 *cs;
15648585
OM
1309 int ret;
1310
7a01a0a2
MT
1311 /* Don't rely in hw updating PDPs, specially in lite-restore.
1312 * Ideally, we should set Force PD Restore in ctx descriptor,
1313 * but we can't. Force Restore would be a second option, but
1314 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1315 * not idle). PML4 is allocated during ppgtt init so this is
1316 * not needed in 48-bit.*/
7a01a0a2 1317 if (req->ctx->ppgtt &&
54af56db
MK
1318 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1319 !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1320 !intel_vgpu_active(req->i915)) {
1321 ret = intel_logical_ring_emit_pdps(req);
1322 if (ret)
1323 return ret;
7a01a0a2 1324
666796da 1325 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1326 }
1327
73dec95e
TU
1328 cs = intel_ring_begin(req, 4);
1329 if (IS_ERR(cs))
1330 return PTR_ERR(cs);
15648585
OM
1331
1332 /* FIXME(BDW): Address space and security selectors. */
54af56db
MK
1333 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1334 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1335 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
73dec95e
TU
1336 *cs++ = lower_32_bits(offset);
1337 *cs++ = upper_32_bits(offset);
1338 *cs++ = MI_NOOP;
1339 intel_ring_advance(req, cs);
15648585
OM
1340
1341 return 0;
1342}
1343
31bb59cc 1344static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1345{
c033666a 1346 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1347 I915_WRITE_IMR(engine,
1348 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1349 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1350}
1351
31bb59cc 1352static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1353{
c033666a 1354 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1355 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1356}
1357
7c9cf4e3 1358static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1359{
73dec95e 1360 u32 cmd, *cs;
4712274c 1361
73dec95e
TU
1362 cs = intel_ring_begin(request, 4);
1363 if (IS_ERR(cs))
1364 return PTR_ERR(cs);
4712274c
OM
1365
1366 cmd = MI_FLUSH_DW + 1;
1367
f0a1fb10
CW
1368 /* We always require a command barrier so that subsequent
1369 * commands, such as breadcrumb interrupts, are strictly ordered
1370 * wrt the contents of the write cache being flushed to memory
1371 * (and thus being coherent from the CPU).
1372 */
1373 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1374
7c9cf4e3 1375 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1376 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1377 if (request->engine->id == VCS)
f0a1fb10 1378 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1379 }
1380
73dec95e
TU
1381 *cs++ = cmd;
1382 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1383 *cs++ = 0; /* upper addr */
1384 *cs++ = 0; /* value */
1385 intel_ring_advance(request, cs);
4712274c
OM
1386
1387 return 0;
1388}
1389
7deb4d39 1390static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1391 u32 mode)
4712274c 1392{
b5321f30 1393 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1394 u32 scratch_addr =
1395 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1396 bool vf_flush_wa = false, dc_flush_wa = false;
73dec95e 1397 u32 *cs, flags = 0;
0b2d0934 1398 int len;
4712274c
OM
1399
1400 flags |= PIPE_CONTROL_CS_STALL;
1401
7c9cf4e3 1402 if (mode & EMIT_FLUSH) {
4712274c
OM
1403 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1404 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1405 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1406 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1407 }
1408
7c9cf4e3 1409 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1410 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1411 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1412 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1413 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1414 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1415 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1416 flags |= PIPE_CONTROL_QW_WRITE;
1417 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1418
1a5a9ce7
BW
1419 /*
1420 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1421 * pipe control.
1422 */
c033666a 1423 if (IS_GEN9(request->i915))
1a5a9ce7 1424 vf_flush_wa = true;
0b2d0934
MK
1425
1426 /* WaForGAMHang:kbl */
1427 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1428 dc_flush_wa = true;
1a5a9ce7 1429 }
9647ff36 1430
0b2d0934
MK
1431 len = 6;
1432
1433 if (vf_flush_wa)
1434 len += 6;
1435
1436 if (dc_flush_wa)
1437 len += 12;
1438
73dec95e
TU
1439 cs = intel_ring_begin(request, len);
1440 if (IS_ERR(cs))
1441 return PTR_ERR(cs);
4712274c 1442
9f235dfa
TU
1443 if (vf_flush_wa)
1444 cs = gen8_emit_pipe_control(cs, 0, 0);
9647ff36 1445
9f235dfa
TU
1446 if (dc_flush_wa)
1447 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1448 0);
0b2d0934 1449
9f235dfa 1450 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
0b2d0934 1451
9f235dfa
TU
1452 if (dc_flush_wa)
1453 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
0b2d0934 1454
73dec95e 1455 intel_ring_advance(request, cs);
4712274c
OM
1456
1457 return 0;
1458}
1459
7c17d377
CW
1460/*
1461 * Reserve space for 2 NOOPs at the end of each request to be
1462 * used as a workaround for not being allowed to do lite
1463 * restore with HEAD==TAIL (WaIdleLiteRestore).
1464 */
73dec95e 1465static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
4da46e1e 1466{
73dec95e
TU
1467 *cs++ = MI_NOOP;
1468 *cs++ = MI_NOOP;
1469 request->wa_tail = intel_ring_offset(request, cs);
caddfe71 1470}
4da46e1e 1471
73dec95e 1472static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
caddfe71 1473{
7c17d377
CW
1474 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1475 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1476
73dec95e
TU
1477 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1478 *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1479 *cs++ = 0;
1480 *cs++ = request->global_seqno;
1481 *cs++ = MI_USER_INTERRUPT;
1482 *cs++ = MI_NOOP;
1483 request->tail = intel_ring_offset(request, cs);
ed1501d4 1484 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1485
73dec95e 1486 gen8_emit_wa_tail(request, cs);
7c17d377 1487}
4da46e1e 1488
98f29e8d
CW
1489static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1490
caddfe71 1491static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
73dec95e 1492 u32 *cs)
7c17d377 1493{
ce81a65c
MW
1494 /* We're using qword write, seqno should be aligned to 8 bytes. */
1495 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1496
7c17d377
CW
1497 /* w/a for post sync ops following a GPGPU operation we
1498 * need a prior CS_STALL, which is emitted by the flush
1499 * following the batch.
1500 */
73dec95e
TU
1501 *cs++ = GFX_OP_PIPE_CONTROL(6);
1502 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1503 PIPE_CONTROL_QW_WRITE;
1504 *cs++ = intel_hws_seqno_address(request->engine);
1505 *cs++ = 0;
1506 *cs++ = request->global_seqno;
ce81a65c 1507 /* We're thrashing one dword of HWS. */
73dec95e
TU
1508 *cs++ = 0;
1509 *cs++ = MI_USER_INTERRUPT;
1510 *cs++ = MI_NOOP;
1511 request->tail = intel_ring_offset(request, cs);
ed1501d4 1512 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1513
73dec95e 1514 gen8_emit_wa_tail(request, cs);
4da46e1e
OM
1515}
1516
98f29e8d
CW
1517static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1518
8753181e 1519static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1520{
1521 int ret;
1522
4ac9659e 1523 ret = intel_ring_workarounds_emit(req);
e7778be1
TD
1524 if (ret)
1525 return ret;
1526
3bbaba0c
PA
1527 ret = intel_rcs_context_init_mocs(req);
1528 /*
1529 * Failing to program the MOCS is non-fatal.The system will not
1530 * run at peak performance. So generate an error and carry on.
1531 */
1532 if (ret)
1533 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1534
4e50f082 1535 return i915_gem_render_state_emit(req);
e7778be1
TD
1536}
1537
73e4d07f
OM
1538/**
1539 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1540 * @engine: Engine Command Streamer.
73e4d07f 1541 */
0bc40be8 1542void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1543{
6402c330 1544 struct drm_i915_private *dev_priv;
9832b9da 1545
27af5eea
TU
1546 /*
1547 * Tasklet cannot be active at this point due intel_mark_active/idle
1548 * so this is just for documentation.
1549 */
1550 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1551 tasklet_kill(&engine->irq_tasklet);
1552
c033666a 1553 dev_priv = engine->i915;
6402c330 1554
0bc40be8 1555 if (engine->buffer) {
0bc40be8 1556 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1557 }
48d82387 1558
0bc40be8
TU
1559 if (engine->cleanup)
1560 engine->cleanup(engine);
48d82387 1561
57e88531
CW
1562 if (engine->status_page.vma) {
1563 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1564 engine->status_page.vma = NULL;
48d82387 1565 }
e8a9c58f
CW
1566
1567 intel_engine_cleanup_common(engine);
17ee950d 1568
097d4f1c 1569 lrc_destroy_wa_ctx(engine);
c033666a 1570 engine->i915 = NULL;
3b3f1650
AG
1571 dev_priv->engine[engine->id] = NULL;
1572 kfree(engine);
454afebd
OM
1573}
1574
ff44ad51 1575static void execlists_set_default_submission(struct intel_engine_cs *engine)
ddd66c51 1576{
ff44ad51
CW
1577 engine->submit_request = execlists_submit_request;
1578 engine->schedule = execlists_schedule;
c9203e82 1579 engine->irq_tasklet.func = intel_lrc_irq_handler;
ddd66c51
CW
1580}
1581
c9cacf93 1582static void
e1382efb 1583logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1584{
1585 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1586 engine->init_hw = gen8_init_common_ring;
821ed7df 1587 engine->reset_hw = reset_common_ring;
e8a9c58f
CW
1588
1589 engine->context_pin = execlists_context_pin;
1590 engine->context_unpin = execlists_context_unpin;
1591
f73e7399
CW
1592 engine->request_alloc = execlists_request_alloc;
1593
0bc40be8 1594 engine->emit_flush = gen8_emit_flush;
9b81d556 1595 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1596 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
ff44ad51
CW
1597
1598 engine->set_default_submission = execlists_set_default_submission;
ddd66c51 1599
31bb59cc
CW
1600 engine->irq_enable = gen8_logical_ring_enable_irq;
1601 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1602 engine->emit_bb_start = gen8_emit_bb_start;
c9cacf93
TU
1603}
1604
d9f3af96 1605static inline void
c2c7f240 1606logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1607{
c2c7f240 1608 unsigned shift = engine->irq_shift;
0bc40be8
TU
1609 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1610 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1611}
1612
7d774cac 1613static int
bf3783e5 1614lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1615{
57e88531 1616 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1617 void *hws;
04794adb
TU
1618
1619 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1620 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1621 if (IS_ERR(hws))
1622 return PTR_ERR(hws);
57e88531
CW
1623
1624 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1625 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1626 engine->status_page.vma = vma;
7d774cac
TU
1627
1628 return 0;
04794adb
TU
1629}
1630
bb45438f
TU
1631static void
1632logical_ring_setup(struct intel_engine_cs *engine)
1633{
1634 struct drm_i915_private *dev_priv = engine->i915;
1635 enum forcewake_domains fw_domains;
1636
019bf277
TU
1637 intel_engine_setup_common(engine);
1638
bb45438f
TU
1639 /* Intentionally left blank. */
1640 engine->buffer = NULL;
1641
1642 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1643 RING_ELSP(engine),
1644 FW_REG_WRITE);
1645
1646 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1647 RING_CONTEXT_STATUS_PTR(engine),
1648 FW_REG_READ | FW_REG_WRITE);
1649
1650 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1651 RING_CONTEXT_STATUS_BUF_BASE(engine),
1652 FW_REG_READ);
1653
1654 engine->fw_domains = fw_domains;
1655
bb45438f
TU
1656 tasklet_init(&engine->irq_tasklet,
1657 intel_lrc_irq_handler, (unsigned long)engine);
1658
bb45438f
TU
1659 logical_ring_default_vfuncs(engine);
1660 logical_ring_default_irqs(engine);
bb45438f
TU
1661}
1662
a19d6ff2
TU
1663static int
1664logical_ring_init(struct intel_engine_cs *engine)
1665{
1666 struct i915_gem_context *dctx = engine->i915->kernel_context;
1667 int ret;
1668
019bf277 1669 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1670 if (ret)
1671 goto error;
1672
a19d6ff2
TU
1673 /* And setup the hardware status page. */
1674 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1675 if (ret) {
1676 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1677 goto error;
1678 }
1679
1680 return 0;
1681
1682error:
1683 intel_logical_ring_cleanup(engine);
1684 return ret;
1685}
1686
88d2ba2e 1687int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1688{
1689 struct drm_i915_private *dev_priv = engine->i915;
1690 int ret;
1691
bb45438f
TU
1692 logical_ring_setup(engine);
1693
a19d6ff2
TU
1694 if (HAS_L3_DPF(dev_priv))
1695 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1696
1697 /* Override some for render ring. */
1698 if (INTEL_GEN(dev_priv) >= 9)
1699 engine->init_hw = gen9_init_render_ring;
1700 else
1701 engine->init_hw = gen8_init_render_ring;
1702 engine->init_context = gen8_init_rcs_context;
a19d6ff2 1703 engine->emit_flush = gen8_emit_flush_render;
9b81d556 1704 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
98f29e8d 1705 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
a19d6ff2 1706
f51455d4 1707 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
a19d6ff2
TU
1708 if (ret)
1709 return ret;
1710
1711 ret = intel_init_workaround_bb(engine);
1712 if (ret) {
1713 /*
1714 * We continue even if we fail to initialize WA batch
1715 * because we only expect rare glitches but nothing
1716 * critical to prevent us from using GPU
1717 */
1718 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1719 ret);
1720 }
1721
d038fc7e 1722 return logical_ring_init(engine);
a19d6ff2
TU
1723}
1724
88d2ba2e 1725int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1726{
1727 logical_ring_setup(engine);
1728
1729 return logical_ring_init(engine);
454afebd
OM
1730}
1731
0cea6502 1732static u32
c033666a 1733make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1734{
1735 u32 rpcs = 0;
1736
1737 /*
1738 * No explicit RPCS request is needed to ensure full
1739 * slice/subslice/EU enablement prior to Gen9.
1740 */
c033666a 1741 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1742 return 0;
1743
1744 /*
1745 * Starting in Gen9, render power gating can leave
1746 * slice/subslice/EU in a partially enabled state. We
1747 * must make an explicit request through RPCS for full
1748 * enablement.
1749 */
43b67998 1750 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1751 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1752 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1753 GEN8_RPCS_S_CNT_SHIFT;
1754 rpcs |= GEN8_RPCS_ENABLE;
1755 }
1756
43b67998 1757 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1758 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1759 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1760 GEN8_RPCS_SS_CNT_SHIFT;
1761 rpcs |= GEN8_RPCS_ENABLE;
1762 }
1763
43b67998
ID
1764 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1765 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 1766 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 1767 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
1768 GEN8_RPCS_EU_MAX_SHIFT;
1769 rpcs |= GEN8_RPCS_ENABLE;
1770 }
1771
1772 return rpcs;
1773}
1774
0bc40be8 1775static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1776{
1777 u32 indirect_ctx_offset;
1778
c033666a 1779 switch (INTEL_GEN(engine->i915)) {
71562919 1780 default:
c033666a 1781 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
1782 /* fall through */
1783 case 9:
1784 indirect_ctx_offset =
1785 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1786 break;
1787 case 8:
1788 indirect_ctx_offset =
1789 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1790 break;
1791 }
1792
1793 return indirect_ctx_offset;
1794}
1795
56e51bf0 1796static void execlists_init_reg_state(u32 *regs,
a3aabe86
CW
1797 struct i915_gem_context *ctx,
1798 struct intel_engine_cs *engine,
1799 struct intel_ring *ring)
8670d6f9 1800{
a3aabe86
CW
1801 struct drm_i915_private *dev_priv = engine->i915;
1802 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
56e51bf0
TU
1803 u32 base = engine->mmio_base;
1804 bool rcs = engine->id == RCS;
1805
1806 /* A context is actually a big batch buffer with several
1807 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
1808 * values we are setting here are only for the first context restore:
1809 * on a subsequent save, the GPU will recreate this batchbuffer with new
1810 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
1811 * we are not initializing here).
1812 */
1813 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
1814 MI_LRI_FORCE_POSTED;
1815
1816 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
1817 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1818 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1819 (HAS_RESOURCE_STREAMER(dev_priv) ?
1820 CTX_CTRL_RS_CTX_ENABLE : 0)));
1821 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
1822 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
1823 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
1824 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
1825 RING_CTL_SIZE(ring->size) | RING_VALID);
1826 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
1827 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
1828 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
1829 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
1830 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
1831 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
1832 if (rcs) {
1833 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
1834 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
1835 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
1836 RING_INDIRECT_CTX_OFFSET(base), 0);
8670d6f9 1837
48bb74e4 1838 if (engine->wa_ctx.vma) {
0bc40be8 1839 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 1840 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d 1841
56e51bf0 1842 regs[CTX_RCS_INDIRECT_CTX + 1] =
097d4f1c
TU
1843 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
1844 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
17ee950d 1845
56e51bf0 1846 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
0bc40be8 1847 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d 1848
56e51bf0 1849 regs[CTX_BB_PER_CTX_PTR + 1] =
097d4f1c 1850 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
17ee950d 1851 }
8670d6f9 1852 }
56e51bf0
TU
1853
1854 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1855
1856 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
0d925ea0 1857 /* PDP values well be assigned later if needed */
56e51bf0
TU
1858 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
1859 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
1860 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
1861 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
1862 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
1863 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
1864 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
1865 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
d7b2633d 1866
949e8ab3 1867 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2dba3239
MT
1868 /* 64b PPGTT (48bit canonical)
1869 * PDP0_DESCRIPTOR contains the base address to PML4 and
1870 * other PDP Descriptors are ignored.
1871 */
56e51bf0 1872 ASSIGN_CTX_PML4(ppgtt, regs);
2dba3239
MT
1873 }
1874
56e51bf0
TU
1875 if (rcs) {
1876 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1877 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1878 make_rpcs(dev_priv));
8670d6f9 1879 }
a3aabe86
CW
1880}
1881
1882static int
1883populate_lr_context(struct i915_gem_context *ctx,
1884 struct drm_i915_gem_object *ctx_obj,
1885 struct intel_engine_cs *engine,
1886 struct intel_ring *ring)
1887{
1888 void *vaddr;
1889 int ret;
1890
1891 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1892 if (ret) {
1893 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1894 return ret;
1895 }
1896
1897 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1898 if (IS_ERR(vaddr)) {
1899 ret = PTR_ERR(vaddr);
1900 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1901 return ret;
1902 }
a4f5ea64 1903 ctx_obj->mm.dirty = true;
a3aabe86
CW
1904
1905 /* The second page of the context object contains some fields which must
1906 * be set up prior to the first execution. */
1907
1908 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
1909 ctx, engine, ring);
8670d6f9 1910
7d774cac 1911 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
1912
1913 return 0;
1914}
1915
e2efd130 1916static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 1917 struct intel_engine_cs *engine)
ede7d42b 1918{
8c857917 1919 struct drm_i915_gem_object *ctx_obj;
9021ad03 1920 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 1921 struct i915_vma *vma;
8c857917 1922 uint32_t context_size;
7e37f889 1923 struct intel_ring *ring;
8c857917
OM
1924 int ret;
1925
9021ad03 1926 WARN_ON(ce->state);
ede7d42b 1927
63ffbcda 1928 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
8c857917 1929
d1675198
AD
1930 /* One extra page as the sharing data between driver and GuC */
1931 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
1932
12d79d78 1933 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
fe3db79b 1934 if (IS_ERR(ctx_obj)) {
3126a660 1935 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 1936 return PTR_ERR(ctx_obj);
8c857917
OM
1937 }
1938
a01cb37a 1939 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
bf3783e5
CW
1940 if (IS_ERR(vma)) {
1941 ret = PTR_ERR(vma);
1942 goto error_deref_obj;
1943 }
1944
7e37f889 1945 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
1946 if (IS_ERR(ring)) {
1947 ret = PTR_ERR(ring);
e84fe803 1948 goto error_deref_obj;
8670d6f9
OM
1949 }
1950
dca33ecc 1951 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
1952 if (ret) {
1953 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 1954 goto error_ring_free;
84c2377f
OM
1955 }
1956
dca33ecc 1957 ce->ring = ring;
bf3783e5 1958 ce->state = vma;
9021ad03 1959 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
1960
1961 return 0;
8670d6f9 1962
dca33ecc 1963error_ring_free:
7e37f889 1964 intel_ring_free(ring);
e84fe803 1965error_deref_obj:
f8c417cd 1966 i915_gem_object_put(ctx_obj);
8670d6f9 1967 return ret;
ede7d42b 1968}
3e5b6f05 1969
821ed7df 1970void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 1971{
e2f80391 1972 struct intel_engine_cs *engine;
bafb2f7d 1973 struct i915_gem_context *ctx;
3b3f1650 1974 enum intel_engine_id id;
bafb2f7d
CW
1975
1976 /* Because we emit WA_TAIL_DWORDS there may be a disparity
1977 * between our bookkeeping in ce->ring->head and ce->ring->tail and
1978 * that stored in context. As we only write new commands from
1979 * ce->ring->tail onwards, everything before that is junk. If the GPU
1980 * starts reading from its RING_HEAD from the context, it may try to
1981 * execute that junk and die.
1982 *
1983 * So to avoid that we reset the context images upon resume. For
1984 * simplicity, we just zero everything out.
1985 */
1986 list_for_each_entry(ctx, &dev_priv->context_list, link) {
3b3f1650 1987 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
1988 struct intel_context *ce = &ctx->engine[engine->id];
1989 u32 *reg;
3e5b6f05 1990
bafb2f7d
CW
1991 if (!ce->state)
1992 continue;
7d774cac 1993
bafb2f7d
CW
1994 reg = i915_gem_object_pin_map(ce->state->obj,
1995 I915_MAP_WB);
1996 if (WARN_ON(IS_ERR(reg)))
1997 continue;
3e5b6f05 1998
bafb2f7d
CW
1999 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2000 reg[CTX_RING_HEAD+1] = 0;
2001 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2002
a4f5ea64 2003 ce->state->obj->mm.dirty = true;
bafb2f7d 2004 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2005
e6ba9992 2006 intel_ring_reset(ce->ring, 0);
bafb2f7d 2007 }
3e5b6f05
TD
2008 }
2009}