]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Use the global runtime-pm wakelock for a busy GPU for execlists
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
127f1003 138
468c6816 139#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
140#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
e981e7b1
TD
143#define RING_EXECLIST_QFULL (1 << 0x2)
144#define RING_EXECLIST1_VALID (1 << 0x3)
145#define RING_EXECLIST0_VALID (1 << 0x4)
146#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147#define RING_EXECLIST1_ACTIVE (1 << 0x11)
148#define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
156
157#define CTX_LRI_HEADER_0 0x01
158#define CTX_CONTEXT_CONTROL 0x02
159#define CTX_RING_HEAD 0x04
160#define CTX_RING_TAIL 0x06
161#define CTX_RING_BUFFER_START 0x08
162#define CTX_RING_BUFFER_CONTROL 0x0a
163#define CTX_BB_HEAD_U 0x0c
164#define CTX_BB_HEAD_L 0x0e
165#define CTX_BB_STATE 0x10
166#define CTX_SECOND_BB_HEAD_U 0x12
167#define CTX_SECOND_BB_HEAD_L 0x14
168#define CTX_SECOND_BB_STATE 0x16
169#define CTX_BB_PER_CTX_PTR 0x18
170#define CTX_RCS_INDIRECT_CTX 0x1a
171#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172#define CTX_LRI_HEADER_1 0x21
173#define CTX_CTX_TIMESTAMP 0x22
174#define CTX_PDP3_UDW 0x24
175#define CTX_PDP3_LDW 0x26
176#define CTX_PDP2_UDW 0x28
177#define CTX_PDP2_LDW 0x2a
178#define CTX_PDP1_UDW 0x2c
179#define CTX_PDP1_LDW 0x2e
180#define CTX_PDP0_UDW 0x30
181#define CTX_PDP0_LDW 0x32
182#define CTX_LRI_HEADER_2 0x41
183#define CTX_R_PWR_CLK_STATE 0x42
184#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
84b790f8
BW
186#define GEN8_CTX_VALID (1<<0)
187#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188#define GEN8_CTX_FORCE_RESTORE (1<<2)
189#define GEN8_CTX_L3LLC_COHERENT (1<<5)
190#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e
MT
191
192#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
d7b2633d 193 const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
e5815a2e
MT
194 ppgtt->pdp.page_directory[n]->daddr : \
195 ppgtt->scratch_pd->daddr; \
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198}
199
84b790f8
BW
200enum {
201 ADVANCED_CONTEXT = 0,
202 LEGACY_CONTEXT,
203 ADVANCED_AD_CONTEXT,
204 LEGACY_64B_CONTEXT
205};
206#define GEN8_CTX_MODE_SHIFT 3
207enum {
208 FAULT_AND_HANG = 0,
209 FAULT_AND_HALT, /* Debug only */
210 FAULT_AND_STREAM,
211 FAULT_AND_CONTINUE /* Unsupported */
212};
213#define GEN8_CTX_ID_SHIFT 32
214
7ba717cf
TD
215static int intel_lr_context_pin(struct intel_engine_cs *ring,
216 struct intel_context *ctx);
217
73e4d07f
OM
218/**
219 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
220 * @dev: DRM device.
221 * @enable_execlists: value of i915.enable_execlists module parameter.
222 *
223 * Only certain platforms support Execlists (the prerequisites being
27401d12 224 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
225 *
226 * Return: 1 if Execlists is supported and has to be enabled.
227 */
127f1003
OM
228int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
229{
bd84b1e9
DV
230 WARN_ON(i915.enable_ppgtt == -1);
231
70ee45e1
DL
232 if (INTEL_INFO(dev)->gen >= 9)
233 return 1;
234
127f1003
OM
235 if (enable_execlists == 0)
236 return 0;
237
14bf993e
OM
238 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
239 i915.use_mmio_flip >= 0)
127f1003
OM
240 return 1;
241
242 return 0;
243}
ede7d42b 244
73e4d07f
OM
245/**
246 * intel_execlists_ctx_id() - get the Execlists Context ID
247 * @ctx_obj: Logical Ring Context backing object.
248 *
249 * Do not confuse with ctx->id! Unfortunately we have a name overload
250 * here: the old context ID we pass to userspace as a handler so that
251 * they can refer to a context, and the new context ID we pass to the
252 * ELSP so that the GPU can inform us of the context status via
253 * interrupts.
254 *
255 * Return: 20-bits globally unique context ID.
256 */
84b790f8
BW
257u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
258{
259 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
260
261 /* LRCA is required to be 4K aligned so the more significant 20 bits
262 * are globally unique */
263 return lrca >> 12;
264}
265
203a571b
NH
266static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
267 struct drm_i915_gem_object *ctx_obj)
84b790f8 268{
203a571b 269 struct drm_device *dev = ring->dev;
84b790f8
BW
270 uint64_t desc;
271 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
acdd884a
MT
272
273 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
274
275 desc = GEN8_CTX_VALID;
276 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
51847fb9
AS
277 if (IS_GEN8(ctx_obj->base.dev))
278 desc |= GEN8_CTX_L3LLC_COHERENT;
84b790f8
BW
279 desc |= GEN8_CTX_PRIVILEGE;
280 desc |= lrca;
281 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
282
283 /* TODO: WaDisableLiteRestore when we start using semaphore
284 * signalling between Command Streamers */
285 /* desc |= GEN8_CTX_FORCE_RESTORE; */
286
203a571b
NH
287 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
288 if (IS_GEN9(dev) &&
289 INTEL_REVID(dev) <= SKL_REVID_B0 &&
290 (ring->id == BCS || ring->id == VCS ||
291 ring->id == VECS || ring->id == VCS2))
292 desc |= GEN8_CTX_FORCE_RESTORE;
293
84b790f8
BW
294 return desc;
295}
296
297static void execlists_elsp_write(struct intel_engine_cs *ring,
298 struct drm_i915_gem_object *ctx_obj0,
299 struct drm_i915_gem_object *ctx_obj1)
300{
6e7cc470
TU
301 struct drm_device *dev = ring->dev;
302 struct drm_i915_private *dev_priv = dev->dev_private;
84b790f8
BW
303 uint64_t temp = 0;
304 uint32_t desc[4];
305
306 /* XXX: You must always write both descriptors in the order below. */
307 if (ctx_obj1)
203a571b 308 temp = execlists_ctx_descriptor(ring, ctx_obj1);
84b790f8
BW
309 else
310 temp = 0;
311 desc[1] = (u32)(temp >> 32);
312 desc[0] = (u32)temp;
313
203a571b 314 temp = execlists_ctx_descriptor(ring, ctx_obj0);
84b790f8
BW
315 desc[3] = (u32)(temp >> 32);
316 desc[2] = (u32)temp;
317
59bad947 318 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
84b790f8
BW
319 I915_WRITE(RING_ELSP(ring), desc[1]);
320 I915_WRITE(RING_ELSP(ring), desc[0]);
321 I915_WRITE(RING_ELSP(ring), desc[3]);
6daccb0b 322
84b790f8
BW
323 /* The context is automatically loaded after the following */
324 I915_WRITE(RING_ELSP(ring), desc[2]);
325
326 /* ELSP is a wo register, so use another nearby reg for posting instead */
327 POSTING_READ(RING_EXECLIST_STATUS(ring));
59bad947 328 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
84b790f8
BW
329}
330
7ba717cf
TD
331static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
332 struct drm_i915_gem_object *ring_obj,
d7b2633d 333 struct i915_hw_ppgtt *ppgtt,
7ba717cf 334 u32 tail)
ae1250b9
OM
335{
336 struct page *page;
337 uint32_t *reg_state;
338
339 page = i915_gem_object_get_page(ctx_obj, 1);
340 reg_state = kmap_atomic(page);
341
342 reg_state[CTX_RING_TAIL+1] = tail;
7ba717cf 343 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
ae1250b9 344
d7b2633d
MT
345 /* True PPGTT with dynamic page allocation: update PDP registers and
346 * point the unallocated PDPs to the scratch page
347 */
348 if (ppgtt) {
349 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
350 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
351 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
353 }
354
ae1250b9
OM
355 kunmap_atomic(reg_state);
356
357 return 0;
358}
359
cd0707cb
DG
360static void execlists_submit_contexts(struct intel_engine_cs *ring,
361 struct intel_context *to0, u32 tail0,
362 struct intel_context *to1, u32 tail1)
84b790f8 363{
7ba717cf
TD
364 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
365 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
84b790f8 366 struct drm_i915_gem_object *ctx_obj1 = NULL;
7ba717cf 367 struct intel_ringbuffer *ringbuf1 = NULL;
84b790f8 368
84b790f8 369 BUG_ON(!ctx_obj0);
acdd884a 370 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
7ba717cf 371 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
84b790f8 372
d7b2633d 373 execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
ae1250b9 374
84b790f8 375 if (to1) {
7ba717cf 376 ringbuf1 = to1->engine[ring->id].ringbuf;
84b790f8
BW
377 ctx_obj1 = to1->engine[ring->id].state;
378 BUG_ON(!ctx_obj1);
acdd884a 379 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
7ba717cf 380 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
ae1250b9 381
d7b2633d 382 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
84b790f8
BW
383 }
384
385 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
84b790f8
BW
386}
387
acdd884a
MT
388static void execlists_context_unqueue(struct intel_engine_cs *ring)
389{
6d3d8274
NH
390 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
391 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
392
393 assert_spin_locked(&ring->execlist_lock);
acdd884a
MT
394
395 if (list_empty(&ring->execlist_queue))
396 return;
397
398 /* Try to read in pairs */
399 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
400 execlist_link) {
401 if (!req0) {
402 req0 = cursor;
6d3d8274 403 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
404 /* Same ctx: ignore first request, as second request
405 * will update tail past first request's workload */
e1fee72c 406 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 407 list_del(&req0->execlist_link);
c86ee3a9
TD
408 list_add_tail(&req0->execlist_link,
409 &ring->execlist_retired_req_list);
acdd884a
MT
410 req0 = cursor;
411 } else {
412 req1 = cursor;
413 break;
414 }
415 }
416
e1fee72c
OM
417 WARN_ON(req1 && req1->elsp_submitted);
418
6d3d8274
NH
419 execlists_submit_contexts(ring, req0->ctx, req0->tail,
420 req1 ? req1->ctx : NULL,
421 req1 ? req1->tail : 0);
e1fee72c
OM
422
423 req0->elsp_submitted++;
424 if (req1)
425 req1->elsp_submitted++;
acdd884a
MT
426}
427
e981e7b1
TD
428static bool execlists_check_remove_request(struct intel_engine_cs *ring,
429 u32 request_id)
430{
6d3d8274 431 struct drm_i915_gem_request *head_req;
e981e7b1
TD
432
433 assert_spin_locked(&ring->execlist_lock);
434
435 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 436 struct drm_i915_gem_request,
e981e7b1
TD
437 execlist_link);
438
439 if (head_req != NULL) {
440 struct drm_i915_gem_object *ctx_obj =
6d3d8274 441 head_req->ctx->engine[ring->id].state;
e981e7b1 442 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
443 WARN(head_req->elsp_submitted == 0,
444 "Never submitted head request\n");
445
446 if (--head_req->elsp_submitted <= 0) {
447 list_del(&head_req->execlist_link);
c86ee3a9
TD
448 list_add_tail(&head_req->execlist_link,
449 &ring->execlist_retired_req_list);
e1fee72c
OM
450 return true;
451 }
e981e7b1
TD
452 }
453 }
454
455 return false;
456}
457
73e4d07f 458/**
3f7531c3 459 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
460 * @ring: Engine Command Streamer to handle.
461 *
462 * Check the unread Context Status Buffers and manage the submission of new
463 * contexts to the ELSP accordingly.
464 */
3f7531c3 465void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
466{
467 struct drm_i915_private *dev_priv = ring->dev->dev_private;
468 u32 status_pointer;
469 u8 read_pointer;
470 u8 write_pointer;
471 u32 status;
472 u32 status_id;
473 u32 submit_contexts = 0;
474
475 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
476
477 read_pointer = ring->next_context_status_buffer;
478 write_pointer = status_pointer & 0x07;
479 if (read_pointer > write_pointer)
480 write_pointer += 6;
481
482 spin_lock(&ring->execlist_lock);
483
484 while (read_pointer < write_pointer) {
485 read_pointer++;
486 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
487 (read_pointer % 6) * 8);
488 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
489 (read_pointer % 6) * 8 + 4);
490
e1fee72c
OM
491 if (status & GEN8_CTX_STATUS_PREEMPTED) {
492 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
493 if (execlists_check_remove_request(ring, status_id))
494 WARN(1, "Lite Restored request removed from queue\n");
495 } else
496 WARN(1, "Preemption without Lite Restore\n");
497 }
498
499 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
500 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
501 if (execlists_check_remove_request(ring, status_id))
502 submit_contexts++;
503 }
504 }
505
506 if (submit_contexts != 0)
507 execlists_context_unqueue(ring);
508
509 spin_unlock(&ring->execlist_lock);
510
511 WARN(submit_contexts > 2, "More than two context complete events?\n");
512 ring->next_context_status_buffer = write_pointer % 6;
513
514 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
515 ((u32)ring->next_context_status_buffer & 0x07) << 8);
516}
517
acdd884a
MT
518static int execlists_context_queue(struct intel_engine_cs *ring,
519 struct intel_context *to,
2d12955a
NH
520 u32 tail,
521 struct drm_i915_gem_request *request)
acdd884a 522{
6d3d8274 523 struct drm_i915_gem_request *cursor;
e981e7b1 524 struct drm_i915_private *dev_priv = ring->dev->dev_private;
f1ad5a1f 525 int num_elements = 0;
acdd884a 526
7ba717cf
TD
527 if (to != ring->default_context)
528 intel_lr_context_pin(ring, to);
529
2d12955a
NH
530 if (!request) {
531 /*
532 * If there isn't a request associated with this submission,
533 * create one as a temporary holder.
534 */
2d12955a
NH
535 request = kzalloc(sizeof(*request), GFP_KERNEL);
536 if (request == NULL)
537 return -ENOMEM;
2d12955a 538 request->ring = ring;
6d3d8274 539 request->ctx = to;
b3a38998
NH
540 kref_init(&request->ref);
541 request->uniq = dev_priv->request_uniq++;
542 i915_gem_context_reference(request->ctx);
21076372 543 } else {
b3a38998 544 i915_gem_request_reference(request);
21076372 545 WARN_ON(to != request->ctx);
2d12955a 546 }
72f95afa 547 request->tail = tail;
2d12955a 548
b5eba372 549 spin_lock_irq(&ring->execlist_lock);
acdd884a 550
f1ad5a1f
OM
551 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
552 if (++num_elements > 2)
553 break;
554
555 if (num_elements > 2) {
6d3d8274 556 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
557
558 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 559 struct drm_i915_gem_request,
f1ad5a1f
OM
560 execlist_link);
561
6d3d8274 562 if (to == tail_req->ctx) {
f1ad5a1f 563 WARN(tail_req->elsp_submitted != 0,
7ba717cf 564 "More than 2 already-submitted reqs queued\n");
f1ad5a1f 565 list_del(&tail_req->execlist_link);
c86ee3a9
TD
566 list_add_tail(&tail_req->execlist_link,
567 &ring->execlist_retired_req_list);
f1ad5a1f
OM
568 }
569 }
570
6d3d8274 571 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 572 if (num_elements == 0)
acdd884a
MT
573 execlists_context_unqueue(ring);
574
b5eba372 575 spin_unlock_irq(&ring->execlist_lock);
acdd884a
MT
576
577 return 0;
578}
579
21076372
NH
580static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
581 struct intel_context *ctx)
ba8b7ccb
OM
582{
583 struct intel_engine_cs *ring = ringbuf->ring;
584 uint32_t flush_domains;
585 int ret;
586
587 flush_domains = 0;
588 if (ring->gpu_caches_dirty)
589 flush_domains = I915_GEM_GPU_DOMAINS;
590
21076372
NH
591 ret = ring->emit_flush(ringbuf, ctx,
592 I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
593 if (ret)
594 return ret;
595
596 ring->gpu_caches_dirty = false;
597 return 0;
598}
599
600static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
21076372 601 struct intel_context *ctx,
ba8b7ccb
OM
602 struct list_head *vmas)
603{
604 struct intel_engine_cs *ring = ringbuf->ring;
605 struct i915_vma *vma;
606 uint32_t flush_domains = 0;
607 bool flush_chipset = false;
608 int ret;
609
610 list_for_each_entry(vma, vmas, exec_list) {
611 struct drm_i915_gem_object *obj = vma->obj;
612
613 ret = i915_gem_object_sync(obj, ring);
614 if (ret)
615 return ret;
616
617 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
618 flush_chipset |= i915_gem_clflush_object(obj, false);
619
620 flush_domains |= obj->base.write_domain;
621 }
622
623 if (flush_domains & I915_GEM_DOMAIN_GTT)
624 wmb();
625
626 /* Unconditionally invalidate gpu caches and ensure that we do flush
627 * any residual writes from the previous batch.
628 */
21076372 629 return logical_ring_invalidate_all_caches(ringbuf, ctx);
ba8b7ccb
OM
630}
631
6689cb2b
JH
632int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request,
633 struct intel_context *ctx)
bc0dce3f 634{
bc0dce3f
JH
635 int ret;
636
6689cb2b
JH
637 if (ctx != request->ring->default_context) {
638 ret = intel_lr_context_pin(request->ring, ctx);
639 if (ret)
bc0dce3f 640 return ret;
bc0dce3f
JH
641 }
642
6689cb2b
JH
643 request->ringbuf = ctx->engine[request->ring->id].ringbuf;
644 request->ctx = ctx;
bc0dce3f 645 i915_gem_context_reference(request->ctx);
bc0dce3f 646
bc0dce3f
JH
647 return 0;
648}
649
650static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
651 int bytes)
652{
653 struct intel_engine_cs *ring = ringbuf->ring;
654 struct drm_i915_gem_request *request;
dbe4646d 655 int ret, new_space;
bc0dce3f
JH
656
657 if (intel_ring_space(ringbuf) >= bytes)
658 return 0;
659
660 list_for_each_entry(request, &ring->request_list, list) {
661 /*
662 * The request queue is per-engine, so can contain requests
663 * from multiple ringbuffers. Here, we must ignore any that
664 * aren't from the ringbuffer we're considering.
665 */
666 struct intel_context *ctx = request->ctx;
667 if (ctx->engine[ring->id].ringbuf != ringbuf)
668 continue;
669
670 /* Would completion of this request free enough space? */
dbe4646d
JH
671 new_space = __intel_ring_space(request->postfix, ringbuf->tail,
672 ringbuf->size);
673 if (new_space >= bytes)
bc0dce3f 674 break;
bc0dce3f
JH
675 }
676
677 if (&request->list == &ring->request_list)
678 return -ENOSPC;
679
680 ret = i915_wait_request(request);
681 if (ret)
682 return ret;
683
684 i915_gem_retire_requests_ring(ring);
685
dbe4646d
JH
686 WARN_ON(intel_ring_space(ringbuf) < new_space);
687
bc0dce3f
JH
688 return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
689}
690
691/*
692 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
693 * @ringbuf: Logical Ringbuffer to advance.
694 *
695 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
696 * really happens during submission is that the context and current tail will be placed
697 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
698 * point, the tail *inside* the context is updated and the ELSP written to.
699 */
700static void
701intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
702 struct intel_context *ctx,
703 struct drm_i915_gem_request *request)
704{
705 struct intel_engine_cs *ring = ringbuf->ring;
706
707 intel_logical_ring_advance(ringbuf);
708
709 if (intel_ring_stopped(ring))
710 return;
711
712 execlists_context_queue(ring, ctx, ringbuf->tail, request);
713}
714
715static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
716 struct intel_context *ctx,
717 int bytes)
718{
719 struct intel_engine_cs *ring = ringbuf->ring;
720 struct drm_device *dev = ring->dev;
721 struct drm_i915_private *dev_priv = dev->dev_private;
722 unsigned long end;
723 int ret;
724
725 ret = logical_ring_wait_request(ringbuf, bytes);
726 if (ret != -ENOSPC)
727 return ret;
728
729 /* Force the context submission in case we have been skipping it */
730 intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
731
732 /* With GEM the hangcheck timer should kick us out of the loop,
733 * leaving it early runs the risk of corrupting GEM state (due
734 * to running on almost untested codepaths). But on resume
735 * timers don't work yet, so prevent a complete hang in that
736 * case by choosing an insanely large timeout. */
737 end = jiffies + 60 * HZ;
738
739 ret = 0;
740 do {
741 if (intel_ring_space(ringbuf) >= bytes)
742 break;
743
744 msleep(1);
745
746 if (dev_priv->mm.interruptible && signal_pending(current)) {
747 ret = -ERESTARTSYS;
748 break;
749 }
750
751 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
752 dev_priv->mm.interruptible);
753 if (ret)
754 break;
755
756 if (time_after(jiffies, end)) {
757 ret = -EBUSY;
758 break;
759 }
760 } while (1);
761
762 return ret;
763}
764
765static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
766 struct intel_context *ctx)
767{
768 uint32_t __iomem *virt;
769 int rem = ringbuf->size - ringbuf->tail;
770
771 if (ringbuf->space < rem) {
772 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
773
774 if (ret)
775 return ret;
776 }
777
778 virt = ringbuf->virtual_start + ringbuf->tail;
779 rem /= 4;
780 while (rem--)
781 iowrite32(MI_NOOP, virt++);
782
783 ringbuf->tail = 0;
784 intel_ring_update_space(ringbuf);
785
786 return 0;
787}
788
789static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
790 struct intel_context *ctx, int bytes)
791{
792 int ret;
793
794 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
795 ret = logical_ring_wrap_buffer(ringbuf, ctx);
796 if (unlikely(ret))
797 return ret;
798 }
799
800 if (unlikely(ringbuf->space < bytes)) {
801 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
802 if (unlikely(ret))
803 return ret;
804 }
805
806 return 0;
807}
808
809/**
810 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
811 *
812 * @ringbuf: Logical ringbuffer.
813 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
814 *
815 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
816 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
817 * and also preallocates a request (every workload submission is still mediated through
818 * requests, same as it did with legacy ringbuffer submission).
819 *
820 * Return: non-zero if the ringbuffer is not ready to be written to.
821 */
822static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
823 struct intel_context *ctx, int num_dwords)
824{
825 struct intel_engine_cs *ring = ringbuf->ring;
826 struct drm_device *dev = ring->dev;
827 struct drm_i915_private *dev_priv = dev->dev_private;
828 int ret;
829
830 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
831 dev_priv->mm.interruptible);
832 if (ret)
833 return ret;
834
835 ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
836 if (ret)
837 return ret;
838
839 /* Preallocate the olr before touching the ring */
6689cb2b 840 ret = i915_gem_request_alloc(ring, ctx);
bc0dce3f
JH
841 if (ret)
842 return ret;
843
844 ringbuf->space -= num_dwords * sizeof(uint32_t);
845 return 0;
846}
847
73e4d07f
OM
848/**
849 * execlists_submission() - submit a batchbuffer for execution, Execlists style
850 * @dev: DRM device.
851 * @file: DRM file.
852 * @ring: Engine Command Streamer to submit to.
853 * @ctx: Context to employ for this submission.
854 * @args: execbuffer call arguments.
855 * @vmas: list of vmas.
856 * @batch_obj: the batchbuffer to submit.
857 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 858 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
859 *
860 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
861 * away the submission details of the execbuffer ioctl call.
862 *
863 * Return: non-zero if the submission fails.
864 */
454afebd
OM
865int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
866 struct intel_engine_cs *ring,
867 struct intel_context *ctx,
868 struct drm_i915_gem_execbuffer2 *args,
869 struct list_head *vmas,
870 struct drm_i915_gem_object *batch_obj,
8e004efc 871 u64 exec_start, u32 dispatch_flags)
454afebd 872{
ba8b7ccb
OM
873 struct drm_i915_private *dev_priv = dev->dev_private;
874 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
875 int instp_mode;
876 u32 instp_mask;
877 int ret;
878
879 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
880 instp_mask = I915_EXEC_CONSTANTS_MASK;
881 switch (instp_mode) {
882 case I915_EXEC_CONSTANTS_REL_GENERAL:
883 case I915_EXEC_CONSTANTS_ABSOLUTE:
884 case I915_EXEC_CONSTANTS_REL_SURFACE:
885 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
886 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
887 return -EINVAL;
888 }
889
890 if (instp_mode != dev_priv->relative_constants_mode) {
891 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
892 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
893 return -EINVAL;
894 }
895
896 /* The HW changed the meaning on this bit on gen6 */
897 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
898 }
899 break;
900 default:
901 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
902 return -EINVAL;
903 }
904
905 if (args->num_cliprects != 0) {
906 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
907 return -EINVAL;
908 } else {
909 if (args->DR4 == 0xffffffff) {
910 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
911 args->DR4 = 0;
912 }
913
914 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
915 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
916 return -EINVAL;
917 }
918 }
919
920 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
921 DRM_DEBUG("sol reset is gen7 only\n");
922 return -EINVAL;
923 }
924
21076372 925 ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
ba8b7ccb
OM
926 if (ret)
927 return ret;
928
929 if (ring == &dev_priv->ring[RCS] &&
930 instp_mode != dev_priv->relative_constants_mode) {
21076372 931 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
ba8b7ccb
OM
932 if (ret)
933 return ret;
934
935 intel_logical_ring_emit(ringbuf, MI_NOOP);
936 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
937 intel_logical_ring_emit(ringbuf, INSTPM);
938 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
939 intel_logical_ring_advance(ringbuf);
940
941 dev_priv->relative_constants_mode = instp_mode;
942 }
943
8e004efc 944 ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
ba8b7ccb
OM
945 if (ret)
946 return ret;
947
5e4be7bd
JH
948 trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
949
ba8b7ccb
OM
950 i915_gem_execbuffer_move_to_active(vmas, ring);
951 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
952
454afebd
OM
953 return 0;
954}
955
c86ee3a9
TD
956void intel_execlists_retire_requests(struct intel_engine_cs *ring)
957{
6d3d8274 958 struct drm_i915_gem_request *req, *tmp;
c86ee3a9 959 struct drm_i915_private *dev_priv = ring->dev->dev_private;
c86ee3a9
TD
960 struct list_head retired_list;
961
962 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
963 if (list_empty(&ring->execlist_retired_req_list))
964 return;
965
966 INIT_LIST_HEAD(&retired_list);
b5eba372 967 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 968 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 969 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
970
971 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
6d3d8274 972 struct intel_context *ctx = req->ctx;
7ba717cf
TD
973 struct drm_i915_gem_object *ctx_obj =
974 ctx->engine[ring->id].state;
975
976 if (ctx_obj && (ctx != ring->default_context))
977 intel_lr_context_unpin(ring, ctx);
c86ee3a9 978 list_del(&req->execlist_link);
f8210795 979 i915_gem_request_unreference(req);
c86ee3a9
TD
980 }
981}
982
454afebd
OM
983void intel_logical_ring_stop(struct intel_engine_cs *ring)
984{
9832b9da
OM
985 struct drm_i915_private *dev_priv = ring->dev->dev_private;
986 int ret;
987
988 if (!intel_ring_initialized(ring))
989 return;
990
991 ret = intel_ring_idle(ring);
992 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
993 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
994 ring->name, ret);
995
996 /* TODO: Is this correct with Execlists enabled? */
997 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
998 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
999 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1000 return;
1001 }
1002 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
1003}
1004
21076372
NH
1005int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
1006 struct intel_context *ctx)
48e29f55
OM
1007{
1008 struct intel_engine_cs *ring = ringbuf->ring;
1009 int ret;
1010
1011 if (!ring->gpu_caches_dirty)
1012 return 0;
1013
21076372 1014 ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1015 if (ret)
1016 return ret;
1017
1018 ring->gpu_caches_dirty = false;
1019 return 0;
1020}
1021
dcb4c12a
OM
1022static int intel_lr_context_pin(struct intel_engine_cs *ring,
1023 struct intel_context *ctx)
1024{
1025 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
7ba717cf 1026 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
dcb4c12a
OM
1027 int ret = 0;
1028
1029 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
a7cbedec 1030 if (ctx->engine[ring->id].pin_count++ == 0) {
dcb4c12a
OM
1031 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1032 GEN8_LR_CONTEXT_ALIGN, 0);
1033 if (ret)
a7cbedec 1034 goto reset_pin_count;
7ba717cf
TD
1035
1036 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1037 if (ret)
1038 goto unpin_ctx_obj;
dcb4c12a
OM
1039 }
1040
7ba717cf
TD
1041 return ret;
1042
1043unpin_ctx_obj:
1044 i915_gem_object_ggtt_unpin(ctx_obj);
a7cbedec
MK
1045reset_pin_count:
1046 ctx->engine[ring->id].pin_count = 0;
7ba717cf 1047
dcb4c12a
OM
1048 return ret;
1049}
1050
1051void intel_lr_context_unpin(struct intel_engine_cs *ring,
1052 struct intel_context *ctx)
1053{
1054 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
7ba717cf 1055 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
dcb4c12a
OM
1056
1057 if (ctx_obj) {
1058 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
a7cbedec 1059 if (--ctx->engine[ring->id].pin_count == 0) {
7ba717cf 1060 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 1061 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 1062 }
dcb4c12a
OM
1063 }
1064}
1065
771b9a53
MT
1066static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1067 struct intel_context *ctx)
1068{
1069 int ret, i;
1070 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1071 struct drm_device *dev = ring->dev;
1072 struct drm_i915_private *dev_priv = dev->dev_private;
1073 struct i915_workarounds *w = &dev_priv->workarounds;
1074
e6c1abb7 1075 if (WARN_ON_ONCE(w->count == 0))
771b9a53
MT
1076 return 0;
1077
1078 ring->gpu_caches_dirty = true;
21076372 1079 ret = logical_ring_flush_all_caches(ringbuf, ctx);
771b9a53
MT
1080 if (ret)
1081 return ret;
1082
21076372 1083 ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
771b9a53
MT
1084 if (ret)
1085 return ret;
1086
1087 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1088 for (i = 0; i < w->count; i++) {
1089 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1090 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1091 }
1092 intel_logical_ring_emit(ringbuf, MI_NOOP);
1093
1094 intel_logical_ring_advance(ringbuf);
1095
1096 ring->gpu_caches_dirty = true;
21076372 1097 ret = logical_ring_flush_all_caches(ringbuf, ctx);
771b9a53
MT
1098 if (ret)
1099 return ret;
1100
1101 return 0;
1102}
1103
9b1136d5
OM
1104static int gen8_init_common_ring(struct intel_engine_cs *ring)
1105{
1106 struct drm_device *dev = ring->dev;
1107 struct drm_i915_private *dev_priv = dev->dev_private;
1108
73d477f6
OM
1109 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1110 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1111
9b1136d5
OM
1112 I915_WRITE(RING_MODE_GEN7(ring),
1113 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1114 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1115 POSTING_READ(RING_MODE_GEN7(ring));
c0a03a2e 1116 ring->next_context_status_buffer = 0;
9b1136d5
OM
1117 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1118
1119 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1120
1121 return 0;
1122}
1123
1124static int gen8_init_render_ring(struct intel_engine_cs *ring)
1125{
1126 struct drm_device *dev = ring->dev;
1127 struct drm_i915_private *dev_priv = dev->dev_private;
1128 int ret;
1129
1130 ret = gen8_init_common_ring(ring);
1131 if (ret)
1132 return ret;
1133
1134 /* We need to disable the AsyncFlip performance optimisations in order
1135 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1136 * programmed to '1' on all products.
1137 *
1138 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1139 */
1140 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1141
9b1136d5
OM
1142 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1143
771b9a53 1144 return init_workarounds_ring(ring);
9b1136d5
OM
1145}
1146
82ef822e
DL
1147static int gen9_init_render_ring(struct intel_engine_cs *ring)
1148{
1149 int ret;
1150
1151 ret = gen8_init_common_ring(ring);
1152 if (ret)
1153 return ret;
1154
1155 return init_workarounds_ring(ring);
1156}
1157
15648585 1158static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
21076372 1159 struct intel_context *ctx,
8e004efc 1160 u64 offset, unsigned dispatch_flags)
15648585 1161{
8e004efc 1162 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1163 int ret;
1164
21076372 1165 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
15648585
OM
1166 if (ret)
1167 return ret;
1168
1169 /* FIXME(BDW): Address space and security selectors. */
1170 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1171 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1172 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1173 intel_logical_ring_emit(ringbuf, MI_NOOP);
1174 intel_logical_ring_advance(ringbuf);
1175
1176 return 0;
1177}
1178
73d477f6
OM
1179static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1180{
1181 struct drm_device *dev = ring->dev;
1182 struct drm_i915_private *dev_priv = dev->dev_private;
1183 unsigned long flags;
1184
7cd512f1 1185 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1186 return false;
1187
1188 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1189 if (ring->irq_refcount++ == 0) {
1190 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1191 POSTING_READ(RING_IMR(ring->mmio_base));
1192 }
1193 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1194
1195 return true;
1196}
1197
1198static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1199{
1200 struct drm_device *dev = ring->dev;
1201 struct drm_i915_private *dev_priv = dev->dev_private;
1202 unsigned long flags;
1203
1204 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1205 if (--ring->irq_refcount == 0) {
1206 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1207 POSTING_READ(RING_IMR(ring->mmio_base));
1208 }
1209 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1210}
1211
4712274c 1212static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
21076372 1213 struct intel_context *ctx,
4712274c
OM
1214 u32 invalidate_domains,
1215 u32 unused)
1216{
1217 struct intel_engine_cs *ring = ringbuf->ring;
1218 struct drm_device *dev = ring->dev;
1219 struct drm_i915_private *dev_priv = dev->dev_private;
1220 uint32_t cmd;
1221 int ret;
1222
21076372 1223 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
4712274c
OM
1224 if (ret)
1225 return ret;
1226
1227 cmd = MI_FLUSH_DW + 1;
1228
f0a1fb10
CW
1229 /* We always require a command barrier so that subsequent
1230 * commands, such as breadcrumb interrupts, are strictly ordered
1231 * wrt the contents of the write cache being flushed to memory
1232 * (and thus being coherent from the CPU).
1233 */
1234 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1235
1236 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1237 cmd |= MI_INVALIDATE_TLB;
1238 if (ring == &dev_priv->ring[VCS])
1239 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1240 }
1241
1242 intel_logical_ring_emit(ringbuf, cmd);
1243 intel_logical_ring_emit(ringbuf,
1244 I915_GEM_HWS_SCRATCH_ADDR |
1245 MI_FLUSH_DW_USE_GTT);
1246 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1247 intel_logical_ring_emit(ringbuf, 0); /* value */
1248 intel_logical_ring_advance(ringbuf);
1249
1250 return 0;
1251}
1252
1253static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
21076372 1254 struct intel_context *ctx,
4712274c
OM
1255 u32 invalidate_domains,
1256 u32 flush_domains)
1257{
1258 struct intel_engine_cs *ring = ringbuf->ring;
1259 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1260 u32 flags = 0;
1261 int ret;
1262
1263 flags |= PIPE_CONTROL_CS_STALL;
1264
1265 if (flush_domains) {
1266 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1267 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1268 }
1269
1270 if (invalidate_domains) {
1271 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1272 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1273 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1274 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1275 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1276 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1277 flags |= PIPE_CONTROL_QW_WRITE;
1278 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1279 }
1280
21076372 1281 ret = intel_logical_ring_begin(ringbuf, ctx, 6);
4712274c
OM
1282 if (ret)
1283 return ret;
1284
1285 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1286 intel_logical_ring_emit(ringbuf, flags);
1287 intel_logical_ring_emit(ringbuf, scratch_addr);
1288 intel_logical_ring_emit(ringbuf, 0);
1289 intel_logical_ring_emit(ringbuf, 0);
1290 intel_logical_ring_emit(ringbuf, 0);
1291 intel_logical_ring_advance(ringbuf);
1292
1293 return 0;
1294}
1295
e94e37ad
OM
1296static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1297{
1298 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1299}
1300
1301static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1302{
1303 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1304}
1305
2d12955a
NH
1306static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1307 struct drm_i915_gem_request *request)
4da46e1e
OM
1308{
1309 struct intel_engine_cs *ring = ringbuf->ring;
1310 u32 cmd;
1311 int ret;
1312
21076372 1313 ret = intel_logical_ring_begin(ringbuf, request->ctx, 6);
4da46e1e
OM
1314 if (ret)
1315 return ret;
1316
8edfbb8b 1317 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1318 cmd |= MI_GLOBAL_GTT;
1319
1320 intel_logical_ring_emit(ringbuf, cmd);
1321 intel_logical_ring_emit(ringbuf,
1322 (ring->status_page.gfx_addr +
1323 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1324 intel_logical_ring_emit(ringbuf, 0);
6259cead
JH
1325 intel_logical_ring_emit(ringbuf,
1326 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
4da46e1e
OM
1327 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1328 intel_logical_ring_emit(ringbuf, MI_NOOP);
21076372 1329 intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
4da46e1e
OM
1330
1331 return 0;
1332}
1333
cef437ad
DL
1334static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1335 struct intel_context *ctx)
1336{
1337 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1338 struct render_state so;
1339 struct drm_i915_file_private *file_priv = ctx->file_priv;
1340 struct drm_file *file = file_priv ? file_priv->file : NULL;
1341 int ret;
1342
1343 ret = i915_gem_render_state_prepare(ring, &so);
1344 if (ret)
1345 return ret;
1346
1347 if (so.rodata == NULL)
1348 return 0;
1349
1350 ret = ring->emit_bb_start(ringbuf,
1351 ctx,
1352 so.ggtt_offset,
1353 I915_DISPATCH_SECURE);
1354 if (ret)
1355 goto out;
1356
1357 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1358
1359 ret = __i915_add_request(ring, file, so.obj);
1360 /* intel_logical_ring_add_request moves object to inactive if it
1361 * fails */
1362out:
1363 i915_gem_render_state_fini(&so);
1364 return ret;
1365}
1366
e7778be1
TD
1367static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1368 struct intel_context *ctx)
1369{
1370 int ret;
1371
1372 ret = intel_logical_ring_workarounds_emit(ring, ctx);
1373 if (ret)
1374 return ret;
1375
1376 return intel_lr_context_render_state_init(ring, ctx);
1377}
1378
73e4d07f
OM
1379/**
1380 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1381 *
1382 * @ring: Engine Command Streamer.
1383 *
1384 */
454afebd
OM
1385void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1386{
6402c330 1387 struct drm_i915_private *dev_priv;
9832b9da 1388
48d82387
OM
1389 if (!intel_ring_initialized(ring))
1390 return;
1391
6402c330
JH
1392 dev_priv = ring->dev->dev_private;
1393
9832b9da
OM
1394 intel_logical_ring_stop(ring);
1395 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
6259cead 1396 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
48d82387
OM
1397
1398 if (ring->cleanup)
1399 ring->cleanup(ring);
1400
1401 i915_cmd_parser_fini_ring(ring);
06fbca71 1402 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1403
1404 if (ring->status_page.obj) {
1405 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1406 ring->status_page.obj = NULL;
1407 }
454afebd
OM
1408}
1409
1410static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1411{
48d82387 1412 int ret;
48d82387
OM
1413
1414 /* Intentionally left blank. */
1415 ring->buffer = NULL;
1416
1417 ring->dev = dev;
1418 INIT_LIST_HEAD(&ring->active_list);
1419 INIT_LIST_HEAD(&ring->request_list);
06fbca71 1420 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
1421 init_waitqueue_head(&ring->irq_queue);
1422
acdd884a 1423 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1424 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
1425 spin_lock_init(&ring->execlist_lock);
1426
48d82387
OM
1427 ret = i915_cmd_parser_init_ring(ring);
1428 if (ret)
1429 return ret;
1430
564ddb2f
OM
1431 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1432
1433 return ret;
454afebd
OM
1434}
1435
1436static int logical_render_ring_init(struct drm_device *dev)
1437{
1438 struct drm_i915_private *dev_priv = dev->dev_private;
1439 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 1440 int ret;
454afebd
OM
1441
1442 ring->name = "render ring";
1443 ring->id = RCS;
1444 ring->mmio_base = RENDER_RING_BASE;
1445 ring->irq_enable_mask =
1446 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1447 ring->irq_keep_mask =
1448 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1449 if (HAS_L3_DPF(dev))
1450 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1451
82ef822e
DL
1452 if (INTEL_INFO(dev)->gen >= 9)
1453 ring->init_hw = gen9_init_render_ring;
1454 else
1455 ring->init_hw = gen8_init_render_ring;
e7778be1 1456 ring->init_context = gen8_init_rcs_context;
9b1136d5 1457 ring->cleanup = intel_fini_pipe_control;
e94e37ad
OM
1458 ring->get_seqno = gen8_get_seqno;
1459 ring->set_seqno = gen8_set_seqno;
4da46e1e 1460 ring->emit_request = gen8_emit_request;
4712274c 1461 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1462 ring->irq_get = gen8_logical_ring_get_irq;
1463 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1464 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1465
99be1dfe
DV
1466 ring->dev = dev;
1467 ret = logical_ring_init(dev, ring);
1468 if (ret)
1469 return ret;
1470
1471 return intel_init_pipe_control(ring);
454afebd
OM
1472}
1473
1474static int logical_bsd_ring_init(struct drm_device *dev)
1475{
1476 struct drm_i915_private *dev_priv = dev->dev_private;
1477 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1478
1479 ring->name = "bsd ring";
1480 ring->id = VCS;
1481 ring->mmio_base = GEN6_BSD_RING_BASE;
1482 ring->irq_enable_mask =
1483 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
1484 ring->irq_keep_mask =
1485 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 1486
ecfe00d8 1487 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1488 ring->get_seqno = gen8_get_seqno;
1489 ring->set_seqno = gen8_set_seqno;
4da46e1e 1490 ring->emit_request = gen8_emit_request;
4712274c 1491 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1492 ring->irq_get = gen8_logical_ring_get_irq;
1493 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1494 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1495
454afebd
OM
1496 return logical_ring_init(dev, ring);
1497}
1498
1499static int logical_bsd2_ring_init(struct drm_device *dev)
1500{
1501 struct drm_i915_private *dev_priv = dev->dev_private;
1502 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1503
1504 ring->name = "bds2 ring";
1505 ring->id = VCS2;
1506 ring->mmio_base = GEN8_BSD2_RING_BASE;
1507 ring->irq_enable_mask =
1508 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
1509 ring->irq_keep_mask =
1510 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 1511
ecfe00d8 1512 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1513 ring->get_seqno = gen8_get_seqno;
1514 ring->set_seqno = gen8_set_seqno;
4da46e1e 1515 ring->emit_request = gen8_emit_request;
4712274c 1516 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1517 ring->irq_get = gen8_logical_ring_get_irq;
1518 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1519 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1520
454afebd
OM
1521 return logical_ring_init(dev, ring);
1522}
1523
1524static int logical_blt_ring_init(struct drm_device *dev)
1525{
1526 struct drm_i915_private *dev_priv = dev->dev_private;
1527 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1528
1529 ring->name = "blitter ring";
1530 ring->id = BCS;
1531 ring->mmio_base = BLT_RING_BASE;
1532 ring->irq_enable_mask =
1533 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
1534 ring->irq_keep_mask =
1535 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 1536
ecfe00d8 1537 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1538 ring->get_seqno = gen8_get_seqno;
1539 ring->set_seqno = gen8_set_seqno;
4da46e1e 1540 ring->emit_request = gen8_emit_request;
4712274c 1541 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1542 ring->irq_get = gen8_logical_ring_get_irq;
1543 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1544 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1545
454afebd
OM
1546 return logical_ring_init(dev, ring);
1547}
1548
1549static int logical_vebox_ring_init(struct drm_device *dev)
1550{
1551 struct drm_i915_private *dev_priv = dev->dev_private;
1552 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1553
1554 ring->name = "video enhancement ring";
1555 ring->id = VECS;
1556 ring->mmio_base = VEBOX_RING_BASE;
1557 ring->irq_enable_mask =
1558 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
1559 ring->irq_keep_mask =
1560 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 1561
ecfe00d8 1562 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1563 ring->get_seqno = gen8_get_seqno;
1564 ring->set_seqno = gen8_set_seqno;
4da46e1e 1565 ring->emit_request = gen8_emit_request;
4712274c 1566 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1567 ring->irq_get = gen8_logical_ring_get_irq;
1568 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1569 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1570
454afebd
OM
1571 return logical_ring_init(dev, ring);
1572}
1573
73e4d07f
OM
1574/**
1575 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1576 * @dev: DRM device.
1577 *
1578 * This function inits the engines for an Execlists submission style (the equivalent in the
1579 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1580 * those engines that are present in the hardware.
1581 *
1582 * Return: non-zero if the initialization failed.
1583 */
454afebd
OM
1584int intel_logical_rings_init(struct drm_device *dev)
1585{
1586 struct drm_i915_private *dev_priv = dev->dev_private;
1587 int ret;
1588
1589 ret = logical_render_ring_init(dev);
1590 if (ret)
1591 return ret;
1592
1593 if (HAS_BSD(dev)) {
1594 ret = logical_bsd_ring_init(dev);
1595 if (ret)
1596 goto cleanup_render_ring;
1597 }
1598
1599 if (HAS_BLT(dev)) {
1600 ret = logical_blt_ring_init(dev);
1601 if (ret)
1602 goto cleanup_bsd_ring;
1603 }
1604
1605 if (HAS_VEBOX(dev)) {
1606 ret = logical_vebox_ring_init(dev);
1607 if (ret)
1608 goto cleanup_blt_ring;
1609 }
1610
1611 if (HAS_BSD2(dev)) {
1612 ret = logical_bsd2_ring_init(dev);
1613 if (ret)
1614 goto cleanup_vebox_ring;
1615 }
1616
1617 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1618 if (ret)
1619 goto cleanup_bsd2_ring;
1620
1621 return 0;
1622
1623cleanup_bsd2_ring:
1624 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1625cleanup_vebox_ring:
1626 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1627cleanup_blt_ring:
1628 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1629cleanup_bsd_ring:
1630 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1631cleanup_render_ring:
1632 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1633
1634 return ret;
1635}
1636
0cea6502
JM
1637static u32
1638make_rpcs(struct drm_device *dev)
1639{
1640 u32 rpcs = 0;
1641
1642 /*
1643 * No explicit RPCS request is needed to ensure full
1644 * slice/subslice/EU enablement prior to Gen9.
1645 */
1646 if (INTEL_INFO(dev)->gen < 9)
1647 return 0;
1648
1649 /*
1650 * Starting in Gen9, render power gating can leave
1651 * slice/subslice/EU in a partially enabled state. We
1652 * must make an explicit request through RPCS for full
1653 * enablement.
1654 */
1655 if (INTEL_INFO(dev)->has_slice_pg) {
1656 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1657 rpcs |= INTEL_INFO(dev)->slice_total <<
1658 GEN8_RPCS_S_CNT_SHIFT;
1659 rpcs |= GEN8_RPCS_ENABLE;
1660 }
1661
1662 if (INTEL_INFO(dev)->has_subslice_pg) {
1663 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1664 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1665 GEN8_RPCS_SS_CNT_SHIFT;
1666 rpcs |= GEN8_RPCS_ENABLE;
1667 }
1668
1669 if (INTEL_INFO(dev)->has_eu_pg) {
1670 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1671 GEN8_RPCS_EU_MIN_SHIFT;
1672 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1673 GEN8_RPCS_EU_MAX_SHIFT;
1674 rpcs |= GEN8_RPCS_ENABLE;
1675 }
1676
1677 return rpcs;
1678}
1679
8670d6f9
OM
1680static int
1681populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1682 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1683{
2d965536
TD
1684 struct drm_device *dev = ring->dev;
1685 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 1686 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
1687 struct page *page;
1688 uint32_t *reg_state;
1689 int ret;
1690
2d965536
TD
1691 if (!ppgtt)
1692 ppgtt = dev_priv->mm.aliasing_ppgtt;
1693
8670d6f9
OM
1694 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1695 if (ret) {
1696 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1697 return ret;
1698 }
1699
1700 ret = i915_gem_object_get_pages(ctx_obj);
1701 if (ret) {
1702 DRM_DEBUG_DRIVER("Could not get object pages\n");
1703 return ret;
1704 }
1705
1706 i915_gem_object_pin_pages(ctx_obj);
1707
1708 /* The second page of the context object contains some fields which must
1709 * be set up prior to the first execution. */
1710 page = i915_gem_object_get_page(ctx_obj, 1);
1711 reg_state = kmap_atomic(page);
1712
1713 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1714 * commands followed by (reg, value) pairs. The values we are setting here are
1715 * only for the first context restore: on a subsequent save, the GPU will
1716 * recreate this batchbuffer with new values (including all the missing
1717 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1718 if (ring->id == RCS)
1719 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1720 else
1721 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1722 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1723 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1724 reg_state[CTX_CONTEXT_CONTROL+1] =
5baa22c5
ZW
1725 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1726 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
8670d6f9
OM
1727 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1728 reg_state[CTX_RING_HEAD+1] = 0;
1729 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1730 reg_state[CTX_RING_TAIL+1] = 0;
1731 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
7ba717cf
TD
1732 /* Ring buffer start address is not known until the buffer is pinned.
1733 * It is written to the context image in execlists_update_context()
1734 */
8670d6f9
OM
1735 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1736 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1737 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1738 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1739 reg_state[CTX_BB_HEAD_U+1] = 0;
1740 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1741 reg_state[CTX_BB_HEAD_L+1] = 0;
1742 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1743 reg_state[CTX_BB_STATE+1] = (1<<5);
1744 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1745 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1746 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1747 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1748 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1749 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1750 if (ring->id == RCS) {
1751 /* TODO: according to BSpec, the register state context
1752 * for CHV does not have these. OTOH, these registers do
1753 * exist in CHV. I'm waiting for a clarification */
1754 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1755 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1756 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1757 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1758 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1759 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1760 }
1761 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1762 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1763 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1764 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1765 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1766 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1767 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1768 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1769 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1770 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1771 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1772 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
d7b2633d
MT
1773
1774 /* With dynamic page allocation, PDPs may not be allocated at this point,
1775 * Point the unallocated PDPs to the scratch page
e5815a2e
MT
1776 */
1777 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
1778 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
1779 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
1780 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
8670d6f9
OM
1781 if (ring->id == RCS) {
1782 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0cea6502
JM
1783 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1784 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
8670d6f9
OM
1785 }
1786
1787 kunmap_atomic(reg_state);
1788
1789 ctx_obj->dirty = 1;
1790 set_page_dirty(page);
1791 i915_gem_object_unpin_pages(ctx_obj);
1792
1793 return 0;
1794}
1795
73e4d07f
OM
1796/**
1797 * intel_lr_context_free() - free the LRC specific bits of a context
1798 * @ctx: the LR context to free.
1799 *
1800 * The real context freeing is done in i915_gem_context_free: this only
1801 * takes care of the bits that are LRC related: the per-engine backing
1802 * objects and the logical ringbuffer.
1803 */
ede7d42b
OM
1804void intel_lr_context_free(struct intel_context *ctx)
1805{
8c857917
OM
1806 int i;
1807
1808 for (i = 0; i < I915_NUM_RINGS; i++) {
1809 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 1810
8c857917 1811 if (ctx_obj) {
dcb4c12a
OM
1812 struct intel_ringbuffer *ringbuf =
1813 ctx->engine[i].ringbuf;
1814 struct intel_engine_cs *ring = ringbuf->ring;
1815
7ba717cf
TD
1816 if (ctx == ring->default_context) {
1817 intel_unpin_ringbuffer_obj(ringbuf);
1818 i915_gem_object_ggtt_unpin(ctx_obj);
1819 }
a7cbedec 1820 WARN_ON(ctx->engine[ring->id].pin_count);
84c2377f
OM
1821 intel_destroy_ringbuffer_obj(ringbuf);
1822 kfree(ringbuf);
8c857917
OM
1823 drm_gem_object_unreference(&ctx_obj->base);
1824 }
1825 }
1826}
1827
1828static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1829{
1830 int ret = 0;
1831
468c6816 1832 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
1833
1834 switch (ring->id) {
1835 case RCS:
468c6816
MN
1836 if (INTEL_INFO(ring->dev)->gen >= 9)
1837 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1838 else
1839 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
1840 break;
1841 case VCS:
1842 case BCS:
1843 case VECS:
1844 case VCS2:
1845 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1846 break;
1847 }
1848
1849 return ret;
ede7d42b
OM
1850}
1851
70b0ea86 1852static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
1853 struct drm_i915_gem_object *default_ctx_obj)
1854{
1855 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1856
1857 /* The status page is offset 0 from the default context object
1858 * in LRC mode. */
1859 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1860 ring->status_page.page_addr =
1861 kmap(sg_page(default_ctx_obj->pages->sgl));
1df06b75
TD
1862 ring->status_page.obj = default_ctx_obj;
1863
1864 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1865 (u32)ring->status_page.gfx_addr);
1866 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
1867}
1868
73e4d07f
OM
1869/**
1870 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1871 * @ctx: LR context to create.
1872 * @ring: engine to be used with the context.
1873 *
1874 * This function can be called more than once, with different engines, if we plan
1875 * to use the context with them. The context backing objects and the ringbuffers
1876 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1877 * the creation is a deferred call: it's better to make sure first that we need to use
1878 * a given ring with the context.
1879 *
32197aab 1880 * Return: non-zero on error.
73e4d07f 1881 */
ede7d42b
OM
1882int intel_lr_context_deferred_create(struct intel_context *ctx,
1883 struct intel_engine_cs *ring)
1884{
dcb4c12a 1885 const bool is_global_default_ctx = (ctx == ring->default_context);
8c857917
OM
1886 struct drm_device *dev = ring->dev;
1887 struct drm_i915_gem_object *ctx_obj;
1888 uint32_t context_size;
84c2377f 1889 struct intel_ringbuffer *ringbuf;
8c857917
OM
1890 int ret;
1891
ede7d42b 1892 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 1893 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 1894
8c857917
OM
1895 context_size = round_up(get_lr_context_size(ring), 4096);
1896
1897 ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1898 if (IS_ERR(ctx_obj)) {
1899 ret = PTR_ERR(ctx_obj);
1900 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1901 return ret;
1902 }
1903
dcb4c12a
OM
1904 if (is_global_default_ctx) {
1905 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1906 if (ret) {
1907 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1908 ret);
1909 drm_gem_object_unreference(&ctx_obj->base);
1910 return ret;
1911 }
8c857917
OM
1912 }
1913
84c2377f
OM
1914 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1915 if (!ringbuf) {
1916 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1917 ring->name);
84c2377f 1918 ret = -ENOMEM;
7ba717cf 1919 goto error_unpin_ctx;
84c2377f
OM
1920 }
1921
0c7dd53b 1922 ringbuf->ring = ring;
582d67f0 1923
84c2377f
OM
1924 ringbuf->size = 32 * PAGE_SIZE;
1925 ringbuf->effective_size = ringbuf->size;
1926 ringbuf->head = 0;
1927 ringbuf->tail = 0;
84c2377f 1928 ringbuf->last_retired_head = -1;
ebd0fd4b 1929 intel_ring_update_space(ringbuf);
84c2377f 1930
7ba717cf
TD
1931 if (ringbuf->obj == NULL) {
1932 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1933 if (ret) {
1934 DRM_DEBUG_DRIVER(
1935 "Failed to allocate ringbuffer obj %s: %d\n",
84c2377f 1936 ring->name, ret);
7ba717cf
TD
1937 goto error_free_rbuf;
1938 }
1939
1940 if (is_global_default_ctx) {
1941 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1942 if (ret) {
1943 DRM_ERROR(
1944 "Failed to pin and map ringbuffer %s: %d\n",
1945 ring->name, ret);
1946 goto error_destroy_rbuf;
1947 }
1948 }
1949
8670d6f9
OM
1950 }
1951
1952 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1953 if (ret) {
1954 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
8670d6f9 1955 goto error;
84c2377f
OM
1956 }
1957
1958 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 1959 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 1960
70b0ea86
DV
1961 if (ctx == ring->default_context)
1962 lrc_setup_hardware_status_page(ring, ctx_obj);
e7778be1 1963 else if (ring->id == RCS && !ctx->rcs_initialized) {
771b9a53
MT
1964 if (ring->init_context) {
1965 ret = ring->init_context(ring, ctx);
e7778be1 1966 if (ret) {
771b9a53 1967 DRM_ERROR("ring init context: %d\n", ret);
e7778be1
TD
1968 ctx->engine[ring->id].ringbuf = NULL;
1969 ctx->engine[ring->id].state = NULL;
1970 goto error;
1971 }
771b9a53
MT
1972 }
1973
564ddb2f
OM
1974 ctx->rcs_initialized = true;
1975 }
1976
ede7d42b 1977 return 0;
8670d6f9
OM
1978
1979error:
7ba717cf
TD
1980 if (is_global_default_ctx)
1981 intel_unpin_ringbuffer_obj(ringbuf);
1982error_destroy_rbuf:
1983 intel_destroy_ringbuffer_obj(ringbuf);
1984error_free_rbuf:
8670d6f9 1985 kfree(ringbuf);
7ba717cf 1986error_unpin_ctx:
dcb4c12a
OM
1987 if (is_global_default_ctx)
1988 i915_gem_object_ggtt_unpin(ctx_obj);
8670d6f9
OM
1989 drm_gem_object_unreference(&ctx_obj->base);
1990 return ret;
ede7d42b 1991}
3e5b6f05
TD
1992
1993void intel_lr_context_reset(struct drm_device *dev,
1994 struct intel_context *ctx)
1995{
1996 struct drm_i915_private *dev_priv = dev->dev_private;
1997 struct intel_engine_cs *ring;
1998 int i;
1999
2000 for_each_ring(ring, dev_priv, i) {
2001 struct drm_i915_gem_object *ctx_obj =
2002 ctx->engine[ring->id].state;
2003 struct intel_ringbuffer *ringbuf =
2004 ctx->engine[ring->id].ringbuf;
2005 uint32_t *reg_state;
2006 struct page *page;
2007
2008 if (!ctx_obj)
2009 continue;
2010
2011 if (i915_gem_object_get_pages(ctx_obj)) {
2012 WARN(1, "Failed get_pages for context obj\n");
2013 continue;
2014 }
2015 page = i915_gem_object_get_page(ctx_obj, 1);
2016 reg_state = kmap_atomic(page);
2017
2018 reg_state[CTX_RING_HEAD+1] = 0;
2019 reg_state[CTX_RING_TAIL+1] = 0;
2020
2021 kunmap_atomic(reg_state);
2022
2023 ringbuf->head = 0;
2024 ringbuf->tail = 0;
2025 }
2026}