]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: silence io mapping/unmapping sparse warnings on different address spaces
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 158
70c2a24d
CW
159#define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
8670d6f9
OM
164#define CTX_LRI_HEADER_0 0x01
165#define CTX_CONTEXT_CONTROL 0x02
166#define CTX_RING_HEAD 0x04
167#define CTX_RING_TAIL 0x06
168#define CTX_RING_BUFFER_START 0x08
169#define CTX_RING_BUFFER_CONTROL 0x0a
170#define CTX_BB_HEAD_U 0x0c
171#define CTX_BB_HEAD_L 0x0e
172#define CTX_BB_STATE 0x10
173#define CTX_SECOND_BB_HEAD_U 0x12
174#define CTX_SECOND_BB_HEAD_L 0x14
175#define CTX_SECOND_BB_STATE 0x16
176#define CTX_BB_PER_CTX_PTR 0x18
177#define CTX_RCS_INDIRECT_CTX 0x1a
178#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179#define CTX_LRI_HEADER_1 0x21
180#define CTX_CTX_TIMESTAMP 0x22
181#define CTX_PDP3_UDW 0x24
182#define CTX_PDP3_LDW 0x26
183#define CTX_PDP2_UDW 0x28
184#define CTX_PDP2_LDW 0x2a
185#define CTX_PDP1_UDW 0x2c
186#define CTX_PDP1_LDW 0x2e
187#define CTX_PDP0_UDW 0x30
188#define CTX_PDP0_LDW 0x32
189#define CTX_LRI_HEADER_2 0x41
190#define CTX_R_PWR_CLK_STATE 0x42
191#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
84b790f8
BW
193#define GEN8_CTX_VALID (1<<0)
194#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195#define GEN8_CTX_FORCE_RESTORE (1<<2)
196#define GEN8_CTX_L3LLC_COHERENT (1<<5)
197#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 198
0d925ea0 199#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 200 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
201 (reg_state)[(pos)+1] = (val); \
202} while (0)
203
204#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 205 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
206 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 208} while (0)
e5815a2e 209
9244a817 210#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
211 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 213} while (0)
2dba3239 214
84b790f8
BW
215enum {
216 FAULT_AND_HANG = 0,
217 FAULT_AND_HALT, /* Debug only */
218 FAULT_AND_STREAM,
219 FAULT_AND_CONTINUE /* Unsupported */
220};
221#define GEN8_CTX_ID_SHIFT 32
7069b144 222#define GEN8_CTX_ID_WIDTH 21
71562919
MT
223#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
224#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 225
0e93cdd4
CW
226/* Typical size of the average request (2 pipecontrols and a MI_BB) */
227#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
e2efd130 229static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 230 struct intel_engine_cs *engine);
e2efd130 231static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 232 struct intel_engine_cs *engine);
7ba717cf 233
73e4d07f
OM
234/**
235 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 236 * @dev_priv: i915 device private
73e4d07f
OM
237 * @enable_execlists: value of i915.enable_execlists module parameter.
238 *
239 * Only certain platforms support Execlists (the prerequisites being
27401d12 240 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
241 *
242 * Return: 1 if Execlists is supported and has to be enabled.
243 */
c033666a 244int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 245{
a0bd6c31
ZL
246 /* On platforms with execlist available, vGPU will only
247 * support execlist mode, no ring buffer mode.
248 */
c033666a 249 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
250 return 1;
251
c033666a 252 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
253 return 1;
254
127f1003
OM
255 if (enable_execlists == 0)
256 return 0;
257
5a21b665
DV
258 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
259 USES_PPGTT(dev_priv) &&
260 i915.use_mmio_flip >= 0)
127f1003
OM
261 return 1;
262
263 return 0;
264}
ede7d42b 265
ca82580c 266static void
0bc40be8 267logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 268{
c033666a 269 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 270
70c2a24d 271 engine->disable_lite_restore_wa =
a117f378 272 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
70c2a24d 273 (engine->id == VCS || engine->id == VCS2);
ca82580c 274
0bc40be8 275 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 276 if (IS_GEN8(dev_priv))
0bc40be8
TU
277 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
278 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
279
280 /* TODO: WaDisableLiteRestore when we start using semaphore
281 * signalling between Command Streamers */
282 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
283
284 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
285 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
286 if (engine->disable_lite_restore_wa)
287 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
288}
289
73e4d07f 290/**
ca82580c
TU
291 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
292 * descriptor for a pinned context
ca82580c 293 * @ctx: Context to work on
9021ad03 294 * @engine: Engine the descriptor will be used with
73e4d07f 295 *
ca82580c
TU
296 * The context descriptor encodes various attributes of a context,
297 * including its GTT address and some flags. Because it's fairly
298 * expensive to calculate, we'll just do it once and cache the result,
299 * which remains valid until the context is unpinned.
300 *
6e5248b5
DV
301 * This is what a descriptor looks like, from LSB to MSB::
302 *
303 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
304 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
305 * bits 32-52: ctx ID, a globally unique tag
306 * bits 53-54: mbz, reserved for use by hardware
307 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 308 */
ca82580c 309static void
e2efd130 310intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 311 struct intel_engine_cs *engine)
84b790f8 312{
9021ad03 313 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 314 u64 desc;
84b790f8 315
7069b144 316 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 317
c01fc532
ZW
318 desc = ctx->desc_template; /* bits 3-4 */
319 desc |= engine->ctx_desc_template; /* bits 0-11 */
bde13ebd 320 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 321 /* bits 12-31 */
7069b144 322 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 323
9021ad03 324 ce->lrc_desc = desc;
5af05fef
MT
325}
326
e2efd130 327uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 328 struct intel_engine_cs *engine)
84b790f8 329{
0bc40be8 330 return ctx->engine[engine->id].lrc_desc;
ca82580c 331}
203a571b 332
bbd6c47e
CW
333static inline void
334execlists_context_status_change(struct drm_i915_gem_request *rq,
335 unsigned long status)
84b790f8 336{
bbd6c47e
CW
337 /*
338 * Only used when GVT-g is enabled now. When GVT-g is disabled,
339 * The compiler should eliminate this function as dead-code.
340 */
341 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
342 return;
6daccb0b 343
bbd6c47e 344 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
84b790f8
BW
345}
346
c6a2ac71
TU
347static void
348execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
349{
350 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
351 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
354}
355
70c2a24d 356static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 357{
70c2a24d 358 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
05d9824b 359 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
70c2a24d 360 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 361
8f942018 362 reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
ae1250b9 363
c6a2ac71
TU
364 /* True 32b PPGTT with dynamic page allocation: update PDP
365 * registers and point the unallocated PDPs to scratch page.
366 * PML4 is allocated during ppgtt init, so this is not needed
367 * in 48-bit mode.
368 */
369 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
370 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
371
372 return ce->lrc_desc;
ae1250b9
OM
373}
374
70c2a24d 375static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 376{
70c2a24d
CW
377 struct drm_i915_private *dev_priv = engine->i915;
378 struct execlist_port *port = engine->execlist_port;
bbd6c47e
CW
379 u32 __iomem *elsp =
380 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
381 u64 desc[2];
382
70c2a24d
CW
383 if (!port[0].count)
384 execlists_context_status_change(port[0].request,
385 INTEL_CONTEXT_SCHEDULE_IN);
386 desc[0] = execlists_update_context(port[0].request);
387 engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
388
389 if (port[1].request) {
390 GEM_BUG_ON(port[1].count);
391 execlists_context_status_change(port[1].request,
392 INTEL_CONTEXT_SCHEDULE_IN);
393 desc[1] = execlists_update_context(port[1].request);
394 port[1].count = 1;
bbd6c47e
CW
395 } else {
396 desc[1] = 0;
397 }
70c2a24d 398 GEM_BUG_ON(desc[0] == desc[1]);
bbd6c47e
CW
399
400 /* You must always write both descriptors in the order below. */
401 writel(upper_32_bits(desc[1]), elsp);
402 writel(lower_32_bits(desc[1]), elsp);
403
404 writel(upper_32_bits(desc[0]), elsp);
405 /* The context is automatically loaded after the following */
406 writel(lower_32_bits(desc[0]), elsp);
407}
408
70c2a24d 409static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 410{
70c2a24d
CW
411 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
412 ctx->execlists_force_single_submission);
413}
84b790f8 414
70c2a24d
CW
415static bool can_merge_ctx(const struct i915_gem_context *prev,
416 const struct i915_gem_context *next)
417{
418 if (prev != next)
419 return false;
26720ab9 420
70c2a24d
CW
421 if (ctx_single_port_submission(prev))
422 return false;
26720ab9 423
70c2a24d 424 return true;
84b790f8
BW
425}
426
70c2a24d 427static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 428{
70c2a24d
CW
429 struct drm_i915_gem_request *cursor, *last;
430 struct execlist_port *port = engine->execlist_port;
431 bool submit = false;
432
433 last = port->request;
434 if (last)
435 /* WaIdleLiteRestore:bdw,skl
436 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
437 * as we resubmit the request. See gen8_emit_request()
438 * for where we prepare the padding after the end of the
439 * request.
440 */
441 last->tail = last->wa_tail;
e981e7b1 442
70c2a24d 443 GEM_BUG_ON(port[1].request);
acdd884a 444
70c2a24d
CW
445 /* Hardware submission is through 2 ports. Conceptually each port
446 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
447 * static for a context, and unique to each, so we only execute
448 * requests belonging to a single context from each ring. RING_HEAD
449 * is maintained by the CS in the context image, it marks the place
450 * where it got up to last time, and through RING_TAIL we tell the CS
451 * where we want to execute up to this time.
452 *
453 * In this list the requests are in order of execution. Consecutive
454 * requests from the same context are adjacent in the ringbuffer. We
455 * can combine these requests into a single RING_TAIL update:
456 *
457 * RING_HEAD...req1...req2
458 * ^- RING_TAIL
459 * since to execute req2 the CS must first execute req1.
460 *
461 * Our goal then is to point each port to the end of a consecutive
462 * sequence of requests as being the most optimal (fewest wake ups
463 * and context switches) submission.
779949f4 464 */
acdd884a 465
70c2a24d
CW
466 spin_lock(&engine->execlist_lock);
467 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
468 /* Can we combine this request with the current port? It has to
469 * be the same context/ringbuffer and not have any exceptions
470 * (e.g. GVT saying never to combine contexts).
c6a2ac71 471 *
70c2a24d
CW
472 * If we can combine the requests, we can execute both by
473 * updating the RING_TAIL to point to the end of the second
474 * request, and so we never need to tell the hardware about
475 * the first.
53292cdb 476 */
70c2a24d
CW
477 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
478 /* If we are on the second port and cannot combine
479 * this request with the last, then we are done.
480 */
481 if (port != engine->execlist_port)
482 break;
483
484 /* If GVT overrides us we only ever submit port[0],
485 * leaving port[1] empty. Note that we also have
486 * to be careful that we don't queue the same
487 * context (even though a different request) to
488 * the second port.
489 */
490 if (ctx_single_port_submission(cursor->ctx))
491 break;
492
493 GEM_BUG_ON(last->ctx == cursor->ctx);
494
495 i915_gem_request_assign(&port->request, last);
496 port++;
497 }
498 last = cursor;
499 submit = true;
500 }
501 if (submit) {
502 /* Decouple all the requests submitted from the queue */
503 engine->execlist_queue.next = &cursor->execlist_link;
504 cursor->execlist_link.prev = &engine->execlist_queue;
505
506 i915_gem_request_assign(&port->request, last);
53292cdb 507 }
70c2a24d 508 spin_unlock(&engine->execlist_lock);
53292cdb 509
70c2a24d
CW
510 if (submit)
511 execlists_submit_ports(engine);
acdd884a
MT
512}
513
70c2a24d 514static bool execlists_elsp_idle(struct intel_engine_cs *engine)
e981e7b1 515{
70c2a24d 516 return !engine->execlist_port[0].request;
e981e7b1
TD
517}
518
70c2a24d 519static bool execlists_elsp_ready(struct intel_engine_cs *engine)
91a41032 520{
70c2a24d 521 int port;
91a41032 522
70c2a24d
CW
523 port = 1; /* wait for a free slot */
524 if (engine->disable_lite_restore_wa || engine->preempt_wa)
525 port = 0; /* wait for GPU to be idle before continuing */
c6a2ac71 526
70c2a24d 527 return !engine->execlist_port[port].request;
91a41032
BW
528}
529
6e5248b5 530/*
73e4d07f
OM
531 * Check the unread Context Status Buffers and manage the submission of new
532 * contexts to the ELSP accordingly.
533 */
27af5eea 534static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 535{
27af5eea 536 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 537 struct execlist_port *port = engine->execlist_port;
c033666a 538 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 539
3756685a 540 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 541
70c2a24d
CW
542 if (!execlists_elsp_idle(engine)) {
543 u32 __iomem *csb_mmio =
544 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
545 u32 __iomem *buf =
546 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
547 unsigned int csb, head, tail;
548
549 csb = readl(csb_mmio);
550 head = GEN8_CSB_READ_PTR(csb);
551 tail = GEN8_CSB_WRITE_PTR(csb);
552 if (tail < head)
553 tail += GEN8_CSB_ENTRIES;
554 while (head < tail) {
555 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
556 unsigned int status = readl(buf + 2 * idx);
557
558 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
559 continue;
560
561 GEM_BUG_ON(port[0].count == 0);
562 if (--port[0].count == 0) {
563 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
564 execlists_context_status_change(port[0].request,
565 INTEL_CONTEXT_SCHEDULE_OUT);
566
567 i915_gem_request_put(port[0].request);
568 port[0] = port[1];
569 memset(&port[1], 0, sizeof(port[1]));
570
571 engine->preempt_wa = false;
572 }
26720ab9 573
70c2a24d
CW
574 GEM_BUG_ON(port[0].count == 0 &&
575 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
e1fee72c
OM
576 }
577
70c2a24d
CW
578 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
579 GEN8_CSB_WRITE_PTR(csb) << 8),
580 csb_mmio);
e981e7b1
TD
581 }
582
70c2a24d
CW
583 if (execlists_elsp_ready(engine))
584 execlists_dequeue(engine);
c6a2ac71 585
70c2a24d 586 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
587}
588
f4ea6bdd 589static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 590{
4a570db5 591 struct intel_engine_cs *engine = request->engine;
5590af3e 592 unsigned long flags;
acdd884a 593
5590af3e 594 spin_lock_irqsave(&engine->execlist_lock, flags);
acdd884a 595
ba49b2f8 596 list_add_tail(&request->execlist_link, &engine->execlist_queue);
70c2a24d
CW
597 if (execlists_elsp_idle(engine))
598 tasklet_hi_schedule(&engine->irq_tasklet);
acdd884a 599
5590af3e 600 spin_unlock_irqrestore(&engine->execlist_lock, flags);
acdd884a
MT
601}
602
40e895ce 603int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 604{
24f1d3cc 605 struct intel_engine_cs *engine = request->engine;
9021ad03 606 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 607 int ret;
bc0dce3f 608
6310346e
CW
609 /* Flush enough space to reduce the likelihood of waiting after
610 * we start building the request - in which case we will just
611 * have to repeat work.
612 */
0e93cdd4 613 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 614
9021ad03 615 if (!ce->state) {
978f1e09
CW
616 ret = execlists_context_deferred_alloc(request->ctx, engine);
617 if (ret)
618 return ret;
619 }
620
dca33ecc 621 request->ring = ce->ring;
f3cc01f0 622
a7e02199
AD
623 if (i915.enable_guc_submission) {
624 /*
625 * Check that the GuC has space for the request before
626 * going any further, as the i915_add_request() call
627 * later on mustn't fail ...
628 */
7a9347f9 629 ret = i915_guc_wq_reserve(request);
a7e02199
AD
630 if (ret)
631 return ret;
632 }
633
24f1d3cc
CW
634 ret = intel_lr_context_pin(request->ctx, engine);
635 if (ret)
636 return ret;
e28e404c 637
bfa01200
CW
638 ret = intel_ring_begin(request, 0);
639 if (ret)
640 goto err_unpin;
641
9021ad03 642 if (!ce->initialised) {
24f1d3cc
CW
643 ret = engine->init_context(request);
644 if (ret)
645 goto err_unpin;
646
9021ad03 647 ce->initialised = true;
24f1d3cc
CW
648 }
649
650 /* Note that after this point, we have committed to using
651 * this request as it is being used to both track the
652 * state of engine initialisation and liveness of the
653 * golden renderstate above. Think twice before you try
654 * to cancel/unwind this request now.
655 */
656
0e93cdd4 657 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
658 return 0;
659
660err_unpin:
24f1d3cc 661 intel_lr_context_unpin(request->ctx, engine);
e28e404c 662 return ret;
bc0dce3f
JH
663}
664
bc0dce3f 665/*
ddd66c51 666 * intel_logical_ring_advance() - advance the tail and prepare for submission
ae70797d 667 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
668 *
669 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
670 * really happens during submission is that the context and current tail will be placed
671 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
672 * point, the tail *inside* the context is updated and the ELSP written to.
673 */
7c17d377 674static int
ddd66c51 675intel_logical_ring_advance(struct drm_i915_gem_request *request)
bc0dce3f 676{
7e37f889 677 struct intel_ring *ring = request->ring;
4a570db5 678 struct intel_engine_cs *engine = request->engine;
bc0dce3f 679
1dae2dfb
CW
680 intel_ring_advance(ring);
681 request->tail = ring->tail;
bc0dce3f 682
7c17d377
CW
683 /*
684 * Here we add two extra NOOPs as padding to avoid
685 * lite restore of a context with HEAD==TAIL.
686 *
687 * Caller must reserve WA_TAIL_DWORDS for us!
688 */
1dae2dfb
CW
689 intel_ring_emit(ring, MI_NOOP);
690 intel_ring_emit(ring, MI_NOOP);
691 intel_ring_advance(ring);
a52abd2f 692 request->wa_tail = ring->tail;
d1675198 693
a16a4052
CW
694 /* We keep the previous context alive until we retire the following
695 * request. This ensures that any the context object is still pinned
696 * for any residual writes the HW makes into it on the context switch
697 * into the next object following the breadcrumb. Otherwise, we may
698 * retire the context too early.
699 */
700 request->previous_context = engine->last_context;
701 engine->last_context = request->ctx;
7c17d377 702 return 0;
bc0dce3f
JH
703}
704
e2efd130 705static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 706 struct intel_engine_cs *engine)
dcb4c12a 707{
9021ad03 708 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac
TU
709 void *vaddr;
710 u32 *lrc_reg_state;
ca82580c 711 int ret;
dcb4c12a 712
91c8a326 713 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 714
9021ad03 715 if (ce->pin_count++)
24f1d3cc
CW
716 return 0;
717
bf3783e5
CW
718 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
719 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
e84fe803 720 if (ret)
24f1d3cc 721 goto err;
7ba717cf 722
bf3783e5 723 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
724 if (IS_ERR(vaddr)) {
725 ret = PTR_ERR(vaddr);
bf3783e5 726 goto unpin_vma;
82352e90
TU
727 }
728
7d774cac
TU
729 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
730
aad29fbb 731 ret = intel_ring_pin(ce->ring);
e84fe803 732 if (ret)
7d774cac 733 goto unpin_map;
d1675198 734
0bc40be8 735 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 736
bde13ebd
CW
737 lrc_reg_state[CTX_RING_BUFFER_START+1] =
738 i915_ggtt_offset(ce->ring->vma);
9021ad03 739 ce->lrc_reg_state = lrc_reg_state;
bf3783e5 740 ce->state->obj->dirty = true;
e93c28f3 741
e84fe803 742 /* Invalidate GuC TLB. */
bf3783e5
CW
743 if (i915.enable_guc_submission) {
744 struct drm_i915_private *dev_priv = ctx->i915;
e84fe803 745 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
bf3783e5 746 }
dcb4c12a 747
9a6feaf0 748 i915_gem_context_get(ctx);
24f1d3cc 749 return 0;
7ba717cf 750
7d774cac 751unpin_map:
bf3783e5
CW
752 i915_gem_object_unpin_map(ce->state->obj);
753unpin_vma:
754 __i915_vma_unpin(ce->state);
24f1d3cc 755err:
9021ad03 756 ce->pin_count = 0;
e84fe803
NH
757 return ret;
758}
759
e2efd130 760void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 761 struct intel_engine_cs *engine)
e84fe803 762{
9021ad03 763 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 764
91c8a326 765 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 766 GEM_BUG_ON(ce->pin_count == 0);
321fe304 767
9021ad03 768 if (--ce->pin_count)
24f1d3cc 769 return;
e84fe803 770
aad29fbb 771 intel_ring_unpin(ce->ring);
dcb4c12a 772
bf3783e5
CW
773 i915_gem_object_unpin_map(ce->state->obj);
774 i915_vma_unpin(ce->state);
321fe304 775
9a6feaf0 776 i915_gem_context_put(ctx);
dcb4c12a
OM
777}
778
e2be4faf 779static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
780{
781 int ret, i;
7e37f889 782 struct intel_ring *ring = req->ring;
c033666a 783 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 784
cd7feaaa 785 if (w->count == 0)
771b9a53
MT
786 return 0;
787
7c9cf4e3 788 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
789 if (ret)
790 return ret;
791
987046ad 792 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
793 if (ret)
794 return ret;
795
1dae2dfb 796 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
771b9a53 797 for (i = 0; i < w->count; i++) {
1dae2dfb
CW
798 intel_ring_emit_reg(ring, w->reg[i].addr);
799 intel_ring_emit(ring, w->reg[i].value);
771b9a53 800 }
1dae2dfb 801 intel_ring_emit(ring, MI_NOOP);
771b9a53 802
1dae2dfb 803 intel_ring_advance(ring);
771b9a53 804
7c9cf4e3 805 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
806 if (ret)
807 return ret;
808
809 return 0;
810}
811
83b8a982 812#define wa_ctx_emit(batch, index, cmd) \
17ee950d 813 do { \
83b8a982
AS
814 int __index = (index)++; \
815 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
816 return -ENOSPC; \
817 } \
83b8a982 818 batch[__index] = (cmd); \
17ee950d
AS
819 } while (0)
820
8f40db77 821#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 822 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
823
824/*
825 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
826 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
827 * but there is a slight complication as this is applied in WA batch where the
828 * values are only initialized once so we cannot take register value at the
829 * beginning and reuse it further; hence we save its value to memory, upload a
830 * constant value with bit21 set and then we restore it back with the saved value.
831 * To simplify the WA, a constant value is formed by using the default value
832 * of this register. This shouldn't be a problem because we are only modifying
833 * it for a short period and this batch in non-premptible. We can ofcourse
834 * use additional instructions that read the actual value of the register
835 * at that time and set our bit of interest but it makes the WA complicated.
836 *
837 * This WA is also required for Gen9 so extracting as a function avoids
838 * code duplication.
839 */
0bc40be8 840static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
6e5248b5 841 uint32_t *batch,
9e000847
AS
842 uint32_t index)
843{
5e580523 844 struct drm_i915_private *dev_priv = engine->i915;
9e000847
AS
845 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
846
a4106a78 847 /*
3be192e9 848 * WaDisableLSQCROPERFforOCL:kbl
a4106a78
AS
849 * This WA is implemented in skl_init_clock_gating() but since
850 * this batch updates GEN8_L3SQCREG4 with default value we need to
851 * set this bit here to retain the WA during flush.
852 */
3be192e9 853 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
a4106a78
AS
854 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
855
f1afe24f 856 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 857 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 858 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 859 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982
AS
860 wa_ctx_emit(batch, index, 0);
861
862 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 863 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
864 wa_ctx_emit(batch, index, l3sqc4_flush);
865
866 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
867 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
868 PIPE_CONTROL_DC_FLUSH_ENABLE));
869 wa_ctx_emit(batch, index, 0);
870 wa_ctx_emit(batch, index, 0);
871 wa_ctx_emit(batch, index, 0);
872 wa_ctx_emit(batch, index, 0);
873
f1afe24f 874 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 875 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 876 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 877 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982 878 wa_ctx_emit(batch, index, 0);
9e000847
AS
879
880 return index;
881}
882
17ee950d
AS
883static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
884 uint32_t offset,
885 uint32_t start_alignment)
886{
887 return wa_ctx->offset = ALIGN(offset, start_alignment);
888}
889
890static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
891 uint32_t offset,
892 uint32_t size_alignment)
893{
894 wa_ctx->size = offset - wa_ctx->offset;
895
896 WARN(wa_ctx->size % size_alignment,
897 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
898 wa_ctx->size, size_alignment);
899 return 0;
900}
901
6e5248b5
DV
902/*
903 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
904 * initialized at the beginning and shared across all contexts but this field
905 * helps us to have multiple batches at different offsets and select them based
906 * on a criteria. At the moment this batch always start at the beginning of the page
907 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 908 *
6e5248b5
DV
909 * The number of WA applied are not known at the beginning; we use this field
910 * to return the no of DWORDS written.
17ee950d 911 *
6e5248b5
DV
912 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
913 * so it adds NOOPs as padding to make it cacheline aligned.
914 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
915 * makes a complete batch buffer.
17ee950d 916 */
0bc40be8 917static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d 918 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 919 uint32_t *batch,
17ee950d
AS
920 uint32_t *offset)
921{
0160f055 922 uint32_t scratch_addr;
17ee950d
AS
923 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
924
7ad00d1a 925 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 926 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 927
c82435bb 928 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 929 if (IS_BROADWELL(engine->i915)) {
0bc40be8 930 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
931 if (rc < 0)
932 return rc;
933 index = rc;
c82435bb
AS
934 }
935
0160f055
AS
936 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
937 /* Actual scratch location is at 128 bytes offset */
bde13ebd 938 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0160f055 939
83b8a982
AS
940 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
941 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
942 PIPE_CONTROL_GLOBAL_GTT_IVB |
943 PIPE_CONTROL_CS_STALL |
944 PIPE_CONTROL_QW_WRITE));
945 wa_ctx_emit(batch, index, scratch_addr);
946 wa_ctx_emit(batch, index, 0);
947 wa_ctx_emit(batch, index, 0);
948 wa_ctx_emit(batch, index, 0);
0160f055 949
17ee950d
AS
950 /* Pad to end of cacheline */
951 while (index % CACHELINE_DWORDS)
83b8a982 952 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
953
954 /*
955 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
956 * execution depends on the length specified in terms of cache lines
957 * in the register CTX_RCS_INDIRECT_CTX
958 */
959
960 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
961}
962
6e5248b5
DV
963/*
964 * This batch is started immediately after indirect_ctx batch. Since we ensure
965 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 966 *
6e5248b5 967 * The number of DWORDS written are returned using this field.
17ee950d
AS
968 *
969 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
970 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
971 */
0bc40be8 972static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d 973 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 974 uint32_t *batch,
17ee950d
AS
975 uint32_t *offset)
976{
977 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
978
7ad00d1a 979 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 980 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 981
83b8a982 982 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
983
984 return wa_ctx_end(wa_ctx, *offset = index, 1);
985}
986
0bc40be8 987static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc 988 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 989 uint32_t *batch,
0504cffc
AS
990 uint32_t *offset)
991{
a4106a78 992 int ret;
5e580523 993 struct drm_i915_private *dev_priv = engine->i915;
0504cffc
AS
994 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
995
9fc736e8
JN
996 /* WaDisableCtxRestoreArbitration:bxt */
997 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
0907c8f7 998 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 999
a4106a78 1000 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1001 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1002 if (ret < 0)
1003 return ret;
1004 index = ret;
1005
873e8171
MK
1006 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1007 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1008 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1009 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1010 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1011 wa_ctx_emit(batch, index, MI_NOOP);
1012
066d4628
MK
1013 /* WaClearSlmSpaceAtContextSwitch:kbl */
1014 /* Actual scratch location is at 128 bytes offset */
703d1282 1015 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
56c0f1a7 1016 u32 scratch_addr =
bde13ebd 1017 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
066d4628
MK
1018
1019 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1020 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1021 PIPE_CONTROL_GLOBAL_GTT_IVB |
1022 PIPE_CONTROL_CS_STALL |
1023 PIPE_CONTROL_QW_WRITE));
1024 wa_ctx_emit(batch, index, scratch_addr);
1025 wa_ctx_emit(batch, index, 0);
1026 wa_ctx_emit(batch, index, 0);
1027 wa_ctx_emit(batch, index, 0);
1028 }
3485d99e
TG
1029
1030 /* WaMediaPoolStateCmdInWABB:bxt */
1031 if (HAS_POOLED_EU(engine->i915)) {
1032 /*
1033 * EU pool configuration is setup along with golden context
1034 * during context initialization. This value depends on
1035 * device type (2x6 or 3x6) and needs to be updated based
1036 * on which subslice is disabled especially for 2x6
1037 * devices, however it is safe to load default
1038 * configuration of 3x6 device instead of masking off
1039 * corresponding bits because HW ignores bits of a disabled
1040 * subslice and drops down to appropriate config. Please
1041 * see render_state_setup() in i915_gem_render_state.c for
1042 * possible configurations, to avoid duplication they are
1043 * not shown here again.
1044 */
1045 u32 eu_pool_config = 0x00777000;
1046 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1047 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1048 wa_ctx_emit(batch, index, eu_pool_config);
1049 wa_ctx_emit(batch, index, 0);
1050 wa_ctx_emit(batch, index, 0);
1051 wa_ctx_emit(batch, index, 0);
1052 }
1053
0504cffc
AS
1054 /* Pad to end of cacheline */
1055 while (index % CACHELINE_DWORDS)
1056 wa_ctx_emit(batch, index, MI_NOOP);
1057
1058 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1059}
1060
0bc40be8 1061static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc 1062 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1063 uint32_t *batch,
0504cffc
AS
1064 uint32_t *offset)
1065{
1066 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1067
a117f378
JN
1068 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1069 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1070 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1071 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1072 wa_ctx_emit(batch, index,
1073 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1074 wa_ctx_emit(batch, index, MI_NOOP);
1075 }
1076
b1e429fe 1077 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1078 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1079 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1080
1081 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1082 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1083
1084 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1085 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1086
1087 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1088 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1089
1090 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1091 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1092 wa_ctx_emit(batch, index, 0x0);
1093 wa_ctx_emit(batch, index, MI_NOOP);
1094 }
1095
9fc736e8
JN
1096 /* WaDisableCtxRestoreArbitration:bxt */
1097 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1098 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1099
0504cffc
AS
1100 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1101
1102 return wa_ctx_end(wa_ctx, *offset = index, 1);
1103}
1104
0bc40be8 1105static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d 1106{
48bb74e4
CW
1107 struct drm_i915_gem_object *obj;
1108 struct i915_vma *vma;
1109 int err;
17ee950d 1110
48bb74e4
CW
1111 obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1112 if (IS_ERR(obj))
1113 return PTR_ERR(obj);
17ee950d 1114
48bb74e4
CW
1115 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1116 if (IS_ERR(vma)) {
1117 err = PTR_ERR(vma);
1118 goto err;
17ee950d
AS
1119 }
1120
48bb74e4
CW
1121 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1122 if (err)
1123 goto err;
1124
1125 engine->wa_ctx.vma = vma;
17ee950d 1126 return 0;
48bb74e4
CW
1127
1128err:
1129 i915_gem_object_put(obj);
1130 return err;
17ee950d
AS
1131}
1132
0bc40be8 1133static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1134{
19880c4a 1135 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1136}
1137
0bc40be8 1138static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1139{
48bb74e4 1140 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
1141 uint32_t *batch;
1142 uint32_t offset;
1143 struct page *page;
48bb74e4 1144 int ret;
17ee950d 1145
0bc40be8 1146 WARN_ON(engine->id != RCS);
17ee950d 1147
5e60d790 1148 /* update this when WA for higher Gen are added */
c033666a 1149 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1150 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1151 INTEL_GEN(engine->i915));
5e60d790 1152 return 0;
0504cffc 1153 }
5e60d790 1154
c4db7599 1155 /* some WA perform writes to scratch page, ensure it is valid */
56c0f1a7 1156 if (!engine->scratch) {
0bc40be8 1157 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1158 return -EINVAL;
1159 }
1160
0bc40be8 1161 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1162 if (ret) {
1163 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1164 return ret;
1165 }
1166
48bb74e4 1167 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
17ee950d
AS
1168 batch = kmap_atomic(page);
1169 offset = 0;
1170
c033666a 1171 if (IS_GEN8(engine->i915)) {
0bc40be8 1172 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1173 &wa_ctx->indirect_ctx,
1174 batch,
1175 &offset);
1176 if (ret)
1177 goto out;
1178
0bc40be8 1179 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1180 &wa_ctx->per_ctx,
1181 batch,
1182 &offset);
1183 if (ret)
1184 goto out;
c033666a 1185 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1186 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1187 &wa_ctx->indirect_ctx,
1188 batch,
1189 &offset);
1190 if (ret)
1191 goto out;
1192
0bc40be8 1193 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1194 &wa_ctx->per_ctx,
1195 batch,
1196 &offset);
1197 if (ret)
1198 goto out;
17ee950d
AS
1199 }
1200
1201out:
1202 kunmap_atomic(batch);
1203 if (ret)
0bc40be8 1204 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1205
1206 return ret;
1207}
1208
04794adb
TU
1209static void lrc_init_hws(struct intel_engine_cs *engine)
1210{
c033666a 1211 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1212
1213 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
57e88531 1214 engine->status_page.ggtt_offset);
04794adb
TU
1215 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1216}
1217
0bc40be8 1218static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1219{
c033666a 1220 struct drm_i915_private *dev_priv = engine->i915;
821ed7df
CW
1221 int ret;
1222
1223 ret = intel_mocs_init_engine(engine);
1224 if (ret)
1225 return ret;
9b1136d5 1226
04794adb 1227 lrc_init_hws(engine);
e84fe803 1228
821ed7df
CW
1229 intel_engine_reset_irq(engine);
1230
0bc40be8 1231 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1232
0bc40be8 1233 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1234 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1235 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
dfc53c5e 1236
0bc40be8 1237 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1238
fc0768ce 1239 intel_engine_init_hangcheck(engine);
9b1136d5 1240
821ed7df
CW
1241 if (!execlists_elsp_idle(engine))
1242 execlists_submit_ports(engine);
1243
1244 return 0;
9b1136d5
OM
1245}
1246
0bc40be8 1247static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1248{
c033666a 1249 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1250 int ret;
1251
0bc40be8 1252 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1253 if (ret)
1254 return ret;
1255
1256 /* We need to disable the AsyncFlip performance optimisations in order
1257 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1258 * programmed to '1' on all products.
1259 *
1260 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1261 */
1262 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1263
9b1136d5
OM
1264 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1265
0bc40be8 1266 return init_workarounds_ring(engine);
9b1136d5
OM
1267}
1268
0bc40be8 1269static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1270{
1271 int ret;
1272
0bc40be8 1273 ret = gen8_init_common_ring(engine);
82ef822e
DL
1274 if (ret)
1275 return ret;
1276
0bc40be8 1277 return init_workarounds_ring(engine);
82ef822e
DL
1278}
1279
821ed7df
CW
1280static void reset_common_ring(struct intel_engine_cs *engine,
1281 struct drm_i915_gem_request *request)
1282{
1283 struct drm_i915_private *dev_priv = engine->i915;
1284 struct execlist_port *port = engine->execlist_port;
1285 struct intel_context *ce = &request->ctx->engine[engine->id];
1286
1287 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1288 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1289 request->ring->head = request->postfix;
1290 request->ring->last_retired_head = -1;
1291 intel_ring_update_space(request->ring);
1292
1293 if (i915.enable_guc_submission)
1294 return;
1295
1296 /* Catch up with any missed context-switch interrupts */
1297 I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1298 if (request->ctx != port[0].request->ctx) {
1299 i915_gem_request_put(port[0].request);
1300 port[0] = port[1];
1301 memset(&port[1], 0, sizeof(port[1]));
1302 }
1303
1304 /* CS is stopped, and we will resubmit both ports on resume */
1305 GEM_BUG_ON(request->ctx != port[0].request->ctx);
1306 port[0].count = 0;
1307 port[1].count = 0;
1308}
1309
7a01a0a2
MT
1310static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1311{
1312 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
7e37f889 1313 struct intel_ring *ring = req->ring;
4a570db5 1314 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1315 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1316 int i, ret;
1317
987046ad 1318 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1319 if (ret)
1320 return ret;
1321
b5321f30 1322 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
7a01a0a2
MT
1323 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1324 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1325
b5321f30
CW
1326 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1327 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1328 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1329 intel_ring_emit(ring, lower_32_bits(pd_daddr));
7a01a0a2
MT
1330 }
1331
b5321f30
CW
1332 intel_ring_emit(ring, MI_NOOP);
1333 intel_ring_advance(ring);
7a01a0a2
MT
1334
1335 return 0;
1336}
1337
be795fc1 1338static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba
CW
1339 u64 offset, u32 len,
1340 unsigned int dispatch_flags)
15648585 1341{
7e37f889 1342 struct intel_ring *ring = req->ring;
8e004efc 1343 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1344 int ret;
1345
7a01a0a2
MT
1346 /* Don't rely in hw updating PDPs, specially in lite-restore.
1347 * Ideally, we should set Force PD Restore in ctx descriptor,
1348 * but we can't. Force Restore would be a second option, but
1349 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1350 * not idle). PML4 is allocated during ppgtt init so this is
1351 * not needed in 48-bit.*/
7a01a0a2 1352 if (req->ctx->ppgtt &&
666796da 1353 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1354 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1355 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1356 ret = intel_logical_ring_emit_pdps(req);
1357 if (ret)
1358 return ret;
1359 }
7a01a0a2 1360
666796da 1361 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1362 }
1363
987046ad 1364 ret = intel_ring_begin(req, 4);
15648585
OM
1365 if (ret)
1366 return ret;
1367
1368 /* FIXME(BDW): Address space and security selectors. */
b5321f30
CW
1369 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1370 (ppgtt<<8) |
1371 (dispatch_flags & I915_DISPATCH_RS ?
1372 MI_BATCH_RESOURCE_STREAMER : 0));
1373 intel_ring_emit(ring, lower_32_bits(offset));
1374 intel_ring_emit(ring, upper_32_bits(offset));
1375 intel_ring_emit(ring, MI_NOOP);
1376 intel_ring_advance(ring);
15648585
OM
1377
1378 return 0;
1379}
1380
31bb59cc 1381static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1382{
c033666a 1383 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1384 I915_WRITE_IMR(engine,
1385 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1386 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1387}
1388
31bb59cc 1389static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1390{
c033666a 1391 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1392 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1393}
1394
7c9cf4e3 1395static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1396{
7e37f889
CW
1397 struct intel_ring *ring = request->ring;
1398 u32 cmd;
4712274c
OM
1399 int ret;
1400
987046ad 1401 ret = intel_ring_begin(request, 4);
4712274c
OM
1402 if (ret)
1403 return ret;
1404
1405 cmd = MI_FLUSH_DW + 1;
1406
f0a1fb10
CW
1407 /* We always require a command barrier so that subsequent
1408 * commands, such as breadcrumb interrupts, are strictly ordered
1409 * wrt the contents of the write cache being flushed to memory
1410 * (and thus being coherent from the CPU).
1411 */
1412 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1413
7c9cf4e3 1414 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1415 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1416 if (request->engine->id == VCS)
f0a1fb10 1417 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1418 }
1419
b5321f30
CW
1420 intel_ring_emit(ring, cmd);
1421 intel_ring_emit(ring,
1422 I915_GEM_HWS_SCRATCH_ADDR |
1423 MI_FLUSH_DW_USE_GTT);
1424 intel_ring_emit(ring, 0); /* upper addr */
1425 intel_ring_emit(ring, 0); /* value */
1426 intel_ring_advance(ring);
4712274c
OM
1427
1428 return 0;
1429}
1430
7deb4d39 1431static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1432 u32 mode)
4712274c 1433{
7e37f889 1434 struct intel_ring *ring = request->ring;
b5321f30 1435 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1436 u32 scratch_addr =
1437 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1438 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1439 u32 flags = 0;
1440 int ret;
0b2d0934 1441 int len;
4712274c
OM
1442
1443 flags |= PIPE_CONTROL_CS_STALL;
1444
7c9cf4e3 1445 if (mode & EMIT_FLUSH) {
4712274c
OM
1446 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1447 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1448 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1449 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1450 }
1451
7c9cf4e3 1452 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1453 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1454 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1455 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1456 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1457 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1458 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1459 flags |= PIPE_CONTROL_QW_WRITE;
1460 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1461
1a5a9ce7
BW
1462 /*
1463 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1464 * pipe control.
1465 */
c033666a 1466 if (IS_GEN9(request->i915))
1a5a9ce7 1467 vf_flush_wa = true;
0b2d0934
MK
1468
1469 /* WaForGAMHang:kbl */
1470 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1471 dc_flush_wa = true;
1a5a9ce7 1472 }
9647ff36 1473
0b2d0934
MK
1474 len = 6;
1475
1476 if (vf_flush_wa)
1477 len += 6;
1478
1479 if (dc_flush_wa)
1480 len += 12;
1481
1482 ret = intel_ring_begin(request, len);
4712274c
OM
1483 if (ret)
1484 return ret;
1485
9647ff36 1486 if (vf_flush_wa) {
b5321f30
CW
1487 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1488 intel_ring_emit(ring, 0);
1489 intel_ring_emit(ring, 0);
1490 intel_ring_emit(ring, 0);
1491 intel_ring_emit(ring, 0);
1492 intel_ring_emit(ring, 0);
9647ff36
ID
1493 }
1494
0b2d0934 1495 if (dc_flush_wa) {
b5321f30
CW
1496 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1497 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1498 intel_ring_emit(ring, 0);
1499 intel_ring_emit(ring, 0);
1500 intel_ring_emit(ring, 0);
1501 intel_ring_emit(ring, 0);
0b2d0934
MK
1502 }
1503
b5321f30
CW
1504 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1505 intel_ring_emit(ring, flags);
1506 intel_ring_emit(ring, scratch_addr);
1507 intel_ring_emit(ring, 0);
1508 intel_ring_emit(ring, 0);
1509 intel_ring_emit(ring, 0);
0b2d0934
MK
1510
1511 if (dc_flush_wa) {
b5321f30
CW
1512 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1513 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1514 intel_ring_emit(ring, 0);
1515 intel_ring_emit(ring, 0);
1516 intel_ring_emit(ring, 0);
1517 intel_ring_emit(ring, 0);
0b2d0934
MK
1518 }
1519
b5321f30 1520 intel_ring_advance(ring);
4712274c
OM
1521
1522 return 0;
1523}
1524
c04e0f3b 1525static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1526{
319404df
ID
1527 /*
1528 * On BXT A steppings there is a HW coherency issue whereby the
1529 * MI_STORE_DATA_IMM storing the completed request's seqno
1530 * occasionally doesn't invalidate the CPU cache. Work around this by
1531 * clflushing the corresponding cacheline whenever the caller wants
1532 * the coherency to be guaranteed. Note that this cacheline is known
1533 * to be clean at this point, since we only write it in
1534 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1535 * this clflush in practice becomes an invalidate operation.
1536 */
c04e0f3b 1537 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1538}
1539
7c17d377
CW
1540/*
1541 * Reserve space for 2 NOOPs at the end of each request to be
1542 * used as a workaround for not being allowed to do lite
1543 * restore with HEAD==TAIL (WaIdleLiteRestore).
1544 */
1545#define WA_TAIL_DWORDS 2
1546
c4e76638 1547static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1548{
7e37f889 1549 struct intel_ring *ring = request->ring;
4da46e1e
OM
1550 int ret;
1551
987046ad 1552 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1553 if (ret)
1554 return ret;
1555
7c17d377
CW
1556 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1557 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1558
b5321f30
CW
1559 intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1560 intel_ring_emit(ring,
1561 intel_hws_seqno_address(request->engine) |
1562 MI_FLUSH_DW_USE_GTT);
1563 intel_ring_emit(ring, 0);
1564 intel_ring_emit(ring, request->fence.seqno);
1565 intel_ring_emit(ring, MI_USER_INTERRUPT);
1566 intel_ring_emit(ring, MI_NOOP);
ddd66c51 1567 return intel_logical_ring_advance(request);
7c17d377 1568}
4da46e1e 1569
7c17d377
CW
1570static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1571{
7e37f889 1572 struct intel_ring *ring = request->ring;
7c17d377 1573 int ret;
53292cdb 1574
987046ad 1575 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1576 if (ret)
1577 return ret;
1578
ce81a65c
MW
1579 /* We're using qword write, seqno should be aligned to 8 bytes. */
1580 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1581
7c17d377
CW
1582 /* w/a for post sync ops following a GPGPU operation we
1583 * need a prior CS_STALL, which is emitted by the flush
1584 * following the batch.
1585 */
b5321f30
CW
1586 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1587 intel_ring_emit(ring,
1588 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1589 PIPE_CONTROL_CS_STALL |
1590 PIPE_CONTROL_QW_WRITE));
1591 intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1592 intel_ring_emit(ring, 0);
1593 intel_ring_emit(ring, i915_gem_request_get_seqno(request));
ce81a65c 1594 /* We're thrashing one dword of HWS. */
b5321f30
CW
1595 intel_ring_emit(ring, 0);
1596 intel_ring_emit(ring, MI_USER_INTERRUPT);
1597 intel_ring_emit(ring, MI_NOOP);
ddd66c51 1598 return intel_logical_ring_advance(request);
4da46e1e
OM
1599}
1600
8753181e 1601static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1602{
1603 int ret;
1604
e2be4faf 1605 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1606 if (ret)
1607 return ret;
1608
3bbaba0c
PA
1609 ret = intel_rcs_context_init_mocs(req);
1610 /*
1611 * Failing to program the MOCS is non-fatal.The system will not
1612 * run at peak performance. So generate an error and carry on.
1613 */
1614 if (ret)
1615 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1616
e40f9ee6 1617 return i915_gem_render_state_init(req);
e7778be1
TD
1618}
1619
73e4d07f
OM
1620/**
1621 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1622 * @engine: Engine Command Streamer.
73e4d07f 1623 */
0bc40be8 1624void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1625{
6402c330 1626 struct drm_i915_private *dev_priv;
9832b9da 1627
117897f4 1628 if (!intel_engine_initialized(engine))
48d82387
OM
1629 return;
1630
27af5eea
TU
1631 /*
1632 * Tasklet cannot be active at this point due intel_mark_active/idle
1633 * so this is just for documentation.
1634 */
1635 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1636 tasklet_kill(&engine->irq_tasklet);
1637
c033666a 1638 dev_priv = engine->i915;
6402c330 1639
0bc40be8 1640 if (engine->buffer) {
0bc40be8 1641 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1642 }
48d82387 1643
0bc40be8
TU
1644 if (engine->cleanup)
1645 engine->cleanup(engine);
48d82387 1646
96a945aa 1647 intel_engine_cleanup_common(engine);
688e6c72 1648
57e88531
CW
1649 if (engine->status_page.vma) {
1650 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1651 engine->status_page.vma = NULL;
48d82387 1652 }
24f1d3cc 1653 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1654
0bc40be8 1655 lrc_destroy_wa_ctx_obj(engine);
c033666a 1656 engine->i915 = NULL;
454afebd
OM
1657}
1658
ddd66c51
CW
1659void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1660{
1661 struct intel_engine_cs *engine;
1662
1663 for_each_engine(engine, dev_priv)
f4ea6bdd 1664 engine->submit_request = execlists_submit_request;
ddd66c51
CW
1665}
1666
c9cacf93 1667static void
e1382efb 1668logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1669{
1670 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1671 engine->init_hw = gen8_init_common_ring;
821ed7df 1672 engine->reset_hw = reset_common_ring;
0bc40be8 1673 engine->emit_flush = gen8_emit_flush;
ddd66c51 1674 engine->emit_request = gen8_emit_request;
f4ea6bdd 1675 engine->submit_request = execlists_submit_request;
ddd66c51 1676
31bb59cc
CW
1677 engine->irq_enable = gen8_logical_ring_enable_irq;
1678 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1679 engine->emit_bb_start = gen8_emit_bb_start;
1b7744e7 1680 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
c04e0f3b 1681 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
c9cacf93
TU
1682}
1683
d9f3af96 1684static inline void
c2c7f240 1685logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1686{
c2c7f240 1687 unsigned shift = engine->irq_shift;
0bc40be8
TU
1688 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1689 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1690}
1691
7d774cac 1692static int
bf3783e5 1693lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1694{
57e88531 1695 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1696 void *hws;
04794adb
TU
1697
1698 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1699 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1700 if (IS_ERR(hws))
1701 return PTR_ERR(hws);
57e88531
CW
1702
1703 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1704 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1705 engine->status_page.vma = vma;
7d774cac
TU
1706
1707 return 0;
04794adb
TU
1708}
1709
bb45438f
TU
1710static void
1711logical_ring_setup(struct intel_engine_cs *engine)
1712{
1713 struct drm_i915_private *dev_priv = engine->i915;
1714 enum forcewake_domains fw_domains;
1715
019bf277
TU
1716 intel_engine_setup_common(engine);
1717
bb45438f
TU
1718 /* Intentionally left blank. */
1719 engine->buffer = NULL;
1720
1721 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1722 RING_ELSP(engine),
1723 FW_REG_WRITE);
1724
1725 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1726 RING_CONTEXT_STATUS_PTR(engine),
1727 FW_REG_READ | FW_REG_WRITE);
1728
1729 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1730 RING_CONTEXT_STATUS_BUF_BASE(engine),
1731 FW_REG_READ);
1732
1733 engine->fw_domains = fw_domains;
1734
bb45438f
TU
1735 tasklet_init(&engine->irq_tasklet,
1736 intel_lrc_irq_handler, (unsigned long)engine);
1737
1738 logical_ring_init_platform_invariants(engine);
1739 logical_ring_default_vfuncs(engine);
1740 logical_ring_default_irqs(engine);
bb45438f
TU
1741}
1742
a19d6ff2
TU
1743static int
1744logical_ring_init(struct intel_engine_cs *engine)
1745{
1746 struct i915_gem_context *dctx = engine->i915->kernel_context;
1747 int ret;
1748
019bf277 1749 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1750 if (ret)
1751 goto error;
1752
1753 ret = execlists_context_deferred_alloc(dctx, engine);
1754 if (ret)
1755 goto error;
1756
1757 /* As this is the default context, always pin it */
1758 ret = intel_lr_context_pin(dctx, engine);
1759 if (ret) {
1760 DRM_ERROR("Failed to pin context for %s: %d\n",
1761 engine->name, ret);
1762 goto error;
1763 }
1764
1765 /* And setup the hardware status page. */
1766 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1767 if (ret) {
1768 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1769 goto error;
1770 }
1771
1772 return 0;
1773
1774error:
1775 intel_logical_ring_cleanup(engine);
1776 return ret;
1777}
1778
88d2ba2e 1779int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1780{
1781 struct drm_i915_private *dev_priv = engine->i915;
1782 int ret;
1783
bb45438f
TU
1784 logical_ring_setup(engine);
1785
a19d6ff2
TU
1786 if (HAS_L3_DPF(dev_priv))
1787 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1788
1789 /* Override some for render ring. */
1790 if (INTEL_GEN(dev_priv) >= 9)
1791 engine->init_hw = gen9_init_render_ring;
1792 else
1793 engine->init_hw = gen8_init_render_ring;
1794 engine->init_context = gen8_init_rcs_context;
a19d6ff2
TU
1795 engine->emit_flush = gen8_emit_flush_render;
1796 engine->emit_request = gen8_emit_request_render;
1797
56c0f1a7 1798 ret = intel_engine_create_scratch(engine, 4096);
a19d6ff2
TU
1799 if (ret)
1800 return ret;
1801
1802 ret = intel_init_workaround_bb(engine);
1803 if (ret) {
1804 /*
1805 * We continue even if we fail to initialize WA batch
1806 * because we only expect rare glitches but nothing
1807 * critical to prevent us from using GPU
1808 */
1809 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1810 ret);
1811 }
1812
1813 ret = logical_ring_init(engine);
1814 if (ret) {
1815 lrc_destroy_wa_ctx_obj(engine);
1816 }
1817
1818 return ret;
1819}
1820
88d2ba2e 1821int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1822{
1823 logical_ring_setup(engine);
1824
1825 return logical_ring_init(engine);
454afebd
OM
1826}
1827
0cea6502 1828static u32
c033666a 1829make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1830{
1831 u32 rpcs = 0;
1832
1833 /*
1834 * No explicit RPCS request is needed to ensure full
1835 * slice/subslice/EU enablement prior to Gen9.
1836 */
c033666a 1837 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1838 return 0;
1839
1840 /*
1841 * Starting in Gen9, render power gating can leave
1842 * slice/subslice/EU in a partially enabled state. We
1843 * must make an explicit request through RPCS for full
1844 * enablement.
1845 */
43b67998 1846 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1847 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1848 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1849 GEN8_RPCS_S_CNT_SHIFT;
1850 rpcs |= GEN8_RPCS_ENABLE;
1851 }
1852
43b67998 1853 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1854 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1855 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1856 GEN8_RPCS_SS_CNT_SHIFT;
1857 rpcs |= GEN8_RPCS_ENABLE;
1858 }
1859
43b67998
ID
1860 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1861 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 1862 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 1863 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
1864 GEN8_RPCS_EU_MAX_SHIFT;
1865 rpcs |= GEN8_RPCS_ENABLE;
1866 }
1867
1868 return rpcs;
1869}
1870
0bc40be8 1871static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1872{
1873 u32 indirect_ctx_offset;
1874
c033666a 1875 switch (INTEL_GEN(engine->i915)) {
71562919 1876 default:
c033666a 1877 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
1878 /* fall through */
1879 case 9:
1880 indirect_ctx_offset =
1881 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1882 break;
1883 case 8:
1884 indirect_ctx_offset =
1885 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1886 break;
1887 }
1888
1889 return indirect_ctx_offset;
1890}
1891
8670d6f9 1892static int
e2efd130 1893populate_lr_context(struct i915_gem_context *ctx,
7d774cac 1894 struct drm_i915_gem_object *ctx_obj,
0bc40be8 1895 struct intel_engine_cs *engine,
7e37f889 1896 struct intel_ring *ring)
8670d6f9 1897{
c033666a 1898 struct drm_i915_private *dev_priv = ctx->i915;
ae6c4806 1899 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
1900 void *vaddr;
1901 u32 *reg_state;
8670d6f9
OM
1902 int ret;
1903
2d965536
TD
1904 if (!ppgtt)
1905 ppgtt = dev_priv->mm.aliasing_ppgtt;
1906
8670d6f9
OM
1907 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1908 if (ret) {
1909 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1910 return ret;
1911 }
1912
d31d7cb1 1913 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
7d774cac
TU
1914 if (IS_ERR(vaddr)) {
1915 ret = PTR_ERR(vaddr);
1916 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
1917 return ret;
1918 }
7d774cac 1919 ctx_obj->dirty = true;
8670d6f9
OM
1920
1921 /* The second page of the context object contains some fields which must
1922 * be set up prior to the first execution. */
7d774cac 1923 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
1924
1925 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1926 * commands followed by (reg, value) pairs. The values we are setting here are
1927 * only for the first context restore: on a subsequent save, the GPU will
1928 * recreate this batchbuffer with new values (including all the missing
1929 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 1930 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
1931 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1932 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1933 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
1934 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1935 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 1936 (HAS_RESOURCE_STREAMER(dev_priv) ?
99cf8ea1 1937 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
1938 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1939 0);
1940 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1941 0);
7ba717cf
TD
1942 /* Ring buffer start address is not known until the buffer is pinned.
1943 * It is written to the context image in execlists_update_context()
1944 */
0bc40be8
TU
1945 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1946 RING_START(engine->mmio_base), 0);
1947 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1948 RING_CTL(engine->mmio_base),
7e37f889 1949 ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
1950 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1951 RING_BBADDR_UDW(engine->mmio_base), 0);
1952 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1953 RING_BBADDR(engine->mmio_base), 0);
1954 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1955 RING_BBSTATE(engine->mmio_base),
0d925ea0 1956 RING_BB_PPGTT);
0bc40be8
TU
1957 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1958 RING_SBBADDR_UDW(engine->mmio_base), 0);
1959 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1960 RING_SBBADDR(engine->mmio_base), 0);
1961 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1962 RING_SBBSTATE(engine->mmio_base), 0);
1963 if (engine->id == RCS) {
1964 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1965 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1966 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1967 RING_INDIRECT_CTX(engine->mmio_base), 0);
1968 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1969 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
48bb74e4 1970 if (engine->wa_ctx.vma) {
0bc40be8 1971 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 1972 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d
AS
1973
1974 reg_state[CTX_RCS_INDIRECT_CTX+1] =
1975 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
1976 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
1977
1978 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 1979 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
1980
1981 reg_state[CTX_BB_PER_CTX_PTR+1] =
1982 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
1983 0x01;
1984 }
8670d6f9 1985 }
0d925ea0 1986 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
1987 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
1988 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 1989 /* PDP values well be assigned later if needed */
0bc40be8
TU
1990 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
1991 0);
1992 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
1993 0);
1994 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
1995 0);
1996 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
1997 0);
1998 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
1999 0);
2000 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2001 0);
2002 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2003 0);
2004 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2005 0);
d7b2633d 2006
2dba3239
MT
2007 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2008 /* 64b PPGTT (48bit canonical)
2009 * PDP0_DESCRIPTOR contains the base address to PML4 and
2010 * other PDP Descriptors are ignored.
2011 */
2012 ASSIGN_CTX_PML4(ppgtt, reg_state);
2013 } else {
2014 /* 32b PPGTT
2015 * PDP*_DESCRIPTOR contains the base address of space supported.
2016 * With dynamic page allocation, PDPs may not be allocated at
2017 * this point. Point the unallocated PDPs to the scratch page
2018 */
c6a2ac71 2019 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2020 }
2021
0bc40be8 2022 if (engine->id == RCS) {
8670d6f9 2023 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2024 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2025 make_rpcs(dev_priv));
8670d6f9
OM
2026 }
2027
7d774cac 2028 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2029
2030 return 0;
2031}
2032
c5d46ee2
DG
2033/**
2034 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2035 * @engine: which engine to find the context size for
c5d46ee2
DG
2036 *
2037 * Each engine may require a different amount of space for a context image,
2038 * so when allocating (or copying) an image, this function can be used to
2039 * find the right size for the specific engine.
2040 *
2041 * Return: size (in bytes) of an engine-specific context image
2042 *
2043 * Note: this size includes the HWSP, which is part of the context image
2044 * in LRC mode, but does not include the "shared data page" used with
2045 * GuC submission. The caller should account for this if using the GuC.
2046 */
0bc40be8 2047uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2048{
2049 int ret = 0;
2050
c033666a 2051 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2052
0bc40be8 2053 switch (engine->id) {
8c857917 2054 case RCS:
c033666a 2055 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2056 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2057 else
2058 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2059 break;
2060 case VCS:
2061 case BCS:
2062 case VECS:
2063 case VCS2:
2064 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2065 break;
2066 }
2067
2068 return ret;
ede7d42b
OM
2069}
2070
e2efd130 2071static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2072 struct intel_engine_cs *engine)
ede7d42b 2073{
8c857917 2074 struct drm_i915_gem_object *ctx_obj;
9021ad03 2075 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 2076 struct i915_vma *vma;
8c857917 2077 uint32_t context_size;
7e37f889 2078 struct intel_ring *ring;
8c857917
OM
2079 int ret;
2080
9021ad03 2081 WARN_ON(ce->state);
ede7d42b 2082
0bc40be8 2083 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2084
d1675198
AD
2085 /* One extra page as the sharing data between driver and GuC */
2086 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2087
91c8a326 2088 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
fe3db79b 2089 if (IS_ERR(ctx_obj)) {
3126a660 2090 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2091 return PTR_ERR(ctx_obj);
8c857917
OM
2092 }
2093
bf3783e5
CW
2094 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2095 if (IS_ERR(vma)) {
2096 ret = PTR_ERR(vma);
2097 goto error_deref_obj;
2098 }
2099
7e37f889 2100 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2101 if (IS_ERR(ring)) {
2102 ret = PTR_ERR(ring);
e84fe803 2103 goto error_deref_obj;
8670d6f9
OM
2104 }
2105
dca33ecc 2106 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2107 if (ret) {
2108 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2109 goto error_ring_free;
84c2377f
OM
2110 }
2111
dca33ecc 2112 ce->ring = ring;
bf3783e5 2113 ce->state = vma;
9021ad03 2114 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2115
2116 return 0;
8670d6f9 2117
dca33ecc 2118error_ring_free:
7e37f889 2119 intel_ring_free(ring);
e84fe803 2120error_deref_obj:
f8c417cd 2121 i915_gem_object_put(ctx_obj);
8670d6f9 2122 return ret;
ede7d42b 2123}
3e5b6f05 2124
821ed7df 2125void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2126{
e2f80391 2127 struct intel_engine_cs *engine;
bafb2f7d
CW
2128 struct i915_gem_context *ctx;
2129
2130 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2131 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2132 * that stored in context. As we only write new commands from
2133 * ce->ring->tail onwards, everything before that is junk. If the GPU
2134 * starts reading from its RING_HEAD from the context, it may try to
2135 * execute that junk and die.
2136 *
2137 * So to avoid that we reset the context images upon resume. For
2138 * simplicity, we just zero everything out.
2139 */
2140 list_for_each_entry(ctx, &dev_priv->context_list, link) {
2141 for_each_engine(engine, dev_priv) {
2142 struct intel_context *ce = &ctx->engine[engine->id];
2143 u32 *reg;
3e5b6f05 2144
bafb2f7d
CW
2145 if (!ce->state)
2146 continue;
7d774cac 2147
bafb2f7d
CW
2148 reg = i915_gem_object_pin_map(ce->state->obj,
2149 I915_MAP_WB);
2150 if (WARN_ON(IS_ERR(reg)))
2151 continue;
3e5b6f05 2152
bafb2f7d
CW
2153 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2154 reg[CTX_RING_HEAD+1] = 0;
2155 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2156
bafb2f7d
CW
2157 ce->state->obj->dirty = true;
2158 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2159
bafb2f7d
CW
2160 ce->ring->head = ce->ring->tail = 0;
2161 ce->ring->last_retired_head = -1;
2162 intel_ring_update_space(ce->ring);
2163 }
3e5b6f05
TD
2164 }
2165}