]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Update reset path to fix incomplete requests
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 158
70c2a24d
CW
159#define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
8670d6f9
OM
164#define CTX_LRI_HEADER_0 0x01
165#define CTX_CONTEXT_CONTROL 0x02
166#define CTX_RING_HEAD 0x04
167#define CTX_RING_TAIL 0x06
168#define CTX_RING_BUFFER_START 0x08
169#define CTX_RING_BUFFER_CONTROL 0x0a
170#define CTX_BB_HEAD_U 0x0c
171#define CTX_BB_HEAD_L 0x0e
172#define CTX_BB_STATE 0x10
173#define CTX_SECOND_BB_HEAD_U 0x12
174#define CTX_SECOND_BB_HEAD_L 0x14
175#define CTX_SECOND_BB_STATE 0x16
176#define CTX_BB_PER_CTX_PTR 0x18
177#define CTX_RCS_INDIRECT_CTX 0x1a
178#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179#define CTX_LRI_HEADER_1 0x21
180#define CTX_CTX_TIMESTAMP 0x22
181#define CTX_PDP3_UDW 0x24
182#define CTX_PDP3_LDW 0x26
183#define CTX_PDP2_UDW 0x28
184#define CTX_PDP2_LDW 0x2a
185#define CTX_PDP1_UDW 0x2c
186#define CTX_PDP1_LDW 0x2e
187#define CTX_PDP0_UDW 0x30
188#define CTX_PDP0_LDW 0x32
189#define CTX_LRI_HEADER_2 0x41
190#define CTX_R_PWR_CLK_STATE 0x42
191#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
84b790f8
BW
193#define GEN8_CTX_VALID (1<<0)
194#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195#define GEN8_CTX_FORCE_RESTORE (1<<2)
196#define GEN8_CTX_L3LLC_COHERENT (1<<5)
197#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 198
0d925ea0 199#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 200 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
201 (reg_state)[(pos)+1] = (val); \
202} while (0)
203
204#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 205 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
206 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 208} while (0)
e5815a2e 209
9244a817 210#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
211 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 213} while (0)
2dba3239 214
84b790f8
BW
215enum {
216 FAULT_AND_HANG = 0,
217 FAULT_AND_HALT, /* Debug only */
218 FAULT_AND_STREAM,
219 FAULT_AND_CONTINUE /* Unsupported */
220};
221#define GEN8_CTX_ID_SHIFT 32
7069b144 222#define GEN8_CTX_ID_WIDTH 21
71562919
MT
223#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
224#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 225
0e93cdd4
CW
226/* Typical size of the average request (2 pipecontrols and a MI_BB) */
227#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
e2efd130 229static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 230 struct intel_engine_cs *engine);
e2efd130 231static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 232 struct intel_engine_cs *engine);
7ba717cf 233
73e4d07f
OM
234/**
235 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 236 * @dev_priv: i915 device private
73e4d07f
OM
237 * @enable_execlists: value of i915.enable_execlists module parameter.
238 *
239 * Only certain platforms support Execlists (the prerequisites being
27401d12 240 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
241 *
242 * Return: 1 if Execlists is supported and has to be enabled.
243 */
c033666a 244int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 245{
a0bd6c31
ZL
246 /* On platforms with execlist available, vGPU will only
247 * support execlist mode, no ring buffer mode.
248 */
c033666a 249 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
250 return 1;
251
c033666a 252 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
253 return 1;
254
127f1003
OM
255 if (enable_execlists == 0)
256 return 0;
257
5a21b665
DV
258 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
259 USES_PPGTT(dev_priv) &&
260 i915.use_mmio_flip >= 0)
127f1003
OM
261 return 1;
262
263 return 0;
264}
ede7d42b 265
ca82580c 266static void
0bc40be8 267logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 268{
c033666a 269 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 270
70c2a24d
CW
271 engine->disable_lite_restore_wa =
272 (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
273 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
274 (engine->id == VCS || engine->id == VCS2);
ca82580c 275
0bc40be8 276 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 277 if (IS_GEN8(dev_priv))
0bc40be8
TU
278 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
279 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
280
281 /* TODO: WaDisableLiteRestore when we start using semaphore
282 * signalling between Command Streamers */
283 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
284
285 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
286 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
287 if (engine->disable_lite_restore_wa)
288 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
289}
290
73e4d07f 291/**
ca82580c
TU
292 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
293 * descriptor for a pinned context
ca82580c 294 * @ctx: Context to work on
9021ad03 295 * @engine: Engine the descriptor will be used with
73e4d07f 296 *
ca82580c
TU
297 * The context descriptor encodes various attributes of a context,
298 * including its GTT address and some flags. Because it's fairly
299 * expensive to calculate, we'll just do it once and cache the result,
300 * which remains valid until the context is unpinned.
301 *
6e5248b5
DV
302 * This is what a descriptor looks like, from LSB to MSB::
303 *
304 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
305 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
306 * bits 32-52: ctx ID, a globally unique tag
307 * bits 53-54: mbz, reserved for use by hardware
308 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 309 */
ca82580c 310static void
e2efd130 311intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 312 struct intel_engine_cs *engine)
84b790f8 313{
9021ad03 314 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 315 u64 desc;
84b790f8 316
7069b144 317 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 318
c01fc532
ZW
319 desc = ctx->desc_template; /* bits 3-4 */
320 desc |= engine->ctx_desc_template; /* bits 0-11 */
bde13ebd 321 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 322 /* bits 12-31 */
7069b144 323 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 324
9021ad03 325 ce->lrc_desc = desc;
5af05fef
MT
326}
327
e2efd130 328uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 329 struct intel_engine_cs *engine)
84b790f8 330{
0bc40be8 331 return ctx->engine[engine->id].lrc_desc;
ca82580c 332}
203a571b 333
bbd6c47e
CW
334static inline void
335execlists_context_status_change(struct drm_i915_gem_request *rq,
336 unsigned long status)
84b790f8 337{
bbd6c47e
CW
338 /*
339 * Only used when GVT-g is enabled now. When GVT-g is disabled,
340 * The compiler should eliminate this function as dead-code.
341 */
342 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
343 return;
6daccb0b 344
bbd6c47e 345 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
84b790f8
BW
346}
347
c6a2ac71
TU
348static void
349execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
350{
351 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
355}
356
70c2a24d 357static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 358{
70c2a24d 359 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
05d9824b 360 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
70c2a24d 361 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 362
8f942018 363 reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
ae1250b9 364
c6a2ac71
TU
365 /* True 32b PPGTT with dynamic page allocation: update PDP
366 * registers and point the unallocated PDPs to scratch page.
367 * PML4 is allocated during ppgtt init, so this is not needed
368 * in 48-bit mode.
369 */
370 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
371 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
372
373 return ce->lrc_desc;
ae1250b9
OM
374}
375
70c2a24d 376static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 377{
70c2a24d
CW
378 struct drm_i915_private *dev_priv = engine->i915;
379 struct execlist_port *port = engine->execlist_port;
bbd6c47e
CW
380 u32 __iomem *elsp =
381 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
382 u64 desc[2];
383
70c2a24d
CW
384 if (!port[0].count)
385 execlists_context_status_change(port[0].request,
386 INTEL_CONTEXT_SCHEDULE_IN);
387 desc[0] = execlists_update_context(port[0].request);
388 engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
389
390 if (port[1].request) {
391 GEM_BUG_ON(port[1].count);
392 execlists_context_status_change(port[1].request,
393 INTEL_CONTEXT_SCHEDULE_IN);
394 desc[1] = execlists_update_context(port[1].request);
395 port[1].count = 1;
bbd6c47e
CW
396 } else {
397 desc[1] = 0;
398 }
70c2a24d 399 GEM_BUG_ON(desc[0] == desc[1]);
bbd6c47e
CW
400
401 /* You must always write both descriptors in the order below. */
402 writel(upper_32_bits(desc[1]), elsp);
403 writel(lower_32_bits(desc[1]), elsp);
404
405 writel(upper_32_bits(desc[0]), elsp);
406 /* The context is automatically loaded after the following */
407 writel(lower_32_bits(desc[0]), elsp);
408}
409
70c2a24d 410static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 411{
70c2a24d
CW
412 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
413 ctx->execlists_force_single_submission);
414}
84b790f8 415
70c2a24d
CW
416static bool can_merge_ctx(const struct i915_gem_context *prev,
417 const struct i915_gem_context *next)
418{
419 if (prev != next)
420 return false;
26720ab9 421
70c2a24d
CW
422 if (ctx_single_port_submission(prev))
423 return false;
26720ab9 424
70c2a24d 425 return true;
84b790f8
BW
426}
427
70c2a24d 428static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 429{
70c2a24d
CW
430 struct drm_i915_gem_request *cursor, *last;
431 struct execlist_port *port = engine->execlist_port;
432 bool submit = false;
433
434 last = port->request;
435 if (last)
436 /* WaIdleLiteRestore:bdw,skl
437 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
438 * as we resubmit the request. See gen8_emit_request()
439 * for where we prepare the padding after the end of the
440 * request.
441 */
442 last->tail = last->wa_tail;
e981e7b1 443
70c2a24d 444 GEM_BUG_ON(port[1].request);
acdd884a 445
70c2a24d
CW
446 /* Hardware submission is through 2 ports. Conceptually each port
447 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
448 * static for a context, and unique to each, so we only execute
449 * requests belonging to a single context from each ring. RING_HEAD
450 * is maintained by the CS in the context image, it marks the place
451 * where it got up to last time, and through RING_TAIL we tell the CS
452 * where we want to execute up to this time.
453 *
454 * In this list the requests are in order of execution. Consecutive
455 * requests from the same context are adjacent in the ringbuffer. We
456 * can combine these requests into a single RING_TAIL update:
457 *
458 * RING_HEAD...req1...req2
459 * ^- RING_TAIL
460 * since to execute req2 the CS must first execute req1.
461 *
462 * Our goal then is to point each port to the end of a consecutive
463 * sequence of requests as being the most optimal (fewest wake ups
464 * and context switches) submission.
779949f4 465 */
acdd884a 466
70c2a24d
CW
467 spin_lock(&engine->execlist_lock);
468 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
469 /* Can we combine this request with the current port? It has to
470 * be the same context/ringbuffer and not have any exceptions
471 * (e.g. GVT saying never to combine contexts).
c6a2ac71 472 *
70c2a24d
CW
473 * If we can combine the requests, we can execute both by
474 * updating the RING_TAIL to point to the end of the second
475 * request, and so we never need to tell the hardware about
476 * the first.
53292cdb 477 */
70c2a24d
CW
478 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
479 /* If we are on the second port and cannot combine
480 * this request with the last, then we are done.
481 */
482 if (port != engine->execlist_port)
483 break;
484
485 /* If GVT overrides us we only ever submit port[0],
486 * leaving port[1] empty. Note that we also have
487 * to be careful that we don't queue the same
488 * context (even though a different request) to
489 * the second port.
490 */
491 if (ctx_single_port_submission(cursor->ctx))
492 break;
493
494 GEM_BUG_ON(last->ctx == cursor->ctx);
495
496 i915_gem_request_assign(&port->request, last);
497 port++;
498 }
499 last = cursor;
500 submit = true;
501 }
502 if (submit) {
503 /* Decouple all the requests submitted from the queue */
504 engine->execlist_queue.next = &cursor->execlist_link;
505 cursor->execlist_link.prev = &engine->execlist_queue;
506
507 i915_gem_request_assign(&port->request, last);
53292cdb 508 }
70c2a24d 509 spin_unlock(&engine->execlist_lock);
53292cdb 510
70c2a24d
CW
511 if (submit)
512 execlists_submit_ports(engine);
acdd884a
MT
513}
514
70c2a24d 515static bool execlists_elsp_idle(struct intel_engine_cs *engine)
e981e7b1 516{
70c2a24d 517 return !engine->execlist_port[0].request;
e981e7b1
TD
518}
519
70c2a24d 520static bool execlists_elsp_ready(struct intel_engine_cs *engine)
91a41032 521{
70c2a24d 522 int port;
91a41032 523
70c2a24d
CW
524 port = 1; /* wait for a free slot */
525 if (engine->disable_lite_restore_wa || engine->preempt_wa)
526 port = 0; /* wait for GPU to be idle before continuing */
c6a2ac71 527
70c2a24d 528 return !engine->execlist_port[port].request;
91a41032
BW
529}
530
6e5248b5 531/*
73e4d07f
OM
532 * Check the unread Context Status Buffers and manage the submission of new
533 * contexts to the ELSP accordingly.
534 */
27af5eea 535static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 536{
27af5eea 537 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 538 struct execlist_port *port = engine->execlist_port;
c033666a 539 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 540
3756685a 541 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 542
70c2a24d
CW
543 if (!execlists_elsp_idle(engine)) {
544 u32 __iomem *csb_mmio =
545 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
546 u32 __iomem *buf =
547 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
548 unsigned int csb, head, tail;
549
550 csb = readl(csb_mmio);
551 head = GEN8_CSB_READ_PTR(csb);
552 tail = GEN8_CSB_WRITE_PTR(csb);
553 if (tail < head)
554 tail += GEN8_CSB_ENTRIES;
555 while (head < tail) {
556 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
557 unsigned int status = readl(buf + 2 * idx);
558
559 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
560 continue;
561
562 GEM_BUG_ON(port[0].count == 0);
563 if (--port[0].count == 0) {
564 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
565 execlists_context_status_change(port[0].request,
566 INTEL_CONTEXT_SCHEDULE_OUT);
567
568 i915_gem_request_put(port[0].request);
569 port[0] = port[1];
570 memset(&port[1], 0, sizeof(port[1]));
571
572 engine->preempt_wa = false;
573 }
26720ab9 574
70c2a24d
CW
575 GEM_BUG_ON(port[0].count == 0 &&
576 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
e1fee72c
OM
577 }
578
70c2a24d
CW
579 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
580 GEN8_CSB_WRITE_PTR(csb) << 8),
581 csb_mmio);
e981e7b1
TD
582 }
583
70c2a24d
CW
584 if (execlists_elsp_ready(engine))
585 execlists_dequeue(engine);
c6a2ac71 586
70c2a24d 587 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
588}
589
f4ea6bdd 590static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 591{
4a570db5 592 struct intel_engine_cs *engine = request->engine;
acdd884a 593
27af5eea 594 spin_lock_bh(&engine->execlist_lock);
acdd884a 595
ba49b2f8 596 list_add_tail(&request->execlist_link, &engine->execlist_queue);
70c2a24d
CW
597 if (execlists_elsp_idle(engine))
598 tasklet_hi_schedule(&engine->irq_tasklet);
acdd884a 599
27af5eea 600 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
601}
602
40e895ce 603int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 604{
24f1d3cc 605 struct intel_engine_cs *engine = request->engine;
9021ad03 606 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 607 int ret;
bc0dce3f 608
6310346e
CW
609 /* Flush enough space to reduce the likelihood of waiting after
610 * we start building the request - in which case we will just
611 * have to repeat work.
612 */
0e93cdd4 613 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 614
9021ad03 615 if (!ce->state) {
978f1e09
CW
616 ret = execlists_context_deferred_alloc(request->ctx, engine);
617 if (ret)
618 return ret;
619 }
620
dca33ecc 621 request->ring = ce->ring;
f3cc01f0 622
a7e02199
AD
623 if (i915.enable_guc_submission) {
624 /*
625 * Check that the GuC has space for the request before
626 * going any further, as the i915_add_request() call
627 * later on mustn't fail ...
628 */
7c2c270d 629 ret = i915_guc_wq_check_space(request);
a7e02199
AD
630 if (ret)
631 return ret;
632 }
633
24f1d3cc
CW
634 ret = intel_lr_context_pin(request->ctx, engine);
635 if (ret)
636 return ret;
e28e404c 637
bfa01200
CW
638 ret = intel_ring_begin(request, 0);
639 if (ret)
640 goto err_unpin;
641
9021ad03 642 if (!ce->initialised) {
24f1d3cc
CW
643 ret = engine->init_context(request);
644 if (ret)
645 goto err_unpin;
646
9021ad03 647 ce->initialised = true;
24f1d3cc
CW
648 }
649
650 /* Note that after this point, we have committed to using
651 * this request as it is being used to both track the
652 * state of engine initialisation and liveness of the
653 * golden renderstate above. Think twice before you try
654 * to cancel/unwind this request now.
655 */
656
0e93cdd4 657 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
658 return 0;
659
660err_unpin:
24f1d3cc 661 intel_lr_context_unpin(request->ctx, engine);
e28e404c 662 return ret;
bc0dce3f
JH
663}
664
bc0dce3f 665/*
ddd66c51 666 * intel_logical_ring_advance() - advance the tail and prepare for submission
ae70797d 667 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
668 *
669 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
670 * really happens during submission is that the context and current tail will be placed
671 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
672 * point, the tail *inside* the context is updated and the ELSP written to.
673 */
7c17d377 674static int
ddd66c51 675intel_logical_ring_advance(struct drm_i915_gem_request *request)
bc0dce3f 676{
7e37f889 677 struct intel_ring *ring = request->ring;
4a570db5 678 struct intel_engine_cs *engine = request->engine;
bc0dce3f 679
1dae2dfb
CW
680 intel_ring_advance(ring);
681 request->tail = ring->tail;
bc0dce3f 682
7c17d377
CW
683 /*
684 * Here we add two extra NOOPs as padding to avoid
685 * lite restore of a context with HEAD==TAIL.
686 *
687 * Caller must reserve WA_TAIL_DWORDS for us!
688 */
1dae2dfb
CW
689 intel_ring_emit(ring, MI_NOOP);
690 intel_ring_emit(ring, MI_NOOP);
691 intel_ring_advance(ring);
a52abd2f 692 request->wa_tail = ring->tail;
d1675198 693
a16a4052
CW
694 /* We keep the previous context alive until we retire the following
695 * request. This ensures that any the context object is still pinned
696 * for any residual writes the HW makes into it on the context switch
697 * into the next object following the breadcrumb. Otherwise, we may
698 * retire the context too early.
699 */
700 request->previous_context = engine->last_context;
701 engine->last_context = request->ctx;
7c17d377 702 return 0;
bc0dce3f
JH
703}
704
e2efd130 705static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 706 struct intel_engine_cs *engine)
dcb4c12a 707{
9021ad03 708 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac
TU
709 void *vaddr;
710 u32 *lrc_reg_state;
ca82580c 711 int ret;
dcb4c12a 712
91c8a326 713 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 714
9021ad03 715 if (ce->pin_count++)
24f1d3cc
CW
716 return 0;
717
bf3783e5
CW
718 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
719 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
e84fe803 720 if (ret)
24f1d3cc 721 goto err;
7ba717cf 722
bf3783e5 723 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
724 if (IS_ERR(vaddr)) {
725 ret = PTR_ERR(vaddr);
bf3783e5 726 goto unpin_vma;
82352e90
TU
727 }
728
7d774cac
TU
729 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
730
aad29fbb 731 ret = intel_ring_pin(ce->ring);
e84fe803 732 if (ret)
7d774cac 733 goto unpin_map;
d1675198 734
0bc40be8 735 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 736
bde13ebd
CW
737 lrc_reg_state[CTX_RING_BUFFER_START+1] =
738 i915_ggtt_offset(ce->ring->vma);
9021ad03 739 ce->lrc_reg_state = lrc_reg_state;
bf3783e5 740 ce->state->obj->dirty = true;
e93c28f3 741
e84fe803 742 /* Invalidate GuC TLB. */
bf3783e5
CW
743 if (i915.enable_guc_submission) {
744 struct drm_i915_private *dev_priv = ctx->i915;
e84fe803 745 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
bf3783e5 746 }
dcb4c12a 747
9a6feaf0 748 i915_gem_context_get(ctx);
24f1d3cc 749 return 0;
7ba717cf 750
7d774cac 751unpin_map:
bf3783e5
CW
752 i915_gem_object_unpin_map(ce->state->obj);
753unpin_vma:
754 __i915_vma_unpin(ce->state);
24f1d3cc 755err:
9021ad03 756 ce->pin_count = 0;
e84fe803
NH
757 return ret;
758}
759
e2efd130 760void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 761 struct intel_engine_cs *engine)
e84fe803 762{
9021ad03 763 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 764
91c8a326 765 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 766 GEM_BUG_ON(ce->pin_count == 0);
321fe304 767
9021ad03 768 if (--ce->pin_count)
24f1d3cc 769 return;
e84fe803 770
aad29fbb 771 intel_ring_unpin(ce->ring);
dcb4c12a 772
bf3783e5
CW
773 i915_gem_object_unpin_map(ce->state->obj);
774 i915_vma_unpin(ce->state);
321fe304 775
9a6feaf0 776 i915_gem_context_put(ctx);
dcb4c12a
OM
777}
778
e2be4faf 779static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
780{
781 int ret, i;
7e37f889 782 struct intel_ring *ring = req->ring;
c033666a 783 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 784
cd7feaaa 785 if (w->count == 0)
771b9a53
MT
786 return 0;
787
7c9cf4e3 788 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
789 if (ret)
790 return ret;
791
987046ad 792 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
793 if (ret)
794 return ret;
795
1dae2dfb 796 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
771b9a53 797 for (i = 0; i < w->count; i++) {
1dae2dfb
CW
798 intel_ring_emit_reg(ring, w->reg[i].addr);
799 intel_ring_emit(ring, w->reg[i].value);
771b9a53 800 }
1dae2dfb 801 intel_ring_emit(ring, MI_NOOP);
771b9a53 802
1dae2dfb 803 intel_ring_advance(ring);
771b9a53 804
7c9cf4e3 805 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
806 if (ret)
807 return ret;
808
809 return 0;
810}
811
83b8a982 812#define wa_ctx_emit(batch, index, cmd) \
17ee950d 813 do { \
83b8a982
AS
814 int __index = (index)++; \
815 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
816 return -ENOSPC; \
817 } \
83b8a982 818 batch[__index] = (cmd); \
17ee950d
AS
819 } while (0)
820
8f40db77 821#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 822 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
823
824/*
825 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
826 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
827 * but there is a slight complication as this is applied in WA batch where the
828 * values are only initialized once so we cannot take register value at the
829 * beginning and reuse it further; hence we save its value to memory, upload a
830 * constant value with bit21 set and then we restore it back with the saved value.
831 * To simplify the WA, a constant value is formed by using the default value
832 * of this register. This shouldn't be a problem because we are only modifying
833 * it for a short period and this batch in non-premptible. We can ofcourse
834 * use additional instructions that read the actual value of the register
835 * at that time and set our bit of interest but it makes the WA complicated.
836 *
837 * This WA is also required for Gen9 so extracting as a function avoids
838 * code duplication.
839 */
0bc40be8 840static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
6e5248b5 841 uint32_t *batch,
9e000847
AS
842 uint32_t index)
843{
5e580523 844 struct drm_i915_private *dev_priv = engine->i915;
9e000847
AS
845 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
846
a4106a78 847 /*
fe905819 848 * WaDisableLSQCROPERFforOCL:skl,kbl
a4106a78
AS
849 * This WA is implemented in skl_init_clock_gating() but since
850 * this batch updates GEN8_L3SQCREG4 with default value we need to
851 * set this bit here to retain the WA during flush.
852 */
738fa1b3
MK
853 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
854 IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
a4106a78
AS
855 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
856
f1afe24f 857 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 858 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 859 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 860 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982
AS
861 wa_ctx_emit(batch, index, 0);
862
863 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 864 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
865 wa_ctx_emit(batch, index, l3sqc4_flush);
866
867 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
868 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
869 PIPE_CONTROL_DC_FLUSH_ENABLE));
870 wa_ctx_emit(batch, index, 0);
871 wa_ctx_emit(batch, index, 0);
872 wa_ctx_emit(batch, index, 0);
873 wa_ctx_emit(batch, index, 0);
874
f1afe24f 875 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 876 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 877 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 878 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982 879 wa_ctx_emit(batch, index, 0);
9e000847
AS
880
881 return index;
882}
883
17ee950d
AS
884static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
885 uint32_t offset,
886 uint32_t start_alignment)
887{
888 return wa_ctx->offset = ALIGN(offset, start_alignment);
889}
890
891static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
892 uint32_t offset,
893 uint32_t size_alignment)
894{
895 wa_ctx->size = offset - wa_ctx->offset;
896
897 WARN(wa_ctx->size % size_alignment,
898 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
899 wa_ctx->size, size_alignment);
900 return 0;
901}
902
6e5248b5
DV
903/*
904 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
905 * initialized at the beginning and shared across all contexts but this field
906 * helps us to have multiple batches at different offsets and select them based
907 * on a criteria. At the moment this batch always start at the beginning of the page
908 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 909 *
6e5248b5
DV
910 * The number of WA applied are not known at the beginning; we use this field
911 * to return the no of DWORDS written.
17ee950d 912 *
6e5248b5
DV
913 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
914 * so it adds NOOPs as padding to make it cacheline aligned.
915 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
916 * makes a complete batch buffer.
17ee950d 917 */
0bc40be8 918static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d 919 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 920 uint32_t *batch,
17ee950d
AS
921 uint32_t *offset)
922{
0160f055 923 uint32_t scratch_addr;
17ee950d
AS
924 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
925
7ad00d1a 926 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 927 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 928
c82435bb 929 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 930 if (IS_BROADWELL(engine->i915)) {
0bc40be8 931 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
932 if (rc < 0)
933 return rc;
934 index = rc;
c82435bb
AS
935 }
936
0160f055
AS
937 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
938 /* Actual scratch location is at 128 bytes offset */
bde13ebd 939 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0160f055 940
83b8a982
AS
941 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
942 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
943 PIPE_CONTROL_GLOBAL_GTT_IVB |
944 PIPE_CONTROL_CS_STALL |
945 PIPE_CONTROL_QW_WRITE));
946 wa_ctx_emit(batch, index, scratch_addr);
947 wa_ctx_emit(batch, index, 0);
948 wa_ctx_emit(batch, index, 0);
949 wa_ctx_emit(batch, index, 0);
0160f055 950
17ee950d
AS
951 /* Pad to end of cacheline */
952 while (index % CACHELINE_DWORDS)
83b8a982 953 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
954
955 /*
956 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
957 * execution depends on the length specified in terms of cache lines
958 * in the register CTX_RCS_INDIRECT_CTX
959 */
960
961 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
962}
963
6e5248b5
DV
964/*
965 * This batch is started immediately after indirect_ctx batch. Since we ensure
966 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 967 *
6e5248b5 968 * The number of DWORDS written are returned using this field.
17ee950d
AS
969 *
970 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
971 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
972 */
0bc40be8 973static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d 974 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 975 uint32_t *batch,
17ee950d
AS
976 uint32_t *offset)
977{
978 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
979
7ad00d1a 980 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 981 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 982
83b8a982 983 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
984
985 return wa_ctx_end(wa_ctx, *offset = index, 1);
986}
987
0bc40be8 988static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc 989 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 990 uint32_t *batch,
0504cffc
AS
991 uint32_t *offset)
992{
a4106a78 993 int ret;
5e580523 994 struct drm_i915_private *dev_priv = engine->i915;
0504cffc
AS
995 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
996
0907c8f7 997 /* WaDisableCtxRestoreArbitration:skl,bxt */
5e580523
DA
998 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
999 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
0907c8f7 1000 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1001
a4106a78 1002 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1003 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1004 if (ret < 0)
1005 return ret;
1006 index = ret;
1007
873e8171
MK
1008 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1009 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1010 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1011 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1012 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1013 wa_ctx_emit(batch, index, MI_NOOP);
1014
066d4628
MK
1015 /* WaClearSlmSpaceAtContextSwitch:kbl */
1016 /* Actual scratch location is at 128 bytes offset */
703d1282 1017 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
56c0f1a7 1018 u32 scratch_addr =
bde13ebd 1019 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
066d4628
MK
1020
1021 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1022 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1023 PIPE_CONTROL_GLOBAL_GTT_IVB |
1024 PIPE_CONTROL_CS_STALL |
1025 PIPE_CONTROL_QW_WRITE));
1026 wa_ctx_emit(batch, index, scratch_addr);
1027 wa_ctx_emit(batch, index, 0);
1028 wa_ctx_emit(batch, index, 0);
1029 wa_ctx_emit(batch, index, 0);
1030 }
3485d99e
TG
1031
1032 /* WaMediaPoolStateCmdInWABB:bxt */
1033 if (HAS_POOLED_EU(engine->i915)) {
1034 /*
1035 * EU pool configuration is setup along with golden context
1036 * during context initialization. This value depends on
1037 * device type (2x6 or 3x6) and needs to be updated based
1038 * on which subslice is disabled especially for 2x6
1039 * devices, however it is safe to load default
1040 * configuration of 3x6 device instead of masking off
1041 * corresponding bits because HW ignores bits of a disabled
1042 * subslice and drops down to appropriate config. Please
1043 * see render_state_setup() in i915_gem_render_state.c for
1044 * possible configurations, to avoid duplication they are
1045 * not shown here again.
1046 */
1047 u32 eu_pool_config = 0x00777000;
1048 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1049 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1050 wa_ctx_emit(batch, index, eu_pool_config);
1051 wa_ctx_emit(batch, index, 0);
1052 wa_ctx_emit(batch, index, 0);
1053 wa_ctx_emit(batch, index, 0);
1054 }
1055
0504cffc
AS
1056 /* Pad to end of cacheline */
1057 while (index % CACHELINE_DWORDS)
1058 wa_ctx_emit(batch, index, MI_NOOP);
1059
1060 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1061}
1062
0bc40be8 1063static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc 1064 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1065 uint32_t *batch,
0504cffc
AS
1066 uint32_t *offset)
1067{
1068 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1069
9b01435d 1070 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
c033666a
CW
1071 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1072 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1073 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1074 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1075 wa_ctx_emit(batch, index,
1076 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1077 wa_ctx_emit(batch, index, MI_NOOP);
1078 }
1079
b1e429fe 1080 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1081 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1082 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1083
1084 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1085 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1086
1087 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1088 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1089
1090 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1091 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1092
1093 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1094 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1095 wa_ctx_emit(batch, index, 0x0);
1096 wa_ctx_emit(batch, index, MI_NOOP);
1097 }
1098
0907c8f7 1099 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1100 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1101 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1102 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1103
0504cffc
AS
1104 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1105
1106 return wa_ctx_end(wa_ctx, *offset = index, 1);
1107}
1108
0bc40be8 1109static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d 1110{
48bb74e4
CW
1111 struct drm_i915_gem_object *obj;
1112 struct i915_vma *vma;
1113 int err;
17ee950d 1114
48bb74e4
CW
1115 obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1116 if (IS_ERR(obj))
1117 return PTR_ERR(obj);
17ee950d 1118
48bb74e4
CW
1119 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1120 if (IS_ERR(vma)) {
1121 err = PTR_ERR(vma);
1122 goto err;
17ee950d
AS
1123 }
1124
48bb74e4
CW
1125 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1126 if (err)
1127 goto err;
1128
1129 engine->wa_ctx.vma = vma;
17ee950d 1130 return 0;
48bb74e4
CW
1131
1132err:
1133 i915_gem_object_put(obj);
1134 return err;
17ee950d
AS
1135}
1136
0bc40be8 1137static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1138{
19880c4a 1139 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1140}
1141
0bc40be8 1142static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1143{
48bb74e4 1144 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
1145 uint32_t *batch;
1146 uint32_t offset;
1147 struct page *page;
48bb74e4 1148 int ret;
17ee950d 1149
0bc40be8 1150 WARN_ON(engine->id != RCS);
17ee950d 1151
5e60d790 1152 /* update this when WA for higher Gen are added */
c033666a 1153 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1154 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1155 INTEL_GEN(engine->i915));
5e60d790 1156 return 0;
0504cffc 1157 }
5e60d790 1158
c4db7599 1159 /* some WA perform writes to scratch page, ensure it is valid */
56c0f1a7 1160 if (!engine->scratch) {
0bc40be8 1161 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1162 return -EINVAL;
1163 }
1164
0bc40be8 1165 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1166 if (ret) {
1167 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1168 return ret;
1169 }
1170
48bb74e4 1171 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
17ee950d
AS
1172 batch = kmap_atomic(page);
1173 offset = 0;
1174
c033666a 1175 if (IS_GEN8(engine->i915)) {
0bc40be8 1176 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1177 &wa_ctx->indirect_ctx,
1178 batch,
1179 &offset);
1180 if (ret)
1181 goto out;
1182
0bc40be8 1183 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1184 &wa_ctx->per_ctx,
1185 batch,
1186 &offset);
1187 if (ret)
1188 goto out;
c033666a 1189 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1190 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1191 &wa_ctx->indirect_ctx,
1192 batch,
1193 &offset);
1194 if (ret)
1195 goto out;
1196
0bc40be8 1197 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1198 &wa_ctx->per_ctx,
1199 batch,
1200 &offset);
1201 if (ret)
1202 goto out;
17ee950d
AS
1203 }
1204
1205out:
1206 kunmap_atomic(batch);
1207 if (ret)
0bc40be8 1208 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1209
1210 return ret;
1211}
1212
04794adb
TU
1213static void lrc_init_hws(struct intel_engine_cs *engine)
1214{
c033666a 1215 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1216
1217 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
57e88531 1218 engine->status_page.ggtt_offset);
04794adb
TU
1219 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1220}
1221
0bc40be8 1222static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1223{
c033666a 1224 struct drm_i915_private *dev_priv = engine->i915;
821ed7df
CW
1225 int ret;
1226
1227 ret = intel_mocs_init_engine(engine);
1228 if (ret)
1229 return ret;
9b1136d5 1230
04794adb 1231 lrc_init_hws(engine);
e84fe803 1232
821ed7df
CW
1233 intel_engine_reset_irq(engine);
1234
0bc40be8 1235 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1236
0bc40be8 1237 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1238 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1239 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
dfc53c5e 1240
0bc40be8 1241 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1242
fc0768ce 1243 intel_engine_init_hangcheck(engine);
9b1136d5 1244
821ed7df
CW
1245 if (!execlists_elsp_idle(engine))
1246 execlists_submit_ports(engine);
1247
1248 return 0;
9b1136d5
OM
1249}
1250
0bc40be8 1251static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1252{
c033666a 1253 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1254 int ret;
1255
0bc40be8 1256 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1257 if (ret)
1258 return ret;
1259
1260 /* We need to disable the AsyncFlip performance optimisations in order
1261 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1262 * programmed to '1' on all products.
1263 *
1264 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1265 */
1266 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1267
9b1136d5
OM
1268 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1269
0bc40be8 1270 return init_workarounds_ring(engine);
9b1136d5
OM
1271}
1272
0bc40be8 1273static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1274{
1275 int ret;
1276
0bc40be8 1277 ret = gen8_init_common_ring(engine);
82ef822e
DL
1278 if (ret)
1279 return ret;
1280
0bc40be8 1281 return init_workarounds_ring(engine);
82ef822e
DL
1282}
1283
821ed7df
CW
1284static void reset_common_ring(struct intel_engine_cs *engine,
1285 struct drm_i915_gem_request *request)
1286{
1287 struct drm_i915_private *dev_priv = engine->i915;
1288 struct execlist_port *port = engine->execlist_port;
1289 struct intel_context *ce = &request->ctx->engine[engine->id];
1290
1291 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1292 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1293 request->ring->head = request->postfix;
1294 request->ring->last_retired_head = -1;
1295 intel_ring_update_space(request->ring);
1296
1297 if (i915.enable_guc_submission)
1298 return;
1299
1300 /* Catch up with any missed context-switch interrupts */
1301 I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1302 if (request->ctx != port[0].request->ctx) {
1303 i915_gem_request_put(port[0].request);
1304 port[0] = port[1];
1305 memset(&port[1], 0, sizeof(port[1]));
1306 }
1307
1308 /* CS is stopped, and we will resubmit both ports on resume */
1309 GEM_BUG_ON(request->ctx != port[0].request->ctx);
1310 port[0].count = 0;
1311 port[1].count = 0;
1312}
1313
7a01a0a2
MT
1314static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1315{
1316 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
7e37f889 1317 struct intel_ring *ring = req->ring;
4a570db5 1318 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1319 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1320 int i, ret;
1321
987046ad 1322 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1323 if (ret)
1324 return ret;
1325
b5321f30 1326 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
7a01a0a2
MT
1327 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1328 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1329
b5321f30
CW
1330 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1331 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1332 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1333 intel_ring_emit(ring, lower_32_bits(pd_daddr));
7a01a0a2
MT
1334 }
1335
b5321f30
CW
1336 intel_ring_emit(ring, MI_NOOP);
1337 intel_ring_advance(ring);
7a01a0a2
MT
1338
1339 return 0;
1340}
1341
be795fc1 1342static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba
CW
1343 u64 offset, u32 len,
1344 unsigned int dispatch_flags)
15648585 1345{
7e37f889 1346 struct intel_ring *ring = req->ring;
8e004efc 1347 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1348 int ret;
1349
7a01a0a2
MT
1350 /* Don't rely in hw updating PDPs, specially in lite-restore.
1351 * Ideally, we should set Force PD Restore in ctx descriptor,
1352 * but we can't. Force Restore would be a second option, but
1353 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1354 * not idle). PML4 is allocated during ppgtt init so this is
1355 * not needed in 48-bit.*/
7a01a0a2 1356 if (req->ctx->ppgtt &&
666796da 1357 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1358 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1359 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1360 ret = intel_logical_ring_emit_pdps(req);
1361 if (ret)
1362 return ret;
1363 }
7a01a0a2 1364
666796da 1365 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1366 }
1367
987046ad 1368 ret = intel_ring_begin(req, 4);
15648585
OM
1369 if (ret)
1370 return ret;
1371
1372 /* FIXME(BDW): Address space and security selectors. */
b5321f30
CW
1373 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1374 (ppgtt<<8) |
1375 (dispatch_flags & I915_DISPATCH_RS ?
1376 MI_BATCH_RESOURCE_STREAMER : 0));
1377 intel_ring_emit(ring, lower_32_bits(offset));
1378 intel_ring_emit(ring, upper_32_bits(offset));
1379 intel_ring_emit(ring, MI_NOOP);
1380 intel_ring_advance(ring);
15648585
OM
1381
1382 return 0;
1383}
1384
31bb59cc 1385static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1386{
c033666a 1387 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1388 I915_WRITE_IMR(engine,
1389 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1390 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1391}
1392
31bb59cc 1393static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1394{
c033666a 1395 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1396 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1397}
1398
7c9cf4e3 1399static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1400{
7e37f889
CW
1401 struct intel_ring *ring = request->ring;
1402 u32 cmd;
4712274c
OM
1403 int ret;
1404
987046ad 1405 ret = intel_ring_begin(request, 4);
4712274c
OM
1406 if (ret)
1407 return ret;
1408
1409 cmd = MI_FLUSH_DW + 1;
1410
f0a1fb10
CW
1411 /* We always require a command barrier so that subsequent
1412 * commands, such as breadcrumb interrupts, are strictly ordered
1413 * wrt the contents of the write cache being flushed to memory
1414 * (and thus being coherent from the CPU).
1415 */
1416 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1417
7c9cf4e3 1418 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1419 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1420 if (request->engine->id == VCS)
f0a1fb10 1421 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1422 }
1423
b5321f30
CW
1424 intel_ring_emit(ring, cmd);
1425 intel_ring_emit(ring,
1426 I915_GEM_HWS_SCRATCH_ADDR |
1427 MI_FLUSH_DW_USE_GTT);
1428 intel_ring_emit(ring, 0); /* upper addr */
1429 intel_ring_emit(ring, 0); /* value */
1430 intel_ring_advance(ring);
4712274c
OM
1431
1432 return 0;
1433}
1434
7deb4d39 1435static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1436 u32 mode)
4712274c 1437{
7e37f889 1438 struct intel_ring *ring = request->ring;
b5321f30 1439 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1440 u32 scratch_addr =
1441 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1442 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1443 u32 flags = 0;
1444 int ret;
0b2d0934 1445 int len;
4712274c
OM
1446
1447 flags |= PIPE_CONTROL_CS_STALL;
1448
7c9cf4e3 1449 if (mode & EMIT_FLUSH) {
4712274c
OM
1450 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1451 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1452 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1453 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1454 }
1455
7c9cf4e3 1456 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1457 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1458 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1459 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1460 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1461 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1462 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1463 flags |= PIPE_CONTROL_QW_WRITE;
1464 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1465
1a5a9ce7
BW
1466 /*
1467 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1468 * pipe control.
1469 */
c033666a 1470 if (IS_GEN9(request->i915))
1a5a9ce7 1471 vf_flush_wa = true;
0b2d0934
MK
1472
1473 /* WaForGAMHang:kbl */
1474 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1475 dc_flush_wa = true;
1a5a9ce7 1476 }
9647ff36 1477
0b2d0934
MK
1478 len = 6;
1479
1480 if (vf_flush_wa)
1481 len += 6;
1482
1483 if (dc_flush_wa)
1484 len += 12;
1485
1486 ret = intel_ring_begin(request, len);
4712274c
OM
1487 if (ret)
1488 return ret;
1489
9647ff36 1490 if (vf_flush_wa) {
b5321f30
CW
1491 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1492 intel_ring_emit(ring, 0);
1493 intel_ring_emit(ring, 0);
1494 intel_ring_emit(ring, 0);
1495 intel_ring_emit(ring, 0);
1496 intel_ring_emit(ring, 0);
9647ff36
ID
1497 }
1498
0b2d0934 1499 if (dc_flush_wa) {
b5321f30
CW
1500 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1501 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1502 intel_ring_emit(ring, 0);
1503 intel_ring_emit(ring, 0);
1504 intel_ring_emit(ring, 0);
1505 intel_ring_emit(ring, 0);
0b2d0934
MK
1506 }
1507
b5321f30
CW
1508 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1509 intel_ring_emit(ring, flags);
1510 intel_ring_emit(ring, scratch_addr);
1511 intel_ring_emit(ring, 0);
1512 intel_ring_emit(ring, 0);
1513 intel_ring_emit(ring, 0);
0b2d0934
MK
1514
1515 if (dc_flush_wa) {
b5321f30
CW
1516 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1517 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1518 intel_ring_emit(ring, 0);
1519 intel_ring_emit(ring, 0);
1520 intel_ring_emit(ring, 0);
1521 intel_ring_emit(ring, 0);
0b2d0934
MK
1522 }
1523
b5321f30 1524 intel_ring_advance(ring);
4712274c
OM
1525
1526 return 0;
1527}
1528
c04e0f3b 1529static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1530{
319404df
ID
1531 /*
1532 * On BXT A steppings there is a HW coherency issue whereby the
1533 * MI_STORE_DATA_IMM storing the completed request's seqno
1534 * occasionally doesn't invalidate the CPU cache. Work around this by
1535 * clflushing the corresponding cacheline whenever the caller wants
1536 * the coherency to be guaranteed. Note that this cacheline is known
1537 * to be clean at this point, since we only write it in
1538 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1539 * this clflush in practice becomes an invalidate operation.
1540 */
c04e0f3b 1541 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1542}
1543
7c17d377
CW
1544/*
1545 * Reserve space for 2 NOOPs at the end of each request to be
1546 * used as a workaround for not being allowed to do lite
1547 * restore with HEAD==TAIL (WaIdleLiteRestore).
1548 */
1549#define WA_TAIL_DWORDS 2
1550
c4e76638 1551static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1552{
7e37f889 1553 struct intel_ring *ring = request->ring;
4da46e1e
OM
1554 int ret;
1555
987046ad 1556 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1557 if (ret)
1558 return ret;
1559
7c17d377
CW
1560 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1561 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1562
b5321f30
CW
1563 intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1564 intel_ring_emit(ring,
1565 intel_hws_seqno_address(request->engine) |
1566 MI_FLUSH_DW_USE_GTT);
1567 intel_ring_emit(ring, 0);
1568 intel_ring_emit(ring, request->fence.seqno);
1569 intel_ring_emit(ring, MI_USER_INTERRUPT);
1570 intel_ring_emit(ring, MI_NOOP);
ddd66c51 1571 return intel_logical_ring_advance(request);
7c17d377 1572}
4da46e1e 1573
7c17d377
CW
1574static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1575{
7e37f889 1576 struct intel_ring *ring = request->ring;
7c17d377 1577 int ret;
53292cdb 1578
987046ad 1579 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1580 if (ret)
1581 return ret;
1582
ce81a65c
MW
1583 /* We're using qword write, seqno should be aligned to 8 bytes. */
1584 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1585
7c17d377
CW
1586 /* w/a for post sync ops following a GPGPU operation we
1587 * need a prior CS_STALL, which is emitted by the flush
1588 * following the batch.
1589 */
b5321f30
CW
1590 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1591 intel_ring_emit(ring,
1592 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1593 PIPE_CONTROL_CS_STALL |
1594 PIPE_CONTROL_QW_WRITE));
1595 intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1596 intel_ring_emit(ring, 0);
1597 intel_ring_emit(ring, i915_gem_request_get_seqno(request));
ce81a65c 1598 /* We're thrashing one dword of HWS. */
b5321f30
CW
1599 intel_ring_emit(ring, 0);
1600 intel_ring_emit(ring, MI_USER_INTERRUPT);
1601 intel_ring_emit(ring, MI_NOOP);
ddd66c51 1602 return intel_logical_ring_advance(request);
4da46e1e
OM
1603}
1604
8753181e 1605static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1606{
1607 int ret;
1608
e2be4faf 1609 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1610 if (ret)
1611 return ret;
1612
3bbaba0c
PA
1613 ret = intel_rcs_context_init_mocs(req);
1614 /*
1615 * Failing to program the MOCS is non-fatal.The system will not
1616 * run at peak performance. So generate an error and carry on.
1617 */
1618 if (ret)
1619 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1620
e40f9ee6 1621 return i915_gem_render_state_init(req);
e7778be1
TD
1622}
1623
73e4d07f
OM
1624/**
1625 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1626 * @engine: Engine Command Streamer.
73e4d07f 1627 */
0bc40be8 1628void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1629{
6402c330 1630 struct drm_i915_private *dev_priv;
9832b9da 1631
117897f4 1632 if (!intel_engine_initialized(engine))
48d82387
OM
1633 return;
1634
27af5eea
TU
1635 /*
1636 * Tasklet cannot be active at this point due intel_mark_active/idle
1637 * so this is just for documentation.
1638 */
1639 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1640 tasklet_kill(&engine->irq_tasklet);
1641
c033666a 1642 dev_priv = engine->i915;
6402c330 1643
0bc40be8 1644 if (engine->buffer) {
0bc40be8 1645 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1646 }
48d82387 1647
0bc40be8
TU
1648 if (engine->cleanup)
1649 engine->cleanup(engine);
48d82387 1650
96a945aa 1651 intel_engine_cleanup_common(engine);
688e6c72 1652
57e88531
CW
1653 if (engine->status_page.vma) {
1654 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1655 engine->status_page.vma = NULL;
48d82387 1656 }
24f1d3cc 1657 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1658
0bc40be8 1659 lrc_destroy_wa_ctx_obj(engine);
c033666a 1660 engine->i915 = NULL;
454afebd
OM
1661}
1662
ddd66c51
CW
1663void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1664{
1665 struct intel_engine_cs *engine;
1666
1667 for_each_engine(engine, dev_priv)
f4ea6bdd 1668 engine->submit_request = execlists_submit_request;
ddd66c51
CW
1669}
1670
c9cacf93 1671static void
e1382efb 1672logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1673{
1674 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1675 engine->init_hw = gen8_init_common_ring;
821ed7df 1676 engine->reset_hw = reset_common_ring;
0bc40be8 1677 engine->emit_flush = gen8_emit_flush;
ddd66c51 1678 engine->emit_request = gen8_emit_request;
f4ea6bdd 1679 engine->submit_request = execlists_submit_request;
ddd66c51 1680
31bb59cc
CW
1681 engine->irq_enable = gen8_logical_ring_enable_irq;
1682 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1683 engine->emit_bb_start = gen8_emit_bb_start;
1b7744e7 1684 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
c04e0f3b 1685 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
c9cacf93
TU
1686}
1687
d9f3af96 1688static inline void
c2c7f240 1689logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1690{
c2c7f240 1691 unsigned shift = engine->irq_shift;
0bc40be8
TU
1692 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1693 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1694}
1695
7d774cac 1696static int
bf3783e5 1697lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1698{
57e88531 1699 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1700 void *hws;
04794adb
TU
1701
1702 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1703 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1704 if (IS_ERR(hws))
1705 return PTR_ERR(hws);
57e88531
CW
1706
1707 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1708 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1709 engine->status_page.vma = vma;
7d774cac
TU
1710
1711 return 0;
04794adb
TU
1712}
1713
bb45438f
TU
1714static void
1715logical_ring_setup(struct intel_engine_cs *engine)
1716{
1717 struct drm_i915_private *dev_priv = engine->i915;
1718 enum forcewake_domains fw_domains;
1719
019bf277
TU
1720 intel_engine_setup_common(engine);
1721
bb45438f
TU
1722 /* Intentionally left blank. */
1723 engine->buffer = NULL;
1724
1725 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1726 RING_ELSP(engine),
1727 FW_REG_WRITE);
1728
1729 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1730 RING_CONTEXT_STATUS_PTR(engine),
1731 FW_REG_READ | FW_REG_WRITE);
1732
1733 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1734 RING_CONTEXT_STATUS_BUF_BASE(engine),
1735 FW_REG_READ);
1736
1737 engine->fw_domains = fw_domains;
1738
bb45438f
TU
1739 tasklet_init(&engine->irq_tasklet,
1740 intel_lrc_irq_handler, (unsigned long)engine);
1741
1742 logical_ring_init_platform_invariants(engine);
1743 logical_ring_default_vfuncs(engine);
1744 logical_ring_default_irqs(engine);
bb45438f
TU
1745}
1746
a19d6ff2
TU
1747static int
1748logical_ring_init(struct intel_engine_cs *engine)
1749{
1750 struct i915_gem_context *dctx = engine->i915->kernel_context;
1751 int ret;
1752
019bf277 1753 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1754 if (ret)
1755 goto error;
1756
1757 ret = execlists_context_deferred_alloc(dctx, engine);
1758 if (ret)
1759 goto error;
1760
1761 /* As this is the default context, always pin it */
1762 ret = intel_lr_context_pin(dctx, engine);
1763 if (ret) {
1764 DRM_ERROR("Failed to pin context for %s: %d\n",
1765 engine->name, ret);
1766 goto error;
1767 }
1768
1769 /* And setup the hardware status page. */
1770 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1771 if (ret) {
1772 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1773 goto error;
1774 }
1775
1776 return 0;
1777
1778error:
1779 intel_logical_ring_cleanup(engine);
1780 return ret;
1781}
1782
88d2ba2e 1783int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1784{
1785 struct drm_i915_private *dev_priv = engine->i915;
1786 int ret;
1787
bb45438f
TU
1788 logical_ring_setup(engine);
1789
a19d6ff2
TU
1790 if (HAS_L3_DPF(dev_priv))
1791 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1792
1793 /* Override some for render ring. */
1794 if (INTEL_GEN(dev_priv) >= 9)
1795 engine->init_hw = gen9_init_render_ring;
1796 else
1797 engine->init_hw = gen8_init_render_ring;
1798 engine->init_context = gen8_init_rcs_context;
a19d6ff2
TU
1799 engine->emit_flush = gen8_emit_flush_render;
1800 engine->emit_request = gen8_emit_request_render;
1801
56c0f1a7 1802 ret = intel_engine_create_scratch(engine, 4096);
a19d6ff2
TU
1803 if (ret)
1804 return ret;
1805
1806 ret = intel_init_workaround_bb(engine);
1807 if (ret) {
1808 /*
1809 * We continue even if we fail to initialize WA batch
1810 * because we only expect rare glitches but nothing
1811 * critical to prevent us from using GPU
1812 */
1813 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1814 ret);
1815 }
1816
1817 ret = logical_ring_init(engine);
1818 if (ret) {
1819 lrc_destroy_wa_ctx_obj(engine);
1820 }
1821
1822 return ret;
1823}
1824
88d2ba2e 1825int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1826{
1827 logical_ring_setup(engine);
1828
1829 return logical_ring_init(engine);
454afebd
OM
1830}
1831
0cea6502 1832static u32
c033666a 1833make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1834{
1835 u32 rpcs = 0;
1836
1837 /*
1838 * No explicit RPCS request is needed to ensure full
1839 * slice/subslice/EU enablement prior to Gen9.
1840 */
c033666a 1841 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1842 return 0;
1843
1844 /*
1845 * Starting in Gen9, render power gating can leave
1846 * slice/subslice/EU in a partially enabled state. We
1847 * must make an explicit request through RPCS for full
1848 * enablement.
1849 */
43b67998 1850 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1851 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1852 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1853 GEN8_RPCS_S_CNT_SHIFT;
1854 rpcs |= GEN8_RPCS_ENABLE;
1855 }
1856
43b67998 1857 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1858 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1859 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1860 GEN8_RPCS_SS_CNT_SHIFT;
1861 rpcs |= GEN8_RPCS_ENABLE;
1862 }
1863
43b67998
ID
1864 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1865 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 1866 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 1867 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
1868 GEN8_RPCS_EU_MAX_SHIFT;
1869 rpcs |= GEN8_RPCS_ENABLE;
1870 }
1871
1872 return rpcs;
1873}
1874
0bc40be8 1875static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1876{
1877 u32 indirect_ctx_offset;
1878
c033666a 1879 switch (INTEL_GEN(engine->i915)) {
71562919 1880 default:
c033666a 1881 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
1882 /* fall through */
1883 case 9:
1884 indirect_ctx_offset =
1885 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1886 break;
1887 case 8:
1888 indirect_ctx_offset =
1889 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1890 break;
1891 }
1892
1893 return indirect_ctx_offset;
1894}
1895
8670d6f9 1896static int
e2efd130 1897populate_lr_context(struct i915_gem_context *ctx,
7d774cac 1898 struct drm_i915_gem_object *ctx_obj,
0bc40be8 1899 struct intel_engine_cs *engine,
7e37f889 1900 struct intel_ring *ring)
8670d6f9 1901{
c033666a 1902 struct drm_i915_private *dev_priv = ctx->i915;
ae6c4806 1903 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
1904 void *vaddr;
1905 u32 *reg_state;
8670d6f9
OM
1906 int ret;
1907
2d965536
TD
1908 if (!ppgtt)
1909 ppgtt = dev_priv->mm.aliasing_ppgtt;
1910
8670d6f9
OM
1911 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1912 if (ret) {
1913 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1914 return ret;
1915 }
1916
d31d7cb1 1917 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
7d774cac
TU
1918 if (IS_ERR(vaddr)) {
1919 ret = PTR_ERR(vaddr);
1920 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
1921 return ret;
1922 }
7d774cac 1923 ctx_obj->dirty = true;
8670d6f9
OM
1924
1925 /* The second page of the context object contains some fields which must
1926 * be set up prior to the first execution. */
7d774cac 1927 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
1928
1929 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1930 * commands followed by (reg, value) pairs. The values we are setting here are
1931 * only for the first context restore: on a subsequent save, the GPU will
1932 * recreate this batchbuffer with new values (including all the missing
1933 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 1934 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
1935 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1936 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1937 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
1938 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1939 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 1940 (HAS_RESOURCE_STREAMER(dev_priv) ?
99cf8ea1 1941 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
1942 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1943 0);
1944 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1945 0);
7ba717cf
TD
1946 /* Ring buffer start address is not known until the buffer is pinned.
1947 * It is written to the context image in execlists_update_context()
1948 */
0bc40be8
TU
1949 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1950 RING_START(engine->mmio_base), 0);
1951 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1952 RING_CTL(engine->mmio_base),
7e37f889 1953 ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
1954 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1955 RING_BBADDR_UDW(engine->mmio_base), 0);
1956 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1957 RING_BBADDR(engine->mmio_base), 0);
1958 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1959 RING_BBSTATE(engine->mmio_base),
0d925ea0 1960 RING_BB_PPGTT);
0bc40be8
TU
1961 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1962 RING_SBBADDR_UDW(engine->mmio_base), 0);
1963 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1964 RING_SBBADDR(engine->mmio_base), 0);
1965 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1966 RING_SBBSTATE(engine->mmio_base), 0);
1967 if (engine->id == RCS) {
1968 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1969 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1970 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1971 RING_INDIRECT_CTX(engine->mmio_base), 0);
1972 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1973 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
48bb74e4 1974 if (engine->wa_ctx.vma) {
0bc40be8 1975 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 1976 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d
AS
1977
1978 reg_state[CTX_RCS_INDIRECT_CTX+1] =
1979 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
1980 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
1981
1982 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 1983 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
1984
1985 reg_state[CTX_BB_PER_CTX_PTR+1] =
1986 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
1987 0x01;
1988 }
8670d6f9 1989 }
0d925ea0 1990 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
1991 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
1992 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 1993 /* PDP values well be assigned later if needed */
0bc40be8
TU
1994 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
1995 0);
1996 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
1997 0);
1998 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
1999 0);
2000 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2001 0);
2002 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2003 0);
2004 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2005 0);
2006 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2007 0);
2008 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2009 0);
d7b2633d 2010
2dba3239
MT
2011 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2012 /* 64b PPGTT (48bit canonical)
2013 * PDP0_DESCRIPTOR contains the base address to PML4 and
2014 * other PDP Descriptors are ignored.
2015 */
2016 ASSIGN_CTX_PML4(ppgtt, reg_state);
2017 } else {
2018 /* 32b PPGTT
2019 * PDP*_DESCRIPTOR contains the base address of space supported.
2020 * With dynamic page allocation, PDPs may not be allocated at
2021 * this point. Point the unallocated PDPs to the scratch page
2022 */
c6a2ac71 2023 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2024 }
2025
0bc40be8 2026 if (engine->id == RCS) {
8670d6f9 2027 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2028 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2029 make_rpcs(dev_priv));
8670d6f9
OM
2030 }
2031
7d774cac 2032 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2033
2034 return 0;
2035}
2036
c5d46ee2
DG
2037/**
2038 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2039 * @engine: which engine to find the context size for
c5d46ee2
DG
2040 *
2041 * Each engine may require a different amount of space for a context image,
2042 * so when allocating (or copying) an image, this function can be used to
2043 * find the right size for the specific engine.
2044 *
2045 * Return: size (in bytes) of an engine-specific context image
2046 *
2047 * Note: this size includes the HWSP, which is part of the context image
2048 * in LRC mode, but does not include the "shared data page" used with
2049 * GuC submission. The caller should account for this if using the GuC.
2050 */
0bc40be8 2051uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2052{
2053 int ret = 0;
2054
c033666a 2055 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2056
0bc40be8 2057 switch (engine->id) {
8c857917 2058 case RCS:
c033666a 2059 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2060 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2061 else
2062 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2063 break;
2064 case VCS:
2065 case BCS:
2066 case VECS:
2067 case VCS2:
2068 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2069 break;
2070 }
2071
2072 return ret;
ede7d42b
OM
2073}
2074
e2efd130 2075static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2076 struct intel_engine_cs *engine)
ede7d42b 2077{
8c857917 2078 struct drm_i915_gem_object *ctx_obj;
9021ad03 2079 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 2080 struct i915_vma *vma;
8c857917 2081 uint32_t context_size;
7e37f889 2082 struct intel_ring *ring;
8c857917
OM
2083 int ret;
2084
9021ad03 2085 WARN_ON(ce->state);
ede7d42b 2086
0bc40be8 2087 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2088
d1675198
AD
2089 /* One extra page as the sharing data between driver and GuC */
2090 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2091
91c8a326 2092 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
fe3db79b 2093 if (IS_ERR(ctx_obj)) {
3126a660 2094 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2095 return PTR_ERR(ctx_obj);
8c857917
OM
2096 }
2097
bf3783e5
CW
2098 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2099 if (IS_ERR(vma)) {
2100 ret = PTR_ERR(vma);
2101 goto error_deref_obj;
2102 }
2103
7e37f889 2104 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2105 if (IS_ERR(ring)) {
2106 ret = PTR_ERR(ring);
e84fe803 2107 goto error_deref_obj;
8670d6f9
OM
2108 }
2109
dca33ecc 2110 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2111 if (ret) {
2112 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2113 goto error_ring_free;
84c2377f
OM
2114 }
2115
dca33ecc 2116 ce->ring = ring;
bf3783e5 2117 ce->state = vma;
9021ad03 2118 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2119
2120 return 0;
8670d6f9 2121
dca33ecc 2122error_ring_free:
7e37f889 2123 intel_ring_free(ring);
e84fe803 2124error_deref_obj:
f8c417cd 2125 i915_gem_object_put(ctx_obj);
8670d6f9 2126 return ret;
ede7d42b 2127}
3e5b6f05 2128
821ed7df 2129void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2130{
821ed7df 2131 struct i915_gem_context *ctx = dev_priv->kernel_context;
e2f80391 2132 struct intel_engine_cs *engine;
3e5b6f05 2133
b4ac5afc 2134 for_each_engine(engine, dev_priv) {
9021ad03 2135 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac 2136 void *vaddr;
3e5b6f05 2137 uint32_t *reg_state;
3e5b6f05 2138
bf3783e5 2139 if (!ce->state)
3e5b6f05
TD
2140 continue;
2141
bf3783e5 2142 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac 2143 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2144 continue;
7d774cac
TU
2145
2146 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
3e5b6f05
TD
2147
2148 reg_state[CTX_RING_HEAD+1] = 0;
2149 reg_state[CTX_RING_TAIL+1] = 0;
2150
bf3783e5
CW
2151 ce->state->obj->dirty = true;
2152 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2153
dca33ecc
CW
2154 ce->ring->head = 0;
2155 ce->ring->tail = 0;
3e5b6f05
TD
2156 }
2157}