]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915/skl: AUX irqs have moved
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
127f1003 138
8c857917
OM
139#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
140#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
141
142#define GEN8_LR_CONTEXT_ALIGN 4096
143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
157
158#define CTX_LRI_HEADER_0 0x01
159#define CTX_CONTEXT_CONTROL 0x02
160#define CTX_RING_HEAD 0x04
161#define CTX_RING_TAIL 0x06
162#define CTX_RING_BUFFER_START 0x08
163#define CTX_RING_BUFFER_CONTROL 0x0a
164#define CTX_BB_HEAD_U 0x0c
165#define CTX_BB_HEAD_L 0x0e
166#define CTX_BB_STATE 0x10
167#define CTX_SECOND_BB_HEAD_U 0x12
168#define CTX_SECOND_BB_HEAD_L 0x14
169#define CTX_SECOND_BB_STATE 0x16
170#define CTX_BB_PER_CTX_PTR 0x18
171#define CTX_RCS_INDIRECT_CTX 0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173#define CTX_LRI_HEADER_1 0x21
174#define CTX_CTX_TIMESTAMP 0x22
175#define CTX_PDP3_UDW 0x24
176#define CTX_PDP3_LDW 0x26
177#define CTX_PDP2_UDW 0x28
178#define CTX_PDP2_LDW 0x2a
179#define CTX_PDP1_UDW 0x2c
180#define CTX_PDP1_LDW 0x2e
181#define CTX_PDP0_UDW 0x30
182#define CTX_PDP0_LDW 0x32
183#define CTX_LRI_HEADER_2 0x41
184#define CTX_R_PWR_CLK_STATE 0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
84b790f8
BW
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
192enum {
193 ADVANCED_CONTEXT = 0,
194 LEGACY_CONTEXT,
195 ADVANCED_AD_CONTEXT,
196 LEGACY_64B_CONTEXT
197};
198#define GEN8_CTX_MODE_SHIFT 3
199enum {
200 FAULT_AND_HANG = 0,
201 FAULT_AND_HALT, /* Debug only */
202 FAULT_AND_STREAM,
203 FAULT_AND_CONTINUE /* Unsupported */
204};
205#define GEN8_CTX_ID_SHIFT 32
206
73e4d07f
OM
207/**
208 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
209 * @dev: DRM device.
210 * @enable_execlists: value of i915.enable_execlists module parameter.
211 *
212 * Only certain platforms support Execlists (the prerequisites being
213 * support for Logical Ring Contexts and Aliasing PPGTT or better),
214 * and only when enabled via module parameter.
215 *
216 * Return: 1 if Execlists is supported and has to be enabled.
217 */
127f1003
OM
218int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
219{
bd84b1e9
DV
220 WARN_ON(i915.enable_ppgtt == -1);
221
127f1003
OM
222 if (enable_execlists == 0)
223 return 0;
224
14bf993e
OM
225 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
226 i915.use_mmio_flip >= 0)
127f1003
OM
227 return 1;
228
229 return 0;
230}
ede7d42b 231
73e4d07f
OM
232/**
233 * intel_execlists_ctx_id() - get the Execlists Context ID
234 * @ctx_obj: Logical Ring Context backing object.
235 *
236 * Do not confuse with ctx->id! Unfortunately we have a name overload
237 * here: the old context ID we pass to userspace as a handler so that
238 * they can refer to a context, and the new context ID we pass to the
239 * ELSP so that the GPU can inform us of the context status via
240 * interrupts.
241 *
242 * Return: 20-bits globally unique context ID.
243 */
84b790f8
BW
244u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
245{
246 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
247
248 /* LRCA is required to be 4K aligned so the more significant 20 bits
249 * are globally unique */
250 return lrca >> 12;
251}
252
253static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
254{
255 uint64_t desc;
256 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
acdd884a
MT
257
258 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
259
260 desc = GEN8_CTX_VALID;
261 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
262 desc |= GEN8_CTX_L3LLC_COHERENT;
263 desc |= GEN8_CTX_PRIVILEGE;
264 desc |= lrca;
265 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
266
267 /* TODO: WaDisableLiteRestore when we start using semaphore
268 * signalling between Command Streamers */
269 /* desc |= GEN8_CTX_FORCE_RESTORE; */
270
271 return desc;
272}
273
274static void execlists_elsp_write(struct intel_engine_cs *ring,
275 struct drm_i915_gem_object *ctx_obj0,
276 struct drm_i915_gem_object *ctx_obj1)
277{
278 struct drm_i915_private *dev_priv = ring->dev->dev_private;
279 uint64_t temp = 0;
280 uint32_t desc[4];
e981e7b1 281 unsigned long flags;
84b790f8
BW
282
283 /* XXX: You must always write both descriptors in the order below. */
284 if (ctx_obj1)
285 temp = execlists_ctx_descriptor(ctx_obj1);
286 else
287 temp = 0;
288 desc[1] = (u32)(temp >> 32);
289 desc[0] = (u32)temp;
290
291 temp = execlists_ctx_descriptor(ctx_obj0);
292 desc[3] = (u32)(temp >> 32);
293 desc[2] = (u32)temp;
294
e981e7b1
TD
295 /* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
296 * are in progress.
297 *
298 * The other problem is that we can't just call gen6_gt_force_wake_get()
299 * because that function calls intel_runtime_pm_get(), which might sleep.
300 * Instead, we do the runtime_pm_get/put when creating/destroying requests.
301 */
302 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
a01b0e94
D
303 if (IS_CHERRYVIEW(dev_priv->dev)) {
304 if (dev_priv->uncore.fw_rendercount++ == 0)
305 dev_priv->uncore.funcs.force_wake_get(dev_priv,
306 FORCEWAKE_RENDER);
307 if (dev_priv->uncore.fw_mediacount++ == 0)
308 dev_priv->uncore.funcs.force_wake_get(dev_priv,
309 FORCEWAKE_MEDIA);
310 } else {
311 if (dev_priv->uncore.forcewake_count++ == 0)
312 dev_priv->uncore.funcs.force_wake_get(dev_priv,
313 FORCEWAKE_ALL);
314 }
e981e7b1 315 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
84b790f8
BW
316
317 I915_WRITE(RING_ELSP(ring), desc[1]);
318 I915_WRITE(RING_ELSP(ring), desc[0]);
319 I915_WRITE(RING_ELSP(ring), desc[3]);
320 /* The context is automatically loaded after the following */
321 I915_WRITE(RING_ELSP(ring), desc[2]);
322
323 /* ELSP is a wo register, so use another nearby reg for posting instead */
324 POSTING_READ(RING_EXECLIST_STATUS(ring));
325
e981e7b1
TD
326 /* Release Force Wakeup (see the big comment above). */
327 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
a01b0e94
D
328 if (IS_CHERRYVIEW(dev_priv->dev)) {
329 if (--dev_priv->uncore.fw_rendercount == 0)
330 dev_priv->uncore.funcs.force_wake_put(dev_priv,
331 FORCEWAKE_RENDER);
332 if (--dev_priv->uncore.fw_mediacount == 0)
333 dev_priv->uncore.funcs.force_wake_put(dev_priv,
334 FORCEWAKE_MEDIA);
335 } else {
336 if (--dev_priv->uncore.forcewake_count == 0)
337 dev_priv->uncore.funcs.force_wake_put(dev_priv,
338 FORCEWAKE_ALL);
339 }
340
e981e7b1 341 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
84b790f8
BW
342}
343
ae1250b9
OM
344static int execlists_ctx_write_tail(struct drm_i915_gem_object *ctx_obj, u32 tail)
345{
346 struct page *page;
347 uint32_t *reg_state;
348
349 page = i915_gem_object_get_page(ctx_obj, 1);
350 reg_state = kmap_atomic(page);
351
352 reg_state[CTX_RING_TAIL+1] = tail;
353
354 kunmap_atomic(reg_state);
355
356 return 0;
357}
358
cd0707cb
DG
359static void execlists_submit_contexts(struct intel_engine_cs *ring,
360 struct intel_context *to0, u32 tail0,
361 struct intel_context *to1, u32 tail1)
84b790f8
BW
362{
363 struct drm_i915_gem_object *ctx_obj0;
364 struct drm_i915_gem_object *ctx_obj1 = NULL;
365
366 ctx_obj0 = to0->engine[ring->id].state;
367 BUG_ON(!ctx_obj0);
acdd884a 368 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
84b790f8 369
ae1250b9
OM
370 execlists_ctx_write_tail(ctx_obj0, tail0);
371
84b790f8
BW
372 if (to1) {
373 ctx_obj1 = to1->engine[ring->id].state;
374 BUG_ON(!ctx_obj1);
acdd884a 375 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
ae1250b9
OM
376
377 execlists_ctx_write_tail(ctx_obj1, tail1);
84b790f8
BW
378 }
379
380 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
84b790f8
BW
381}
382
acdd884a
MT
383static void execlists_context_unqueue(struct intel_engine_cs *ring)
384{
385 struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
386 struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
387 struct drm_i915_private *dev_priv = ring->dev->dev_private;
388
389 assert_spin_locked(&ring->execlist_lock);
acdd884a
MT
390
391 if (list_empty(&ring->execlist_queue))
392 return;
393
394 /* Try to read in pairs */
395 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
396 execlist_link) {
397 if (!req0) {
398 req0 = cursor;
399 } else if (req0->ctx == cursor->ctx) {
400 /* Same ctx: ignore first request, as second request
401 * will update tail past first request's workload */
e1fee72c 402 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 403 list_del(&req0->execlist_link);
e981e7b1 404 queue_work(dev_priv->wq, &req0->work);
acdd884a
MT
405 req0 = cursor;
406 } else {
407 req1 = cursor;
408 break;
409 }
410 }
411
e1fee72c
OM
412 WARN_ON(req1 && req1->elsp_submitted);
413
cd0707cb
DG
414 execlists_submit_contexts(ring, req0->ctx, req0->tail,
415 req1 ? req1->ctx : NULL,
416 req1 ? req1->tail : 0);
e1fee72c
OM
417
418 req0->elsp_submitted++;
419 if (req1)
420 req1->elsp_submitted++;
acdd884a
MT
421}
422
e981e7b1
TD
423static bool execlists_check_remove_request(struct intel_engine_cs *ring,
424 u32 request_id)
425{
426 struct drm_i915_private *dev_priv = ring->dev->dev_private;
427 struct intel_ctx_submit_request *head_req;
428
429 assert_spin_locked(&ring->execlist_lock);
430
431 head_req = list_first_entry_or_null(&ring->execlist_queue,
432 struct intel_ctx_submit_request,
433 execlist_link);
434
435 if (head_req != NULL) {
436 struct drm_i915_gem_object *ctx_obj =
437 head_req->ctx->engine[ring->id].state;
438 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
439 WARN(head_req->elsp_submitted == 0,
440 "Never submitted head request\n");
441
442 if (--head_req->elsp_submitted <= 0) {
443 list_del(&head_req->execlist_link);
444 queue_work(dev_priv->wq, &head_req->work);
445 return true;
446 }
e981e7b1
TD
447 }
448 }
449
450 return false;
451}
452
73e4d07f
OM
453/**
454 * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
455 * @ring: Engine Command Streamer to handle.
456 *
457 * Check the unread Context Status Buffers and manage the submission of new
458 * contexts to the ELSP accordingly.
459 */
e981e7b1
TD
460void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
461{
462 struct drm_i915_private *dev_priv = ring->dev->dev_private;
463 u32 status_pointer;
464 u8 read_pointer;
465 u8 write_pointer;
466 u32 status;
467 u32 status_id;
468 u32 submit_contexts = 0;
469
470 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
471
472 read_pointer = ring->next_context_status_buffer;
473 write_pointer = status_pointer & 0x07;
474 if (read_pointer > write_pointer)
475 write_pointer += 6;
476
477 spin_lock(&ring->execlist_lock);
478
479 while (read_pointer < write_pointer) {
480 read_pointer++;
481 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
482 (read_pointer % 6) * 8);
483 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
484 (read_pointer % 6) * 8 + 4);
485
e1fee72c
OM
486 if (status & GEN8_CTX_STATUS_PREEMPTED) {
487 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
488 if (execlists_check_remove_request(ring, status_id))
489 WARN(1, "Lite Restored request removed from queue\n");
490 } else
491 WARN(1, "Preemption without Lite Restore\n");
492 }
493
494 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
495 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
496 if (execlists_check_remove_request(ring, status_id))
497 submit_contexts++;
498 }
499 }
500
501 if (submit_contexts != 0)
502 execlists_context_unqueue(ring);
503
504 spin_unlock(&ring->execlist_lock);
505
506 WARN(submit_contexts > 2, "More than two context complete events?\n");
507 ring->next_context_status_buffer = write_pointer % 6;
508
509 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
510 ((u32)ring->next_context_status_buffer & 0x07) << 8);
511}
512
513static void execlists_free_request_task(struct work_struct *work)
514{
515 struct intel_ctx_submit_request *req =
516 container_of(work, struct intel_ctx_submit_request, work);
517 struct drm_device *dev = req->ring->dev;
518 struct drm_i915_private *dev_priv = dev->dev_private;
519
520 intel_runtime_pm_put(dev_priv);
521
522 mutex_lock(&dev->struct_mutex);
523 i915_gem_context_unreference(req->ctx);
524 mutex_unlock(&dev->struct_mutex);
525
526 kfree(req);
527}
528
acdd884a
MT
529static int execlists_context_queue(struct intel_engine_cs *ring,
530 struct intel_context *to,
531 u32 tail)
532{
f1ad5a1f 533 struct intel_ctx_submit_request *req = NULL, *cursor;
e981e7b1 534 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acdd884a 535 unsigned long flags;
f1ad5a1f 536 int num_elements = 0;
acdd884a
MT
537
538 req = kzalloc(sizeof(*req), GFP_KERNEL);
539 if (req == NULL)
540 return -ENOMEM;
541 req->ctx = to;
542 i915_gem_context_reference(req->ctx);
543 req->ring = ring;
544 req->tail = tail;
e981e7b1
TD
545 INIT_WORK(&req->work, execlists_free_request_task);
546
547 intel_runtime_pm_get(dev_priv);
acdd884a
MT
548
549 spin_lock_irqsave(&ring->execlist_lock, flags);
550
f1ad5a1f
OM
551 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
552 if (++num_elements > 2)
553 break;
554
555 if (num_elements > 2) {
556 struct intel_ctx_submit_request *tail_req;
557
558 tail_req = list_last_entry(&ring->execlist_queue,
559 struct intel_ctx_submit_request,
560 execlist_link);
561
562 if (to == tail_req->ctx) {
563 WARN(tail_req->elsp_submitted != 0,
564 "More than 2 already-submitted reqs queued\n");
565 list_del(&tail_req->execlist_link);
566 queue_work(dev_priv->wq, &tail_req->work);
567 }
568 }
569
acdd884a 570 list_add_tail(&req->execlist_link, &ring->execlist_queue);
f1ad5a1f 571 if (num_elements == 0)
acdd884a
MT
572 execlists_context_unqueue(ring);
573
574 spin_unlock_irqrestore(&ring->execlist_lock, flags);
575
576 return 0;
577}
578
ba8b7ccb
OM
579static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
580{
581 struct intel_engine_cs *ring = ringbuf->ring;
582 uint32_t flush_domains;
583 int ret;
584
585 flush_domains = 0;
586 if (ring->gpu_caches_dirty)
587 flush_domains = I915_GEM_GPU_DOMAINS;
588
589 ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
590 if (ret)
591 return ret;
592
593 ring->gpu_caches_dirty = false;
594 return 0;
595}
596
597static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
598 struct list_head *vmas)
599{
600 struct intel_engine_cs *ring = ringbuf->ring;
601 struct i915_vma *vma;
602 uint32_t flush_domains = 0;
603 bool flush_chipset = false;
604 int ret;
605
606 list_for_each_entry(vma, vmas, exec_list) {
607 struct drm_i915_gem_object *obj = vma->obj;
608
609 ret = i915_gem_object_sync(obj, ring);
610 if (ret)
611 return ret;
612
613 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
614 flush_chipset |= i915_gem_clflush_object(obj, false);
615
616 flush_domains |= obj->base.write_domain;
617 }
618
619 if (flush_domains & I915_GEM_DOMAIN_GTT)
620 wmb();
621
622 /* Unconditionally invalidate gpu caches and ensure that we do flush
623 * any residual writes from the previous batch.
624 */
625 return logical_ring_invalidate_all_caches(ringbuf);
626}
627
73e4d07f
OM
628/**
629 * execlists_submission() - submit a batchbuffer for execution, Execlists style
630 * @dev: DRM device.
631 * @file: DRM file.
632 * @ring: Engine Command Streamer to submit to.
633 * @ctx: Context to employ for this submission.
634 * @args: execbuffer call arguments.
635 * @vmas: list of vmas.
636 * @batch_obj: the batchbuffer to submit.
637 * @exec_start: batchbuffer start virtual address pointer.
638 * @flags: translated execbuffer call flags.
639 *
640 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
641 * away the submission details of the execbuffer ioctl call.
642 *
643 * Return: non-zero if the submission fails.
644 */
454afebd
OM
645int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
646 struct intel_engine_cs *ring,
647 struct intel_context *ctx,
648 struct drm_i915_gem_execbuffer2 *args,
649 struct list_head *vmas,
650 struct drm_i915_gem_object *batch_obj,
651 u64 exec_start, u32 flags)
652{
ba8b7ccb
OM
653 struct drm_i915_private *dev_priv = dev->dev_private;
654 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
655 int instp_mode;
656 u32 instp_mask;
657 int ret;
658
659 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
660 instp_mask = I915_EXEC_CONSTANTS_MASK;
661 switch (instp_mode) {
662 case I915_EXEC_CONSTANTS_REL_GENERAL:
663 case I915_EXEC_CONSTANTS_ABSOLUTE:
664 case I915_EXEC_CONSTANTS_REL_SURFACE:
665 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
666 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
667 return -EINVAL;
668 }
669
670 if (instp_mode != dev_priv->relative_constants_mode) {
671 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
672 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
673 return -EINVAL;
674 }
675
676 /* The HW changed the meaning on this bit on gen6 */
677 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
678 }
679 break;
680 default:
681 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
682 return -EINVAL;
683 }
684
685 if (args->num_cliprects != 0) {
686 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
687 return -EINVAL;
688 } else {
689 if (args->DR4 == 0xffffffff) {
690 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
691 args->DR4 = 0;
692 }
693
694 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
695 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
696 return -EINVAL;
697 }
698 }
699
700 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
701 DRM_DEBUG("sol reset is gen7 only\n");
702 return -EINVAL;
703 }
704
705 ret = execlists_move_to_gpu(ringbuf, vmas);
706 if (ret)
707 return ret;
708
709 if (ring == &dev_priv->ring[RCS] &&
710 instp_mode != dev_priv->relative_constants_mode) {
711 ret = intel_logical_ring_begin(ringbuf, 4);
712 if (ret)
713 return ret;
714
715 intel_logical_ring_emit(ringbuf, MI_NOOP);
716 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
717 intel_logical_ring_emit(ringbuf, INSTPM);
718 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
719 intel_logical_ring_advance(ringbuf);
720
721 dev_priv->relative_constants_mode = instp_mode;
722 }
723
724 ret = ring->emit_bb_start(ringbuf, exec_start, flags);
725 if (ret)
726 return ret;
727
728 i915_gem_execbuffer_move_to_active(vmas, ring);
729 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
730
454afebd
OM
731 return 0;
732}
733
734void intel_logical_ring_stop(struct intel_engine_cs *ring)
735{
9832b9da
OM
736 struct drm_i915_private *dev_priv = ring->dev->dev_private;
737 int ret;
738
739 if (!intel_ring_initialized(ring))
740 return;
741
742 ret = intel_ring_idle(ring);
743 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
744 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
745 ring->name, ret);
746
747 /* TODO: Is this correct with Execlists enabled? */
748 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
749 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
750 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
751 return;
752 }
753 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
754}
755
48e29f55
OM
756int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
757{
758 struct intel_engine_cs *ring = ringbuf->ring;
759 int ret;
760
761 if (!ring->gpu_caches_dirty)
762 return 0;
763
764 ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
765 if (ret)
766 return ret;
767
768 ring->gpu_caches_dirty = false;
769 return 0;
770}
771
73e4d07f
OM
772/**
773 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
774 * @ringbuf: Logical Ringbuffer to advance.
775 *
776 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
777 * really happens during submission is that the context and current tail will be placed
778 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
779 * point, the tail *inside* the context is updated and the ELSP written to.
780 */
82e104cc
OM
781void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
782{
84b790f8
BW
783 struct intel_engine_cs *ring = ringbuf->ring;
784 struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
785
82e104cc
OM
786 intel_logical_ring_advance(ringbuf);
787
84b790f8 788 if (intel_ring_stopped(ring))
82e104cc
OM
789 return;
790
acdd884a 791 execlists_context_queue(ring, ctx, ringbuf->tail);
82e104cc
OM
792}
793
48e29f55
OM
794static int logical_ring_alloc_seqno(struct intel_engine_cs *ring,
795 struct intel_context *ctx)
82e104cc
OM
796{
797 if (ring->outstanding_lazy_seqno)
798 return 0;
799
800 if (ring->preallocated_lazy_request == NULL) {
801 struct drm_i915_gem_request *request;
802
803 request = kmalloc(sizeof(*request), GFP_KERNEL);
804 if (request == NULL)
805 return -ENOMEM;
806
48e29f55
OM
807 /* Hold a reference to the context this request belongs to
808 * (we will need it when the time comes to emit/retire the
809 * request).
810 */
811 request->ctx = ctx;
812 i915_gem_context_reference(request->ctx);
813
82e104cc
OM
814 ring->preallocated_lazy_request = request;
815 }
816
817 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
818}
819
820static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
821 int bytes)
822{
823 struct intel_engine_cs *ring = ringbuf->ring;
824 struct drm_i915_gem_request *request;
825 u32 seqno = 0;
826 int ret;
827
828 if (ringbuf->last_retired_head != -1) {
829 ringbuf->head = ringbuf->last_retired_head;
830 ringbuf->last_retired_head = -1;
831
832 ringbuf->space = intel_ring_space(ringbuf);
833 if (ringbuf->space >= bytes)
834 return 0;
835 }
836
837 list_for_each_entry(request, &ring->request_list, list) {
838 if (__intel_ring_space(request->tail, ringbuf->tail,
839 ringbuf->size) >= bytes) {
840 seqno = request->seqno;
841 break;
842 }
843 }
844
845 if (seqno == 0)
846 return -ENOSPC;
847
848 ret = i915_wait_seqno(ring, seqno);
849 if (ret)
850 return ret;
851
82e104cc
OM
852 i915_gem_retire_requests_ring(ring);
853 ringbuf->head = ringbuf->last_retired_head;
854 ringbuf->last_retired_head = -1;
855
856 ringbuf->space = intel_ring_space(ringbuf);
857 return 0;
858}
859
860static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
861 int bytes)
862{
863 struct intel_engine_cs *ring = ringbuf->ring;
864 struct drm_device *dev = ring->dev;
865 struct drm_i915_private *dev_priv = dev->dev_private;
866 unsigned long end;
867 int ret;
868
869 ret = logical_ring_wait_request(ringbuf, bytes);
870 if (ret != -ENOSPC)
871 return ret;
872
873 /* Force the context submission in case we have been skipping it */
874 intel_logical_ring_advance_and_submit(ringbuf);
875
876 /* With GEM the hangcheck timer should kick us out of the loop,
877 * leaving it early runs the risk of corrupting GEM state (due
878 * to running on almost untested codepaths). But on resume
879 * timers don't work yet, so prevent a complete hang in that
880 * case by choosing an insanely large timeout. */
881 end = jiffies + 60 * HZ;
882
883 do {
884 ringbuf->head = I915_READ_HEAD(ring);
885 ringbuf->space = intel_ring_space(ringbuf);
886 if (ringbuf->space >= bytes) {
887 ret = 0;
888 break;
889 }
890
891 msleep(1);
892
893 if (dev_priv->mm.interruptible && signal_pending(current)) {
894 ret = -ERESTARTSYS;
895 break;
896 }
897
898 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
899 dev_priv->mm.interruptible);
900 if (ret)
901 break;
902
903 if (time_after(jiffies, end)) {
904 ret = -EBUSY;
905 break;
906 }
907 } while (1);
908
909 return ret;
910}
911
912static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
913{
914 uint32_t __iomem *virt;
915 int rem = ringbuf->size - ringbuf->tail;
916
917 if (ringbuf->space < rem) {
918 int ret = logical_ring_wait_for_space(ringbuf, rem);
919
920 if (ret)
921 return ret;
922 }
923
924 virt = ringbuf->virtual_start + ringbuf->tail;
925 rem /= 4;
926 while (rem--)
927 iowrite32(MI_NOOP, virt++);
928
929 ringbuf->tail = 0;
930 ringbuf->space = intel_ring_space(ringbuf);
931
932 return 0;
933}
934
935static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
936{
937 int ret;
938
939 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
940 ret = logical_ring_wrap_buffer(ringbuf);
941 if (unlikely(ret))
942 return ret;
943 }
944
945 if (unlikely(ringbuf->space < bytes)) {
946 ret = logical_ring_wait_for_space(ringbuf, bytes);
947 if (unlikely(ret))
948 return ret;
949 }
950
951 return 0;
952}
953
73e4d07f
OM
954/**
955 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
956 *
957 * @ringbuf: Logical ringbuffer.
958 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
959 *
960 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
961 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
962 * and also preallocates a request (every workload submission is still mediated through
963 * requests, same as it did with legacy ringbuffer submission).
964 *
965 * Return: non-zero if the ringbuffer is not ready to be written to.
966 */
82e104cc
OM
967int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
968{
969 struct intel_engine_cs *ring = ringbuf->ring;
970 struct drm_device *dev = ring->dev;
971 struct drm_i915_private *dev_priv = dev->dev_private;
972 int ret;
973
974 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
975 dev_priv->mm.interruptible);
976 if (ret)
977 return ret;
978
979 ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
980 if (ret)
981 return ret;
982
983 /* Preallocate the olr before touching the ring */
48e29f55 984 ret = logical_ring_alloc_seqno(ring, ringbuf->FIXME_lrc_ctx);
82e104cc
OM
985 if (ret)
986 return ret;
987
988 ringbuf->space -= num_dwords * sizeof(uint32_t);
989 return 0;
990}
991
771b9a53
MT
992static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
993 struct intel_context *ctx)
994{
995 int ret, i;
996 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
997 struct drm_device *dev = ring->dev;
998 struct drm_i915_private *dev_priv = dev->dev_private;
999 struct i915_workarounds *w = &dev_priv->workarounds;
1000
1001 if (WARN_ON(w->count == 0))
1002 return 0;
1003
1004 ring->gpu_caches_dirty = true;
1005 ret = logical_ring_flush_all_caches(ringbuf);
1006 if (ret)
1007 return ret;
1008
1009 ret = intel_logical_ring_begin(ringbuf, w->count * 2 + 2);
1010 if (ret)
1011 return ret;
1012
1013 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1014 for (i = 0; i < w->count; i++) {
1015 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1016 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1017 }
1018 intel_logical_ring_emit(ringbuf, MI_NOOP);
1019
1020 intel_logical_ring_advance(ringbuf);
1021
1022 ring->gpu_caches_dirty = true;
1023 ret = logical_ring_flush_all_caches(ringbuf);
1024 if (ret)
1025 return ret;
1026
1027 return 0;
1028}
1029
9b1136d5
OM
1030static int gen8_init_common_ring(struct intel_engine_cs *ring)
1031{
1032 struct drm_device *dev = ring->dev;
1033 struct drm_i915_private *dev_priv = dev->dev_private;
1034
73d477f6
OM
1035 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1036 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1037
9b1136d5
OM
1038 I915_WRITE(RING_MODE_GEN7(ring),
1039 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1040 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1041 POSTING_READ(RING_MODE_GEN7(ring));
1042 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1043
1044 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1045
1046 return 0;
1047}
1048
1049static int gen8_init_render_ring(struct intel_engine_cs *ring)
1050{
1051 struct drm_device *dev = ring->dev;
1052 struct drm_i915_private *dev_priv = dev->dev_private;
1053 int ret;
1054
1055 ret = gen8_init_common_ring(ring);
1056 if (ret)
1057 return ret;
1058
1059 /* We need to disable the AsyncFlip performance optimisations in order
1060 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1061 * programmed to '1' on all products.
1062 *
1063 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1064 */
1065 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1066
1067 ret = intel_init_pipe_control(ring);
1068 if (ret)
1069 return ret;
1070
1071 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1072
771b9a53 1073 return init_workarounds_ring(ring);
9b1136d5
OM
1074}
1075
15648585
OM
1076static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1077 u64 offset, unsigned flags)
1078{
15648585
OM
1079 bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1080 int ret;
1081
1082 ret = intel_logical_ring_begin(ringbuf, 4);
1083 if (ret)
1084 return ret;
1085
1086 /* FIXME(BDW): Address space and security selectors. */
1087 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1088 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1089 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1090 intel_logical_ring_emit(ringbuf, MI_NOOP);
1091 intel_logical_ring_advance(ringbuf);
1092
1093 return 0;
1094}
1095
73d477f6
OM
1096static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1097{
1098 struct drm_device *dev = ring->dev;
1099 struct drm_i915_private *dev_priv = dev->dev_private;
1100 unsigned long flags;
1101
7cd512f1 1102 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1103 return false;
1104
1105 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1106 if (ring->irq_refcount++ == 0) {
1107 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1108 POSTING_READ(RING_IMR(ring->mmio_base));
1109 }
1110 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1111
1112 return true;
1113}
1114
1115static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1116{
1117 struct drm_device *dev = ring->dev;
1118 struct drm_i915_private *dev_priv = dev->dev_private;
1119 unsigned long flags;
1120
1121 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1122 if (--ring->irq_refcount == 0) {
1123 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1124 POSTING_READ(RING_IMR(ring->mmio_base));
1125 }
1126 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1127}
1128
4712274c
OM
1129static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1130 u32 invalidate_domains,
1131 u32 unused)
1132{
1133 struct intel_engine_cs *ring = ringbuf->ring;
1134 struct drm_device *dev = ring->dev;
1135 struct drm_i915_private *dev_priv = dev->dev_private;
1136 uint32_t cmd;
1137 int ret;
1138
1139 ret = intel_logical_ring_begin(ringbuf, 4);
1140 if (ret)
1141 return ret;
1142
1143 cmd = MI_FLUSH_DW + 1;
1144
1145 if (ring == &dev_priv->ring[VCS]) {
1146 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1147 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1148 MI_FLUSH_DW_STORE_INDEX |
1149 MI_FLUSH_DW_OP_STOREDW;
1150 } else {
1151 if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1152 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1153 MI_FLUSH_DW_OP_STOREDW;
1154 }
1155
1156 intel_logical_ring_emit(ringbuf, cmd);
1157 intel_logical_ring_emit(ringbuf,
1158 I915_GEM_HWS_SCRATCH_ADDR |
1159 MI_FLUSH_DW_USE_GTT);
1160 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1161 intel_logical_ring_emit(ringbuf, 0); /* value */
1162 intel_logical_ring_advance(ringbuf);
1163
1164 return 0;
1165}
1166
1167static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1168 u32 invalidate_domains,
1169 u32 flush_domains)
1170{
1171 struct intel_engine_cs *ring = ringbuf->ring;
1172 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1173 u32 flags = 0;
1174 int ret;
1175
1176 flags |= PIPE_CONTROL_CS_STALL;
1177
1178 if (flush_domains) {
1179 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1180 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1181 }
1182
1183 if (invalidate_domains) {
1184 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1185 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1186 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1187 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1188 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1189 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1190 flags |= PIPE_CONTROL_QW_WRITE;
1191 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1192 }
1193
1194 ret = intel_logical_ring_begin(ringbuf, 6);
1195 if (ret)
1196 return ret;
1197
1198 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1199 intel_logical_ring_emit(ringbuf, flags);
1200 intel_logical_ring_emit(ringbuf, scratch_addr);
1201 intel_logical_ring_emit(ringbuf, 0);
1202 intel_logical_ring_emit(ringbuf, 0);
1203 intel_logical_ring_emit(ringbuf, 0);
1204 intel_logical_ring_advance(ringbuf);
1205
1206 return 0;
1207}
1208
e94e37ad
OM
1209static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1210{
1211 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1212}
1213
1214static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1215{
1216 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1217}
1218
4da46e1e
OM
1219static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1220{
1221 struct intel_engine_cs *ring = ringbuf->ring;
1222 u32 cmd;
1223 int ret;
1224
1225 ret = intel_logical_ring_begin(ringbuf, 6);
1226 if (ret)
1227 return ret;
1228
1229 cmd = MI_STORE_DWORD_IMM_GEN8;
1230 cmd |= MI_GLOBAL_GTT;
1231
1232 intel_logical_ring_emit(ringbuf, cmd);
1233 intel_logical_ring_emit(ringbuf,
1234 (ring->status_page.gfx_addr +
1235 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1236 intel_logical_ring_emit(ringbuf, 0);
1237 intel_logical_ring_emit(ringbuf, ring->outstanding_lazy_seqno);
1238 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1239 intel_logical_ring_emit(ringbuf, MI_NOOP);
1240 intel_logical_ring_advance_and_submit(ringbuf);
1241
1242 return 0;
1243}
1244
73e4d07f
OM
1245/**
1246 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1247 *
1248 * @ring: Engine Command Streamer.
1249 *
1250 */
454afebd
OM
1251void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1252{
6402c330 1253 struct drm_i915_private *dev_priv;
9832b9da 1254
48d82387
OM
1255 if (!intel_ring_initialized(ring))
1256 return;
1257
6402c330
JH
1258 dev_priv = ring->dev->dev_private;
1259
9832b9da
OM
1260 intel_logical_ring_stop(ring);
1261 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
48d82387
OM
1262 ring->preallocated_lazy_request = NULL;
1263 ring->outstanding_lazy_seqno = 0;
1264
1265 if (ring->cleanup)
1266 ring->cleanup(ring);
1267
1268 i915_cmd_parser_fini_ring(ring);
1269
1270 if (ring->status_page.obj) {
1271 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1272 ring->status_page.obj = NULL;
1273 }
454afebd
OM
1274}
1275
1276static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1277{
48d82387 1278 int ret;
48d82387
OM
1279
1280 /* Intentionally left blank. */
1281 ring->buffer = NULL;
1282
1283 ring->dev = dev;
1284 INIT_LIST_HEAD(&ring->active_list);
1285 INIT_LIST_HEAD(&ring->request_list);
1286 init_waitqueue_head(&ring->irq_queue);
1287
acdd884a
MT
1288 INIT_LIST_HEAD(&ring->execlist_queue);
1289 spin_lock_init(&ring->execlist_lock);
e981e7b1 1290 ring->next_context_status_buffer = 0;
acdd884a 1291
48d82387
OM
1292 ret = i915_cmd_parser_init_ring(ring);
1293 if (ret)
1294 return ret;
1295
1296 if (ring->init) {
1297 ret = ring->init(ring);
1298 if (ret)
1299 return ret;
1300 }
1301
564ddb2f
OM
1302 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1303
1304 return ret;
454afebd
OM
1305}
1306
1307static int logical_render_ring_init(struct drm_device *dev)
1308{
1309 struct drm_i915_private *dev_priv = dev->dev_private;
1310 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1311
1312 ring->name = "render ring";
1313 ring->id = RCS;
1314 ring->mmio_base = RENDER_RING_BASE;
1315 ring->irq_enable_mask =
1316 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1317 ring->irq_keep_mask =
1318 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1319 if (HAS_L3_DPF(dev))
1320 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1321
9b1136d5 1322 ring->init = gen8_init_render_ring;
771b9a53 1323 ring->init_context = intel_logical_ring_workarounds_emit;
9b1136d5 1324 ring->cleanup = intel_fini_pipe_control;
e94e37ad
OM
1325 ring->get_seqno = gen8_get_seqno;
1326 ring->set_seqno = gen8_set_seqno;
4da46e1e 1327 ring->emit_request = gen8_emit_request;
4712274c 1328 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1329 ring->irq_get = gen8_logical_ring_get_irq;
1330 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1331 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1332
454afebd
OM
1333 return logical_ring_init(dev, ring);
1334}
1335
1336static int logical_bsd_ring_init(struct drm_device *dev)
1337{
1338 struct drm_i915_private *dev_priv = dev->dev_private;
1339 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1340
1341 ring->name = "bsd ring";
1342 ring->id = VCS;
1343 ring->mmio_base = GEN6_BSD_RING_BASE;
1344 ring->irq_enable_mask =
1345 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
1346 ring->irq_keep_mask =
1347 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 1348
9b1136d5 1349 ring->init = gen8_init_common_ring;
e94e37ad
OM
1350 ring->get_seqno = gen8_get_seqno;
1351 ring->set_seqno = gen8_set_seqno;
4da46e1e 1352 ring->emit_request = gen8_emit_request;
4712274c 1353 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1354 ring->irq_get = gen8_logical_ring_get_irq;
1355 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1356 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1357
454afebd
OM
1358 return logical_ring_init(dev, ring);
1359}
1360
1361static int logical_bsd2_ring_init(struct drm_device *dev)
1362{
1363 struct drm_i915_private *dev_priv = dev->dev_private;
1364 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1365
1366 ring->name = "bds2 ring";
1367 ring->id = VCS2;
1368 ring->mmio_base = GEN8_BSD2_RING_BASE;
1369 ring->irq_enable_mask =
1370 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
1371 ring->irq_keep_mask =
1372 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 1373
9b1136d5 1374 ring->init = gen8_init_common_ring;
e94e37ad
OM
1375 ring->get_seqno = gen8_get_seqno;
1376 ring->set_seqno = gen8_set_seqno;
4da46e1e 1377 ring->emit_request = gen8_emit_request;
4712274c 1378 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1379 ring->irq_get = gen8_logical_ring_get_irq;
1380 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1381 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1382
454afebd
OM
1383 return logical_ring_init(dev, ring);
1384}
1385
1386static int logical_blt_ring_init(struct drm_device *dev)
1387{
1388 struct drm_i915_private *dev_priv = dev->dev_private;
1389 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1390
1391 ring->name = "blitter ring";
1392 ring->id = BCS;
1393 ring->mmio_base = BLT_RING_BASE;
1394 ring->irq_enable_mask =
1395 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
1396 ring->irq_keep_mask =
1397 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 1398
9b1136d5 1399 ring->init = gen8_init_common_ring;
e94e37ad
OM
1400 ring->get_seqno = gen8_get_seqno;
1401 ring->set_seqno = gen8_set_seqno;
4da46e1e 1402 ring->emit_request = gen8_emit_request;
4712274c 1403 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1404 ring->irq_get = gen8_logical_ring_get_irq;
1405 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1406 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1407
454afebd
OM
1408 return logical_ring_init(dev, ring);
1409}
1410
1411static int logical_vebox_ring_init(struct drm_device *dev)
1412{
1413 struct drm_i915_private *dev_priv = dev->dev_private;
1414 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1415
1416 ring->name = "video enhancement ring";
1417 ring->id = VECS;
1418 ring->mmio_base = VEBOX_RING_BASE;
1419 ring->irq_enable_mask =
1420 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
1421 ring->irq_keep_mask =
1422 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 1423
9b1136d5 1424 ring->init = gen8_init_common_ring;
e94e37ad
OM
1425 ring->get_seqno = gen8_get_seqno;
1426 ring->set_seqno = gen8_set_seqno;
4da46e1e 1427 ring->emit_request = gen8_emit_request;
4712274c 1428 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1429 ring->irq_get = gen8_logical_ring_get_irq;
1430 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1431 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1432
454afebd
OM
1433 return logical_ring_init(dev, ring);
1434}
1435
73e4d07f
OM
1436/**
1437 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1438 * @dev: DRM device.
1439 *
1440 * This function inits the engines for an Execlists submission style (the equivalent in the
1441 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1442 * those engines that are present in the hardware.
1443 *
1444 * Return: non-zero if the initialization failed.
1445 */
454afebd
OM
1446int intel_logical_rings_init(struct drm_device *dev)
1447{
1448 struct drm_i915_private *dev_priv = dev->dev_private;
1449 int ret;
1450
1451 ret = logical_render_ring_init(dev);
1452 if (ret)
1453 return ret;
1454
1455 if (HAS_BSD(dev)) {
1456 ret = logical_bsd_ring_init(dev);
1457 if (ret)
1458 goto cleanup_render_ring;
1459 }
1460
1461 if (HAS_BLT(dev)) {
1462 ret = logical_blt_ring_init(dev);
1463 if (ret)
1464 goto cleanup_bsd_ring;
1465 }
1466
1467 if (HAS_VEBOX(dev)) {
1468 ret = logical_vebox_ring_init(dev);
1469 if (ret)
1470 goto cleanup_blt_ring;
1471 }
1472
1473 if (HAS_BSD2(dev)) {
1474 ret = logical_bsd2_ring_init(dev);
1475 if (ret)
1476 goto cleanup_vebox_ring;
1477 }
1478
1479 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1480 if (ret)
1481 goto cleanup_bsd2_ring;
1482
1483 return 0;
1484
1485cleanup_bsd2_ring:
1486 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1487cleanup_vebox_ring:
1488 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1489cleanup_blt_ring:
1490 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1491cleanup_bsd_ring:
1492 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1493cleanup_render_ring:
1494 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1495
1496 return ret;
1497}
1498
564ddb2f
OM
1499int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1500 struct intel_context *ctx)
1501{
1502 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1503 struct render_state so;
1504 struct drm_i915_file_private *file_priv = ctx->file_priv;
1505 struct drm_file *file = file_priv ? file_priv->file : NULL;
1506 int ret;
1507
1508 ret = i915_gem_render_state_prepare(ring, &so);
1509 if (ret)
1510 return ret;
1511
1512 if (so.rodata == NULL)
1513 return 0;
1514
1515 ret = ring->emit_bb_start(ringbuf,
1516 so.ggtt_offset,
1517 I915_DISPATCH_SECURE);
1518 if (ret)
1519 goto out;
1520
1521 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1522
1523 ret = __i915_add_request(ring, file, so.obj, NULL);
1524 /* intel_logical_ring_add_request moves object to inactive if it
1525 * fails */
1526out:
1527 i915_gem_render_state_fini(&so);
1528 return ret;
1529}
1530
8670d6f9
OM
1531static int
1532populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1533 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1534{
2d965536
TD
1535 struct drm_device *dev = ring->dev;
1536 struct drm_i915_private *dev_priv = dev->dev_private;
8670d6f9 1537 struct drm_i915_gem_object *ring_obj = ringbuf->obj;
ae6c4806 1538 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
1539 struct page *page;
1540 uint32_t *reg_state;
1541 int ret;
1542
2d965536
TD
1543 if (!ppgtt)
1544 ppgtt = dev_priv->mm.aliasing_ppgtt;
1545
8670d6f9
OM
1546 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1547 if (ret) {
1548 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1549 return ret;
1550 }
1551
1552 ret = i915_gem_object_get_pages(ctx_obj);
1553 if (ret) {
1554 DRM_DEBUG_DRIVER("Could not get object pages\n");
1555 return ret;
1556 }
1557
1558 i915_gem_object_pin_pages(ctx_obj);
1559
1560 /* The second page of the context object contains some fields which must
1561 * be set up prior to the first execution. */
1562 page = i915_gem_object_get_page(ctx_obj, 1);
1563 reg_state = kmap_atomic(page);
1564
1565 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1566 * commands followed by (reg, value) pairs. The values we are setting here are
1567 * only for the first context restore: on a subsequent save, the GPU will
1568 * recreate this batchbuffer with new values (including all the missing
1569 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1570 if (ring->id == RCS)
1571 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1572 else
1573 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1574 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1575 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1576 reg_state[CTX_CONTEXT_CONTROL+1] =
1577 _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1578 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1579 reg_state[CTX_RING_HEAD+1] = 0;
1580 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1581 reg_state[CTX_RING_TAIL+1] = 0;
1582 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1583 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
1584 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1585 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1586 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1587 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1588 reg_state[CTX_BB_HEAD_U+1] = 0;
1589 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1590 reg_state[CTX_BB_HEAD_L+1] = 0;
1591 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1592 reg_state[CTX_BB_STATE+1] = (1<<5);
1593 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1594 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1595 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1596 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1597 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1598 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1599 if (ring->id == RCS) {
1600 /* TODO: according to BSpec, the register state context
1601 * for CHV does not have these. OTOH, these registers do
1602 * exist in CHV. I'm waiting for a clarification */
1603 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1604 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1605 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1606 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1607 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1608 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1609 }
1610 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1611 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1612 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1613 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1614 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1615 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1616 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1617 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1618 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1619 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1620 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1621 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1622 reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1623 reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1624 reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1625 reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1626 reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1627 reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1628 reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1629 reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1630 if (ring->id == RCS) {
1631 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1632 reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1633 reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1634 }
1635
1636 kunmap_atomic(reg_state);
1637
1638 ctx_obj->dirty = 1;
1639 set_page_dirty(page);
1640 i915_gem_object_unpin_pages(ctx_obj);
1641
1642 return 0;
1643}
1644
73e4d07f
OM
1645/**
1646 * intel_lr_context_free() - free the LRC specific bits of a context
1647 * @ctx: the LR context to free.
1648 *
1649 * The real context freeing is done in i915_gem_context_free: this only
1650 * takes care of the bits that are LRC related: the per-engine backing
1651 * objects and the logical ringbuffer.
1652 */
ede7d42b
OM
1653void intel_lr_context_free(struct intel_context *ctx)
1654{
8c857917
OM
1655 int i;
1656
1657 for (i = 0; i < I915_NUM_RINGS; i++) {
1658 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f
OM
1659 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
1660
8c857917 1661 if (ctx_obj) {
84c2377f
OM
1662 intel_destroy_ringbuffer_obj(ringbuf);
1663 kfree(ringbuf);
8c857917
OM
1664 i915_gem_object_ggtt_unpin(ctx_obj);
1665 drm_gem_object_unreference(&ctx_obj->base);
1666 }
1667 }
1668}
1669
1670static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1671{
1672 int ret = 0;
1673
1674 WARN_ON(INTEL_INFO(ring->dev)->gen != 8);
1675
1676 switch (ring->id) {
1677 case RCS:
1678 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1679 break;
1680 case VCS:
1681 case BCS:
1682 case VECS:
1683 case VCS2:
1684 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1685 break;
1686 }
1687
1688 return ret;
ede7d42b
OM
1689}
1690
1df06b75
TD
1691static int lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1692 struct drm_i915_gem_object *default_ctx_obj)
1693{
1694 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1695
1696 /* The status page is offset 0 from the default context object
1697 * in LRC mode. */
1698 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1699 ring->status_page.page_addr =
1700 kmap(sg_page(default_ctx_obj->pages->sgl));
1701 if (ring->status_page.page_addr == NULL)
1702 return -ENOMEM;
1703 ring->status_page.obj = default_ctx_obj;
1704
1705 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1706 (u32)ring->status_page.gfx_addr);
1707 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1708
1709 return 0;
1710}
1711
73e4d07f
OM
1712/**
1713 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1714 * @ctx: LR context to create.
1715 * @ring: engine to be used with the context.
1716 *
1717 * This function can be called more than once, with different engines, if we plan
1718 * to use the context with them. The context backing objects and the ringbuffers
1719 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1720 * the creation is a deferred call: it's better to make sure first that we need to use
1721 * a given ring with the context.
1722 *
32197aab 1723 * Return: non-zero on error.
73e4d07f 1724 */
ede7d42b
OM
1725int intel_lr_context_deferred_create(struct intel_context *ctx,
1726 struct intel_engine_cs *ring)
1727{
8c857917
OM
1728 struct drm_device *dev = ring->dev;
1729 struct drm_i915_gem_object *ctx_obj;
1730 uint32_t context_size;
84c2377f 1731 struct intel_ringbuffer *ringbuf;
8c857917
OM
1732 int ret;
1733
ede7d42b 1734 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
48d82387
OM
1735 if (ctx->engine[ring->id].state)
1736 return 0;
ede7d42b 1737
8c857917
OM
1738 context_size = round_up(get_lr_context_size(ring), 4096);
1739
1740 ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1741 if (IS_ERR(ctx_obj)) {
1742 ret = PTR_ERR(ctx_obj);
1743 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1744 return ret;
1745 }
1746
1747 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1748 if (ret) {
1749 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n", ret);
1750 drm_gem_object_unreference(&ctx_obj->base);
1751 return ret;
1752 }
1753
84c2377f
OM
1754 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1755 if (!ringbuf) {
1756 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1757 ring->name);
1758 i915_gem_object_ggtt_unpin(ctx_obj);
1759 drm_gem_object_unreference(&ctx_obj->base);
1760 ret = -ENOMEM;
1761 return ret;
1762 }
1763
0c7dd53b 1764 ringbuf->ring = ring;
582d67f0
OM
1765 ringbuf->FIXME_lrc_ctx = ctx;
1766
84c2377f
OM
1767 ringbuf->size = 32 * PAGE_SIZE;
1768 ringbuf->effective_size = ringbuf->size;
1769 ringbuf->head = 0;
1770 ringbuf->tail = 0;
1771 ringbuf->space = ringbuf->size;
1772 ringbuf->last_retired_head = -1;
1773
1774 /* TODO: For now we put this in the mappable region so that we can reuse
1775 * the existing ringbuffer code which ioremaps it. When we start
1776 * creating many contexts, this will no longer work and we must switch
1777 * to a kmapish interface.
1778 */
1779 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1780 if (ret) {
1781 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer obj %s: %d\n",
1782 ring->name, ret);
8670d6f9
OM
1783 goto error;
1784 }
1785
1786 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1787 if (ret) {
1788 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1789 intel_destroy_ringbuffer_obj(ringbuf);
1790 goto error;
84c2377f
OM
1791 }
1792
1793 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 1794 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 1795
564ddb2f 1796 if (ctx == ring->default_context) {
1df06b75
TD
1797 ret = lrc_setup_hardware_status_page(ring, ctx_obj);
1798 if (ret) {
1799 DRM_ERROR("Failed to setup hardware status page\n");
1800 goto error;
1801 }
564ddb2f
OM
1802 }
1803
1804 if (ring->id == RCS && !ctx->rcs_initialized) {
771b9a53
MT
1805 if (ring->init_context) {
1806 ret = ring->init_context(ring, ctx);
1807 if (ret)
1808 DRM_ERROR("ring init context: %d\n", ret);
1809 }
1810
564ddb2f
OM
1811 ret = intel_lr_context_render_state_init(ring, ctx);
1812 if (ret) {
1813 DRM_ERROR("Init render state failed: %d\n", ret);
1814 ctx->engine[ring->id].ringbuf = NULL;
1815 ctx->engine[ring->id].state = NULL;
1816 intel_destroy_ringbuffer_obj(ringbuf);
1817 goto error;
1818 }
1819 ctx->rcs_initialized = true;
1820 }
1821
ede7d42b 1822 return 0;
8670d6f9
OM
1823
1824error:
1825 kfree(ringbuf);
1826 i915_gem_object_ggtt_unpin(ctx_obj);
1827 drm_gem_object_unreference(&ctx_obj->base);
1828 return ret;
ede7d42b 1829}