]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Ensure OLS & PLR are always in sync
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
127f1003 138
468c6816 139#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
140#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
e981e7b1
TD
143#define RING_EXECLIST_QFULL (1 << 0x2)
144#define RING_EXECLIST1_VALID (1 << 0x3)
145#define RING_EXECLIST0_VALID (1 << 0x4)
146#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147#define RING_EXECLIST1_ACTIVE (1 << 0x11)
148#define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
156
157#define CTX_LRI_HEADER_0 0x01
158#define CTX_CONTEXT_CONTROL 0x02
159#define CTX_RING_HEAD 0x04
160#define CTX_RING_TAIL 0x06
161#define CTX_RING_BUFFER_START 0x08
162#define CTX_RING_BUFFER_CONTROL 0x0a
163#define CTX_BB_HEAD_U 0x0c
164#define CTX_BB_HEAD_L 0x0e
165#define CTX_BB_STATE 0x10
166#define CTX_SECOND_BB_HEAD_U 0x12
167#define CTX_SECOND_BB_HEAD_L 0x14
168#define CTX_SECOND_BB_STATE 0x16
169#define CTX_BB_PER_CTX_PTR 0x18
170#define CTX_RCS_INDIRECT_CTX 0x1a
171#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172#define CTX_LRI_HEADER_1 0x21
173#define CTX_CTX_TIMESTAMP 0x22
174#define CTX_PDP3_UDW 0x24
175#define CTX_PDP3_LDW 0x26
176#define CTX_PDP2_UDW 0x28
177#define CTX_PDP2_LDW 0x2a
178#define CTX_PDP1_UDW 0x2c
179#define CTX_PDP1_LDW 0x2e
180#define CTX_PDP0_UDW 0x30
181#define CTX_PDP0_LDW 0x32
182#define CTX_LRI_HEADER_2 0x41
183#define CTX_R_PWR_CLK_STATE 0x42
184#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
84b790f8
BW
186#define GEN8_CTX_VALID (1<<0)
187#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188#define GEN8_CTX_FORCE_RESTORE (1<<2)
189#define GEN8_CTX_L3LLC_COHERENT (1<<5)
190#define GEN8_CTX_PRIVILEGE (1<<8)
191enum {
192 ADVANCED_CONTEXT = 0,
193 LEGACY_CONTEXT,
194 ADVANCED_AD_CONTEXT,
195 LEGACY_64B_CONTEXT
196};
197#define GEN8_CTX_MODE_SHIFT 3
198enum {
199 FAULT_AND_HANG = 0,
200 FAULT_AND_HALT, /* Debug only */
201 FAULT_AND_STREAM,
202 FAULT_AND_CONTINUE /* Unsupported */
203};
204#define GEN8_CTX_ID_SHIFT 32
205
7ba717cf
TD
206static int intel_lr_context_pin(struct intel_engine_cs *ring,
207 struct intel_context *ctx);
208
73e4d07f
OM
209/**
210 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
211 * @dev: DRM device.
212 * @enable_execlists: value of i915.enable_execlists module parameter.
213 *
214 * Only certain platforms support Execlists (the prerequisites being
215 * support for Logical Ring Contexts and Aliasing PPGTT or better),
216 * and only when enabled via module parameter.
217 *
218 * Return: 1 if Execlists is supported and has to be enabled.
219 */
127f1003
OM
220int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
221{
bd84b1e9
DV
222 WARN_ON(i915.enable_ppgtt == -1);
223
70ee45e1
DL
224 if (INTEL_INFO(dev)->gen >= 9)
225 return 1;
226
127f1003
OM
227 if (enable_execlists == 0)
228 return 0;
229
14bf993e
OM
230 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
231 i915.use_mmio_flip >= 0)
127f1003
OM
232 return 1;
233
234 return 0;
235}
ede7d42b 236
73e4d07f
OM
237/**
238 * intel_execlists_ctx_id() - get the Execlists Context ID
239 * @ctx_obj: Logical Ring Context backing object.
240 *
241 * Do not confuse with ctx->id! Unfortunately we have a name overload
242 * here: the old context ID we pass to userspace as a handler so that
243 * they can refer to a context, and the new context ID we pass to the
244 * ELSP so that the GPU can inform us of the context status via
245 * interrupts.
246 *
247 * Return: 20-bits globally unique context ID.
248 */
84b790f8
BW
249u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
250{
251 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
252
253 /* LRCA is required to be 4K aligned so the more significant 20 bits
254 * are globally unique */
255 return lrca >> 12;
256}
257
258static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
259{
260 uint64_t desc;
261 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
acdd884a
MT
262
263 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
264
265 desc = GEN8_CTX_VALID;
266 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
267 desc |= GEN8_CTX_L3LLC_COHERENT;
268 desc |= GEN8_CTX_PRIVILEGE;
269 desc |= lrca;
270 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
271
272 /* TODO: WaDisableLiteRestore when we start using semaphore
273 * signalling between Command Streamers */
274 /* desc |= GEN8_CTX_FORCE_RESTORE; */
275
276 return desc;
277}
278
279static void execlists_elsp_write(struct intel_engine_cs *ring,
280 struct drm_i915_gem_object *ctx_obj0,
281 struct drm_i915_gem_object *ctx_obj1)
282{
6e7cc470
TU
283 struct drm_device *dev = ring->dev;
284 struct drm_i915_private *dev_priv = dev->dev_private;
84b790f8
BW
285 uint64_t temp = 0;
286 uint32_t desc[4];
e981e7b1 287 unsigned long flags;
84b790f8
BW
288
289 /* XXX: You must always write both descriptors in the order below. */
290 if (ctx_obj1)
291 temp = execlists_ctx_descriptor(ctx_obj1);
292 else
293 temp = 0;
294 desc[1] = (u32)(temp >> 32);
295 desc[0] = (u32)temp;
296
297 temp = execlists_ctx_descriptor(ctx_obj0);
298 desc[3] = (u32)(temp >> 32);
299 desc[2] = (u32)temp;
300
e981e7b1
TD
301 /* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
302 * are in progress.
303 *
304 * The other problem is that we can't just call gen6_gt_force_wake_get()
305 * because that function calls intel_runtime_pm_get(), which might sleep.
306 * Instead, we do the runtime_pm_get/put when creating/destroying requests.
307 */
308 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
6e7cc470 309 if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
a01b0e94
D
310 if (dev_priv->uncore.fw_rendercount++ == 0)
311 dev_priv->uncore.funcs.force_wake_get(dev_priv,
312 FORCEWAKE_RENDER);
313 if (dev_priv->uncore.fw_mediacount++ == 0)
314 dev_priv->uncore.funcs.force_wake_get(dev_priv,
315 FORCEWAKE_MEDIA);
6e7cc470
TU
316 if (INTEL_INFO(dev)->gen >= 9) {
317 if (dev_priv->uncore.fw_blittercount++ == 0)
318 dev_priv->uncore.funcs.force_wake_get(dev_priv,
319 FORCEWAKE_BLITTER);
320 }
a01b0e94
D
321 } else {
322 if (dev_priv->uncore.forcewake_count++ == 0)
323 dev_priv->uncore.funcs.force_wake_get(dev_priv,
324 FORCEWAKE_ALL);
325 }
e981e7b1 326 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
84b790f8
BW
327
328 I915_WRITE(RING_ELSP(ring), desc[1]);
329 I915_WRITE(RING_ELSP(ring), desc[0]);
330 I915_WRITE(RING_ELSP(ring), desc[3]);
331 /* The context is automatically loaded after the following */
332 I915_WRITE(RING_ELSP(ring), desc[2]);
333
334 /* ELSP is a wo register, so use another nearby reg for posting instead */
335 POSTING_READ(RING_EXECLIST_STATUS(ring));
336
e981e7b1
TD
337 /* Release Force Wakeup (see the big comment above). */
338 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
6e7cc470 339 if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
a01b0e94
D
340 if (--dev_priv->uncore.fw_rendercount == 0)
341 dev_priv->uncore.funcs.force_wake_put(dev_priv,
342 FORCEWAKE_RENDER);
343 if (--dev_priv->uncore.fw_mediacount == 0)
344 dev_priv->uncore.funcs.force_wake_put(dev_priv,
345 FORCEWAKE_MEDIA);
6e7cc470
TU
346 if (INTEL_INFO(dev)->gen >= 9) {
347 if (--dev_priv->uncore.fw_blittercount == 0)
348 dev_priv->uncore.funcs.force_wake_put(dev_priv,
349 FORCEWAKE_BLITTER);
350 }
a01b0e94
D
351 } else {
352 if (--dev_priv->uncore.forcewake_count == 0)
353 dev_priv->uncore.funcs.force_wake_put(dev_priv,
354 FORCEWAKE_ALL);
355 }
356
e981e7b1 357 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
84b790f8
BW
358}
359
7ba717cf
TD
360static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
361 struct drm_i915_gem_object *ring_obj,
362 u32 tail)
ae1250b9
OM
363{
364 struct page *page;
365 uint32_t *reg_state;
366
367 page = i915_gem_object_get_page(ctx_obj, 1);
368 reg_state = kmap_atomic(page);
369
370 reg_state[CTX_RING_TAIL+1] = tail;
7ba717cf 371 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
ae1250b9
OM
372
373 kunmap_atomic(reg_state);
374
375 return 0;
376}
377
cd0707cb
DG
378static void execlists_submit_contexts(struct intel_engine_cs *ring,
379 struct intel_context *to0, u32 tail0,
380 struct intel_context *to1, u32 tail1)
84b790f8 381{
7ba717cf
TD
382 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
383 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
84b790f8 384 struct drm_i915_gem_object *ctx_obj1 = NULL;
7ba717cf 385 struct intel_ringbuffer *ringbuf1 = NULL;
84b790f8 386
84b790f8 387 BUG_ON(!ctx_obj0);
acdd884a 388 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
7ba717cf 389 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
84b790f8 390
7ba717cf 391 execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
ae1250b9 392
84b790f8 393 if (to1) {
7ba717cf 394 ringbuf1 = to1->engine[ring->id].ringbuf;
84b790f8
BW
395 ctx_obj1 = to1->engine[ring->id].state;
396 BUG_ON(!ctx_obj1);
acdd884a 397 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
7ba717cf 398 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
ae1250b9 399
7ba717cf 400 execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
84b790f8
BW
401 }
402
403 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
84b790f8
BW
404}
405
acdd884a
MT
406static void execlists_context_unqueue(struct intel_engine_cs *ring)
407{
408 struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
409 struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
410
411 assert_spin_locked(&ring->execlist_lock);
acdd884a
MT
412
413 if (list_empty(&ring->execlist_queue))
414 return;
415
416 /* Try to read in pairs */
417 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
418 execlist_link) {
419 if (!req0) {
420 req0 = cursor;
421 } else if (req0->ctx == cursor->ctx) {
422 /* Same ctx: ignore first request, as second request
423 * will update tail past first request's workload */
e1fee72c 424 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 425 list_del(&req0->execlist_link);
c86ee3a9
TD
426 list_add_tail(&req0->execlist_link,
427 &ring->execlist_retired_req_list);
acdd884a
MT
428 req0 = cursor;
429 } else {
430 req1 = cursor;
431 break;
432 }
433 }
434
e1fee72c
OM
435 WARN_ON(req1 && req1->elsp_submitted);
436
cd0707cb
DG
437 execlists_submit_contexts(ring, req0->ctx, req0->tail,
438 req1 ? req1->ctx : NULL,
439 req1 ? req1->tail : 0);
e1fee72c
OM
440
441 req0->elsp_submitted++;
442 if (req1)
443 req1->elsp_submitted++;
acdd884a
MT
444}
445
e981e7b1
TD
446static bool execlists_check_remove_request(struct intel_engine_cs *ring,
447 u32 request_id)
448{
e981e7b1
TD
449 struct intel_ctx_submit_request *head_req;
450
451 assert_spin_locked(&ring->execlist_lock);
452
453 head_req = list_first_entry_or_null(&ring->execlist_queue,
454 struct intel_ctx_submit_request,
455 execlist_link);
456
457 if (head_req != NULL) {
458 struct drm_i915_gem_object *ctx_obj =
459 head_req->ctx->engine[ring->id].state;
460 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
461 WARN(head_req->elsp_submitted == 0,
462 "Never submitted head request\n");
463
464 if (--head_req->elsp_submitted <= 0) {
465 list_del(&head_req->execlist_link);
c86ee3a9
TD
466 list_add_tail(&head_req->execlist_link,
467 &ring->execlist_retired_req_list);
e1fee72c
OM
468 return true;
469 }
e981e7b1
TD
470 }
471 }
472
473 return false;
474}
475
73e4d07f
OM
476/**
477 * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
478 * @ring: Engine Command Streamer to handle.
479 *
480 * Check the unread Context Status Buffers and manage the submission of new
481 * contexts to the ELSP accordingly.
482 */
e981e7b1
TD
483void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
484{
485 struct drm_i915_private *dev_priv = ring->dev->dev_private;
486 u32 status_pointer;
487 u8 read_pointer;
488 u8 write_pointer;
489 u32 status;
490 u32 status_id;
491 u32 submit_contexts = 0;
492
493 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
494
495 read_pointer = ring->next_context_status_buffer;
496 write_pointer = status_pointer & 0x07;
497 if (read_pointer > write_pointer)
498 write_pointer += 6;
499
500 spin_lock(&ring->execlist_lock);
501
502 while (read_pointer < write_pointer) {
503 read_pointer++;
504 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
505 (read_pointer % 6) * 8);
506 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
507 (read_pointer % 6) * 8 + 4);
508
e1fee72c
OM
509 if (status & GEN8_CTX_STATUS_PREEMPTED) {
510 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
511 if (execlists_check_remove_request(ring, status_id))
512 WARN(1, "Lite Restored request removed from queue\n");
513 } else
514 WARN(1, "Preemption without Lite Restore\n");
515 }
516
517 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
518 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
519 if (execlists_check_remove_request(ring, status_id))
520 submit_contexts++;
521 }
522 }
523
524 if (submit_contexts != 0)
525 execlists_context_unqueue(ring);
526
527 spin_unlock(&ring->execlist_lock);
528
529 WARN(submit_contexts > 2, "More than two context complete events?\n");
530 ring->next_context_status_buffer = write_pointer % 6;
531
532 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
533 ((u32)ring->next_context_status_buffer & 0x07) << 8);
534}
535
acdd884a
MT
536static int execlists_context_queue(struct intel_engine_cs *ring,
537 struct intel_context *to,
538 u32 tail)
539{
f1ad5a1f 540 struct intel_ctx_submit_request *req = NULL, *cursor;
e981e7b1 541 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acdd884a 542 unsigned long flags;
f1ad5a1f 543 int num_elements = 0;
acdd884a
MT
544
545 req = kzalloc(sizeof(*req), GFP_KERNEL);
546 if (req == NULL)
547 return -ENOMEM;
548 req->ctx = to;
549 i915_gem_context_reference(req->ctx);
7ba717cf
TD
550
551 if (to != ring->default_context)
552 intel_lr_context_pin(ring, to);
553
acdd884a
MT
554 req->ring = ring;
555 req->tail = tail;
e981e7b1
TD
556
557 intel_runtime_pm_get(dev_priv);
acdd884a
MT
558
559 spin_lock_irqsave(&ring->execlist_lock, flags);
560
f1ad5a1f
OM
561 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
562 if (++num_elements > 2)
563 break;
564
565 if (num_elements > 2) {
566 struct intel_ctx_submit_request *tail_req;
567
568 tail_req = list_last_entry(&ring->execlist_queue,
569 struct intel_ctx_submit_request,
570 execlist_link);
571
572 if (to == tail_req->ctx) {
573 WARN(tail_req->elsp_submitted != 0,
7ba717cf 574 "More than 2 already-submitted reqs queued\n");
f1ad5a1f 575 list_del(&tail_req->execlist_link);
c86ee3a9
TD
576 list_add_tail(&tail_req->execlist_link,
577 &ring->execlist_retired_req_list);
f1ad5a1f
OM
578 }
579 }
580
acdd884a 581 list_add_tail(&req->execlist_link, &ring->execlist_queue);
f1ad5a1f 582 if (num_elements == 0)
acdd884a
MT
583 execlists_context_unqueue(ring);
584
585 spin_unlock_irqrestore(&ring->execlist_lock, flags);
586
587 return 0;
588}
589
ba8b7ccb
OM
590static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
591{
592 struct intel_engine_cs *ring = ringbuf->ring;
593 uint32_t flush_domains;
594 int ret;
595
596 flush_domains = 0;
597 if (ring->gpu_caches_dirty)
598 flush_domains = I915_GEM_GPU_DOMAINS;
599
600 ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
601 if (ret)
602 return ret;
603
604 ring->gpu_caches_dirty = false;
605 return 0;
606}
607
608static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
609 struct list_head *vmas)
610{
611 struct intel_engine_cs *ring = ringbuf->ring;
612 struct i915_vma *vma;
613 uint32_t flush_domains = 0;
614 bool flush_chipset = false;
615 int ret;
616
617 list_for_each_entry(vma, vmas, exec_list) {
618 struct drm_i915_gem_object *obj = vma->obj;
619
620 ret = i915_gem_object_sync(obj, ring);
621 if (ret)
622 return ret;
623
624 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
625 flush_chipset |= i915_gem_clflush_object(obj, false);
626
627 flush_domains |= obj->base.write_domain;
628 }
629
630 if (flush_domains & I915_GEM_DOMAIN_GTT)
631 wmb();
632
633 /* Unconditionally invalidate gpu caches and ensure that we do flush
634 * any residual writes from the previous batch.
635 */
636 return logical_ring_invalidate_all_caches(ringbuf);
637}
638
73e4d07f
OM
639/**
640 * execlists_submission() - submit a batchbuffer for execution, Execlists style
641 * @dev: DRM device.
642 * @file: DRM file.
643 * @ring: Engine Command Streamer to submit to.
644 * @ctx: Context to employ for this submission.
645 * @args: execbuffer call arguments.
646 * @vmas: list of vmas.
647 * @batch_obj: the batchbuffer to submit.
648 * @exec_start: batchbuffer start virtual address pointer.
649 * @flags: translated execbuffer call flags.
650 *
651 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
652 * away the submission details of the execbuffer ioctl call.
653 *
654 * Return: non-zero if the submission fails.
655 */
454afebd
OM
656int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
657 struct intel_engine_cs *ring,
658 struct intel_context *ctx,
659 struct drm_i915_gem_execbuffer2 *args,
660 struct list_head *vmas,
661 struct drm_i915_gem_object *batch_obj,
662 u64 exec_start, u32 flags)
663{
ba8b7ccb
OM
664 struct drm_i915_private *dev_priv = dev->dev_private;
665 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
666 int instp_mode;
667 u32 instp_mask;
668 int ret;
669
670 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
671 instp_mask = I915_EXEC_CONSTANTS_MASK;
672 switch (instp_mode) {
673 case I915_EXEC_CONSTANTS_REL_GENERAL:
674 case I915_EXEC_CONSTANTS_ABSOLUTE:
675 case I915_EXEC_CONSTANTS_REL_SURFACE:
676 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
677 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
678 return -EINVAL;
679 }
680
681 if (instp_mode != dev_priv->relative_constants_mode) {
682 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
683 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
684 return -EINVAL;
685 }
686
687 /* The HW changed the meaning on this bit on gen6 */
688 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
689 }
690 break;
691 default:
692 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
693 return -EINVAL;
694 }
695
696 if (args->num_cliprects != 0) {
697 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
698 return -EINVAL;
699 } else {
700 if (args->DR4 == 0xffffffff) {
701 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
702 args->DR4 = 0;
703 }
704
705 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
706 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
707 return -EINVAL;
708 }
709 }
710
711 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
712 DRM_DEBUG("sol reset is gen7 only\n");
713 return -EINVAL;
714 }
715
716 ret = execlists_move_to_gpu(ringbuf, vmas);
717 if (ret)
718 return ret;
719
720 if (ring == &dev_priv->ring[RCS] &&
721 instp_mode != dev_priv->relative_constants_mode) {
722 ret = intel_logical_ring_begin(ringbuf, 4);
723 if (ret)
724 return ret;
725
726 intel_logical_ring_emit(ringbuf, MI_NOOP);
727 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
728 intel_logical_ring_emit(ringbuf, INSTPM);
729 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
730 intel_logical_ring_advance(ringbuf);
731
732 dev_priv->relative_constants_mode = instp_mode;
733 }
734
735 ret = ring->emit_bb_start(ringbuf, exec_start, flags);
736 if (ret)
737 return ret;
738
739 i915_gem_execbuffer_move_to_active(vmas, ring);
740 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
741
454afebd
OM
742 return 0;
743}
744
c86ee3a9
TD
745void intel_execlists_retire_requests(struct intel_engine_cs *ring)
746{
747 struct intel_ctx_submit_request *req, *tmp;
748 struct drm_i915_private *dev_priv = ring->dev->dev_private;
749 unsigned long flags;
750 struct list_head retired_list;
751
752 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
753 if (list_empty(&ring->execlist_retired_req_list))
754 return;
755
756 INIT_LIST_HEAD(&retired_list);
757 spin_lock_irqsave(&ring->execlist_lock, flags);
758 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
759 spin_unlock_irqrestore(&ring->execlist_lock, flags);
760
761 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
7ba717cf
TD
762 struct intel_context *ctx = req->ctx;
763 struct drm_i915_gem_object *ctx_obj =
764 ctx->engine[ring->id].state;
765
766 if (ctx_obj && (ctx != ring->default_context))
767 intel_lr_context_unpin(ring, ctx);
c86ee3a9
TD
768 intel_runtime_pm_put(dev_priv);
769 i915_gem_context_unreference(req->ctx);
770 list_del(&req->execlist_link);
771 kfree(req);
772 }
773}
774
454afebd
OM
775void intel_logical_ring_stop(struct intel_engine_cs *ring)
776{
9832b9da
OM
777 struct drm_i915_private *dev_priv = ring->dev->dev_private;
778 int ret;
779
780 if (!intel_ring_initialized(ring))
781 return;
782
783 ret = intel_ring_idle(ring);
784 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
785 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
786 ring->name, ret);
787
788 /* TODO: Is this correct with Execlists enabled? */
789 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
790 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
791 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
792 return;
793 }
794 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
795}
796
48e29f55
OM
797int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
798{
799 struct intel_engine_cs *ring = ringbuf->ring;
800 int ret;
801
802 if (!ring->gpu_caches_dirty)
803 return 0;
804
805 ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
806 if (ret)
807 return ret;
808
809 ring->gpu_caches_dirty = false;
810 return 0;
811}
812
73e4d07f
OM
813/**
814 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
815 * @ringbuf: Logical Ringbuffer to advance.
816 *
817 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
818 * really happens during submission is that the context and current tail will be placed
819 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
820 * point, the tail *inside* the context is updated and the ELSP written to.
821 */
82e104cc
OM
822void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
823{
84b790f8
BW
824 struct intel_engine_cs *ring = ringbuf->ring;
825 struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
826
82e104cc
OM
827 intel_logical_ring_advance(ringbuf);
828
84b790f8 829 if (intel_ring_stopped(ring))
82e104cc
OM
830 return;
831
acdd884a 832 execlists_context_queue(ring, ctx, ringbuf->tail);
82e104cc
OM
833}
834
dcb4c12a
OM
835static int intel_lr_context_pin(struct intel_engine_cs *ring,
836 struct intel_context *ctx)
837{
838 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
7ba717cf 839 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
dcb4c12a
OM
840 int ret = 0;
841
842 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
843 if (ctx->engine[ring->id].unpin_count++ == 0) {
844 ret = i915_gem_obj_ggtt_pin(ctx_obj,
845 GEN8_LR_CONTEXT_ALIGN, 0);
846 if (ret)
7ba717cf
TD
847 goto reset_unpin_count;
848
849 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
850 if (ret)
851 goto unpin_ctx_obj;
dcb4c12a
OM
852 }
853
7ba717cf
TD
854 return ret;
855
856unpin_ctx_obj:
857 i915_gem_object_ggtt_unpin(ctx_obj);
858reset_unpin_count:
859 ctx->engine[ring->id].unpin_count = 0;
860
dcb4c12a
OM
861 return ret;
862}
863
864void intel_lr_context_unpin(struct intel_engine_cs *ring,
865 struct intel_context *ctx)
866{
867 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
7ba717cf 868 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
dcb4c12a
OM
869
870 if (ctx_obj) {
871 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
7ba717cf
TD
872 if (--ctx->engine[ring->id].unpin_count == 0) {
873 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 874 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 875 }
dcb4c12a
OM
876 }
877}
878
48e29f55
OM
879static int logical_ring_alloc_seqno(struct intel_engine_cs *ring,
880 struct intel_context *ctx)
82e104cc 881{
9eba5d4a 882 struct drm_i915_gem_request *request;
dcb4c12a
OM
883 int ret;
884
9eba5d4a
JH
885 /* XXX: The aim is to replace seqno values with request structures.
886 * A step along the way is to switch to using the PLR in preference
887 * to the OLS. That requires the PLR to only be valid when the OLS is
888 * also valid. I.e., the two must be kept in step. */
82e104cc 889
9eba5d4a
JH
890 if (ring->outstanding_lazy_seqno) {
891 WARN_ON(ring->preallocated_lazy_request == NULL);
892 return 0;
893 }
894 WARN_ON(ring->preallocated_lazy_request != NULL);
82e104cc 895
9eba5d4a
JH
896 request = kmalloc(sizeof(*request), GFP_KERNEL);
897 if (request == NULL)
898 return -ENOMEM;
82e104cc 899
9eba5d4a
JH
900 if (ctx != ring->default_context) {
901 ret = intel_lr_context_pin(ring, ctx);
902 if (ret) {
903 kfree(request);
904 return ret;
dcb4c12a 905 }
9eba5d4a 906 }
dcb4c12a 907
9eba5d4a
JH
908 ret = i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
909 if (ret) {
910 intel_lr_context_unpin(ring, ctx);
911 kfree(request);
912 return ret;
82e104cc
OM
913 }
914
9eba5d4a
JH
915 /* Hold a reference to the context this request belongs to
916 * (we will need it when the time comes to emit/retire the
917 * request).
918 */
919 request->ctx = ctx;
920 i915_gem_context_reference(request->ctx);
921
922 ring->preallocated_lazy_request = request;
923 return 0;
82e104cc
OM
924}
925
926static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
927 int bytes)
928{
929 struct intel_engine_cs *ring = ringbuf->ring;
930 struct drm_i915_gem_request *request;
931 u32 seqno = 0;
932 int ret;
933
934 if (ringbuf->last_retired_head != -1) {
935 ringbuf->head = ringbuf->last_retired_head;
936 ringbuf->last_retired_head = -1;
937
938 ringbuf->space = intel_ring_space(ringbuf);
939 if (ringbuf->space >= bytes)
940 return 0;
941 }
942
943 list_for_each_entry(request, &ring->request_list, list) {
57e21513
DG
944 /*
945 * The request queue is per-engine, so can contain requests
946 * from multiple ringbuffers. Here, we must ignore any that
947 * aren't from the ringbuffer we're considering.
948 */
949 struct intel_context *ctx = request->ctx;
950 if (ctx->engine[ring->id].ringbuf != ringbuf)
951 continue;
952
953 /* Would completion of this request free enough space? */
82e104cc
OM
954 if (__intel_ring_space(request->tail, ringbuf->tail,
955 ringbuf->size) >= bytes) {
956 seqno = request->seqno;
957 break;
958 }
959 }
960
961 if (seqno == 0)
962 return -ENOSPC;
963
964 ret = i915_wait_seqno(ring, seqno);
965 if (ret)
966 return ret;
967
82e104cc
OM
968 i915_gem_retire_requests_ring(ring);
969 ringbuf->head = ringbuf->last_retired_head;
970 ringbuf->last_retired_head = -1;
971
972 ringbuf->space = intel_ring_space(ringbuf);
973 return 0;
974}
975
976static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
977 int bytes)
978{
979 struct intel_engine_cs *ring = ringbuf->ring;
980 struct drm_device *dev = ring->dev;
981 struct drm_i915_private *dev_priv = dev->dev_private;
982 unsigned long end;
983 int ret;
984
985 ret = logical_ring_wait_request(ringbuf, bytes);
986 if (ret != -ENOSPC)
987 return ret;
988
989 /* Force the context submission in case we have been skipping it */
990 intel_logical_ring_advance_and_submit(ringbuf);
991
992 /* With GEM the hangcheck timer should kick us out of the loop,
993 * leaving it early runs the risk of corrupting GEM state (due
994 * to running on almost untested codepaths). But on resume
995 * timers don't work yet, so prevent a complete hang in that
996 * case by choosing an insanely large timeout. */
997 end = jiffies + 60 * HZ;
998
999 do {
82e104cc
OM
1000 ringbuf->space = intel_ring_space(ringbuf);
1001 if (ringbuf->space >= bytes) {
1002 ret = 0;
1003 break;
1004 }
1005
1006 msleep(1);
1007
1008 if (dev_priv->mm.interruptible && signal_pending(current)) {
1009 ret = -ERESTARTSYS;
1010 break;
1011 }
1012
1013 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1014 dev_priv->mm.interruptible);
1015 if (ret)
1016 break;
1017
1018 if (time_after(jiffies, end)) {
1019 ret = -EBUSY;
1020 break;
1021 }
1022 } while (1);
1023
1024 return ret;
1025}
1026
1027static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
1028{
1029 uint32_t __iomem *virt;
1030 int rem = ringbuf->size - ringbuf->tail;
1031
1032 if (ringbuf->space < rem) {
1033 int ret = logical_ring_wait_for_space(ringbuf, rem);
1034
1035 if (ret)
1036 return ret;
1037 }
1038
1039 virt = ringbuf->virtual_start + ringbuf->tail;
1040 rem /= 4;
1041 while (rem--)
1042 iowrite32(MI_NOOP, virt++);
1043
1044 ringbuf->tail = 0;
1045 ringbuf->space = intel_ring_space(ringbuf);
1046
1047 return 0;
1048}
1049
1050static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
1051{
1052 int ret;
1053
1054 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1055 ret = logical_ring_wrap_buffer(ringbuf);
1056 if (unlikely(ret))
1057 return ret;
1058 }
1059
1060 if (unlikely(ringbuf->space < bytes)) {
1061 ret = logical_ring_wait_for_space(ringbuf, bytes);
1062 if (unlikely(ret))
1063 return ret;
1064 }
1065
1066 return 0;
1067}
1068
73e4d07f
OM
1069/**
1070 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
1071 *
1072 * @ringbuf: Logical ringbuffer.
1073 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
1074 *
1075 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
1076 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
1077 * and also preallocates a request (every workload submission is still mediated through
1078 * requests, same as it did with legacy ringbuffer submission).
1079 *
1080 * Return: non-zero if the ringbuffer is not ready to be written to.
1081 */
82e104cc
OM
1082int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
1083{
1084 struct intel_engine_cs *ring = ringbuf->ring;
1085 struct drm_device *dev = ring->dev;
1086 struct drm_i915_private *dev_priv = dev->dev_private;
1087 int ret;
1088
1089 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1090 dev_priv->mm.interruptible);
1091 if (ret)
1092 return ret;
1093
1094 ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
1095 if (ret)
1096 return ret;
1097
1098 /* Preallocate the olr before touching the ring */
48e29f55 1099 ret = logical_ring_alloc_seqno(ring, ringbuf->FIXME_lrc_ctx);
82e104cc
OM
1100 if (ret)
1101 return ret;
1102
1103 ringbuf->space -= num_dwords * sizeof(uint32_t);
1104 return 0;
1105}
1106
771b9a53
MT
1107static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1108 struct intel_context *ctx)
1109{
1110 int ret, i;
1111 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1112 struct drm_device *dev = ring->dev;
1113 struct drm_i915_private *dev_priv = dev->dev_private;
1114 struct i915_workarounds *w = &dev_priv->workarounds;
1115
1116 if (WARN_ON(w->count == 0))
1117 return 0;
1118
1119 ring->gpu_caches_dirty = true;
1120 ret = logical_ring_flush_all_caches(ringbuf);
1121 if (ret)
1122 return ret;
1123
1124 ret = intel_logical_ring_begin(ringbuf, w->count * 2 + 2);
1125 if (ret)
1126 return ret;
1127
1128 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1129 for (i = 0; i < w->count; i++) {
1130 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1131 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1132 }
1133 intel_logical_ring_emit(ringbuf, MI_NOOP);
1134
1135 intel_logical_ring_advance(ringbuf);
1136
1137 ring->gpu_caches_dirty = true;
1138 ret = logical_ring_flush_all_caches(ringbuf);
1139 if (ret)
1140 return ret;
1141
1142 return 0;
1143}
1144
9b1136d5
OM
1145static int gen8_init_common_ring(struct intel_engine_cs *ring)
1146{
1147 struct drm_device *dev = ring->dev;
1148 struct drm_i915_private *dev_priv = dev->dev_private;
1149
73d477f6
OM
1150 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1151 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1152
9b1136d5
OM
1153 I915_WRITE(RING_MODE_GEN7(ring),
1154 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1155 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1156 POSTING_READ(RING_MODE_GEN7(ring));
1157 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1158
1159 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1160
1161 return 0;
1162}
1163
1164static int gen8_init_render_ring(struct intel_engine_cs *ring)
1165{
1166 struct drm_device *dev = ring->dev;
1167 struct drm_i915_private *dev_priv = dev->dev_private;
1168 int ret;
1169
1170 ret = gen8_init_common_ring(ring);
1171 if (ret)
1172 return ret;
1173
1174 /* We need to disable the AsyncFlip performance optimisations in order
1175 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1176 * programmed to '1' on all products.
1177 *
1178 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1179 */
1180 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1181
1182 ret = intel_init_pipe_control(ring);
1183 if (ret)
1184 return ret;
1185
1186 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1187
771b9a53 1188 return init_workarounds_ring(ring);
9b1136d5
OM
1189}
1190
15648585
OM
1191static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1192 u64 offset, unsigned flags)
1193{
15648585
OM
1194 bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1195 int ret;
1196
1197 ret = intel_logical_ring_begin(ringbuf, 4);
1198 if (ret)
1199 return ret;
1200
1201 /* FIXME(BDW): Address space and security selectors. */
1202 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1203 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1204 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1205 intel_logical_ring_emit(ringbuf, MI_NOOP);
1206 intel_logical_ring_advance(ringbuf);
1207
1208 return 0;
1209}
1210
73d477f6
OM
1211static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1212{
1213 struct drm_device *dev = ring->dev;
1214 struct drm_i915_private *dev_priv = dev->dev_private;
1215 unsigned long flags;
1216
7cd512f1 1217 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1218 return false;
1219
1220 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1221 if (ring->irq_refcount++ == 0) {
1222 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1223 POSTING_READ(RING_IMR(ring->mmio_base));
1224 }
1225 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1226
1227 return true;
1228}
1229
1230static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1231{
1232 struct drm_device *dev = ring->dev;
1233 struct drm_i915_private *dev_priv = dev->dev_private;
1234 unsigned long flags;
1235
1236 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1237 if (--ring->irq_refcount == 0) {
1238 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1239 POSTING_READ(RING_IMR(ring->mmio_base));
1240 }
1241 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1242}
1243
4712274c
OM
1244static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1245 u32 invalidate_domains,
1246 u32 unused)
1247{
1248 struct intel_engine_cs *ring = ringbuf->ring;
1249 struct drm_device *dev = ring->dev;
1250 struct drm_i915_private *dev_priv = dev->dev_private;
1251 uint32_t cmd;
1252 int ret;
1253
1254 ret = intel_logical_ring_begin(ringbuf, 4);
1255 if (ret)
1256 return ret;
1257
1258 cmd = MI_FLUSH_DW + 1;
1259
1260 if (ring == &dev_priv->ring[VCS]) {
1261 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1262 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1263 MI_FLUSH_DW_STORE_INDEX |
1264 MI_FLUSH_DW_OP_STOREDW;
1265 } else {
1266 if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1267 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1268 MI_FLUSH_DW_OP_STOREDW;
1269 }
1270
1271 intel_logical_ring_emit(ringbuf, cmd);
1272 intel_logical_ring_emit(ringbuf,
1273 I915_GEM_HWS_SCRATCH_ADDR |
1274 MI_FLUSH_DW_USE_GTT);
1275 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1276 intel_logical_ring_emit(ringbuf, 0); /* value */
1277 intel_logical_ring_advance(ringbuf);
1278
1279 return 0;
1280}
1281
1282static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1283 u32 invalidate_domains,
1284 u32 flush_domains)
1285{
1286 struct intel_engine_cs *ring = ringbuf->ring;
1287 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1288 u32 flags = 0;
1289 int ret;
1290
1291 flags |= PIPE_CONTROL_CS_STALL;
1292
1293 if (flush_domains) {
1294 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1295 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1296 }
1297
1298 if (invalidate_domains) {
1299 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1300 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1301 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1302 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1303 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1304 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1305 flags |= PIPE_CONTROL_QW_WRITE;
1306 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1307 }
1308
1309 ret = intel_logical_ring_begin(ringbuf, 6);
1310 if (ret)
1311 return ret;
1312
1313 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1314 intel_logical_ring_emit(ringbuf, flags);
1315 intel_logical_ring_emit(ringbuf, scratch_addr);
1316 intel_logical_ring_emit(ringbuf, 0);
1317 intel_logical_ring_emit(ringbuf, 0);
1318 intel_logical_ring_emit(ringbuf, 0);
1319 intel_logical_ring_advance(ringbuf);
1320
1321 return 0;
1322}
1323
e94e37ad
OM
1324static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1325{
1326 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1327}
1328
1329static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1330{
1331 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1332}
1333
4da46e1e
OM
1334static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1335{
1336 struct intel_engine_cs *ring = ringbuf->ring;
1337 u32 cmd;
1338 int ret;
1339
1340 ret = intel_logical_ring_begin(ringbuf, 6);
1341 if (ret)
1342 return ret;
1343
1344 cmd = MI_STORE_DWORD_IMM_GEN8;
1345 cmd |= MI_GLOBAL_GTT;
1346
1347 intel_logical_ring_emit(ringbuf, cmd);
1348 intel_logical_ring_emit(ringbuf,
1349 (ring->status_page.gfx_addr +
1350 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1351 intel_logical_ring_emit(ringbuf, 0);
1352 intel_logical_ring_emit(ringbuf, ring->outstanding_lazy_seqno);
1353 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1354 intel_logical_ring_emit(ringbuf, MI_NOOP);
1355 intel_logical_ring_advance_and_submit(ringbuf);
1356
1357 return 0;
1358}
1359
73e4d07f
OM
1360/**
1361 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1362 *
1363 * @ring: Engine Command Streamer.
1364 *
1365 */
454afebd
OM
1366void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1367{
6402c330 1368 struct drm_i915_private *dev_priv;
9832b9da 1369
48d82387
OM
1370 if (!intel_ring_initialized(ring))
1371 return;
1372
6402c330
JH
1373 dev_priv = ring->dev->dev_private;
1374
9832b9da
OM
1375 intel_logical_ring_stop(ring);
1376 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
48d82387
OM
1377 ring->preallocated_lazy_request = NULL;
1378 ring->outstanding_lazy_seqno = 0;
1379
1380 if (ring->cleanup)
1381 ring->cleanup(ring);
1382
1383 i915_cmd_parser_fini_ring(ring);
1384
1385 if (ring->status_page.obj) {
1386 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1387 ring->status_page.obj = NULL;
1388 }
454afebd
OM
1389}
1390
1391static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1392{
48d82387 1393 int ret;
48d82387
OM
1394
1395 /* Intentionally left blank. */
1396 ring->buffer = NULL;
1397
1398 ring->dev = dev;
1399 INIT_LIST_HEAD(&ring->active_list);
1400 INIT_LIST_HEAD(&ring->request_list);
1401 init_waitqueue_head(&ring->irq_queue);
1402
acdd884a 1403 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1404 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a 1405 spin_lock_init(&ring->execlist_lock);
e981e7b1 1406 ring->next_context_status_buffer = 0;
acdd884a 1407
48d82387
OM
1408 ret = i915_cmd_parser_init_ring(ring);
1409 if (ret)
1410 return ret;
1411
1412 if (ring->init) {
1413 ret = ring->init(ring);
1414 if (ret)
1415 return ret;
1416 }
1417
564ddb2f
OM
1418 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1419
1420 return ret;
454afebd
OM
1421}
1422
1423static int logical_render_ring_init(struct drm_device *dev)
1424{
1425 struct drm_i915_private *dev_priv = dev->dev_private;
1426 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1427
1428 ring->name = "render ring";
1429 ring->id = RCS;
1430 ring->mmio_base = RENDER_RING_BASE;
1431 ring->irq_enable_mask =
1432 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1433 ring->irq_keep_mask =
1434 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1435 if (HAS_L3_DPF(dev))
1436 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1437
9b1136d5 1438 ring->init = gen8_init_render_ring;
771b9a53 1439 ring->init_context = intel_logical_ring_workarounds_emit;
9b1136d5 1440 ring->cleanup = intel_fini_pipe_control;
e94e37ad
OM
1441 ring->get_seqno = gen8_get_seqno;
1442 ring->set_seqno = gen8_set_seqno;
4da46e1e 1443 ring->emit_request = gen8_emit_request;
4712274c 1444 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1445 ring->irq_get = gen8_logical_ring_get_irq;
1446 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1447 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1448
454afebd
OM
1449 return logical_ring_init(dev, ring);
1450}
1451
1452static int logical_bsd_ring_init(struct drm_device *dev)
1453{
1454 struct drm_i915_private *dev_priv = dev->dev_private;
1455 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1456
1457 ring->name = "bsd ring";
1458 ring->id = VCS;
1459 ring->mmio_base = GEN6_BSD_RING_BASE;
1460 ring->irq_enable_mask =
1461 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
1462 ring->irq_keep_mask =
1463 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 1464
9b1136d5 1465 ring->init = gen8_init_common_ring;
e94e37ad
OM
1466 ring->get_seqno = gen8_get_seqno;
1467 ring->set_seqno = gen8_set_seqno;
4da46e1e 1468 ring->emit_request = gen8_emit_request;
4712274c 1469 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1470 ring->irq_get = gen8_logical_ring_get_irq;
1471 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1472 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1473
454afebd
OM
1474 return logical_ring_init(dev, ring);
1475}
1476
1477static int logical_bsd2_ring_init(struct drm_device *dev)
1478{
1479 struct drm_i915_private *dev_priv = dev->dev_private;
1480 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1481
1482 ring->name = "bds2 ring";
1483 ring->id = VCS2;
1484 ring->mmio_base = GEN8_BSD2_RING_BASE;
1485 ring->irq_enable_mask =
1486 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
1487 ring->irq_keep_mask =
1488 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 1489
9b1136d5 1490 ring->init = gen8_init_common_ring;
e94e37ad
OM
1491 ring->get_seqno = gen8_get_seqno;
1492 ring->set_seqno = gen8_set_seqno;
4da46e1e 1493 ring->emit_request = gen8_emit_request;
4712274c 1494 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1495 ring->irq_get = gen8_logical_ring_get_irq;
1496 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1497 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1498
454afebd
OM
1499 return logical_ring_init(dev, ring);
1500}
1501
1502static int logical_blt_ring_init(struct drm_device *dev)
1503{
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1506
1507 ring->name = "blitter ring";
1508 ring->id = BCS;
1509 ring->mmio_base = BLT_RING_BASE;
1510 ring->irq_enable_mask =
1511 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
1512 ring->irq_keep_mask =
1513 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 1514
9b1136d5 1515 ring->init = gen8_init_common_ring;
e94e37ad
OM
1516 ring->get_seqno = gen8_get_seqno;
1517 ring->set_seqno = gen8_set_seqno;
4da46e1e 1518 ring->emit_request = gen8_emit_request;
4712274c 1519 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1520 ring->irq_get = gen8_logical_ring_get_irq;
1521 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1522 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1523
454afebd
OM
1524 return logical_ring_init(dev, ring);
1525}
1526
1527static int logical_vebox_ring_init(struct drm_device *dev)
1528{
1529 struct drm_i915_private *dev_priv = dev->dev_private;
1530 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1531
1532 ring->name = "video enhancement ring";
1533 ring->id = VECS;
1534 ring->mmio_base = VEBOX_RING_BASE;
1535 ring->irq_enable_mask =
1536 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
1537 ring->irq_keep_mask =
1538 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 1539
9b1136d5 1540 ring->init = gen8_init_common_ring;
e94e37ad
OM
1541 ring->get_seqno = gen8_get_seqno;
1542 ring->set_seqno = gen8_set_seqno;
4da46e1e 1543 ring->emit_request = gen8_emit_request;
4712274c 1544 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1545 ring->irq_get = gen8_logical_ring_get_irq;
1546 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1547 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1548
454afebd
OM
1549 return logical_ring_init(dev, ring);
1550}
1551
73e4d07f
OM
1552/**
1553 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1554 * @dev: DRM device.
1555 *
1556 * This function inits the engines for an Execlists submission style (the equivalent in the
1557 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1558 * those engines that are present in the hardware.
1559 *
1560 * Return: non-zero if the initialization failed.
1561 */
454afebd
OM
1562int intel_logical_rings_init(struct drm_device *dev)
1563{
1564 struct drm_i915_private *dev_priv = dev->dev_private;
1565 int ret;
1566
1567 ret = logical_render_ring_init(dev);
1568 if (ret)
1569 return ret;
1570
1571 if (HAS_BSD(dev)) {
1572 ret = logical_bsd_ring_init(dev);
1573 if (ret)
1574 goto cleanup_render_ring;
1575 }
1576
1577 if (HAS_BLT(dev)) {
1578 ret = logical_blt_ring_init(dev);
1579 if (ret)
1580 goto cleanup_bsd_ring;
1581 }
1582
1583 if (HAS_VEBOX(dev)) {
1584 ret = logical_vebox_ring_init(dev);
1585 if (ret)
1586 goto cleanup_blt_ring;
1587 }
1588
1589 if (HAS_BSD2(dev)) {
1590 ret = logical_bsd2_ring_init(dev);
1591 if (ret)
1592 goto cleanup_vebox_ring;
1593 }
1594
1595 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1596 if (ret)
1597 goto cleanup_bsd2_ring;
1598
1599 return 0;
1600
1601cleanup_bsd2_ring:
1602 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1603cleanup_vebox_ring:
1604 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1605cleanup_blt_ring:
1606 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1607cleanup_bsd_ring:
1608 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1609cleanup_render_ring:
1610 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1611
1612 return ret;
1613}
1614
564ddb2f
OM
1615int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1616 struct intel_context *ctx)
1617{
1618 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1619 struct render_state so;
1620 struct drm_i915_file_private *file_priv = ctx->file_priv;
1621 struct drm_file *file = file_priv ? file_priv->file : NULL;
1622 int ret;
1623
1624 ret = i915_gem_render_state_prepare(ring, &so);
1625 if (ret)
1626 return ret;
1627
1628 if (so.rodata == NULL)
1629 return 0;
1630
1631 ret = ring->emit_bb_start(ringbuf,
1632 so.ggtt_offset,
1633 I915_DISPATCH_SECURE);
1634 if (ret)
1635 goto out;
1636
1637 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1638
1639 ret = __i915_add_request(ring, file, so.obj, NULL);
1640 /* intel_logical_ring_add_request moves object to inactive if it
1641 * fails */
1642out:
1643 i915_gem_render_state_fini(&so);
1644 return ret;
1645}
1646
8670d6f9
OM
1647static int
1648populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1649 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1650{
2d965536
TD
1651 struct drm_device *dev = ring->dev;
1652 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 1653 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
1654 struct page *page;
1655 uint32_t *reg_state;
1656 int ret;
1657
2d965536
TD
1658 if (!ppgtt)
1659 ppgtt = dev_priv->mm.aliasing_ppgtt;
1660
8670d6f9
OM
1661 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1662 if (ret) {
1663 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1664 return ret;
1665 }
1666
1667 ret = i915_gem_object_get_pages(ctx_obj);
1668 if (ret) {
1669 DRM_DEBUG_DRIVER("Could not get object pages\n");
1670 return ret;
1671 }
1672
1673 i915_gem_object_pin_pages(ctx_obj);
1674
1675 /* The second page of the context object contains some fields which must
1676 * be set up prior to the first execution. */
1677 page = i915_gem_object_get_page(ctx_obj, 1);
1678 reg_state = kmap_atomic(page);
1679
1680 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1681 * commands followed by (reg, value) pairs. The values we are setting here are
1682 * only for the first context restore: on a subsequent save, the GPU will
1683 * recreate this batchbuffer with new values (including all the missing
1684 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1685 if (ring->id == RCS)
1686 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1687 else
1688 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1689 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1690 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1691 reg_state[CTX_CONTEXT_CONTROL+1] =
1692 _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1693 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1694 reg_state[CTX_RING_HEAD+1] = 0;
1695 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1696 reg_state[CTX_RING_TAIL+1] = 0;
1697 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
7ba717cf
TD
1698 /* Ring buffer start address is not known until the buffer is pinned.
1699 * It is written to the context image in execlists_update_context()
1700 */
8670d6f9
OM
1701 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1702 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1703 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1704 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1705 reg_state[CTX_BB_HEAD_U+1] = 0;
1706 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1707 reg_state[CTX_BB_HEAD_L+1] = 0;
1708 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1709 reg_state[CTX_BB_STATE+1] = (1<<5);
1710 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1711 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1712 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1713 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1714 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1715 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1716 if (ring->id == RCS) {
1717 /* TODO: according to BSpec, the register state context
1718 * for CHV does not have these. OTOH, these registers do
1719 * exist in CHV. I'm waiting for a clarification */
1720 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1721 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1722 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1723 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1724 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1725 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1726 }
1727 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1728 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1729 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1730 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1731 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1732 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1733 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1734 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1735 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1736 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1737 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1738 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1739 reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1740 reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1741 reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1742 reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1743 reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1744 reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1745 reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1746 reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1747 if (ring->id == RCS) {
1748 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1749 reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1750 reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1751 }
1752
1753 kunmap_atomic(reg_state);
1754
1755 ctx_obj->dirty = 1;
1756 set_page_dirty(page);
1757 i915_gem_object_unpin_pages(ctx_obj);
1758
1759 return 0;
1760}
1761
73e4d07f
OM
1762/**
1763 * intel_lr_context_free() - free the LRC specific bits of a context
1764 * @ctx: the LR context to free.
1765 *
1766 * The real context freeing is done in i915_gem_context_free: this only
1767 * takes care of the bits that are LRC related: the per-engine backing
1768 * objects and the logical ringbuffer.
1769 */
ede7d42b
OM
1770void intel_lr_context_free(struct intel_context *ctx)
1771{
8c857917
OM
1772 int i;
1773
1774 for (i = 0; i < I915_NUM_RINGS; i++) {
1775 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 1776
8c857917 1777 if (ctx_obj) {
dcb4c12a
OM
1778 struct intel_ringbuffer *ringbuf =
1779 ctx->engine[i].ringbuf;
1780 struct intel_engine_cs *ring = ringbuf->ring;
1781
7ba717cf
TD
1782 if (ctx == ring->default_context) {
1783 intel_unpin_ringbuffer_obj(ringbuf);
1784 i915_gem_object_ggtt_unpin(ctx_obj);
1785 }
84c2377f
OM
1786 intel_destroy_ringbuffer_obj(ringbuf);
1787 kfree(ringbuf);
8c857917
OM
1788 drm_gem_object_unreference(&ctx_obj->base);
1789 }
1790 }
1791}
1792
1793static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1794{
1795 int ret = 0;
1796
468c6816 1797 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
1798
1799 switch (ring->id) {
1800 case RCS:
468c6816
MN
1801 if (INTEL_INFO(ring->dev)->gen >= 9)
1802 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1803 else
1804 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
1805 break;
1806 case VCS:
1807 case BCS:
1808 case VECS:
1809 case VCS2:
1810 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1811 break;
1812 }
1813
1814 return ret;
ede7d42b
OM
1815}
1816
70b0ea86 1817static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
1818 struct drm_i915_gem_object *default_ctx_obj)
1819{
1820 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1821
1822 /* The status page is offset 0 from the default context object
1823 * in LRC mode. */
1824 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1825 ring->status_page.page_addr =
1826 kmap(sg_page(default_ctx_obj->pages->sgl));
1df06b75
TD
1827 ring->status_page.obj = default_ctx_obj;
1828
1829 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1830 (u32)ring->status_page.gfx_addr);
1831 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
1832}
1833
73e4d07f
OM
1834/**
1835 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1836 * @ctx: LR context to create.
1837 * @ring: engine to be used with the context.
1838 *
1839 * This function can be called more than once, with different engines, if we plan
1840 * to use the context with them. The context backing objects and the ringbuffers
1841 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1842 * the creation is a deferred call: it's better to make sure first that we need to use
1843 * a given ring with the context.
1844 *
32197aab 1845 * Return: non-zero on error.
73e4d07f 1846 */
ede7d42b
OM
1847int intel_lr_context_deferred_create(struct intel_context *ctx,
1848 struct intel_engine_cs *ring)
1849{
dcb4c12a 1850 const bool is_global_default_ctx = (ctx == ring->default_context);
8c857917
OM
1851 struct drm_device *dev = ring->dev;
1852 struct drm_i915_gem_object *ctx_obj;
1853 uint32_t context_size;
84c2377f 1854 struct intel_ringbuffer *ringbuf;
8c857917
OM
1855 int ret;
1856
ede7d42b 1857 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
48d82387
OM
1858 if (ctx->engine[ring->id].state)
1859 return 0;
ede7d42b 1860
8c857917
OM
1861 context_size = round_up(get_lr_context_size(ring), 4096);
1862
1863 ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1864 if (IS_ERR(ctx_obj)) {
1865 ret = PTR_ERR(ctx_obj);
1866 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1867 return ret;
1868 }
1869
dcb4c12a
OM
1870 if (is_global_default_ctx) {
1871 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1872 if (ret) {
1873 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1874 ret);
1875 drm_gem_object_unreference(&ctx_obj->base);
1876 return ret;
1877 }
8c857917
OM
1878 }
1879
84c2377f
OM
1880 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1881 if (!ringbuf) {
1882 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1883 ring->name);
84c2377f 1884 ret = -ENOMEM;
7ba717cf 1885 goto error_unpin_ctx;
84c2377f
OM
1886 }
1887
0c7dd53b 1888 ringbuf->ring = ring;
582d67f0
OM
1889 ringbuf->FIXME_lrc_ctx = ctx;
1890
84c2377f
OM
1891 ringbuf->size = 32 * PAGE_SIZE;
1892 ringbuf->effective_size = ringbuf->size;
1893 ringbuf->head = 0;
1894 ringbuf->tail = 0;
1895 ringbuf->space = ringbuf->size;
1896 ringbuf->last_retired_head = -1;
1897
7ba717cf
TD
1898 if (ringbuf->obj == NULL) {
1899 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1900 if (ret) {
1901 DRM_DEBUG_DRIVER(
1902 "Failed to allocate ringbuffer obj %s: %d\n",
84c2377f 1903 ring->name, ret);
7ba717cf
TD
1904 goto error_free_rbuf;
1905 }
1906
1907 if (is_global_default_ctx) {
1908 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1909 if (ret) {
1910 DRM_ERROR(
1911 "Failed to pin and map ringbuffer %s: %d\n",
1912 ring->name, ret);
1913 goto error_destroy_rbuf;
1914 }
1915 }
1916
8670d6f9
OM
1917 }
1918
1919 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1920 if (ret) {
1921 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
8670d6f9 1922 goto error;
84c2377f
OM
1923 }
1924
1925 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 1926 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 1927
70b0ea86
DV
1928 if (ctx == ring->default_context)
1929 lrc_setup_hardware_status_page(ring, ctx_obj);
564ddb2f
OM
1930
1931 if (ring->id == RCS && !ctx->rcs_initialized) {
771b9a53
MT
1932 if (ring->init_context) {
1933 ret = ring->init_context(ring, ctx);
1934 if (ret)
1935 DRM_ERROR("ring init context: %d\n", ret);
1936 }
1937
564ddb2f
OM
1938 ret = intel_lr_context_render_state_init(ring, ctx);
1939 if (ret) {
1940 DRM_ERROR("Init render state failed: %d\n", ret);
1941 ctx->engine[ring->id].ringbuf = NULL;
1942 ctx->engine[ring->id].state = NULL;
564ddb2f
OM
1943 goto error;
1944 }
1945 ctx->rcs_initialized = true;
1946 }
1947
ede7d42b 1948 return 0;
8670d6f9
OM
1949
1950error:
7ba717cf
TD
1951 if (is_global_default_ctx)
1952 intel_unpin_ringbuffer_obj(ringbuf);
1953error_destroy_rbuf:
1954 intel_destroy_ringbuffer_obj(ringbuf);
1955error_free_rbuf:
8670d6f9 1956 kfree(ringbuf);
7ba717cf 1957error_unpin_ctx:
dcb4c12a
OM
1958 if (is_global_default_ctx)
1959 i915_gem_object_ggtt_unpin(ctx_obj);
8670d6f9
OM
1960 drm_gem_object_unreference(&ctx_obj->base);
1961 return ret;
ede7d42b 1962}