]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Avoid lock dropping between rescheduling
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 158
70c2a24d
CW
159#define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
8670d6f9
OM
164#define CTX_LRI_HEADER_0 0x01
165#define CTX_CONTEXT_CONTROL 0x02
166#define CTX_RING_HEAD 0x04
167#define CTX_RING_TAIL 0x06
168#define CTX_RING_BUFFER_START 0x08
169#define CTX_RING_BUFFER_CONTROL 0x0a
170#define CTX_BB_HEAD_U 0x0c
171#define CTX_BB_HEAD_L 0x0e
172#define CTX_BB_STATE 0x10
173#define CTX_SECOND_BB_HEAD_U 0x12
174#define CTX_SECOND_BB_HEAD_L 0x14
175#define CTX_SECOND_BB_STATE 0x16
176#define CTX_BB_PER_CTX_PTR 0x18
177#define CTX_RCS_INDIRECT_CTX 0x1a
178#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179#define CTX_LRI_HEADER_1 0x21
180#define CTX_CTX_TIMESTAMP 0x22
181#define CTX_PDP3_UDW 0x24
182#define CTX_PDP3_LDW 0x26
183#define CTX_PDP2_UDW 0x28
184#define CTX_PDP2_LDW 0x2a
185#define CTX_PDP1_UDW 0x2c
186#define CTX_PDP1_LDW 0x2e
187#define CTX_PDP0_UDW 0x30
188#define CTX_PDP0_LDW 0x32
189#define CTX_LRI_HEADER_2 0x41
190#define CTX_R_PWR_CLK_STATE 0x42
191#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
56e51bf0 193#define CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
195 (reg_state)[(pos)+1] = (val); \
196} while (0)
197
198#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 202} while (0)
e5815a2e 203
9244a817 204#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 207} while (0)
2dba3239 208
71562919
MT
209#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
210#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 211
0e93cdd4
CW
212/* Typical size of the average request (2 pipecontrols and a MI_BB) */
213#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
214
a3aabe86
CW
215#define WA_TAIL_DWORDS 2
216
e2efd130 217static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 218 struct intel_engine_cs *engine);
a3aabe86
CW
219static void execlists_init_reg_state(u32 *reg_state,
220 struct i915_gem_context *ctx,
221 struct intel_engine_cs *engine,
222 struct intel_ring *ring);
7ba717cf 223
73e4d07f
OM
224/**
225 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 226 * @dev_priv: i915 device private
73e4d07f
OM
227 * @enable_execlists: value of i915.enable_execlists module parameter.
228 *
229 * Only certain platforms support Execlists (the prerequisites being
27401d12 230 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
231 *
232 * Return: 1 if Execlists is supported and has to be enabled.
233 */
c033666a 234int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 235{
a0bd6c31
ZL
236 /* On platforms with execlist available, vGPU will only
237 * support execlist mode, no ring buffer mode.
238 */
c033666a 239 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
240 return 1;
241
c033666a 242 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
243 return 1;
244
127f1003
OM
245 if (enable_execlists == 0)
246 return 0;
247
5a21b665
DV
248 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
249 USES_PPGTT(dev_priv) &&
250 i915.use_mmio_flip >= 0)
127f1003
OM
251 return 1;
252
253 return 0;
254}
ede7d42b 255
73e4d07f 256/**
ca82580c
TU
257 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
258 * descriptor for a pinned context
ca82580c 259 * @ctx: Context to work on
9021ad03 260 * @engine: Engine the descriptor will be used with
73e4d07f 261 *
ca82580c
TU
262 * The context descriptor encodes various attributes of a context,
263 * including its GTT address and some flags. Because it's fairly
264 * expensive to calculate, we'll just do it once and cache the result,
265 * which remains valid until the context is unpinned.
266 *
6e5248b5
DV
267 * This is what a descriptor looks like, from LSB to MSB::
268 *
2355cf08 269 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
6e5248b5
DV
270 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
271 * bits 32-52: ctx ID, a globally unique tag
272 * bits 53-54: mbz, reserved for use by hardware
273 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 274 */
ca82580c 275static void
e2efd130 276intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 277 struct intel_engine_cs *engine)
84b790f8 278{
9021ad03 279 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 280 u64 desc;
84b790f8 281
7069b144 282 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 283
2355cf08 284 desc = ctx->desc_template; /* bits 0-11 */
bde13ebd 285 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 286 /* bits 12-31 */
7069b144 287 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 288
9021ad03 289 ce->lrc_desc = desc;
5af05fef
MT
290}
291
e2efd130 292uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 293 struct intel_engine_cs *engine)
84b790f8 294{
0bc40be8 295 return ctx->engine[engine->id].lrc_desc;
ca82580c 296}
203a571b 297
bbd6c47e
CW
298static inline void
299execlists_context_status_change(struct drm_i915_gem_request *rq,
300 unsigned long status)
84b790f8 301{
bbd6c47e
CW
302 /*
303 * Only used when GVT-g is enabled now. When GVT-g is disabled,
304 * The compiler should eliminate this function as dead-code.
305 */
306 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
307 return;
6daccb0b 308
3fc03069
CD
309 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
310 status, rq);
84b790f8
BW
311}
312
c6a2ac71
TU
313static void
314execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
315{
316 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
317 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
318 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
319 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
320}
321
70c2a24d 322static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 323{
70c2a24d 324 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
04da811b
ZW
325 struct i915_hw_ppgtt *ppgtt =
326 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
70c2a24d 327 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 328
ed1501d4 329 assert_ring_tail_valid(rq->ring, rq->tail);
caddfe71 330 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 331
c6a2ac71
TU
332 /* True 32b PPGTT with dynamic page allocation: update PDP
333 * registers and point the unallocated PDPs to scratch page.
334 * PML4 is allocated during ppgtt init, so this is not needed
335 * in 48-bit mode.
336 */
949e8ab3 337 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
c6a2ac71 338 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
339
340 return ce->lrc_desc;
ae1250b9
OM
341}
342
70c2a24d 343static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 344{
70c2a24d
CW
345 struct drm_i915_private *dev_priv = engine->i915;
346 struct execlist_port *port = engine->execlist_port;
bbd6c47e
CW
347 u32 __iomem *elsp =
348 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
349 u64 desc[2];
350
c816e605 351 GEM_BUG_ON(port[0].count > 1);
70c2a24d
CW
352 if (!port[0].count)
353 execlists_context_status_change(port[0].request,
354 INTEL_CONTEXT_SCHEDULE_IN);
355 desc[0] = execlists_update_context(port[0].request);
ae9a043b 356 GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
816ee798 357 port[0].count++;
70c2a24d
CW
358
359 if (port[1].request) {
360 GEM_BUG_ON(port[1].count);
361 execlists_context_status_change(port[1].request,
362 INTEL_CONTEXT_SCHEDULE_IN);
363 desc[1] = execlists_update_context(port[1].request);
ae9a043b 364 GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
70c2a24d 365 port[1].count = 1;
bbd6c47e
CW
366 } else {
367 desc[1] = 0;
368 }
70c2a24d 369 GEM_BUG_ON(desc[0] == desc[1]);
bbd6c47e
CW
370
371 /* You must always write both descriptors in the order below. */
372 writel(upper_32_bits(desc[1]), elsp);
373 writel(lower_32_bits(desc[1]), elsp);
374
375 writel(upper_32_bits(desc[0]), elsp);
376 /* The context is automatically loaded after the following */
377 writel(lower_32_bits(desc[0]), elsp);
378}
379
70c2a24d 380static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 381{
70c2a24d 382 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
6095868a 383 i915_gem_context_force_single_submission(ctx));
70c2a24d 384}
84b790f8 385
70c2a24d
CW
386static bool can_merge_ctx(const struct i915_gem_context *prev,
387 const struct i915_gem_context *next)
388{
389 if (prev != next)
390 return false;
26720ab9 391
70c2a24d
CW
392 if (ctx_single_port_submission(prev))
393 return false;
26720ab9 394
70c2a24d 395 return true;
84b790f8
BW
396}
397
70c2a24d 398static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 399{
20311bd3 400 struct drm_i915_gem_request *last;
70c2a24d 401 struct execlist_port *port = engine->execlist_port;
20311bd3 402 struct rb_node *rb;
70c2a24d
CW
403 bool submit = false;
404
6c943de6
CW
405 /* After execlist_first is updated, the tasklet will be rescheduled.
406 *
407 * If we are currently running (inside the tasklet) and a third
408 * party queues a request and so updates engine->execlist_first under
409 * the spinlock (which we have elided), it will atomically set the
410 * TASKLET_SCHED flag causing the us to be re-executed and pick up
411 * the change in state (the update to TASKLET_SCHED incurs a memory
412 * barrier making this cross-cpu checking safe).
413 */
414 if (!READ_ONCE(engine->execlist_first))
415 return;
416
70c2a24d
CW
417 last = port->request;
418 if (last)
419 /* WaIdleLiteRestore:bdw,skl
420 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
9b81d556 421 * as we resubmit the request. See gen8_emit_breadcrumb()
70c2a24d
CW
422 * for where we prepare the padding after the end of the
423 * request.
424 */
425 last->tail = last->wa_tail;
e981e7b1 426
70c2a24d 427 GEM_BUG_ON(port[1].request);
acdd884a 428
70c2a24d
CW
429 /* Hardware submission is through 2 ports. Conceptually each port
430 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
431 * static for a context, and unique to each, so we only execute
432 * requests belonging to a single context from each ring. RING_HEAD
433 * is maintained by the CS in the context image, it marks the place
434 * where it got up to last time, and through RING_TAIL we tell the CS
435 * where we want to execute up to this time.
436 *
437 * In this list the requests are in order of execution. Consecutive
438 * requests from the same context are adjacent in the ringbuffer. We
439 * can combine these requests into a single RING_TAIL update:
440 *
441 * RING_HEAD...req1...req2
442 * ^- RING_TAIL
443 * since to execute req2 the CS must first execute req1.
444 *
445 * Our goal then is to point each port to the end of a consecutive
446 * sequence of requests as being the most optimal (fewest wake ups
447 * and context switches) submission.
779949f4 448 */
acdd884a 449
9f7886d0 450 spin_lock_irq(&engine->timeline->lock);
20311bd3
CW
451 rb = engine->execlist_first;
452 while (rb) {
453 struct drm_i915_gem_request *cursor =
454 rb_entry(rb, typeof(*cursor), priotree.node);
455
70c2a24d
CW
456 /* Can we combine this request with the current port? It has to
457 * be the same context/ringbuffer and not have any exceptions
458 * (e.g. GVT saying never to combine contexts).
c6a2ac71 459 *
70c2a24d
CW
460 * If we can combine the requests, we can execute both by
461 * updating the RING_TAIL to point to the end of the second
462 * request, and so we never need to tell the hardware about
463 * the first.
53292cdb 464 */
70c2a24d
CW
465 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
466 /* If we are on the second port and cannot combine
467 * this request with the last, then we are done.
468 */
469 if (port != engine->execlist_port)
470 break;
471
472 /* If GVT overrides us we only ever submit port[0],
473 * leaving port[1] empty. Note that we also have
474 * to be careful that we don't queue the same
475 * context (even though a different request) to
476 * the second port.
477 */
d7ab992c
MH
478 if (ctx_single_port_submission(last->ctx) ||
479 ctx_single_port_submission(cursor->ctx))
70c2a24d
CW
480 break;
481
482 GEM_BUG_ON(last->ctx == cursor->ctx);
483
484 i915_gem_request_assign(&port->request, last);
485 port++;
486 }
d55ac5bf 487
20311bd3
CW
488 rb = rb_next(rb);
489 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
490 RB_CLEAR_NODE(&cursor->priotree.node);
491 cursor->priotree.priority = INT_MAX;
492
d55ac5bf 493 __i915_gem_request_submit(cursor);
d7d96833 494 trace_i915_gem_request_in(cursor, port - engine->execlist_port);
70c2a24d
CW
495 last = cursor;
496 submit = true;
497 }
498 if (submit) {
70c2a24d 499 i915_gem_request_assign(&port->request, last);
20311bd3 500 engine->execlist_first = rb;
53292cdb 501 }
9f7886d0 502 spin_unlock_irq(&engine->timeline->lock);
53292cdb 503
70c2a24d
CW
504 if (submit)
505 execlists_submit_ports(engine);
acdd884a
MT
506}
507
70c2a24d 508static bool execlists_elsp_idle(struct intel_engine_cs *engine)
e981e7b1 509{
70c2a24d 510 return !engine->execlist_port[0].request;
e981e7b1
TD
511}
512
816ee798 513static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
91a41032 514{
816ee798 515 const struct execlist_port *port = engine->execlist_port;
91a41032 516
816ee798 517 return port[0].count + port[1].count < 2;
91a41032
BW
518}
519
6e5248b5 520/*
73e4d07f
OM
521 * Check the unread Context Status Buffers and manage the submission of new
522 * contexts to the ELSP accordingly.
523 */
27af5eea 524static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 525{
27af5eea 526 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 527 struct execlist_port *port = engine->execlist_port;
c033666a 528 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 529
3756685a 530 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 531
899f6204
CW
532 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
533 * imposing the cost of a locked atomic transaction when submitting a
534 * new request (outside of the context-switch interrupt).
535 */
536 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
70c2a24d
CW
537 u32 __iomem *csb_mmio =
538 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
539 u32 __iomem *buf =
540 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
4af0d727 541 unsigned int head, tail;
70c2a24d 542
2e70b8c6
CW
543 /* The write will be ordered by the uncached read (itself
544 * a memory barrier), so we do not need another in the form
545 * of a locked instruction. The race between the interrupt
546 * handler and the split test/clear is harmless as we order
547 * our clear before the CSB read. If the interrupt arrived
548 * first between the test and the clear, we read the updated
549 * CSB and clear the bit. If the interrupt arrives as we read
550 * the CSB or later (i.e. after we had cleared the bit) the bit
551 * is set and we do a new loop.
552 */
553 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
4af0d727
CW
554 head = readl(csb_mmio);
555 tail = GEN8_CSB_WRITE_PTR(head);
556 head = GEN8_CSB_READ_PTR(head);
557 while (head != tail) {
558 unsigned int status;
559
560 if (++head == GEN8_CSB_ENTRIES)
561 head = 0;
70c2a24d 562
2ffe80aa
CW
563 /* We are flying near dragons again.
564 *
565 * We hold a reference to the request in execlist_port[]
566 * but no more than that. We are operating in softirq
567 * context and so cannot hold any mutex or sleep. That
568 * prevents us stopping the requests we are processing
569 * in port[] from being retired simultaneously (the
570 * breadcrumb will be complete before we see the
571 * context-switch). As we only hold the reference to the
572 * request, any pointer chasing underneath the request
573 * is subject to a potential use-after-free. Thus we
574 * store all of the bookkeeping within port[] as
575 * required, and avoid using unguarded pointers beneath
576 * request itself. The same applies to the atomic
577 * status notifier.
578 */
579
4af0d727 580 status = readl(buf + 2 * head);
70c2a24d
CW
581 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
582 continue;
583
86aa7e76 584 /* Check the context/desc id for this event matches */
4af0d727 585 GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
ae9a043b 586 port[0].context_id);
86aa7e76 587
70c2a24d
CW
588 GEM_BUG_ON(port[0].count == 0);
589 if (--port[0].count == 0) {
590 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
fe9ae7a3 591 GEM_BUG_ON(!i915_gem_request_completed(port[0].request));
70c2a24d
CW
592 execlists_context_status_change(port[0].request,
593 INTEL_CONTEXT_SCHEDULE_OUT);
594
d7d96833 595 trace_i915_gem_request_out(port[0].request);
70c2a24d
CW
596 i915_gem_request_put(port[0].request);
597 port[0] = port[1];
598 memset(&port[1], 0, sizeof(port[1]));
70c2a24d 599 }
26720ab9 600
70c2a24d
CW
601 GEM_BUG_ON(port[0].count == 0 &&
602 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
4af0d727 603 }
e1fee72c 604
4af0d727 605 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
70c2a24d 606 csb_mmio);
e981e7b1
TD
607 }
608
70c2a24d
CW
609 if (execlists_elsp_ready(engine))
610 execlists_dequeue(engine);
c6a2ac71 611
70c2a24d 612 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
613}
614
20311bd3
CW
615static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
616{
617 struct rb_node **p, *rb;
618 bool first = true;
619
620 /* most positive priority is scheduled first, equal priorities fifo */
621 rb = NULL;
622 p = &root->rb_node;
623 while (*p) {
624 struct i915_priotree *pos;
625
626 rb = *p;
627 pos = rb_entry(rb, typeof(*pos), node);
628 if (pt->priority > pos->priority) {
629 p = &rb->rb_left;
630 } else {
631 p = &rb->rb_right;
632 first = false;
633 }
634 }
635 rb_link_node(&pt->node, rb, p);
636 rb_insert_color(&pt->node, root);
637
638 return first;
639}
640
f4ea6bdd 641static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 642{
4a570db5 643 struct intel_engine_cs *engine = request->engine;
5590af3e 644 unsigned long flags;
acdd884a 645
663f71e7
CW
646 /* Will be called from irq-context when using foreign fences. */
647 spin_lock_irqsave(&engine->timeline->lock, flags);
acdd884a 648
3833281a 649 if (insert_request(&request->priotree, &engine->execlist_queue)) {
20311bd3 650 engine->execlist_first = &request->priotree.node;
48ea2554 651 if (execlists_elsp_ready(engine))
3833281a
CW
652 tasklet_hi_schedule(&engine->irq_tasklet);
653 }
acdd884a 654
663f71e7 655 spin_unlock_irqrestore(&engine->timeline->lock, flags);
acdd884a
MT
656}
657
20311bd3
CW
658static struct intel_engine_cs *
659pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
660{
a79a524e
CW
661 struct intel_engine_cs *engine =
662 container_of(pt, struct drm_i915_gem_request, priotree)->engine;
663
664 GEM_BUG_ON(!locked);
20311bd3 665
20311bd3 666 if (engine != locked) {
a79a524e
CW
667 spin_unlock(&locked->timeline->lock);
668 spin_lock(&engine->timeline->lock);
20311bd3
CW
669 }
670
671 return engine;
672}
673
674static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
675{
a79a524e 676 struct intel_engine_cs *engine;
20311bd3
CW
677 struct i915_dependency *dep, *p;
678 struct i915_dependency stack;
679 LIST_HEAD(dfs);
680
681 if (prio <= READ_ONCE(request->priotree.priority))
682 return;
683
70cd1476
CW
684 /* Need BKL in order to use the temporary link inside i915_dependency */
685 lockdep_assert_held(&request->i915->drm.struct_mutex);
20311bd3
CW
686
687 stack.signaler = &request->priotree;
688 list_add(&stack.dfs_link, &dfs);
689
690 /* Recursively bump all dependent priorities to match the new request.
691 *
692 * A naive approach would be to use recursion:
693 * static void update_priorities(struct i915_priotree *pt, prio) {
694 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
695 * update_priorities(dep->signal, prio)
696 * insert_request(pt);
697 * }
698 * but that may have unlimited recursion depth and so runs a very
699 * real risk of overunning the kernel stack. Instead, we build
700 * a flat list of all dependencies starting with the current request.
701 * As we walk the list of dependencies, we add all of its dependencies
702 * to the end of the list (this may include an already visited
703 * request) and continue to walk onwards onto the new dependencies. The
704 * end result is a topological list of requests in reverse order, the
705 * last element in the list is the request we must execute first.
706 */
707 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
708 struct i915_priotree *pt = dep->signaler;
709
a79a524e
CW
710 /* Within an engine, there can be no cycle, but we may
711 * refer to the same dependency chain multiple times
712 * (redundant dependencies are not eliminated) and across
713 * engines.
714 */
715 list_for_each_entry(p, &pt->signalers_list, signal_link) {
716 GEM_BUG_ON(p->signaler->priority < pt->priority);
20311bd3
CW
717 if (prio > READ_ONCE(p->signaler->priority))
718 list_move_tail(&p->dfs_link, &dfs);
a79a524e 719 }
20311bd3 720
0798cff4 721 list_safe_reset_next(dep, p, dfs_link);
20311bd3
CW
722 }
723
a79a524e
CW
724 engine = request->engine;
725 spin_lock_irq(&engine->timeline->lock);
726
20311bd3
CW
727 /* Fifo and depth-first replacement ensure our deps execute before us */
728 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
729 struct i915_priotree *pt = dep->signaler;
730
731 INIT_LIST_HEAD(&dep->dfs_link);
732
733 engine = pt_lock_engine(pt, engine);
734
735 if (prio <= pt->priority)
736 continue;
737
20311bd3 738 pt->priority = prio;
a79a524e
CW
739 if (!RB_EMPTY_NODE(&pt->node)) {
740 rb_erase(&pt->node, &engine->execlist_queue);
741 if (insert_request(pt, &engine->execlist_queue))
742 engine->execlist_first = &pt->node;
743 }
20311bd3
CW
744 }
745
a79a524e 746 spin_unlock_irq(&engine->timeline->lock);
20311bd3
CW
747
748 /* XXX Do we need to preempt to make room for us and our deps? */
749}
750
e8a9c58f
CW
751static int execlists_context_pin(struct intel_engine_cs *engine,
752 struct i915_gem_context *ctx)
dcb4c12a 753{
9021ad03 754 struct intel_context *ce = &ctx->engine[engine->id];
2947e408 755 unsigned int flags;
7d774cac 756 void *vaddr;
ca82580c 757 int ret;
dcb4c12a 758
91c8a326 759 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 760
9021ad03 761 if (ce->pin_count++)
24f1d3cc 762 return 0;
a533b4ba 763 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
24f1d3cc 764
e8a9c58f
CW
765 if (!ce->state) {
766 ret = execlists_context_deferred_alloc(ctx, engine);
767 if (ret)
768 goto err;
769 }
56f6e0a7 770 GEM_BUG_ON(!ce->state);
e8a9c58f 771
72b72ae4 772 flags = PIN_GLOBAL | PIN_HIGH;
feef2a7c
DCS
773 if (ctx->ggtt_offset_bias)
774 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
2947e408
CW
775
776 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
e84fe803 777 if (ret)
24f1d3cc 778 goto err;
7ba717cf 779
bf3783e5 780 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
781 if (IS_ERR(vaddr)) {
782 ret = PTR_ERR(vaddr);
bf3783e5 783 goto unpin_vma;
82352e90
TU
784 }
785
d3ef1af6 786 ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
e84fe803 787 if (ret)
7d774cac 788 goto unpin_map;
d1675198 789
0bc40be8 790 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 791
a3aabe86
CW
792 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
793 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
bde13ebd 794 i915_ggtt_offset(ce->ring->vma);
a3aabe86 795
a4f5ea64 796 ce->state->obj->mm.dirty = true;
e93c28f3 797
9a6feaf0 798 i915_gem_context_get(ctx);
24f1d3cc 799 return 0;
7ba717cf 800
7d774cac 801unpin_map:
bf3783e5
CW
802 i915_gem_object_unpin_map(ce->state->obj);
803unpin_vma:
804 __i915_vma_unpin(ce->state);
24f1d3cc 805err:
9021ad03 806 ce->pin_count = 0;
e84fe803
NH
807 return ret;
808}
809
e8a9c58f
CW
810static void execlists_context_unpin(struct intel_engine_cs *engine,
811 struct i915_gem_context *ctx)
e84fe803 812{
9021ad03 813 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 814
91c8a326 815 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 816 GEM_BUG_ON(ce->pin_count == 0);
321fe304 817
9021ad03 818 if (--ce->pin_count)
24f1d3cc 819 return;
e84fe803 820
aad29fbb 821 intel_ring_unpin(ce->ring);
dcb4c12a 822
bf3783e5
CW
823 i915_gem_object_unpin_map(ce->state->obj);
824 i915_vma_unpin(ce->state);
321fe304 825
9a6feaf0 826 i915_gem_context_put(ctx);
dcb4c12a
OM
827}
828
f73e7399 829static int execlists_request_alloc(struct drm_i915_gem_request *request)
ef11c01d
CW
830{
831 struct intel_engine_cs *engine = request->engine;
832 struct intel_context *ce = &request->ctx->engine[engine->id];
73dec95e 833 u32 *cs;
ef11c01d
CW
834 int ret;
835
e8a9c58f
CW
836 GEM_BUG_ON(!ce->pin_count);
837
ef11c01d
CW
838 /* Flush enough space to reduce the likelihood of waiting after
839 * we start building the request - in which case we will just
840 * have to repeat work.
841 */
842 request->reserved_space += EXECLISTS_REQUEST_SIZE;
843
e8a9c58f 844 GEM_BUG_ON(!ce->ring);
ef11c01d
CW
845 request->ring = ce->ring;
846
ef11c01d
CW
847 if (i915.enable_guc_submission) {
848 /*
849 * Check that the GuC has space for the request before
850 * going any further, as the i915_add_request() call
851 * later on mustn't fail ...
852 */
853 ret = i915_guc_wq_reserve(request);
854 if (ret)
e8a9c58f 855 goto err;
ef11c01d
CW
856 }
857
73dec95e
TU
858 cs = intel_ring_begin(request, 0);
859 if (IS_ERR(cs)) {
860 ret = PTR_ERR(cs);
ef11c01d 861 goto err_unreserve;
73dec95e 862 }
ef11c01d
CW
863
864 if (!ce->initialised) {
865 ret = engine->init_context(request);
866 if (ret)
867 goto err_unreserve;
868
869 ce->initialised = true;
870 }
871
872 /* Note that after this point, we have committed to using
873 * this request as it is being used to both track the
874 * state of engine initialisation and liveness of the
875 * golden renderstate above. Think twice before you try
876 * to cancel/unwind this request now.
877 */
878
879 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
880 return 0;
881
882err_unreserve:
883 if (i915.enable_guc_submission)
884 i915_guc_wq_unreserve(request);
e8a9c58f 885err:
ef11c01d
CW
886 return ret;
887}
888
9e000847
AS
889/*
890 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
891 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
892 * but there is a slight complication as this is applied in WA batch where the
893 * values are only initialized once so we cannot take register value at the
894 * beginning and reuse it further; hence we save its value to memory, upload a
895 * constant value with bit21 set and then we restore it back with the saved value.
896 * To simplify the WA, a constant value is formed by using the default value
897 * of this register. This shouldn't be a problem because we are only modifying
898 * it for a short period and this batch in non-premptible. We can ofcourse
899 * use additional instructions that read the actual value of the register
900 * at that time and set our bit of interest but it makes the WA complicated.
901 *
902 * This WA is also required for Gen9 so extracting as a function avoids
903 * code duplication.
904 */
097d4f1c
TU
905static u32 *
906gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
17ee950d 907{
097d4f1c
TU
908 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
909 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
910 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
911 *batch++ = 0;
912
913 *batch++ = MI_LOAD_REGISTER_IMM(1);
914 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
915 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
916
9f235dfa
TU
917 batch = gen8_emit_pipe_control(batch,
918 PIPE_CONTROL_CS_STALL |
919 PIPE_CONTROL_DC_FLUSH_ENABLE,
920 0);
097d4f1c
TU
921
922 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
923 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
924 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
925 *batch++ = 0;
926
927 return batch;
17ee950d
AS
928}
929
6e5248b5
DV
930/*
931 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
932 * initialized at the beginning and shared across all contexts but this field
933 * helps us to have multiple batches at different offsets and select them based
934 * on a criteria. At the moment this batch always start at the beginning of the page
935 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 936 *
6e5248b5
DV
937 * The number of WA applied are not known at the beginning; we use this field
938 * to return the no of DWORDS written.
17ee950d 939 *
6e5248b5
DV
940 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
941 * so it adds NOOPs as padding to make it cacheline aligned.
942 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
943 * makes a complete batch buffer.
17ee950d 944 */
097d4f1c 945static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 946{
7ad00d1a 947 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c 948 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
17ee950d 949
c82435bb 950 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
097d4f1c
TU
951 if (IS_BROADWELL(engine->i915))
952 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
c82435bb 953
0160f055
AS
954 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
955 /* Actual scratch location is at 128 bytes offset */
9f235dfa
TU
956 batch = gen8_emit_pipe_control(batch,
957 PIPE_CONTROL_FLUSH_L3 |
958 PIPE_CONTROL_GLOBAL_GTT_IVB |
959 PIPE_CONTROL_CS_STALL |
960 PIPE_CONTROL_QW_WRITE,
961 i915_ggtt_offset(engine->scratch) +
962 2 * CACHELINE_BYTES);
0160f055 963
17ee950d 964 /* Pad to end of cacheline */
097d4f1c
TU
965 while ((unsigned long)batch % CACHELINE_BYTES)
966 *batch++ = MI_NOOP;
17ee950d
AS
967
968 /*
969 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
970 * execution depends on the length specified in terms of cache lines
971 * in the register CTX_RCS_INDIRECT_CTX
972 */
973
097d4f1c 974 return batch;
17ee950d
AS
975}
976
6e5248b5
DV
977/*
978 * This batch is started immediately after indirect_ctx batch. Since we ensure
979 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 980 *
6e5248b5 981 * The number of DWORDS written are returned using this field.
17ee950d
AS
982 *
983 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
984 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
985 */
097d4f1c 986static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
17ee950d 987{
7ad00d1a 988 /* WaDisableCtxRestoreArbitration:bdw,chv */
097d4f1c
TU
989 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
990 *batch++ = MI_BATCH_BUFFER_END;
17ee950d 991
097d4f1c 992 return batch;
17ee950d
AS
993}
994
097d4f1c 995static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 996{
9fb5026f 997 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
097d4f1c 998 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
a4106a78 999
9fb5026f 1000 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
097d4f1c
TU
1001 *batch++ = MI_LOAD_REGISTER_IMM(1);
1002 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1003 *batch++ = _MASKED_BIT_DISABLE(
1004 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1005 *batch++ = MI_NOOP;
873e8171 1006
066d4628
MK
1007 /* WaClearSlmSpaceAtContextSwitch:kbl */
1008 /* Actual scratch location is at 128 bytes offset */
097d4f1c 1009 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
9f235dfa
TU
1010 batch = gen8_emit_pipe_control(batch,
1011 PIPE_CONTROL_FLUSH_L3 |
1012 PIPE_CONTROL_GLOBAL_GTT_IVB |
1013 PIPE_CONTROL_CS_STALL |
1014 PIPE_CONTROL_QW_WRITE,
1015 i915_ggtt_offset(engine->scratch)
1016 + 2 * CACHELINE_BYTES);
066d4628 1017 }
3485d99e 1018
9fb5026f 1019 /* WaMediaPoolStateCmdInWABB:bxt,glk */
3485d99e
TG
1020 if (HAS_POOLED_EU(engine->i915)) {
1021 /*
1022 * EU pool configuration is setup along with golden context
1023 * during context initialization. This value depends on
1024 * device type (2x6 or 3x6) and needs to be updated based
1025 * on which subslice is disabled especially for 2x6
1026 * devices, however it is safe to load default
1027 * configuration of 3x6 device instead of masking off
1028 * corresponding bits because HW ignores bits of a disabled
1029 * subslice and drops down to appropriate config. Please
1030 * see render_state_setup() in i915_gem_render_state.c for
1031 * possible configurations, to avoid duplication they are
1032 * not shown here again.
1033 */
097d4f1c
TU
1034 *batch++ = GEN9_MEDIA_POOL_STATE;
1035 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1036 *batch++ = 0x00777000;
1037 *batch++ = 0;
1038 *batch++ = 0;
1039 *batch++ = 0;
3485d99e
TG
1040 }
1041
0504cffc 1042 /* Pad to end of cacheline */
097d4f1c
TU
1043 while ((unsigned long)batch % CACHELINE_BYTES)
1044 *batch++ = MI_NOOP;
0504cffc 1045
097d4f1c 1046 return batch;
0504cffc
AS
1047}
1048
097d4f1c 1049static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
0504cffc 1050{
097d4f1c 1051 *batch++ = MI_BATCH_BUFFER_END;
0504cffc 1052
097d4f1c 1053 return batch;
0504cffc
AS
1054}
1055
097d4f1c
TU
1056#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1057
1058static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1059{
48bb74e4
CW
1060 struct drm_i915_gem_object *obj;
1061 struct i915_vma *vma;
1062 int err;
17ee950d 1063
097d4f1c 1064 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
48bb74e4
CW
1065 if (IS_ERR(obj))
1066 return PTR_ERR(obj);
17ee950d 1067
a01cb37a 1068 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
48bb74e4
CW
1069 if (IS_ERR(vma)) {
1070 err = PTR_ERR(vma);
1071 goto err;
17ee950d
AS
1072 }
1073
48bb74e4
CW
1074 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1075 if (err)
1076 goto err;
1077
1078 engine->wa_ctx.vma = vma;
17ee950d 1079 return 0;
48bb74e4
CW
1080
1081err:
1082 i915_gem_object_put(obj);
1083 return err;
17ee950d
AS
1084}
1085
097d4f1c 1086static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
17ee950d 1087{
19880c4a 1088 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1089}
1090
097d4f1c
TU
1091typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1092
0bc40be8 1093static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1094{
48bb74e4 1095 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
097d4f1c
TU
1096 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1097 &wa_ctx->per_ctx };
1098 wa_bb_func_t wa_bb_fn[2];
17ee950d 1099 struct page *page;
097d4f1c
TU
1100 void *batch, *batch_ptr;
1101 unsigned int i;
48bb74e4 1102 int ret;
17ee950d 1103
097d4f1c
TU
1104 if (WARN_ON(engine->id != RCS || !engine->scratch))
1105 return -EINVAL;
17ee950d 1106
097d4f1c
TU
1107 switch (INTEL_GEN(engine->i915)) {
1108 case 9:
1109 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1110 wa_bb_fn[1] = gen9_init_perctx_bb;
1111 break;
1112 case 8:
1113 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1114 wa_bb_fn[1] = gen8_init_perctx_bb;
1115 break;
1116 default:
1117 MISSING_CASE(INTEL_GEN(engine->i915));
5e60d790 1118 return 0;
0504cffc 1119 }
5e60d790 1120
097d4f1c 1121 ret = lrc_setup_wa_ctx(engine);
17ee950d
AS
1122 if (ret) {
1123 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1124 return ret;
1125 }
1126
48bb74e4 1127 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
097d4f1c 1128 batch = batch_ptr = kmap_atomic(page);
17ee950d 1129
097d4f1c
TU
1130 /*
1131 * Emit the two workaround batch buffers, recording the offset from the
1132 * start of the workaround batch buffer object for each and their
1133 * respective sizes.
1134 */
1135 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1136 wa_bb[i]->offset = batch_ptr - batch;
1137 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1138 ret = -EINVAL;
1139 break;
1140 }
1141 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1142 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
17ee950d
AS
1143 }
1144
097d4f1c
TU
1145 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1146
17ee950d
AS
1147 kunmap_atomic(batch);
1148 if (ret)
097d4f1c 1149 lrc_destroy_wa_ctx(engine);
17ee950d
AS
1150
1151 return ret;
1152}
1153
22cc440e
CW
1154static u32 port_seqno(struct execlist_port *port)
1155{
1156 return port->request ? port->request->global_seqno : 0;
1157}
1158
0bc40be8 1159static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1160{
c033666a 1161 struct drm_i915_private *dev_priv = engine->i915;
821ed7df
CW
1162 int ret;
1163
1164 ret = intel_mocs_init_engine(engine);
1165 if (ret)
1166 return ret;
9b1136d5 1167
ad07dfcd 1168 intel_engine_reset_breadcrumbs(engine);
f3b8f912 1169 intel_engine_init_hangcheck(engine);
821ed7df 1170
0bc40be8 1171 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
0bc40be8 1172 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5 1173 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
f3b8f912
CW
1174 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1175 engine->status_page.ggtt_offset);
1176 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
dfc53c5e 1177
0bc40be8 1178 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1179
c87d50cc 1180 /* After a GPU reset, we may have requests to replay */
f747026c 1181 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
31de7350 1182 if (!i915.enable_guc_submission && !execlists_elsp_idle(engine)) {
22cc440e
CW
1183 DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
1184 engine->name,
1185 port_seqno(&engine->execlist_port[0]),
1186 port_seqno(&engine->execlist_port[1]));
c87d50cc
CW
1187 engine->execlist_port[0].count = 0;
1188 engine->execlist_port[1].count = 0;
821ed7df 1189 execlists_submit_ports(engine);
c87d50cc 1190 }
821ed7df
CW
1191
1192 return 0;
9b1136d5
OM
1193}
1194
0bc40be8 1195static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1196{
c033666a 1197 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1198 int ret;
1199
0bc40be8 1200 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1201 if (ret)
1202 return ret;
1203
1204 /* We need to disable the AsyncFlip performance optimisations in order
1205 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1206 * programmed to '1' on all products.
1207 *
1208 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1209 */
1210 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1211
9b1136d5
OM
1212 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1213
0bc40be8 1214 return init_workarounds_ring(engine);
9b1136d5
OM
1215}
1216
0bc40be8 1217static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1218{
1219 int ret;
1220
0bc40be8 1221 ret = gen8_init_common_ring(engine);
82ef822e
DL
1222 if (ret)
1223 return ret;
1224
0bc40be8 1225 return init_workarounds_ring(engine);
82ef822e
DL
1226}
1227
821ed7df
CW
1228static void reset_common_ring(struct intel_engine_cs *engine,
1229 struct drm_i915_gem_request *request)
1230{
821ed7df 1231 struct execlist_port *port = engine->execlist_port;
c0dcb203
CW
1232 struct intel_context *ce;
1233
1234 /* If the request was innocent, we leave the request in the ELSP
1235 * and will try to replay it on restarting. The context image may
1236 * have been corrupted by the reset, in which case we may have
1237 * to service a new GPU hang, but more likely we can continue on
1238 * without impact.
1239 *
1240 * If the request was guilty, we presume the context is corrupt
1241 * and have to at least restore the RING register in the context
1242 * image back to the expected values to skip over the guilty request.
1243 */
1244 if (!request || request->fence.error != -EIO)
1245 return;
821ed7df 1246
a3aabe86
CW
1247 /* We want a simple context + ring to execute the breadcrumb update.
1248 * We cannot rely on the context being intact across the GPU hang,
1249 * so clear it and rebuild just what we need for the breadcrumb.
1250 * All pending requests for this context will be zapped, and any
1251 * future request will be after userspace has had the opportunity
1252 * to recreate its own state.
1253 */
c0dcb203 1254 ce = &request->ctx->engine[engine->id];
a3aabe86
CW
1255 execlists_init_reg_state(ce->lrc_reg_state,
1256 request->ctx, engine, ce->ring);
1257
821ed7df 1258 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
a3aabe86
CW
1259 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1260 i915_ggtt_offset(ce->ring->vma);
821ed7df 1261 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
a3aabe86 1262
821ed7df 1263 request->ring->head = request->postfix;
821ed7df
CW
1264 intel_ring_update_space(request->ring);
1265
821ed7df 1266 /* Catch up with any missed context-switch interrupts */
821ed7df
CW
1267 if (request->ctx != port[0].request->ctx) {
1268 i915_gem_request_put(port[0].request);
1269 port[0] = port[1];
1270 memset(&port[1], 0, sizeof(port[1]));
1271 }
1272
821ed7df 1273 GEM_BUG_ON(request->ctx != port[0].request->ctx);
a3aabe86
CW
1274
1275 /* Reset WaIdleLiteRestore:bdw,skl as well */
450362d3
CW
1276 request->tail =
1277 intel_ring_wrap(request->ring,
1278 request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
ed1501d4 1279 assert_ring_tail_valid(request->ring, request->tail);
821ed7df
CW
1280}
1281
7a01a0a2
MT
1282static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1283{
1284 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1285 struct intel_engine_cs *engine = req->engine;
e7167769 1286 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
73dec95e
TU
1287 u32 *cs;
1288 int i;
7a01a0a2 1289
73dec95e
TU
1290 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1291 if (IS_ERR(cs))
1292 return PTR_ERR(cs);
7a01a0a2 1293
73dec95e 1294 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
e7167769 1295 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
7a01a0a2
MT
1296 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1297
73dec95e
TU
1298 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1299 *cs++ = upper_32_bits(pd_daddr);
1300 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1301 *cs++ = lower_32_bits(pd_daddr);
7a01a0a2
MT
1302 }
1303
73dec95e
TU
1304 *cs++ = MI_NOOP;
1305 intel_ring_advance(req, cs);
7a01a0a2
MT
1306
1307 return 0;
1308}
1309
be795fc1 1310static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba 1311 u64 offset, u32 len,
54af56db 1312 const unsigned int flags)
15648585 1313{
73dec95e 1314 u32 *cs;
15648585
OM
1315 int ret;
1316
7a01a0a2
MT
1317 /* Don't rely in hw updating PDPs, specially in lite-restore.
1318 * Ideally, we should set Force PD Restore in ctx descriptor,
1319 * but we can't. Force Restore would be a second option, but
1320 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1321 * not idle). PML4 is allocated during ppgtt init so this is
1322 * not needed in 48-bit.*/
7a01a0a2 1323 if (req->ctx->ppgtt &&
54af56db
MK
1324 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1325 !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1326 !intel_vgpu_active(req->i915)) {
1327 ret = intel_logical_ring_emit_pdps(req);
1328 if (ret)
1329 return ret;
7a01a0a2 1330
666796da 1331 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1332 }
1333
73dec95e
TU
1334 cs = intel_ring_begin(req, 4);
1335 if (IS_ERR(cs))
1336 return PTR_ERR(cs);
15648585
OM
1337
1338 /* FIXME(BDW): Address space and security selectors. */
54af56db
MK
1339 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1340 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1341 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
73dec95e
TU
1342 *cs++ = lower_32_bits(offset);
1343 *cs++ = upper_32_bits(offset);
1344 *cs++ = MI_NOOP;
1345 intel_ring_advance(req, cs);
15648585
OM
1346
1347 return 0;
1348}
1349
31bb59cc 1350static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1351{
c033666a 1352 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1353 I915_WRITE_IMR(engine,
1354 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1355 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1356}
1357
31bb59cc 1358static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1359{
c033666a 1360 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1361 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1362}
1363
7c9cf4e3 1364static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1365{
73dec95e 1366 u32 cmd, *cs;
4712274c 1367
73dec95e
TU
1368 cs = intel_ring_begin(request, 4);
1369 if (IS_ERR(cs))
1370 return PTR_ERR(cs);
4712274c
OM
1371
1372 cmd = MI_FLUSH_DW + 1;
1373
f0a1fb10
CW
1374 /* We always require a command barrier so that subsequent
1375 * commands, such as breadcrumb interrupts, are strictly ordered
1376 * wrt the contents of the write cache being flushed to memory
1377 * (and thus being coherent from the CPU).
1378 */
1379 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1380
7c9cf4e3 1381 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1382 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1383 if (request->engine->id == VCS)
f0a1fb10 1384 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1385 }
1386
73dec95e
TU
1387 *cs++ = cmd;
1388 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1389 *cs++ = 0; /* upper addr */
1390 *cs++ = 0; /* value */
1391 intel_ring_advance(request, cs);
4712274c
OM
1392
1393 return 0;
1394}
1395
7deb4d39 1396static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1397 u32 mode)
4712274c 1398{
b5321f30 1399 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1400 u32 scratch_addr =
1401 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1402 bool vf_flush_wa = false, dc_flush_wa = false;
73dec95e 1403 u32 *cs, flags = 0;
0b2d0934 1404 int len;
4712274c
OM
1405
1406 flags |= PIPE_CONTROL_CS_STALL;
1407
7c9cf4e3 1408 if (mode & EMIT_FLUSH) {
4712274c
OM
1409 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1410 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1411 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1412 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1413 }
1414
7c9cf4e3 1415 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1416 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1417 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1418 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1419 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1420 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1421 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1422 flags |= PIPE_CONTROL_QW_WRITE;
1423 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1424
1a5a9ce7
BW
1425 /*
1426 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1427 * pipe control.
1428 */
c033666a 1429 if (IS_GEN9(request->i915))
1a5a9ce7 1430 vf_flush_wa = true;
0b2d0934
MK
1431
1432 /* WaForGAMHang:kbl */
1433 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1434 dc_flush_wa = true;
1a5a9ce7 1435 }
9647ff36 1436
0b2d0934
MK
1437 len = 6;
1438
1439 if (vf_flush_wa)
1440 len += 6;
1441
1442 if (dc_flush_wa)
1443 len += 12;
1444
73dec95e
TU
1445 cs = intel_ring_begin(request, len);
1446 if (IS_ERR(cs))
1447 return PTR_ERR(cs);
4712274c 1448
9f235dfa
TU
1449 if (vf_flush_wa)
1450 cs = gen8_emit_pipe_control(cs, 0, 0);
9647ff36 1451
9f235dfa
TU
1452 if (dc_flush_wa)
1453 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1454 0);
0b2d0934 1455
9f235dfa 1456 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
0b2d0934 1457
9f235dfa
TU
1458 if (dc_flush_wa)
1459 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
0b2d0934 1460
73dec95e 1461 intel_ring_advance(request, cs);
4712274c
OM
1462
1463 return 0;
1464}
1465
7c17d377
CW
1466/*
1467 * Reserve space for 2 NOOPs at the end of each request to be
1468 * used as a workaround for not being allowed to do lite
1469 * restore with HEAD==TAIL (WaIdleLiteRestore).
1470 */
73dec95e 1471static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
4da46e1e 1472{
73dec95e
TU
1473 *cs++ = MI_NOOP;
1474 *cs++ = MI_NOOP;
1475 request->wa_tail = intel_ring_offset(request, cs);
caddfe71 1476}
4da46e1e 1477
73dec95e 1478static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
caddfe71 1479{
7c17d377
CW
1480 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1481 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1482
73dec95e
TU
1483 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1484 *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1485 *cs++ = 0;
1486 *cs++ = request->global_seqno;
1487 *cs++ = MI_USER_INTERRUPT;
1488 *cs++ = MI_NOOP;
1489 request->tail = intel_ring_offset(request, cs);
ed1501d4 1490 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1491
73dec95e 1492 gen8_emit_wa_tail(request, cs);
7c17d377 1493}
4da46e1e 1494
98f29e8d
CW
1495static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1496
caddfe71 1497static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
73dec95e 1498 u32 *cs)
7c17d377 1499{
ce81a65c
MW
1500 /* We're using qword write, seqno should be aligned to 8 bytes. */
1501 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1502
7c17d377
CW
1503 /* w/a for post sync ops following a GPGPU operation we
1504 * need a prior CS_STALL, which is emitted by the flush
1505 * following the batch.
1506 */
73dec95e
TU
1507 *cs++ = GFX_OP_PIPE_CONTROL(6);
1508 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1509 PIPE_CONTROL_QW_WRITE;
1510 *cs++ = intel_hws_seqno_address(request->engine);
1511 *cs++ = 0;
1512 *cs++ = request->global_seqno;
ce81a65c 1513 /* We're thrashing one dword of HWS. */
73dec95e
TU
1514 *cs++ = 0;
1515 *cs++ = MI_USER_INTERRUPT;
1516 *cs++ = MI_NOOP;
1517 request->tail = intel_ring_offset(request, cs);
ed1501d4 1518 assert_ring_tail_valid(request->ring, request->tail);
caddfe71 1519
73dec95e 1520 gen8_emit_wa_tail(request, cs);
4da46e1e
OM
1521}
1522
98f29e8d
CW
1523static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1524
8753181e 1525static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1526{
1527 int ret;
1528
4ac9659e 1529 ret = intel_ring_workarounds_emit(req);
e7778be1
TD
1530 if (ret)
1531 return ret;
1532
3bbaba0c
PA
1533 ret = intel_rcs_context_init_mocs(req);
1534 /*
1535 * Failing to program the MOCS is non-fatal.The system will not
1536 * run at peak performance. So generate an error and carry on.
1537 */
1538 if (ret)
1539 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1540
4e50f082 1541 return i915_gem_render_state_emit(req);
e7778be1
TD
1542}
1543
73e4d07f
OM
1544/**
1545 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1546 * @engine: Engine Command Streamer.
73e4d07f 1547 */
0bc40be8 1548void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1549{
6402c330 1550 struct drm_i915_private *dev_priv;
9832b9da 1551
27af5eea
TU
1552 /*
1553 * Tasklet cannot be active at this point due intel_mark_active/idle
1554 * so this is just for documentation.
1555 */
1556 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1557 tasklet_kill(&engine->irq_tasklet);
1558
c033666a 1559 dev_priv = engine->i915;
6402c330 1560
0bc40be8 1561 if (engine->buffer) {
0bc40be8 1562 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1563 }
48d82387 1564
0bc40be8
TU
1565 if (engine->cleanup)
1566 engine->cleanup(engine);
48d82387 1567
57e88531
CW
1568 if (engine->status_page.vma) {
1569 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1570 engine->status_page.vma = NULL;
48d82387 1571 }
e8a9c58f
CW
1572
1573 intel_engine_cleanup_common(engine);
17ee950d 1574
097d4f1c 1575 lrc_destroy_wa_ctx(engine);
c033666a 1576 engine->i915 = NULL;
3b3f1650
AG
1577 dev_priv->engine[engine->id] = NULL;
1578 kfree(engine);
454afebd
OM
1579}
1580
ff44ad51 1581static void execlists_set_default_submission(struct intel_engine_cs *engine)
ddd66c51 1582{
ff44ad51
CW
1583 engine->submit_request = execlists_submit_request;
1584 engine->schedule = execlists_schedule;
c9203e82 1585 engine->irq_tasklet.func = intel_lrc_irq_handler;
ddd66c51
CW
1586}
1587
c9cacf93 1588static void
e1382efb 1589logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1590{
1591 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1592 engine->init_hw = gen8_init_common_ring;
821ed7df 1593 engine->reset_hw = reset_common_ring;
e8a9c58f
CW
1594
1595 engine->context_pin = execlists_context_pin;
1596 engine->context_unpin = execlists_context_unpin;
1597
f73e7399
CW
1598 engine->request_alloc = execlists_request_alloc;
1599
0bc40be8 1600 engine->emit_flush = gen8_emit_flush;
9b81d556 1601 engine->emit_breadcrumb = gen8_emit_breadcrumb;
98f29e8d 1602 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
ff44ad51
CW
1603
1604 engine->set_default_submission = execlists_set_default_submission;
ddd66c51 1605
31bb59cc
CW
1606 engine->irq_enable = gen8_logical_ring_enable_irq;
1607 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1608 engine->emit_bb_start = gen8_emit_bb_start;
c9cacf93
TU
1609}
1610
d9f3af96 1611static inline void
c2c7f240 1612logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1613{
c2c7f240 1614 unsigned shift = engine->irq_shift;
0bc40be8
TU
1615 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1616 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1617}
1618
7d774cac 1619static int
bf3783e5 1620lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1621{
57e88531 1622 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1623 void *hws;
04794adb
TU
1624
1625 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1626 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1627 if (IS_ERR(hws))
1628 return PTR_ERR(hws);
57e88531
CW
1629
1630 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1631 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1632 engine->status_page.vma = vma;
7d774cac
TU
1633
1634 return 0;
04794adb
TU
1635}
1636
bb45438f
TU
1637static void
1638logical_ring_setup(struct intel_engine_cs *engine)
1639{
1640 struct drm_i915_private *dev_priv = engine->i915;
1641 enum forcewake_domains fw_domains;
1642
019bf277
TU
1643 intel_engine_setup_common(engine);
1644
bb45438f
TU
1645 /* Intentionally left blank. */
1646 engine->buffer = NULL;
1647
1648 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1649 RING_ELSP(engine),
1650 FW_REG_WRITE);
1651
1652 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1653 RING_CONTEXT_STATUS_PTR(engine),
1654 FW_REG_READ | FW_REG_WRITE);
1655
1656 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1657 RING_CONTEXT_STATUS_BUF_BASE(engine),
1658 FW_REG_READ);
1659
1660 engine->fw_domains = fw_domains;
1661
bb45438f
TU
1662 tasklet_init(&engine->irq_tasklet,
1663 intel_lrc_irq_handler, (unsigned long)engine);
1664
bb45438f
TU
1665 logical_ring_default_vfuncs(engine);
1666 logical_ring_default_irqs(engine);
bb45438f
TU
1667}
1668
a19d6ff2
TU
1669static int
1670logical_ring_init(struct intel_engine_cs *engine)
1671{
1672 struct i915_gem_context *dctx = engine->i915->kernel_context;
1673 int ret;
1674
019bf277 1675 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1676 if (ret)
1677 goto error;
1678
a19d6ff2
TU
1679 /* And setup the hardware status page. */
1680 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1681 if (ret) {
1682 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1683 goto error;
1684 }
1685
1686 return 0;
1687
1688error:
1689 intel_logical_ring_cleanup(engine);
1690 return ret;
1691}
1692
88d2ba2e 1693int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1694{
1695 struct drm_i915_private *dev_priv = engine->i915;
1696 int ret;
1697
bb45438f
TU
1698 logical_ring_setup(engine);
1699
a19d6ff2
TU
1700 if (HAS_L3_DPF(dev_priv))
1701 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1702
1703 /* Override some for render ring. */
1704 if (INTEL_GEN(dev_priv) >= 9)
1705 engine->init_hw = gen9_init_render_ring;
1706 else
1707 engine->init_hw = gen8_init_render_ring;
1708 engine->init_context = gen8_init_rcs_context;
a19d6ff2 1709 engine->emit_flush = gen8_emit_flush_render;
9b81d556 1710 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
98f29e8d 1711 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
a19d6ff2 1712
f51455d4 1713 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
a19d6ff2
TU
1714 if (ret)
1715 return ret;
1716
1717 ret = intel_init_workaround_bb(engine);
1718 if (ret) {
1719 /*
1720 * We continue even if we fail to initialize WA batch
1721 * because we only expect rare glitches but nothing
1722 * critical to prevent us from using GPU
1723 */
1724 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1725 ret);
1726 }
1727
d038fc7e 1728 return logical_ring_init(engine);
a19d6ff2
TU
1729}
1730
88d2ba2e 1731int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1732{
1733 logical_ring_setup(engine);
1734
1735 return logical_ring_init(engine);
454afebd
OM
1736}
1737
0cea6502 1738static u32
c033666a 1739make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1740{
1741 u32 rpcs = 0;
1742
1743 /*
1744 * No explicit RPCS request is needed to ensure full
1745 * slice/subslice/EU enablement prior to Gen9.
1746 */
c033666a 1747 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1748 return 0;
1749
1750 /*
1751 * Starting in Gen9, render power gating can leave
1752 * slice/subslice/EU in a partially enabled state. We
1753 * must make an explicit request through RPCS for full
1754 * enablement.
1755 */
43b67998 1756 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1757 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1758 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1759 GEN8_RPCS_S_CNT_SHIFT;
1760 rpcs |= GEN8_RPCS_ENABLE;
1761 }
1762
43b67998 1763 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1764 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1765 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1766 GEN8_RPCS_SS_CNT_SHIFT;
1767 rpcs |= GEN8_RPCS_ENABLE;
1768 }
1769
43b67998
ID
1770 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1771 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 1772 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 1773 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
1774 GEN8_RPCS_EU_MAX_SHIFT;
1775 rpcs |= GEN8_RPCS_ENABLE;
1776 }
1777
1778 return rpcs;
1779}
1780
0bc40be8 1781static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1782{
1783 u32 indirect_ctx_offset;
1784
c033666a 1785 switch (INTEL_GEN(engine->i915)) {
71562919 1786 default:
c033666a 1787 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
1788 /* fall through */
1789 case 9:
1790 indirect_ctx_offset =
1791 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1792 break;
1793 case 8:
1794 indirect_ctx_offset =
1795 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1796 break;
1797 }
1798
1799 return indirect_ctx_offset;
1800}
1801
56e51bf0 1802static void execlists_init_reg_state(u32 *regs,
a3aabe86
CW
1803 struct i915_gem_context *ctx,
1804 struct intel_engine_cs *engine,
1805 struct intel_ring *ring)
8670d6f9 1806{
a3aabe86
CW
1807 struct drm_i915_private *dev_priv = engine->i915;
1808 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
56e51bf0
TU
1809 u32 base = engine->mmio_base;
1810 bool rcs = engine->id == RCS;
1811
1812 /* A context is actually a big batch buffer with several
1813 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
1814 * values we are setting here are only for the first context restore:
1815 * on a subsequent save, the GPU will recreate this batchbuffer with new
1816 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
1817 * we are not initializing here).
1818 */
1819 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
1820 MI_LRI_FORCE_POSTED;
1821
1822 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
1823 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1824 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1825 (HAS_RESOURCE_STREAMER(dev_priv) ?
1826 CTX_CTRL_RS_CTX_ENABLE : 0)));
1827 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
1828 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
1829 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
1830 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
1831 RING_CTL_SIZE(ring->size) | RING_VALID);
1832 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
1833 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
1834 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
1835 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
1836 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
1837 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
1838 if (rcs) {
1839 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
1840 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
1841 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
1842 RING_INDIRECT_CTX_OFFSET(base), 0);
8670d6f9 1843
48bb74e4 1844 if (engine->wa_ctx.vma) {
0bc40be8 1845 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 1846 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d 1847
56e51bf0 1848 regs[CTX_RCS_INDIRECT_CTX + 1] =
097d4f1c
TU
1849 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
1850 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
17ee950d 1851
56e51bf0 1852 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
0bc40be8 1853 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d 1854
56e51bf0 1855 regs[CTX_BB_PER_CTX_PTR + 1] =
097d4f1c 1856 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
17ee950d 1857 }
8670d6f9 1858 }
56e51bf0
TU
1859
1860 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1861
1862 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
0d925ea0 1863 /* PDP values well be assigned later if needed */
56e51bf0
TU
1864 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
1865 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
1866 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
1867 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
1868 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
1869 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
1870 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
1871 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
d7b2633d 1872
949e8ab3 1873 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2dba3239
MT
1874 /* 64b PPGTT (48bit canonical)
1875 * PDP0_DESCRIPTOR contains the base address to PML4 and
1876 * other PDP Descriptors are ignored.
1877 */
56e51bf0 1878 ASSIGN_CTX_PML4(ppgtt, regs);
2dba3239
MT
1879 }
1880
56e51bf0
TU
1881 if (rcs) {
1882 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1883 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1884 make_rpcs(dev_priv));
8670d6f9 1885 }
a3aabe86
CW
1886}
1887
1888static int
1889populate_lr_context(struct i915_gem_context *ctx,
1890 struct drm_i915_gem_object *ctx_obj,
1891 struct intel_engine_cs *engine,
1892 struct intel_ring *ring)
1893{
1894 void *vaddr;
1895 int ret;
1896
1897 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1898 if (ret) {
1899 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1900 return ret;
1901 }
1902
1903 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1904 if (IS_ERR(vaddr)) {
1905 ret = PTR_ERR(vaddr);
1906 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1907 return ret;
1908 }
a4f5ea64 1909 ctx_obj->mm.dirty = true;
a3aabe86
CW
1910
1911 /* The second page of the context object contains some fields which must
1912 * be set up prior to the first execution. */
1913
1914 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
1915 ctx, engine, ring);
8670d6f9 1916
7d774cac 1917 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
1918
1919 return 0;
1920}
1921
c5d46ee2
DG
1922/**
1923 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 1924 * @engine: which engine to find the context size for
c5d46ee2
DG
1925 *
1926 * Each engine may require a different amount of space for a context image,
1927 * so when allocating (or copying) an image, this function can be used to
1928 * find the right size for the specific engine.
1929 *
1930 * Return: size (in bytes) of an engine-specific context image
1931 *
1932 * Note: this size includes the HWSP, which is part of the context image
1933 * in LRC mode, but does not include the "shared data page" used with
1934 * GuC submission. The caller should account for this if using the GuC.
1935 */
0bc40be8 1936uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
1937{
1938 int ret = 0;
1939
c033666a 1940 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 1941
0bc40be8 1942 switch (engine->id) {
8c857917 1943 case RCS:
c033666a 1944 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
1945 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1946 else
1947 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
1948 break;
1949 case VCS:
1950 case BCS:
1951 case VECS:
1952 case VCS2:
1953 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1954 break;
1955 }
1956
1957 return ret;
ede7d42b
OM
1958}
1959
e2efd130 1960static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 1961 struct intel_engine_cs *engine)
ede7d42b 1962{
8c857917 1963 struct drm_i915_gem_object *ctx_obj;
9021ad03 1964 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 1965 struct i915_vma *vma;
8c857917 1966 uint32_t context_size;
7e37f889 1967 struct intel_ring *ring;
8c857917
OM
1968 int ret;
1969
9021ad03 1970 WARN_ON(ce->state);
ede7d42b 1971
f51455d4
CW
1972 context_size = round_up(intel_lr_context_size(engine),
1973 I915_GTT_PAGE_SIZE);
8c857917 1974
d1675198
AD
1975 /* One extra page as the sharing data between driver and GuC */
1976 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
1977
12d79d78 1978 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
fe3db79b 1979 if (IS_ERR(ctx_obj)) {
3126a660 1980 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 1981 return PTR_ERR(ctx_obj);
8c857917
OM
1982 }
1983
a01cb37a 1984 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
bf3783e5
CW
1985 if (IS_ERR(vma)) {
1986 ret = PTR_ERR(vma);
1987 goto error_deref_obj;
1988 }
1989
7e37f889 1990 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
1991 if (IS_ERR(ring)) {
1992 ret = PTR_ERR(ring);
e84fe803 1993 goto error_deref_obj;
8670d6f9
OM
1994 }
1995
dca33ecc 1996 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
1997 if (ret) {
1998 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 1999 goto error_ring_free;
84c2377f
OM
2000 }
2001
dca33ecc 2002 ce->ring = ring;
bf3783e5 2003 ce->state = vma;
9021ad03 2004 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2005
2006 return 0;
8670d6f9 2007
dca33ecc 2008error_ring_free:
7e37f889 2009 intel_ring_free(ring);
e84fe803 2010error_deref_obj:
f8c417cd 2011 i915_gem_object_put(ctx_obj);
8670d6f9 2012 return ret;
ede7d42b 2013}
3e5b6f05 2014
821ed7df 2015void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2016{
e2f80391 2017 struct intel_engine_cs *engine;
bafb2f7d 2018 struct i915_gem_context *ctx;
3b3f1650 2019 enum intel_engine_id id;
bafb2f7d
CW
2020
2021 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2022 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2023 * that stored in context. As we only write new commands from
2024 * ce->ring->tail onwards, everything before that is junk. If the GPU
2025 * starts reading from its RING_HEAD from the context, it may try to
2026 * execute that junk and die.
2027 *
2028 * So to avoid that we reset the context images upon resume. For
2029 * simplicity, we just zero everything out.
2030 */
2031 list_for_each_entry(ctx, &dev_priv->context_list, link) {
3b3f1650 2032 for_each_engine(engine, dev_priv, id) {
bafb2f7d
CW
2033 struct intel_context *ce = &ctx->engine[engine->id];
2034 u32 *reg;
3e5b6f05 2035
bafb2f7d
CW
2036 if (!ce->state)
2037 continue;
7d774cac 2038
bafb2f7d
CW
2039 reg = i915_gem_object_pin_map(ce->state->obj,
2040 I915_MAP_WB);
2041 if (WARN_ON(IS_ERR(reg)))
2042 continue;
3e5b6f05 2043
bafb2f7d
CW
2044 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2045 reg[CTX_RING_HEAD+1] = 0;
2046 reg[CTX_RING_TAIL+1] = 0;
3e5b6f05 2047
a4f5ea64 2048 ce->state->obj->mm.dirty = true;
bafb2f7d 2049 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2050
bafb2f7d 2051 ce->ring->head = ce->ring->tail = 0;
bafb2f7d
CW
2052 intel_ring_update_space(ce->ring);
2053 }
3e5b6f05
TD
2054 }
2055}