]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Convert engine->write_tail to operate on a request
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 FAULT_AND_HANG = 0,
212 FAULT_AND_HALT, /* Debug only */
213 FAULT_AND_STREAM,
214 FAULT_AND_CONTINUE /* Unsupported */
215};
216#define GEN8_CTX_ID_SHIFT 32
7069b144 217#define GEN8_CTX_ID_WIDTH 21
71562919
MT
218#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
219#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 220
0e93cdd4
CW
221/* Typical size of the average request (2 pipecontrols and a MI_BB) */
222#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
223
e2efd130 224static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 225 struct intel_engine_cs *engine);
e2efd130 226static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 227 struct intel_engine_cs *engine);
7ba717cf 228
73e4d07f
OM
229/**
230 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 231 * @dev_priv: i915 device private
73e4d07f
OM
232 * @enable_execlists: value of i915.enable_execlists module parameter.
233 *
234 * Only certain platforms support Execlists (the prerequisites being
27401d12 235 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
236 *
237 * Return: 1 if Execlists is supported and has to be enabled.
238 */
c033666a 239int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 240{
a0bd6c31
ZL
241 /* On platforms with execlist available, vGPU will only
242 * support execlist mode, no ring buffer mode.
243 */
c033666a 244 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
245 return 1;
246
c033666a 247 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
248 return 1;
249
127f1003
OM
250 if (enable_execlists == 0)
251 return 0;
252
5a21b665
DV
253 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
254 USES_PPGTT(dev_priv) &&
255 i915.use_mmio_flip >= 0)
127f1003
OM
256 return 1;
257
258 return 0;
259}
ede7d42b 260
ca82580c 261static void
0bc40be8 262logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 263{
c033666a 264 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 265
c033666a 266 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
0bc40be8 267 engine->idle_lite_restore_wa = ~0;
c6a2ac71 268
c033666a
CW
269 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
270 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
0bc40be8 271 (engine->id == VCS || engine->id == VCS2);
ca82580c 272
0bc40be8 273 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 274 if (IS_GEN8(dev_priv))
0bc40be8
TU
275 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
276 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
277
278 /* TODO: WaDisableLiteRestore when we start using semaphore
279 * signalling between Command Streamers */
280 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
281
282 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
283 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
284 if (engine->disable_lite_restore_wa)
285 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
286}
287
73e4d07f 288/**
ca82580c
TU
289 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
290 * descriptor for a pinned context
ca82580c 291 * @ctx: Context to work on
9021ad03 292 * @engine: Engine the descriptor will be used with
73e4d07f 293 *
ca82580c
TU
294 * The context descriptor encodes various attributes of a context,
295 * including its GTT address and some flags. Because it's fairly
296 * expensive to calculate, we'll just do it once and cache the result,
297 * which remains valid until the context is unpinned.
298 *
6e5248b5
DV
299 * This is what a descriptor looks like, from LSB to MSB::
300 *
301 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
302 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
303 * bits 32-52: ctx ID, a globally unique tag
304 * bits 53-54: mbz, reserved for use by hardware
305 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 306 */
ca82580c 307static void
e2efd130 308intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 309 struct intel_engine_cs *engine)
84b790f8 310{
9021ad03 311 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 312 u64 desc;
84b790f8 313
7069b144 314 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 315
c01fc532
ZW
316 desc = ctx->desc_template; /* bits 3-4 */
317 desc |= engine->ctx_desc_template; /* bits 0-11 */
9021ad03
CW
318 desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
319 /* bits 12-31 */
7069b144 320 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 321
9021ad03 322 ce->lrc_desc = desc;
5af05fef
MT
323}
324
e2efd130 325uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 326 struct intel_engine_cs *engine)
84b790f8 327{
0bc40be8 328 return ctx->engine[engine->id].lrc_desc;
ca82580c 329}
203a571b 330
cc3c4253
MK
331static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
332 struct drm_i915_gem_request *rq1)
84b790f8 333{
cc3c4253 334
4a570db5 335 struct intel_engine_cs *engine = rq0->engine;
c033666a 336 struct drm_i915_private *dev_priv = rq0->i915;
1cff8cc3 337 uint64_t desc[2];
84b790f8 338
1cff8cc3 339 if (rq1) {
4a570db5 340 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
341 rq1->elsp_submitted++;
342 } else {
343 desc[1] = 0;
344 }
84b790f8 345
4a570db5 346 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 347 rq0->elsp_submitted++;
84b790f8 348
1cff8cc3 349 /* You must always write both descriptors in the order below. */
e2f80391
TU
350 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
351 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 352
e2f80391 353 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 354 /* The context is automatically loaded after the following */
e2f80391 355 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 356
1cff8cc3 357 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 358 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
359}
360
c6a2ac71
TU
361static void
362execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
363{
364 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
365 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
366 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
367 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
368}
369
370static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 371{
4a570db5 372 struct intel_engine_cs *engine = rq->engine;
05d9824b 373 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 374 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 375
05d9824b 376 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 377
c6a2ac71
TU
378 /* True 32b PPGTT with dynamic page allocation: update PDP
379 * registers and point the unallocated PDPs to scratch page.
380 * PML4 is allocated during ppgtt init, so this is not needed
381 * in 48-bit mode.
382 */
383 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
384 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
385}
386
d8cb8875
MK
387static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
388 struct drm_i915_gem_request *rq1)
84b790f8 389{
26720ab9 390 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 391 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 392
05d9824b 393 execlists_update_context(rq0);
d8cb8875 394
cc3c4253 395 if (rq1)
05d9824b 396 execlists_update_context(rq1);
84b790f8 397
27af5eea 398 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 399 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 400
cc3c4253 401 execlists_elsp_write(rq0, rq1);
26720ab9 402
3756685a 403 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 404 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
405}
406
3c7ba635
ZW
407static inline void execlists_context_status_change(
408 struct drm_i915_gem_request *rq,
409 unsigned long status)
410{
411 /*
412 * Only used when GVT-g is enabled now. When GVT-g is disabled,
413 * The compiler should eliminate this function as dead-code.
414 */
415 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416 return;
417
418 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
419}
420
26720ab9 421static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 422{
6d3d8274 423 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 424 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 425
0bc40be8 426 assert_spin_locked(&engine->execlist_lock);
acdd884a 427
779949f4
PA
428 /*
429 * If irqs are not active generate a warning as batches that finish
430 * without the irqs may get lost and a GPU Hang may occur.
431 */
c033666a 432 WARN_ON(!intel_irqs_enabled(engine->i915));
779949f4 433
acdd884a 434 /* Try to read in pairs */
0bc40be8 435 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
436 execlist_link) {
437 if (!req0) {
438 req0 = cursor;
6d3d8274 439 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
440 /* Same ctx: ignore first request, as second request
441 * will update tail past first request's workload */
e1fee72c 442 cursor->elsp_submitted = req0->elsp_submitted;
e39d42fa 443 list_del(&req0->execlist_link);
e8a261ea 444 i915_gem_request_put(req0);
acdd884a
MT
445 req0 = cursor;
446 } else {
80a9a8db
ZW
447 if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
448 /*
449 * req0 (after merged) ctx requires single
450 * submission, stop picking
451 */
452 if (req0->ctx->execlists_force_single_submission)
453 break;
454 /*
455 * req0 ctx doesn't require single submission,
456 * but next req ctx requires, stop picking
457 */
458 if (cursor->ctx->execlists_force_single_submission)
459 break;
460 }
acdd884a 461 req1 = cursor;
c6a2ac71 462 WARN_ON(req1->elsp_submitted);
acdd884a
MT
463 break;
464 }
465 }
466
c6a2ac71
TU
467 if (unlikely(!req0))
468 return;
469
3c7ba635
ZW
470 execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);
471
472 if (req1)
473 execlists_context_status_change(req1,
474 INTEL_CONTEXT_SCHEDULE_IN);
475
0bc40be8 476 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 477 /*
c6a2ac71
TU
478 * WaIdleLiteRestore: make sure we never cause a lite restore
479 * with HEAD==TAIL.
480 *
481 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
482 * resubmit the request. See gen8_emit_request() for where we
483 * prepare the padding after the end of the request.
53292cdb 484 */
c6a2ac71 485 req0->tail += 8;
dca33ecc 486 req0->tail &= req0->ring->size - 1;
53292cdb
MT
487 }
488
d8cb8875 489 execlists_submit_requests(req0, req1);
acdd884a
MT
490}
491
c6a2ac71 492static unsigned int
e39d42fa 493execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
e981e7b1 494{
6d3d8274 495 struct drm_i915_gem_request *head_req;
e981e7b1 496
0bc40be8 497 assert_spin_locked(&engine->execlist_lock);
e981e7b1 498
0bc40be8 499 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 500 struct drm_i915_gem_request,
e981e7b1
TD
501 execlist_link);
502
e39d42fa
TU
503 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
504 return 0;
c6a2ac71
TU
505
506 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
507
508 if (--head_req->elsp_submitted > 0)
509 return 0;
510
3c7ba635
ZW
511 execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);
512
e39d42fa 513 list_del(&head_req->execlist_link);
e8a261ea 514 i915_gem_request_put(head_req);
e981e7b1 515
c6a2ac71 516 return 1;
e981e7b1
TD
517}
518
c6a2ac71 519static u32
0bc40be8 520get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 521 u32 *context_id)
91a41032 522{
c033666a 523 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 524 u32 status;
91a41032 525
c6a2ac71
TU
526 read_pointer %= GEN8_CSB_ENTRIES;
527
0bc40be8 528 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
529
530 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
531 return 0;
91a41032 532
0bc40be8 533 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
534 read_pointer));
535
536 return status;
91a41032
BW
537}
538
6e5248b5 539/*
73e4d07f
OM
540 * Check the unread Context Status Buffers and manage the submission of new
541 * contexts to the ELSP accordingly.
542 */
27af5eea 543static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 544{
27af5eea 545 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
c033666a 546 struct drm_i915_private *dev_priv = engine->i915;
e981e7b1 547 u32 status_pointer;
c6a2ac71 548 unsigned int read_pointer, write_pointer;
26720ab9
TU
549 u32 csb[GEN8_CSB_ENTRIES][2];
550 unsigned int csb_read = 0, i;
c6a2ac71
TU
551 unsigned int submit_contexts = 0;
552
3756685a 553 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 554
0bc40be8 555 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 556
0bc40be8 557 read_pointer = engine->next_context_status_buffer;
5590a5f0 558 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 559 if (read_pointer > write_pointer)
dfc53c5e 560 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 561
e981e7b1 562 while (read_pointer < write_pointer) {
26720ab9
TU
563 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
564 break;
565 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
566 &csb[csb_read][1]);
567 csb_read++;
568 }
91a41032 569
26720ab9
TU
570 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
571
572 /* Update the read pointer to the old write pointer. Manual ringbuffer
573 * management ftw </sarcasm> */
574 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
575 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
576 engine->next_context_status_buffer << 8));
577
3756685a 578 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
579
580 spin_lock(&engine->execlist_lock);
581
582 for (i = 0; i < csb_read; i++) {
583 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
584 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
585 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
586 WARN(1, "Lite Restored request removed from queue\n");
587 } else
588 WARN(1, "Preemption without Lite Restore\n");
589 }
590
26720ab9 591 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
592 GEN8_CTX_STATUS_ELEMENT_SWITCH))
593 submit_contexts +=
26720ab9 594 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
595 }
596
c6a2ac71 597 if (submit_contexts) {
0bc40be8 598 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
599 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
600 execlists_context_unqueue(engine);
5af05fef 601 }
e981e7b1 602
0bc40be8 603 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
604
605 if (unlikely(submit_contexts > 2))
606 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
607}
608
c6a2ac71 609static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 610{
4a570db5 611 struct intel_engine_cs *engine = request->engine;
6d3d8274 612 struct drm_i915_gem_request *cursor;
f1ad5a1f 613 int num_elements = 0;
acdd884a 614
27af5eea 615 spin_lock_bh(&engine->execlist_lock);
acdd884a 616
e2f80391 617 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
618 if (++num_elements > 2)
619 break;
620
621 if (num_elements > 2) {
6d3d8274 622 struct drm_i915_gem_request *tail_req;
f1ad5a1f 623
e2f80391 624 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 625 struct drm_i915_gem_request,
f1ad5a1f
OM
626 execlist_link);
627
ae70797d 628 if (request->ctx == tail_req->ctx) {
f1ad5a1f 629 WARN(tail_req->elsp_submitted != 0,
7ba717cf 630 "More than 2 already-submitted reqs queued\n");
e39d42fa 631 list_del(&tail_req->execlist_link);
e8a261ea 632 i915_gem_request_put(tail_req);
f1ad5a1f
OM
633 }
634 }
635
e8a261ea 636 i915_gem_request_get(request);
e2f80391 637 list_add_tail(&request->execlist_link, &engine->execlist_queue);
a3d12761 638 request->ctx_hw_id = request->ctx->hw_id;
f1ad5a1f 639 if (num_elements == 0)
e2f80391 640 execlists_context_unqueue(engine);
acdd884a 641
27af5eea 642 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
643}
644
535fbe82 645static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
646 struct list_head *vmas)
647{
666796da 648 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
649 struct i915_vma *vma;
650 uint32_t flush_domains = 0;
651 bool flush_chipset = false;
652 int ret;
653
654 list_for_each_entry(vma, vmas, exec_list) {
655 struct drm_i915_gem_object *obj = vma->obj;
656
03ade511 657 if (obj->active & other_rings) {
8e637178 658 ret = i915_gem_object_sync(obj, req);
03ade511
CW
659 if (ret)
660 return ret;
661 }
ba8b7ccb
OM
662
663 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
664 flush_chipset |= i915_gem_clflush_object(obj, false);
665
666 flush_domains |= obj->base.write_domain;
667 }
668
669 if (flush_domains & I915_GEM_DOMAIN_GTT)
670 wmb();
671
672 /* Unconditionally invalidate gpu caches and ensure that we do flush
673 * any residual writes from the previous batch.
674 */
7c9cf4e3 675 return req->engine->emit_flush(req, EMIT_INVALIDATE);
ba8b7ccb
OM
676}
677
40e895ce 678int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 679{
24f1d3cc 680 struct intel_engine_cs *engine = request->engine;
9021ad03 681 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 682 int ret;
bc0dce3f 683
6310346e
CW
684 /* Flush enough space to reduce the likelihood of waiting after
685 * we start building the request - in which case we will just
686 * have to repeat work.
687 */
0e93cdd4 688 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 689
9021ad03 690 if (!ce->state) {
978f1e09
CW
691 ret = execlists_context_deferred_alloc(request->ctx, engine);
692 if (ret)
693 return ret;
694 }
695
dca33ecc 696 request->ring = ce->ring;
f3cc01f0 697
a7e02199
AD
698 if (i915.enable_guc_submission) {
699 /*
700 * Check that the GuC has space for the request before
701 * going any further, as the i915_add_request() call
702 * later on mustn't fail ...
703 */
7c2c270d 704 ret = i915_guc_wq_check_space(request);
a7e02199
AD
705 if (ret)
706 return ret;
707 }
708
24f1d3cc
CW
709 ret = intel_lr_context_pin(request->ctx, engine);
710 if (ret)
711 return ret;
e28e404c 712
bfa01200
CW
713 ret = intel_ring_begin(request, 0);
714 if (ret)
715 goto err_unpin;
716
9021ad03 717 if (!ce->initialised) {
24f1d3cc
CW
718 ret = engine->init_context(request);
719 if (ret)
720 goto err_unpin;
721
9021ad03 722 ce->initialised = true;
24f1d3cc
CW
723 }
724
725 /* Note that after this point, we have committed to using
726 * this request as it is being used to both track the
727 * state of engine initialisation and liveness of the
728 * golden renderstate above. Think twice before you try
729 * to cancel/unwind this request now.
730 */
731
0e93cdd4 732 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
733 return 0;
734
735err_unpin:
24f1d3cc 736 intel_lr_context_unpin(request->ctx, engine);
e28e404c 737 return ret;
bc0dce3f
JH
738}
739
bc0dce3f
JH
740/*
741 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 742 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
743 *
744 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
745 * really happens during submission is that the context and current tail will be placed
746 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
747 * point, the tail *inside* the context is updated and the ELSP written to.
748 */
7c17d377 749static int
ae70797d 750intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 751{
7e37f889 752 struct intel_ring *ring = request->ring;
4a570db5 753 struct intel_engine_cs *engine = request->engine;
bc0dce3f 754
1dae2dfb
CW
755 intel_ring_advance(ring);
756 request->tail = ring->tail;
bc0dce3f 757
7c17d377
CW
758 /*
759 * Here we add two extra NOOPs as padding to avoid
760 * lite restore of a context with HEAD==TAIL.
761 *
762 * Caller must reserve WA_TAIL_DWORDS for us!
763 */
1dae2dfb
CW
764 intel_ring_emit(ring, MI_NOOP);
765 intel_ring_emit(ring, MI_NOOP);
766 intel_ring_advance(ring);
d1675198 767
a16a4052
CW
768 /* We keep the previous context alive until we retire the following
769 * request. This ensures that any the context object is still pinned
770 * for any residual writes the HW makes into it on the context switch
771 * into the next object following the breadcrumb. Otherwise, we may
772 * retire the context too early.
773 */
774 request->previous_context = engine->last_context;
775 engine->last_context = request->ctx;
f4e2dece 776
7c2c270d
DG
777 if (i915.enable_guc_submission)
778 i915_guc_submit(request);
d1675198
AD
779 else
780 execlists_context_queue(request);
7c17d377
CW
781
782 return 0;
bc0dce3f
JH
783}
784
73e4d07f 785/**
6e5248b5 786 * intel_execlists_submission() - submit a batchbuffer for execution, Execlists style
14bb2c11 787 * @params: execbuffer call parameters.
73e4d07f
OM
788 * @args: execbuffer call arguments.
789 * @vmas: list of vmas.
73e4d07f
OM
790 *
791 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
792 * away the submission details of the execbuffer ioctl call.
793 *
794 * Return: non-zero if the submission fails.
795 */
5f19e2bf 796int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 797 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 798 struct list_head *vmas)
454afebd 799{
5f19e2bf 800 struct drm_device *dev = params->dev;
4a570db5 801 struct intel_engine_cs *engine = params->engine;
fac5e23e 802 struct drm_i915_private *dev_priv = to_i915(dev);
7e37f889 803 struct intel_ring *ring = params->request->ring;
5f19e2bf 804 u64 exec_start;
ba8b7ccb
OM
805 int instp_mode;
806 u32 instp_mask;
807 int ret;
808
809 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
810 instp_mask = I915_EXEC_CONSTANTS_MASK;
811 switch (instp_mode) {
812 case I915_EXEC_CONSTANTS_REL_GENERAL:
813 case I915_EXEC_CONSTANTS_ABSOLUTE:
814 case I915_EXEC_CONSTANTS_REL_SURFACE:
1dae2dfb 815 if (instp_mode != 0 && engine->id != RCS) {
ba8b7ccb
OM
816 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
817 return -EINVAL;
818 }
819
820 if (instp_mode != dev_priv->relative_constants_mode) {
821 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
822 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
823 return -EINVAL;
824 }
825
826 /* The HW changed the meaning on this bit on gen6 */
827 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
828 }
829 break;
830 default:
831 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
832 return -EINVAL;
833 }
834
ba8b7ccb
OM
835 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
836 DRM_DEBUG("sol reset is gen7 only\n");
837 return -EINVAL;
838 }
839
535fbe82 840 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
841 if (ret)
842 return ret;
843
1dae2dfb 844 if (engine->id == RCS &&
ba8b7ccb 845 instp_mode != dev_priv->relative_constants_mode) {
987046ad 846 ret = intel_ring_begin(params->request, 4);
ba8b7ccb
OM
847 if (ret)
848 return ret;
849
1dae2dfb
CW
850 intel_ring_emit(ring, MI_NOOP);
851 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
852 intel_ring_emit_reg(ring, INSTPM);
853 intel_ring_emit(ring, instp_mask << 16 | instp_mode);
854 intel_ring_advance(ring);
ba8b7ccb
OM
855
856 dev_priv->relative_constants_mode = instp_mode;
857 }
858
5f19e2bf
JH
859 exec_start = params->batch_obj_vm_offset +
860 args->batch_start_offset;
861
803688ba
CW
862 ret = engine->emit_bb_start(params->request,
863 exec_start, args->batch_len,
864 params->dispatch_flags);
ba8b7ccb
OM
865 if (ret)
866 return ret;
867
95c24161 868 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 869
8a8edb59 870 i915_gem_execbuffer_move_to_active(vmas, params->request);
ba8b7ccb 871
454afebd
OM
872 return 0;
873}
874
e39d42fa 875void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
c86ee3a9 876{
6d3d8274 877 struct drm_i915_gem_request *req, *tmp;
e39d42fa 878 LIST_HEAD(cancel_list);
c86ee3a9 879
91c8a326 880 WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
c86ee3a9 881
27af5eea 882 spin_lock_bh(&engine->execlist_lock);
e39d42fa 883 list_replace_init(&engine->execlist_queue, &cancel_list);
27af5eea 884 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 885
e39d42fa 886 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
c86ee3a9 887 list_del(&req->execlist_link);
e8a261ea 888 i915_gem_request_put(req);
c86ee3a9
TD
889 }
890}
891
0bc40be8 892void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 893{
c033666a 894 struct drm_i915_private *dev_priv = engine->i915;
9832b9da
OM
895 int ret;
896
117897f4 897 if (!intel_engine_initialized(engine))
9832b9da
OM
898 return;
899
666796da 900 ret = intel_engine_idle(engine);
f4457ae7 901 if (ret)
9832b9da 902 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 903 engine->name, ret);
9832b9da
OM
904
905 /* TODO: Is this correct with Execlists enabled? */
0bc40be8 906 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
3e7941a1
CW
907 if (intel_wait_for_register(dev_priv,
908 RING_MI_MODE(engine->mmio_base),
909 MODE_IDLE, MODE_IDLE,
910 1000)) {
0bc40be8 911 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
912 return;
913 }
0bc40be8 914 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
915}
916
e2efd130 917static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 918 struct intel_engine_cs *engine)
dcb4c12a 919{
24f1d3cc 920 struct drm_i915_private *dev_priv = ctx->i915;
9021ad03 921 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac
TU
922 void *vaddr;
923 u32 *lrc_reg_state;
ca82580c 924 int ret;
dcb4c12a 925
91c8a326 926 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 927
9021ad03 928 if (ce->pin_count++)
24f1d3cc
CW
929 return 0;
930
9021ad03
CW
931 ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
932 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
e84fe803 933 if (ret)
24f1d3cc 934 goto err;
7ba717cf 935
9021ad03 936 vaddr = i915_gem_object_pin_map(ce->state);
7d774cac
TU
937 if (IS_ERR(vaddr)) {
938 ret = PTR_ERR(vaddr);
82352e90
TU
939 goto unpin_ctx_obj;
940 }
941
7d774cac
TU
942 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
943
aad29fbb 944 ret = intel_ring_pin(ce->ring);
e84fe803 945 if (ret)
7d774cac 946 goto unpin_map;
d1675198 947
9021ad03 948 ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
0bc40be8 949 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 950
dca33ecc 951 lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ring->vma->node.start;
9021ad03
CW
952 ce->lrc_reg_state = lrc_reg_state;
953 ce->state->dirty = true;
e93c28f3 954
e84fe803
NH
955 /* Invalidate GuC TLB. */
956 if (i915.enable_guc_submission)
957 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 958
9a6feaf0 959 i915_gem_context_get(ctx);
24f1d3cc 960 return 0;
7ba717cf 961
7d774cac 962unpin_map:
9021ad03 963 i915_gem_object_unpin_map(ce->state);
7ba717cf 964unpin_ctx_obj:
9021ad03 965 i915_gem_object_ggtt_unpin(ce->state);
24f1d3cc 966err:
9021ad03 967 ce->pin_count = 0;
e84fe803
NH
968 return ret;
969}
970
e2efd130 971void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 972 struct intel_engine_cs *engine)
e84fe803 973{
9021ad03 974 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 975
91c8a326 976 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 977 GEM_BUG_ON(ce->pin_count == 0);
321fe304 978
9021ad03 979 if (--ce->pin_count)
24f1d3cc 980 return;
e84fe803 981
aad29fbb 982 intel_ring_unpin(ce->ring);
dcb4c12a 983
9021ad03
CW
984 i915_gem_object_unpin_map(ce->state);
985 i915_gem_object_ggtt_unpin(ce->state);
af3302b9 986
9021ad03
CW
987 ce->lrc_vma = NULL;
988 ce->lrc_desc = 0;
989 ce->lrc_reg_state = NULL;
321fe304 990
9a6feaf0 991 i915_gem_context_put(ctx);
dcb4c12a
OM
992}
993
e2be4faf 994static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
995{
996 int ret, i;
7e37f889 997 struct intel_ring *ring = req->ring;
c033666a 998 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 999
cd7feaaa 1000 if (w->count == 0)
771b9a53
MT
1001 return 0;
1002
7c9cf4e3 1003 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
1004 if (ret)
1005 return ret;
1006
987046ad 1007 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1008 if (ret)
1009 return ret;
1010
1dae2dfb 1011 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
771b9a53 1012 for (i = 0; i < w->count; i++) {
1dae2dfb
CW
1013 intel_ring_emit_reg(ring, w->reg[i].addr);
1014 intel_ring_emit(ring, w->reg[i].value);
771b9a53 1015 }
1dae2dfb 1016 intel_ring_emit(ring, MI_NOOP);
771b9a53 1017
1dae2dfb 1018 intel_ring_advance(ring);
771b9a53 1019
7c9cf4e3 1020 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
1021 if (ret)
1022 return ret;
1023
1024 return 0;
1025}
1026
83b8a982 1027#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1028 do { \
83b8a982
AS
1029 int __index = (index)++; \
1030 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1031 return -ENOSPC; \
1032 } \
83b8a982 1033 batch[__index] = (cmd); \
17ee950d
AS
1034 } while (0)
1035
8f40db77 1036#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1037 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1038
1039/*
1040 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1041 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1042 * but there is a slight complication as this is applied in WA batch where the
1043 * values are only initialized once so we cannot take register value at the
1044 * beginning and reuse it further; hence we save its value to memory, upload a
1045 * constant value with bit21 set and then we restore it back with the saved value.
1046 * To simplify the WA, a constant value is formed by using the default value
1047 * of this register. This shouldn't be a problem because we are only modifying
1048 * it for a short period and this batch in non-premptible. We can ofcourse
1049 * use additional instructions that read the actual value of the register
1050 * at that time and set our bit of interest but it makes the WA complicated.
1051 *
1052 * This WA is also required for Gen9 so extracting as a function avoids
1053 * code duplication.
1054 */
0bc40be8 1055static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
6e5248b5 1056 uint32_t *batch,
9e000847
AS
1057 uint32_t index)
1058{
1059 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1060
a4106a78 1061 /*
fe905819 1062 * WaDisableLSQCROPERFforOCL:skl,kbl
a4106a78
AS
1063 * This WA is implemented in skl_init_clock_gating() but since
1064 * this batch updates GEN8_L3SQCREG4 with default value we need to
1065 * set this bit here to retain the WA during flush.
1066 */
fe905819
MK
1067 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
1068 IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
a4106a78
AS
1069 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1070
f1afe24f 1071 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1072 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1073 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1074 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1075 wa_ctx_emit(batch, index, 0);
1076
1077 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1078 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1079 wa_ctx_emit(batch, index, l3sqc4_flush);
1080
1081 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1082 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1083 PIPE_CONTROL_DC_FLUSH_ENABLE));
1084 wa_ctx_emit(batch, index, 0);
1085 wa_ctx_emit(batch, index, 0);
1086 wa_ctx_emit(batch, index, 0);
1087 wa_ctx_emit(batch, index, 0);
1088
f1afe24f 1089 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1090 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1091 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1092 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1093 wa_ctx_emit(batch, index, 0);
9e000847
AS
1094
1095 return index;
1096}
1097
17ee950d
AS
1098static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1099 uint32_t offset,
1100 uint32_t start_alignment)
1101{
1102 return wa_ctx->offset = ALIGN(offset, start_alignment);
1103}
1104
1105static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1106 uint32_t offset,
1107 uint32_t size_alignment)
1108{
1109 wa_ctx->size = offset - wa_ctx->offset;
1110
1111 WARN(wa_ctx->size % size_alignment,
1112 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1113 wa_ctx->size, size_alignment);
1114 return 0;
1115}
1116
6e5248b5
DV
1117/*
1118 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1119 * initialized at the beginning and shared across all contexts but this field
1120 * helps us to have multiple batches at different offsets and select them based
1121 * on a criteria. At the moment this batch always start at the beginning of the page
1122 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 1123 *
6e5248b5
DV
1124 * The number of WA applied are not known at the beginning; we use this field
1125 * to return the no of DWORDS written.
17ee950d 1126 *
6e5248b5
DV
1127 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1128 * so it adds NOOPs as padding to make it cacheline aligned.
1129 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1130 * makes a complete batch buffer.
17ee950d 1131 */
0bc40be8 1132static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d 1133 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1134 uint32_t *batch,
17ee950d
AS
1135 uint32_t *offset)
1136{
0160f055 1137 uint32_t scratch_addr;
17ee950d
AS
1138 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1139
7ad00d1a 1140 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1141 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1142
c82435bb 1143 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 1144 if (IS_BROADWELL(engine->i915)) {
0bc40be8 1145 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1146 if (rc < 0)
1147 return rc;
1148 index = rc;
c82435bb
AS
1149 }
1150
0160f055
AS
1151 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1152 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1153 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1154
83b8a982
AS
1155 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1156 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1157 PIPE_CONTROL_GLOBAL_GTT_IVB |
1158 PIPE_CONTROL_CS_STALL |
1159 PIPE_CONTROL_QW_WRITE));
1160 wa_ctx_emit(batch, index, scratch_addr);
1161 wa_ctx_emit(batch, index, 0);
1162 wa_ctx_emit(batch, index, 0);
1163 wa_ctx_emit(batch, index, 0);
0160f055 1164
17ee950d
AS
1165 /* Pad to end of cacheline */
1166 while (index % CACHELINE_DWORDS)
83b8a982 1167 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1168
1169 /*
1170 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1171 * execution depends on the length specified in terms of cache lines
1172 * in the register CTX_RCS_INDIRECT_CTX
1173 */
1174
1175 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1176}
1177
6e5248b5
DV
1178/*
1179 * This batch is started immediately after indirect_ctx batch. Since we ensure
1180 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 1181 *
6e5248b5 1182 * The number of DWORDS written are returned using this field.
17ee950d
AS
1183 *
1184 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1185 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1186 */
0bc40be8 1187static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d 1188 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1189 uint32_t *batch,
17ee950d
AS
1190 uint32_t *offset)
1191{
1192 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1193
7ad00d1a 1194 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1195 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1196
83b8a982 1197 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1198
1199 return wa_ctx_end(wa_ctx, *offset = index, 1);
1200}
1201
0bc40be8 1202static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc 1203 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1204 uint32_t *batch,
0504cffc
AS
1205 uint32_t *offset)
1206{
a4106a78 1207 int ret;
0504cffc
AS
1208 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1209
0907c8f7 1210 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1211 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1212 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7 1213 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1214
a4106a78 1215 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1216 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1217 if (ret < 0)
1218 return ret;
1219 index = ret;
1220
873e8171
MK
1221 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1222 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1223 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1224 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1225 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1226 wa_ctx_emit(batch, index, MI_NOOP);
1227
066d4628
MK
1228 /* WaClearSlmSpaceAtContextSwitch:kbl */
1229 /* Actual scratch location is at 128 bytes offset */
1230 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1231 uint32_t scratch_addr
1232 = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1233
1234 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1235 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1236 PIPE_CONTROL_GLOBAL_GTT_IVB |
1237 PIPE_CONTROL_CS_STALL |
1238 PIPE_CONTROL_QW_WRITE));
1239 wa_ctx_emit(batch, index, scratch_addr);
1240 wa_ctx_emit(batch, index, 0);
1241 wa_ctx_emit(batch, index, 0);
1242 wa_ctx_emit(batch, index, 0);
1243 }
3485d99e
TG
1244
1245 /* WaMediaPoolStateCmdInWABB:bxt */
1246 if (HAS_POOLED_EU(engine->i915)) {
1247 /*
1248 * EU pool configuration is setup along with golden context
1249 * during context initialization. This value depends on
1250 * device type (2x6 or 3x6) and needs to be updated based
1251 * on which subslice is disabled especially for 2x6
1252 * devices, however it is safe to load default
1253 * configuration of 3x6 device instead of masking off
1254 * corresponding bits because HW ignores bits of a disabled
1255 * subslice and drops down to appropriate config. Please
1256 * see render_state_setup() in i915_gem_render_state.c for
1257 * possible configurations, to avoid duplication they are
1258 * not shown here again.
1259 */
1260 u32 eu_pool_config = 0x00777000;
1261 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1262 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1263 wa_ctx_emit(batch, index, eu_pool_config);
1264 wa_ctx_emit(batch, index, 0);
1265 wa_ctx_emit(batch, index, 0);
1266 wa_ctx_emit(batch, index, 0);
1267 }
1268
0504cffc
AS
1269 /* Pad to end of cacheline */
1270 while (index % CACHELINE_DWORDS)
1271 wa_ctx_emit(batch, index, MI_NOOP);
1272
1273 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1274}
1275
0bc40be8 1276static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc 1277 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1278 uint32_t *batch,
0504cffc
AS
1279 uint32_t *offset)
1280{
1281 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1282
9b01435d 1283 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
c033666a
CW
1284 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1285 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1286 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1287 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1288 wa_ctx_emit(batch, index,
1289 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1290 wa_ctx_emit(batch, index, MI_NOOP);
1291 }
1292
b1e429fe 1293 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1294 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1295 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1296
1297 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1298 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1299
1300 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1301 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1302
1303 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1304 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1305
1306 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1307 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1308 wa_ctx_emit(batch, index, 0x0);
1309 wa_ctx_emit(batch, index, MI_NOOP);
1310 }
1311
0907c8f7 1312 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1313 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1314 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1315 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1316
0504cffc
AS
1317 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1318
1319 return wa_ctx_end(wa_ctx, *offset = index, 1);
1320}
1321
0bc40be8 1322static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1323{
1324 int ret;
1325
91c8a326
CW
1326 engine->wa_ctx.obj = i915_gem_object_create(&engine->i915->drm,
1327 PAGE_ALIGN(size));
fe3db79b 1328 if (IS_ERR(engine->wa_ctx.obj)) {
17ee950d 1329 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
fe3db79b
CW
1330 ret = PTR_ERR(engine->wa_ctx.obj);
1331 engine->wa_ctx.obj = NULL;
1332 return ret;
17ee950d
AS
1333 }
1334
0bc40be8 1335 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1336 if (ret) {
1337 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1338 ret);
f8c417cd 1339 i915_gem_object_put(engine->wa_ctx.obj);
17ee950d
AS
1340 return ret;
1341 }
1342
1343 return 0;
1344}
1345
0bc40be8 1346static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1347{
0bc40be8
TU
1348 if (engine->wa_ctx.obj) {
1349 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
f8c417cd 1350 i915_gem_object_put(engine->wa_ctx.obj);
0bc40be8 1351 engine->wa_ctx.obj = NULL;
17ee950d
AS
1352 }
1353}
1354
0bc40be8 1355static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1356{
1357 int ret;
1358 uint32_t *batch;
1359 uint32_t offset;
1360 struct page *page;
0bc40be8 1361 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1362
0bc40be8 1363 WARN_ON(engine->id != RCS);
17ee950d 1364
5e60d790 1365 /* update this when WA for higher Gen are added */
c033666a 1366 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1367 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1368 INTEL_GEN(engine->i915));
5e60d790 1369 return 0;
0504cffc 1370 }
5e60d790 1371
c4db7599 1372 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1373 if (engine->scratch.obj == NULL) {
1374 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1375 return -EINVAL;
1376 }
1377
0bc40be8 1378 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1379 if (ret) {
1380 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1381 return ret;
1382 }
1383
033908ae 1384 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1385 batch = kmap_atomic(page);
1386 offset = 0;
1387
c033666a 1388 if (IS_GEN8(engine->i915)) {
0bc40be8 1389 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1390 &wa_ctx->indirect_ctx,
1391 batch,
1392 &offset);
1393 if (ret)
1394 goto out;
1395
0bc40be8 1396 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1397 &wa_ctx->per_ctx,
1398 batch,
1399 &offset);
1400 if (ret)
1401 goto out;
c033666a 1402 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1403 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1404 &wa_ctx->indirect_ctx,
1405 batch,
1406 &offset);
1407 if (ret)
1408 goto out;
1409
0bc40be8 1410 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1411 &wa_ctx->per_ctx,
1412 batch,
1413 &offset);
1414 if (ret)
1415 goto out;
17ee950d
AS
1416 }
1417
1418out:
1419 kunmap_atomic(batch);
1420 if (ret)
0bc40be8 1421 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1422
1423 return ret;
1424}
1425
04794adb
TU
1426static void lrc_init_hws(struct intel_engine_cs *engine)
1427{
c033666a 1428 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1429
1430 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1431 (u32)engine->status_page.gfx_addr);
1432 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1433}
1434
0bc40be8 1435static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1436{
c033666a 1437 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 1438 unsigned int next_context_status_buffer_hw;
9b1136d5 1439
04794adb 1440 lrc_init_hws(engine);
e84fe803 1441
0bc40be8
TU
1442 I915_WRITE_IMR(engine,
1443 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1444 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1445
0bc40be8 1446 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1447 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1448 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1449 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1450
1451 /*
1452 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1453 * zero, we need to read the write pointer from hardware and use its
1454 * value because "this register is power context save restored".
1455 * Effectively, these states have been observed:
1456 *
1457 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1458 * BDW | CSB regs not reset | CSB regs reset |
1459 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1460 * SKL | ? | ? |
1461 * BXT | ? | ? |
dfc53c5e 1462 */
5590a5f0 1463 next_context_status_buffer_hw =
0bc40be8 1464 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1465
1466 /*
1467 * When the CSB registers are reset (also after power-up / gpu reset),
1468 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1469 * this special case, so the first element read is CSB[0].
1470 */
1471 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1472 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1473
0bc40be8
TU
1474 engine->next_context_status_buffer = next_context_status_buffer_hw;
1475 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1476
fc0768ce 1477 intel_engine_init_hangcheck(engine);
9b1136d5 1478
0ccdacf6 1479 return intel_mocs_init_engine(engine);
9b1136d5
OM
1480}
1481
0bc40be8 1482static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1483{
c033666a 1484 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1485 int ret;
1486
0bc40be8 1487 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1488 if (ret)
1489 return ret;
1490
1491 /* We need to disable the AsyncFlip performance optimisations in order
1492 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1493 * programmed to '1' on all products.
1494 *
1495 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1496 */
1497 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1498
9b1136d5
OM
1499 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1500
0bc40be8 1501 return init_workarounds_ring(engine);
9b1136d5
OM
1502}
1503
0bc40be8 1504static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1505{
1506 int ret;
1507
0bc40be8 1508 ret = gen8_init_common_ring(engine);
82ef822e
DL
1509 if (ret)
1510 return ret;
1511
0bc40be8 1512 return init_workarounds_ring(engine);
82ef822e
DL
1513}
1514
7a01a0a2
MT
1515static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1516{
1517 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
7e37f889 1518 struct intel_ring *ring = req->ring;
4a570db5 1519 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1520 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1521 int i, ret;
1522
987046ad 1523 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1524 if (ret)
1525 return ret;
1526
b5321f30 1527 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
7a01a0a2
MT
1528 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1529 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1530
b5321f30
CW
1531 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1532 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1533 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1534 intel_ring_emit(ring, lower_32_bits(pd_daddr));
7a01a0a2
MT
1535 }
1536
b5321f30
CW
1537 intel_ring_emit(ring, MI_NOOP);
1538 intel_ring_advance(ring);
7a01a0a2
MT
1539
1540 return 0;
1541}
1542
be795fc1 1543static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba
CW
1544 u64 offset, u32 len,
1545 unsigned int dispatch_flags)
15648585 1546{
7e37f889 1547 struct intel_ring *ring = req->ring;
8e004efc 1548 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1549 int ret;
1550
7a01a0a2
MT
1551 /* Don't rely in hw updating PDPs, specially in lite-restore.
1552 * Ideally, we should set Force PD Restore in ctx descriptor,
1553 * but we can't. Force Restore would be a second option, but
1554 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1555 * not idle). PML4 is allocated during ppgtt init so this is
1556 * not needed in 48-bit.*/
7a01a0a2 1557 if (req->ctx->ppgtt &&
666796da 1558 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1559 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1560 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1561 ret = intel_logical_ring_emit_pdps(req);
1562 if (ret)
1563 return ret;
1564 }
7a01a0a2 1565
666796da 1566 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1567 }
1568
987046ad 1569 ret = intel_ring_begin(req, 4);
15648585
OM
1570 if (ret)
1571 return ret;
1572
1573 /* FIXME(BDW): Address space and security selectors. */
b5321f30
CW
1574 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1575 (ppgtt<<8) |
1576 (dispatch_flags & I915_DISPATCH_RS ?
1577 MI_BATCH_RESOURCE_STREAMER : 0));
1578 intel_ring_emit(ring, lower_32_bits(offset));
1579 intel_ring_emit(ring, upper_32_bits(offset));
1580 intel_ring_emit(ring, MI_NOOP);
1581 intel_ring_advance(ring);
15648585
OM
1582
1583 return 0;
1584}
1585
31bb59cc 1586static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1587{
c033666a 1588 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1589 I915_WRITE_IMR(engine,
1590 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1591 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1592}
1593
31bb59cc 1594static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1595{
c033666a 1596 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1597 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1598}
1599
7c9cf4e3 1600static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1601{
7e37f889
CW
1602 struct intel_ring *ring = request->ring;
1603 u32 cmd;
4712274c
OM
1604 int ret;
1605
987046ad 1606 ret = intel_ring_begin(request, 4);
4712274c
OM
1607 if (ret)
1608 return ret;
1609
1610 cmd = MI_FLUSH_DW + 1;
1611
f0a1fb10
CW
1612 /* We always require a command barrier so that subsequent
1613 * commands, such as breadcrumb interrupts, are strictly ordered
1614 * wrt the contents of the write cache being flushed to memory
1615 * (and thus being coherent from the CPU).
1616 */
1617 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1618
7c9cf4e3 1619 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1620 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1621 if (request->engine->id == VCS)
f0a1fb10 1622 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1623 }
1624
b5321f30
CW
1625 intel_ring_emit(ring, cmd);
1626 intel_ring_emit(ring,
1627 I915_GEM_HWS_SCRATCH_ADDR |
1628 MI_FLUSH_DW_USE_GTT);
1629 intel_ring_emit(ring, 0); /* upper addr */
1630 intel_ring_emit(ring, 0); /* value */
1631 intel_ring_advance(ring);
4712274c
OM
1632
1633 return 0;
1634}
1635
7deb4d39 1636static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1637 u32 mode)
4712274c 1638{
7e37f889 1639 struct intel_ring *ring = request->ring;
b5321f30 1640 struct intel_engine_cs *engine = request->engine;
e2f80391 1641 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
0b2d0934 1642 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1643 u32 flags = 0;
1644 int ret;
0b2d0934 1645 int len;
4712274c
OM
1646
1647 flags |= PIPE_CONTROL_CS_STALL;
1648
7c9cf4e3 1649 if (mode & EMIT_FLUSH) {
4712274c
OM
1650 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1651 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1652 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1653 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1654 }
1655
7c9cf4e3 1656 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1657 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1658 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1659 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1660 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1661 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1662 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1663 flags |= PIPE_CONTROL_QW_WRITE;
1664 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1665
1a5a9ce7
BW
1666 /*
1667 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1668 * pipe control.
1669 */
c033666a 1670 if (IS_GEN9(request->i915))
1a5a9ce7 1671 vf_flush_wa = true;
0b2d0934
MK
1672
1673 /* WaForGAMHang:kbl */
1674 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1675 dc_flush_wa = true;
1a5a9ce7 1676 }
9647ff36 1677
0b2d0934
MK
1678 len = 6;
1679
1680 if (vf_flush_wa)
1681 len += 6;
1682
1683 if (dc_flush_wa)
1684 len += 12;
1685
1686 ret = intel_ring_begin(request, len);
4712274c
OM
1687 if (ret)
1688 return ret;
1689
9647ff36 1690 if (vf_flush_wa) {
b5321f30
CW
1691 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1692 intel_ring_emit(ring, 0);
1693 intel_ring_emit(ring, 0);
1694 intel_ring_emit(ring, 0);
1695 intel_ring_emit(ring, 0);
1696 intel_ring_emit(ring, 0);
9647ff36
ID
1697 }
1698
0b2d0934 1699 if (dc_flush_wa) {
b5321f30
CW
1700 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1701 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1702 intel_ring_emit(ring, 0);
1703 intel_ring_emit(ring, 0);
1704 intel_ring_emit(ring, 0);
1705 intel_ring_emit(ring, 0);
0b2d0934
MK
1706 }
1707
b5321f30
CW
1708 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1709 intel_ring_emit(ring, flags);
1710 intel_ring_emit(ring, scratch_addr);
1711 intel_ring_emit(ring, 0);
1712 intel_ring_emit(ring, 0);
1713 intel_ring_emit(ring, 0);
0b2d0934
MK
1714
1715 if (dc_flush_wa) {
b5321f30
CW
1716 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1717 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1718 intel_ring_emit(ring, 0);
1719 intel_ring_emit(ring, 0);
1720 intel_ring_emit(ring, 0);
1721 intel_ring_emit(ring, 0);
0b2d0934
MK
1722 }
1723
b5321f30 1724 intel_ring_advance(ring);
4712274c
OM
1725
1726 return 0;
1727}
1728
c04e0f3b 1729static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1730{
319404df
ID
1731 /*
1732 * On BXT A steppings there is a HW coherency issue whereby the
1733 * MI_STORE_DATA_IMM storing the completed request's seqno
1734 * occasionally doesn't invalidate the CPU cache. Work around this by
1735 * clflushing the corresponding cacheline whenever the caller wants
1736 * the coherency to be guaranteed. Note that this cacheline is known
1737 * to be clean at this point, since we only write it in
1738 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1739 * this clflush in practice becomes an invalidate operation.
1740 */
c04e0f3b 1741 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1742}
1743
7c17d377
CW
1744/*
1745 * Reserve space for 2 NOOPs at the end of each request to be
1746 * used as a workaround for not being allowed to do lite
1747 * restore with HEAD==TAIL (WaIdleLiteRestore).
1748 */
1749#define WA_TAIL_DWORDS 2
1750
c4e76638 1751static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1752{
7e37f889 1753 struct intel_ring *ring = request->ring;
4da46e1e
OM
1754 int ret;
1755
987046ad 1756 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1757 if (ret)
1758 return ret;
1759
7c17d377
CW
1760 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1761 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1762
b5321f30
CW
1763 intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1764 intel_ring_emit(ring,
1765 intel_hws_seqno_address(request->engine) |
1766 MI_FLUSH_DW_USE_GTT);
1767 intel_ring_emit(ring, 0);
1768 intel_ring_emit(ring, request->fence.seqno);
1769 intel_ring_emit(ring, MI_USER_INTERRUPT);
1770 intel_ring_emit(ring, MI_NOOP);
7c17d377
CW
1771 return intel_logical_ring_advance_and_submit(request);
1772}
4da46e1e 1773
7c17d377
CW
1774static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1775{
7e37f889 1776 struct intel_ring *ring = request->ring;
7c17d377 1777 int ret;
53292cdb 1778
987046ad 1779 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1780 if (ret)
1781 return ret;
1782
ce81a65c
MW
1783 /* We're using qword write, seqno should be aligned to 8 bytes. */
1784 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1785
7c17d377
CW
1786 /* w/a for post sync ops following a GPGPU operation we
1787 * need a prior CS_STALL, which is emitted by the flush
1788 * following the batch.
1789 */
b5321f30
CW
1790 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1791 intel_ring_emit(ring,
1792 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1793 PIPE_CONTROL_CS_STALL |
1794 PIPE_CONTROL_QW_WRITE));
1795 intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1796 intel_ring_emit(ring, 0);
1797 intel_ring_emit(ring, i915_gem_request_get_seqno(request));
ce81a65c 1798 /* We're thrashing one dword of HWS. */
b5321f30
CW
1799 intel_ring_emit(ring, 0);
1800 intel_ring_emit(ring, MI_USER_INTERRUPT);
1801 intel_ring_emit(ring, MI_NOOP);
7c17d377 1802 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1803}
1804
be01363f 1805static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1806{
cef437ad 1807 struct render_state so;
cef437ad
DL
1808 int ret;
1809
4a570db5 1810 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1811 if (ret)
1812 return ret;
1813
1814 if (so.rodata == NULL)
1815 return 0;
1816
4a570db5 1817 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
803688ba
CW
1818 so.rodata->batch_items * 4,
1819 I915_DISPATCH_SECURE);
cef437ad
DL
1820 if (ret)
1821 goto out;
1822
4a570db5 1823 ret = req->engine->emit_bb_start(req,
803688ba
CW
1824 (so.ggtt_offset + so.aux_batch_offset),
1825 so.aux_batch_size,
1826 I915_DISPATCH_SECURE);
84e81020
AS
1827 if (ret)
1828 goto out;
1829
b2af0376 1830 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1831
cef437ad
DL
1832out:
1833 i915_gem_render_state_fini(&so);
1834 return ret;
1835}
1836
8753181e 1837static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1838{
1839 int ret;
1840
e2be4faf 1841 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1842 if (ret)
1843 return ret;
1844
3bbaba0c
PA
1845 ret = intel_rcs_context_init_mocs(req);
1846 /*
1847 * Failing to program the MOCS is non-fatal.The system will not
1848 * run at peak performance. So generate an error and carry on.
1849 */
1850 if (ret)
1851 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1852
be01363f 1853 return intel_lr_context_render_state_init(req);
e7778be1
TD
1854}
1855
73e4d07f
OM
1856/**
1857 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1858 * @engine: Engine Command Streamer.
73e4d07f 1859 */
0bc40be8 1860void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1861{
6402c330 1862 struct drm_i915_private *dev_priv;
9832b9da 1863
117897f4 1864 if (!intel_engine_initialized(engine))
48d82387
OM
1865 return;
1866
27af5eea
TU
1867 /*
1868 * Tasklet cannot be active at this point due intel_mark_active/idle
1869 * so this is just for documentation.
1870 */
1871 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1872 tasklet_kill(&engine->irq_tasklet);
1873
c033666a 1874 dev_priv = engine->i915;
6402c330 1875
0bc40be8
TU
1876 if (engine->buffer) {
1877 intel_logical_ring_stop(engine);
1878 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1879 }
48d82387 1880
0bc40be8
TU
1881 if (engine->cleanup)
1882 engine->cleanup(engine);
48d82387 1883
33a051a5 1884 intel_engine_cleanup_cmd_parser(engine);
0bc40be8 1885 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 1886
688e6c72
CW
1887 intel_engine_fini_breadcrumbs(engine);
1888
0bc40be8 1889 if (engine->status_page.obj) {
7d774cac 1890 i915_gem_object_unpin_map(engine->status_page.obj);
0bc40be8 1891 engine->status_page.obj = NULL;
48d82387 1892 }
24f1d3cc 1893 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1894
0bc40be8
TU
1895 engine->idle_lite_restore_wa = 0;
1896 engine->disable_lite_restore_wa = false;
1897 engine->ctx_desc_template = 0;
ca82580c 1898
0bc40be8 1899 lrc_destroy_wa_ctx_obj(engine);
c033666a 1900 engine->i915 = NULL;
454afebd
OM
1901}
1902
c9cacf93 1903static void
e1382efb 1904logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1905{
1906 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
1907 engine->init_hw = gen8_init_common_ring;
1908 engine->emit_request = gen8_emit_request;
1909 engine->emit_flush = gen8_emit_flush;
31bb59cc
CW
1910 engine->irq_enable = gen8_logical_ring_enable_irq;
1911 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1912 engine->emit_bb_start = gen8_emit_bb_start;
1b7744e7 1913 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
c04e0f3b 1914 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
c9cacf93
TU
1915}
1916
d9f3af96 1917static inline void
c2c7f240 1918logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1919{
c2c7f240 1920 unsigned shift = engine->irq_shift;
0bc40be8
TU
1921 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1922 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1923}
1924
7d774cac 1925static int
04794adb
TU
1926lrc_setup_hws(struct intel_engine_cs *engine,
1927 struct drm_i915_gem_object *dctx_obj)
1928{
7d774cac 1929 void *hws;
04794adb
TU
1930
1931 /* The HWSP is part of the default context object in LRC mode. */
1932 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1933 LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac
TU
1934 hws = i915_gem_object_pin_map(dctx_obj);
1935 if (IS_ERR(hws))
1936 return PTR_ERR(hws);
1937 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
04794adb 1938 engine->status_page.obj = dctx_obj;
7d774cac
TU
1939
1940 return 0;
04794adb
TU
1941}
1942
bb45438f
TU
1943static void
1944logical_ring_setup(struct intel_engine_cs *engine)
1945{
1946 struct drm_i915_private *dev_priv = engine->i915;
1947 enum forcewake_domains fw_domains;
1948
019bf277
TU
1949 intel_engine_setup_common(engine);
1950
bb45438f
TU
1951 /* Intentionally left blank. */
1952 engine->buffer = NULL;
1953
1954 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1955 RING_ELSP(engine),
1956 FW_REG_WRITE);
1957
1958 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1959 RING_CONTEXT_STATUS_PTR(engine),
1960 FW_REG_READ | FW_REG_WRITE);
1961
1962 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1963 RING_CONTEXT_STATUS_BUF_BASE(engine),
1964 FW_REG_READ);
1965
1966 engine->fw_domains = fw_domains;
1967
bb45438f
TU
1968 tasklet_init(&engine->irq_tasklet,
1969 intel_lrc_irq_handler, (unsigned long)engine);
1970
1971 logical_ring_init_platform_invariants(engine);
1972 logical_ring_default_vfuncs(engine);
1973 logical_ring_default_irqs(engine);
bb45438f
TU
1974}
1975
a19d6ff2
TU
1976static int
1977logical_ring_init(struct intel_engine_cs *engine)
1978{
1979 struct i915_gem_context *dctx = engine->i915->kernel_context;
1980 int ret;
1981
019bf277 1982 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1983 if (ret)
1984 goto error;
1985
1986 ret = execlists_context_deferred_alloc(dctx, engine);
1987 if (ret)
1988 goto error;
1989
1990 /* As this is the default context, always pin it */
1991 ret = intel_lr_context_pin(dctx, engine);
1992 if (ret) {
1993 DRM_ERROR("Failed to pin context for %s: %d\n",
1994 engine->name, ret);
1995 goto error;
1996 }
1997
1998 /* And setup the hardware status page. */
1999 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2000 if (ret) {
2001 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2002 goto error;
2003 }
2004
2005 return 0;
2006
2007error:
2008 intel_logical_ring_cleanup(engine);
2009 return ret;
2010}
2011
88d2ba2e 2012int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
2013{
2014 struct drm_i915_private *dev_priv = engine->i915;
2015 int ret;
2016
bb45438f
TU
2017 logical_ring_setup(engine);
2018
a19d6ff2
TU
2019 if (HAS_L3_DPF(dev_priv))
2020 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2021
2022 /* Override some for render ring. */
2023 if (INTEL_GEN(dev_priv) >= 9)
2024 engine->init_hw = gen9_init_render_ring;
2025 else
2026 engine->init_hw = gen8_init_render_ring;
2027 engine->init_context = gen8_init_rcs_context;
2028 engine->cleanup = intel_fini_pipe_control;
2029 engine->emit_flush = gen8_emit_flush_render;
2030 engine->emit_request = gen8_emit_request_render;
2031
7d5ea807 2032 ret = intel_init_pipe_control(engine, 4096);
a19d6ff2
TU
2033 if (ret)
2034 return ret;
2035
2036 ret = intel_init_workaround_bb(engine);
2037 if (ret) {
2038 /*
2039 * We continue even if we fail to initialize WA batch
2040 * because we only expect rare glitches but nothing
2041 * critical to prevent us from using GPU
2042 */
2043 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2044 ret);
2045 }
2046
2047 ret = logical_ring_init(engine);
2048 if (ret) {
2049 lrc_destroy_wa_ctx_obj(engine);
2050 }
2051
2052 return ret;
2053}
2054
88d2ba2e 2055int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
2056{
2057 logical_ring_setup(engine);
2058
2059 return logical_ring_init(engine);
454afebd
OM
2060}
2061
0cea6502 2062static u32
c033666a 2063make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
2064{
2065 u32 rpcs = 0;
2066
2067 /*
2068 * No explicit RPCS request is needed to ensure full
2069 * slice/subslice/EU enablement prior to Gen9.
2070 */
c033666a 2071 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
2072 return 0;
2073
2074 /*
2075 * Starting in Gen9, render power gating can leave
2076 * slice/subslice/EU in a partially enabled state. We
2077 * must make an explicit request through RPCS for full
2078 * enablement.
2079 */
c033666a 2080 if (INTEL_INFO(dev_priv)->has_slice_pg) {
0cea6502 2081 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
c033666a 2082 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
0cea6502
JM
2083 GEN8_RPCS_S_CNT_SHIFT;
2084 rpcs |= GEN8_RPCS_ENABLE;
2085 }
2086
c033666a 2087 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
0cea6502 2088 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
c033666a 2089 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
0cea6502
JM
2090 GEN8_RPCS_SS_CNT_SHIFT;
2091 rpcs |= GEN8_RPCS_ENABLE;
2092 }
2093
c033666a
CW
2094 if (INTEL_INFO(dev_priv)->has_eu_pg) {
2095 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502 2096 GEN8_RPCS_EU_MIN_SHIFT;
c033666a 2097 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502
JM
2098 GEN8_RPCS_EU_MAX_SHIFT;
2099 rpcs |= GEN8_RPCS_ENABLE;
2100 }
2101
2102 return rpcs;
2103}
2104
0bc40be8 2105static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2106{
2107 u32 indirect_ctx_offset;
2108
c033666a 2109 switch (INTEL_GEN(engine->i915)) {
71562919 2110 default:
c033666a 2111 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
2112 /* fall through */
2113 case 9:
2114 indirect_ctx_offset =
2115 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2116 break;
2117 case 8:
2118 indirect_ctx_offset =
2119 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2120 break;
2121 }
2122
2123 return indirect_ctx_offset;
2124}
2125
8670d6f9 2126static int
e2efd130 2127populate_lr_context(struct i915_gem_context *ctx,
7d774cac 2128 struct drm_i915_gem_object *ctx_obj,
0bc40be8 2129 struct intel_engine_cs *engine,
7e37f889 2130 struct intel_ring *ring)
8670d6f9 2131{
c033666a 2132 struct drm_i915_private *dev_priv = ctx->i915;
ae6c4806 2133 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
2134 void *vaddr;
2135 u32 *reg_state;
8670d6f9
OM
2136 int ret;
2137
2d965536
TD
2138 if (!ppgtt)
2139 ppgtt = dev_priv->mm.aliasing_ppgtt;
2140
8670d6f9
OM
2141 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2142 if (ret) {
2143 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2144 return ret;
2145 }
2146
7d774cac
TU
2147 vaddr = i915_gem_object_pin_map(ctx_obj);
2148 if (IS_ERR(vaddr)) {
2149 ret = PTR_ERR(vaddr);
2150 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
2151 return ret;
2152 }
7d774cac 2153 ctx_obj->dirty = true;
8670d6f9
OM
2154
2155 /* The second page of the context object contains some fields which must
2156 * be set up prior to the first execution. */
7d774cac 2157 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
2158
2159 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2160 * commands followed by (reg, value) pairs. The values we are setting here are
2161 * only for the first context restore: on a subsequent save, the GPU will
2162 * recreate this batchbuffer with new values (including all the missing
2163 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2164 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2165 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2166 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2167 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2168 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2169 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 2170 (HAS_RESOURCE_STREAMER(dev_priv) ?
99cf8ea1 2171 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2172 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2173 0);
2174 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2175 0);
7ba717cf
TD
2176 /* Ring buffer start address is not known until the buffer is pinned.
2177 * It is written to the context image in execlists_update_context()
2178 */
0bc40be8
TU
2179 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2180 RING_START(engine->mmio_base), 0);
2181 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2182 RING_CTL(engine->mmio_base),
7e37f889 2183 ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2184 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2185 RING_BBADDR_UDW(engine->mmio_base), 0);
2186 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2187 RING_BBADDR(engine->mmio_base), 0);
2188 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2189 RING_BBSTATE(engine->mmio_base),
0d925ea0 2190 RING_BB_PPGTT);
0bc40be8
TU
2191 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2192 RING_SBBADDR_UDW(engine->mmio_base), 0);
2193 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2194 RING_SBBADDR(engine->mmio_base), 0);
2195 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2196 RING_SBBSTATE(engine->mmio_base), 0);
2197 if (engine->id == RCS) {
2198 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2199 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2200 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2201 RING_INDIRECT_CTX(engine->mmio_base), 0);
2202 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2203 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2204 if (engine->wa_ctx.obj) {
2205 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2206 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2207
2208 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2209 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2210 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2211
2212 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2213 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2214
2215 reg_state[CTX_BB_PER_CTX_PTR+1] =
2216 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2217 0x01;
2218 }
8670d6f9 2219 }
0d925ea0 2220 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2221 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2222 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2223 /* PDP values well be assigned later if needed */
0bc40be8
TU
2224 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2225 0);
2226 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2227 0);
2228 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2229 0);
2230 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2231 0);
2232 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2233 0);
2234 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2235 0);
2236 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2237 0);
2238 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2239 0);
d7b2633d 2240
2dba3239
MT
2241 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2242 /* 64b PPGTT (48bit canonical)
2243 * PDP0_DESCRIPTOR contains the base address to PML4 and
2244 * other PDP Descriptors are ignored.
2245 */
2246 ASSIGN_CTX_PML4(ppgtt, reg_state);
2247 } else {
2248 /* 32b PPGTT
2249 * PDP*_DESCRIPTOR contains the base address of space supported.
2250 * With dynamic page allocation, PDPs may not be allocated at
2251 * this point. Point the unallocated PDPs to the scratch page
2252 */
c6a2ac71 2253 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2254 }
2255
0bc40be8 2256 if (engine->id == RCS) {
8670d6f9 2257 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2258 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2259 make_rpcs(dev_priv));
8670d6f9
OM
2260 }
2261
7d774cac 2262 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2263
2264 return 0;
2265}
2266
c5d46ee2
DG
2267/**
2268 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2269 * @engine: which engine to find the context size for
c5d46ee2
DG
2270 *
2271 * Each engine may require a different amount of space for a context image,
2272 * so when allocating (or copying) an image, this function can be used to
2273 * find the right size for the specific engine.
2274 *
2275 * Return: size (in bytes) of an engine-specific context image
2276 *
2277 * Note: this size includes the HWSP, which is part of the context image
2278 * in LRC mode, but does not include the "shared data page" used with
2279 * GuC submission. The caller should account for this if using the GuC.
2280 */
0bc40be8 2281uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2282{
2283 int ret = 0;
2284
c033666a 2285 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2286
0bc40be8 2287 switch (engine->id) {
8c857917 2288 case RCS:
c033666a 2289 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2290 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2291 else
2292 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2293 break;
2294 case VCS:
2295 case BCS:
2296 case VECS:
2297 case VCS2:
2298 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2299 break;
2300 }
2301
2302 return ret;
ede7d42b
OM
2303}
2304
e2efd130 2305static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2306 struct intel_engine_cs *engine)
ede7d42b 2307{
8c857917 2308 struct drm_i915_gem_object *ctx_obj;
9021ad03 2309 struct intel_context *ce = &ctx->engine[engine->id];
8c857917 2310 uint32_t context_size;
7e37f889 2311 struct intel_ring *ring;
8c857917
OM
2312 int ret;
2313
9021ad03 2314 WARN_ON(ce->state);
ede7d42b 2315
0bc40be8 2316 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2317
d1675198
AD
2318 /* One extra page as the sharing data between driver and GuC */
2319 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2320
91c8a326 2321 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
fe3db79b 2322 if (IS_ERR(ctx_obj)) {
3126a660 2323 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2324 return PTR_ERR(ctx_obj);
8c857917
OM
2325 }
2326
7e37f889 2327 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2328 if (IS_ERR(ring)) {
2329 ret = PTR_ERR(ring);
e84fe803 2330 goto error_deref_obj;
8670d6f9
OM
2331 }
2332
dca33ecc 2333 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2334 if (ret) {
2335 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2336 goto error_ring_free;
84c2377f
OM
2337 }
2338
dca33ecc 2339 ce->ring = ring;
9021ad03
CW
2340 ce->state = ctx_obj;
2341 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2342
2343 return 0;
8670d6f9 2344
dca33ecc 2345error_ring_free:
7e37f889 2346 intel_ring_free(ring);
e84fe803 2347error_deref_obj:
f8c417cd 2348 i915_gem_object_put(ctx_obj);
dca33ecc 2349 ce->ring = NULL;
9021ad03 2350 ce->state = NULL;
8670d6f9 2351 return ret;
ede7d42b 2352}
3e5b6f05 2353
7d774cac 2354void intel_lr_context_reset(struct drm_i915_private *dev_priv,
e2efd130 2355 struct i915_gem_context *ctx)
3e5b6f05 2356{
e2f80391 2357 struct intel_engine_cs *engine;
3e5b6f05 2358
b4ac5afc 2359 for_each_engine(engine, dev_priv) {
9021ad03
CW
2360 struct intel_context *ce = &ctx->engine[engine->id];
2361 struct drm_i915_gem_object *ctx_obj = ce->state;
7d774cac 2362 void *vaddr;
3e5b6f05 2363 uint32_t *reg_state;
3e5b6f05
TD
2364
2365 if (!ctx_obj)
2366 continue;
2367
7d774cac
TU
2368 vaddr = i915_gem_object_pin_map(ctx_obj);
2369 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2370 continue;
7d774cac
TU
2371
2372 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2373 ctx_obj->dirty = true;
3e5b6f05
TD
2374
2375 reg_state[CTX_RING_HEAD+1] = 0;
2376 reg_state[CTX_RING_TAIL+1] = 0;
2377
7d774cac 2378 i915_gem_object_unpin_map(ctx_obj);
3e5b6f05 2379
dca33ecc
CW
2380 ce->ring->head = 0;
2381 ce->ring->tail = 0;
3e5b6f05
TD
2382 }
2383}