]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Clear PCODE_DATA1 on SNB+
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
127f1003 138
468c6816 139#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
140#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143#define GEN8_LR_CONTEXT_ALIGN 4096
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
193enum {
194 ADVANCED_CONTEXT = 0,
195 LEGACY_CONTEXT,
196 ADVANCED_AD_CONTEXT,
197 LEGACY_64B_CONTEXT
198};
199#define GEN8_CTX_MODE_SHIFT 3
200enum {
201 FAULT_AND_HANG = 0,
202 FAULT_AND_HALT, /* Debug only */
203 FAULT_AND_STREAM,
204 FAULT_AND_CONTINUE /* Unsupported */
205};
206#define GEN8_CTX_ID_SHIFT 32
207
73e4d07f
OM
208/**
209 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
210 * @dev: DRM device.
211 * @enable_execlists: value of i915.enable_execlists module parameter.
212 *
213 * Only certain platforms support Execlists (the prerequisites being
214 * support for Logical Ring Contexts and Aliasing PPGTT or better),
215 * and only when enabled via module parameter.
216 *
217 * Return: 1 if Execlists is supported and has to be enabled.
218 */
127f1003
OM
219int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
220{
bd84b1e9
DV
221 WARN_ON(i915.enable_ppgtt == -1);
222
127f1003
OM
223 if (enable_execlists == 0)
224 return 0;
225
14bf993e
OM
226 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
227 i915.use_mmio_flip >= 0)
127f1003
OM
228 return 1;
229
230 return 0;
231}
ede7d42b 232
73e4d07f
OM
233/**
234 * intel_execlists_ctx_id() - get the Execlists Context ID
235 * @ctx_obj: Logical Ring Context backing object.
236 *
237 * Do not confuse with ctx->id! Unfortunately we have a name overload
238 * here: the old context ID we pass to userspace as a handler so that
239 * they can refer to a context, and the new context ID we pass to the
240 * ELSP so that the GPU can inform us of the context status via
241 * interrupts.
242 *
243 * Return: 20-bits globally unique context ID.
244 */
84b790f8
BW
245u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
246{
247 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
248
249 /* LRCA is required to be 4K aligned so the more significant 20 bits
250 * are globally unique */
251 return lrca >> 12;
252}
253
254static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
255{
256 uint64_t desc;
257 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
acdd884a
MT
258
259 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
260
261 desc = GEN8_CTX_VALID;
262 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
263 desc |= GEN8_CTX_L3LLC_COHERENT;
264 desc |= GEN8_CTX_PRIVILEGE;
265 desc |= lrca;
266 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
267
268 /* TODO: WaDisableLiteRestore when we start using semaphore
269 * signalling between Command Streamers */
270 /* desc |= GEN8_CTX_FORCE_RESTORE; */
271
272 return desc;
273}
274
275static void execlists_elsp_write(struct intel_engine_cs *ring,
276 struct drm_i915_gem_object *ctx_obj0,
277 struct drm_i915_gem_object *ctx_obj1)
278{
279 struct drm_i915_private *dev_priv = ring->dev->dev_private;
280 uint64_t temp = 0;
281 uint32_t desc[4];
e981e7b1 282 unsigned long flags;
84b790f8
BW
283
284 /* XXX: You must always write both descriptors in the order below. */
285 if (ctx_obj1)
286 temp = execlists_ctx_descriptor(ctx_obj1);
287 else
288 temp = 0;
289 desc[1] = (u32)(temp >> 32);
290 desc[0] = (u32)temp;
291
292 temp = execlists_ctx_descriptor(ctx_obj0);
293 desc[3] = (u32)(temp >> 32);
294 desc[2] = (u32)temp;
295
e981e7b1
TD
296 /* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
297 * are in progress.
298 *
299 * The other problem is that we can't just call gen6_gt_force_wake_get()
300 * because that function calls intel_runtime_pm_get(), which might sleep.
301 * Instead, we do the runtime_pm_get/put when creating/destroying requests.
302 */
303 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
a01b0e94
D
304 if (IS_CHERRYVIEW(dev_priv->dev)) {
305 if (dev_priv->uncore.fw_rendercount++ == 0)
306 dev_priv->uncore.funcs.force_wake_get(dev_priv,
307 FORCEWAKE_RENDER);
308 if (dev_priv->uncore.fw_mediacount++ == 0)
309 dev_priv->uncore.funcs.force_wake_get(dev_priv,
310 FORCEWAKE_MEDIA);
311 } else {
312 if (dev_priv->uncore.forcewake_count++ == 0)
313 dev_priv->uncore.funcs.force_wake_get(dev_priv,
314 FORCEWAKE_ALL);
315 }
e981e7b1 316 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
84b790f8
BW
317
318 I915_WRITE(RING_ELSP(ring), desc[1]);
319 I915_WRITE(RING_ELSP(ring), desc[0]);
320 I915_WRITE(RING_ELSP(ring), desc[3]);
321 /* The context is automatically loaded after the following */
322 I915_WRITE(RING_ELSP(ring), desc[2]);
323
324 /* ELSP is a wo register, so use another nearby reg for posting instead */
325 POSTING_READ(RING_EXECLIST_STATUS(ring));
326
e981e7b1
TD
327 /* Release Force Wakeup (see the big comment above). */
328 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
a01b0e94
D
329 if (IS_CHERRYVIEW(dev_priv->dev)) {
330 if (--dev_priv->uncore.fw_rendercount == 0)
331 dev_priv->uncore.funcs.force_wake_put(dev_priv,
332 FORCEWAKE_RENDER);
333 if (--dev_priv->uncore.fw_mediacount == 0)
334 dev_priv->uncore.funcs.force_wake_put(dev_priv,
335 FORCEWAKE_MEDIA);
336 } else {
337 if (--dev_priv->uncore.forcewake_count == 0)
338 dev_priv->uncore.funcs.force_wake_put(dev_priv,
339 FORCEWAKE_ALL);
340 }
341
e981e7b1 342 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
84b790f8
BW
343}
344
ae1250b9
OM
345static int execlists_ctx_write_tail(struct drm_i915_gem_object *ctx_obj, u32 tail)
346{
347 struct page *page;
348 uint32_t *reg_state;
349
350 page = i915_gem_object_get_page(ctx_obj, 1);
351 reg_state = kmap_atomic(page);
352
353 reg_state[CTX_RING_TAIL+1] = tail;
354
355 kunmap_atomic(reg_state);
356
357 return 0;
358}
359
cd0707cb
DG
360static void execlists_submit_contexts(struct intel_engine_cs *ring,
361 struct intel_context *to0, u32 tail0,
362 struct intel_context *to1, u32 tail1)
84b790f8
BW
363{
364 struct drm_i915_gem_object *ctx_obj0;
365 struct drm_i915_gem_object *ctx_obj1 = NULL;
366
367 ctx_obj0 = to0->engine[ring->id].state;
368 BUG_ON(!ctx_obj0);
acdd884a 369 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
84b790f8 370
ae1250b9
OM
371 execlists_ctx_write_tail(ctx_obj0, tail0);
372
84b790f8
BW
373 if (to1) {
374 ctx_obj1 = to1->engine[ring->id].state;
375 BUG_ON(!ctx_obj1);
acdd884a 376 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
ae1250b9
OM
377
378 execlists_ctx_write_tail(ctx_obj1, tail1);
84b790f8
BW
379 }
380
381 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
84b790f8
BW
382}
383
acdd884a
MT
384static void execlists_context_unqueue(struct intel_engine_cs *ring)
385{
386 struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
387 struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
388 struct drm_i915_private *dev_priv = ring->dev->dev_private;
389
390 assert_spin_locked(&ring->execlist_lock);
acdd884a
MT
391
392 if (list_empty(&ring->execlist_queue))
393 return;
394
395 /* Try to read in pairs */
396 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
397 execlist_link) {
398 if (!req0) {
399 req0 = cursor;
400 } else if (req0->ctx == cursor->ctx) {
401 /* Same ctx: ignore first request, as second request
402 * will update tail past first request's workload */
e1fee72c 403 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 404 list_del(&req0->execlist_link);
e981e7b1 405 queue_work(dev_priv->wq, &req0->work);
acdd884a
MT
406 req0 = cursor;
407 } else {
408 req1 = cursor;
409 break;
410 }
411 }
412
e1fee72c
OM
413 WARN_ON(req1 && req1->elsp_submitted);
414
cd0707cb
DG
415 execlists_submit_contexts(ring, req0->ctx, req0->tail,
416 req1 ? req1->ctx : NULL,
417 req1 ? req1->tail : 0);
e1fee72c
OM
418
419 req0->elsp_submitted++;
420 if (req1)
421 req1->elsp_submitted++;
acdd884a
MT
422}
423
e981e7b1
TD
424static bool execlists_check_remove_request(struct intel_engine_cs *ring,
425 u32 request_id)
426{
427 struct drm_i915_private *dev_priv = ring->dev->dev_private;
428 struct intel_ctx_submit_request *head_req;
429
430 assert_spin_locked(&ring->execlist_lock);
431
432 head_req = list_first_entry_or_null(&ring->execlist_queue,
433 struct intel_ctx_submit_request,
434 execlist_link);
435
436 if (head_req != NULL) {
437 struct drm_i915_gem_object *ctx_obj =
438 head_req->ctx->engine[ring->id].state;
439 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
440 WARN(head_req->elsp_submitted == 0,
441 "Never submitted head request\n");
442
443 if (--head_req->elsp_submitted <= 0) {
444 list_del(&head_req->execlist_link);
445 queue_work(dev_priv->wq, &head_req->work);
446 return true;
447 }
e981e7b1
TD
448 }
449 }
450
451 return false;
452}
453
73e4d07f
OM
454/**
455 * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
456 * @ring: Engine Command Streamer to handle.
457 *
458 * Check the unread Context Status Buffers and manage the submission of new
459 * contexts to the ELSP accordingly.
460 */
e981e7b1
TD
461void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
462{
463 struct drm_i915_private *dev_priv = ring->dev->dev_private;
464 u32 status_pointer;
465 u8 read_pointer;
466 u8 write_pointer;
467 u32 status;
468 u32 status_id;
469 u32 submit_contexts = 0;
470
471 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
472
473 read_pointer = ring->next_context_status_buffer;
474 write_pointer = status_pointer & 0x07;
475 if (read_pointer > write_pointer)
476 write_pointer += 6;
477
478 spin_lock(&ring->execlist_lock);
479
480 while (read_pointer < write_pointer) {
481 read_pointer++;
482 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
483 (read_pointer % 6) * 8);
484 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
485 (read_pointer % 6) * 8 + 4);
486
e1fee72c
OM
487 if (status & GEN8_CTX_STATUS_PREEMPTED) {
488 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
489 if (execlists_check_remove_request(ring, status_id))
490 WARN(1, "Lite Restored request removed from queue\n");
491 } else
492 WARN(1, "Preemption without Lite Restore\n");
493 }
494
495 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
496 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
497 if (execlists_check_remove_request(ring, status_id))
498 submit_contexts++;
499 }
500 }
501
502 if (submit_contexts != 0)
503 execlists_context_unqueue(ring);
504
505 spin_unlock(&ring->execlist_lock);
506
507 WARN(submit_contexts > 2, "More than two context complete events?\n");
508 ring->next_context_status_buffer = write_pointer % 6;
509
510 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
511 ((u32)ring->next_context_status_buffer & 0x07) << 8);
512}
513
514static void execlists_free_request_task(struct work_struct *work)
515{
516 struct intel_ctx_submit_request *req =
517 container_of(work, struct intel_ctx_submit_request, work);
518 struct drm_device *dev = req->ring->dev;
519 struct drm_i915_private *dev_priv = dev->dev_private;
520
521 intel_runtime_pm_put(dev_priv);
522
523 mutex_lock(&dev->struct_mutex);
524 i915_gem_context_unreference(req->ctx);
525 mutex_unlock(&dev->struct_mutex);
526
527 kfree(req);
528}
529
acdd884a
MT
530static int execlists_context_queue(struct intel_engine_cs *ring,
531 struct intel_context *to,
532 u32 tail)
533{
f1ad5a1f 534 struct intel_ctx_submit_request *req = NULL, *cursor;
e981e7b1 535 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acdd884a 536 unsigned long flags;
f1ad5a1f 537 int num_elements = 0;
acdd884a
MT
538
539 req = kzalloc(sizeof(*req), GFP_KERNEL);
540 if (req == NULL)
541 return -ENOMEM;
542 req->ctx = to;
543 i915_gem_context_reference(req->ctx);
544 req->ring = ring;
545 req->tail = tail;
e981e7b1
TD
546 INIT_WORK(&req->work, execlists_free_request_task);
547
548 intel_runtime_pm_get(dev_priv);
acdd884a
MT
549
550 spin_lock_irqsave(&ring->execlist_lock, flags);
551
f1ad5a1f
OM
552 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
553 if (++num_elements > 2)
554 break;
555
556 if (num_elements > 2) {
557 struct intel_ctx_submit_request *tail_req;
558
559 tail_req = list_last_entry(&ring->execlist_queue,
560 struct intel_ctx_submit_request,
561 execlist_link);
562
563 if (to == tail_req->ctx) {
564 WARN(tail_req->elsp_submitted != 0,
565 "More than 2 already-submitted reqs queued\n");
566 list_del(&tail_req->execlist_link);
567 queue_work(dev_priv->wq, &tail_req->work);
568 }
569 }
570
acdd884a 571 list_add_tail(&req->execlist_link, &ring->execlist_queue);
f1ad5a1f 572 if (num_elements == 0)
acdd884a
MT
573 execlists_context_unqueue(ring);
574
575 spin_unlock_irqrestore(&ring->execlist_lock, flags);
576
577 return 0;
578}
579
ba8b7ccb
OM
580static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
581{
582 struct intel_engine_cs *ring = ringbuf->ring;
583 uint32_t flush_domains;
584 int ret;
585
586 flush_domains = 0;
587 if (ring->gpu_caches_dirty)
588 flush_domains = I915_GEM_GPU_DOMAINS;
589
590 ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
591 if (ret)
592 return ret;
593
594 ring->gpu_caches_dirty = false;
595 return 0;
596}
597
598static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
599 struct list_head *vmas)
600{
601 struct intel_engine_cs *ring = ringbuf->ring;
602 struct i915_vma *vma;
603 uint32_t flush_domains = 0;
604 bool flush_chipset = false;
605 int ret;
606
607 list_for_each_entry(vma, vmas, exec_list) {
608 struct drm_i915_gem_object *obj = vma->obj;
609
610 ret = i915_gem_object_sync(obj, ring);
611 if (ret)
612 return ret;
613
614 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
615 flush_chipset |= i915_gem_clflush_object(obj, false);
616
617 flush_domains |= obj->base.write_domain;
618 }
619
620 if (flush_domains & I915_GEM_DOMAIN_GTT)
621 wmb();
622
623 /* Unconditionally invalidate gpu caches and ensure that we do flush
624 * any residual writes from the previous batch.
625 */
626 return logical_ring_invalidate_all_caches(ringbuf);
627}
628
73e4d07f
OM
629/**
630 * execlists_submission() - submit a batchbuffer for execution, Execlists style
631 * @dev: DRM device.
632 * @file: DRM file.
633 * @ring: Engine Command Streamer to submit to.
634 * @ctx: Context to employ for this submission.
635 * @args: execbuffer call arguments.
636 * @vmas: list of vmas.
637 * @batch_obj: the batchbuffer to submit.
638 * @exec_start: batchbuffer start virtual address pointer.
639 * @flags: translated execbuffer call flags.
640 *
641 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
642 * away the submission details of the execbuffer ioctl call.
643 *
644 * Return: non-zero if the submission fails.
645 */
454afebd
OM
646int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
647 struct intel_engine_cs *ring,
648 struct intel_context *ctx,
649 struct drm_i915_gem_execbuffer2 *args,
650 struct list_head *vmas,
651 struct drm_i915_gem_object *batch_obj,
652 u64 exec_start, u32 flags)
653{
ba8b7ccb
OM
654 struct drm_i915_private *dev_priv = dev->dev_private;
655 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
656 int instp_mode;
657 u32 instp_mask;
658 int ret;
659
660 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
661 instp_mask = I915_EXEC_CONSTANTS_MASK;
662 switch (instp_mode) {
663 case I915_EXEC_CONSTANTS_REL_GENERAL:
664 case I915_EXEC_CONSTANTS_ABSOLUTE:
665 case I915_EXEC_CONSTANTS_REL_SURFACE:
666 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
667 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
668 return -EINVAL;
669 }
670
671 if (instp_mode != dev_priv->relative_constants_mode) {
672 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
673 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
674 return -EINVAL;
675 }
676
677 /* The HW changed the meaning on this bit on gen6 */
678 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
679 }
680 break;
681 default:
682 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
683 return -EINVAL;
684 }
685
686 if (args->num_cliprects != 0) {
687 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
688 return -EINVAL;
689 } else {
690 if (args->DR4 == 0xffffffff) {
691 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
692 args->DR4 = 0;
693 }
694
695 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
696 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
697 return -EINVAL;
698 }
699 }
700
701 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
702 DRM_DEBUG("sol reset is gen7 only\n");
703 return -EINVAL;
704 }
705
706 ret = execlists_move_to_gpu(ringbuf, vmas);
707 if (ret)
708 return ret;
709
710 if (ring == &dev_priv->ring[RCS] &&
711 instp_mode != dev_priv->relative_constants_mode) {
712 ret = intel_logical_ring_begin(ringbuf, 4);
713 if (ret)
714 return ret;
715
716 intel_logical_ring_emit(ringbuf, MI_NOOP);
717 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
718 intel_logical_ring_emit(ringbuf, INSTPM);
719 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
720 intel_logical_ring_advance(ringbuf);
721
722 dev_priv->relative_constants_mode = instp_mode;
723 }
724
725 ret = ring->emit_bb_start(ringbuf, exec_start, flags);
726 if (ret)
727 return ret;
728
729 i915_gem_execbuffer_move_to_active(vmas, ring);
730 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
731
454afebd
OM
732 return 0;
733}
734
735void intel_logical_ring_stop(struct intel_engine_cs *ring)
736{
9832b9da
OM
737 struct drm_i915_private *dev_priv = ring->dev->dev_private;
738 int ret;
739
740 if (!intel_ring_initialized(ring))
741 return;
742
743 ret = intel_ring_idle(ring);
744 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
745 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
746 ring->name, ret);
747
748 /* TODO: Is this correct with Execlists enabled? */
749 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
750 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
751 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
752 return;
753 }
754 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
755}
756
48e29f55
OM
757int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
758{
759 struct intel_engine_cs *ring = ringbuf->ring;
760 int ret;
761
762 if (!ring->gpu_caches_dirty)
763 return 0;
764
765 ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
766 if (ret)
767 return ret;
768
769 ring->gpu_caches_dirty = false;
770 return 0;
771}
772
73e4d07f
OM
773/**
774 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
775 * @ringbuf: Logical Ringbuffer to advance.
776 *
777 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
778 * really happens during submission is that the context and current tail will be placed
779 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
780 * point, the tail *inside* the context is updated and the ELSP written to.
781 */
82e104cc
OM
782void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
783{
84b790f8
BW
784 struct intel_engine_cs *ring = ringbuf->ring;
785 struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
786
82e104cc
OM
787 intel_logical_ring_advance(ringbuf);
788
84b790f8 789 if (intel_ring_stopped(ring))
82e104cc
OM
790 return;
791
acdd884a 792 execlists_context_queue(ring, ctx, ringbuf->tail);
82e104cc
OM
793}
794
48e29f55
OM
795static int logical_ring_alloc_seqno(struct intel_engine_cs *ring,
796 struct intel_context *ctx)
82e104cc
OM
797{
798 if (ring->outstanding_lazy_seqno)
799 return 0;
800
801 if (ring->preallocated_lazy_request == NULL) {
802 struct drm_i915_gem_request *request;
803
804 request = kmalloc(sizeof(*request), GFP_KERNEL);
805 if (request == NULL)
806 return -ENOMEM;
807
48e29f55
OM
808 /* Hold a reference to the context this request belongs to
809 * (we will need it when the time comes to emit/retire the
810 * request).
811 */
812 request->ctx = ctx;
813 i915_gem_context_reference(request->ctx);
814
82e104cc
OM
815 ring->preallocated_lazy_request = request;
816 }
817
818 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
819}
820
821static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
822 int bytes)
823{
824 struct intel_engine_cs *ring = ringbuf->ring;
825 struct drm_i915_gem_request *request;
826 u32 seqno = 0;
827 int ret;
828
829 if (ringbuf->last_retired_head != -1) {
830 ringbuf->head = ringbuf->last_retired_head;
831 ringbuf->last_retired_head = -1;
832
833 ringbuf->space = intel_ring_space(ringbuf);
834 if (ringbuf->space >= bytes)
835 return 0;
836 }
837
838 list_for_each_entry(request, &ring->request_list, list) {
839 if (__intel_ring_space(request->tail, ringbuf->tail,
840 ringbuf->size) >= bytes) {
841 seqno = request->seqno;
842 break;
843 }
844 }
845
846 if (seqno == 0)
847 return -ENOSPC;
848
849 ret = i915_wait_seqno(ring, seqno);
850 if (ret)
851 return ret;
852
82e104cc
OM
853 i915_gem_retire_requests_ring(ring);
854 ringbuf->head = ringbuf->last_retired_head;
855 ringbuf->last_retired_head = -1;
856
857 ringbuf->space = intel_ring_space(ringbuf);
858 return 0;
859}
860
861static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
862 int bytes)
863{
864 struct intel_engine_cs *ring = ringbuf->ring;
865 struct drm_device *dev = ring->dev;
866 struct drm_i915_private *dev_priv = dev->dev_private;
867 unsigned long end;
868 int ret;
869
870 ret = logical_ring_wait_request(ringbuf, bytes);
871 if (ret != -ENOSPC)
872 return ret;
873
874 /* Force the context submission in case we have been skipping it */
875 intel_logical_ring_advance_and_submit(ringbuf);
876
877 /* With GEM the hangcheck timer should kick us out of the loop,
878 * leaving it early runs the risk of corrupting GEM state (due
879 * to running on almost untested codepaths). But on resume
880 * timers don't work yet, so prevent a complete hang in that
881 * case by choosing an insanely large timeout. */
882 end = jiffies + 60 * HZ;
883
884 do {
885 ringbuf->head = I915_READ_HEAD(ring);
886 ringbuf->space = intel_ring_space(ringbuf);
887 if (ringbuf->space >= bytes) {
888 ret = 0;
889 break;
890 }
891
892 msleep(1);
893
894 if (dev_priv->mm.interruptible && signal_pending(current)) {
895 ret = -ERESTARTSYS;
896 break;
897 }
898
899 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
900 dev_priv->mm.interruptible);
901 if (ret)
902 break;
903
904 if (time_after(jiffies, end)) {
905 ret = -EBUSY;
906 break;
907 }
908 } while (1);
909
910 return ret;
911}
912
913static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
914{
915 uint32_t __iomem *virt;
916 int rem = ringbuf->size - ringbuf->tail;
917
918 if (ringbuf->space < rem) {
919 int ret = logical_ring_wait_for_space(ringbuf, rem);
920
921 if (ret)
922 return ret;
923 }
924
925 virt = ringbuf->virtual_start + ringbuf->tail;
926 rem /= 4;
927 while (rem--)
928 iowrite32(MI_NOOP, virt++);
929
930 ringbuf->tail = 0;
931 ringbuf->space = intel_ring_space(ringbuf);
932
933 return 0;
934}
935
936static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
937{
938 int ret;
939
940 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
941 ret = logical_ring_wrap_buffer(ringbuf);
942 if (unlikely(ret))
943 return ret;
944 }
945
946 if (unlikely(ringbuf->space < bytes)) {
947 ret = logical_ring_wait_for_space(ringbuf, bytes);
948 if (unlikely(ret))
949 return ret;
950 }
951
952 return 0;
953}
954
73e4d07f
OM
955/**
956 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
957 *
958 * @ringbuf: Logical ringbuffer.
959 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
960 *
961 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
962 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
963 * and also preallocates a request (every workload submission is still mediated through
964 * requests, same as it did with legacy ringbuffer submission).
965 *
966 * Return: non-zero if the ringbuffer is not ready to be written to.
967 */
82e104cc
OM
968int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
969{
970 struct intel_engine_cs *ring = ringbuf->ring;
971 struct drm_device *dev = ring->dev;
972 struct drm_i915_private *dev_priv = dev->dev_private;
973 int ret;
974
975 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
976 dev_priv->mm.interruptible);
977 if (ret)
978 return ret;
979
980 ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
981 if (ret)
982 return ret;
983
984 /* Preallocate the olr before touching the ring */
48e29f55 985 ret = logical_ring_alloc_seqno(ring, ringbuf->FIXME_lrc_ctx);
82e104cc
OM
986 if (ret)
987 return ret;
988
989 ringbuf->space -= num_dwords * sizeof(uint32_t);
990 return 0;
991}
992
771b9a53
MT
993static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
994 struct intel_context *ctx)
995{
996 int ret, i;
997 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
998 struct drm_device *dev = ring->dev;
999 struct drm_i915_private *dev_priv = dev->dev_private;
1000 struct i915_workarounds *w = &dev_priv->workarounds;
1001
1002 if (WARN_ON(w->count == 0))
1003 return 0;
1004
1005 ring->gpu_caches_dirty = true;
1006 ret = logical_ring_flush_all_caches(ringbuf);
1007 if (ret)
1008 return ret;
1009
1010 ret = intel_logical_ring_begin(ringbuf, w->count * 2 + 2);
1011 if (ret)
1012 return ret;
1013
1014 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1015 for (i = 0; i < w->count; i++) {
1016 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1017 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1018 }
1019 intel_logical_ring_emit(ringbuf, MI_NOOP);
1020
1021 intel_logical_ring_advance(ringbuf);
1022
1023 ring->gpu_caches_dirty = true;
1024 ret = logical_ring_flush_all_caches(ringbuf);
1025 if (ret)
1026 return ret;
1027
1028 return 0;
1029}
1030
9b1136d5
OM
1031static int gen8_init_common_ring(struct intel_engine_cs *ring)
1032{
1033 struct drm_device *dev = ring->dev;
1034 struct drm_i915_private *dev_priv = dev->dev_private;
1035
73d477f6
OM
1036 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1037 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1038
9b1136d5
OM
1039 I915_WRITE(RING_MODE_GEN7(ring),
1040 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1041 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1042 POSTING_READ(RING_MODE_GEN7(ring));
1043 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1044
1045 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1046
1047 return 0;
1048}
1049
1050static int gen8_init_render_ring(struct intel_engine_cs *ring)
1051{
1052 struct drm_device *dev = ring->dev;
1053 struct drm_i915_private *dev_priv = dev->dev_private;
1054 int ret;
1055
1056 ret = gen8_init_common_ring(ring);
1057 if (ret)
1058 return ret;
1059
1060 /* We need to disable the AsyncFlip performance optimisations in order
1061 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1062 * programmed to '1' on all products.
1063 *
1064 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1065 */
1066 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1067
1068 ret = intel_init_pipe_control(ring);
1069 if (ret)
1070 return ret;
1071
1072 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1073
771b9a53 1074 return init_workarounds_ring(ring);
9b1136d5
OM
1075}
1076
15648585
OM
1077static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1078 u64 offset, unsigned flags)
1079{
15648585
OM
1080 bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1081 int ret;
1082
1083 ret = intel_logical_ring_begin(ringbuf, 4);
1084 if (ret)
1085 return ret;
1086
1087 /* FIXME(BDW): Address space and security selectors. */
1088 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1089 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1090 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1091 intel_logical_ring_emit(ringbuf, MI_NOOP);
1092 intel_logical_ring_advance(ringbuf);
1093
1094 return 0;
1095}
1096
73d477f6
OM
1097static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1098{
1099 struct drm_device *dev = ring->dev;
1100 struct drm_i915_private *dev_priv = dev->dev_private;
1101 unsigned long flags;
1102
7cd512f1 1103 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1104 return false;
1105
1106 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1107 if (ring->irq_refcount++ == 0) {
1108 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1109 POSTING_READ(RING_IMR(ring->mmio_base));
1110 }
1111 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1112
1113 return true;
1114}
1115
1116static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1117{
1118 struct drm_device *dev = ring->dev;
1119 struct drm_i915_private *dev_priv = dev->dev_private;
1120 unsigned long flags;
1121
1122 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1123 if (--ring->irq_refcount == 0) {
1124 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1125 POSTING_READ(RING_IMR(ring->mmio_base));
1126 }
1127 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1128}
1129
4712274c
OM
1130static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1131 u32 invalidate_domains,
1132 u32 unused)
1133{
1134 struct intel_engine_cs *ring = ringbuf->ring;
1135 struct drm_device *dev = ring->dev;
1136 struct drm_i915_private *dev_priv = dev->dev_private;
1137 uint32_t cmd;
1138 int ret;
1139
1140 ret = intel_logical_ring_begin(ringbuf, 4);
1141 if (ret)
1142 return ret;
1143
1144 cmd = MI_FLUSH_DW + 1;
1145
1146 if (ring == &dev_priv->ring[VCS]) {
1147 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1148 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1149 MI_FLUSH_DW_STORE_INDEX |
1150 MI_FLUSH_DW_OP_STOREDW;
1151 } else {
1152 if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1153 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1154 MI_FLUSH_DW_OP_STOREDW;
1155 }
1156
1157 intel_logical_ring_emit(ringbuf, cmd);
1158 intel_logical_ring_emit(ringbuf,
1159 I915_GEM_HWS_SCRATCH_ADDR |
1160 MI_FLUSH_DW_USE_GTT);
1161 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1162 intel_logical_ring_emit(ringbuf, 0); /* value */
1163 intel_logical_ring_advance(ringbuf);
1164
1165 return 0;
1166}
1167
1168static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1169 u32 invalidate_domains,
1170 u32 flush_domains)
1171{
1172 struct intel_engine_cs *ring = ringbuf->ring;
1173 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1174 u32 flags = 0;
1175 int ret;
1176
1177 flags |= PIPE_CONTROL_CS_STALL;
1178
1179 if (flush_domains) {
1180 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1181 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1182 }
1183
1184 if (invalidate_domains) {
1185 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1186 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1187 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1188 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1189 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1190 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1191 flags |= PIPE_CONTROL_QW_WRITE;
1192 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1193 }
1194
1195 ret = intel_logical_ring_begin(ringbuf, 6);
1196 if (ret)
1197 return ret;
1198
1199 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1200 intel_logical_ring_emit(ringbuf, flags);
1201 intel_logical_ring_emit(ringbuf, scratch_addr);
1202 intel_logical_ring_emit(ringbuf, 0);
1203 intel_logical_ring_emit(ringbuf, 0);
1204 intel_logical_ring_emit(ringbuf, 0);
1205 intel_logical_ring_advance(ringbuf);
1206
1207 return 0;
1208}
1209
e94e37ad
OM
1210static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1211{
1212 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1213}
1214
1215static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1216{
1217 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1218}
1219
4da46e1e
OM
1220static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1221{
1222 struct intel_engine_cs *ring = ringbuf->ring;
1223 u32 cmd;
1224 int ret;
1225
1226 ret = intel_logical_ring_begin(ringbuf, 6);
1227 if (ret)
1228 return ret;
1229
1230 cmd = MI_STORE_DWORD_IMM_GEN8;
1231 cmd |= MI_GLOBAL_GTT;
1232
1233 intel_logical_ring_emit(ringbuf, cmd);
1234 intel_logical_ring_emit(ringbuf,
1235 (ring->status_page.gfx_addr +
1236 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1237 intel_logical_ring_emit(ringbuf, 0);
1238 intel_logical_ring_emit(ringbuf, ring->outstanding_lazy_seqno);
1239 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1240 intel_logical_ring_emit(ringbuf, MI_NOOP);
1241 intel_logical_ring_advance_and_submit(ringbuf);
1242
1243 return 0;
1244}
1245
73e4d07f
OM
1246/**
1247 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1248 *
1249 * @ring: Engine Command Streamer.
1250 *
1251 */
454afebd
OM
1252void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1253{
6402c330 1254 struct drm_i915_private *dev_priv;
9832b9da 1255
48d82387
OM
1256 if (!intel_ring_initialized(ring))
1257 return;
1258
6402c330
JH
1259 dev_priv = ring->dev->dev_private;
1260
9832b9da
OM
1261 intel_logical_ring_stop(ring);
1262 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
48d82387
OM
1263 ring->preallocated_lazy_request = NULL;
1264 ring->outstanding_lazy_seqno = 0;
1265
1266 if (ring->cleanup)
1267 ring->cleanup(ring);
1268
1269 i915_cmd_parser_fini_ring(ring);
1270
1271 if (ring->status_page.obj) {
1272 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1273 ring->status_page.obj = NULL;
1274 }
454afebd
OM
1275}
1276
1277static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1278{
48d82387 1279 int ret;
48d82387
OM
1280
1281 /* Intentionally left blank. */
1282 ring->buffer = NULL;
1283
1284 ring->dev = dev;
1285 INIT_LIST_HEAD(&ring->active_list);
1286 INIT_LIST_HEAD(&ring->request_list);
1287 init_waitqueue_head(&ring->irq_queue);
1288
acdd884a
MT
1289 INIT_LIST_HEAD(&ring->execlist_queue);
1290 spin_lock_init(&ring->execlist_lock);
e981e7b1 1291 ring->next_context_status_buffer = 0;
acdd884a 1292
48d82387
OM
1293 ret = i915_cmd_parser_init_ring(ring);
1294 if (ret)
1295 return ret;
1296
1297 if (ring->init) {
1298 ret = ring->init(ring);
1299 if (ret)
1300 return ret;
1301 }
1302
564ddb2f
OM
1303 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1304
1305 return ret;
454afebd
OM
1306}
1307
1308static int logical_render_ring_init(struct drm_device *dev)
1309{
1310 struct drm_i915_private *dev_priv = dev->dev_private;
1311 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1312
1313 ring->name = "render ring";
1314 ring->id = RCS;
1315 ring->mmio_base = RENDER_RING_BASE;
1316 ring->irq_enable_mask =
1317 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1318 ring->irq_keep_mask =
1319 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1320 if (HAS_L3_DPF(dev))
1321 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1322
9b1136d5 1323 ring->init = gen8_init_render_ring;
771b9a53 1324 ring->init_context = intel_logical_ring_workarounds_emit;
9b1136d5 1325 ring->cleanup = intel_fini_pipe_control;
e94e37ad
OM
1326 ring->get_seqno = gen8_get_seqno;
1327 ring->set_seqno = gen8_set_seqno;
4da46e1e 1328 ring->emit_request = gen8_emit_request;
4712274c 1329 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1330 ring->irq_get = gen8_logical_ring_get_irq;
1331 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1332 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1333
454afebd
OM
1334 return logical_ring_init(dev, ring);
1335}
1336
1337static int logical_bsd_ring_init(struct drm_device *dev)
1338{
1339 struct drm_i915_private *dev_priv = dev->dev_private;
1340 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1341
1342 ring->name = "bsd ring";
1343 ring->id = VCS;
1344 ring->mmio_base = GEN6_BSD_RING_BASE;
1345 ring->irq_enable_mask =
1346 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
1347 ring->irq_keep_mask =
1348 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 1349
9b1136d5 1350 ring->init = gen8_init_common_ring;
e94e37ad
OM
1351 ring->get_seqno = gen8_get_seqno;
1352 ring->set_seqno = gen8_set_seqno;
4da46e1e 1353 ring->emit_request = gen8_emit_request;
4712274c 1354 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1355 ring->irq_get = gen8_logical_ring_get_irq;
1356 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1357 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1358
454afebd
OM
1359 return logical_ring_init(dev, ring);
1360}
1361
1362static int logical_bsd2_ring_init(struct drm_device *dev)
1363{
1364 struct drm_i915_private *dev_priv = dev->dev_private;
1365 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1366
1367 ring->name = "bds2 ring";
1368 ring->id = VCS2;
1369 ring->mmio_base = GEN8_BSD2_RING_BASE;
1370 ring->irq_enable_mask =
1371 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
1372 ring->irq_keep_mask =
1373 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 1374
9b1136d5 1375 ring->init = gen8_init_common_ring;
e94e37ad
OM
1376 ring->get_seqno = gen8_get_seqno;
1377 ring->set_seqno = gen8_set_seqno;
4da46e1e 1378 ring->emit_request = gen8_emit_request;
4712274c 1379 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1380 ring->irq_get = gen8_logical_ring_get_irq;
1381 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1382 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1383
454afebd
OM
1384 return logical_ring_init(dev, ring);
1385}
1386
1387static int logical_blt_ring_init(struct drm_device *dev)
1388{
1389 struct drm_i915_private *dev_priv = dev->dev_private;
1390 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1391
1392 ring->name = "blitter ring";
1393 ring->id = BCS;
1394 ring->mmio_base = BLT_RING_BASE;
1395 ring->irq_enable_mask =
1396 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
1397 ring->irq_keep_mask =
1398 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 1399
9b1136d5 1400 ring->init = gen8_init_common_ring;
e94e37ad
OM
1401 ring->get_seqno = gen8_get_seqno;
1402 ring->set_seqno = gen8_set_seqno;
4da46e1e 1403 ring->emit_request = gen8_emit_request;
4712274c 1404 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1405 ring->irq_get = gen8_logical_ring_get_irq;
1406 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1407 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1408
454afebd
OM
1409 return logical_ring_init(dev, ring);
1410}
1411
1412static int logical_vebox_ring_init(struct drm_device *dev)
1413{
1414 struct drm_i915_private *dev_priv = dev->dev_private;
1415 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1416
1417 ring->name = "video enhancement ring";
1418 ring->id = VECS;
1419 ring->mmio_base = VEBOX_RING_BASE;
1420 ring->irq_enable_mask =
1421 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
1422 ring->irq_keep_mask =
1423 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 1424
9b1136d5 1425 ring->init = gen8_init_common_ring;
e94e37ad
OM
1426 ring->get_seqno = gen8_get_seqno;
1427 ring->set_seqno = gen8_set_seqno;
4da46e1e 1428 ring->emit_request = gen8_emit_request;
4712274c 1429 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1430 ring->irq_get = gen8_logical_ring_get_irq;
1431 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1432 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1433
454afebd
OM
1434 return logical_ring_init(dev, ring);
1435}
1436
73e4d07f
OM
1437/**
1438 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1439 * @dev: DRM device.
1440 *
1441 * This function inits the engines for an Execlists submission style (the equivalent in the
1442 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1443 * those engines that are present in the hardware.
1444 *
1445 * Return: non-zero if the initialization failed.
1446 */
454afebd
OM
1447int intel_logical_rings_init(struct drm_device *dev)
1448{
1449 struct drm_i915_private *dev_priv = dev->dev_private;
1450 int ret;
1451
1452 ret = logical_render_ring_init(dev);
1453 if (ret)
1454 return ret;
1455
1456 if (HAS_BSD(dev)) {
1457 ret = logical_bsd_ring_init(dev);
1458 if (ret)
1459 goto cleanup_render_ring;
1460 }
1461
1462 if (HAS_BLT(dev)) {
1463 ret = logical_blt_ring_init(dev);
1464 if (ret)
1465 goto cleanup_bsd_ring;
1466 }
1467
1468 if (HAS_VEBOX(dev)) {
1469 ret = logical_vebox_ring_init(dev);
1470 if (ret)
1471 goto cleanup_blt_ring;
1472 }
1473
1474 if (HAS_BSD2(dev)) {
1475 ret = logical_bsd2_ring_init(dev);
1476 if (ret)
1477 goto cleanup_vebox_ring;
1478 }
1479
1480 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1481 if (ret)
1482 goto cleanup_bsd2_ring;
1483
1484 return 0;
1485
1486cleanup_bsd2_ring:
1487 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1488cleanup_vebox_ring:
1489 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1490cleanup_blt_ring:
1491 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1492cleanup_bsd_ring:
1493 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1494cleanup_render_ring:
1495 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1496
1497 return ret;
1498}
1499
564ddb2f
OM
1500int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1501 struct intel_context *ctx)
1502{
1503 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1504 struct render_state so;
1505 struct drm_i915_file_private *file_priv = ctx->file_priv;
1506 struct drm_file *file = file_priv ? file_priv->file : NULL;
1507 int ret;
1508
1509 ret = i915_gem_render_state_prepare(ring, &so);
1510 if (ret)
1511 return ret;
1512
1513 if (so.rodata == NULL)
1514 return 0;
1515
1516 ret = ring->emit_bb_start(ringbuf,
1517 so.ggtt_offset,
1518 I915_DISPATCH_SECURE);
1519 if (ret)
1520 goto out;
1521
1522 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1523
1524 ret = __i915_add_request(ring, file, so.obj, NULL);
1525 /* intel_logical_ring_add_request moves object to inactive if it
1526 * fails */
1527out:
1528 i915_gem_render_state_fini(&so);
1529 return ret;
1530}
1531
8670d6f9
OM
1532static int
1533populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1534 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1535{
2d965536
TD
1536 struct drm_device *dev = ring->dev;
1537 struct drm_i915_private *dev_priv = dev->dev_private;
8670d6f9 1538 struct drm_i915_gem_object *ring_obj = ringbuf->obj;
ae6c4806 1539 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
1540 struct page *page;
1541 uint32_t *reg_state;
1542 int ret;
1543
2d965536
TD
1544 if (!ppgtt)
1545 ppgtt = dev_priv->mm.aliasing_ppgtt;
1546
8670d6f9
OM
1547 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1548 if (ret) {
1549 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1550 return ret;
1551 }
1552
1553 ret = i915_gem_object_get_pages(ctx_obj);
1554 if (ret) {
1555 DRM_DEBUG_DRIVER("Could not get object pages\n");
1556 return ret;
1557 }
1558
1559 i915_gem_object_pin_pages(ctx_obj);
1560
1561 /* The second page of the context object contains some fields which must
1562 * be set up prior to the first execution. */
1563 page = i915_gem_object_get_page(ctx_obj, 1);
1564 reg_state = kmap_atomic(page);
1565
1566 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1567 * commands followed by (reg, value) pairs. The values we are setting here are
1568 * only for the first context restore: on a subsequent save, the GPU will
1569 * recreate this batchbuffer with new values (including all the missing
1570 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1571 if (ring->id == RCS)
1572 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1573 else
1574 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1575 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1576 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1577 reg_state[CTX_CONTEXT_CONTROL+1] =
1578 _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1579 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1580 reg_state[CTX_RING_HEAD+1] = 0;
1581 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1582 reg_state[CTX_RING_TAIL+1] = 0;
1583 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1584 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
1585 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1586 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1587 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1588 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1589 reg_state[CTX_BB_HEAD_U+1] = 0;
1590 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1591 reg_state[CTX_BB_HEAD_L+1] = 0;
1592 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1593 reg_state[CTX_BB_STATE+1] = (1<<5);
1594 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1595 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1596 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1597 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1598 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1599 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1600 if (ring->id == RCS) {
1601 /* TODO: according to BSpec, the register state context
1602 * for CHV does not have these. OTOH, these registers do
1603 * exist in CHV. I'm waiting for a clarification */
1604 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1605 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1606 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1607 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1608 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1609 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1610 }
1611 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1612 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1613 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1614 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1615 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1616 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1617 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1618 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1619 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1620 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1621 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1622 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1623 reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1624 reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1625 reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1626 reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1627 reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1628 reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1629 reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1630 reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1631 if (ring->id == RCS) {
1632 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1633 reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1634 reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1635 }
1636
1637 kunmap_atomic(reg_state);
1638
1639 ctx_obj->dirty = 1;
1640 set_page_dirty(page);
1641 i915_gem_object_unpin_pages(ctx_obj);
1642
1643 return 0;
1644}
1645
73e4d07f
OM
1646/**
1647 * intel_lr_context_free() - free the LRC specific bits of a context
1648 * @ctx: the LR context to free.
1649 *
1650 * The real context freeing is done in i915_gem_context_free: this only
1651 * takes care of the bits that are LRC related: the per-engine backing
1652 * objects and the logical ringbuffer.
1653 */
ede7d42b
OM
1654void intel_lr_context_free(struct intel_context *ctx)
1655{
8c857917
OM
1656 int i;
1657
1658 for (i = 0; i < I915_NUM_RINGS; i++) {
1659 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f
OM
1660 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
1661
8c857917 1662 if (ctx_obj) {
84c2377f
OM
1663 intel_destroy_ringbuffer_obj(ringbuf);
1664 kfree(ringbuf);
8c857917
OM
1665 i915_gem_object_ggtt_unpin(ctx_obj);
1666 drm_gem_object_unreference(&ctx_obj->base);
1667 }
1668 }
1669}
1670
1671static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1672{
1673 int ret = 0;
1674
468c6816 1675 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
1676
1677 switch (ring->id) {
1678 case RCS:
468c6816
MN
1679 if (INTEL_INFO(ring->dev)->gen >= 9)
1680 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1681 else
1682 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
1683 break;
1684 case VCS:
1685 case BCS:
1686 case VECS:
1687 case VCS2:
1688 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1689 break;
1690 }
1691
1692 return ret;
ede7d42b
OM
1693}
1694
1df06b75
TD
1695static int lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1696 struct drm_i915_gem_object *default_ctx_obj)
1697{
1698 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1699
1700 /* The status page is offset 0 from the default context object
1701 * in LRC mode. */
1702 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1703 ring->status_page.page_addr =
1704 kmap(sg_page(default_ctx_obj->pages->sgl));
1705 if (ring->status_page.page_addr == NULL)
1706 return -ENOMEM;
1707 ring->status_page.obj = default_ctx_obj;
1708
1709 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1710 (u32)ring->status_page.gfx_addr);
1711 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1712
1713 return 0;
1714}
1715
73e4d07f
OM
1716/**
1717 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1718 * @ctx: LR context to create.
1719 * @ring: engine to be used with the context.
1720 *
1721 * This function can be called more than once, with different engines, if we plan
1722 * to use the context with them. The context backing objects and the ringbuffers
1723 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1724 * the creation is a deferred call: it's better to make sure first that we need to use
1725 * a given ring with the context.
1726 *
32197aab 1727 * Return: non-zero on error.
73e4d07f 1728 */
ede7d42b
OM
1729int intel_lr_context_deferred_create(struct intel_context *ctx,
1730 struct intel_engine_cs *ring)
1731{
8c857917
OM
1732 struct drm_device *dev = ring->dev;
1733 struct drm_i915_gem_object *ctx_obj;
1734 uint32_t context_size;
84c2377f 1735 struct intel_ringbuffer *ringbuf;
8c857917
OM
1736 int ret;
1737
ede7d42b 1738 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
48d82387
OM
1739 if (ctx->engine[ring->id].state)
1740 return 0;
ede7d42b 1741
8c857917
OM
1742 context_size = round_up(get_lr_context_size(ring), 4096);
1743
1744 ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1745 if (IS_ERR(ctx_obj)) {
1746 ret = PTR_ERR(ctx_obj);
1747 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1748 return ret;
1749 }
1750
1751 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1752 if (ret) {
1753 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n", ret);
1754 drm_gem_object_unreference(&ctx_obj->base);
1755 return ret;
1756 }
1757
84c2377f
OM
1758 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1759 if (!ringbuf) {
1760 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1761 ring->name);
1762 i915_gem_object_ggtt_unpin(ctx_obj);
1763 drm_gem_object_unreference(&ctx_obj->base);
1764 ret = -ENOMEM;
1765 return ret;
1766 }
1767
0c7dd53b 1768 ringbuf->ring = ring;
582d67f0
OM
1769 ringbuf->FIXME_lrc_ctx = ctx;
1770
84c2377f
OM
1771 ringbuf->size = 32 * PAGE_SIZE;
1772 ringbuf->effective_size = ringbuf->size;
1773 ringbuf->head = 0;
1774 ringbuf->tail = 0;
1775 ringbuf->space = ringbuf->size;
1776 ringbuf->last_retired_head = -1;
1777
1778 /* TODO: For now we put this in the mappable region so that we can reuse
1779 * the existing ringbuffer code which ioremaps it. When we start
1780 * creating many contexts, this will no longer work and we must switch
1781 * to a kmapish interface.
1782 */
1783 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1784 if (ret) {
1785 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer obj %s: %d\n",
1786 ring->name, ret);
8670d6f9
OM
1787 goto error;
1788 }
1789
1790 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1791 if (ret) {
1792 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1793 intel_destroy_ringbuffer_obj(ringbuf);
1794 goto error;
84c2377f
OM
1795 }
1796
1797 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 1798 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 1799
564ddb2f 1800 if (ctx == ring->default_context) {
1df06b75
TD
1801 ret = lrc_setup_hardware_status_page(ring, ctx_obj);
1802 if (ret) {
1803 DRM_ERROR("Failed to setup hardware status page\n");
1804 goto error;
1805 }
564ddb2f
OM
1806 }
1807
1808 if (ring->id == RCS && !ctx->rcs_initialized) {
771b9a53
MT
1809 if (ring->init_context) {
1810 ret = ring->init_context(ring, ctx);
1811 if (ret)
1812 DRM_ERROR("ring init context: %d\n", ret);
1813 }
1814
564ddb2f
OM
1815 ret = intel_lr_context_render_state_init(ring, ctx);
1816 if (ret) {
1817 DRM_ERROR("Init render state failed: %d\n", ret);
1818 ctx->engine[ring->id].ringbuf = NULL;
1819 ctx->engine[ring->id].state = NULL;
1820 intel_destroy_ringbuffer_obj(ringbuf);
1821 goto error;
1822 }
1823 ctx->rcs_initialized = true;
1824 }
1825
ede7d42b 1826 return 0;
8670d6f9
OM
1827
1828error:
1829 kfree(ringbuf);
1830 i915_gem_object_ggtt_unpin(ctx_obj);
1831 drm_gem_object_unreference(&ctx_obj->base);
1832 return ret;
ede7d42b 1833}