]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Split alloc from init for lrc
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
3bbaba0c 138#include "intel_mocs.h"
127f1003 139
468c6816 140#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
141#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
157
158#define CTX_LRI_HEADER_0 0x01
159#define CTX_CONTEXT_CONTROL 0x02
160#define CTX_RING_HEAD 0x04
161#define CTX_RING_TAIL 0x06
162#define CTX_RING_BUFFER_START 0x08
163#define CTX_RING_BUFFER_CONTROL 0x0a
164#define CTX_BB_HEAD_U 0x0c
165#define CTX_BB_HEAD_L 0x0e
166#define CTX_BB_STATE 0x10
167#define CTX_SECOND_BB_HEAD_U 0x12
168#define CTX_SECOND_BB_HEAD_L 0x14
169#define CTX_SECOND_BB_STATE 0x16
170#define CTX_BB_PER_CTX_PTR 0x18
171#define CTX_RCS_INDIRECT_CTX 0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173#define CTX_LRI_HEADER_1 0x21
174#define CTX_CTX_TIMESTAMP 0x22
175#define CTX_PDP3_UDW 0x24
176#define CTX_PDP3_LDW 0x26
177#define CTX_PDP2_UDW 0x28
178#define CTX_PDP2_LDW 0x2a
179#define CTX_PDP1_UDW 0x2c
180#define CTX_PDP1_LDW 0x2e
181#define CTX_PDP0_UDW 0x30
182#define CTX_PDP0_LDW 0x32
183#define CTX_LRI_HEADER_2 0x41
184#define CTX_R_PWR_CLK_STATE 0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
84b790f8
BW
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e
MT
192
193#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
d852c7bf 194 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
195 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197}
198
2dba3239
MT
199#define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
200 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202}
203
84b790f8
BW
204enum {
205 ADVANCED_CONTEXT = 0,
2dba3239 206 LEGACY_32B_CONTEXT,
84b790f8
BW
207 ADVANCED_AD_CONTEXT,
208 LEGACY_64B_CONTEXT
209};
2dba3239
MT
210#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
211#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
212 LEGACY_64B_CONTEXT :\
213 LEGACY_32B_CONTEXT)
84b790f8
BW
214enum {
215 FAULT_AND_HANG = 0,
216 FAULT_AND_HALT, /* Debug only */
217 FAULT_AND_STREAM,
218 FAULT_AND_CONTINUE /* Unsupported */
219};
220#define GEN8_CTX_ID_SHIFT 32
17ee950d 221#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
84b790f8 222
8ba319da 223static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
e84fe803
NH
224static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
225 struct drm_i915_gem_object *default_ctx_obj);
226
7ba717cf 227
73e4d07f
OM
228/**
229 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
230 * @dev: DRM device.
231 * @enable_execlists: value of i915.enable_execlists module parameter.
232 *
233 * Only certain platforms support Execlists (the prerequisites being
27401d12 234 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
235 *
236 * Return: 1 if Execlists is supported and has to be enabled.
237 */
127f1003
OM
238int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
239{
bd84b1e9
DV
240 WARN_ON(i915.enable_ppgtt == -1);
241
a0bd6c31
ZL
242 /* On platforms with execlist available, vGPU will only
243 * support execlist mode, no ring buffer mode.
244 */
245 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
246 return 1;
247
70ee45e1
DL
248 if (INTEL_INFO(dev)->gen >= 9)
249 return 1;
250
127f1003
OM
251 if (enable_execlists == 0)
252 return 0;
253
14bf993e
OM
254 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
255 i915.use_mmio_flip >= 0)
127f1003
OM
256 return 1;
257
258 return 0;
259}
ede7d42b 260
73e4d07f
OM
261/**
262 * intel_execlists_ctx_id() - get the Execlists Context ID
263 * @ctx_obj: Logical Ring Context backing object.
264 *
265 * Do not confuse with ctx->id! Unfortunately we have a name overload
266 * here: the old context ID we pass to userspace as a handler so that
267 * they can refer to a context, and the new context ID we pass to the
268 * ELSP so that the GPU can inform us of the context status via
269 * interrupts.
270 *
271 * Return: 20-bits globally unique context ID.
272 */
84b790f8
BW
273u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
274{
d1675198
AD
275 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
276 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8
BW
277
278 /* LRCA is required to be 4K aligned so the more significant 20 bits
279 * are globally unique */
280 return lrca >> 12;
281}
282
5af05fef
MT
283static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
284{
285 struct drm_device *dev = ring->dev;
286
287 return ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
288 (IS_BROXTON(dev) && INTEL_REVID(dev) == BXT_REVID_A0)) &&
289 (ring->id == VCS || ring->id == VCS2);
290}
291
919f1f55
DG
292uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
293 struct intel_engine_cs *ring)
84b790f8 294{
919f1f55 295 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
84b790f8 296 uint64_t desc;
d1675198
AD
297 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
298 LRC_PPHWSP_PN * PAGE_SIZE;
acdd884a
MT
299
300 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
301
302 desc = GEN8_CTX_VALID;
2dba3239 303 desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
51847fb9
AS
304 if (IS_GEN8(ctx_obj->base.dev))
305 desc |= GEN8_CTX_L3LLC_COHERENT;
84b790f8
BW
306 desc |= GEN8_CTX_PRIVILEGE;
307 desc |= lrca;
308 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
309
310 /* TODO: WaDisableLiteRestore when we start using semaphore
311 * signalling between Command Streamers */
312 /* desc |= GEN8_CTX_FORCE_RESTORE; */
313
203a571b 314 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
ec72d588 315 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
5af05fef 316 if (disable_lite_restore_wa(ring))
203a571b
NH
317 desc |= GEN8_CTX_FORCE_RESTORE;
318
84b790f8
BW
319 return desc;
320}
321
cc3c4253
MK
322static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
323 struct drm_i915_gem_request *rq1)
84b790f8 324{
cc3c4253
MK
325
326 struct intel_engine_cs *ring = rq0->ring;
6e7cc470
TU
327 struct drm_device *dev = ring->dev;
328 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 329 uint64_t desc[2];
84b790f8 330
1cff8cc3 331 if (rq1) {
919f1f55 332 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
1cff8cc3
MK
333 rq1->elsp_submitted++;
334 } else {
335 desc[1] = 0;
336 }
84b790f8 337
919f1f55 338 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
1cff8cc3 339 rq0->elsp_submitted++;
84b790f8 340
1cff8cc3 341 /* You must always write both descriptors in the order below. */
a6111f7b
CW
342 spin_lock(&dev_priv->uncore.lock);
343 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
1cff8cc3
MK
344 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
345 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
6daccb0b 346
1cff8cc3 347 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
84b790f8 348 /* The context is automatically loaded after the following */
1cff8cc3 349 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
84b790f8 350
1cff8cc3 351 /* ELSP is a wo register, use another nearby reg for posting */
a6111f7b
CW
352 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
353 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
354 spin_unlock(&dev_priv->uncore.lock);
84b790f8
BW
355}
356
05d9824b 357static int execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 358{
05d9824b
MK
359 struct intel_engine_cs *ring = rq->ring;
360 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
361 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
362 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
ae1250b9
OM
363 struct page *page;
364 uint32_t *reg_state;
365
05d9824b
MK
366 BUG_ON(!ctx_obj);
367 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
368 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
369
d1675198 370 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
ae1250b9
OM
371 reg_state = kmap_atomic(page);
372
05d9824b
MK
373 reg_state[CTX_RING_TAIL+1] = rq->tail;
374 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
ae1250b9 375
2dba3239
MT
376 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
377 /* True 32b PPGTT with dynamic page allocation: update PDP
378 * registers and point the unallocated PDPs to scratch page.
379 * PML4 is allocated during ppgtt init, so this is not needed
380 * in 48-bit mode.
381 */
d7b2633d
MT
382 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
383 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
384 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
385 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
386 }
387
ae1250b9
OM
388 kunmap_atomic(reg_state);
389
390 return 0;
391}
392
d8cb8875
MK
393static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
394 struct drm_i915_gem_request *rq1)
84b790f8 395{
05d9824b 396 execlists_update_context(rq0);
d8cb8875 397
cc3c4253 398 if (rq1)
05d9824b 399 execlists_update_context(rq1);
84b790f8 400
cc3c4253 401 execlists_elsp_write(rq0, rq1);
84b790f8
BW
402}
403
acdd884a
MT
404static void execlists_context_unqueue(struct intel_engine_cs *ring)
405{
6d3d8274
NH
406 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
407 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
408
409 assert_spin_locked(&ring->execlist_lock);
acdd884a 410
779949f4
PA
411 /*
412 * If irqs are not active generate a warning as batches that finish
413 * without the irqs may get lost and a GPU Hang may occur.
414 */
415 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
416
acdd884a
MT
417 if (list_empty(&ring->execlist_queue))
418 return;
419
420 /* Try to read in pairs */
421 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
422 execlist_link) {
423 if (!req0) {
424 req0 = cursor;
6d3d8274 425 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
426 /* Same ctx: ignore first request, as second request
427 * will update tail past first request's workload */
e1fee72c 428 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 429 list_del(&req0->execlist_link);
c86ee3a9
TD
430 list_add_tail(&req0->execlist_link,
431 &ring->execlist_retired_req_list);
acdd884a
MT
432 req0 = cursor;
433 } else {
434 req1 = cursor;
435 break;
436 }
437 }
438
53292cdb
MT
439 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
440 /*
441 * WaIdleLiteRestore: make sure we never cause a lite
442 * restore with HEAD==TAIL
443 */
d63f820f 444 if (req0->elsp_submitted) {
53292cdb
MT
445 /*
446 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
447 * as we resubmit the request. See gen8_emit_request()
448 * for where we prepare the padding after the end of the
449 * request.
450 */
451 struct intel_ringbuffer *ringbuf;
452
453 ringbuf = req0->ctx->engine[ring->id].ringbuf;
454 req0->tail += 8;
455 req0->tail &= ringbuf->size - 1;
456 }
457 }
458
e1fee72c
OM
459 WARN_ON(req1 && req1->elsp_submitted);
460
d8cb8875 461 execlists_submit_requests(req0, req1);
acdd884a
MT
462}
463
e981e7b1
TD
464static bool execlists_check_remove_request(struct intel_engine_cs *ring,
465 u32 request_id)
466{
6d3d8274 467 struct drm_i915_gem_request *head_req;
e981e7b1
TD
468
469 assert_spin_locked(&ring->execlist_lock);
470
471 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 472 struct drm_i915_gem_request,
e981e7b1
TD
473 execlist_link);
474
475 if (head_req != NULL) {
476 struct drm_i915_gem_object *ctx_obj =
6d3d8274 477 head_req->ctx->engine[ring->id].state;
e981e7b1 478 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
479 WARN(head_req->elsp_submitted == 0,
480 "Never submitted head request\n");
481
482 if (--head_req->elsp_submitted <= 0) {
483 list_del(&head_req->execlist_link);
c86ee3a9
TD
484 list_add_tail(&head_req->execlist_link,
485 &ring->execlist_retired_req_list);
e1fee72c
OM
486 return true;
487 }
e981e7b1
TD
488 }
489 }
490
491 return false;
492}
493
73e4d07f 494/**
3f7531c3 495 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
496 * @ring: Engine Command Streamer to handle.
497 *
498 * Check the unread Context Status Buffers and manage the submission of new
499 * contexts to the ELSP accordingly.
500 */
3f7531c3 501void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
502{
503 struct drm_i915_private *dev_priv = ring->dev->dev_private;
504 u32 status_pointer;
505 u8 read_pointer;
506 u8 write_pointer;
5af05fef 507 u32 status = 0;
e981e7b1
TD
508 u32 status_id;
509 u32 submit_contexts = 0;
510
511 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
512
513 read_pointer = ring->next_context_status_buffer;
514 write_pointer = status_pointer & 0x07;
515 if (read_pointer > write_pointer)
516 write_pointer += 6;
517
518 spin_lock(&ring->execlist_lock);
519
520 while (read_pointer < write_pointer) {
521 read_pointer++;
522 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
523 (read_pointer % 6) * 8);
524 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
525 (read_pointer % 6) * 8 + 4);
526
031a8936
MK
527 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
528 continue;
529
e1fee72c
OM
530 if (status & GEN8_CTX_STATUS_PREEMPTED) {
531 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
532 if (execlists_check_remove_request(ring, status_id))
533 WARN(1, "Lite Restored request removed from queue\n");
534 } else
535 WARN(1, "Preemption without Lite Restore\n");
536 }
537
538 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
539 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
540 if (execlists_check_remove_request(ring, status_id))
541 submit_contexts++;
542 }
543 }
544
5af05fef
MT
545 if (disable_lite_restore_wa(ring)) {
546 /* Prevent a ctx to preempt itself */
547 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
548 (submit_contexts != 0))
549 execlists_context_unqueue(ring);
550 } else if (submit_contexts != 0) {
e981e7b1 551 execlists_context_unqueue(ring);
5af05fef 552 }
e981e7b1
TD
553
554 spin_unlock(&ring->execlist_lock);
555
556 WARN(submit_contexts > 2, "More than two context complete events?\n");
557 ring->next_context_status_buffer = write_pointer % 6;
558
559 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
cc53699b 560 _MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
e981e7b1
TD
561}
562
ae70797d 563static int execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 564{
ae70797d 565 struct intel_engine_cs *ring = request->ring;
6d3d8274 566 struct drm_i915_gem_request *cursor;
f1ad5a1f 567 int num_elements = 0;
acdd884a 568
ae70797d 569 if (request->ctx != ring->default_context)
8ba319da 570 intel_lr_context_pin(request);
9bb1af44
JH
571
572 i915_gem_request_reference(request);
573
b5eba372 574 spin_lock_irq(&ring->execlist_lock);
acdd884a 575
f1ad5a1f
OM
576 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
577 if (++num_elements > 2)
578 break;
579
580 if (num_elements > 2) {
6d3d8274 581 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
582
583 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 584 struct drm_i915_gem_request,
f1ad5a1f
OM
585 execlist_link);
586
ae70797d 587 if (request->ctx == tail_req->ctx) {
f1ad5a1f 588 WARN(tail_req->elsp_submitted != 0,
7ba717cf 589 "More than 2 already-submitted reqs queued\n");
f1ad5a1f 590 list_del(&tail_req->execlist_link);
c86ee3a9
TD
591 list_add_tail(&tail_req->execlist_link,
592 &ring->execlist_retired_req_list);
f1ad5a1f
OM
593 }
594 }
595
6d3d8274 596 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 597 if (num_elements == 0)
acdd884a
MT
598 execlists_context_unqueue(ring);
599
b5eba372 600 spin_unlock_irq(&ring->execlist_lock);
acdd884a
MT
601
602 return 0;
603}
604
2f20055d 605static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 606{
2f20055d 607 struct intel_engine_cs *ring = req->ring;
ba8b7ccb
OM
608 uint32_t flush_domains;
609 int ret;
610
611 flush_domains = 0;
612 if (ring->gpu_caches_dirty)
613 flush_domains = I915_GEM_GPU_DOMAINS;
614
7deb4d39 615 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
616 if (ret)
617 return ret;
618
619 ring->gpu_caches_dirty = false;
620 return 0;
621}
622
535fbe82 623static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
624 struct list_head *vmas)
625{
535fbe82 626 const unsigned other_rings = ~intel_ring_flag(req->ring);
ba8b7ccb
OM
627 struct i915_vma *vma;
628 uint32_t flush_domains = 0;
629 bool flush_chipset = false;
630 int ret;
631
632 list_for_each_entry(vma, vmas, exec_list) {
633 struct drm_i915_gem_object *obj = vma->obj;
634
03ade511 635 if (obj->active & other_rings) {
91af127f 636 ret = i915_gem_object_sync(obj, req->ring, &req);
03ade511
CW
637 if (ret)
638 return ret;
639 }
ba8b7ccb
OM
640
641 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
642 flush_chipset |= i915_gem_clflush_object(obj, false);
643
644 flush_domains |= obj->base.write_domain;
645 }
646
647 if (flush_domains & I915_GEM_DOMAIN_GTT)
648 wmb();
649
650 /* Unconditionally invalidate gpu caches and ensure that we do flush
651 * any residual writes from the previous batch.
652 */
2f20055d 653 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
654}
655
40e895ce 656int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 657{
bc0dce3f
JH
658 int ret;
659
f3cc01f0
MK
660 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
661
40e895ce 662 if (request->ctx != request->ring->default_context) {
8ba319da 663 ret = intel_lr_context_pin(request);
6689cb2b 664 if (ret)
bc0dce3f 665 return ret;
bc0dce3f
JH
666 }
667
bc0dce3f
JH
668 return 0;
669}
670
ae70797d 671static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 672 int bytes)
bc0dce3f 673{
ae70797d
JH
674 struct intel_ringbuffer *ringbuf = req->ringbuf;
675 struct intel_engine_cs *ring = req->ring;
676 struct drm_i915_gem_request *target;
b4716185
CW
677 unsigned space;
678 int ret;
bc0dce3f
JH
679
680 if (intel_ring_space(ringbuf) >= bytes)
681 return 0;
682
79bbcc29
JH
683 /* The whole point of reserving space is to not wait! */
684 WARN_ON(ringbuf->reserved_in_use);
685
ae70797d 686 list_for_each_entry(target, &ring->request_list, list) {
bc0dce3f
JH
687 /*
688 * The request queue is per-engine, so can contain requests
689 * from multiple ringbuffers. Here, we must ignore any that
690 * aren't from the ringbuffer we're considering.
691 */
ae70797d 692 if (target->ringbuf != ringbuf)
bc0dce3f
JH
693 continue;
694
695 /* Would completion of this request free enough space? */
ae70797d 696 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
697 ringbuf->size);
698 if (space >= bytes)
bc0dce3f 699 break;
bc0dce3f
JH
700 }
701
ae70797d 702 if (WARN_ON(&target->list == &ring->request_list))
bc0dce3f
JH
703 return -ENOSPC;
704
ae70797d 705 ret = i915_wait_request(target);
bc0dce3f
JH
706 if (ret)
707 return ret;
708
b4716185
CW
709 ringbuf->space = space;
710 return 0;
bc0dce3f
JH
711}
712
713/*
714 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 715 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
716 *
717 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
718 * really happens during submission is that the context and current tail will be placed
719 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
720 * point, the tail *inside* the context is updated and the ELSP written to.
721 */
722static void
ae70797d 723intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 724{
ae70797d 725 struct intel_engine_cs *ring = request->ring;
d1675198 726 struct drm_i915_private *dev_priv = request->i915;
bc0dce3f 727
ae70797d 728 intel_logical_ring_advance(request->ringbuf);
bc0dce3f 729
d1675198
AD
730 request->tail = request->ringbuf->tail;
731
bc0dce3f
JH
732 if (intel_ring_stopped(ring))
733 return;
734
d1675198
AD
735 if (dev_priv->guc.execbuf_client)
736 i915_guc_submit(dev_priv->guc.execbuf_client, request);
737 else
738 execlists_context_queue(request);
bc0dce3f
JH
739}
740
79bbcc29 741static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
742{
743 uint32_t __iomem *virt;
744 int rem = ringbuf->size - ringbuf->tail;
745
bc0dce3f
JH
746 virt = ringbuf->virtual_start + ringbuf->tail;
747 rem /= 4;
748 while (rem--)
749 iowrite32(MI_NOOP, virt++);
750
751 ringbuf->tail = 0;
752 intel_ring_update_space(ringbuf);
bc0dce3f
JH
753}
754
ae70797d 755static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 756{
ae70797d 757 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
758 int remain_usable = ringbuf->effective_size - ringbuf->tail;
759 int remain_actual = ringbuf->size - ringbuf->tail;
760 int ret, total_bytes, wait_bytes = 0;
761 bool need_wrap = false;
29b1b415 762
79bbcc29
JH
763 if (ringbuf->reserved_in_use)
764 total_bytes = bytes;
765 else
766 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 767
79bbcc29
JH
768 if (unlikely(bytes > remain_usable)) {
769 /*
770 * Not enough space for the basic request. So need to flush
771 * out the remainder and then wait for base + reserved.
772 */
773 wait_bytes = remain_actual + total_bytes;
774 need_wrap = true;
775 } else {
776 if (unlikely(total_bytes > remain_usable)) {
777 /*
778 * The base request will fit but the reserved space
779 * falls off the end. So only need to to wait for the
780 * reserved size after flushing out the remainder.
781 */
782 wait_bytes = remain_actual + ringbuf->reserved_size;
783 need_wrap = true;
784 } else if (total_bytes > ringbuf->space) {
785 /* No wrapping required, just waiting. */
786 wait_bytes = total_bytes;
29b1b415 787 }
bc0dce3f
JH
788 }
789
79bbcc29
JH
790 if (wait_bytes) {
791 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
792 if (unlikely(ret))
793 return ret;
79bbcc29
JH
794
795 if (need_wrap)
796 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
797 }
798
799 return 0;
800}
801
802/**
803 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
804 *
4d616a29 805 * @request: The request to start some new work for
4d78c8dc 806 * @ctx: Logical ring context whose ringbuffer is being prepared.
bc0dce3f
JH
807 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
808 *
809 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
810 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
811 * and also preallocates a request (every workload submission is still mediated through
812 * requests, same as it did with legacy ringbuffer submission).
813 *
814 * Return: non-zero if the ringbuffer is not ready to be written to.
815 */
3bbaba0c 816int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
bc0dce3f 817{
4d616a29 818 struct drm_i915_private *dev_priv;
bc0dce3f
JH
819 int ret;
820
4d616a29
JH
821 WARN_ON(req == NULL);
822 dev_priv = req->ring->dev->dev_private;
823
bc0dce3f
JH
824 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
825 dev_priv->mm.interruptible);
826 if (ret)
827 return ret;
828
ae70797d 829 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
830 if (ret)
831 return ret;
832
4d616a29 833 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
834 return 0;
835}
836
ccd98fe4
JH
837int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
838{
839 /*
840 * The first call merely notes the reserve request and is common for
841 * all back ends. The subsequent localised _begin() call actually
842 * ensures that the reservation is available. Without the begin, if
843 * the request creator immediately submitted the request without
844 * adding any commands to it then there might not actually be
845 * sufficient room for the submission commands.
846 */
847 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
848
849 return intel_logical_ring_begin(request, 0);
850}
851
73e4d07f
OM
852/**
853 * execlists_submission() - submit a batchbuffer for execution, Execlists style
854 * @dev: DRM device.
855 * @file: DRM file.
856 * @ring: Engine Command Streamer to submit to.
857 * @ctx: Context to employ for this submission.
858 * @args: execbuffer call arguments.
859 * @vmas: list of vmas.
860 * @batch_obj: the batchbuffer to submit.
861 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 862 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
863 *
864 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
865 * away the submission details of the execbuffer ioctl call.
866 *
867 * Return: non-zero if the submission fails.
868 */
5f19e2bf 869int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 870 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 871 struct list_head *vmas)
454afebd 872{
5f19e2bf
JH
873 struct drm_device *dev = params->dev;
874 struct intel_engine_cs *ring = params->ring;
ba8b7ccb 875 struct drm_i915_private *dev_priv = dev->dev_private;
5f19e2bf
JH
876 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
877 u64 exec_start;
ba8b7ccb
OM
878 int instp_mode;
879 u32 instp_mask;
880 int ret;
881
882 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
883 instp_mask = I915_EXEC_CONSTANTS_MASK;
884 switch (instp_mode) {
885 case I915_EXEC_CONSTANTS_REL_GENERAL:
886 case I915_EXEC_CONSTANTS_ABSOLUTE:
887 case I915_EXEC_CONSTANTS_REL_SURFACE:
888 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
889 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
890 return -EINVAL;
891 }
892
893 if (instp_mode != dev_priv->relative_constants_mode) {
894 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
895 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
896 return -EINVAL;
897 }
898
899 /* The HW changed the meaning on this bit on gen6 */
900 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
901 }
902 break;
903 default:
904 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
905 return -EINVAL;
906 }
907
908 if (args->num_cliprects != 0) {
909 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
910 return -EINVAL;
911 } else {
912 if (args->DR4 == 0xffffffff) {
913 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
914 args->DR4 = 0;
915 }
916
917 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
918 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
919 return -EINVAL;
920 }
921 }
922
923 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
924 DRM_DEBUG("sol reset is gen7 only\n");
925 return -EINVAL;
926 }
927
535fbe82 928 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
929 if (ret)
930 return ret;
931
932 if (ring == &dev_priv->ring[RCS] &&
933 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 934 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
935 if (ret)
936 return ret;
937
938 intel_logical_ring_emit(ringbuf, MI_NOOP);
939 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
940 intel_logical_ring_emit(ringbuf, INSTPM);
941 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
942 intel_logical_ring_advance(ringbuf);
943
944 dev_priv->relative_constants_mode = instp_mode;
945 }
946
5f19e2bf
JH
947 exec_start = params->batch_obj_vm_offset +
948 args->batch_start_offset;
949
be795fc1 950 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
951 if (ret)
952 return ret;
953
95c24161 954 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 955
8a8edb59 956 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 957 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 958
454afebd
OM
959 return 0;
960}
961
c86ee3a9
TD
962void intel_execlists_retire_requests(struct intel_engine_cs *ring)
963{
6d3d8274 964 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
965 struct list_head retired_list;
966
967 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
968 if (list_empty(&ring->execlist_retired_req_list))
969 return;
970
971 INIT_LIST_HEAD(&retired_list);
b5eba372 972 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 973 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 974 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
975
976 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
6d3d8274 977 struct intel_context *ctx = req->ctx;
7ba717cf
TD
978 struct drm_i915_gem_object *ctx_obj =
979 ctx->engine[ring->id].state;
980
981 if (ctx_obj && (ctx != ring->default_context))
8ba319da 982 intel_lr_context_unpin(req);
c86ee3a9 983 list_del(&req->execlist_link);
f8210795 984 i915_gem_request_unreference(req);
c86ee3a9
TD
985 }
986}
987
454afebd
OM
988void intel_logical_ring_stop(struct intel_engine_cs *ring)
989{
9832b9da
OM
990 struct drm_i915_private *dev_priv = ring->dev->dev_private;
991 int ret;
992
993 if (!intel_ring_initialized(ring))
994 return;
995
996 ret = intel_ring_idle(ring);
997 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
998 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
999 ring->name, ret);
1000
1001 /* TODO: Is this correct with Execlists enabled? */
1002 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1003 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1004 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1005 return;
1006 }
1007 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
1008}
1009
4866d729 1010int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 1011{
4866d729 1012 struct intel_engine_cs *ring = req->ring;
48e29f55
OM
1013 int ret;
1014
1015 if (!ring->gpu_caches_dirty)
1016 return 0;
1017
7deb4d39 1018 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1019 if (ret)
1020 return ret;
1021
1022 ring->gpu_caches_dirty = false;
1023 return 0;
1024}
1025
e84fe803
NH
1026static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1027 struct drm_i915_gem_object *ctx_obj,
1028 struct intel_ringbuffer *ringbuf)
dcb4c12a 1029{
e84fe803
NH
1030 struct drm_device *dev = ring->dev;
1031 struct drm_i915_private *dev_priv = dev->dev_private;
dcb4c12a
OM
1032 int ret = 0;
1033
1034 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
e84fe803
NH
1035 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1036 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1037 if (ret)
1038 return ret;
7ba717cf 1039
e84fe803
NH
1040 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1041 if (ret)
1042 goto unpin_ctx_obj;
d1675198 1043
e84fe803 1044 ctx_obj->dirty = true;
e93c28f3 1045
e84fe803
NH
1046 /* Invalidate GuC TLB. */
1047 if (i915.enable_guc_submission)
1048 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 1049
7ba717cf
TD
1050 return ret;
1051
1052unpin_ctx_obj:
1053 i915_gem_object_ggtt_unpin(ctx_obj);
e84fe803
NH
1054
1055 return ret;
1056}
1057
1058static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1059{
1060 int ret = 0;
1061 struct intel_engine_cs *ring = rq->ring;
1062 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1063 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1064
1065 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1066 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1067 if (ret)
1068 goto reset_pin_count;
1069 }
1070 return ret;
1071
a7cbedec 1072reset_pin_count:
8ba319da 1073 rq->ctx->engine[ring->id].pin_count = 0;
dcb4c12a
OM
1074 return ret;
1075}
1076
8ba319da 1077void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
dcb4c12a 1078{
8ba319da
MK
1079 struct intel_engine_cs *ring = rq->ring;
1080 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1081 struct intel_ringbuffer *ringbuf = rq->ringbuf;
dcb4c12a
OM
1082
1083 if (ctx_obj) {
1084 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
8ba319da 1085 if (--rq->ctx->engine[ring->id].pin_count == 0) {
7ba717cf 1086 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 1087 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 1088 }
dcb4c12a
OM
1089 }
1090}
1091
e2be4faf 1092static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1093{
1094 int ret, i;
e2be4faf
JH
1095 struct intel_engine_cs *ring = req->ring;
1096 struct intel_ringbuffer *ringbuf = req->ringbuf;
771b9a53
MT
1097 struct drm_device *dev = ring->dev;
1098 struct drm_i915_private *dev_priv = dev->dev_private;
1099 struct i915_workarounds *w = &dev_priv->workarounds;
1100
e6c1abb7 1101 if (WARN_ON_ONCE(w->count == 0))
771b9a53
MT
1102 return 0;
1103
1104 ring->gpu_caches_dirty = true;
4866d729 1105 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1106 if (ret)
1107 return ret;
1108
4d616a29 1109 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1110 if (ret)
1111 return ret;
1112
1113 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1114 for (i = 0; i < w->count; i++) {
1115 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1116 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1117 }
1118 intel_logical_ring_emit(ringbuf, MI_NOOP);
1119
1120 intel_logical_ring_advance(ringbuf);
1121
1122 ring->gpu_caches_dirty = true;
4866d729 1123 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1124 if (ret)
1125 return ret;
1126
1127 return 0;
1128}
1129
83b8a982 1130#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1131 do { \
83b8a982
AS
1132 int __index = (index)++; \
1133 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1134 return -ENOSPC; \
1135 } \
83b8a982 1136 batch[__index] = (cmd); \
17ee950d
AS
1137 } while (0)
1138
9e000847
AS
1139
1140/*
1141 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1142 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1143 * but there is a slight complication as this is applied in WA batch where the
1144 * values are only initialized once so we cannot take register value at the
1145 * beginning and reuse it further; hence we save its value to memory, upload a
1146 * constant value with bit21 set and then we restore it back with the saved value.
1147 * To simplify the WA, a constant value is formed by using the default value
1148 * of this register. This shouldn't be a problem because we are only modifying
1149 * it for a short period and this batch in non-premptible. We can ofcourse
1150 * use additional instructions that read the actual value of the register
1151 * at that time and set our bit of interest but it makes the WA complicated.
1152 *
1153 * This WA is also required for Gen9 so extracting as a function avoids
1154 * code duplication.
1155 */
1156static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1157 uint32_t *const batch,
1158 uint32_t index)
1159{
1160 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1161
a4106a78
AS
1162 /*
1163 * WaDisableLSQCROPERFforOCL:skl
1164 * This WA is implemented in skl_init_clock_gating() but since
1165 * this batch updates GEN8_L3SQCREG4 with default value we need to
1166 * set this bit here to retain the WA during flush.
1167 */
1168 if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1169 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1170
f1afe24f 1171 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982
AS
1172 MI_SRM_LRM_GLOBAL_GTT));
1173 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1174 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1175 wa_ctx_emit(batch, index, 0);
1176
1177 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1178 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1179 wa_ctx_emit(batch, index, l3sqc4_flush);
1180
1181 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1182 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1183 PIPE_CONTROL_DC_FLUSH_ENABLE));
1184 wa_ctx_emit(batch, index, 0);
1185 wa_ctx_emit(batch, index, 0);
1186 wa_ctx_emit(batch, index, 0);
1187 wa_ctx_emit(batch, index, 0);
1188
f1afe24f 1189 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982
AS
1190 MI_SRM_LRM_GLOBAL_GTT));
1191 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1192 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1193 wa_ctx_emit(batch, index, 0);
9e000847
AS
1194
1195 return index;
1196}
1197
17ee950d
AS
1198static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1199 uint32_t offset,
1200 uint32_t start_alignment)
1201{
1202 return wa_ctx->offset = ALIGN(offset, start_alignment);
1203}
1204
1205static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1206 uint32_t offset,
1207 uint32_t size_alignment)
1208{
1209 wa_ctx->size = offset - wa_ctx->offset;
1210
1211 WARN(wa_ctx->size % size_alignment,
1212 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1213 wa_ctx->size, size_alignment);
1214 return 0;
1215}
1216
1217/**
1218 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1219 *
1220 * @ring: only applicable for RCS
1221 * @wa_ctx: structure representing wa_ctx
1222 * offset: specifies start of the batch, should be cache-aligned. This is updated
1223 * with the offset value received as input.
1224 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1225 * @batch: page in which WA are loaded
1226 * @offset: This field specifies the start of the batch, it should be
1227 * cache-aligned otherwise it is adjusted accordingly.
1228 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1229 * initialized at the beginning and shared across all contexts but this field
1230 * helps us to have multiple batches at different offsets and select them based
1231 * on a criteria. At the moment this batch always start at the beginning of the page
1232 * and at this point we don't have multiple wa_ctx batch buffers.
1233 *
1234 * The number of WA applied are not known at the beginning; we use this field
1235 * to return the no of DWORDS written.
4d78c8dc 1236 *
17ee950d
AS
1237 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1238 * so it adds NOOPs as padding to make it cacheline aligned.
1239 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1240 * makes a complete batch buffer.
1241 *
1242 * Return: non-zero if we exceed the PAGE_SIZE limit.
1243 */
1244
1245static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1246 struct i915_wa_ctx_bb *wa_ctx,
1247 uint32_t *const batch,
1248 uint32_t *offset)
1249{
0160f055 1250 uint32_t scratch_addr;
17ee950d
AS
1251 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1252
7ad00d1a 1253 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1254 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1255
c82435bb
AS
1256 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1257 if (IS_BROADWELL(ring->dev)) {
9e000847
AS
1258 index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1259 if (index < 0)
1260 return index;
c82435bb
AS
1261 }
1262
0160f055
AS
1263 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1264 /* Actual scratch location is at 128 bytes offset */
1265 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1266
83b8a982
AS
1267 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1268 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1269 PIPE_CONTROL_GLOBAL_GTT_IVB |
1270 PIPE_CONTROL_CS_STALL |
1271 PIPE_CONTROL_QW_WRITE));
1272 wa_ctx_emit(batch, index, scratch_addr);
1273 wa_ctx_emit(batch, index, 0);
1274 wa_ctx_emit(batch, index, 0);
1275 wa_ctx_emit(batch, index, 0);
0160f055 1276
17ee950d
AS
1277 /* Pad to end of cacheline */
1278 while (index % CACHELINE_DWORDS)
83b8a982 1279 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1280
1281 /*
1282 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1283 * execution depends on the length specified in terms of cache lines
1284 * in the register CTX_RCS_INDIRECT_CTX
1285 */
1286
1287 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1288}
1289
1290/**
1291 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1292 *
1293 * @ring: only applicable for RCS
1294 * @wa_ctx: structure representing wa_ctx
1295 * offset: specifies start of the batch, should be cache-aligned.
1296 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1297 * @batch: page in which WA are loaded
17ee950d
AS
1298 * @offset: This field specifies the start of this batch.
1299 * This batch is started immediately after indirect_ctx batch. Since we ensure
1300 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1301 *
1302 * The number of DWORDS written are returned using this field.
1303 *
1304 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1305 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1306 */
1307static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1308 struct i915_wa_ctx_bb *wa_ctx,
1309 uint32_t *const batch,
1310 uint32_t *offset)
1311{
1312 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1313
7ad00d1a 1314 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1315 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1316
83b8a982 1317 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1318
1319 return wa_ctx_end(wa_ctx, *offset = index, 1);
1320}
1321
0504cffc
AS
1322static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1323 struct i915_wa_ctx_bb *wa_ctx,
1324 uint32_t *const batch,
1325 uint32_t *offset)
1326{
a4106a78 1327 int ret;
0907c8f7 1328 struct drm_device *dev = ring->dev;
0504cffc
AS
1329 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1330
0907c8f7
AS
1331 /* WaDisableCtxRestoreArbitration:skl,bxt */
1332 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1333 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1334 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1335
a4106a78
AS
1336 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1337 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1338 if (ret < 0)
1339 return ret;
1340 index = ret;
1341
0504cffc
AS
1342 /* Pad to end of cacheline */
1343 while (index % CACHELINE_DWORDS)
1344 wa_ctx_emit(batch, index, MI_NOOP);
1345
1346 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1347}
1348
1349static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1350 struct i915_wa_ctx_bb *wa_ctx,
1351 uint32_t *const batch,
1352 uint32_t *offset)
1353{
0907c8f7 1354 struct drm_device *dev = ring->dev;
0504cffc
AS
1355 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1356
9b01435d
AS
1357 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1358 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1359 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1360 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1361 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1362 wa_ctx_emit(batch, index,
1363 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1364 wa_ctx_emit(batch, index, MI_NOOP);
1365 }
1366
0907c8f7
AS
1367 /* WaDisableCtxRestoreArbitration:skl,bxt */
1368 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1369 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1370 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1371
0504cffc
AS
1372 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1373
1374 return wa_ctx_end(wa_ctx, *offset = index, 1);
1375}
1376
17ee950d
AS
1377static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1378{
1379 int ret;
1380
1381 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1382 if (!ring->wa_ctx.obj) {
1383 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1384 return -ENOMEM;
1385 }
1386
1387 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1388 if (ret) {
1389 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1390 ret);
1391 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1392 return ret;
1393 }
1394
1395 return 0;
1396}
1397
1398static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1399{
1400 if (ring->wa_ctx.obj) {
1401 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1402 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1403 ring->wa_ctx.obj = NULL;
1404 }
1405}
1406
1407static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1408{
1409 int ret;
1410 uint32_t *batch;
1411 uint32_t offset;
1412 struct page *page;
1413 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1414
1415 WARN_ON(ring->id != RCS);
1416
5e60d790 1417 /* update this when WA for higher Gen are added */
0504cffc
AS
1418 if (INTEL_INFO(ring->dev)->gen > 9) {
1419 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1420 INTEL_INFO(ring->dev)->gen);
5e60d790 1421 return 0;
0504cffc 1422 }
5e60d790 1423
c4db7599
AS
1424 /* some WA perform writes to scratch page, ensure it is valid */
1425 if (ring->scratch.obj == NULL) {
1426 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1427 return -EINVAL;
1428 }
1429
17ee950d
AS
1430 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1431 if (ret) {
1432 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1433 return ret;
1434 }
1435
1436 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1437 batch = kmap_atomic(page);
1438 offset = 0;
1439
1440 if (INTEL_INFO(ring->dev)->gen == 8) {
1441 ret = gen8_init_indirectctx_bb(ring,
1442 &wa_ctx->indirect_ctx,
1443 batch,
1444 &offset);
1445 if (ret)
1446 goto out;
1447
1448 ret = gen8_init_perctx_bb(ring,
1449 &wa_ctx->per_ctx,
1450 batch,
1451 &offset);
1452 if (ret)
1453 goto out;
0504cffc
AS
1454 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1455 ret = gen9_init_indirectctx_bb(ring,
1456 &wa_ctx->indirect_ctx,
1457 batch,
1458 &offset);
1459 if (ret)
1460 goto out;
1461
1462 ret = gen9_init_perctx_bb(ring,
1463 &wa_ctx->per_ctx,
1464 batch,
1465 &offset);
1466 if (ret)
1467 goto out;
17ee950d
AS
1468 }
1469
1470out:
1471 kunmap_atomic(batch);
1472 if (ret)
1473 lrc_destroy_wa_ctx_obj(ring);
1474
1475 return ret;
1476}
1477
9b1136d5
OM
1478static int gen8_init_common_ring(struct intel_engine_cs *ring)
1479{
1480 struct drm_device *dev = ring->dev;
1481 struct drm_i915_private *dev_priv = dev->dev_private;
1482
e84fe803
NH
1483 lrc_setup_hardware_status_page(ring,
1484 ring->default_context->engine[ring->id].state);
1485
73d477f6
OM
1486 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1487 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1488
2e5356da
AS
1489 if (ring->status_page.obj) {
1490 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1491 (u32)ring->status_page.gfx_addr);
1492 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1493 }
1494
9b1136d5
OM
1495 I915_WRITE(RING_MODE_GEN7(ring),
1496 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1497 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1498 POSTING_READ(RING_MODE_GEN7(ring));
c0a03a2e 1499 ring->next_context_status_buffer = 0;
9b1136d5
OM
1500 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1501
1502 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1503
1504 return 0;
1505}
1506
1507static int gen8_init_render_ring(struct intel_engine_cs *ring)
1508{
1509 struct drm_device *dev = ring->dev;
1510 struct drm_i915_private *dev_priv = dev->dev_private;
1511 int ret;
1512
1513 ret = gen8_init_common_ring(ring);
1514 if (ret)
1515 return ret;
1516
1517 /* We need to disable the AsyncFlip performance optimisations in order
1518 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1519 * programmed to '1' on all products.
1520 *
1521 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1522 */
1523 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1524
9b1136d5
OM
1525 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1526
771b9a53 1527 return init_workarounds_ring(ring);
9b1136d5
OM
1528}
1529
82ef822e
DL
1530static int gen9_init_render_ring(struct intel_engine_cs *ring)
1531{
1532 int ret;
1533
1534 ret = gen8_init_common_ring(ring);
1535 if (ret)
1536 return ret;
1537
1538 return init_workarounds_ring(ring);
1539}
1540
7a01a0a2
MT
1541static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1542{
1543 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1544 struct intel_engine_cs *ring = req->ring;
1545 struct intel_ringbuffer *ringbuf = req->ringbuf;
1546 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1547 int i, ret;
1548
1549 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1550 if (ret)
1551 return ret;
1552
1553 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1554 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1555 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1556
1557 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1558 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1559 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1560 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1561 }
1562
1563 intel_logical_ring_emit(ringbuf, MI_NOOP);
1564 intel_logical_ring_advance(ringbuf);
1565
1566 return 0;
1567}
1568
be795fc1 1569static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1570 u64 offset, unsigned dispatch_flags)
15648585 1571{
be795fc1 1572 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1573 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1574 int ret;
1575
7a01a0a2
MT
1576 /* Don't rely in hw updating PDPs, specially in lite-restore.
1577 * Ideally, we should set Force PD Restore in ctx descriptor,
1578 * but we can't. Force Restore would be a second option, but
1579 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1580 * not idle). PML4 is allocated during ppgtt init so this is
1581 * not needed in 48-bit.*/
7a01a0a2
MT
1582 if (req->ctx->ppgtt &&
1583 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1584 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1585 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1586 ret = intel_logical_ring_emit_pdps(req);
1587 if (ret)
1588 return ret;
1589 }
7a01a0a2
MT
1590
1591 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1592 }
1593
4d616a29 1594 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1595 if (ret)
1596 return ret;
1597
1598 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1599 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1600 (ppgtt<<8) |
1601 (dispatch_flags & I915_DISPATCH_RS ?
1602 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1603 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1604 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1605 intel_logical_ring_emit(ringbuf, MI_NOOP);
1606 intel_logical_ring_advance(ringbuf);
1607
1608 return 0;
1609}
1610
73d477f6
OM
1611static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1612{
1613 struct drm_device *dev = ring->dev;
1614 struct drm_i915_private *dev_priv = dev->dev_private;
1615 unsigned long flags;
1616
7cd512f1 1617 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1618 return false;
1619
1620 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1621 if (ring->irq_refcount++ == 0) {
1622 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1623 POSTING_READ(RING_IMR(ring->mmio_base));
1624 }
1625 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1626
1627 return true;
1628}
1629
1630static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1631{
1632 struct drm_device *dev = ring->dev;
1633 struct drm_i915_private *dev_priv = dev->dev_private;
1634 unsigned long flags;
1635
1636 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1637 if (--ring->irq_refcount == 0) {
1638 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1639 POSTING_READ(RING_IMR(ring->mmio_base));
1640 }
1641 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1642}
1643
7deb4d39 1644static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1645 u32 invalidate_domains,
1646 u32 unused)
1647{
7deb4d39 1648 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1649 struct intel_engine_cs *ring = ringbuf->ring;
1650 struct drm_device *dev = ring->dev;
1651 struct drm_i915_private *dev_priv = dev->dev_private;
1652 uint32_t cmd;
1653 int ret;
1654
4d616a29 1655 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1656 if (ret)
1657 return ret;
1658
1659 cmd = MI_FLUSH_DW + 1;
1660
f0a1fb10
CW
1661 /* We always require a command barrier so that subsequent
1662 * commands, such as breadcrumb interrupts, are strictly ordered
1663 * wrt the contents of the write cache being flushed to memory
1664 * (and thus being coherent from the CPU).
1665 */
1666 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1667
1668 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1669 cmd |= MI_INVALIDATE_TLB;
1670 if (ring == &dev_priv->ring[VCS])
1671 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1672 }
1673
1674 intel_logical_ring_emit(ringbuf, cmd);
1675 intel_logical_ring_emit(ringbuf,
1676 I915_GEM_HWS_SCRATCH_ADDR |
1677 MI_FLUSH_DW_USE_GTT);
1678 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1679 intel_logical_ring_emit(ringbuf, 0); /* value */
1680 intel_logical_ring_advance(ringbuf);
1681
1682 return 0;
1683}
1684
7deb4d39 1685static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1686 u32 invalidate_domains,
1687 u32 flush_domains)
1688{
7deb4d39 1689 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1690 struct intel_engine_cs *ring = ringbuf->ring;
1691 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
9647ff36 1692 bool vf_flush_wa;
4712274c
OM
1693 u32 flags = 0;
1694 int ret;
1695
1696 flags |= PIPE_CONTROL_CS_STALL;
1697
1698 if (flush_domains) {
1699 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1700 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1701 }
1702
1703 if (invalidate_domains) {
1704 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1705 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1706 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1707 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1708 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1709 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1710 flags |= PIPE_CONTROL_QW_WRITE;
1711 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1712 }
1713
9647ff36
ID
1714 /*
1715 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1716 * control.
1717 */
1718 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1719 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1720
4d616a29 1721 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1722 if (ret)
1723 return ret;
1724
9647ff36
ID
1725 if (vf_flush_wa) {
1726 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1727 intel_logical_ring_emit(ringbuf, 0);
1728 intel_logical_ring_emit(ringbuf, 0);
1729 intel_logical_ring_emit(ringbuf, 0);
1730 intel_logical_ring_emit(ringbuf, 0);
1731 intel_logical_ring_emit(ringbuf, 0);
1732 }
1733
4712274c
OM
1734 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1735 intel_logical_ring_emit(ringbuf, flags);
1736 intel_logical_ring_emit(ringbuf, scratch_addr);
1737 intel_logical_ring_emit(ringbuf, 0);
1738 intel_logical_ring_emit(ringbuf, 0);
1739 intel_logical_ring_emit(ringbuf, 0);
1740 intel_logical_ring_advance(ringbuf);
1741
1742 return 0;
1743}
1744
e94e37ad
OM
1745static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1746{
1747 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1748}
1749
1750static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1751{
1752 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1753}
1754
319404df
ID
1755static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1756{
1757
1758 /*
1759 * On BXT A steppings there is a HW coherency issue whereby the
1760 * MI_STORE_DATA_IMM storing the completed request's seqno
1761 * occasionally doesn't invalidate the CPU cache. Work around this by
1762 * clflushing the corresponding cacheline whenever the caller wants
1763 * the coherency to be guaranteed. Note that this cacheline is known
1764 * to be clean at this point, since we only write it in
1765 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1766 * this clflush in practice becomes an invalidate operation.
1767 */
1768
1769 if (!lazy_coherency)
1770 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1771
1772 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1773}
1774
1775static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1776{
1777 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1778
1779 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1780 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1781}
1782
c4e76638 1783static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1784{
c4e76638 1785 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1786 struct intel_engine_cs *ring = ringbuf->ring;
1787 u32 cmd;
1788 int ret;
1789
53292cdb
MT
1790 /*
1791 * Reserve space for 2 NOOPs at the end of each request to be
1792 * used as a workaround for not being allowed to do lite
1793 * restore with HEAD==TAIL (WaIdleLiteRestore).
1794 */
4d616a29 1795 ret = intel_logical_ring_begin(request, 8);
4da46e1e
OM
1796 if (ret)
1797 return ret;
1798
8edfbb8b 1799 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1800 cmd |= MI_GLOBAL_GTT;
1801
1802 intel_logical_ring_emit(ringbuf, cmd);
1803 intel_logical_ring_emit(ringbuf,
1804 (ring->status_page.gfx_addr +
1805 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1806 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1807 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1808 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1809 intel_logical_ring_emit(ringbuf, MI_NOOP);
ae70797d 1810 intel_logical_ring_advance_and_submit(request);
4da46e1e 1811
53292cdb
MT
1812 /*
1813 * Here we add two extra NOOPs as padding to avoid
1814 * lite restore of a context with HEAD==TAIL.
1815 */
1816 intel_logical_ring_emit(ringbuf, MI_NOOP);
1817 intel_logical_ring_emit(ringbuf, MI_NOOP);
1818 intel_logical_ring_advance(ringbuf);
1819
4da46e1e
OM
1820 return 0;
1821}
1822
be01363f 1823static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1824{
cef437ad 1825 struct render_state so;
cef437ad
DL
1826 int ret;
1827
be01363f 1828 ret = i915_gem_render_state_prepare(req->ring, &so);
cef437ad
DL
1829 if (ret)
1830 return ret;
1831
1832 if (so.rodata == NULL)
1833 return 0;
1834
be795fc1 1835 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
be01363f 1836 I915_DISPATCH_SECURE);
cef437ad
DL
1837 if (ret)
1838 goto out;
1839
84e81020
AS
1840 ret = req->ring->emit_bb_start(req,
1841 (so.ggtt_offset + so.aux_batch_offset),
1842 I915_DISPATCH_SECURE);
1843 if (ret)
1844 goto out;
1845
b2af0376 1846 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1847
cef437ad
DL
1848out:
1849 i915_gem_render_state_fini(&so);
1850 return ret;
1851}
1852
8753181e 1853static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1854{
1855 int ret;
1856
e2be4faf 1857 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1858 if (ret)
1859 return ret;
1860
3bbaba0c
PA
1861 ret = intel_rcs_context_init_mocs(req);
1862 /*
1863 * Failing to program the MOCS is non-fatal.The system will not
1864 * run at peak performance. So generate an error and carry on.
1865 */
1866 if (ret)
1867 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1868
be01363f 1869 return intel_lr_context_render_state_init(req);
e7778be1
TD
1870}
1871
73e4d07f
OM
1872/**
1873 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1874 *
1875 * @ring: Engine Command Streamer.
1876 *
1877 */
454afebd
OM
1878void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1879{
6402c330 1880 struct drm_i915_private *dev_priv;
9832b9da 1881
48d82387
OM
1882 if (!intel_ring_initialized(ring))
1883 return;
1884
6402c330
JH
1885 dev_priv = ring->dev->dev_private;
1886
9832b9da
OM
1887 intel_logical_ring_stop(ring);
1888 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
48d82387
OM
1889
1890 if (ring->cleanup)
1891 ring->cleanup(ring);
1892
1893 i915_cmd_parser_fini_ring(ring);
06fbca71 1894 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1895
1896 if (ring->status_page.obj) {
1897 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1898 ring->status_page.obj = NULL;
1899 }
17ee950d
AS
1900
1901 lrc_destroy_wa_ctx_obj(ring);
454afebd
OM
1902}
1903
1904static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1905{
48d82387 1906 int ret;
48d82387
OM
1907
1908 /* Intentionally left blank. */
1909 ring->buffer = NULL;
1910
1911 ring->dev = dev;
1912 INIT_LIST_HEAD(&ring->active_list);
1913 INIT_LIST_HEAD(&ring->request_list);
06fbca71 1914 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
1915 init_waitqueue_head(&ring->irq_queue);
1916
acdd884a 1917 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1918 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
1919 spin_lock_init(&ring->execlist_lock);
1920
48d82387
OM
1921 ret = i915_cmd_parser_init_ring(ring);
1922 if (ret)
1923 return ret;
1924
e84fe803
NH
1925 ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1926 if (ret)
1927 return ret;
1928
1929 /* As this is the default context, always pin it */
1930 ret = intel_lr_context_do_pin(
1931 ring,
1932 ring->default_context->engine[ring->id].state,
1933 ring->default_context->engine[ring->id].ringbuf);
1934 if (ret) {
1935 DRM_ERROR(
1936 "Failed to pin and map ringbuffer %s: %d\n",
1937 ring->name, ret);
1938 return ret;
1939 }
564ddb2f
OM
1940
1941 return ret;
454afebd
OM
1942}
1943
1944static int logical_render_ring_init(struct drm_device *dev)
1945{
1946 struct drm_i915_private *dev_priv = dev->dev_private;
1947 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 1948 int ret;
454afebd
OM
1949
1950 ring->name = "render ring";
1951 ring->id = RCS;
1952 ring->mmio_base = RENDER_RING_BASE;
1953 ring->irq_enable_mask =
1954 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1955 ring->irq_keep_mask =
1956 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1957 if (HAS_L3_DPF(dev))
1958 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1959
82ef822e
DL
1960 if (INTEL_INFO(dev)->gen >= 9)
1961 ring->init_hw = gen9_init_render_ring;
1962 else
1963 ring->init_hw = gen8_init_render_ring;
e7778be1 1964 ring->init_context = gen8_init_rcs_context;
9b1136d5 1965 ring->cleanup = intel_fini_pipe_control;
319404df
ID
1966 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1967 ring->get_seqno = bxt_a_get_seqno;
1968 ring->set_seqno = bxt_a_set_seqno;
1969 } else {
1970 ring->get_seqno = gen8_get_seqno;
1971 ring->set_seqno = gen8_set_seqno;
1972 }
4da46e1e 1973 ring->emit_request = gen8_emit_request;
4712274c 1974 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1975 ring->irq_get = gen8_logical_ring_get_irq;
1976 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1977 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1978
99be1dfe 1979 ring->dev = dev;
c4db7599
AS
1980
1981 ret = intel_init_pipe_control(ring);
99be1dfe
DV
1982 if (ret)
1983 return ret;
1984
17ee950d
AS
1985 ret = intel_init_workaround_bb(ring);
1986 if (ret) {
1987 /*
1988 * We continue even if we fail to initialize WA batch
1989 * because we only expect rare glitches but nothing
1990 * critical to prevent us from using GPU
1991 */
1992 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1993 ret);
1994 }
1995
c4db7599
AS
1996 ret = logical_ring_init(dev, ring);
1997 if (ret) {
17ee950d 1998 lrc_destroy_wa_ctx_obj(ring);
c4db7599 1999 }
17ee950d
AS
2000
2001 return ret;
454afebd
OM
2002}
2003
2004static int logical_bsd_ring_init(struct drm_device *dev)
2005{
2006 struct drm_i915_private *dev_priv = dev->dev_private;
2007 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2008
2009 ring->name = "bsd ring";
2010 ring->id = VCS;
2011 ring->mmio_base = GEN6_BSD_RING_BASE;
2012 ring->irq_enable_mask =
2013 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
2014 ring->irq_keep_mask =
2015 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 2016
ecfe00d8 2017 ring->init_hw = gen8_init_common_ring;
319404df
ID
2018 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2019 ring->get_seqno = bxt_a_get_seqno;
2020 ring->set_seqno = bxt_a_set_seqno;
2021 } else {
2022 ring->get_seqno = gen8_get_seqno;
2023 ring->set_seqno = gen8_set_seqno;
2024 }
4da46e1e 2025 ring->emit_request = gen8_emit_request;
4712274c 2026 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2027 ring->irq_get = gen8_logical_ring_get_irq;
2028 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2029 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2030
454afebd
OM
2031 return logical_ring_init(dev, ring);
2032}
2033
2034static int logical_bsd2_ring_init(struct drm_device *dev)
2035{
2036 struct drm_i915_private *dev_priv = dev->dev_private;
2037 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2038
2039 ring->name = "bds2 ring";
2040 ring->id = VCS2;
2041 ring->mmio_base = GEN8_BSD2_RING_BASE;
2042 ring->irq_enable_mask =
2043 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
2044 ring->irq_keep_mask =
2045 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 2046
ecfe00d8 2047 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
2048 ring->get_seqno = gen8_get_seqno;
2049 ring->set_seqno = gen8_set_seqno;
4da46e1e 2050 ring->emit_request = gen8_emit_request;
4712274c 2051 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2052 ring->irq_get = gen8_logical_ring_get_irq;
2053 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2054 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2055
454afebd
OM
2056 return logical_ring_init(dev, ring);
2057}
2058
2059static int logical_blt_ring_init(struct drm_device *dev)
2060{
2061 struct drm_i915_private *dev_priv = dev->dev_private;
2062 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2063
2064 ring->name = "blitter ring";
2065 ring->id = BCS;
2066 ring->mmio_base = BLT_RING_BASE;
2067 ring->irq_enable_mask =
2068 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
2069 ring->irq_keep_mask =
2070 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 2071
ecfe00d8 2072 ring->init_hw = gen8_init_common_ring;
319404df
ID
2073 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2074 ring->get_seqno = bxt_a_get_seqno;
2075 ring->set_seqno = bxt_a_set_seqno;
2076 } else {
2077 ring->get_seqno = gen8_get_seqno;
2078 ring->set_seqno = gen8_set_seqno;
2079 }
4da46e1e 2080 ring->emit_request = gen8_emit_request;
4712274c 2081 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2082 ring->irq_get = gen8_logical_ring_get_irq;
2083 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2084 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2085
454afebd
OM
2086 return logical_ring_init(dev, ring);
2087}
2088
2089static int logical_vebox_ring_init(struct drm_device *dev)
2090{
2091 struct drm_i915_private *dev_priv = dev->dev_private;
2092 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2093
2094 ring->name = "video enhancement ring";
2095 ring->id = VECS;
2096 ring->mmio_base = VEBOX_RING_BASE;
2097 ring->irq_enable_mask =
2098 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
2099 ring->irq_keep_mask =
2100 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 2101
ecfe00d8 2102 ring->init_hw = gen8_init_common_ring;
319404df
ID
2103 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2104 ring->get_seqno = bxt_a_get_seqno;
2105 ring->set_seqno = bxt_a_set_seqno;
2106 } else {
2107 ring->get_seqno = gen8_get_seqno;
2108 ring->set_seqno = gen8_set_seqno;
2109 }
4da46e1e 2110 ring->emit_request = gen8_emit_request;
4712274c 2111 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2112 ring->irq_get = gen8_logical_ring_get_irq;
2113 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2114 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2115
454afebd
OM
2116 return logical_ring_init(dev, ring);
2117}
2118
73e4d07f
OM
2119/**
2120 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2121 * @dev: DRM device.
2122 *
2123 * This function inits the engines for an Execlists submission style (the equivalent in the
2124 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2125 * those engines that are present in the hardware.
2126 *
2127 * Return: non-zero if the initialization failed.
2128 */
454afebd
OM
2129int intel_logical_rings_init(struct drm_device *dev)
2130{
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 int ret;
2133
2134 ret = logical_render_ring_init(dev);
2135 if (ret)
2136 return ret;
2137
2138 if (HAS_BSD(dev)) {
2139 ret = logical_bsd_ring_init(dev);
2140 if (ret)
2141 goto cleanup_render_ring;
2142 }
2143
2144 if (HAS_BLT(dev)) {
2145 ret = logical_blt_ring_init(dev);
2146 if (ret)
2147 goto cleanup_bsd_ring;
2148 }
2149
2150 if (HAS_VEBOX(dev)) {
2151 ret = logical_vebox_ring_init(dev);
2152 if (ret)
2153 goto cleanup_blt_ring;
2154 }
2155
2156 if (HAS_BSD2(dev)) {
2157 ret = logical_bsd2_ring_init(dev);
2158 if (ret)
2159 goto cleanup_vebox_ring;
2160 }
2161
454afebd
OM
2162 return 0;
2163
454afebd
OM
2164cleanup_vebox_ring:
2165 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2166cleanup_blt_ring:
2167 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2168cleanup_bsd_ring:
2169 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2170cleanup_render_ring:
2171 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2172
2173 return ret;
2174}
2175
0cea6502
JM
2176static u32
2177make_rpcs(struct drm_device *dev)
2178{
2179 u32 rpcs = 0;
2180
2181 /*
2182 * No explicit RPCS request is needed to ensure full
2183 * slice/subslice/EU enablement prior to Gen9.
2184 */
2185 if (INTEL_INFO(dev)->gen < 9)
2186 return 0;
2187
2188 /*
2189 * Starting in Gen9, render power gating can leave
2190 * slice/subslice/EU in a partially enabled state. We
2191 * must make an explicit request through RPCS for full
2192 * enablement.
2193 */
2194 if (INTEL_INFO(dev)->has_slice_pg) {
2195 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2196 rpcs |= INTEL_INFO(dev)->slice_total <<
2197 GEN8_RPCS_S_CNT_SHIFT;
2198 rpcs |= GEN8_RPCS_ENABLE;
2199 }
2200
2201 if (INTEL_INFO(dev)->has_subslice_pg) {
2202 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2203 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2204 GEN8_RPCS_SS_CNT_SHIFT;
2205 rpcs |= GEN8_RPCS_ENABLE;
2206 }
2207
2208 if (INTEL_INFO(dev)->has_eu_pg) {
2209 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2210 GEN8_RPCS_EU_MIN_SHIFT;
2211 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2212 GEN8_RPCS_EU_MAX_SHIFT;
2213 rpcs |= GEN8_RPCS_ENABLE;
2214 }
2215
2216 return rpcs;
2217}
2218
8670d6f9
OM
2219static int
2220populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2221 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2222{
2d965536
TD
2223 struct drm_device *dev = ring->dev;
2224 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2225 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2226 struct page *page;
2227 uint32_t *reg_state;
2228 int ret;
2229
2d965536
TD
2230 if (!ppgtt)
2231 ppgtt = dev_priv->mm.aliasing_ppgtt;
2232
8670d6f9
OM
2233 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2234 if (ret) {
2235 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2236 return ret;
2237 }
2238
2239 ret = i915_gem_object_get_pages(ctx_obj);
2240 if (ret) {
2241 DRM_DEBUG_DRIVER("Could not get object pages\n");
2242 return ret;
2243 }
2244
2245 i915_gem_object_pin_pages(ctx_obj);
2246
2247 /* The second page of the context object contains some fields which must
2248 * be set up prior to the first execution. */
d1675198 2249 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
8670d6f9
OM
2250 reg_state = kmap_atomic(page);
2251
2252 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2253 * commands followed by (reg, value) pairs. The values we are setting here are
2254 * only for the first context restore: on a subsequent save, the GPU will
2255 * recreate this batchbuffer with new values (including all the missing
2256 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2257 if (ring->id == RCS)
2258 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2259 else
2260 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2261 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2262 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2263 reg_state[CTX_CONTEXT_CONTROL+1] =
5baa22c5 2264 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
6922528a
AJ
2265 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2266 CTX_CTRL_RS_CTX_ENABLE);
8670d6f9
OM
2267 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2268 reg_state[CTX_RING_HEAD+1] = 0;
2269 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2270 reg_state[CTX_RING_TAIL+1] = 0;
2271 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
7ba717cf
TD
2272 /* Ring buffer start address is not known until the buffer is pinned.
2273 * It is written to the context image in execlists_update_context()
2274 */
8670d6f9
OM
2275 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2276 reg_state[CTX_RING_BUFFER_CONTROL+1] =
2277 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2278 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2279 reg_state[CTX_BB_HEAD_U+1] = 0;
2280 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2281 reg_state[CTX_BB_HEAD_L+1] = 0;
2282 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2283 reg_state[CTX_BB_STATE+1] = (1<<5);
2284 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2285 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2286 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2287 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2288 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2289 reg_state[CTX_SECOND_BB_STATE+1] = 0;
2290 if (ring->id == RCS) {
8670d6f9
OM
2291 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2292 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2293 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2294 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2295 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2296 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
17ee950d
AS
2297 if (ring->wa_ctx.obj) {
2298 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2299 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2300
2301 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2302 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2303 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2304
2305 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2306 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2307
2308 reg_state[CTX_BB_PER_CTX_PTR+1] =
2309 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2310 0x01;
2311 }
8670d6f9
OM
2312 }
2313 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2314 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2315 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2316 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2317 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2318 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2319 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2320 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2321 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2322 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2323 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2324 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
d7b2633d 2325
2dba3239
MT
2326 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2327 /* 64b PPGTT (48bit canonical)
2328 * PDP0_DESCRIPTOR contains the base address to PML4 and
2329 * other PDP Descriptors are ignored.
2330 */
2331 ASSIGN_CTX_PML4(ppgtt, reg_state);
2332 } else {
2333 /* 32b PPGTT
2334 * PDP*_DESCRIPTOR contains the base address of space supported.
2335 * With dynamic page allocation, PDPs may not be allocated at
2336 * this point. Point the unallocated PDPs to the scratch page
2337 */
2338 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2339 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2340 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2341 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2342 }
2343
8670d6f9
OM
2344 if (ring->id == RCS) {
2345 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0cea6502
JM
2346 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2347 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
8670d6f9
OM
2348 }
2349
2350 kunmap_atomic(reg_state);
2351
2352 ctx_obj->dirty = 1;
2353 set_page_dirty(page);
2354 i915_gem_object_unpin_pages(ctx_obj);
2355
2356 return 0;
2357}
2358
73e4d07f
OM
2359/**
2360 * intel_lr_context_free() - free the LRC specific bits of a context
2361 * @ctx: the LR context to free.
2362 *
2363 * The real context freeing is done in i915_gem_context_free: this only
2364 * takes care of the bits that are LRC related: the per-engine backing
2365 * objects and the logical ringbuffer.
2366 */
ede7d42b
OM
2367void intel_lr_context_free(struct intel_context *ctx)
2368{
8c857917
OM
2369 int i;
2370
2371 for (i = 0; i < I915_NUM_RINGS; i++) {
2372 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2373
8c857917 2374 if (ctx_obj) {
dcb4c12a
OM
2375 struct intel_ringbuffer *ringbuf =
2376 ctx->engine[i].ringbuf;
2377 struct intel_engine_cs *ring = ringbuf->ring;
2378
7ba717cf
TD
2379 if (ctx == ring->default_context) {
2380 intel_unpin_ringbuffer_obj(ringbuf);
2381 i915_gem_object_ggtt_unpin(ctx_obj);
2382 }
a7cbedec 2383 WARN_ON(ctx->engine[ring->id].pin_count);
01101fa7 2384 intel_ringbuffer_free(ringbuf);
8c857917
OM
2385 drm_gem_object_unreference(&ctx_obj->base);
2386 }
2387 }
2388}
2389
2390static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2391{
2392 int ret = 0;
2393
468c6816 2394 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
2395
2396 switch (ring->id) {
2397 case RCS:
468c6816
MN
2398 if (INTEL_INFO(ring->dev)->gen >= 9)
2399 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2400 else
2401 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2402 break;
2403 case VCS:
2404 case BCS:
2405 case VECS:
2406 case VCS2:
2407 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2408 break;
2409 }
2410
2411 return ret;
ede7d42b
OM
2412}
2413
70b0ea86 2414static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
2415 struct drm_i915_gem_object *default_ctx_obj)
2416{
2417 struct drm_i915_private *dev_priv = ring->dev->dev_private;
d1675198 2418 struct page *page;
1df06b75 2419
d1675198
AD
2420 /* The HWSP is part of the default context object in LRC mode. */
2421 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2422 + LRC_PPHWSP_PN * PAGE_SIZE;
2423 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2424 ring->status_page.page_addr = kmap(page);
1df06b75
TD
2425 ring->status_page.obj = default_ctx_obj;
2426
2427 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2428 (u32)ring->status_page.gfx_addr);
2429 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
2430}
2431
73e4d07f 2432/**
e84fe803 2433 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2434 * @ctx: LR context to create.
2435 * @ring: engine to be used with the context.
2436 *
2437 * This function can be called more than once, with different engines, if we plan
2438 * to use the context with them. The context backing objects and the ringbuffers
2439 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2440 * the creation is a deferred call: it's better to make sure first that we need to use
2441 * a given ring with the context.
2442 *
32197aab 2443 * Return: non-zero on error.
73e4d07f 2444 */
e84fe803
NH
2445
2446int intel_lr_context_deferred_alloc(struct intel_context *ctx,
ede7d42b
OM
2447 struct intel_engine_cs *ring)
2448{
8c857917
OM
2449 struct drm_device *dev = ring->dev;
2450 struct drm_i915_gem_object *ctx_obj;
2451 uint32_t context_size;
84c2377f 2452 struct intel_ringbuffer *ringbuf;
8c857917
OM
2453 int ret;
2454
ede7d42b 2455 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 2456 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 2457
8c857917
OM
2458 context_size = round_up(get_lr_context_size(ring), 4096);
2459
d1675198
AD
2460 /* One extra page as the sharing data between driver and GuC */
2461 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2462
149c86e7 2463 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2464 if (!ctx_obj) {
2465 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2466 return -ENOMEM;
8c857917
OM
2467 }
2468
01101fa7
CW
2469 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2470 if (IS_ERR(ringbuf)) {
2471 ret = PTR_ERR(ringbuf);
e84fe803 2472 goto error_deref_obj;
8670d6f9
OM
2473 }
2474
2475 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2476 if (ret) {
2477 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2478 goto error_ringbuf;
84c2377f
OM
2479 }
2480
2481 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 2482 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 2483
e84fe803
NH
2484 if (ctx != ring->default_context && ring->init_context) {
2485 struct drm_i915_gem_request *req;
76c39168 2486
e84fe803
NH
2487 ret = i915_gem_request_alloc(ring,
2488 ctx, &req);
2489 if (ret) {
2490 DRM_ERROR("ring create req: %d\n",
2491 ret);
2492 i915_gem_request_cancel(req);
2493 goto error_ringbuf;
771b9a53
MT
2494 }
2495
e84fe803
NH
2496 ret = ring->init_context(req);
2497 if (ret) {
2498 DRM_ERROR("ring init context: %d\n",
2499 ret);
2500 i915_gem_request_cancel(req);
2501 goto error_ringbuf;
2502 }
2503 i915_add_request_no_flush(req);
564ddb2f 2504 }
ede7d42b 2505 return 0;
8670d6f9 2506
01101fa7
CW
2507error_ringbuf:
2508 intel_ringbuffer_free(ringbuf);
e84fe803 2509error_deref_obj:
8670d6f9 2510 drm_gem_object_unreference(&ctx_obj->base);
e84fe803
NH
2511 ctx->engine[ring->id].ringbuf = NULL;
2512 ctx->engine[ring->id].state = NULL;
8670d6f9 2513 return ret;
ede7d42b 2514}
3e5b6f05
TD
2515
2516void intel_lr_context_reset(struct drm_device *dev,
2517 struct intel_context *ctx)
2518{
2519 struct drm_i915_private *dev_priv = dev->dev_private;
2520 struct intel_engine_cs *ring;
2521 int i;
2522
2523 for_each_ring(ring, dev_priv, i) {
2524 struct drm_i915_gem_object *ctx_obj =
2525 ctx->engine[ring->id].state;
2526 struct intel_ringbuffer *ringbuf =
2527 ctx->engine[ring->id].ringbuf;
2528 uint32_t *reg_state;
2529 struct page *page;
2530
2531 if (!ctx_obj)
2532 continue;
2533
2534 if (i915_gem_object_get_pages(ctx_obj)) {
2535 WARN(1, "Failed get_pages for context obj\n");
2536 continue;
2537 }
d1675198 2538 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
3e5b6f05
TD
2539 reg_state = kmap_atomic(page);
2540
2541 reg_state[CTX_RING_HEAD+1] = 0;
2542 reg_state[CTX_RING_TAIL+1] = 0;
2543
2544 kunmap_atomic(reg_state);
2545
2546 ringbuf->head = 0;
2547 ringbuf->tail = 0;
2548 }
2549}