]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/intel_pm.c
drm/i915: Enable HPLL watermarks on g4x
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
CommitLineData
85208be0
ED
1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
2b4e57bd 28#include <linux/cpufreq.h>
9c2f7a9d 29#include <drm/drm_plane_helper.h>
85208be0
ED
30#include "i915_drv.h"
31#include "intel_drv.h"
eb48eb00
DV
32#include "../../../platform/x86/intel_ips.h"
33#include <linux/module.h>
c8fe32c1 34#include <drm/drm_atomic_helper.h>
85208be0 35
dc39fff7 36/**
18afd443
JN
37 * DOC: RC6
38 *
dc39fff7
BW
39 * RC6 is a special power stage which allows the GPU to enter an very
40 * low-voltage mode when idle, using down to 0V while at this stage. This
41 * stage is entered automatically when the GPU is idle when RC6 support is
42 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43 *
44 * There are different RC6 modes available in Intel GPU, which differentiate
45 * among each other with the latency required to enter and leave RC6 and
46 * voltage consumed by the GPU in different states.
47 *
48 * The combination of the following flags define which states GPU is allowed
49 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50 * RC6pp is deepest RC6. Their support by hardware varies according to the
51 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52 * which brings the most power savings; deeper states save more power, but
53 * require higher latency to switch to and wake up.
54 */
55#define INTEL_RC6_ENABLE (1<<0)
56#define INTEL_RC6p_ENABLE (1<<1)
57#define INTEL_RC6pp_ENABLE (1<<2)
58
46f16e63 59static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
a82abe43 60{
b033bb6d 61 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
dc00b6a0
DV
62 I915_WRITE(CHICKEN_PAR1_1,
63 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
64
b033bb6d
MK
65 I915_WRITE(GEN8_CONFIG0,
66 I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
590e8ff0 67
9fb5026f 68 /* WaEnableChickenDCPR:skl,bxt,kbl,glk */
590e8ff0
MK
69 I915_WRITE(GEN8_CHICKEN_DCPR_1,
70 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
0f78dee6
MK
71
72 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
9fb5026f 73 /* WaFbcWakeMemOn:skl,bxt,kbl,glk */
303d4ea5
MK
74 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
75 DISP_FBC_WM_DIS |
76 DISP_FBC_MEMORY_WAKE);
d1b4eefd
MK
77
78 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
79 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
80 ILK_DPFC_DISABLE_DUMMY0);
b033bb6d
MK
81}
82
46f16e63 83static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
b033bb6d 84{
46f16e63 85 gen9_init_clock_gating(dev_priv);
b033bb6d 86
a7546159
NH
87 /* WaDisableSDEUnitClockGating:bxt */
88 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
89 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
90
32608ca2
ID
91 /*
92 * FIXME:
868434c5 93 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
32608ca2 94 */
32608ca2 95 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
868434c5 96 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
d965e7ac
ID
97
98 /*
99 * Wa: Backlight PWM may stop in the asserted state, causing backlight
100 * to stay fully on.
101 */
8aeaf64c
JN
102 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
103 PWM1_GATING_DIS | PWM2_GATING_DIS);
a82abe43
ID
104}
105
9fb5026f
ACO
106static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
107{
108 gen9_init_clock_gating(dev_priv);
109
110 /*
111 * WaDisablePWMClockGating:glk
112 * Backlight PWM may stop in the asserted state, causing backlight
113 * to stay fully on.
114 */
115 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
116 PWM1_GATING_DIS | PWM2_GATING_DIS);
f4f4b59b
ACO
117
118 /* WaDDIIOTimeout:glk */
119 if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
120 u32 val = I915_READ(CHICKEN_MISC_2);
121 val &= ~(GLK_CL0_PWR_DOWN |
122 GLK_CL1_PWR_DOWN |
123 GLK_CL2_PWR_DOWN);
124 I915_WRITE(CHICKEN_MISC_2, val);
125 }
126
9fb5026f
ACO
127}
128
148ac1f3 129static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
c921aba8 130{
c921aba8
DV
131 u32 tmp;
132
133 tmp = I915_READ(CLKCFG);
134
135 switch (tmp & CLKCFG_FSB_MASK) {
136 case CLKCFG_FSB_533:
137 dev_priv->fsb_freq = 533; /* 133*4 */
138 break;
139 case CLKCFG_FSB_800:
140 dev_priv->fsb_freq = 800; /* 200*4 */
141 break;
142 case CLKCFG_FSB_667:
143 dev_priv->fsb_freq = 667; /* 167*4 */
144 break;
145 case CLKCFG_FSB_400:
146 dev_priv->fsb_freq = 400; /* 100*4 */
147 break;
148 }
149
150 switch (tmp & CLKCFG_MEM_MASK) {
151 case CLKCFG_MEM_533:
152 dev_priv->mem_freq = 533;
153 break;
154 case CLKCFG_MEM_667:
155 dev_priv->mem_freq = 667;
156 break;
157 case CLKCFG_MEM_800:
158 dev_priv->mem_freq = 800;
159 break;
160 }
161
162 /* detect pineview DDR3 setting */
163 tmp = I915_READ(CSHRDDR3CTL);
164 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
165}
166
148ac1f3 167static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
c921aba8 168{
c921aba8
DV
169 u16 ddrpll, csipll;
170
171 ddrpll = I915_READ16(DDRMPLL1);
172 csipll = I915_READ16(CSIPLL0);
173
174 switch (ddrpll & 0xff) {
175 case 0xc:
176 dev_priv->mem_freq = 800;
177 break;
178 case 0x10:
179 dev_priv->mem_freq = 1066;
180 break;
181 case 0x14:
182 dev_priv->mem_freq = 1333;
183 break;
184 case 0x18:
185 dev_priv->mem_freq = 1600;
186 break;
187 default:
188 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
189 ddrpll & 0xff);
190 dev_priv->mem_freq = 0;
191 break;
192 }
193
20e4d407 194 dev_priv->ips.r_t = dev_priv->mem_freq;
c921aba8
DV
195
196 switch (csipll & 0x3ff) {
197 case 0x00c:
198 dev_priv->fsb_freq = 3200;
199 break;
200 case 0x00e:
201 dev_priv->fsb_freq = 3733;
202 break;
203 case 0x010:
204 dev_priv->fsb_freq = 4266;
205 break;
206 case 0x012:
207 dev_priv->fsb_freq = 4800;
208 break;
209 case 0x014:
210 dev_priv->fsb_freq = 5333;
211 break;
212 case 0x016:
213 dev_priv->fsb_freq = 5866;
214 break;
215 case 0x018:
216 dev_priv->fsb_freq = 6400;
217 break;
218 default:
219 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
220 csipll & 0x3ff);
221 dev_priv->fsb_freq = 0;
222 break;
223 }
224
225 if (dev_priv->fsb_freq == 3200) {
20e4d407 226 dev_priv->ips.c_m = 0;
c921aba8 227 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
20e4d407 228 dev_priv->ips.c_m = 1;
c921aba8 229 } else {
20e4d407 230 dev_priv->ips.c_m = 2;
c921aba8
DV
231 }
232}
233
b445e3b0
ED
234static const struct cxsr_latency cxsr_latency_table[] = {
235 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
236 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
237 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
238 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
239 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
240
241 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
242 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
243 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
244 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
245 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
246
247 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
248 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
249 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
250 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
251 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
252
253 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
254 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
255 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
256 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
257 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
258
259 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
260 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
261 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
262 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
263 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
264
265 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
266 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
267 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
268 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
269 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
270};
271
44a655ca
TU
272static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
273 bool is_ddr3,
b445e3b0
ED
274 int fsb,
275 int mem)
276{
277 const struct cxsr_latency *latency;
278 int i;
279
280 if (fsb == 0 || mem == 0)
281 return NULL;
282
283 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
284 latency = &cxsr_latency_table[i];
285 if (is_desktop == latency->is_desktop &&
286 is_ddr3 == latency->is_ddr3 &&
287 fsb == latency->fsb_freq && mem == latency->mem_freq)
288 return latency;
289 }
290
291 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
292
293 return NULL;
294}
295
fc1ac8de
VS
296static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
297{
298 u32 val;
299
300 mutex_lock(&dev_priv->rps.hw_lock);
301
302 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
303 if (enable)
304 val &= ~FORCE_DDR_HIGH_FREQ;
305 else
306 val |= FORCE_DDR_HIGH_FREQ;
307 val &= ~FORCE_DDR_LOW_FREQ;
308 val |= FORCE_DDR_FREQ_REQ_ACK;
309 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
310
311 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
312 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
313 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
314
315 mutex_unlock(&dev_priv->rps.hw_lock);
316}
317
cfb41411
VS
318static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
319{
320 u32 val;
321
322 mutex_lock(&dev_priv->rps.hw_lock);
323
324 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
325 if (enable)
326 val |= DSP_MAXFIFO_PM5_ENABLE;
327 else
328 val &= ~DSP_MAXFIFO_PM5_ENABLE;
329 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
330
331 mutex_unlock(&dev_priv->rps.hw_lock);
332}
333
f4998963
VS
334#define FW_WM(value, plane) \
335 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
336
11a85d6a 337static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
b445e3b0 338{
11a85d6a 339 bool was_enabled;
5209b1f4 340 u32 val;
b445e3b0 341
920a14b2 342 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
11a85d6a 343 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5209b1f4 344 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
a7a6c498 345 POSTING_READ(FW_BLC_SELF_VLV);
c0f86832 346 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
11a85d6a 347 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5209b1f4 348 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
a7a6c498 349 POSTING_READ(FW_BLC_SELF);
9b1e14f4 350 } else if (IS_PINEVIEW(dev_priv)) {
11a85d6a
VS
351 val = I915_READ(DSPFW3);
352 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
353 if (enable)
354 val |= PINEVIEW_SELF_REFRESH_EN;
355 else
356 val &= ~PINEVIEW_SELF_REFRESH_EN;
5209b1f4 357 I915_WRITE(DSPFW3, val);
a7a6c498 358 POSTING_READ(DSPFW3);
50a0bc90 359 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
11a85d6a 360 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5209b1f4
ID
361 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
362 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
363 I915_WRITE(FW_BLC_SELF, val);
a7a6c498 364 POSTING_READ(FW_BLC_SELF);
50a0bc90 365 } else if (IS_I915GM(dev_priv)) {
acb91359
VS
366 /*
367 * FIXME can't find a bit like this for 915G, and
368 * and yet it does have the related watermark in
369 * FW_BLC_SELF. What's going on?
370 */
11a85d6a 371 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
5209b1f4
ID
372 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
373 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
374 I915_WRITE(INSTPM, val);
a7a6c498 375 POSTING_READ(INSTPM);
5209b1f4 376 } else {
11a85d6a 377 return false;
5209b1f4 378 }
b445e3b0 379
1489bba8
VS
380 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
381
11a85d6a
VS
382 DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
383 enableddisabled(enable),
384 enableddisabled(was_enabled));
385
386 return was_enabled;
b445e3b0
ED
387}
388
62571fc3
VS
389/**
390 * intel_set_memory_cxsr - Configure CxSR state
391 * @dev_priv: i915 device
392 * @enable: Allow vs. disallow CxSR
393 *
394 * Allow or disallow the system to enter a special CxSR
395 * (C-state self refresh) state. What typically happens in CxSR mode
396 * is that several display FIFOs may get combined into a single larger
397 * FIFO for a particular plane (so called max FIFO mode) to allow the
398 * system to defer memory fetches longer, and the memory will enter
399 * self refresh.
400 *
401 * Note that enabling CxSR does not guarantee that the system enter
402 * this special mode, nor does it guarantee that the system stays
403 * in that mode once entered. So this just allows/disallows the system
404 * to autonomously utilize the CxSR mode. Other factors such as core
405 * C-states will affect when/if the system actually enters/exits the
406 * CxSR mode.
407 *
408 * Note that on VLV/CHV this actually only controls the max FIFO mode,
409 * and the system is free to enter/exit memory self refresh at any time
410 * even when the use of CxSR has been disallowed.
411 *
412 * While the system is actually in the CxSR/max FIFO mode, some plane
413 * control registers will not get latched on vblank. Thus in order to
414 * guarantee the system will respond to changes in the plane registers
415 * we must always disallow CxSR prior to making changes to those registers.
416 * Unfortunately the system will re-evaluate the CxSR conditions at
417 * frame start which happens after vblank start (which is when the plane
418 * registers would get latched), so we can't proceed with the plane update
419 * during the same frame where we disallowed CxSR.
420 *
421 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
422 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
423 * the hardware w.r.t. HPLL SR when writing to plane registers.
424 * Disallowing just CxSR is sufficient.
425 */
11a85d6a 426bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
3d90e649 427{
11a85d6a
VS
428 bool ret;
429
3d90e649 430 mutex_lock(&dev_priv->wm.wm_mutex);
11a85d6a 431 ret = _intel_set_memory_cxsr(dev_priv, enable);
04548cba
VS
432 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
433 dev_priv->wm.vlv.cxsr = enable;
434 else if (IS_G4X(dev_priv))
435 dev_priv->wm.g4x.cxsr = enable;
3d90e649 436 mutex_unlock(&dev_priv->wm.wm_mutex);
11a85d6a
VS
437
438 return ret;
3d90e649 439}
fc1ac8de 440
b445e3b0
ED
441/*
442 * Latency for FIFO fetches is dependent on several factors:
443 * - memory configuration (speed, channels)
444 * - chipset
445 * - current MCH state
446 * It can be fairly high in some situations, so here we assume a fairly
447 * pessimal value. It's a tradeoff between extra memory fetches (if we
448 * set this value too high, the FIFO will fetch frequently to stay full)
449 * and power consumption (set it too low to save power and we might see
450 * FIFO underruns and display "flicker").
451 *
452 * A value of 5us seems to be a good balance; safe for very low end
453 * platforms but not overly aggressive on lower latency configs.
454 */
5aef6003 455static const int pessimal_latency_ns = 5000;
b445e3b0 456
b5004720
VS
457#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
458 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
459
814e7f0b 460static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
b5004720 461{
814e7f0b 462 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
f07d43d2 463 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
814e7f0b 464 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
f07d43d2
VS
465 enum pipe pipe = crtc->pipe;
466 int sprite0_start, sprite1_start;
49845a23 467
f07d43d2 468 switch (pipe) {
b5004720
VS
469 uint32_t dsparb, dsparb2, dsparb3;
470 case PIPE_A:
471 dsparb = I915_READ(DSPARB);
472 dsparb2 = I915_READ(DSPARB2);
473 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
474 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
475 break;
476 case PIPE_B:
477 dsparb = I915_READ(DSPARB);
478 dsparb2 = I915_READ(DSPARB2);
479 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
480 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
481 break;
482 case PIPE_C:
483 dsparb2 = I915_READ(DSPARB2);
484 dsparb3 = I915_READ(DSPARB3);
485 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
486 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
487 break;
488 default:
f07d43d2
VS
489 MISSING_CASE(pipe);
490 return;
b5004720
VS
491 }
492
f07d43d2
VS
493 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
494 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
495 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
496 fifo_state->plane[PLANE_CURSOR] = 63;
b5004720
VS
497}
498
ef0f5e93 499static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
b445e3b0 500{
b445e3b0
ED
501 uint32_t dsparb = I915_READ(DSPARB);
502 int size;
503
504 size = dsparb & 0x7f;
505 if (plane)
506 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
507
508 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
509 plane ? "B" : "A", size);
510
511 return size;
512}
513
ef0f5e93 514static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
b445e3b0 515{
b445e3b0
ED
516 uint32_t dsparb = I915_READ(DSPARB);
517 int size;
518
519 size = dsparb & 0x1ff;
520 if (plane)
521 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
522 size >>= 1; /* Convert to cachelines */
523
524 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
525 plane ? "B" : "A", size);
526
527 return size;
528}
529
ef0f5e93 530static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
b445e3b0 531{
b445e3b0
ED
532 uint32_t dsparb = I915_READ(DSPARB);
533 int size;
534
535 size = dsparb & 0x7f;
536 size >>= 2; /* Convert to cachelines */
537
538 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
539 plane ? "B" : "A",
540 size);
541
542 return size;
543}
544
b445e3b0
ED
545/* Pineview has different values for various configs */
546static const struct intel_watermark_params pineview_display_wm = {
e0f0273e
VS
547 .fifo_size = PINEVIEW_DISPLAY_FIFO,
548 .max_wm = PINEVIEW_MAX_WM,
549 .default_wm = PINEVIEW_DFT_WM,
550 .guard_size = PINEVIEW_GUARD_WM,
551 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
b445e3b0
ED
552};
553static const struct intel_watermark_params pineview_display_hplloff_wm = {
e0f0273e
VS
554 .fifo_size = PINEVIEW_DISPLAY_FIFO,
555 .max_wm = PINEVIEW_MAX_WM,
556 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
557 .guard_size = PINEVIEW_GUARD_WM,
558 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
b445e3b0
ED
559};
560static const struct intel_watermark_params pineview_cursor_wm = {
e0f0273e
VS
561 .fifo_size = PINEVIEW_CURSOR_FIFO,
562 .max_wm = PINEVIEW_CURSOR_MAX_WM,
563 .default_wm = PINEVIEW_CURSOR_DFT_WM,
564 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
565 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
b445e3b0
ED
566};
567static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
e0f0273e
VS
568 .fifo_size = PINEVIEW_CURSOR_FIFO,
569 .max_wm = PINEVIEW_CURSOR_MAX_WM,
570 .default_wm = PINEVIEW_CURSOR_DFT_WM,
571 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
572 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
b445e3b0 573};
b445e3b0 574static const struct intel_watermark_params i965_cursor_wm_info = {
e0f0273e
VS
575 .fifo_size = I965_CURSOR_FIFO,
576 .max_wm = I965_CURSOR_MAX_WM,
577 .default_wm = I965_CURSOR_DFT_WM,
578 .guard_size = 2,
579 .cacheline_size = I915_FIFO_LINE_SIZE,
b445e3b0
ED
580};
581static const struct intel_watermark_params i945_wm_info = {
e0f0273e
VS
582 .fifo_size = I945_FIFO_SIZE,
583 .max_wm = I915_MAX_WM,
584 .default_wm = 1,
585 .guard_size = 2,
586 .cacheline_size = I915_FIFO_LINE_SIZE,
b445e3b0
ED
587};
588static const struct intel_watermark_params i915_wm_info = {
e0f0273e
VS
589 .fifo_size = I915_FIFO_SIZE,
590 .max_wm = I915_MAX_WM,
591 .default_wm = 1,
592 .guard_size = 2,
593 .cacheline_size = I915_FIFO_LINE_SIZE,
b445e3b0 594};
9d539105 595static const struct intel_watermark_params i830_a_wm_info = {
e0f0273e
VS
596 .fifo_size = I855GM_FIFO_SIZE,
597 .max_wm = I915_MAX_WM,
598 .default_wm = 1,
599 .guard_size = 2,
600 .cacheline_size = I830_FIFO_LINE_SIZE,
b445e3b0 601};
9d539105
VS
602static const struct intel_watermark_params i830_bc_wm_info = {
603 .fifo_size = I855GM_FIFO_SIZE,
604 .max_wm = I915_MAX_WM/2,
605 .default_wm = 1,
606 .guard_size = 2,
607 .cacheline_size = I830_FIFO_LINE_SIZE,
608};
feb56b93 609static const struct intel_watermark_params i845_wm_info = {
e0f0273e
VS
610 .fifo_size = I830_FIFO_SIZE,
611 .max_wm = I915_MAX_WM,
612 .default_wm = 1,
613 .guard_size = 2,
614 .cacheline_size = I830_FIFO_LINE_SIZE,
b445e3b0
ED
615};
616
baf69ca8
VS
617/**
618 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
619 * @pixel_rate: Pipe pixel rate in kHz
620 * @cpp: Plane bytes per pixel
621 * @latency: Memory wakeup latency in 0.1us units
622 *
623 * Compute the watermark using the method 1 or "small buffer"
624 * formula. The caller may additonally add extra cachelines
625 * to account for TLB misses and clock crossings.
626 *
627 * This method is concerned with the short term drain rate
628 * of the FIFO, ie. it does not account for blanking periods
629 * which would effectively reduce the average drain rate across
630 * a longer period. The name "small" refers to the fact the
631 * FIFO is relatively small compared to the amount of data
632 * fetched.
633 *
634 * The FIFO level vs. time graph might look something like:
635 *
636 * |\ |\
637 * | \ | \
638 * __---__---__ (- plane active, _ blanking)
639 * -> time
640 *
641 * or perhaps like this:
642 *
643 * |\|\ |\|\
644 * __----__----__ (- plane active, _ blanking)
645 * -> time
646 *
647 * Returns:
648 * The watermark in bytes
649 */
650static unsigned int intel_wm_method1(unsigned int pixel_rate,
651 unsigned int cpp,
652 unsigned int latency)
653{
654 uint64_t ret;
655
656 ret = (uint64_t) pixel_rate * cpp * latency;
657 ret = DIV_ROUND_UP_ULL(ret, 10000);
658
659 return ret;
660}
661
662/**
663 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
664 * @pixel_rate: Pipe pixel rate in kHz
665 * @htotal: Pipe horizontal total
666 * @width: Plane width in pixels
667 * @cpp: Plane bytes per pixel
668 * @latency: Memory wakeup latency in 0.1us units
669 *
670 * Compute the watermark using the method 2 or "large buffer"
671 * formula. The caller may additonally add extra cachelines
672 * to account for TLB misses and clock crossings.
673 *
674 * This method is concerned with the long term drain rate
675 * of the FIFO, ie. it does account for blanking periods
676 * which effectively reduce the average drain rate across
677 * a longer period. The name "large" refers to the fact the
678 * FIFO is relatively large compared to the amount of data
679 * fetched.
680 *
681 * The FIFO level vs. time graph might look something like:
682 *
683 * |\___ |\___
684 * | \___ | \___
685 * | \ | \
686 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
687 * -> time
688 *
689 * Returns:
690 * The watermark in bytes
691 */
692static unsigned int intel_wm_method2(unsigned int pixel_rate,
693 unsigned int htotal,
694 unsigned int width,
695 unsigned int cpp,
696 unsigned int latency)
697{
698 unsigned int ret;
699
700 /*
701 * FIXME remove once all users are computing
702 * watermarks in the correct place.
703 */
704 if (WARN_ON_ONCE(htotal == 0))
705 htotal = 1;
706
707 ret = (latency * pixel_rate) / (htotal * 10000);
708 ret = (ret + 1) * width * cpp;
709
710 return ret;
711}
712
b445e3b0
ED
713/**
714 * intel_calculate_wm - calculate watermark level
baf69ca8 715 * @pixel_rate: pixel clock
b445e3b0 716 * @wm: chip FIFO params
ac484963 717 * @cpp: bytes per pixel
b445e3b0
ED
718 * @latency_ns: memory latency for the platform
719 *
720 * Calculate the watermark level (the level at which the display plane will
721 * start fetching from memory again). Each chip has a different display
722 * FIFO size and allocation, so the caller needs to figure that out and pass
723 * in the correct intel_watermark_params structure.
724 *
725 * As the pixel clock runs, the FIFO will be drained at a rate that depends
726 * on the pixel size. When it reaches the watermark level, it'll start
727 * fetching FIFO line sized based chunks from memory until the FIFO fills
728 * past the watermark point. If the FIFO drains completely, a FIFO underrun
729 * will occur, and a display engine hang could result.
730 */
baf69ca8
VS
731static unsigned int intel_calculate_wm(int pixel_rate,
732 const struct intel_watermark_params *wm,
733 int fifo_size, int cpp,
734 unsigned int latency_ns)
b445e3b0 735{
baf69ca8 736 int entries, wm_size;
b445e3b0
ED
737
738 /*
739 * Note: we need to make sure we don't overflow for various clock &
740 * latency values.
741 * clocks go from a few thousand to several hundred thousand.
742 * latency is usually a few thousand
743 */
baf69ca8
VS
744 entries = intel_wm_method1(pixel_rate, cpp,
745 latency_ns / 100);
746 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
747 wm->guard_size;
748 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
b445e3b0 749
baf69ca8
VS
750 wm_size = fifo_size - entries;
751 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
b445e3b0
ED
752
753 /* Don't promote wm_size to unsigned... */
baf69ca8 754 if (wm_size > wm->max_wm)
b445e3b0
ED
755 wm_size = wm->max_wm;
756 if (wm_size <= 0)
757 wm_size = wm->default_wm;
d6feb196
VS
758
759 /*
760 * Bspec seems to indicate that the value shouldn't be lower than
761 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
762 * Lets go for 8 which is the burst size since certain platforms
763 * already use a hardcoded 8 (which is what the spec says should be
764 * done).
765 */
766 if (wm_size <= 8)
767 wm_size = 8;
768
b445e3b0
ED
769 return wm_size;
770}
771
04548cba
VS
772static bool is_disabling(int old, int new, int threshold)
773{
774 return old >= threshold && new < threshold;
775}
776
777static bool is_enabling(int old, int new, int threshold)
778{
779 return old < threshold && new >= threshold;
780}
781
6d5019b6
VS
782static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
783{
784 return dev_priv->wm.max_level + 1;
785}
786
24304d81
VS
787static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
788 const struct intel_plane_state *plane_state)
789{
790 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
791
792 /* FIXME check the 'enable' instead */
793 if (!crtc_state->base.active)
794 return false;
795
796 /*
797 * Treat cursor with fb as always visible since cursor updates
798 * can happen faster than the vrefresh rate, and the current
799 * watermark code doesn't handle that correctly. Cursor updates
800 * which set/clear the fb or change the cursor size are going
801 * to get throttled by intel_legacy_cursor_update() to work
802 * around this problem with the watermark code.
803 */
804 if (plane->id == PLANE_CURSOR)
805 return plane_state->base.fb != NULL;
806 else
807 return plane_state->base.visible;
808}
809
ffc7a76b 810static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
b445e3b0 811{
efc2611e 812 struct intel_crtc *crtc, *enabled = NULL;
b445e3b0 813
ffc7a76b 814 for_each_intel_crtc(&dev_priv->drm, crtc) {
efc2611e 815 if (intel_crtc_active(crtc)) {
b445e3b0
ED
816 if (enabled)
817 return NULL;
818 enabled = crtc;
819 }
820 }
821
822 return enabled;
823}
824
432081bc 825static void pineview_update_wm(struct intel_crtc *unused_crtc)
b445e3b0 826{
ffc7a76b 827 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
efc2611e 828 struct intel_crtc *crtc;
b445e3b0
ED
829 const struct cxsr_latency *latency;
830 u32 reg;
baf69ca8 831 unsigned int wm;
b445e3b0 832
50a0bc90
TU
833 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
834 dev_priv->is_ddr3,
835 dev_priv->fsb_freq,
836 dev_priv->mem_freq);
b445e3b0
ED
837 if (!latency) {
838 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
5209b1f4 839 intel_set_memory_cxsr(dev_priv, false);
b445e3b0
ED
840 return;
841 }
842
ffc7a76b 843 crtc = single_enabled_crtc(dev_priv);
b445e3b0 844 if (crtc) {
efc2611e
VS
845 const struct drm_display_mode *adjusted_mode =
846 &crtc->config->base.adjusted_mode;
847 const struct drm_framebuffer *fb =
848 crtc->base.primary->state->fb;
353c8598 849 int cpp = fb->format->cpp[0];
7c5f93b0 850 int clock = adjusted_mode->crtc_clock;
b445e3b0
ED
851
852 /* Display SR */
853 wm = intel_calculate_wm(clock, &pineview_display_wm,
854 pineview_display_wm.fifo_size,
ac484963 855 cpp, latency->display_sr);
b445e3b0
ED
856 reg = I915_READ(DSPFW1);
857 reg &= ~DSPFW_SR_MASK;
f4998963 858 reg |= FW_WM(wm, SR);
b445e3b0
ED
859 I915_WRITE(DSPFW1, reg);
860 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
861
862 /* cursor SR */
863 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
864 pineview_display_wm.fifo_size,
99834b14 865 4, latency->cursor_sr);
b445e3b0
ED
866 reg = I915_READ(DSPFW3);
867 reg &= ~DSPFW_CURSOR_SR_MASK;
f4998963 868 reg |= FW_WM(wm, CURSOR_SR);
b445e3b0
ED
869 I915_WRITE(DSPFW3, reg);
870
871 /* Display HPLL off SR */
872 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
873 pineview_display_hplloff_wm.fifo_size,
ac484963 874 cpp, latency->display_hpll_disable);
b445e3b0
ED
875 reg = I915_READ(DSPFW3);
876 reg &= ~DSPFW_HPLL_SR_MASK;
f4998963 877 reg |= FW_WM(wm, HPLL_SR);
b445e3b0
ED
878 I915_WRITE(DSPFW3, reg);
879
880 /* cursor HPLL off SR */
881 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
882 pineview_display_hplloff_wm.fifo_size,
99834b14 883 4, latency->cursor_hpll_disable);
b445e3b0
ED
884 reg = I915_READ(DSPFW3);
885 reg &= ~DSPFW_HPLL_CURSOR_MASK;
f4998963 886 reg |= FW_WM(wm, HPLL_CURSOR);
b445e3b0
ED
887 I915_WRITE(DSPFW3, reg);
888 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
889
5209b1f4 890 intel_set_memory_cxsr(dev_priv, true);
b445e3b0 891 } else {
5209b1f4 892 intel_set_memory_cxsr(dev_priv, false);
b445e3b0
ED
893 }
894}
895
0f95ff85
VS
896/*
897 * Documentation says:
898 * "If the line size is small, the TLB fetches can get in the way of the
899 * data fetches, causing some lag in the pixel data return which is not
900 * accounted for in the above formulas. The following adjustment only
901 * needs to be applied if eight whole lines fit in the buffer at once.
902 * The WM is adjusted upwards by the difference between the FIFO size
903 * and the size of 8 whole lines. This adjustment is always performed
904 * in the actual pixel depth regardless of whether FBC is enabled or not."
905 */
906static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
907{
908 int tlb_miss = fifo_size * 64 - width * cpp * 8;
909
910 return max(0, tlb_miss);
911}
912
04548cba
VS
913static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
914 const struct g4x_wm_values *wm)
b445e3b0 915{
04548cba
VS
916 I915_WRITE(DSPFW1,
917 FW_WM(wm->sr.plane, SR) |
918 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
919 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
920 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
921 I915_WRITE(DSPFW2,
922 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
923 FW_WM(wm->sr.fbc, FBC_SR) |
924 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
925 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
926 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
927 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
928 I915_WRITE(DSPFW3,
929 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
930 FW_WM(wm->sr.cursor, CURSOR_SR) |
931 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
932 FW_WM(wm->hpll.plane, HPLL_SR));
b445e3b0 933
04548cba 934 POSTING_READ(DSPFW1);
b445e3b0
ED
935}
936
15665979
VS
937#define FW_WM_VLV(value, plane) \
938 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
939
50f4caef 940static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
0018fda1
VS
941 const struct vlv_wm_values *wm)
942{
50f4caef
VS
943 enum pipe pipe;
944
945 for_each_pipe(dev_priv, pipe) {
c137d660
VS
946 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
947
50f4caef
VS
948 I915_WRITE(VLV_DDL(pipe),
949 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
950 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
951 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
952 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
953 }
0018fda1 954
6fe6a7ff
VS
955 /*
956 * Zero the (unused) WM1 watermarks, and also clear all the
957 * high order bits so that there are no out of bounds values
958 * present in the registers during the reprogramming.
959 */
960 I915_WRITE(DSPHOWM, 0);
961 I915_WRITE(DSPHOWM1, 0);
962 I915_WRITE(DSPFW4, 0);
963 I915_WRITE(DSPFW5, 0);
964 I915_WRITE(DSPFW6, 0);
965
ae80152d 966 I915_WRITE(DSPFW1,
15665979 967 FW_WM(wm->sr.plane, SR) |
1b31389c
VS
968 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
969 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
970 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
ae80152d 971 I915_WRITE(DSPFW2,
1b31389c
VS
972 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
973 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
974 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
ae80152d 975 I915_WRITE(DSPFW3,
15665979 976 FW_WM(wm->sr.cursor, CURSOR_SR));
ae80152d
VS
977
978 if (IS_CHERRYVIEW(dev_priv)) {
979 I915_WRITE(DSPFW7_CHV,
1b31389c
VS
980 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
981 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
ae80152d 982 I915_WRITE(DSPFW8_CHV,
1b31389c
VS
983 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
984 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
ae80152d 985 I915_WRITE(DSPFW9_CHV,
1b31389c
VS
986 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
987 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
ae80152d 988 I915_WRITE(DSPHOWM,
15665979 989 FW_WM(wm->sr.plane >> 9, SR_HI) |
1b31389c
VS
990 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
991 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
992 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
993 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
994 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
995 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
996 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
997 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
998 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
ae80152d
VS
999 } else {
1000 I915_WRITE(DSPFW7,
1b31389c
VS
1001 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1002 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
ae80152d 1003 I915_WRITE(DSPHOWM,
15665979 1004 FW_WM(wm->sr.plane >> 9, SR_HI) |
1b31389c
VS
1005 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1006 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1007 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1008 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1009 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1010 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
ae80152d
VS
1011 }
1012
1013 POSTING_READ(DSPFW1);
0018fda1
VS
1014}
1015
15665979
VS
1016#undef FW_WM_VLV
1017
04548cba
VS
1018static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1019{
1020 /* all latencies in usec */
1021 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1022 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
79d94306 1023 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
04548cba 1024
79d94306 1025 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
04548cba
VS
1026}
1027
1028static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1029{
1030 /*
1031 * DSPCNTR[13] supposedly controls whether the
1032 * primary plane can use the FIFO space otherwise
1033 * reserved for the sprite plane. It's not 100% clear
1034 * what the actual FIFO size is, but it looks like we
1035 * can happily set both primary and sprite watermarks
1036 * up to 127 cachelines. So that would seem to mean
1037 * that either DSPCNTR[13] doesn't do anything, or that
1038 * the total FIFO is >= 256 cachelines in size. Either
1039 * way, we don't seem to have to worry about this
1040 * repartitioning as the maximum watermark value the
1041 * register can hold for each plane is lower than the
1042 * minimum FIFO size.
1043 */
1044 switch (plane_id) {
1045 case PLANE_CURSOR:
1046 return 63;
1047 case PLANE_PRIMARY:
1048 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1049 case PLANE_SPRITE0:
1050 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1051 default:
1052 MISSING_CASE(plane_id);
1053 return 0;
1054 }
1055}
1056
1057static int g4x_fbc_fifo_size(int level)
1058{
1059 switch (level) {
1060 case G4X_WM_LEVEL_SR:
1061 return 7;
1062 case G4X_WM_LEVEL_HPLL:
1063 return 15;
1064 default:
1065 MISSING_CASE(level);
1066 return 0;
1067 }
1068}
1069
1070static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1071 const struct intel_plane_state *plane_state,
1072 int level)
1073{
1074 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1075 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1076 const struct drm_display_mode *adjusted_mode =
1077 &crtc_state->base.adjusted_mode;
1078 int clock, htotal, cpp, width, wm;
1079 int latency = dev_priv->wm.pri_latency[level] * 10;
1080
1081 if (latency == 0)
1082 return USHRT_MAX;
1083
1084 if (!intel_wm_plane_visible(crtc_state, plane_state))
1085 return 0;
1086
1087 /*
1088 * Not 100% sure which way ELK should go here as the
1089 * spec only says CL/CTG should assume 32bpp and BW
1090 * doesn't need to. But as these things followed the
1091 * mobile vs. desktop lines on gen3 as well, let's
1092 * assume ELK doesn't need this.
1093 *
1094 * The spec also fails to list such a restriction for
1095 * the HPLL watermark, which seems a little strange.
1096 * Let's use 32bpp for the HPLL watermark as well.
1097 */
1098 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1099 level != G4X_WM_LEVEL_NORMAL)
1100 cpp = 4;
1101 else
1102 cpp = plane_state->base.fb->format->cpp[0];
1103
1104 clock = adjusted_mode->crtc_clock;
1105 htotal = adjusted_mode->crtc_htotal;
1106
1107 if (plane->id == PLANE_CURSOR)
1108 width = plane_state->base.crtc_w;
1109 else
1110 width = drm_rect_width(&plane_state->base.dst);
1111
1112 if (plane->id == PLANE_CURSOR) {
1113 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1114 } else if (plane->id == PLANE_PRIMARY &&
1115 level == G4X_WM_LEVEL_NORMAL) {
1116 wm = intel_wm_method1(clock, cpp, latency);
1117 } else {
1118 int small, large;
1119
1120 small = intel_wm_method1(clock, cpp, latency);
1121 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1122
1123 wm = min(small, large);
1124 }
1125
1126 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1127 width, cpp);
1128
1129 wm = DIV_ROUND_UP(wm, 64) + 2;
1130
1131 return min_t(int, wm, USHRT_MAX);
1132}
1133
1134static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1135 int level, enum plane_id plane_id, u16 value)
1136{
1137 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1138 bool dirty = false;
1139
1140 for (; level < intel_wm_num_levels(dev_priv); level++) {
1141 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1142
1143 dirty |= raw->plane[plane_id] != value;
1144 raw->plane[plane_id] = value;
1145 }
1146
1147 return dirty;
1148}
1149
1150static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1151 int level, u16 value)
1152{
1153 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1154 bool dirty = false;
1155
1156 /* NORMAL level doesn't have an FBC watermark */
1157 level = max(level, G4X_WM_LEVEL_SR);
1158
1159 for (; level < intel_wm_num_levels(dev_priv); level++) {
1160 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1161
1162 dirty |= raw->fbc != value;
1163 raw->fbc = value;
1164 }
1165
1166 return dirty;
1167}
1168
1169static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1170 const struct intel_plane_state *pstate,
1171 uint32_t pri_val);
1172
1173static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1174 const struct intel_plane_state *plane_state)
1175{
1176 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1177 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1178 enum plane_id plane_id = plane->id;
1179 bool dirty = false;
1180 int level;
1181
1182 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1183 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1184 if (plane_id == PLANE_PRIMARY)
1185 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1186 goto out;
1187 }
1188
1189 for (level = 0; level < num_levels; level++) {
1190 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1191 int wm, max_wm;
1192
1193 wm = g4x_compute_wm(crtc_state, plane_state, level);
1194 max_wm = g4x_plane_fifo_size(plane_id, level);
1195
1196 if (wm > max_wm)
1197 break;
1198
1199 dirty |= raw->plane[plane_id] != wm;
1200 raw->plane[plane_id] = wm;
1201
1202 if (plane_id != PLANE_PRIMARY ||
1203 level == G4X_WM_LEVEL_NORMAL)
1204 continue;
1205
1206 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1207 raw->plane[plane_id]);
1208 max_wm = g4x_fbc_fifo_size(level);
1209
1210 /*
1211 * FBC wm is not mandatory as we
1212 * can always just disable its use.
1213 */
1214 if (wm > max_wm)
1215 wm = USHRT_MAX;
1216
1217 dirty |= raw->fbc != wm;
1218 raw->fbc = wm;
1219 }
1220
1221 /* mark watermarks as invalid */
1222 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1223
1224 if (plane_id == PLANE_PRIMARY)
1225 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1226
1227 out:
1228 if (dirty) {
1229 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1230 plane->base.name,
1231 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1232 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1233 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1234
1235 if (plane_id == PLANE_PRIMARY)
1236 DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1237 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1238 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1239 }
1240
1241 return dirty;
1242}
1243
1244static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1245 enum plane_id plane_id, int level)
1246{
1247 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1248
1249 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1250}
1251
1252static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1253 int level)
1254{
1255 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1256
1257 if (level > dev_priv->wm.max_level)
1258 return false;
1259
1260 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1261 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1262 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1263}
1264
1265/* mark all levels starting from 'level' as invalid */
1266static void g4x_invalidate_wms(struct intel_crtc *crtc,
1267 struct g4x_wm_state *wm_state, int level)
1268{
1269 if (level <= G4X_WM_LEVEL_NORMAL) {
1270 enum plane_id plane_id;
1271
1272 for_each_plane_id_on_crtc(crtc, plane_id)
1273 wm_state->wm.plane[plane_id] = USHRT_MAX;
1274 }
1275
1276 if (level <= G4X_WM_LEVEL_SR) {
1277 wm_state->cxsr = false;
1278 wm_state->sr.cursor = USHRT_MAX;
1279 wm_state->sr.plane = USHRT_MAX;
1280 wm_state->sr.fbc = USHRT_MAX;
1281 }
1282
1283 if (level <= G4X_WM_LEVEL_HPLL) {
1284 wm_state->hpll_en = false;
1285 wm_state->hpll.cursor = USHRT_MAX;
1286 wm_state->hpll.plane = USHRT_MAX;
1287 wm_state->hpll.fbc = USHRT_MAX;
1288 }
1289}
1290
1291static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1292{
1293 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1294 struct intel_atomic_state *state =
1295 to_intel_atomic_state(crtc_state->base.state);
1296 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1297 int num_active_planes = hweight32(crtc_state->active_planes &
1298 ~BIT(PLANE_CURSOR));
1299 const struct g4x_pipe_wm *raw;
1300 struct intel_plane_state *plane_state;
1301 struct intel_plane *plane;
1302 enum plane_id plane_id;
1303 int i, level;
1304 unsigned int dirty = 0;
1305
1306 for_each_intel_plane_in_state(state, plane, plane_state, i) {
1307 const struct intel_plane_state *old_plane_state =
1308 to_intel_plane_state(plane->base.state);
1309
1310 if (plane_state->base.crtc != &crtc->base &&
1311 old_plane_state->base.crtc != &crtc->base)
1312 continue;
1313
1314 if (g4x_raw_plane_wm_compute(crtc_state, plane_state))
1315 dirty |= BIT(plane->id);
1316 }
1317
1318 if (!dirty)
1319 return 0;
1320
1321 level = G4X_WM_LEVEL_NORMAL;
1322 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1323 goto out;
1324
1325 raw = &crtc_state->wm.g4x.raw[level];
1326 for_each_plane_id_on_crtc(crtc, plane_id)
1327 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1328
1329 level = G4X_WM_LEVEL_SR;
1330
1331 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1332 goto out;
1333
1334 raw = &crtc_state->wm.g4x.raw[level];
1335 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1336 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1337 wm_state->sr.fbc = raw->fbc;
1338
1339 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1340
1341 level = G4X_WM_LEVEL_HPLL;
1342
1343 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1344 goto out;
1345
1346 raw = &crtc_state->wm.g4x.raw[level];
1347 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1348 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1349 wm_state->hpll.fbc = raw->fbc;
1350
1351 wm_state->hpll_en = wm_state->cxsr;
1352
1353 level++;
1354
1355 out:
1356 if (level == G4X_WM_LEVEL_NORMAL)
1357 return -EINVAL;
1358
1359 /* invalidate the higher levels */
1360 g4x_invalidate_wms(crtc, wm_state, level);
1361
1362 /*
1363 * Determine if the FBC watermark(s) can be used. IF
1364 * this isn't the case we prefer to disable the FBC
1365 ( watermark(s) rather than disable the SR/HPLL
1366 * level(s) entirely.
1367 */
1368 wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1369
1370 if (level >= G4X_WM_LEVEL_SR &&
1371 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1372 wm_state->fbc_en = false;
1373 else if (level >= G4X_WM_LEVEL_HPLL &&
1374 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1375 wm_state->fbc_en = false;
1376
1377 return 0;
1378}
1379
1380static int g4x_compute_intermediate_wm(struct drm_device *dev,
1381 struct intel_crtc *crtc,
1382 struct intel_crtc_state *crtc_state)
1383{
1384 struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
1385 const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
1386 const struct g4x_wm_state *active = &crtc->wm.active.g4x;
1387 enum plane_id plane_id;
1388
1389 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1390 !crtc_state->disable_cxsr;
1391 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1392 !crtc_state->disable_cxsr;
1393 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1394
1395 for_each_plane_id_on_crtc(crtc, plane_id) {
1396 intermediate->wm.plane[plane_id] =
1397 max(optimal->wm.plane[plane_id],
1398 active->wm.plane[plane_id]);
1399
1400 WARN_ON(intermediate->wm.plane[plane_id] >
1401 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1402 }
1403
1404 intermediate->sr.plane = max(optimal->sr.plane,
1405 active->sr.plane);
1406 intermediate->sr.cursor = max(optimal->sr.cursor,
1407 active->sr.cursor);
1408 intermediate->sr.fbc = max(optimal->sr.fbc,
1409 active->sr.fbc);
1410
1411 intermediate->hpll.plane = max(optimal->hpll.plane,
1412 active->hpll.plane);
1413 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1414 active->hpll.cursor);
1415 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1416 active->hpll.fbc);
1417
1418 WARN_ON((intermediate->sr.plane >
1419 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1420 intermediate->sr.cursor >
1421 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1422 intermediate->cxsr);
1423 WARN_ON((intermediate->sr.plane >
1424 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1425 intermediate->sr.cursor >
1426 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1427 intermediate->hpll_en);
1428
1429 WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1430 intermediate->fbc_en && intermediate->cxsr);
1431 WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1432 intermediate->fbc_en && intermediate->hpll_en);
1433
1434 /*
1435 * If our intermediate WM are identical to the final WM, then we can
1436 * omit the post-vblank programming; only update if it's different.
1437 */
1438 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1439 crtc_state->wm.need_postvbl_update = true;
1440
1441 return 0;
1442}
1443
1444static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1445 struct g4x_wm_values *wm)
1446{
1447 struct intel_crtc *crtc;
1448 int num_active_crtcs = 0;
1449
1450 wm->cxsr = true;
1451 wm->hpll_en = true;
1452 wm->fbc_en = true;
1453
1454 for_each_intel_crtc(&dev_priv->drm, crtc) {
1455 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1456
1457 if (!crtc->active)
1458 continue;
1459
1460 if (!wm_state->cxsr)
1461 wm->cxsr = false;
1462 if (!wm_state->hpll_en)
1463 wm->hpll_en = false;
1464 if (!wm_state->fbc_en)
1465 wm->fbc_en = false;
1466
1467 num_active_crtcs++;
1468 }
1469
1470 if (num_active_crtcs != 1) {
1471 wm->cxsr = false;
1472 wm->hpll_en = false;
1473 wm->fbc_en = false;
1474 }
1475
1476 for_each_intel_crtc(&dev_priv->drm, crtc) {
1477 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1478 enum pipe pipe = crtc->pipe;
1479
1480 wm->pipe[pipe] = wm_state->wm;
1481 if (crtc->active && wm->cxsr)
1482 wm->sr = wm_state->sr;
1483 if (crtc->active && wm->hpll_en)
1484 wm->hpll = wm_state->hpll;
1485 }
1486}
1487
1488static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1489{
1490 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1491 struct g4x_wm_values new_wm = {};
1492
1493 g4x_merge_wm(dev_priv, &new_wm);
1494
1495 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1496 return;
1497
1498 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1499 _intel_set_memory_cxsr(dev_priv, false);
1500
1501 g4x_write_wm_values(dev_priv, &new_wm);
1502
1503 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1504 _intel_set_memory_cxsr(dev_priv, true);
1505
1506 *old_wm = new_wm;
1507}
1508
1509static void g4x_initial_watermarks(struct intel_atomic_state *state,
1510 struct intel_crtc_state *crtc_state)
1511{
1512 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1513 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1514
1515 mutex_lock(&dev_priv->wm.wm_mutex);
1516 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1517 g4x_program_watermarks(dev_priv);
1518 mutex_unlock(&dev_priv->wm.wm_mutex);
1519}
1520
1521static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1522 struct intel_crtc_state *crtc_state)
1523{
1524 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1525 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1526
1527 if (!crtc_state->wm.need_postvbl_update)
1528 return;
1529
1530 mutex_lock(&dev_priv->wm.wm_mutex);
1531 intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1532 g4x_program_watermarks(dev_priv);
1533 mutex_unlock(&dev_priv->wm.wm_mutex);
1534}
1535
262cd2e1
VS
1536/* latency must be in 0.1us units. */
1537static unsigned int vlv_wm_method2(unsigned int pixel_rate,
baf69ca8
VS
1538 unsigned int htotal,
1539 unsigned int width,
ac484963 1540 unsigned int cpp,
262cd2e1
VS
1541 unsigned int latency)
1542{
1543 unsigned int ret;
1544
baf69ca8
VS
1545 ret = intel_wm_method2(pixel_rate, htotal,
1546 width, cpp, latency);
262cd2e1
VS
1547 ret = DIV_ROUND_UP(ret, 64);
1548
1549 return ret;
1550}
1551
bb726519 1552static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
262cd2e1 1553{
262cd2e1
VS
1554 /* all latencies in usec */
1555 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1556
58590c14
VS
1557 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1558
262cd2e1
VS
1559 if (IS_CHERRYVIEW(dev_priv)) {
1560 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1561 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
58590c14
VS
1562
1563 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
262cd2e1
VS
1564 }
1565}
1566
e339d67e
VS
1567static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1568 const struct intel_plane_state *plane_state,
262cd2e1
VS
1569 int level)
1570{
e339d67e 1571 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
262cd2e1 1572 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
e339d67e
VS
1573 const struct drm_display_mode *adjusted_mode =
1574 &crtc_state->base.adjusted_mode;
ac484963 1575 int clock, htotal, cpp, width, wm;
262cd2e1
VS
1576
1577 if (dev_priv->wm.pri_latency[level] == 0)
1578 return USHRT_MAX;
1579
a07102f1 1580 if (!intel_wm_plane_visible(crtc_state, plane_state))
262cd2e1
VS
1581 return 0;
1582
ef426c10 1583 cpp = plane_state->base.fb->format->cpp[0];
e339d67e
VS
1584 clock = adjusted_mode->crtc_clock;
1585 htotal = adjusted_mode->crtc_htotal;
1586 width = crtc_state->pipe_src_w;
262cd2e1 1587
709f3fc9 1588 if (plane->id == PLANE_CURSOR) {
262cd2e1
VS
1589 /*
1590 * FIXME the formula gives values that are
1591 * too big for the cursor FIFO, and hence we
1592 * would never be able to use cursors. For
1593 * now just hardcode the watermark.
1594 */
1595 wm = 63;
1596 } else {
ac484963 1597 wm = vlv_wm_method2(clock, htotal, width, cpp,
262cd2e1
VS
1598 dev_priv->wm.pri_latency[level] * 10);
1599 }
1600
1601 return min_t(int, wm, USHRT_MAX);
1602}
1603
1a10ae6b
VS
1604static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1605{
1606 return (active_planes & (BIT(PLANE_SPRITE0) |
1607 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1608}
1609
5012e604 1610static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
54f1b6e1 1611{
855c79f5 1612 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
114d7dc0 1613 const struct g4x_pipe_wm *raw =
5012e604 1614 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
814e7f0b 1615 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
5012e604
VS
1616 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1617 int num_active_planes = hweight32(active_planes);
1618 const int fifo_size = 511;
54f1b6e1 1619 int fifo_extra, fifo_left = fifo_size;
1a10ae6b 1620 int sprite0_fifo_extra = 0;
5012e604
VS
1621 unsigned int total_rate;
1622 enum plane_id plane_id;
54f1b6e1 1623
1a10ae6b
VS
1624 /*
1625 * When enabling sprite0 after sprite1 has already been enabled
1626 * we tend to get an underrun unless sprite0 already has some
1627 * FIFO space allcoated. Hence we always allocate at least one
1628 * cacheline for sprite0 whenever sprite1 is enabled.
1629 *
1630 * All other plane enable sequences appear immune to this problem.
1631 */
1632 if (vlv_need_sprite0_fifo_workaround(active_planes))
1633 sprite0_fifo_extra = 1;
1634
5012e604
VS
1635 total_rate = raw->plane[PLANE_PRIMARY] +
1636 raw->plane[PLANE_SPRITE0] +
1a10ae6b
VS
1637 raw->plane[PLANE_SPRITE1] +
1638 sprite0_fifo_extra;
54f1b6e1 1639
5012e604
VS
1640 if (total_rate > fifo_size)
1641 return -EINVAL;
54f1b6e1 1642
5012e604
VS
1643 if (total_rate == 0)
1644 total_rate = 1;
54f1b6e1 1645
5012e604 1646 for_each_plane_id_on_crtc(crtc, plane_id) {
54f1b6e1
VS
1647 unsigned int rate;
1648
5012e604
VS
1649 if ((active_planes & BIT(plane_id)) == 0) {
1650 fifo_state->plane[plane_id] = 0;
54f1b6e1
VS
1651 continue;
1652 }
1653
5012e604
VS
1654 rate = raw->plane[plane_id];
1655 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1656 fifo_left -= fifo_state->plane[plane_id];
54f1b6e1
VS
1657 }
1658
1a10ae6b
VS
1659 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1660 fifo_left -= sprite0_fifo_extra;
1661
5012e604
VS
1662 fifo_state->plane[PLANE_CURSOR] = 63;
1663
1664 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
54f1b6e1
VS
1665
1666 /* spread the remainder evenly */
5012e604 1667 for_each_plane_id_on_crtc(crtc, plane_id) {
54f1b6e1
VS
1668 int plane_extra;
1669
1670 if (fifo_left == 0)
1671 break;
1672
5012e604 1673 if ((active_planes & BIT(plane_id)) == 0)
54f1b6e1
VS
1674 continue;
1675
1676 plane_extra = min(fifo_extra, fifo_left);
5012e604 1677 fifo_state->plane[plane_id] += plane_extra;
54f1b6e1
VS
1678 fifo_left -= plane_extra;
1679 }
1680
5012e604
VS
1681 WARN_ON(active_planes != 0 && fifo_left != 0);
1682
1683 /* give it all to the first plane if none are active */
1684 if (active_planes == 0) {
1685 WARN_ON(fifo_left != fifo_size);
1686 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1687 }
1688
1689 return 0;
54f1b6e1
VS
1690}
1691
ff32c54e
VS
1692/* mark all levels starting from 'level' as invalid */
1693static void vlv_invalidate_wms(struct intel_crtc *crtc,
1694 struct vlv_wm_state *wm_state, int level)
1695{
1696 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1697
6d5019b6 1698 for (; level < intel_wm_num_levels(dev_priv); level++) {
ff32c54e
VS
1699 enum plane_id plane_id;
1700
1701 for_each_plane_id_on_crtc(crtc, plane_id)
1702 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1703
1704 wm_state->sr[level].cursor = USHRT_MAX;
1705 wm_state->sr[level].plane = USHRT_MAX;
1706 }
1707}
1708
26cca0e5
VS
1709static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1710{
1711 if (wm > fifo_size)
1712 return USHRT_MAX;
1713 else
1714 return fifo_size - wm;
1715}
1716
ff32c54e
VS
1717/*
1718 * Starting from 'level' set all higher
1719 * levels to 'value' in the "raw" watermarks.
1720 */
236c48e6 1721static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
ff32c54e 1722 int level, enum plane_id plane_id, u16 value)
262cd2e1 1723{
ff32c54e 1724 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
6d5019b6 1725 int num_levels = intel_wm_num_levels(dev_priv);
236c48e6 1726 bool dirty = false;
262cd2e1 1727
ff32c54e 1728 for (; level < num_levels; level++) {
114d7dc0 1729 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
262cd2e1 1730
236c48e6 1731 dirty |= raw->plane[plane_id] != value;
ff32c54e 1732 raw->plane[plane_id] = value;
262cd2e1 1733 }
236c48e6
VS
1734
1735 return dirty;
262cd2e1
VS
1736}
1737
77d14ee4
VS
1738static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1739 const struct intel_plane_state *plane_state)
262cd2e1 1740{
ff32c54e
VS
1741 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1742 enum plane_id plane_id = plane->id;
6d5019b6 1743 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
262cd2e1 1744 int level;
236c48e6 1745 bool dirty = false;
262cd2e1 1746
a07102f1 1747 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
236c48e6
VS
1748 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1749 goto out;
ff32c54e 1750 }
262cd2e1 1751
ff32c54e 1752 for (level = 0; level < num_levels; level++) {
114d7dc0 1753 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
ff32c54e
VS
1754 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1755 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
262cd2e1 1756
ff32c54e
VS
1757 if (wm > max_wm)
1758 break;
262cd2e1 1759
236c48e6 1760 dirty |= raw->plane[plane_id] != wm;
ff32c54e
VS
1761 raw->plane[plane_id] = wm;
1762 }
262cd2e1 1763
ff32c54e 1764 /* mark all higher levels as invalid */
236c48e6 1765 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
262cd2e1 1766
236c48e6
VS
1767out:
1768 if (dirty)
57a6528a 1769 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
236c48e6
VS
1770 plane->base.name,
1771 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1772 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1773 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1774
1775 return dirty;
ff32c54e 1776}
262cd2e1 1777
77d14ee4
VS
1778static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1779 enum plane_id plane_id, int level)
ff32c54e 1780{
114d7dc0 1781 const struct g4x_pipe_wm *raw =
ff32c54e
VS
1782 &crtc_state->wm.vlv.raw[level];
1783 const struct vlv_fifo_state *fifo_state =
1784 &crtc_state->wm.vlv.fifo_state;
262cd2e1 1785
ff32c54e
VS
1786 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1787}
262cd2e1 1788
77d14ee4 1789static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
ff32c54e 1790{
77d14ee4
VS
1791 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1792 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1793 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1794 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
ff32c54e
VS
1795}
1796
1797static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1798{
1799 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1800 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1801 struct intel_atomic_state *state =
1802 to_intel_atomic_state(crtc_state->base.state);
1803 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1804 const struct vlv_fifo_state *fifo_state =
1805 &crtc_state->wm.vlv.fifo_state;
1806 int num_active_planes = hweight32(crtc_state->active_planes &
1807 ~BIT(PLANE_CURSOR));
236c48e6 1808 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
ff32c54e
VS
1809 struct intel_plane_state *plane_state;
1810 struct intel_plane *plane;
1811 enum plane_id plane_id;
1812 int level, ret, i;
236c48e6 1813 unsigned int dirty = 0;
ff32c54e
VS
1814
1815 for_each_intel_plane_in_state(state, plane, plane_state, i) {
1816 const struct intel_plane_state *old_plane_state =
1817 to_intel_plane_state(plane->base.state);
1818
1819 if (plane_state->base.crtc != &crtc->base &&
1820 old_plane_state->base.crtc != &crtc->base)
1821 continue;
262cd2e1 1822
77d14ee4 1823 if (vlv_raw_plane_wm_compute(crtc_state, plane_state))
236c48e6
VS
1824 dirty |= BIT(plane->id);
1825 }
1826
1827 /*
1828 * DSPARB registers may have been reset due to the
1829 * power well being turned off. Make sure we restore
1830 * them to a consistent state even if no primary/sprite
1831 * planes are initially active.
1832 */
1833 if (needs_modeset)
1834 crtc_state->fifo_changed = true;
1835
1836 if (!dirty)
1837 return 0;
1838
1839 /* cursor changes don't warrant a FIFO recompute */
1840 if (dirty & ~BIT(PLANE_CURSOR)) {
1841 const struct intel_crtc_state *old_crtc_state =
1842 to_intel_crtc_state(crtc->base.state);
1843 const struct vlv_fifo_state *old_fifo_state =
1844 &old_crtc_state->wm.vlv.fifo_state;
1845
1846 ret = vlv_compute_fifo(crtc_state);
1847 if (ret)
1848 return ret;
1849
1850 if (needs_modeset ||
1851 memcmp(old_fifo_state, fifo_state,
1852 sizeof(*fifo_state)) != 0)
1853 crtc_state->fifo_changed = true;
5012e604 1854 }
262cd2e1 1855
ff32c54e 1856 /* initially allow all levels */
6d5019b6 1857 wm_state->num_levels = intel_wm_num_levels(dev_priv);
ff32c54e
VS
1858 /*
1859 * Note that enabling cxsr with no primary/sprite planes
1860 * enabled can wedge the pipe. Hence we only allow cxsr
1861 * with exactly one enabled primary/sprite plane.
1862 */
5eeb798b 1863 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
ff32c54e 1864
5012e604 1865 for (level = 0; level < wm_state->num_levels; level++) {
114d7dc0 1866 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
ff32c54e 1867 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
5012e604 1868
77d14ee4 1869 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
ff32c54e 1870 break;
5012e604 1871
ff32c54e
VS
1872 for_each_plane_id_on_crtc(crtc, plane_id) {
1873 wm_state->wm[level].plane[plane_id] =
1874 vlv_invert_wm_value(raw->plane[plane_id],
1875 fifo_state->plane[plane_id]);
1876 }
1877
1878 wm_state->sr[level].plane =
1879 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
5012e604 1880 raw->plane[PLANE_SPRITE0],
ff32c54e
VS
1881 raw->plane[PLANE_SPRITE1]),
1882 sr_fifo_size);
262cd2e1 1883
ff32c54e
VS
1884 wm_state->sr[level].cursor =
1885 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1886 63);
262cd2e1
VS
1887 }
1888
ff32c54e
VS
1889 if (level == 0)
1890 return -EINVAL;
1891
1892 /* limit to only levels we can actually handle */
1893 wm_state->num_levels = level;
1894
1895 /* invalidate the higher levels */
1896 vlv_invalidate_wms(crtc, wm_state, level);
1897
1898 return 0;
262cd2e1
VS
1899}
1900
54f1b6e1
VS
1901#define VLV_FIFO(plane, value) \
1902 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1903
ff32c54e
VS
1904static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1905 struct intel_crtc_state *crtc_state)
54f1b6e1 1906{
814e7f0b 1907 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
f07d43d2 1908 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
814e7f0b
VS
1909 const struct vlv_fifo_state *fifo_state =
1910 &crtc_state->wm.vlv.fifo_state;
f07d43d2 1911 int sprite0_start, sprite1_start, fifo_size;
54f1b6e1 1912
236c48e6
VS
1913 if (!crtc_state->fifo_changed)
1914 return;
1915
f07d43d2
VS
1916 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1917 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1918 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
54f1b6e1 1919
f07d43d2
VS
1920 WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1921 WARN_ON(fifo_size != 511);
54f1b6e1 1922
c137d660
VS
1923 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1924
44e921d4
VS
1925 /*
1926 * uncore.lock serves a double purpose here. It allows us to
1927 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1928 * it protects the DSPARB registers from getting clobbered by
1929 * parallel updates from multiple pipes.
1930 *
1931 * intel_pipe_update_start() has already disabled interrupts
1932 * for us, so a plain spin_lock() is sufficient here.
1933 */
1934 spin_lock(&dev_priv->uncore.lock);
467a14d9 1935
54f1b6e1
VS
1936 switch (crtc->pipe) {
1937 uint32_t dsparb, dsparb2, dsparb3;
1938 case PIPE_A:
44e921d4
VS
1939 dsparb = I915_READ_FW(DSPARB);
1940 dsparb2 = I915_READ_FW(DSPARB2);
54f1b6e1
VS
1941
1942 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1943 VLV_FIFO(SPRITEB, 0xff));
1944 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1945 VLV_FIFO(SPRITEB, sprite1_start));
1946
1947 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1948 VLV_FIFO(SPRITEB_HI, 0x1));
1949 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1950 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1951
44e921d4
VS
1952 I915_WRITE_FW(DSPARB, dsparb);
1953 I915_WRITE_FW(DSPARB2, dsparb2);
54f1b6e1
VS
1954 break;
1955 case PIPE_B:
44e921d4
VS
1956 dsparb = I915_READ_FW(DSPARB);
1957 dsparb2 = I915_READ_FW(DSPARB2);
54f1b6e1
VS
1958
1959 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1960 VLV_FIFO(SPRITED, 0xff));
1961 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1962 VLV_FIFO(SPRITED, sprite1_start));
1963
1964 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1965 VLV_FIFO(SPRITED_HI, 0xff));
1966 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1967 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1968
44e921d4
VS
1969 I915_WRITE_FW(DSPARB, dsparb);
1970 I915_WRITE_FW(DSPARB2, dsparb2);
54f1b6e1
VS
1971 break;
1972 case PIPE_C:
44e921d4
VS
1973 dsparb3 = I915_READ_FW(DSPARB3);
1974 dsparb2 = I915_READ_FW(DSPARB2);
54f1b6e1
VS
1975
1976 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1977 VLV_FIFO(SPRITEF, 0xff));
1978 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1979 VLV_FIFO(SPRITEF, sprite1_start));
1980
1981 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1982 VLV_FIFO(SPRITEF_HI, 0xff));
1983 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1984 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1985
44e921d4
VS
1986 I915_WRITE_FW(DSPARB3, dsparb3);
1987 I915_WRITE_FW(DSPARB2, dsparb2);
54f1b6e1
VS
1988 break;
1989 default:
1990 break;
1991 }
467a14d9 1992
44e921d4 1993 POSTING_READ_FW(DSPARB);
467a14d9 1994
44e921d4 1995 spin_unlock(&dev_priv->uncore.lock);
54f1b6e1
VS
1996}
1997
1998#undef VLV_FIFO
1999
4841da51
VS
2000static int vlv_compute_intermediate_wm(struct drm_device *dev,
2001 struct intel_crtc *crtc,
2002 struct intel_crtc_state *crtc_state)
2003{
2004 struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
2005 const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
2006 const struct vlv_wm_state *active = &crtc->wm.active.vlv;
2007 int level;
2008
2009 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
5eeb798b
VS
2010 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2011 !crtc_state->disable_cxsr;
4841da51
VS
2012
2013 for (level = 0; level < intermediate->num_levels; level++) {
2014 enum plane_id plane_id;
2015
2016 for_each_plane_id_on_crtc(crtc, plane_id) {
2017 intermediate->wm[level].plane[plane_id] =
2018 min(optimal->wm[level].plane[plane_id],
2019 active->wm[level].plane[plane_id]);
2020 }
2021
2022 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2023 active->sr[level].plane);
2024 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2025 active->sr[level].cursor);
2026 }
2027
2028 vlv_invalidate_wms(crtc, intermediate, level);
2029
2030 /*
2031 * If our intermediate WM are identical to the final WM, then we can
2032 * omit the post-vblank programming; only update if it's different.
2033 */
5eeb798b
VS
2034 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2035 crtc_state->wm.need_postvbl_update = true;
4841da51
VS
2036
2037 return 0;
2038}
2039
7c951c00 2040static void vlv_merge_wm(struct drm_i915_private *dev_priv,
262cd2e1
VS
2041 struct vlv_wm_values *wm)
2042{
2043 struct intel_crtc *crtc;
2044 int num_active_crtcs = 0;
2045
7c951c00 2046 wm->level = dev_priv->wm.max_level;
262cd2e1
VS
2047 wm->cxsr = true;
2048
7c951c00 2049 for_each_intel_crtc(&dev_priv->drm, crtc) {
7eb4941f 2050 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
262cd2e1
VS
2051
2052 if (!crtc->active)
2053 continue;
2054
2055 if (!wm_state->cxsr)
2056 wm->cxsr = false;
2057
2058 num_active_crtcs++;
2059 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2060 }
2061
2062 if (num_active_crtcs != 1)
2063 wm->cxsr = false;
2064
6f9c784b
VS
2065 if (num_active_crtcs > 1)
2066 wm->level = VLV_WM_LEVEL_PM2;
2067
7c951c00 2068 for_each_intel_crtc(&dev_priv->drm, crtc) {
7eb4941f 2069 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
262cd2e1
VS
2070 enum pipe pipe = crtc->pipe;
2071
262cd2e1 2072 wm->pipe[pipe] = wm_state->wm[wm->level];
ff32c54e 2073 if (crtc->active && wm->cxsr)
262cd2e1
VS
2074 wm->sr = wm_state->sr[wm->level];
2075
1b31389c
VS
2076 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2077 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2078 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2079 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
262cd2e1
VS
2080 }
2081}
2082
ff32c54e 2083static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
262cd2e1 2084{
fa292a4b
VS
2085 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2086 struct vlv_wm_values new_wm = {};
262cd2e1 2087
fa292a4b 2088 vlv_merge_wm(dev_priv, &new_wm);
262cd2e1 2089
ff32c54e 2090 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
262cd2e1
VS
2091 return;
2092
fa292a4b 2093 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
262cd2e1
VS
2094 chv_set_memory_dvfs(dev_priv, false);
2095
fa292a4b 2096 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
262cd2e1
VS
2097 chv_set_memory_pm5(dev_priv, false);
2098
fa292a4b 2099 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
3d90e649 2100 _intel_set_memory_cxsr(dev_priv, false);
262cd2e1 2101
fa292a4b 2102 vlv_write_wm_values(dev_priv, &new_wm);
262cd2e1 2103
fa292a4b 2104 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
3d90e649 2105 _intel_set_memory_cxsr(dev_priv, true);
262cd2e1 2106
fa292a4b 2107 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
262cd2e1
VS
2108 chv_set_memory_pm5(dev_priv, true);
2109
fa292a4b 2110 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
262cd2e1
VS
2111 chv_set_memory_dvfs(dev_priv, true);
2112
fa292a4b 2113 *old_wm = new_wm;
3c2777fd
VS
2114}
2115
ff32c54e
VS
2116static void vlv_initial_watermarks(struct intel_atomic_state *state,
2117 struct intel_crtc_state *crtc_state)
2118{
2119 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2120 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2121
2122 mutex_lock(&dev_priv->wm.wm_mutex);
4841da51
VS
2123 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2124 vlv_program_watermarks(dev_priv);
2125 mutex_unlock(&dev_priv->wm.wm_mutex);
2126}
2127
2128static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2129 struct intel_crtc_state *crtc_state)
2130{
2131 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2133
2134 if (!crtc_state->wm.need_postvbl_update)
2135 return;
2136
2137 mutex_lock(&dev_priv->wm.wm_mutex);
2138 intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
ff32c54e
VS
2139 vlv_program_watermarks(dev_priv);
2140 mutex_unlock(&dev_priv->wm.wm_mutex);
2141}
2142
432081bc 2143static void i965_update_wm(struct intel_crtc *unused_crtc)
b445e3b0 2144{
ffc7a76b 2145 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
efc2611e 2146 struct intel_crtc *crtc;
b445e3b0
ED
2147 int srwm = 1;
2148 int cursor_sr = 16;
9858425c 2149 bool cxsr_enabled;
b445e3b0
ED
2150
2151 /* Calc sr entries for one plane configs */
ffc7a76b 2152 crtc = single_enabled_crtc(dev_priv);
b445e3b0
ED
2153 if (crtc) {
2154 /* self-refresh has much higher latency */
2155 static const int sr_latency_ns = 12000;
efc2611e
VS
2156 const struct drm_display_mode *adjusted_mode =
2157 &crtc->config->base.adjusted_mode;
2158 const struct drm_framebuffer *fb =
2159 crtc->base.primary->state->fb;
241bfc38 2160 int clock = adjusted_mode->crtc_clock;
fec8cba3 2161 int htotal = adjusted_mode->crtc_htotal;
efc2611e 2162 int hdisplay = crtc->config->pipe_src_w;
353c8598 2163 int cpp = fb->format->cpp[0];
b445e3b0
ED
2164 int entries;
2165
baf69ca8
VS
2166 entries = intel_wm_method2(clock, htotal,
2167 hdisplay, cpp, sr_latency_ns / 100);
b445e3b0
ED
2168 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2169 srwm = I965_FIFO_SIZE - entries;
2170 if (srwm < 0)
2171 srwm = 1;
2172 srwm &= 0x1ff;
2173 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2174 entries, srwm);
2175
baf69ca8
VS
2176 entries = intel_wm_method2(clock, htotal,
2177 crtc->base.cursor->state->crtc_w, 4,
2178 sr_latency_ns / 100);
b445e3b0 2179 entries = DIV_ROUND_UP(entries,
baf69ca8
VS
2180 i965_cursor_wm_info.cacheline_size) +
2181 i965_cursor_wm_info.guard_size;
b445e3b0 2182
baf69ca8 2183 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
b445e3b0
ED
2184 if (cursor_sr > i965_cursor_wm_info.max_wm)
2185 cursor_sr = i965_cursor_wm_info.max_wm;
2186
2187 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2188 "cursor %d\n", srwm, cursor_sr);
2189
9858425c 2190 cxsr_enabled = true;
b445e3b0 2191 } else {
9858425c 2192 cxsr_enabled = false;
b445e3b0 2193 /* Turn off self refresh if both pipes are enabled */
5209b1f4 2194 intel_set_memory_cxsr(dev_priv, false);
b445e3b0
ED
2195 }
2196
2197 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2198 srwm);
2199
2200 /* 965 has limitations... */
f4998963
VS
2201 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2202 FW_WM(8, CURSORB) |
2203 FW_WM(8, PLANEB) |
2204 FW_WM(8, PLANEA));
2205 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2206 FW_WM(8, PLANEC_OLD));
b445e3b0 2207 /* update cursor SR watermark */
f4998963 2208 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
9858425c
ID
2209
2210 if (cxsr_enabled)
2211 intel_set_memory_cxsr(dev_priv, true);
b445e3b0
ED
2212}
2213
f4998963
VS
2214#undef FW_WM
2215
432081bc 2216static void i9xx_update_wm(struct intel_crtc *unused_crtc)
b445e3b0 2217{
ffc7a76b 2218 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
b445e3b0
ED
2219 const struct intel_watermark_params *wm_info;
2220 uint32_t fwater_lo;
2221 uint32_t fwater_hi;
2222 int cwm, srwm = 1;
2223 int fifo_size;
2224 int planea_wm, planeb_wm;
efc2611e 2225 struct intel_crtc *crtc, *enabled = NULL;
b445e3b0 2226
a9097be4 2227 if (IS_I945GM(dev_priv))
b445e3b0 2228 wm_info = &i945_wm_info;
5db94019 2229 else if (!IS_GEN2(dev_priv))
b445e3b0
ED
2230 wm_info = &i915_wm_info;
2231 else
9d539105 2232 wm_info = &i830_a_wm_info;
b445e3b0 2233
ef0f5e93 2234 fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
b91eb5cc 2235 crtc = intel_get_crtc_for_plane(dev_priv, 0);
efc2611e
VS
2236 if (intel_crtc_active(crtc)) {
2237 const struct drm_display_mode *adjusted_mode =
2238 &crtc->config->base.adjusted_mode;
2239 const struct drm_framebuffer *fb =
2240 crtc->base.primary->state->fb;
2241 int cpp;
2242
5db94019 2243 if (IS_GEN2(dev_priv))
b9e0bda3 2244 cpp = 4;
efc2611e 2245 else
353c8598 2246 cpp = fb->format->cpp[0];
b9e0bda3 2247
241bfc38 2248 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
b9e0bda3 2249 wm_info, fifo_size, cpp,
5aef6003 2250 pessimal_latency_ns);
b445e3b0 2251 enabled = crtc;
9d539105 2252 } else {
b445e3b0 2253 planea_wm = fifo_size - wm_info->guard_size;
9d539105
VS
2254 if (planea_wm > (long)wm_info->max_wm)
2255 planea_wm = wm_info->max_wm;
2256 }
2257
5db94019 2258 if (IS_GEN2(dev_priv))
9d539105 2259 wm_info = &i830_bc_wm_info;
b445e3b0 2260
ef0f5e93 2261 fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
b91eb5cc 2262 crtc = intel_get_crtc_for_plane(dev_priv, 1);
efc2611e
VS
2263 if (intel_crtc_active(crtc)) {
2264 const struct drm_display_mode *adjusted_mode =
2265 &crtc->config->base.adjusted_mode;
2266 const struct drm_framebuffer *fb =
2267 crtc->base.primary->state->fb;
2268 int cpp;
2269
5db94019 2270 if (IS_GEN2(dev_priv))
b9e0bda3 2271 cpp = 4;
efc2611e 2272 else
353c8598 2273 cpp = fb->format->cpp[0];
b9e0bda3 2274
241bfc38 2275 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
b9e0bda3 2276 wm_info, fifo_size, cpp,
5aef6003 2277 pessimal_latency_ns);
b445e3b0
ED
2278 if (enabled == NULL)
2279 enabled = crtc;
2280 else
2281 enabled = NULL;
9d539105 2282 } else {
b445e3b0 2283 planeb_wm = fifo_size - wm_info->guard_size;
9d539105
VS
2284 if (planeb_wm > (long)wm_info->max_wm)
2285 planeb_wm = wm_info->max_wm;
2286 }
b445e3b0
ED
2287
2288 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2289
50a0bc90 2290 if (IS_I915GM(dev_priv) && enabled) {
2ff8fde1 2291 struct drm_i915_gem_object *obj;
2ab1bc9d 2292
efc2611e 2293 obj = intel_fb_obj(enabled->base.primary->state->fb);
2ab1bc9d
DV
2294
2295 /* self-refresh seems busted with untiled */
3e510a8e 2296 if (!i915_gem_object_is_tiled(obj))
2ab1bc9d
DV
2297 enabled = NULL;
2298 }
2299
b445e3b0
ED
2300 /*
2301 * Overlay gets an aggressive default since video jitter is bad.
2302 */
2303 cwm = 2;
2304
2305 /* Play safe and disable self-refresh before adjusting watermarks. */
5209b1f4 2306 intel_set_memory_cxsr(dev_priv, false);
b445e3b0
ED
2307
2308 /* Calc sr entries for one plane configs */
03427fcb 2309 if (HAS_FW_BLC(dev_priv) && enabled) {
b445e3b0
ED
2310 /* self-refresh has much higher latency */
2311 static const int sr_latency_ns = 6000;
efc2611e
VS
2312 const struct drm_display_mode *adjusted_mode =
2313 &enabled->config->base.adjusted_mode;
2314 const struct drm_framebuffer *fb =
2315 enabled->base.primary->state->fb;
241bfc38 2316 int clock = adjusted_mode->crtc_clock;
fec8cba3 2317 int htotal = adjusted_mode->crtc_htotal;
efc2611e
VS
2318 int hdisplay = enabled->config->pipe_src_w;
2319 int cpp;
b445e3b0
ED
2320 int entries;
2321
50a0bc90 2322 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2d1b5056 2323 cpp = 4;
efc2611e 2324 else
353c8598 2325 cpp = fb->format->cpp[0];
2d1b5056 2326
baf69ca8
VS
2327 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2328 sr_latency_ns / 100);
b445e3b0
ED
2329 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2330 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2331 srwm = wm_info->fifo_size - entries;
2332 if (srwm < 0)
2333 srwm = 1;
2334
50a0bc90 2335 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
b445e3b0
ED
2336 I915_WRITE(FW_BLC_SELF,
2337 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
acb91359 2338 else
b445e3b0
ED
2339 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2340 }
2341
2342 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2343 planea_wm, planeb_wm, cwm, srwm);
2344
2345 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2346 fwater_hi = (cwm & 0x1f);
2347
2348 /* Set request length to 8 cachelines per fetch */
2349 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2350 fwater_hi = fwater_hi | (1 << 8);
2351
2352 I915_WRITE(FW_BLC, fwater_lo);
2353 I915_WRITE(FW_BLC2, fwater_hi);
2354
5209b1f4
ID
2355 if (enabled)
2356 intel_set_memory_cxsr(dev_priv, true);
b445e3b0
ED
2357}
2358
432081bc 2359static void i845_update_wm(struct intel_crtc *unused_crtc)
b445e3b0 2360{
ffc7a76b 2361 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
efc2611e 2362 struct intel_crtc *crtc;
241bfc38 2363 const struct drm_display_mode *adjusted_mode;
b445e3b0
ED
2364 uint32_t fwater_lo;
2365 int planea_wm;
2366
ffc7a76b 2367 crtc = single_enabled_crtc(dev_priv);
b445e3b0
ED
2368 if (crtc == NULL)
2369 return;
2370
efc2611e 2371 adjusted_mode = &crtc->config->base.adjusted_mode;
241bfc38 2372 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
feb56b93 2373 &i845_wm_info,
ef0f5e93 2374 dev_priv->display.get_fifo_size(dev_priv, 0),
5aef6003 2375 4, pessimal_latency_ns);
b445e3b0
ED
2376 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2377 fwater_lo |= (3<<8) | planea_wm;
2378
2379 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2380
2381 I915_WRITE(FW_BLC, fwater_lo);
2382}
2383
37126462 2384/* latency must be in 0.1us units. */
baf69ca8
VS
2385static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2386 unsigned int cpp,
2387 unsigned int latency)
801bcfff 2388{
baf69ca8 2389 unsigned int ret;
3312ba65 2390
baf69ca8
VS
2391 ret = intel_wm_method1(pixel_rate, cpp, latency);
2392 ret = DIV_ROUND_UP(ret, 64) + 2;
801bcfff
PZ
2393
2394 return ret;
2395}
2396
37126462 2397/* latency must be in 0.1us units. */
baf69ca8
VS
2398static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2399 unsigned int htotal,
2400 unsigned int width,
2401 unsigned int cpp,
2402 unsigned int latency)
801bcfff 2403{
baf69ca8 2404 unsigned int ret;
3312ba65 2405
baf69ca8
VS
2406 ret = intel_wm_method2(pixel_rate, htotal,
2407 width, cpp, latency);
801bcfff 2408 ret = DIV_ROUND_UP(ret, 64) + 2;
baf69ca8 2409
801bcfff
PZ
2410 return ret;
2411}
2412
23297044 2413static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
ac484963 2414 uint8_t cpp)
cca32e9a 2415{
15126882
MR
2416 /*
2417 * Neither of these should be possible since this function shouldn't be
2418 * called if the CRTC is off or the plane is invisible. But let's be
2419 * extra paranoid to avoid a potential divide-by-zero if we screw up
2420 * elsewhere in the driver.
2421 */
ac484963 2422 if (WARN_ON(!cpp))
15126882
MR
2423 return 0;
2424 if (WARN_ON(!horiz_pixels))
2425 return 0;
2426
ac484963 2427 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
cca32e9a
PZ
2428}
2429
820c1980 2430struct ilk_wm_maximums {
cca32e9a
PZ
2431 uint16_t pri;
2432 uint16_t spr;
2433 uint16_t cur;
2434 uint16_t fbc;
2435};
2436
37126462
VS
2437/*
2438 * For both WM_PIPE and WM_LP.
2439 * mem_value must be in 0.1us units.
2440 */
7221fc33 2441static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
43d59eda 2442 const struct intel_plane_state *pstate,
cca32e9a
PZ
2443 uint32_t mem_value,
2444 bool is_lp)
801bcfff 2445{
cca32e9a 2446 uint32_t method1, method2;
8305494e 2447 int cpp;
cca32e9a 2448
24304d81 2449 if (!intel_wm_plane_visible(cstate, pstate))
801bcfff
PZ
2450 return 0;
2451
353c8598 2452 cpp = pstate->base.fb->format->cpp[0];
8305494e 2453
a7d1b3f4 2454 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
cca32e9a
PZ
2455
2456 if (!is_lp)
2457 return method1;
2458
a7d1b3f4 2459 method2 = ilk_wm_method2(cstate->pixel_rate,
7221fc33 2460 cstate->base.adjusted_mode.crtc_htotal,
936e71e3 2461 drm_rect_width(&pstate->base.dst),
ac484963 2462 cpp, mem_value);
cca32e9a
PZ
2463
2464 return min(method1, method2);
801bcfff
PZ
2465}
2466
37126462
VS
2467/*
2468 * For both WM_PIPE and WM_LP.
2469 * mem_value must be in 0.1us units.
2470 */
7221fc33 2471static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
43d59eda 2472 const struct intel_plane_state *pstate,
801bcfff
PZ
2473 uint32_t mem_value)
2474{
2475 uint32_t method1, method2;
8305494e 2476 int cpp;
801bcfff 2477
24304d81 2478 if (!intel_wm_plane_visible(cstate, pstate))
801bcfff
PZ
2479 return 0;
2480
353c8598 2481 cpp = pstate->base.fb->format->cpp[0];
8305494e 2482
a7d1b3f4
VS
2483 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2484 method2 = ilk_wm_method2(cstate->pixel_rate,
7221fc33 2485 cstate->base.adjusted_mode.crtc_htotal,
936e71e3 2486 drm_rect_width(&pstate->base.dst),
ac484963 2487 cpp, mem_value);
801bcfff
PZ
2488 return min(method1, method2);
2489}
2490
37126462
VS
2491/*
2492 * For both WM_PIPE and WM_LP.
2493 * mem_value must be in 0.1us units.
2494 */
7221fc33 2495static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
43d59eda 2496 const struct intel_plane_state *pstate,
801bcfff
PZ
2497 uint32_t mem_value)
2498{
a5509abd
VS
2499 int cpp;
2500
24304d81 2501 if (!intel_wm_plane_visible(cstate, pstate))
801bcfff
PZ
2502 return 0;
2503
a5509abd
VS
2504 cpp = pstate->base.fb->format->cpp[0];
2505
a7d1b3f4 2506 return ilk_wm_method2(cstate->pixel_rate,
7221fc33 2507 cstate->base.adjusted_mode.crtc_htotal,
a5509abd 2508 pstate->base.crtc_w, cpp, mem_value);
801bcfff
PZ
2509}
2510
cca32e9a 2511/* Only for WM_LP. */
7221fc33 2512static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
43d59eda 2513 const struct intel_plane_state *pstate,
1fda9882 2514 uint32_t pri_val)
cca32e9a 2515{
8305494e 2516 int cpp;
43d59eda 2517
24304d81 2518 if (!intel_wm_plane_visible(cstate, pstate))
cca32e9a
PZ
2519 return 0;
2520
353c8598 2521 cpp = pstate->base.fb->format->cpp[0];
8305494e 2522
936e71e3 2523 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
cca32e9a
PZ
2524}
2525
175fded1
TU
2526static unsigned int
2527ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
158ae64f 2528{
175fded1 2529 if (INTEL_GEN(dev_priv) >= 8)
416f4727 2530 return 3072;
175fded1 2531 else if (INTEL_GEN(dev_priv) >= 7)
158ae64f
VS
2532 return 768;
2533 else
2534 return 512;
2535}
2536
175fded1
TU
2537static unsigned int
2538ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2539 int level, bool is_sprite)
4e975081 2540{
175fded1 2541 if (INTEL_GEN(dev_priv) >= 8)
4e975081
VS
2542 /* BDW primary/sprite plane watermarks */
2543 return level == 0 ? 255 : 2047;
175fded1 2544 else if (INTEL_GEN(dev_priv) >= 7)
4e975081
VS
2545 /* IVB/HSW primary/sprite plane watermarks */
2546 return level == 0 ? 127 : 1023;
2547 else if (!is_sprite)
2548 /* ILK/SNB primary plane watermarks */
2549 return level == 0 ? 127 : 511;
2550 else
2551 /* ILK/SNB sprite plane watermarks */
2552 return level == 0 ? 63 : 255;
2553}
2554
175fded1
TU
2555static unsigned int
2556ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
4e975081 2557{
175fded1 2558 if (INTEL_GEN(dev_priv) >= 7)
4e975081
VS
2559 return level == 0 ? 63 : 255;
2560 else
2561 return level == 0 ? 31 : 63;
2562}
2563
175fded1 2564static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
4e975081 2565{
175fded1 2566 if (INTEL_GEN(dev_priv) >= 8)
4e975081
VS
2567 return 31;
2568 else
2569 return 15;
2570}
2571
158ae64f
VS
2572/* Calculate the maximum primary/sprite plane watermark */
2573static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2574 int level,
240264f4 2575 const struct intel_wm_config *config,
158ae64f
VS
2576 enum intel_ddb_partitioning ddb_partitioning,
2577 bool is_sprite)
2578{
175fded1
TU
2579 struct drm_i915_private *dev_priv = to_i915(dev);
2580 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
158ae64f
VS
2581
2582 /* if sprites aren't enabled, sprites get nothing */
240264f4 2583 if (is_sprite && !config->sprites_enabled)
158ae64f
VS
2584 return 0;
2585
2586 /* HSW allows LP1+ watermarks even with multiple pipes */
240264f4 2587 if (level == 0 || config->num_pipes_active > 1) {
175fded1 2588 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
158ae64f
VS
2589
2590 /*
2591 * For some reason the non self refresh
2592 * FIFO size is only half of the self
2593 * refresh FIFO size on ILK/SNB.
2594 */
175fded1 2595 if (INTEL_GEN(dev_priv) <= 6)
158ae64f
VS
2596 fifo_size /= 2;
2597 }
2598
240264f4 2599 if (config->sprites_enabled) {
158ae64f
VS
2600 /* level 0 is always calculated with 1:1 split */
2601 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2602 if (is_sprite)
2603 fifo_size *= 5;
2604 fifo_size /= 6;
2605 } else {
2606 fifo_size /= 2;
2607 }
2608 }
2609
2610 /* clamp to max that the registers can hold */
175fded1 2611 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
158ae64f
VS
2612}
2613
2614/* Calculate the maximum cursor plane watermark */
2615static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
240264f4
VS
2616 int level,
2617 const struct intel_wm_config *config)
158ae64f
VS
2618{
2619 /* HSW LP1+ watermarks w/ multiple pipes */
240264f4 2620 if (level > 0 && config->num_pipes_active > 1)
158ae64f
VS
2621 return 64;
2622
2623 /* otherwise just report max that registers can hold */
175fded1 2624 return ilk_cursor_wm_reg_max(to_i915(dev), level);
158ae64f
VS
2625}
2626
d34ff9c6 2627static void ilk_compute_wm_maximums(const struct drm_device *dev,
34982fe1
VS
2628 int level,
2629 const struct intel_wm_config *config,
2630 enum intel_ddb_partitioning ddb_partitioning,
820c1980 2631 struct ilk_wm_maximums *max)
158ae64f 2632{
240264f4
VS
2633 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2634 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2635 max->cur = ilk_cursor_wm_max(dev, level, config);
175fded1 2636 max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
158ae64f
VS
2637}
2638
175fded1 2639static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
a3cb4048
VS
2640 int level,
2641 struct ilk_wm_maximums *max)
2642{
175fded1
TU
2643 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2644 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2645 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2646 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
a3cb4048
VS
2647}
2648
d9395655 2649static bool ilk_validate_wm_level(int level,
820c1980 2650 const struct ilk_wm_maximums *max,
d9395655 2651 struct intel_wm_level *result)
a9786a11
VS
2652{
2653 bool ret;
2654
2655 /* already determined to be invalid? */
2656 if (!result->enable)
2657 return false;
2658
2659 result->enable = result->pri_val <= max->pri &&
2660 result->spr_val <= max->spr &&
2661 result->cur_val <= max->cur;
2662
2663 ret = result->enable;
2664
2665 /*
2666 * HACK until we can pre-compute everything,
2667 * and thus fail gracefully if LP0 watermarks
2668 * are exceeded...
2669 */
2670 if (level == 0 && !result->enable) {
2671 if (result->pri_val > max->pri)
2672 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2673 level, result->pri_val, max->pri);
2674 if (result->spr_val > max->spr)
2675 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2676 level, result->spr_val, max->spr);
2677 if (result->cur_val > max->cur)
2678 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2679 level, result->cur_val, max->cur);
2680
2681 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2682 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2683 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2684 result->enable = true;
2685 }
2686
a9786a11
VS
2687 return ret;
2688}
2689
d34ff9c6 2690static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
43d59eda 2691 const struct intel_crtc *intel_crtc,
6f5ddd17 2692 int level,
7221fc33 2693 struct intel_crtc_state *cstate,
86c8bbbe
MR
2694 struct intel_plane_state *pristate,
2695 struct intel_plane_state *sprstate,
2696 struct intel_plane_state *curstate,
1fd527cc 2697 struct intel_wm_level *result)
6f5ddd17
VS
2698{
2699 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2700 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2701 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2702
2703 /* WM1+ latency values stored in 0.5us units */
2704 if (level > 0) {
2705 pri_latency *= 5;
2706 spr_latency *= 5;
2707 cur_latency *= 5;
2708 }
2709
e3bddded
ML
2710 if (pristate) {
2711 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2712 pri_latency, level);
2713 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2714 }
2715
2716 if (sprstate)
2717 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2718
2719 if (curstate)
2720 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2721
6f5ddd17
VS
2722 result->enable = true;
2723}
2724
801bcfff 2725static uint32_t
532f7a7f 2726hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
1f8eeabf 2727{
532f7a7f
VS
2728 const struct intel_atomic_state *intel_state =
2729 to_intel_atomic_state(cstate->base.state);
ee91a159
MR
2730 const struct drm_display_mode *adjusted_mode =
2731 &cstate->base.adjusted_mode;
85a02deb 2732 u32 linetime, ips_linetime;
1f8eeabf 2733
ee91a159
MR
2734 if (!cstate->base.active)
2735 return 0;
2736 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2737 return 0;
bb0f4aab 2738 if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
801bcfff 2739 return 0;
1011d8c4 2740
1f8eeabf
ED
2741 /* The WM are computed with base on how long it takes to fill a single
2742 * row at the given clock rate, multiplied by 8.
2743 * */
124abe07
VS
2744 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2745 adjusted_mode->crtc_clock);
2746 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
bb0f4aab 2747 intel_state->cdclk.logical.cdclk);
1f8eeabf 2748
801bcfff
PZ
2749 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2750 PIPE_WM_LINETIME_TIME(linetime);
1f8eeabf
ED
2751}
2752
bb726519
VS
2753static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2754 uint16_t wm[8])
12b134df 2755{
5db94019 2756 if (IS_GEN9(dev_priv)) {
2af30a5c 2757 uint32_t val;
4f947386 2758 int ret, i;
5db94019 2759 int level, max_level = ilk_wm_max_level(dev_priv);
2af30a5c
PB
2760
2761 /* read the first set of memory latencies[0:3] */
2762 val = 0; /* data0 to be programmed to 0 for first set */
2763 mutex_lock(&dev_priv->rps.hw_lock);
2764 ret = sandybridge_pcode_read(dev_priv,
2765 GEN9_PCODE_READ_MEM_LATENCY,
2766 &val);
2767 mutex_unlock(&dev_priv->rps.hw_lock);
2768
2769 if (ret) {
2770 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2771 return;
2772 }
2773
2774 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2775 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2776 GEN9_MEM_LATENCY_LEVEL_MASK;
2777 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2778 GEN9_MEM_LATENCY_LEVEL_MASK;
2779 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2780 GEN9_MEM_LATENCY_LEVEL_MASK;
2781
2782 /* read the second set of memory latencies[4:7] */
2783 val = 1; /* data0 to be programmed to 1 for second set */
2784 mutex_lock(&dev_priv->rps.hw_lock);
2785 ret = sandybridge_pcode_read(dev_priv,
2786 GEN9_PCODE_READ_MEM_LATENCY,
2787 &val);
2788 mutex_unlock(&dev_priv->rps.hw_lock);
2789 if (ret) {
2790 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2791 return;
2792 }
2793
2794 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2795 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2796 GEN9_MEM_LATENCY_LEVEL_MASK;
2797 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2798 GEN9_MEM_LATENCY_LEVEL_MASK;
2799 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2800 GEN9_MEM_LATENCY_LEVEL_MASK;
2801
0727e40a
PZ
2802 /*
2803 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2804 * need to be disabled. We make sure to sanitize the values out
2805 * of the punit to satisfy this requirement.
2806 */
2807 for (level = 1; level <= max_level; level++) {
2808 if (wm[level] == 0) {
2809 for (i = level + 1; i <= max_level; i++)
2810 wm[i] = 0;
2811 break;
2812 }
2813 }
2814
367294be 2815 /*
9fb5026f 2816 * WaWmMemoryReadLatency:skl,glk
6f97235b 2817 *
367294be 2818 * punit doesn't take into account the read latency so we need
0727e40a
PZ
2819 * to add 2us to the various latency levels we retrieve from the
2820 * punit when level 0 response data us 0us.
367294be 2821 */
0727e40a
PZ
2822 if (wm[0] == 0) {
2823 wm[0] += 2;
2824 for (level = 1; level <= max_level; level++) {
2825 if (wm[level] == 0)
2826 break;
367294be 2827 wm[level] += 2;
4f947386 2828 }
0727e40a
PZ
2829 }
2830
8652744b 2831 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
12b134df
VS
2832 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2833
2834 wm[0] = (sskpd >> 56) & 0xFF;
2835 if (wm[0] == 0)
2836 wm[0] = sskpd & 0xF;
e5d5019e
VS
2837 wm[1] = (sskpd >> 4) & 0xFF;
2838 wm[2] = (sskpd >> 12) & 0xFF;
2839 wm[3] = (sskpd >> 20) & 0x1FF;
2840 wm[4] = (sskpd >> 32) & 0x1FF;
bb726519 2841 } else if (INTEL_GEN(dev_priv) >= 6) {
63cf9a13
VS
2842 uint32_t sskpd = I915_READ(MCH_SSKPD);
2843
2844 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2845 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2846 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2847 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
bb726519 2848 } else if (INTEL_GEN(dev_priv) >= 5) {
3a88d0ac
VS
2849 uint32_t mltr = I915_READ(MLTR_ILK);
2850
2851 /* ILK primary LP0 latency is 700 ns */
2852 wm[0] = 7;
2853 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2854 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
12b134df
VS
2855 }
2856}
2857
5db94019
TU
2858static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2859 uint16_t wm[5])
53615a5e
VS
2860{
2861 /* ILK sprite LP0 latency is 1300 ns */
5db94019 2862 if (IS_GEN5(dev_priv))
53615a5e
VS
2863 wm[0] = 13;
2864}
2865
fd6b8f43
TU
2866static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2867 uint16_t wm[5])
53615a5e
VS
2868{
2869 /* ILK cursor LP0 latency is 1300 ns */
fd6b8f43 2870 if (IS_GEN5(dev_priv))
53615a5e
VS
2871 wm[0] = 13;
2872
2873 /* WaDoubleCursorLP3Latency:ivb */
fd6b8f43 2874 if (IS_IVYBRIDGE(dev_priv))
53615a5e
VS
2875 wm[3] *= 2;
2876}
2877
5db94019 2878int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
26ec971e 2879{
26ec971e 2880 /* how many WM levels are we expecting */
8652744b 2881 if (INTEL_GEN(dev_priv) >= 9)
2af30a5c 2882 return 7;
8652744b 2883 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
ad0d6dc4 2884 return 4;
8652744b 2885 else if (INTEL_GEN(dev_priv) >= 6)
ad0d6dc4 2886 return 3;
26ec971e 2887 else
ad0d6dc4
VS
2888 return 2;
2889}
7526ed79 2890
5db94019 2891static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
ad0d6dc4 2892 const char *name,
2af30a5c 2893 const uint16_t wm[8])
ad0d6dc4 2894{
5db94019 2895 int level, max_level = ilk_wm_max_level(dev_priv);
26ec971e
VS
2896
2897 for (level = 0; level <= max_level; level++) {
2898 unsigned int latency = wm[level];
2899
2900 if (latency == 0) {
2901 DRM_ERROR("%s WM%d latency not provided\n",
2902 name, level);
2903 continue;
2904 }
2905
2af30a5c
PB
2906 /*
2907 * - latencies are in us on gen9.
2908 * - before then, WM1+ latency values are in 0.5us units
2909 */
5db94019 2910 if (IS_GEN9(dev_priv))
2af30a5c
PB
2911 latency *= 10;
2912 else if (level > 0)
26ec971e
VS
2913 latency *= 5;
2914
2915 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2916 name, level, wm[level],
2917 latency / 10, latency % 10);
2918 }
2919}
2920
e95a2f75
VS
2921static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2922 uint16_t wm[5], uint16_t min)
2923{
5db94019 2924 int level, max_level = ilk_wm_max_level(dev_priv);
e95a2f75
VS
2925
2926 if (wm[0] >= min)
2927 return false;
2928
2929 wm[0] = max(wm[0], min);
2930 for (level = 1; level <= max_level; level++)
2931 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2932
2933 return true;
2934}
2935
bb726519 2936static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
e95a2f75 2937{
e95a2f75
VS
2938 bool changed;
2939
2940 /*
2941 * The BIOS provided WM memory latency values are often
2942 * inadequate for high resolution displays. Adjust them.
2943 */
2944 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2945 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2946 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2947
2948 if (!changed)
2949 return;
2950
2951 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
5db94019
TU
2952 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2953 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2954 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
e95a2f75
VS
2955}
2956
bb726519 2957static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
53615a5e 2958{
bb726519 2959 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
53615a5e
VS
2960
2961 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2962 sizeof(dev_priv->wm.pri_latency));
2963 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2964 sizeof(dev_priv->wm.pri_latency));
2965
5db94019 2966 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
fd6b8f43 2967 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
26ec971e 2968
5db94019
TU
2969 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2970 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2971 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
e95a2f75 2972
5db94019 2973 if (IS_GEN6(dev_priv))
bb726519 2974 snb_wm_latency_quirk(dev_priv);
53615a5e
VS
2975}
2976
bb726519 2977static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2af30a5c 2978{
bb726519 2979 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
5db94019 2980 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2af30a5c
PB
2981}
2982
ed4a6a7c
MR
2983static bool ilk_validate_pipe_wm(struct drm_device *dev,
2984 struct intel_pipe_wm *pipe_wm)
2985{
2986 /* LP0 watermark maximums depend on this pipe alone */
2987 const struct intel_wm_config config = {
2988 .num_pipes_active = 1,
2989 .sprites_enabled = pipe_wm->sprites_enabled,
2990 .sprites_scaled = pipe_wm->sprites_scaled,
2991 };
2992 struct ilk_wm_maximums max;
2993
2994 /* LP0 watermarks always use 1/2 DDB partitioning */
2995 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2996
2997 /* At least LP0 must be valid */
2998 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2999 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3000 return false;
3001 }
3002
3003 return true;
3004}
3005
0b2ae6d7 3006/* Compute new watermarks for the pipe */
e3bddded 3007static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
0b2ae6d7 3008{
e3bddded
ML
3009 struct drm_atomic_state *state = cstate->base.state;
3010 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
86c8bbbe 3011 struct intel_pipe_wm *pipe_wm;
e3bddded 3012 struct drm_device *dev = state->dev;
fac5e23e 3013 const struct drm_i915_private *dev_priv = to_i915(dev);
43d59eda 3014 struct intel_plane *intel_plane;
86c8bbbe 3015 struct intel_plane_state *pristate = NULL;
43d59eda 3016 struct intel_plane_state *sprstate = NULL;
86c8bbbe 3017 struct intel_plane_state *curstate = NULL;
5db94019 3018 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
820c1980 3019 struct ilk_wm_maximums max;
0b2ae6d7 3020
e8f1f02e 3021 pipe_wm = &cstate->wm.ilk.optimal;
86c8bbbe 3022
43d59eda 3023 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
e3bddded
ML
3024 struct intel_plane_state *ps;
3025
3026 ps = intel_atomic_get_existing_plane_state(state,
3027 intel_plane);
3028 if (!ps)
3029 continue;
86c8bbbe
MR
3030
3031 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
e3bddded 3032 pristate = ps;
86c8bbbe 3033 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
e3bddded 3034 sprstate = ps;
86c8bbbe 3035 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
e3bddded 3036 curstate = ps;
43d59eda
MR
3037 }
3038
ed4a6a7c 3039 pipe_wm->pipe_enabled = cstate->base.active;
e3bddded 3040 if (sprstate) {
936e71e3
VS
3041 pipe_wm->sprites_enabled = sprstate->base.visible;
3042 pipe_wm->sprites_scaled = sprstate->base.visible &&
3043 (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3044 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
e3bddded
ML
3045 }
3046
d81f04c5
ML
3047 usable_level = max_level;
3048
7b39a0b7 3049 /* ILK/SNB: LP2+ watermarks only w/o sprites */
175fded1 3050 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
d81f04c5 3051 usable_level = 1;
7b39a0b7
VS
3052
3053 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
ed4a6a7c 3054 if (pipe_wm->sprites_scaled)
d81f04c5 3055 usable_level = 0;
7b39a0b7 3056
86c8bbbe 3057 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
71f0a626
ML
3058 pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
3059
3060 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3061 pipe_wm->wm[0] = pipe_wm->raw_wm[0];
0b2ae6d7 3062
8652744b 3063 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
532f7a7f 3064 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
0b2ae6d7 3065
ed4a6a7c 3066 if (!ilk_validate_pipe_wm(dev, pipe_wm))
1a426d61 3067 return -EINVAL;
a3cb4048 3068
175fded1 3069 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
a3cb4048
VS
3070
3071 for (level = 1; level <= max_level; level++) {
71f0a626 3072 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
a3cb4048 3073
86c8bbbe 3074 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
d81f04c5 3075 pristate, sprstate, curstate, wm);
a3cb4048
VS
3076
3077 /*
3078 * Disable any watermark level that exceeds the
3079 * register maximums since such watermarks are
3080 * always invalid.
3081 */
71f0a626
ML
3082 if (level > usable_level)
3083 continue;
3084
3085 if (ilk_validate_wm_level(level, &max, wm))
3086 pipe_wm->wm[level] = *wm;
3087 else
d81f04c5 3088 usable_level = level;
a3cb4048
VS
3089 }
3090
86c8bbbe 3091 return 0;
0b2ae6d7
VS
3092}
3093
ed4a6a7c
MR
3094/*
3095 * Build a set of 'intermediate' watermark values that satisfy both the old
3096 * state and the new state. These can be programmed to the hardware
3097 * immediately.
3098 */
3099static int ilk_compute_intermediate_wm(struct drm_device *dev,
3100 struct intel_crtc *intel_crtc,
3101 struct intel_crtc_state *newstate)
3102{
e8f1f02e 3103 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
ed4a6a7c 3104 struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
5db94019 3105 int level, max_level = ilk_wm_max_level(to_i915(dev));
ed4a6a7c
MR
3106
3107 /*
3108 * Start with the final, target watermarks, then combine with the
3109 * currently active watermarks to get values that are safe both before
3110 * and after the vblank.
3111 */
e8f1f02e 3112 *a = newstate->wm.ilk.optimal;
ed4a6a7c
MR
3113 a->pipe_enabled |= b->pipe_enabled;
3114 a->sprites_enabled |= b->sprites_enabled;
3115 a->sprites_scaled |= b->sprites_scaled;
3116
3117 for (level = 0; level <= max_level; level++) {
3118 struct intel_wm_level *a_wm = &a->wm[level];
3119 const struct intel_wm_level *b_wm = &b->wm[level];
3120
3121 a_wm->enable &= b_wm->enable;
3122 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3123 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3124 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3125 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3126 }
3127
3128 /*
3129 * We need to make sure that these merged watermark values are
3130 * actually a valid configuration themselves. If they're not,
3131 * there's no safe way to transition from the old state to
3132 * the new state, so we need to fail the atomic transaction.
3133 */
3134 if (!ilk_validate_pipe_wm(dev, a))
3135 return -EINVAL;
3136
3137 /*
3138 * If our intermediate WM are identical to the final WM, then we can
3139 * omit the post-vblank programming; only update if it's different.
3140 */
5eeb798b
VS
3141 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3142 newstate->wm.need_postvbl_update = true;
ed4a6a7c
MR
3143
3144 return 0;
3145}
3146
0b2ae6d7
VS
3147/*
3148 * Merge the watermarks from all active pipes for a specific level.
3149 */
3150static void ilk_merge_wm_level(struct drm_device *dev,
3151 int level,
3152 struct intel_wm_level *ret_wm)
3153{
3154 const struct intel_crtc *intel_crtc;
3155
d52fea5b
VS
3156 ret_wm->enable = true;
3157
d3fcc808 3158 for_each_intel_crtc(dev, intel_crtc) {
ed4a6a7c 3159 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
fe392efd
VS
3160 const struct intel_wm_level *wm = &active->wm[level];
3161
3162 if (!active->pipe_enabled)
3163 continue;
0b2ae6d7 3164
d52fea5b
VS
3165 /*
3166 * The watermark values may have been used in the past,
3167 * so we must maintain them in the registers for some
3168 * time even if the level is now disabled.
3169 */
0b2ae6d7 3170 if (!wm->enable)
d52fea5b 3171 ret_wm->enable = false;
0b2ae6d7
VS
3172
3173 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3174 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3175 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3176 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3177 }
0b2ae6d7
VS
3178}
3179
3180/*
3181 * Merge all low power watermarks for all active pipes.
3182 */
3183static void ilk_wm_merge(struct drm_device *dev,
0ba22e26 3184 const struct intel_wm_config *config,
820c1980 3185 const struct ilk_wm_maximums *max,
0b2ae6d7
VS
3186 struct intel_pipe_wm *merged)
3187{
fac5e23e 3188 struct drm_i915_private *dev_priv = to_i915(dev);
5db94019 3189 int level, max_level = ilk_wm_max_level(dev_priv);
d52fea5b 3190 int last_enabled_level = max_level;
0b2ae6d7 3191
0ba22e26 3192 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
fd6b8f43 3193 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
0ba22e26 3194 config->num_pipes_active > 1)
1204d5ba 3195 last_enabled_level = 0;
0ba22e26 3196
6c8b6c28 3197 /* ILK: FBC WM must be disabled always */
175fded1 3198 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
0b2ae6d7
VS
3199
3200 /* merge each WM1+ level */
3201 for (level = 1; level <= max_level; level++) {
3202 struct intel_wm_level *wm = &merged->wm[level];
3203
3204 ilk_merge_wm_level(dev, level, wm);
3205
d52fea5b
VS
3206 if (level > last_enabled_level)
3207 wm->enable = false;
3208 else if (!ilk_validate_wm_level(level, max, wm))
3209 /* make sure all following levels get disabled */
3210 last_enabled_level = level - 1;
0b2ae6d7
VS
3211
3212 /*
3213 * The spec says it is preferred to disable
3214 * FBC WMs instead of disabling a WM level.
3215 */
3216 if (wm->fbc_val > max->fbc) {
d52fea5b
VS
3217 if (wm->enable)
3218 merged->fbc_wm_enabled = false;
0b2ae6d7
VS
3219 wm->fbc_val = 0;
3220 }
3221 }
6c8b6c28
VS
3222
3223 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3224 /*
3225 * FIXME this is racy. FBC might get enabled later.
3226 * What we should check here is whether FBC can be
3227 * enabled sometime later.
3228 */
5db94019 3229 if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
0e631adc 3230 intel_fbc_is_active(dev_priv)) {
6c8b6c28
VS
3231 for (level = 2; level <= max_level; level++) {
3232 struct intel_wm_level *wm = &merged->wm[level];
3233
3234 wm->enable = false;
3235 }
3236 }
0b2ae6d7
VS
3237}
3238
b380ca3c
VS
3239static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3240{
3241 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3242 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3243}
3244
a68d68ee
VS
3245/* The value we need to program into the WM_LPx latency field */
3246static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3247{
fac5e23e 3248 struct drm_i915_private *dev_priv = to_i915(dev);
a68d68ee 3249
8652744b 3250 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
a68d68ee
VS
3251 return 2 * level;
3252 else
3253 return dev_priv->wm.pri_latency[level];
3254}
3255
820c1980 3256static void ilk_compute_wm_results(struct drm_device *dev,
0362c781 3257 const struct intel_pipe_wm *merged,
609cedef 3258 enum intel_ddb_partitioning partitioning,
820c1980 3259 struct ilk_wm_values *results)
801bcfff 3260{
175fded1 3261 struct drm_i915_private *dev_priv = to_i915(dev);
0b2ae6d7
VS
3262 struct intel_crtc *intel_crtc;
3263 int level, wm_lp;
cca32e9a 3264
0362c781 3265 results->enable_fbc_wm = merged->fbc_wm_enabled;
609cedef 3266 results->partitioning = partitioning;
cca32e9a 3267
0b2ae6d7 3268 /* LP1+ register values */
cca32e9a 3269 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
1fd527cc 3270 const struct intel_wm_level *r;
801bcfff 3271
b380ca3c 3272 level = ilk_wm_lp_to_level(wm_lp, merged);
0b2ae6d7 3273
0362c781 3274 r = &merged->wm[level];
cca32e9a 3275
d52fea5b
VS
3276 /*
3277 * Maintain the watermark values even if the level is
3278 * disabled. Doing otherwise could cause underruns.
3279 */
3280 results->wm_lp[wm_lp - 1] =
a68d68ee 3281 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
416f4727
VS
3282 (r->pri_val << WM1_LP_SR_SHIFT) |
3283 r->cur_val;
3284
d52fea5b
VS
3285 if (r->enable)
3286 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3287
175fded1 3288 if (INTEL_GEN(dev_priv) >= 8)
416f4727
VS
3289 results->wm_lp[wm_lp - 1] |=
3290 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3291 else
3292 results->wm_lp[wm_lp - 1] |=
3293 r->fbc_val << WM1_LP_FBC_SHIFT;
3294
d52fea5b
VS
3295 /*
3296 * Always set WM1S_LP_EN when spr_val != 0, even if the
3297 * level is disabled. Doing otherwise could cause underruns.
3298 */
175fded1 3299 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
6cef2b8a
VS
3300 WARN_ON(wm_lp != 1);
3301 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3302 } else
3303 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
cca32e9a 3304 }
801bcfff 3305
0b2ae6d7 3306 /* LP0 register values */
d3fcc808 3307 for_each_intel_crtc(dev, intel_crtc) {
0b2ae6d7 3308 enum pipe pipe = intel_crtc->pipe;
ed4a6a7c
MR
3309 const struct intel_wm_level *r =
3310 &intel_crtc->wm.active.ilk.wm[0];
0b2ae6d7
VS
3311
3312 if (WARN_ON(!r->enable))
3313 continue;
3314
ed4a6a7c 3315 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
1011d8c4 3316
0b2ae6d7
VS
3317 results->wm_pipe[pipe] =
3318 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3319 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3320 r->cur_val;
801bcfff
PZ
3321 }
3322}
3323
861f3389
PZ
3324/* Find the result with the highest level enabled. Check for enable_fbc_wm in
3325 * case both are at the same level. Prefer r1 in case they're the same. */
820c1980 3326static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
198a1e9b
VS
3327 struct intel_pipe_wm *r1,
3328 struct intel_pipe_wm *r2)
861f3389 3329{
5db94019 3330 int level, max_level = ilk_wm_max_level(to_i915(dev));
198a1e9b 3331 int level1 = 0, level2 = 0;
861f3389 3332
198a1e9b
VS
3333 for (level = 1; level <= max_level; level++) {
3334 if (r1->wm[level].enable)
3335 level1 = level;
3336 if (r2->wm[level].enable)
3337 level2 = level;
861f3389
PZ
3338 }
3339
198a1e9b
VS
3340 if (level1 == level2) {
3341 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
861f3389
PZ
3342 return r2;
3343 else
3344 return r1;
198a1e9b 3345 } else if (level1 > level2) {
861f3389
PZ
3346 return r1;
3347 } else {
3348 return r2;
3349 }
3350}
3351
49a687c4
VS
3352/* dirty bits used to track which watermarks need changes */
3353#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3354#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3355#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3356#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3357#define WM_DIRTY_FBC (1 << 24)
3358#define WM_DIRTY_DDB (1 << 25)
3359
055e393f 3360static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
820c1980
ID
3361 const struct ilk_wm_values *old,
3362 const struct ilk_wm_values *new)
49a687c4
VS
3363{
3364 unsigned int dirty = 0;
3365 enum pipe pipe;
3366 int wm_lp;
3367
055e393f 3368 for_each_pipe(dev_priv, pipe) {
49a687c4
VS
3369 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3370 dirty |= WM_DIRTY_LINETIME(pipe);
3371 /* Must disable LP1+ watermarks too */
3372 dirty |= WM_DIRTY_LP_ALL;
3373 }
3374
3375 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3376 dirty |= WM_DIRTY_PIPE(pipe);
3377 /* Must disable LP1+ watermarks too */
3378 dirty |= WM_DIRTY_LP_ALL;
3379 }
3380 }
3381
3382 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3383 dirty |= WM_DIRTY_FBC;
3384 /* Must disable LP1+ watermarks too */
3385 dirty |= WM_DIRTY_LP_ALL;
3386 }
3387
3388 if (old->partitioning != new->partitioning) {
3389 dirty |= WM_DIRTY_DDB;
3390 /* Must disable LP1+ watermarks too */
3391 dirty |= WM_DIRTY_LP_ALL;
3392 }
3393
3394 /* LP1+ watermarks already deemed dirty, no need to continue */
3395 if (dirty & WM_DIRTY_LP_ALL)
3396 return dirty;
3397
3398 /* Find the lowest numbered LP1+ watermark in need of an update... */
3399 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3400 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3401 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3402 break;
3403 }
3404
3405 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3406 for (; wm_lp <= 3; wm_lp++)
3407 dirty |= WM_DIRTY_LP(wm_lp);
3408
3409 return dirty;
3410}
3411
8553c18e
VS
3412static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3413 unsigned int dirty)
801bcfff 3414{
820c1980 3415 struct ilk_wm_values *previous = &dev_priv->wm.hw;
8553c18e 3416 bool changed = false;
801bcfff 3417
facd619b
VS
3418 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3419 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3420 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
8553c18e 3421 changed = true;
facd619b
VS
3422 }
3423 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3424 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3425 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
8553c18e 3426 changed = true;
facd619b
VS
3427 }
3428 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3429 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3430 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
8553c18e 3431 changed = true;
facd619b 3432 }
801bcfff 3433
facd619b
VS
3434 /*
3435 * Don't touch WM1S_LP_EN here.
3436 * Doing so could cause underruns.
3437 */
6cef2b8a 3438
8553c18e
VS
3439 return changed;
3440}
3441
3442/*
3443 * The spec says we shouldn't write when we don't need, because every write
3444 * causes WMs to be re-evaluated, expending some power.
3445 */
820c1980
ID
3446static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3447 struct ilk_wm_values *results)
8553c18e 3448{
820c1980 3449 struct ilk_wm_values *previous = &dev_priv->wm.hw;
8553c18e
VS
3450 unsigned int dirty;
3451 uint32_t val;
3452
055e393f 3453 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
8553c18e
VS
3454 if (!dirty)
3455 return;
3456
3457 _ilk_disable_lp_wm(dev_priv, dirty);
3458
49a687c4 3459 if (dirty & WM_DIRTY_PIPE(PIPE_A))
801bcfff 3460 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
49a687c4 3461 if (dirty & WM_DIRTY_PIPE(PIPE_B))
801bcfff 3462 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
49a687c4 3463 if (dirty & WM_DIRTY_PIPE(PIPE_C))
801bcfff
PZ
3464 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3465
49a687c4 3466 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
801bcfff 3467 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
49a687c4 3468 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
801bcfff 3469 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
49a687c4 3470 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
801bcfff
PZ
3471 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3472
49a687c4 3473 if (dirty & WM_DIRTY_DDB) {
8652744b 3474 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
ac9545fd
VS
3475 val = I915_READ(WM_MISC);
3476 if (results->partitioning == INTEL_DDB_PART_1_2)
3477 val &= ~WM_MISC_DATA_PARTITION_5_6;
3478 else
3479 val |= WM_MISC_DATA_PARTITION_5_6;
3480 I915_WRITE(WM_MISC, val);
3481 } else {
3482 val = I915_READ(DISP_ARB_CTL2);
3483 if (results->partitioning == INTEL_DDB_PART_1_2)
3484 val &= ~DISP_DATA_PARTITION_5_6;
3485 else
3486 val |= DISP_DATA_PARTITION_5_6;
3487 I915_WRITE(DISP_ARB_CTL2, val);
3488 }
1011d8c4
PZ
3489 }
3490
49a687c4 3491 if (dirty & WM_DIRTY_FBC) {
cca32e9a
PZ
3492 val = I915_READ(DISP_ARB_CTL);
3493 if (results->enable_fbc_wm)
3494 val &= ~DISP_FBC_WM_DIS;
3495 else
3496 val |= DISP_FBC_WM_DIS;
3497 I915_WRITE(DISP_ARB_CTL, val);
3498 }
3499
954911eb
ID
3500 if (dirty & WM_DIRTY_LP(1) &&
3501 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3502 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3503
175fded1 3504 if (INTEL_GEN(dev_priv) >= 7) {
6cef2b8a
VS
3505 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3506 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3507 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3508 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3509 }
801bcfff 3510
facd619b 3511 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
801bcfff 3512 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
facd619b 3513 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
801bcfff 3514 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
facd619b 3515 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
801bcfff 3516 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
609cedef
VS
3517
3518 dev_priv->wm.hw = *results;
801bcfff
PZ
3519}
3520
ed4a6a7c 3521bool ilk_disable_lp_wm(struct drm_device *dev)
8553c18e 3522{
fac5e23e 3523 struct drm_i915_private *dev_priv = to_i915(dev);
8553c18e
VS
3524
3525 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3526}
3527
656d1b89 3528#define SKL_SAGV_BLOCK_TIME 30 /* µs */
b9cec075 3529
ee3d532f
PZ
3530/*
3531 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3532 * so assume we'll always need it in order to avoid underruns.
3533 */
3534static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3535{
3536 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3537
b976dc53 3538 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
ee3d532f
PZ
3539 return true;
3540
3541 return false;
3542}
3543
56feca91
PZ
3544static bool
3545intel_has_sagv(struct drm_i915_private *dev_priv)
3546{
6e3100ec
PZ
3547 if (IS_KABYLAKE(dev_priv))
3548 return true;
3549
3550 if (IS_SKYLAKE(dev_priv) &&
3551 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3552 return true;
3553
3554 return false;
56feca91
PZ
3555}
3556
656d1b89
L
3557/*
3558 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3559 * depending on power and performance requirements. The display engine access
3560 * to system memory is blocked during the adjustment time. Because of the
3561 * blocking time, having this enabled can cause full system hangs and/or pipe
3562 * underruns if we don't meet all of the following requirements:
3563 *
3564 * - <= 1 pipe enabled
3565 * - All planes can enable watermarks for latencies >= SAGV engine block time
3566 * - We're not using an interlaced display configuration
3567 */
3568int
16dcdc4e 3569intel_enable_sagv(struct drm_i915_private *dev_priv)
656d1b89
L
3570{
3571 int ret;
3572
56feca91
PZ
3573 if (!intel_has_sagv(dev_priv))
3574 return 0;
3575
3576 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
656d1b89
L
3577 return 0;
3578
3579 DRM_DEBUG_KMS("Enabling the SAGV\n");
3580 mutex_lock(&dev_priv->rps.hw_lock);
3581
3582 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3583 GEN9_SAGV_ENABLE);
3584
3585 /* We don't need to wait for the SAGV when enabling */
3586 mutex_unlock(&dev_priv->rps.hw_lock);
3587
3588 /*
3589 * Some skl systems, pre-release machines in particular,
3590 * don't actually have an SAGV.
3591 */
6e3100ec 3592 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
656d1b89 3593 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
16dcdc4e 3594 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
656d1b89
L
3595 return 0;
3596 } else if (ret < 0) {
3597 DRM_ERROR("Failed to enable the SAGV\n");
3598 return ret;
3599 }
3600
16dcdc4e 3601 dev_priv->sagv_status = I915_SAGV_ENABLED;
656d1b89
L
3602 return 0;
3603}
3604
656d1b89 3605int
16dcdc4e 3606intel_disable_sagv(struct drm_i915_private *dev_priv)
656d1b89 3607{
b3b8e999 3608 int ret;
656d1b89 3609
56feca91
PZ
3610 if (!intel_has_sagv(dev_priv))
3611 return 0;
3612
3613 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
656d1b89
L
3614 return 0;
3615
3616 DRM_DEBUG_KMS("Disabling the SAGV\n");
3617 mutex_lock(&dev_priv->rps.hw_lock);
3618
3619 /* bspec says to keep retrying for at least 1 ms */
b3b8e999
ID
3620 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3621 GEN9_SAGV_DISABLE,
3622 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3623 1);
656d1b89
L
3624 mutex_unlock(&dev_priv->rps.hw_lock);
3625
656d1b89
L
3626 /*
3627 * Some skl systems, pre-release machines in particular,
3628 * don't actually have an SAGV.
3629 */
b3b8e999 3630 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
656d1b89 3631 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
16dcdc4e 3632 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
656d1b89 3633 return 0;
b3b8e999
ID
3634 } else if (ret < 0) {
3635 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3636 return ret;
656d1b89
L
3637 }
3638
16dcdc4e 3639 dev_priv->sagv_status = I915_SAGV_DISABLED;
656d1b89
L
3640 return 0;
3641}
3642
16dcdc4e 3643bool intel_can_enable_sagv(struct drm_atomic_state *state)
656d1b89
L
3644{
3645 struct drm_device *dev = state->dev;
3646 struct drm_i915_private *dev_priv = to_i915(dev);
3647 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
ee3d532f
PZ
3648 struct intel_crtc *crtc;
3649 struct intel_plane *plane;
d8c0fafc 3650 struct intel_crtc_state *cstate;
656d1b89 3651 enum pipe pipe;
d8c0fafc 3652 int level, latency;
656d1b89 3653
56feca91
PZ
3654 if (!intel_has_sagv(dev_priv))
3655 return false;
3656
656d1b89
L
3657 /*
3658 * SKL workaround: bspec recommends we disable the SAGV when we have
3659 * more then one pipe enabled
3660 *
3661 * If there are no active CRTCs, no additional checks need be performed
3662 */
3663 if (hweight32(intel_state->active_crtcs) == 0)
3664 return true;
3665 else if (hweight32(intel_state->active_crtcs) > 1)
3666 return false;
3667
3668 /* Since we're now guaranteed to only have one active CRTC... */
3669 pipe = ffs(intel_state->active_crtcs) - 1;
98187836 3670 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
d8c0fafc 3671 cstate = to_intel_crtc_state(crtc->base.state);
656d1b89 3672
c89cadd5 3673 if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
656d1b89
L
3674 return false;
3675
ee3d532f 3676 for_each_intel_plane_on_crtc(dev, crtc, plane) {
d5cdfdf5
VS
3677 struct skl_plane_wm *wm =
3678 &cstate->wm.skl.optimal.planes[plane->id];
ee3d532f 3679
656d1b89 3680 /* Skip this plane if it's not enabled */
d8c0fafc 3681 if (!wm->wm[0].plane_en)
656d1b89
L
3682 continue;
3683
3684 /* Find the highest enabled wm level for this plane */
5db94019 3685 for (level = ilk_wm_max_level(dev_priv);
d8c0fafc 3686 !wm->wm[level].plane_en; --level)
656d1b89
L
3687 { }
3688
ee3d532f
PZ
3689 latency = dev_priv->wm.skl_latency[level];
3690
3691 if (skl_needs_memory_bw_wa(intel_state) &&
bae781b2 3692 plane->base.state->fb->modifier ==
ee3d532f
PZ
3693 I915_FORMAT_MOD_X_TILED)
3694 latency += 15;
3695
656d1b89
L
3696 /*
3697 * If any of the planes on this pipe don't enable wm levels
3698 * that incur memory latencies higher then 30µs we can't enable
3699 * the SAGV
3700 */
ee3d532f 3701 if (latency < SKL_SAGV_BLOCK_TIME)
656d1b89
L
3702 return false;
3703 }
3704
3705 return true;
3706}
3707
b9cec075
DL
3708static void
3709skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
024c9045 3710 const struct intel_crtc_state *cstate,
c107acfe
MR
3711 struct skl_ddb_entry *alloc, /* out */
3712 int *num_active /* out */)
b9cec075 3713{
c107acfe
MR
3714 struct drm_atomic_state *state = cstate->base.state;
3715 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3716 struct drm_i915_private *dev_priv = to_i915(dev);
024c9045 3717 struct drm_crtc *for_crtc = cstate->base.crtc;
b9cec075
DL
3718 unsigned int pipe_size, ddb_size;
3719 int nth_active_pipe;
c107acfe 3720
a6d3460e 3721 if (WARN_ON(!state) || !cstate->base.active) {
b9cec075
DL
3722 alloc->start = 0;
3723 alloc->end = 0;
a6d3460e 3724 *num_active = hweight32(dev_priv->active_crtcs);
b9cec075
DL
3725 return;
3726 }
3727
a6d3460e
MR
3728 if (intel_state->active_pipe_changes)
3729 *num_active = hweight32(intel_state->active_crtcs);
3730 else
3731 *num_active = hweight32(dev_priv->active_crtcs);
3732
6f3fff60
D
3733 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3734 WARN_ON(ddb_size == 0);
b9cec075
DL
3735
3736 ddb_size -= 4; /* 4 blocks for bypass path allocation */
3737
c107acfe 3738 /*
a6d3460e
MR
3739 * If the state doesn't change the active CRTC's, then there's
3740 * no need to recalculate; the existing pipe allocation limits
3741 * should remain unchanged. Note that we're safe from racing
3742 * commits since any racing commit that changes the active CRTC
3743 * list would need to grab _all_ crtc locks, including the one
3744 * we currently hold.
c107acfe 3745 */
a6d3460e 3746 if (!intel_state->active_pipe_changes) {
512b5527
ML
3747 /*
3748 * alloc may be cleared by clear_intel_crtc_state,
3749 * copy from old state to be sure
3750 */
3751 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
a6d3460e 3752 return;
c107acfe 3753 }
a6d3460e
MR
3754
3755 nth_active_pipe = hweight32(intel_state->active_crtcs &
3756 (drm_crtc_mask(for_crtc) - 1));
3757 pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3758 alloc->start = nth_active_pipe * ddb_size / *num_active;
3759 alloc->end = alloc->start + pipe_size;
b9cec075
DL
3760}
3761
c107acfe 3762static unsigned int skl_cursor_allocation(int num_active)
b9cec075 3763{
c107acfe 3764 if (num_active == 1)
b9cec075
DL
3765 return 32;
3766
3767 return 8;
3768}
3769
a269c583
DL
3770static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3771{
3772 entry->start = reg & 0x3ff;
3773 entry->end = (reg >> 16) & 0x3ff;
16160e3d
DL
3774 if (entry->end)
3775 entry->end += 1;
a269c583
DL
3776}
3777
08db6652
DL
3778void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3779 struct skl_ddb_allocation *ddb /* out */)
a269c583 3780{
d5cdfdf5 3781 struct intel_crtc *crtc;
a269c583 3782
b10f1b20
ML
3783 memset(ddb, 0, sizeof(*ddb));
3784
d5cdfdf5 3785 for_each_intel_crtc(&dev_priv->drm, crtc) {
4d800030 3786 enum intel_display_power_domain power_domain;
d5cdfdf5
VS
3787 enum plane_id plane_id;
3788 enum pipe pipe = crtc->pipe;
4d800030
ID
3789
3790 power_domain = POWER_DOMAIN_PIPE(pipe);
3791 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b10f1b20
ML
3792 continue;
3793
d5cdfdf5
VS
3794 for_each_plane_id_on_crtc(crtc, plane_id) {
3795 u32 val;
3796
3797 if (plane_id != PLANE_CURSOR)
3798 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3799 else
3800 val = I915_READ(CUR_BUF_CFG(pipe));
a269c583 3801
d5cdfdf5
VS
3802 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
3803 }
4d800030
ID
3804
3805 intel_display_power_put(dev_priv, power_domain);
a269c583
DL
3806 }
3807}
3808
9c2f7a9d
KM
3809/*
3810 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3811 * The bspec defines downscale amount as:
3812 *
3813 * """
3814 * Horizontal down scale amount = maximum[1, Horizontal source size /
3815 * Horizontal destination size]
3816 * Vertical down scale amount = maximum[1, Vertical source size /
3817 * Vertical destination size]
3818 * Total down scale amount = Horizontal down scale amount *
3819 * Vertical down scale amount
3820 * """
3821 *
3822 * Return value is provided in 16.16 fixed point form to retain fractional part.
3823 * Caller should take care of dividing & rounding off the value.
3824 */
3825static uint32_t
93aa2a1c
VS
3826skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3827 const struct intel_plane_state *pstate)
9c2f7a9d 3828{
93aa2a1c 3829 struct intel_plane *plane = to_intel_plane(pstate->base.plane);
9c2f7a9d
KM
3830 uint32_t downscale_h, downscale_w;
3831 uint32_t src_w, src_h, dst_w, dst_h;
3832
93aa2a1c 3833 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
9c2f7a9d
KM
3834 return DRM_PLANE_HELPER_NO_SCALING;
3835
3836 /* n.b., src is 16.16 fixed point, dst is whole integer */
93aa2a1c
VS
3837 if (plane->id == PLANE_CURSOR) {
3838 src_w = pstate->base.src_w;
3839 src_h = pstate->base.src_h;
3840 dst_w = pstate->base.crtc_w;
3841 dst_h = pstate->base.crtc_h;
3842 } else {
3843 src_w = drm_rect_width(&pstate->base.src);
3844 src_h = drm_rect_height(&pstate->base.src);
3845 dst_w = drm_rect_width(&pstate->base.dst);
3846 dst_h = drm_rect_height(&pstate->base.dst);
3847 }
3848
bd2ef25d 3849 if (drm_rotation_90_or_270(pstate->base.rotation))
9c2f7a9d
KM
3850 swap(dst_w, dst_h);
3851
3852 downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3853 downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3854
3855 /* Provide result in 16.16 fixed point */
3856 return (uint64_t)downscale_w * downscale_h >> 16;
3857}
3858
b9cec075 3859static unsigned int
024c9045
MR
3860skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3861 const struct drm_plane_state *pstate,
3862 int y)
b9cec075 3863{
93aa2a1c 3864 struct intel_plane *plane = to_intel_plane(pstate->plane);
a280f7dd 3865 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
8d19d7d9 3866 uint32_t down_scale_amount, data_rate;
a280f7dd 3867 uint32_t width = 0, height = 0;
8305494e
VS
3868 struct drm_framebuffer *fb;
3869 u32 format;
a1de91e5 3870
936e71e3 3871 if (!intel_pstate->base.visible)
a1de91e5 3872 return 0;
8305494e
VS
3873
3874 fb = pstate->fb;
438b74a5 3875 format = fb->format->format;
8305494e 3876
93aa2a1c 3877 if (plane->id == PLANE_CURSOR)
a1de91e5
MR
3878 return 0;
3879 if (y && format != DRM_FORMAT_NV12)
3880 return 0;
a280f7dd 3881
936e71e3
VS
3882 width = drm_rect_width(&intel_pstate->base.src) >> 16;
3883 height = drm_rect_height(&intel_pstate->base.src) >> 16;
a280f7dd 3884
bd2ef25d 3885 if (drm_rotation_90_or_270(pstate->rotation))
a280f7dd 3886 swap(width, height);
2cd601c6
CK
3887
3888 /* for planar format */
a1de91e5 3889 if (format == DRM_FORMAT_NV12) {
2cd601c6 3890 if (y) /* y-plane data rate */
8d19d7d9 3891 data_rate = width * height *
353c8598 3892 fb->format->cpp[0];
2cd601c6 3893 else /* uv-plane data rate */
8d19d7d9 3894 data_rate = (width / 2) * (height / 2) *
353c8598 3895 fb->format->cpp[1];
8d19d7d9
KM
3896 } else {
3897 /* for packed formats */
353c8598 3898 data_rate = width * height * fb->format->cpp[0];
2cd601c6
CK
3899 }
3900
93aa2a1c 3901 down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
8d19d7d9
KM
3902
3903 return (uint64_t)data_rate * down_scale_amount >> 16;
b9cec075
DL
3904}
3905
3906/*
3907 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3908 * a 8192x4096@32bpp framebuffer:
3909 * 3 * 4096 * 8192 * 4 < 2^32
3910 */
3911static unsigned int
1e6ee542
ML
3912skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
3913 unsigned *plane_data_rate,
3914 unsigned *plane_y_data_rate)
b9cec075 3915{
9c74d826
MR
3916 struct drm_crtc_state *cstate = &intel_cstate->base;
3917 struct drm_atomic_state *state = cstate->state;
c8fe32c1 3918 struct drm_plane *plane;
c8fe32c1 3919 const struct drm_plane_state *pstate;
d5cdfdf5 3920 unsigned int total_data_rate = 0;
a6d3460e
MR
3921
3922 if (WARN_ON(!state))
3923 return 0;
b9cec075 3924
a1de91e5 3925 /* Calculate and cache data rate for each plane */
c8fe32c1 3926 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
d5cdfdf5
VS
3927 enum plane_id plane_id = to_intel_plane(plane)->id;
3928 unsigned int rate;
a6d3460e 3929
a6d3460e
MR
3930 /* packed/uv */
3931 rate = skl_plane_relative_data_rate(intel_cstate,
3932 pstate, 0);
d5cdfdf5 3933 plane_data_rate[plane_id] = rate;
1e6ee542
ML
3934
3935 total_data_rate += rate;
a6d3460e
MR
3936
3937 /* y-plane */
3938 rate = skl_plane_relative_data_rate(intel_cstate,
3939 pstate, 1);
d5cdfdf5 3940 plane_y_data_rate[plane_id] = rate;
024c9045 3941
1e6ee542 3942 total_data_rate += rate;
b9cec075
DL
3943 }
3944
3945 return total_data_rate;
3946}
3947
cbcfd14b
KM
3948static uint16_t
3949skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3950 const int y)
3951{
3952 struct drm_framebuffer *fb = pstate->fb;
3953 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3954 uint32_t src_w, src_h;
3955 uint32_t min_scanlines = 8;
3956 uint8_t plane_bpp;
3957
3958 if (WARN_ON(!fb))
3959 return 0;
3960
3961 /* For packed formats, no y-plane, return 0 */
438b74a5 3962 if (y && fb->format->format != DRM_FORMAT_NV12)
cbcfd14b
KM
3963 return 0;
3964
3965 /* For Non Y-tile return 8-blocks */
bae781b2
VS
3966 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
3967 fb->modifier != I915_FORMAT_MOD_Yf_TILED)
cbcfd14b
KM
3968 return 8;
3969
936e71e3
VS
3970 src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
3971 src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
cbcfd14b 3972
bd2ef25d 3973 if (drm_rotation_90_or_270(pstate->rotation))
cbcfd14b
KM
3974 swap(src_w, src_h);
3975
3976 /* Halve UV plane width and height for NV12 */
438b74a5 3977 if (fb->format->format == DRM_FORMAT_NV12 && !y) {
cbcfd14b
KM
3978 src_w /= 2;
3979 src_h /= 2;
3980 }
3981
438b74a5 3982 if (fb->format->format == DRM_FORMAT_NV12 && !y)
353c8598 3983 plane_bpp = fb->format->cpp[1];
cbcfd14b 3984 else
353c8598 3985 plane_bpp = fb->format->cpp[0];
cbcfd14b 3986
bd2ef25d 3987 if (drm_rotation_90_or_270(pstate->rotation)) {
cbcfd14b
KM
3988 switch (plane_bpp) {
3989 case 1:
3990 min_scanlines = 32;
3991 break;
3992 case 2:
3993 min_scanlines = 16;
3994 break;
3995 case 4:
3996 min_scanlines = 8;
3997 break;
3998 case 8:
3999 min_scanlines = 4;
4000 break;
4001 default:
4002 WARN(1, "Unsupported pixel depth %u for rotation",
4003 plane_bpp);
4004 min_scanlines = 32;
4005 }
4006 }
4007
4008 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4009}
4010
49845a7a
ML
4011static void
4012skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4013 uint16_t *minimum, uint16_t *y_minimum)
4014{
4015 const struct drm_plane_state *pstate;
4016 struct drm_plane *plane;
4017
4018 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
d5cdfdf5 4019 enum plane_id plane_id = to_intel_plane(plane)->id;
49845a7a 4020
d5cdfdf5 4021 if (plane_id == PLANE_CURSOR)
49845a7a
ML
4022 continue;
4023
4024 if (!pstate->visible)
4025 continue;
4026
d5cdfdf5
VS
4027 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4028 y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
49845a7a
ML
4029 }
4030
4031 minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4032}
4033
c107acfe 4034static int
024c9045 4035skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
b9cec075
DL
4036 struct skl_ddb_allocation *ddb /* out */)
4037{
c107acfe 4038 struct drm_atomic_state *state = cstate->base.state;
024c9045 4039 struct drm_crtc *crtc = cstate->base.crtc;
b9cec075
DL
4040 struct drm_device *dev = crtc->dev;
4041 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4042 enum pipe pipe = intel_crtc->pipe;
ce0ba283 4043 struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
49845a7a 4044 uint16_t alloc_size, start;
fefdd810
ML
4045 uint16_t minimum[I915_MAX_PLANES] = {};
4046 uint16_t y_minimum[I915_MAX_PLANES] = {};
b9cec075 4047 unsigned int total_data_rate;
d5cdfdf5 4048 enum plane_id plane_id;
c107acfe 4049 int num_active;
1e6ee542
ML
4050 unsigned plane_data_rate[I915_MAX_PLANES] = {};
4051 unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
b9cec075 4052
5a920b85
PZ
4053 /* Clear the partitioning for disabled planes. */
4054 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4055 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
4056
a6d3460e
MR
4057 if (WARN_ON(!state))
4058 return 0;
4059
c107acfe 4060 if (!cstate->base.active) {
ce0ba283 4061 alloc->start = alloc->end = 0;
c107acfe
MR
4062 return 0;
4063 }
4064
a6d3460e 4065 skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
34bb56af 4066 alloc_size = skl_ddb_entry_size(alloc);
b9cec075
DL
4067 if (alloc_size == 0) {
4068 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
c107acfe 4069 return 0;
b9cec075
DL
4070 }
4071
49845a7a 4072 skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
a6d3460e 4073
49845a7a
ML
4074 /*
4075 * 1. Allocate the mininum required blocks for each active plane
4076 * and allocate the cursor, it doesn't require extra allocation
4077 * proportional to the data rate.
4078 */
80958155 4079
d5cdfdf5
VS
4080 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4081 alloc_size -= minimum[plane_id];
4082 alloc_size -= y_minimum[plane_id];
80958155
DL
4083 }
4084
49845a7a
ML
4085 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4086 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4087
b9cec075 4088 /*
80958155
DL
4089 * 2. Distribute the remaining space in proportion to the amount of
4090 * data each plane needs to fetch from memory.
b9cec075
DL
4091 *
4092 * FIXME: we may not allocate every single block here.
4093 */
1e6ee542
ML
4094 total_data_rate = skl_get_total_relative_data_rate(cstate,
4095 plane_data_rate,
4096 plane_y_data_rate);
a1de91e5 4097 if (total_data_rate == 0)
c107acfe 4098 return 0;
b9cec075 4099
34bb56af 4100 start = alloc->start;
d5cdfdf5 4101 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
2cd601c6
CK
4102 unsigned int data_rate, y_data_rate;
4103 uint16_t plane_blocks, y_plane_blocks = 0;
b9cec075 4104
d5cdfdf5 4105 if (plane_id == PLANE_CURSOR)
49845a7a
ML
4106 continue;
4107
d5cdfdf5 4108 data_rate = plane_data_rate[plane_id];
b9cec075
DL
4109
4110 /*
2cd601c6 4111 * allocation for (packed formats) or (uv-plane part of planar format):
b9cec075
DL
4112 * promote the expression to 64 bits to avoid overflowing, the
4113 * result is < available as data_rate / total_data_rate < 1
4114 */
d5cdfdf5 4115 plane_blocks = minimum[plane_id];
80958155
DL
4116 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4117 total_data_rate);
b9cec075 4118
c107acfe
MR
4119 /* Leave disabled planes at (0,0) */
4120 if (data_rate) {
d5cdfdf5
VS
4121 ddb->plane[pipe][plane_id].start = start;
4122 ddb->plane[pipe][plane_id].end = start + plane_blocks;
c107acfe 4123 }
b9cec075
DL
4124
4125 start += plane_blocks;
2cd601c6
CK
4126
4127 /*
4128 * allocation for y_plane part of planar format:
4129 */
d5cdfdf5 4130 y_data_rate = plane_y_data_rate[plane_id];
a1de91e5 4131
d5cdfdf5 4132 y_plane_blocks = y_minimum[plane_id];
a1de91e5
MR
4133 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
4134 total_data_rate);
2cd601c6 4135
c107acfe 4136 if (y_data_rate) {
d5cdfdf5
VS
4137 ddb->y_plane[pipe][plane_id].start = start;
4138 ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
c107acfe 4139 }
a1de91e5
MR
4140
4141 start += y_plane_blocks;
b9cec075
DL
4142 }
4143
c107acfe 4144 return 0;
b9cec075
DL
4145}
4146
2d41c0b5
PB
4147/*
4148 * The max latency should be 257 (max the punit can code is 255 and we add 2us
ac484963 4149 * for the read latency) and cpp should always be <= 8, so that
2d41c0b5
PB
4150 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4151 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4152*/
b95320bd
MK
4153static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
4154 uint32_t latency)
2d41c0b5 4155{
b95320bd
MK
4156 uint32_t wm_intermediate_val;
4157 uint_fixed_16_16_t ret;
2d41c0b5
PB
4158
4159 if (latency == 0)
b95320bd 4160 return FP_16_16_MAX;
2d41c0b5 4161
b95320bd
MK
4162 wm_intermediate_val = latency * pixel_rate * cpp;
4163 ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
2d41c0b5
PB
4164 return ret;
4165}
4166
b95320bd
MK
4167static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4168 uint32_t pipe_htotal,
4169 uint32_t latency,
4170 uint_fixed_16_16_t plane_blocks_per_line)
2d41c0b5 4171{
d4c2aa60 4172 uint32_t wm_intermediate_val;
b95320bd 4173 uint_fixed_16_16_t ret;
2d41c0b5
PB
4174
4175 if (latency == 0)
b95320bd 4176 return FP_16_16_MAX;
2d41c0b5 4177
2d41c0b5 4178 wm_intermediate_val = latency * pixel_rate;
b95320bd
MK
4179 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4180 pipe_htotal * 1000);
4181 ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
2d41c0b5
PB
4182 return ret;
4183}
4184
9c2f7a9d
KM
4185static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4186 struct intel_plane_state *pstate)
4187{
4188 uint64_t adjusted_pixel_rate;
4189 uint64_t downscale_amount;
4190 uint64_t pixel_rate;
4191
4192 /* Shouldn't reach here on disabled planes... */
93aa2a1c 4193 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
9c2f7a9d
KM
4194 return 0;
4195
4196 /*
4197 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4198 * with additional adjustments for plane-specific scaling.
4199 */
a7d1b3f4 4200 adjusted_pixel_rate = cstate->pixel_rate;
93aa2a1c 4201 downscale_amount = skl_plane_downscale_amount(cstate, pstate);
9c2f7a9d
KM
4202
4203 pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
4204 WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
4205
4206 return pixel_rate;
4207}
4208
55994c2c
MR
4209static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4210 struct intel_crtc_state *cstate,
4211 struct intel_plane_state *intel_pstate,
4212 uint16_t ddb_allocation,
4213 int level,
4214 uint16_t *out_blocks, /* out */
4215 uint8_t *out_lines, /* out */
4216 bool *enabled /* out */)
2d41c0b5 4217{
93aa2a1c 4218 struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
33815fa5
MR
4219 struct drm_plane_state *pstate = &intel_pstate->base;
4220 struct drm_framebuffer *fb = pstate->fb;
d4c2aa60 4221 uint32_t latency = dev_priv->wm.skl_latency[level];
b95320bd
MK
4222 uint_fixed_16_16_t method1, method2;
4223 uint_fixed_16_16_t plane_blocks_per_line;
4224 uint_fixed_16_16_t selected_result;
4225 uint32_t interm_pbpl;
4226 uint32_t plane_bytes_per_line;
d4c2aa60 4227 uint32_t res_blocks, res_lines;
ac484963 4228 uint8_t cpp;
a280f7dd 4229 uint32_t width = 0, height = 0;
9c2f7a9d 4230 uint32_t plane_pixel_rate;
b95320bd
MK
4231 uint_fixed_16_16_t y_tile_minimum;
4232 uint32_t y_min_scanlines;
ee3d532f
PZ
4233 struct intel_atomic_state *state =
4234 to_intel_atomic_state(cstate->base.state);
4235 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
ef8a4fb4 4236 bool y_tiled, x_tiled;
2d41c0b5 4237
93aa2a1c
VS
4238 if (latency == 0 ||
4239 !intel_wm_plane_visible(cstate, intel_pstate)) {
55994c2c
MR
4240 *enabled = false;
4241 return 0;
4242 }
2d41c0b5 4243
ef8a4fb4
MK
4244 y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4245 fb->modifier == I915_FORMAT_MOD_Yf_TILED;
4246 x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4247
4b7b2331
MK
4248 /* Display WA #1141: kbl. */
4249 if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
4250 latency += 4;
4251
ef8a4fb4 4252 if (apply_memory_bw_wa && x_tiled)
ee3d532f
PZ
4253 latency += 15;
4254
93aa2a1c
VS
4255 if (plane->id == PLANE_CURSOR) {
4256 width = intel_pstate->base.crtc_w;
4257 height = intel_pstate->base.crtc_h;
4258 } else {
4259 width = drm_rect_width(&intel_pstate->base.src) >> 16;
4260 height = drm_rect_height(&intel_pstate->base.src) >> 16;
4261 }
a280f7dd 4262
bd2ef25d 4263 if (drm_rotation_90_or_270(pstate->rotation))
a280f7dd
KM
4264 swap(width, height);
4265
353c8598 4266 cpp = fb->format->cpp[0];
9c2f7a9d
KM
4267 plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
4268
61d0a04d 4269 if (drm_rotation_90_or_270(pstate->rotation)) {
438b74a5 4270 int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
353c8598
VS
4271 fb->format->cpp[1] :
4272 fb->format->cpp[0];
1186fa85
PZ
4273
4274 switch (cpp) {
4275 case 1:
4276 y_min_scanlines = 16;
4277 break;
4278 case 2:
4279 y_min_scanlines = 8;
4280 break;
1186fa85
PZ
4281 case 4:
4282 y_min_scanlines = 4;
4283 break;
86a462bc
PZ
4284 default:
4285 MISSING_CASE(cpp);
4286 return -EINVAL;
1186fa85
PZ
4287 }
4288 } else {
4289 y_min_scanlines = 4;
4290 }
4291
2ef32dee
PZ
4292 if (apply_memory_bw_wa)
4293 y_min_scanlines *= 2;
4294
7a1a8aed 4295 plane_bytes_per_line = width * cpp;
ef8a4fb4 4296 if (y_tiled) {
b95320bd
MK
4297 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
4298 y_min_scanlines, 512);
7a1a8aed 4299 plane_blocks_per_line =
b95320bd 4300 fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
ef8a4fb4 4301 } else if (x_tiled) {
b95320bd
MK
4302 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
4303 plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
ef8a4fb4 4304 } else {
b95320bd
MK
4305 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
4306 plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
7a1a8aed
PZ
4307 }
4308
9c2f7a9d
KM
4309 method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
4310 method2 = skl_wm_method2(plane_pixel_rate,
024c9045 4311 cstate->base.adjusted_mode.crtc_htotal,
1186fa85 4312 latency,
7a1a8aed 4313 plane_blocks_per_line);
2d41c0b5 4314
b95320bd
MK
4315 y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
4316 plane_blocks_per_line);
75676ed4 4317
ef8a4fb4 4318 if (y_tiled) {
b95320bd 4319 selected_result = max_fixed_16_16(method2, y_tile_minimum);
0fda6568 4320 } else {
f1db3eaf
PZ
4321 if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
4322 (plane_bytes_per_line / 512 < 1))
4323 selected_result = method2;
b95320bd
MK
4324 else if ((ddb_allocation /
4325 fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
4326 selected_result = min_fixed_16_16(method1, method2);
0fda6568
TU
4327 else
4328 selected_result = method1;
4329 }
2d41c0b5 4330
b95320bd
MK
4331 res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
4332 res_lines = DIV_ROUND_UP(selected_result.val,
4333 plane_blocks_per_line.val);
e6d66171 4334
0fda6568 4335 if (level >= 1 && level <= 7) {
ef8a4fb4 4336 if (y_tiled) {
b95320bd 4337 res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
1186fa85 4338 res_lines += y_min_scanlines;
75676ed4 4339 } else {
0fda6568 4340 res_blocks++;
75676ed4 4341 }
0fda6568 4342 }
e6d66171 4343
55994c2c
MR
4344 if (res_blocks >= ddb_allocation || res_lines > 31) {
4345 *enabled = false;
6b6bada7
MR
4346
4347 /*
4348 * If there are no valid level 0 watermarks, then we can't
4349 * support this display configuration.
4350 */
4351 if (level) {
4352 return 0;
4353 } else {
d5cdfdf5
VS
4354 struct drm_plane *plane = pstate->plane;
4355
6b6bada7 4356 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
d5cdfdf5
VS
4357 DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4358 plane->base.id, plane->name,
6b6bada7 4359 res_blocks, ddb_allocation, res_lines);
6b6bada7
MR
4360 return -EINVAL;
4361 }
55994c2c 4362 }
e6d66171
DL
4363
4364 *out_blocks = res_blocks;
4365 *out_lines = res_lines;
55994c2c 4366 *enabled = true;
2d41c0b5 4367
55994c2c 4368 return 0;
2d41c0b5
PB
4369}
4370
f4a96752
MR
4371static int
4372skl_compute_wm_level(const struct drm_i915_private *dev_priv,
4373 struct skl_ddb_allocation *ddb,
4374 struct intel_crtc_state *cstate,
a62163e9 4375 struct intel_plane *intel_plane,
f4a96752
MR
4376 int level,
4377 struct skl_wm_level *result)
2d41c0b5 4378{
f4a96752 4379 struct drm_atomic_state *state = cstate->base.state;
024c9045 4380 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
a62163e9
L
4381 struct drm_plane *plane = &intel_plane->base;
4382 struct intel_plane_state *intel_pstate = NULL;
2d41c0b5 4383 uint16_t ddb_blocks;
024c9045 4384 enum pipe pipe = intel_crtc->pipe;
55994c2c 4385 int ret;
a62163e9
L
4386
4387 if (state)
4388 intel_pstate =
4389 intel_atomic_get_existing_plane_state(state,
4390 intel_plane);
024c9045 4391
f4a96752 4392 /*
a62163e9
L
4393 * Note: If we start supporting multiple pending atomic commits against
4394 * the same planes/CRTC's in the future, plane->state will no longer be
4395 * the correct pre-state to use for the calculations here and we'll
4396 * need to change where we get the 'unchanged' plane data from.
4397 *
4398 * For now this is fine because we only allow one queued commit against
4399 * a CRTC. Even if the plane isn't modified by this transaction and we
4400 * don't have a plane lock, we still have the CRTC's lock, so we know
4401 * that no other transactions are racing with us to update it.
f4a96752 4402 */
a62163e9
L
4403 if (!intel_pstate)
4404 intel_pstate = to_intel_plane_state(plane->state);
f4a96752 4405
a62163e9 4406 WARN_ON(!intel_pstate->base.fb);
f4a96752 4407
d5cdfdf5 4408 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
2d41c0b5 4409
a62163e9
L
4410 ret = skl_compute_plane_wm(dev_priv,
4411 cstate,
4412 intel_pstate,
4413 ddb_blocks,
4414 level,
4415 &result->plane_res_b,
4416 &result->plane_res_l,
4417 &result->plane_en);
4418 if (ret)
4419 return ret;
f4a96752
MR
4420
4421 return 0;
2d41c0b5
PB
4422}
4423
407b50f3 4424static uint32_t
024c9045 4425skl_compute_linetime_wm(struct intel_crtc_state *cstate)
407b50f3 4426{
a3a8986c
MK
4427 struct drm_atomic_state *state = cstate->base.state;
4428 struct drm_i915_private *dev_priv = to_i915(state->dev);
30d1b5fe 4429 uint32_t pixel_rate;
a3a8986c 4430 uint32_t linetime_wm;
30d1b5fe 4431
024c9045 4432 if (!cstate->base.active)
407b50f3
DL
4433 return 0;
4434
a7d1b3f4 4435 pixel_rate = cstate->pixel_rate;
30d1b5fe
PZ
4436
4437 if (WARN_ON(pixel_rate == 0))
661abfc0 4438 return 0;
407b50f3 4439
a3a8986c
MK
4440 linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
4441 1000, pixel_rate);
4442
4443 /* Display WA #1135: bxt. */
4444 if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
4445 linetime_wm = DIV_ROUND_UP(linetime_wm, 2);
4446
4447 return linetime_wm;
407b50f3
DL
4448}
4449
024c9045 4450static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
9414f563 4451 struct skl_wm_level *trans_wm /* out */)
407b50f3 4452{
024c9045 4453 if (!cstate->base.active)
407b50f3 4454 return;
9414f563
DL
4455
4456 /* Until we know more, just disable transition WMs */
a62163e9 4457 trans_wm->plane_en = false;
407b50f3
DL
4458}
4459
55994c2c
MR
4460static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4461 struct skl_ddb_allocation *ddb,
4462 struct skl_pipe_wm *pipe_wm)
2d41c0b5 4463{
024c9045 4464 struct drm_device *dev = cstate->base.crtc->dev;
fac5e23e 4465 const struct drm_i915_private *dev_priv = to_i915(dev);
a62163e9
L
4466 struct intel_plane *intel_plane;
4467 struct skl_plane_wm *wm;
5db94019 4468 int level, max_level = ilk_wm_max_level(dev_priv);
55994c2c 4469 int ret;
2d41c0b5 4470
a62163e9
L
4471 /*
4472 * We'll only calculate watermarks for planes that are actually
4473 * enabled, so make sure all other planes are set as disabled.
4474 */
4475 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4476
4477 for_each_intel_plane_mask(&dev_priv->drm,
4478 intel_plane,
4479 cstate->base.plane_mask) {
d5cdfdf5 4480 wm = &pipe_wm->planes[intel_plane->id];
a62163e9
L
4481
4482 for (level = 0; level <= max_level; level++) {
4483 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
4484 intel_plane, level,
4485 &wm->wm[level]);
4486 if (ret)
4487 return ret;
4488 }
4489 skl_compute_transition_wm(cstate, &wm->trans_wm);
2d41c0b5 4490 }
024c9045 4491 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
2d41c0b5 4492
55994c2c 4493 return 0;
2d41c0b5
PB
4494}
4495
f0f59a00
VS
4496static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4497 i915_reg_t reg,
16160e3d
DL
4498 const struct skl_ddb_entry *entry)
4499{
4500 if (entry->end)
4501 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4502 else
4503 I915_WRITE(reg, 0);
4504}
4505
d8c0fafc 4506static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4507 i915_reg_t reg,
4508 const struct skl_wm_level *level)
4509{
4510 uint32_t val = 0;
4511
4512 if (level->plane_en) {
4513 val |= PLANE_WM_EN;
4514 val |= level->plane_res_b;
4515 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4516 }
4517
4518 I915_WRITE(reg, val);
4519}
4520
d9348dec
VS
4521static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4522 const struct skl_plane_wm *wm,
4523 const struct skl_ddb_allocation *ddb,
d5cdfdf5 4524 enum plane_id plane_id)
62e0fb88
L
4525{
4526 struct drm_crtc *crtc = &intel_crtc->base;
4527 struct drm_device *dev = crtc->dev;
4528 struct drm_i915_private *dev_priv = to_i915(dev);
5db94019 4529 int level, max_level = ilk_wm_max_level(dev_priv);
62e0fb88
L
4530 enum pipe pipe = intel_crtc->pipe;
4531
4532 for (level = 0; level <= max_level; level++) {
d5cdfdf5 4533 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
d8c0fafc 4534 &wm->wm[level]);
62e0fb88 4535 }
d5cdfdf5 4536 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
d8c0fafc 4537 &wm->trans_wm);
27082493 4538
d5cdfdf5
VS
4539 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4540 &ddb->plane[pipe][plane_id]);
4541 skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
4542 &ddb->y_plane[pipe][plane_id]);
62e0fb88
L
4543}
4544
d9348dec
VS
4545static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4546 const struct skl_plane_wm *wm,
4547 const struct skl_ddb_allocation *ddb)
62e0fb88
L
4548{
4549 struct drm_crtc *crtc = &intel_crtc->base;
4550 struct drm_device *dev = crtc->dev;
4551 struct drm_i915_private *dev_priv = to_i915(dev);
5db94019 4552 int level, max_level = ilk_wm_max_level(dev_priv);
62e0fb88
L
4553 enum pipe pipe = intel_crtc->pipe;
4554
4555 for (level = 0; level <= max_level; level++) {
d8c0fafc 4556 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
4557 &wm->wm[level]);
62e0fb88 4558 }
d8c0fafc 4559 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5d374d96 4560
27082493 4561 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
d8c0fafc 4562 &ddb->plane[pipe][PLANE_CURSOR]);
2d41c0b5
PB
4563}
4564
45ece230 4565bool skl_wm_level_equals(const struct skl_wm_level *l1,
4566 const struct skl_wm_level *l2)
4567{
4568 if (l1->plane_en != l2->plane_en)
4569 return false;
4570
4571 /* If both planes aren't enabled, the rest shouldn't matter */
4572 if (!l1->plane_en)
4573 return true;
4574
4575 return (l1->plane_res_l == l2->plane_res_l &&
4576 l1->plane_res_b == l2->plane_res_b);
4577}
4578
27082493
L
4579static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
4580 const struct skl_ddb_entry *b)
0e8fb7ba 4581{
27082493 4582 return a->start < b->end && b->start < a->end;
0e8fb7ba
DL
4583}
4584
5eff503b
ML
4585bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
4586 const struct skl_ddb_entry *ddb,
4587 int ignore)
0e8fb7ba 4588{
ce0ba283 4589 int i;
0e8fb7ba 4590
5eff503b
ML
4591 for (i = 0; i < I915_MAX_PIPES; i++)
4592 if (i != ignore && entries[i] &&
4593 skl_ddb_entries_overlap(ddb, entries[i]))
27082493 4594 return true;
0e8fb7ba 4595
27082493 4596 return false;
0e8fb7ba
DL
4597}
4598
55994c2c 4599static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
03af79e0 4600 const struct skl_pipe_wm *old_pipe_wm,
55994c2c 4601 struct skl_pipe_wm *pipe_wm, /* out */
03af79e0 4602 struct skl_ddb_allocation *ddb, /* out */
55994c2c 4603 bool *changed /* out */)
2d41c0b5 4604{
f4a96752 4605 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
55994c2c 4606 int ret;
2d41c0b5 4607
55994c2c
MR
4608 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
4609 if (ret)
4610 return ret;
2d41c0b5 4611
03af79e0 4612 if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
55994c2c
MR
4613 *changed = false;
4614 else
4615 *changed = true;
2d41c0b5 4616
55994c2c 4617 return 0;
2d41c0b5
PB
4618}
4619
9b613022
MR
4620static uint32_t
4621pipes_modified(struct drm_atomic_state *state)
4622{
4623 struct drm_crtc *crtc;
4624 struct drm_crtc_state *cstate;
4625 uint32_t i, ret = 0;
4626
6ebdb5a0 4627 for_each_new_crtc_in_state(state, crtc, cstate, i)
9b613022
MR
4628 ret |= drm_crtc_mask(crtc);
4629
4630 return ret;
4631}
4632
bb7791bd 4633static int
7f60e200
PZ
4634skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
4635{
4636 struct drm_atomic_state *state = cstate->base.state;
4637 struct drm_device *dev = state->dev;
4638 struct drm_crtc *crtc = cstate->base.crtc;
4639 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4640 struct drm_i915_private *dev_priv = to_i915(dev);
4641 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4642 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4643 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
4644 struct drm_plane_state *plane_state;
4645 struct drm_plane *plane;
4646 enum pipe pipe = intel_crtc->pipe;
7f60e200
PZ
4647
4648 WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
4649
220b0965 4650 drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
d5cdfdf5 4651 enum plane_id plane_id = to_intel_plane(plane)->id;
7f60e200 4652
d5cdfdf5
VS
4653 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
4654 &new_ddb->plane[pipe][plane_id]) &&
4655 skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
4656 &new_ddb->y_plane[pipe][plane_id]))
7f60e200
PZ
4657 continue;
4658
4659 plane_state = drm_atomic_get_plane_state(state, plane);
4660 if (IS_ERR(plane_state))
4661 return PTR_ERR(plane_state);
4662 }
4663
4664 return 0;
4665}
4666
98d39494
MR
4667static int
4668skl_compute_ddb(struct drm_atomic_state *state)
4669{
4670 struct drm_device *dev = state->dev;
4671 struct drm_i915_private *dev_priv = to_i915(dev);
4672 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4673 struct intel_crtc *intel_crtc;
734fa01f 4674 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
9b613022 4675 uint32_t realloc_pipes = pipes_modified(state);
98d39494
MR
4676 int ret;
4677
4678 /*
4679 * If this is our first atomic update following hardware readout,
4680 * we can't trust the DDB that the BIOS programmed for us. Let's
4681 * pretend that all pipes switched active status so that we'll
4682 * ensure a full DDB recompute.
4683 */
1b54a880
MR
4684 if (dev_priv->wm.distrust_bios_wm) {
4685 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4686 state->acquire_ctx);
4687 if (ret)
4688 return ret;
4689
98d39494
MR
4690 intel_state->active_pipe_changes = ~0;
4691
1b54a880
MR
4692 /*
4693 * We usually only initialize intel_state->active_crtcs if we
4694 * we're doing a modeset; make sure this field is always
4695 * initialized during the sanitization process that happens
4696 * on the first commit too.
4697 */
4698 if (!intel_state->modeset)
4699 intel_state->active_crtcs = dev_priv->active_crtcs;
4700 }
4701
98d39494
MR
4702 /*
4703 * If the modeset changes which CRTC's are active, we need to
4704 * recompute the DDB allocation for *all* active pipes, even
4705 * those that weren't otherwise being modified in any way by this
4706 * atomic commit. Due to the shrinking of the per-pipe allocations
4707 * when new active CRTC's are added, it's possible for a pipe that
4708 * we were already using and aren't changing at all here to suddenly
4709 * become invalid if its DDB needs exceeds its new allocation.
4710 *
4711 * Note that if we wind up doing a full DDB recompute, we can't let
4712 * any other display updates race with this transaction, so we need
4713 * to grab the lock on *all* CRTC's.
4714 */
734fa01f 4715 if (intel_state->active_pipe_changes) {
98d39494 4716 realloc_pipes = ~0;
734fa01f
MR
4717 intel_state->wm_results.dirty_pipes = ~0;
4718 }
98d39494 4719
5a920b85
PZ
4720 /*
4721 * We're not recomputing for the pipes not included in the commit, so
4722 * make sure we start with the current state.
4723 */
4724 memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4725
98d39494
MR
4726 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4727 struct intel_crtc_state *cstate;
4728
4729 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4730 if (IS_ERR(cstate))
4731 return PTR_ERR(cstate);
4732
734fa01f 4733 ret = skl_allocate_pipe_ddb(cstate, ddb);
98d39494
MR
4734 if (ret)
4735 return ret;
05a76d3d 4736
7f60e200 4737 ret = skl_ddb_add_affected_planes(cstate);
05a76d3d
L
4738 if (ret)
4739 return ret;
98d39494
MR
4740 }
4741
4742 return 0;
4743}
4744
2722efb9
MR
4745static void
4746skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4747 struct skl_wm_values *src,
4748 enum pipe pipe)
4749{
2722efb9
MR
4750 memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4751 sizeof(dst->ddb.y_plane[pipe]));
4752 memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4753 sizeof(dst->ddb.plane[pipe]));
4754}
4755
413fc530 4756static void
4757skl_print_wm_changes(const struct drm_atomic_state *state)
4758{
4759 const struct drm_device *dev = state->dev;
4760 const struct drm_i915_private *dev_priv = to_i915(dev);
4761 const struct intel_atomic_state *intel_state =
4762 to_intel_atomic_state(state);
4763 const struct drm_crtc *crtc;
4764 const struct drm_crtc_state *cstate;
413fc530 4765 const struct intel_plane *intel_plane;
413fc530 4766 const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4767 const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
7570498e 4768 int i;
413fc530 4769
6ebdb5a0 4770 for_each_new_crtc_in_state(state, crtc, cstate, i) {
7570498e
ML
4771 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4772 enum pipe pipe = intel_crtc->pipe;
413fc530 4773
7570498e 4774 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
d5cdfdf5 4775 enum plane_id plane_id = intel_plane->id;
413fc530 4776 const struct skl_ddb_entry *old, *new;
4777
d5cdfdf5
VS
4778 old = &old_ddb->plane[pipe][plane_id];
4779 new = &new_ddb->plane[pipe][plane_id];
413fc530 4780
413fc530 4781 if (skl_ddb_entry_equal(old, new))
4782 continue;
4783
7570498e
ML
4784 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
4785 intel_plane->base.base.id,
4786 intel_plane->base.name,
4787 old->start, old->end,
4788 new->start, new->end);
413fc530 4789 }
4790 }
4791}
4792
98d39494
MR
4793static int
4794skl_compute_wm(struct drm_atomic_state *state)
4795{
4796 struct drm_crtc *crtc;
4797 struct drm_crtc_state *cstate;
734fa01f
MR
4798 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4799 struct skl_wm_values *results = &intel_state->wm_results;
4800 struct skl_pipe_wm *pipe_wm;
98d39494 4801 bool changed = false;
734fa01f 4802 int ret, i;
98d39494
MR
4803
4804 /*
4805 * If this transaction isn't actually touching any CRTC's, don't
4806 * bother with watermark calculation. Note that if we pass this
4807 * test, we're guaranteed to hold at least one CRTC state mutex,
4808 * which means we can safely use values like dev_priv->active_crtcs
4809 * since any racing commits that want to update them would need to
4810 * hold _all_ CRTC state mutexes.
4811 */
6ebdb5a0 4812 for_each_new_crtc_in_state(state, crtc, cstate, i)
98d39494
MR
4813 changed = true;
4814 if (!changed)
4815 return 0;
4816
734fa01f
MR
4817 /* Clear all dirty flags */
4818 results->dirty_pipes = 0;
4819
98d39494
MR
4820 ret = skl_compute_ddb(state);
4821 if (ret)
4822 return ret;
4823
734fa01f
MR
4824 /*
4825 * Calculate WM's for all pipes that are part of this transaction.
4826 * Note that the DDB allocation above may have added more CRTC's that
4827 * weren't otherwise being modified (and set bits in dirty_pipes) if
4828 * pipe allocations had to change.
4829 *
4830 * FIXME: Now that we're doing this in the atomic check phase, we
4831 * should allow skl_update_pipe_wm() to return failure in cases where
4832 * no suitable watermark values can be found.
4833 */
6ebdb5a0 4834 for_each_new_crtc_in_state(state, crtc, cstate, i) {
734fa01f
MR
4835 struct intel_crtc_state *intel_cstate =
4836 to_intel_crtc_state(cstate);
03af79e0
ML
4837 const struct skl_pipe_wm *old_pipe_wm =
4838 &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
734fa01f
MR
4839
4840 pipe_wm = &intel_cstate->wm.skl.optimal;
03af79e0
ML
4841 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
4842 &results->ddb, &changed);
734fa01f
MR
4843 if (ret)
4844 return ret;
4845
4846 if (changed)
4847 results->dirty_pipes |= drm_crtc_mask(crtc);
4848
4849 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4850 /* This pipe's WM's did not change */
4851 continue;
4852
4853 intel_cstate->update_wm_pre = true;
734fa01f
MR
4854 }
4855
413fc530 4856 skl_print_wm_changes(state);
4857
98d39494
MR
4858 return 0;
4859}
4860
ccf010fb
ML
4861static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
4862 struct intel_crtc_state *cstate)
4863{
4864 struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
4865 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
4866 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
e62929b3 4867 const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
ccf010fb 4868 enum pipe pipe = crtc->pipe;
d5cdfdf5 4869 enum plane_id plane_id;
e62929b3
ML
4870
4871 if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
4872 return;
ccf010fb
ML
4873
4874 I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
e62929b3 4875
d5cdfdf5
VS
4876 for_each_plane_id_on_crtc(crtc, plane_id) {
4877 if (plane_id != PLANE_CURSOR)
4878 skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
4879 ddb, plane_id);
4880 else
4881 skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
4882 ddb);
4883 }
ccf010fb
ML
4884}
4885
e62929b3
ML
4886static void skl_initial_wm(struct intel_atomic_state *state,
4887 struct intel_crtc_state *cstate)
2d41c0b5 4888{
e62929b3 4889 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
432081bc 4890 struct drm_device *dev = intel_crtc->base.dev;
fac5e23e 4891 struct drm_i915_private *dev_priv = to_i915(dev);
e62929b3 4892 struct skl_wm_values *results = &state->wm_results;
2722efb9 4893 struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
27082493 4894 enum pipe pipe = intel_crtc->pipe;
adda50b8 4895
432081bc 4896 if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
2d41c0b5
PB
4897 return;
4898
734fa01f 4899 mutex_lock(&dev_priv->wm.wm_mutex);
2d41c0b5 4900
e62929b3
ML
4901 if (cstate->base.active_changed)
4902 skl_atomic_update_crtc_wm(state, cstate);
27082493
L
4903
4904 skl_copy_wm_for_pipe(hw_vals, results, pipe);
734fa01f
MR
4905
4906 mutex_unlock(&dev_priv->wm.wm_mutex);
2d41c0b5
PB
4907}
4908
d890565c
VS
4909static void ilk_compute_wm_config(struct drm_device *dev,
4910 struct intel_wm_config *config)
4911{
4912 struct intel_crtc *crtc;
4913
4914 /* Compute the currently _active_ config */
4915 for_each_intel_crtc(dev, crtc) {
4916 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4917
4918 if (!wm->pipe_enabled)
4919 continue;
4920
4921 config->sprites_enabled |= wm->sprites_enabled;
4922 config->sprites_scaled |= wm->sprites_scaled;
4923 config->num_pipes_active++;
4924 }
4925}
4926
ed4a6a7c 4927static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
801bcfff 4928{
91c8a326 4929 struct drm_device *dev = &dev_priv->drm;
b9d5c839 4930 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
820c1980 4931 struct ilk_wm_maximums max;
d890565c 4932 struct intel_wm_config config = {};
820c1980 4933 struct ilk_wm_values results = {};
77c122bc 4934 enum intel_ddb_partitioning partitioning;
261a27d1 4935
d890565c
VS
4936 ilk_compute_wm_config(dev, &config);
4937
4938 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4939 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
a485bfb8
VS
4940
4941 /* 5/6 split only in single pipe config on IVB+ */
175fded1 4942 if (INTEL_GEN(dev_priv) >= 7 &&
d890565c
VS
4943 config.num_pipes_active == 1 && config.sprites_enabled) {
4944 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4945 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
0362c781 4946
820c1980 4947 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
861f3389 4948 } else {
198a1e9b 4949 best_lp_wm = &lp_wm_1_2;
861f3389
PZ
4950 }
4951
198a1e9b 4952 partitioning = (best_lp_wm == &lp_wm_1_2) ?
77c122bc 4953 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
801bcfff 4954
820c1980 4955 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
609cedef 4956
820c1980 4957 ilk_write_wm_values(dev_priv, &results);
1011d8c4
PZ
4958}
4959
ccf010fb
ML
4960static void ilk_initial_watermarks(struct intel_atomic_state *state,
4961 struct intel_crtc_state *cstate)
b9d5c839 4962{
ed4a6a7c
MR
4963 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4964 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
b9d5c839 4965
ed4a6a7c 4966 mutex_lock(&dev_priv->wm.wm_mutex);
e8f1f02e 4967 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
ed4a6a7c
MR
4968 ilk_program_watermarks(dev_priv);
4969 mutex_unlock(&dev_priv->wm.wm_mutex);
4970}
bf220452 4971
ccf010fb
ML
4972static void ilk_optimize_watermarks(struct intel_atomic_state *state,
4973 struct intel_crtc_state *cstate)
ed4a6a7c
MR
4974{
4975 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4976 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
bf220452 4977
ed4a6a7c
MR
4978 mutex_lock(&dev_priv->wm.wm_mutex);
4979 if (cstate->wm.need_postvbl_update) {
e8f1f02e 4980 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
ed4a6a7c
MR
4981 ilk_program_watermarks(dev_priv);
4982 }
4983 mutex_unlock(&dev_priv->wm.wm_mutex);
b9d5c839
VS
4984}
4985
d8c0fafc 4986static inline void skl_wm_level_from_reg_val(uint32_t val,
4987 struct skl_wm_level *level)
3078999f 4988{
d8c0fafc 4989 level->plane_en = val & PLANE_WM_EN;
4990 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
4991 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
4992 PLANE_WM_LINES_MASK;
3078999f
PB
4993}
4994
bf9d99ad 4995void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
4996 struct skl_pipe_wm *out)
3078999f 4997{
d5cdfdf5 4998 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3078999f 4999 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3078999f 5000 enum pipe pipe = intel_crtc->pipe;
d5cdfdf5
VS
5001 int level, max_level;
5002 enum plane_id plane_id;
d8c0fafc 5003 uint32_t val;
3078999f 5004
5db94019 5005 max_level = ilk_wm_max_level(dev_priv);
3078999f 5006
d5cdfdf5
VS
5007 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5008 struct skl_plane_wm *wm = &out->planes[plane_id];
3078999f 5009
d8c0fafc 5010 for (level = 0; level <= max_level; level++) {
d5cdfdf5
VS
5011 if (plane_id != PLANE_CURSOR)
5012 val = I915_READ(PLANE_WM(pipe, plane_id, level));
d8c0fafc 5013 else
5014 val = I915_READ(CUR_WM(pipe, level));
3078999f 5015
d8c0fafc 5016 skl_wm_level_from_reg_val(val, &wm->wm[level]);
3078999f 5017 }
3078999f 5018
d5cdfdf5
VS
5019 if (plane_id != PLANE_CURSOR)
5020 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
d8c0fafc 5021 else
5022 val = I915_READ(CUR_WM_TRANS(pipe));
5023
5024 skl_wm_level_from_reg_val(val, &wm->trans_wm);
3078999f
PB
5025 }
5026
d8c0fafc 5027 if (!intel_crtc->active)
5028 return;
4e0963c7 5029
bf9d99ad 5030 out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
3078999f
PB
5031}
5032
5033void skl_wm_get_hw_state(struct drm_device *dev)
5034{
fac5e23e 5035 struct drm_i915_private *dev_priv = to_i915(dev);
bf9d99ad 5036 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
a269c583 5037 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3078999f 5038 struct drm_crtc *crtc;
bf9d99ad 5039 struct intel_crtc *intel_crtc;
5040 struct intel_crtc_state *cstate;
3078999f 5041
a269c583 5042 skl_ddb_get_hw_state(dev_priv, ddb);
bf9d99ad 5043 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5044 intel_crtc = to_intel_crtc(crtc);
5045 cstate = to_intel_crtc_state(crtc->state);
5046
5047 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5048
03af79e0 5049 if (intel_crtc->active)
bf9d99ad 5050 hw->dirty_pipes |= drm_crtc_mask(crtc);
bf9d99ad 5051 }
a1de91e5 5052
279e99d7
MR
5053 if (dev_priv->active_crtcs) {
5054 /* Fully recompute DDB on first atomic commit */
5055 dev_priv->wm.distrust_bios_wm = true;
5056 } else {
5057 /* Easy/common case; just sanitize DDB now if everything off */
5058 memset(ddb, 0, sizeof(*ddb));
5059 }
3078999f
PB
5060}
5061
243e6a44
VS
5062static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5063{
5064 struct drm_device *dev = crtc->dev;
fac5e23e 5065 struct drm_i915_private *dev_priv = to_i915(dev);
820c1980 5066 struct ilk_wm_values *hw = &dev_priv->wm.hw;
243e6a44 5067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4e0963c7 5068 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
e8f1f02e 5069 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
243e6a44 5070 enum pipe pipe = intel_crtc->pipe;
f0f59a00 5071 static const i915_reg_t wm0_pipe_reg[] = {
243e6a44
VS
5072 [PIPE_A] = WM0_PIPEA_ILK,
5073 [PIPE_B] = WM0_PIPEB_ILK,
5074 [PIPE_C] = WM0_PIPEC_IVB,
5075 };
5076
5077 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
8652744b 5078 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
ce0e0713 5079 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
243e6a44 5080
15606534
VS
5081 memset(active, 0, sizeof(*active));
5082
3ef00284 5083 active->pipe_enabled = intel_crtc->active;
2a44b76b
VS
5084
5085 if (active->pipe_enabled) {
243e6a44
VS
5086 u32 tmp = hw->wm_pipe[pipe];
5087
5088 /*
5089 * For active pipes LP0 watermark is marked as
5090 * enabled, and LP1+ watermaks as disabled since
5091 * we can't really reverse compute them in case
5092 * multiple pipes are active.
5093 */
5094 active->wm[0].enable = true;
5095 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5096 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5097 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5098 active->linetime = hw->wm_linetime[pipe];
5099 } else {
5db94019 5100 int level, max_level = ilk_wm_max_level(dev_priv);
243e6a44
VS
5101
5102 /*
5103 * For inactive pipes, all watermark levels
5104 * should be marked as enabled but zeroed,
5105 * which is what we'd compute them to.
5106 */
5107 for (level = 0; level <= max_level; level++)
5108 active->wm[level].enable = true;
5109 }
4e0963c7
MR
5110
5111 intel_crtc->wm.active.ilk = *active;
243e6a44
VS
5112}
5113
6eb1a681
VS
5114#define _FW_WM(value, plane) \
5115 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5116#define _FW_WM_VLV(value, plane) \
5117 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5118
04548cba
VS
5119static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5120 struct g4x_wm_values *wm)
5121{
5122 uint32_t tmp;
5123
5124 tmp = I915_READ(DSPFW1);
5125 wm->sr.plane = _FW_WM(tmp, SR);
5126 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5127 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5128 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5129
5130 tmp = I915_READ(DSPFW2);
5131 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5132 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5133 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5134 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5135 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5136 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5137
5138 tmp = I915_READ(DSPFW3);
5139 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5140 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5141 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5142 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5143}
5144
6eb1a681
VS
5145static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5146 struct vlv_wm_values *wm)
5147{
5148 enum pipe pipe;
5149 uint32_t tmp;
5150
5151 for_each_pipe(dev_priv, pipe) {
5152 tmp = I915_READ(VLV_DDL(pipe));
5153
1b31389c 5154 wm->ddl[pipe].plane[PLANE_PRIMARY] =
6eb1a681 5155 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
1b31389c 5156 wm->ddl[pipe].plane[PLANE_CURSOR] =
6eb1a681 5157 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
1b31389c 5158 wm->ddl[pipe].plane[PLANE_SPRITE0] =
6eb1a681 5159 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
1b31389c 5160 wm->ddl[pipe].plane[PLANE_SPRITE1] =
6eb1a681
VS
5161 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5162 }
5163
5164 tmp = I915_READ(DSPFW1);
5165 wm->sr.plane = _FW_WM(tmp, SR);
1b31389c
VS
5166 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5167 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5168 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6eb1a681
VS
5169
5170 tmp = I915_READ(DSPFW2);
1b31389c
VS
5171 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5172 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5173 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6eb1a681
VS
5174
5175 tmp = I915_READ(DSPFW3);
5176 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5177
5178 if (IS_CHERRYVIEW(dev_priv)) {
5179 tmp = I915_READ(DSPFW7_CHV);
1b31389c
VS
5180 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5181 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6eb1a681
VS
5182
5183 tmp = I915_READ(DSPFW8_CHV);
1b31389c
VS
5184 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5185 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6eb1a681
VS
5186
5187 tmp = I915_READ(DSPFW9_CHV);
1b31389c
VS
5188 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5189 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6eb1a681
VS
5190
5191 tmp = I915_READ(DSPHOWM);
5192 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
1b31389c
VS
5193 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5194 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5195 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5196 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5197 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5198 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5199 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5200 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5201 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6eb1a681
VS
5202 } else {
5203 tmp = I915_READ(DSPFW7);
1b31389c
VS
5204 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5205 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6eb1a681
VS
5206
5207 tmp = I915_READ(DSPHOWM);
5208 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
1b31389c
VS
5209 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5210 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5211 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5212 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5213 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5214 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6eb1a681
VS
5215 }
5216}
5217
5218#undef _FW_WM
5219#undef _FW_WM_VLV
5220
04548cba
VS
5221void g4x_wm_get_hw_state(struct drm_device *dev)
5222{
5223 struct drm_i915_private *dev_priv = to_i915(dev);
5224 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5225 struct intel_crtc *crtc;
5226
5227 g4x_read_wm_values(dev_priv, wm);
5228
5229 wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5230
5231 for_each_intel_crtc(dev, crtc) {
5232 struct intel_crtc_state *crtc_state =
5233 to_intel_crtc_state(crtc->base.state);
5234 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5235 struct g4x_pipe_wm *raw;
5236 enum pipe pipe = crtc->pipe;
5237 enum plane_id plane_id;
5238 int level, max_level;
5239
5240 active->cxsr = wm->cxsr;
5241 active->hpll_en = wm->hpll_en;
5242 active->fbc_en = wm->fbc_en;
5243
5244 active->sr = wm->sr;
5245 active->hpll = wm->hpll;
5246
5247 for_each_plane_id_on_crtc(crtc, plane_id) {
5248 active->wm.plane[plane_id] =
5249 wm->pipe[pipe].plane[plane_id];
5250 }
5251
5252 if (wm->cxsr && wm->hpll_en)
5253 max_level = G4X_WM_LEVEL_HPLL;
5254 else if (wm->cxsr)
5255 max_level = G4X_WM_LEVEL_SR;
5256 else
5257 max_level = G4X_WM_LEVEL_NORMAL;
5258
5259 level = G4X_WM_LEVEL_NORMAL;
5260 raw = &crtc_state->wm.g4x.raw[level];
5261 for_each_plane_id_on_crtc(crtc, plane_id)
5262 raw->plane[plane_id] = active->wm.plane[plane_id];
5263
5264 if (++level > max_level)
5265 goto out;
5266
5267 raw = &crtc_state->wm.g4x.raw[level];
5268 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5269 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5270 raw->plane[PLANE_SPRITE0] = 0;
5271 raw->fbc = active->sr.fbc;
5272
5273 if (++level > max_level)
5274 goto out;
5275
5276 raw = &crtc_state->wm.g4x.raw[level];
5277 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5278 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5279 raw->plane[PLANE_SPRITE0] = 0;
5280 raw->fbc = active->hpll.fbc;
5281
5282 out:
5283 for_each_plane_id_on_crtc(crtc, plane_id)
5284 g4x_raw_plane_wm_set(crtc_state, level,
5285 plane_id, USHRT_MAX);
5286 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5287
5288 crtc_state->wm.g4x.optimal = *active;
5289 crtc_state->wm.g4x.intermediate = *active;
5290
5291 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5292 pipe_name(pipe),
5293 wm->pipe[pipe].plane[PLANE_PRIMARY],
5294 wm->pipe[pipe].plane[PLANE_CURSOR],
5295 wm->pipe[pipe].plane[PLANE_SPRITE0]);
5296 }
5297
5298 DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5299 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5300 DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5301 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5302 DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5303 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5304}
5305
5306void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5307{
5308 struct intel_plane *plane;
5309 struct intel_crtc *crtc;
5310
5311 mutex_lock(&dev_priv->wm.wm_mutex);
5312
5313 for_each_intel_plane(&dev_priv->drm, plane) {
5314 struct intel_crtc *crtc =
5315 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5316 struct intel_crtc_state *crtc_state =
5317 to_intel_crtc_state(crtc->base.state);
5318 struct intel_plane_state *plane_state =
5319 to_intel_plane_state(plane->base.state);
5320 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5321 enum plane_id plane_id = plane->id;
5322 int level;
5323
5324 if (plane_state->base.visible)
5325 continue;
5326
5327 for (level = 0; level < 3; level++) {
5328 struct g4x_pipe_wm *raw =
5329 &crtc_state->wm.g4x.raw[level];
5330
5331 raw->plane[plane_id] = 0;
5332 wm_state->wm.plane[plane_id] = 0;
5333 }
5334
5335 if (plane_id == PLANE_PRIMARY) {
5336 for (level = 0; level < 3; level++) {
5337 struct g4x_pipe_wm *raw =
5338 &crtc_state->wm.g4x.raw[level];
5339 raw->fbc = 0;
5340 }
5341
5342 wm_state->sr.fbc = 0;
5343 wm_state->hpll.fbc = 0;
5344 wm_state->fbc_en = false;
5345 }
5346 }
5347
5348 for_each_intel_crtc(&dev_priv->drm, crtc) {
5349 struct intel_crtc_state *crtc_state =
5350 to_intel_crtc_state(crtc->base.state);
5351
5352 crtc_state->wm.g4x.intermediate =
5353 crtc_state->wm.g4x.optimal;
5354 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5355 }
5356
5357 g4x_program_watermarks(dev_priv);
5358
5359 mutex_unlock(&dev_priv->wm.wm_mutex);
5360}
5361
6eb1a681
VS
5362void vlv_wm_get_hw_state(struct drm_device *dev)
5363{
5364 struct drm_i915_private *dev_priv = to_i915(dev);
5365 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
f07d43d2 5366 struct intel_crtc *crtc;
6eb1a681
VS
5367 u32 val;
5368
5369 vlv_read_wm_values(dev_priv, wm);
5370
6eb1a681
VS
5371 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5372 wm->level = VLV_WM_LEVEL_PM2;
5373
5374 if (IS_CHERRYVIEW(dev_priv)) {
5375 mutex_lock(&dev_priv->rps.hw_lock);
5376
5377 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5378 if (val & DSP_MAXFIFO_PM5_ENABLE)
5379 wm->level = VLV_WM_LEVEL_PM5;
5380
58590c14
VS
5381 /*
5382 * If DDR DVFS is disabled in the BIOS, Punit
5383 * will never ack the request. So if that happens
5384 * assume we don't have to enable/disable DDR DVFS
5385 * dynamically. To test that just set the REQ_ACK
5386 * bit to poke the Punit, but don't change the
5387 * HIGH/LOW bits so that we don't actually change
5388 * the current state.
5389 */
6eb1a681 5390 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
58590c14
VS
5391 val |= FORCE_DDR_FREQ_REQ_ACK;
5392 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5393
5394 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5395 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5396 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5397 "assuming DDR DVFS is disabled\n");
5398 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5399 } else {
5400 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5401 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5402 wm->level = VLV_WM_LEVEL_DDR_DVFS;
5403 }
6eb1a681
VS
5404
5405 mutex_unlock(&dev_priv->rps.hw_lock);
5406 }
5407
ff32c54e
VS
5408 for_each_intel_crtc(dev, crtc) {
5409 struct intel_crtc_state *crtc_state =
5410 to_intel_crtc_state(crtc->base.state);
5411 struct vlv_wm_state *active = &crtc->wm.active.vlv;
5412 const struct vlv_fifo_state *fifo_state =
5413 &crtc_state->wm.vlv.fifo_state;
5414 enum pipe pipe = crtc->pipe;
5415 enum plane_id plane_id;
5416 int level;
5417
5418 vlv_get_fifo_size(crtc_state);
5419
5420 active->num_levels = wm->level + 1;
5421 active->cxsr = wm->cxsr;
5422
ff32c54e 5423 for (level = 0; level < active->num_levels; level++) {
114d7dc0 5424 struct g4x_pipe_wm *raw =
ff32c54e
VS
5425 &crtc_state->wm.vlv.raw[level];
5426
5427 active->sr[level].plane = wm->sr.plane;
5428 active->sr[level].cursor = wm->sr.cursor;
5429
5430 for_each_plane_id_on_crtc(crtc, plane_id) {
5431 active->wm[level].plane[plane_id] =
5432 wm->pipe[pipe].plane[plane_id];
5433
5434 raw->plane[plane_id] =
5435 vlv_invert_wm_value(active->wm[level].plane[plane_id],
5436 fifo_state->plane[plane_id]);
5437 }
5438 }
5439
5440 for_each_plane_id_on_crtc(crtc, plane_id)
5441 vlv_raw_plane_wm_set(crtc_state, level,
5442 plane_id, USHRT_MAX);
5443 vlv_invalidate_wms(crtc, active, level);
5444
5445 crtc_state->wm.vlv.optimal = *active;
4841da51 5446 crtc_state->wm.vlv.intermediate = *active;
ff32c54e 5447
6eb1a681 5448 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
1b31389c
VS
5449 pipe_name(pipe),
5450 wm->pipe[pipe].plane[PLANE_PRIMARY],
5451 wm->pipe[pipe].plane[PLANE_CURSOR],
5452 wm->pipe[pipe].plane[PLANE_SPRITE0],
5453 wm->pipe[pipe].plane[PLANE_SPRITE1]);
ff32c54e 5454 }
6eb1a681
VS
5455
5456 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5457 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5458}
5459
602ae835
VS
5460void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5461{
5462 struct intel_plane *plane;
5463 struct intel_crtc *crtc;
5464
5465 mutex_lock(&dev_priv->wm.wm_mutex);
5466
5467 for_each_intel_plane(&dev_priv->drm, plane) {
5468 struct intel_crtc *crtc =
5469 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5470 struct intel_crtc_state *crtc_state =
5471 to_intel_crtc_state(crtc->base.state);
5472 struct intel_plane_state *plane_state =
5473 to_intel_plane_state(plane->base.state);
5474 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5475 const struct vlv_fifo_state *fifo_state =
5476 &crtc_state->wm.vlv.fifo_state;
5477 enum plane_id plane_id = plane->id;
5478 int level;
5479
5480 if (plane_state->base.visible)
5481 continue;
5482
5483 for (level = 0; level < wm_state->num_levels; level++) {
114d7dc0 5484 struct g4x_pipe_wm *raw =
602ae835
VS
5485 &crtc_state->wm.vlv.raw[level];
5486
5487 raw->plane[plane_id] = 0;
5488
5489 wm_state->wm[level].plane[plane_id] =
5490 vlv_invert_wm_value(raw->plane[plane_id],
5491 fifo_state->plane[plane_id]);
5492 }
5493 }
5494
5495 for_each_intel_crtc(&dev_priv->drm, crtc) {
5496 struct intel_crtc_state *crtc_state =
5497 to_intel_crtc_state(crtc->base.state);
5498
5499 crtc_state->wm.vlv.intermediate =
5500 crtc_state->wm.vlv.optimal;
5501 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
5502 }
5503
5504 vlv_program_watermarks(dev_priv);
5505
5506 mutex_unlock(&dev_priv->wm.wm_mutex);
5507}
5508
243e6a44
VS
5509void ilk_wm_get_hw_state(struct drm_device *dev)
5510{
fac5e23e 5511 struct drm_i915_private *dev_priv = to_i915(dev);
820c1980 5512 struct ilk_wm_values *hw = &dev_priv->wm.hw;
243e6a44
VS
5513 struct drm_crtc *crtc;
5514
70e1e0ec 5515 for_each_crtc(dev, crtc)
243e6a44
VS
5516 ilk_pipe_wm_get_hw_state(crtc);
5517
5518 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
5519 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
5520 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
5521
5522 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
175fded1 5523 if (INTEL_GEN(dev_priv) >= 7) {
cfa7698b
VS
5524 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
5525 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
5526 }
243e6a44 5527
8652744b 5528 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
ac9545fd
VS
5529 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
5530 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
fd6b8f43 5531 else if (IS_IVYBRIDGE(dev_priv))
ac9545fd
VS
5532 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
5533 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
243e6a44
VS
5534
5535 hw->enable_fbc_wm =
5536 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
5537}
5538
b445e3b0
ED
5539/**
5540 * intel_update_watermarks - update FIFO watermark values based on current modes
5541 *
5542 * Calculate watermark values for the various WM regs based on current mode
5543 * and plane configuration.
5544 *
5545 * There are several cases to deal with here:
5546 * - normal (i.e. non-self-refresh)
5547 * - self-refresh (SR) mode
5548 * - lines are large relative to FIFO size (buffer can hold up to 2)
5549 * - lines are small relative to FIFO size (buffer can hold more than 2
5550 * lines), so need to account for TLB latency
5551 *
5552 * The normal calculation is:
5553 * watermark = dotclock * bytes per pixel * latency
5554 * where latency is platform & configuration dependent (we assume pessimal
5555 * values here).
5556 *
5557 * The SR calculation is:
5558 * watermark = (trunc(latency/line time)+1) * surface width *
5559 * bytes per pixel
5560 * where
5561 * line time = htotal / dotclock
5562 * surface width = hdisplay for normal plane and 64 for cursor
5563 * and latency is assumed to be high, as above.
5564 *
5565 * The final value programmed to the register should always be rounded up,
5566 * and include an extra 2 entries to account for clock crossings.
5567 *
5568 * We don't use the sprite, so we can ignore that. And on Crestline we have
5569 * to set the non-SR watermarks to 8.
5570 */
432081bc 5571void intel_update_watermarks(struct intel_crtc *crtc)
b445e3b0 5572{
432081bc 5573 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
b445e3b0
ED
5574
5575 if (dev_priv->display.update_wm)
46ba614c 5576 dev_priv->display.update_wm(crtc);
b445e3b0
ED
5577}
5578
e2828914 5579/*
9270388e 5580 * Lock protecting IPS related data structures
9270388e
DV
5581 */
5582DEFINE_SPINLOCK(mchdev_lock);
5583
5584/* Global for IPS driver to get at the current i915 device. Protected by
5585 * mchdev_lock. */
5586static struct drm_i915_private *i915_mch_dev;
5587
91d14251 5588bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
2b4e57bd 5589{
2b4e57bd
ED
5590 u16 rgvswctl;
5591
67520415 5592 lockdep_assert_held(&mchdev_lock);
9270388e 5593
2b4e57bd
ED
5594 rgvswctl = I915_READ16(MEMSWCTL);
5595 if (rgvswctl & MEMCTL_CMD_STS) {
5596 DRM_DEBUG("gpu busy, RCS change rejected\n");
5597 return false; /* still busy with another command */
5598 }
5599
5600 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5601 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5602 I915_WRITE16(MEMSWCTL, rgvswctl);
5603 POSTING_READ16(MEMSWCTL);
5604
5605 rgvswctl |= MEMCTL_CMD_STS;
5606 I915_WRITE16(MEMSWCTL, rgvswctl);
5607
5608 return true;
5609}
5610
91d14251 5611static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
2b4e57bd 5612{
84f1b20f 5613 u32 rgvmodectl;
2b4e57bd
ED
5614 u8 fmax, fmin, fstart, vstart;
5615
9270388e
DV
5616 spin_lock_irq(&mchdev_lock);
5617
84f1b20f
TU
5618 rgvmodectl = I915_READ(MEMMODECTL);
5619
2b4e57bd
ED
5620 /* Enable temp reporting */
5621 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5622 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5623
5624 /* 100ms RC evaluation intervals */
5625 I915_WRITE(RCUPEI, 100000);
5626 I915_WRITE(RCDNEI, 100000);
5627
5628 /* Set max/min thresholds to 90ms and 80ms respectively */
5629 I915_WRITE(RCBMAXAVG, 90000);
5630 I915_WRITE(RCBMINAVG, 80000);
5631
5632 I915_WRITE(MEMIHYST, 1);
5633
5634 /* Set up min, max, and cur for interrupt handling */
5635 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5636 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5637 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5638 MEMMODE_FSTART_SHIFT;
5639
616847e7 5640 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
2b4e57bd
ED
5641 PXVFREQ_PX_SHIFT;
5642
20e4d407
DV
5643 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
5644 dev_priv->ips.fstart = fstart;
2b4e57bd 5645
20e4d407
DV
5646 dev_priv->ips.max_delay = fstart;
5647 dev_priv->ips.min_delay = fmin;
5648 dev_priv->ips.cur_delay = fstart;
2b4e57bd
ED
5649
5650 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5651 fmax, fmin, fstart);
5652
5653 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5654
5655 /*
5656 * Interrupts will be enabled in ironlake_irq_postinstall
5657 */
5658
5659 I915_WRITE(VIDSTART, vstart);
5660 POSTING_READ(VIDSTART);
5661
5662 rgvmodectl |= MEMMODE_SWMODE_EN;
5663 I915_WRITE(MEMMODECTL, rgvmodectl);
5664
9270388e 5665 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2b4e57bd 5666 DRM_ERROR("stuck trying to change perf mode\n");
dd92d8de 5667 mdelay(1);
2b4e57bd 5668
91d14251 5669 ironlake_set_drps(dev_priv, fstart);
2b4e57bd 5670
7d81c3e0
VS
5671 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
5672 I915_READ(DDREC) + I915_READ(CSIEC);
20e4d407 5673 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
7d81c3e0 5674 dev_priv->ips.last_count2 = I915_READ(GFXEC);
5ed0bdf2 5675 dev_priv->ips.last_time2 = ktime_get_raw_ns();
9270388e
DV
5676
5677 spin_unlock_irq(&mchdev_lock);
2b4e57bd
ED
5678}
5679
91d14251 5680static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
2b4e57bd 5681{
9270388e
DV
5682 u16 rgvswctl;
5683
5684 spin_lock_irq(&mchdev_lock);
5685
5686 rgvswctl = I915_READ16(MEMSWCTL);
2b4e57bd
ED
5687
5688 /* Ack interrupts, disable EFC interrupt */
5689 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5690 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5691 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5692 I915_WRITE(DEIIR, DE_PCU_EVENT);
5693 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5694
5695 /* Go back to the starting frequency */
91d14251 5696 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
dd92d8de 5697 mdelay(1);
2b4e57bd
ED
5698 rgvswctl |= MEMCTL_CMD_STS;
5699 I915_WRITE(MEMSWCTL, rgvswctl);
dd92d8de 5700 mdelay(1);
2b4e57bd 5701
9270388e 5702 spin_unlock_irq(&mchdev_lock);
2b4e57bd
ED
5703}
5704
acbe9475
DV
5705/* There's a funny hw issue where the hw returns all 0 when reading from
5706 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
5707 * ourselves, instead of doing a rmw cycle (which might result in us clearing
5708 * all limits and the gpu stuck at whatever frequency it is at atm).
5709 */
74ef1173 5710static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2b4e57bd 5711{
7b9e0ae6 5712 u32 limits;
2b4e57bd 5713
20b46e59
DV
5714 /* Only set the down limit when we've reached the lowest level to avoid
5715 * getting more interrupts, otherwise leave this clear. This prevents a
5716 * race in the hw when coming out of rc6: There's a tiny window where
5717 * the hw runs at the minimal clock before selecting the desired
5718 * frequency, if the down threshold expires in that window we will not
5719 * receive a down interrupt. */
2d1fe073 5720 if (IS_GEN9(dev_priv)) {
74ef1173
AG
5721 limits = (dev_priv->rps.max_freq_softlimit) << 23;
5722 if (val <= dev_priv->rps.min_freq_softlimit)
5723 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
5724 } else {
5725 limits = dev_priv->rps.max_freq_softlimit << 24;
5726 if (val <= dev_priv->rps.min_freq_softlimit)
5727 limits |= dev_priv->rps.min_freq_softlimit << 16;
5728 }
20b46e59
DV
5729
5730 return limits;
5731}
5732
dd75fdc8
CW
5733static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
5734{
5735 int new_power;
8a586437
AG
5736 u32 threshold_up = 0, threshold_down = 0; /* in % */
5737 u32 ei_up = 0, ei_down = 0;
dd75fdc8
CW
5738
5739 new_power = dev_priv->rps.power;
5740 switch (dev_priv->rps.power) {
5741 case LOW_POWER:
a72b5623
CW
5742 if (val > dev_priv->rps.efficient_freq + 1 &&
5743 val > dev_priv->rps.cur_freq)
dd75fdc8
CW
5744 new_power = BETWEEN;
5745 break;
5746
5747 case BETWEEN:
a72b5623
CW
5748 if (val <= dev_priv->rps.efficient_freq &&
5749 val < dev_priv->rps.cur_freq)
dd75fdc8 5750 new_power = LOW_POWER;
a72b5623
CW
5751 else if (val >= dev_priv->rps.rp0_freq &&
5752 val > dev_priv->rps.cur_freq)
dd75fdc8
CW
5753 new_power = HIGH_POWER;
5754 break;
5755
5756 case HIGH_POWER:
a72b5623
CW
5757 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
5758 val < dev_priv->rps.cur_freq)
dd75fdc8
CW
5759 new_power = BETWEEN;
5760 break;
5761 }
5762 /* Max/min bins are special */
aed242ff 5763 if (val <= dev_priv->rps.min_freq_softlimit)
dd75fdc8 5764 new_power = LOW_POWER;
aed242ff 5765 if (val >= dev_priv->rps.max_freq_softlimit)
dd75fdc8
CW
5766 new_power = HIGH_POWER;
5767 if (new_power == dev_priv->rps.power)
5768 return;
5769
5770 /* Note the units here are not exactly 1us, but 1280ns. */
5771 switch (new_power) {
5772 case LOW_POWER:
5773 /* Upclock if more than 95% busy over 16ms */
8a586437
AG
5774 ei_up = 16000;
5775 threshold_up = 95;
dd75fdc8
CW
5776
5777 /* Downclock if less than 85% busy over 32ms */
8a586437
AG
5778 ei_down = 32000;
5779 threshold_down = 85;
dd75fdc8
CW
5780 break;
5781
5782 case BETWEEN:
5783 /* Upclock if more than 90% busy over 13ms */
8a586437
AG
5784 ei_up = 13000;
5785 threshold_up = 90;
dd75fdc8
CW
5786
5787 /* Downclock if less than 75% busy over 32ms */
8a586437
AG
5788 ei_down = 32000;
5789 threshold_down = 75;
dd75fdc8
CW
5790 break;
5791
5792 case HIGH_POWER:
5793 /* Upclock if more than 85% busy over 10ms */
8a586437
AG
5794 ei_up = 10000;
5795 threshold_up = 85;
dd75fdc8
CW
5796
5797 /* Downclock if less than 60% busy over 32ms */
8a586437
AG
5798 ei_down = 32000;
5799 threshold_down = 60;
dd75fdc8
CW
5800 break;
5801 }
5802
6067a27d
MK
5803 /* When byt can survive without system hang with dynamic
5804 * sw freq adjustments, this restriction can be lifted.
5805 */
5806 if (IS_VALLEYVIEW(dev_priv))
5807 goto skip_hw_write;
5808
8a586437 5809 I915_WRITE(GEN6_RP_UP_EI,
a72b5623 5810 GT_INTERVAL_FROM_US(dev_priv, ei_up));
8a586437 5811 I915_WRITE(GEN6_RP_UP_THRESHOLD,
a72b5623
CW
5812 GT_INTERVAL_FROM_US(dev_priv,
5813 ei_up * threshold_up / 100));
8a586437
AG
5814
5815 I915_WRITE(GEN6_RP_DOWN_EI,
a72b5623 5816 GT_INTERVAL_FROM_US(dev_priv, ei_down));
8a586437 5817 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
a72b5623
CW
5818 GT_INTERVAL_FROM_US(dev_priv,
5819 ei_down * threshold_down / 100));
5820
5821 I915_WRITE(GEN6_RP_CONTROL,
5822 GEN6_RP_MEDIA_TURBO |
5823 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5824 GEN6_RP_MEDIA_IS_GFX |
5825 GEN6_RP_ENABLE |
5826 GEN6_RP_UP_BUSY_AVG |
5827 GEN6_RP_DOWN_IDLE_AVG);
8a586437 5828
6067a27d 5829skip_hw_write:
dd75fdc8 5830 dev_priv->rps.power = new_power;
8fb55197
CW
5831 dev_priv->rps.up_threshold = threshold_up;
5832 dev_priv->rps.down_threshold = threshold_down;
dd75fdc8
CW
5833 dev_priv->rps.last_adj = 0;
5834}
5835
2876ce73
CW
5836static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
5837{
5838 u32 mask = 0;
5839
e0e8c7cb 5840 /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
2876ce73 5841 if (val > dev_priv->rps.min_freq_softlimit)
e0e8c7cb 5842 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
2876ce73 5843 if (val < dev_priv->rps.max_freq_softlimit)
6f4b12f8 5844 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
2876ce73 5845
7b3c29f6
CW
5846 mask &= dev_priv->pm_rps_events;
5847
59d02a1f 5848 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
2876ce73
CW
5849}
5850
b8a5ff8d
JM
5851/* gen6_set_rps is called to update the frequency request, but should also be
5852 * called when the range (min_delay and max_delay) is modified so that we can
5853 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
9fcee2f7 5854static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
20b46e59 5855{
eb64cad1
CW
5856 /* min/max delay may still have been modified so be sure to
5857 * write the limits value.
5858 */
5859 if (val != dev_priv->rps.cur_freq) {
5860 gen6_set_rps_thresholds(dev_priv, val);
b8a5ff8d 5861
dc97997a 5862 if (IS_GEN9(dev_priv))
5704195c
AG
5863 I915_WRITE(GEN6_RPNSWREQ,
5864 GEN9_FREQUENCY(val));
dc97997a 5865 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
eb64cad1
CW
5866 I915_WRITE(GEN6_RPNSWREQ,
5867 HSW_FREQUENCY(val));
5868 else
5869 I915_WRITE(GEN6_RPNSWREQ,
5870 GEN6_FREQUENCY(val) |
5871 GEN6_OFFSET(0) |
5872 GEN6_AGGRESSIVE_TURBO);
b8a5ff8d 5873 }
7b9e0ae6 5874
7b9e0ae6
CW
5875 /* Make sure we continue to get interrupts
5876 * until we hit the minimum or maximum frequencies.
5877 */
74ef1173 5878 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
2876ce73 5879 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
7b9e0ae6 5880
b39fb297 5881 dev_priv->rps.cur_freq = val;
0f94592e 5882 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
9fcee2f7
CW
5883
5884 return 0;
2b4e57bd
ED
5885}
5886
9fcee2f7 5887static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
ffe02b40 5888{
9fcee2f7
CW
5889 int err;
5890
dc97997a 5891 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
ffe02b40
VS
5892 "Odd GPU freq value\n"))
5893 val &= ~1;
5894
cd25dd5b
D
5895 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5896
8fb55197 5897 if (val != dev_priv->rps.cur_freq) {
9fcee2f7
CW
5898 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
5899 if (err)
5900 return err;
5901
db4c5e0b 5902 gen6_set_rps_thresholds(dev_priv, val);
8fb55197 5903 }
ffe02b40 5904
ffe02b40
VS
5905 dev_priv->rps.cur_freq = val;
5906 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
9fcee2f7
CW
5907
5908 return 0;
ffe02b40
VS
5909}
5910
a7f6e231 5911/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
76c3552f
D
5912 *
5913 * * If Gfx is Idle, then
a7f6e231
D
5914 * 1. Forcewake Media well.
5915 * 2. Request idle freq.
5916 * 3. Release Forcewake of Media well.
76c3552f
D
5917*/
5918static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
5919{
aed242ff 5920 u32 val = dev_priv->rps.idle_freq;
9fcee2f7 5921 int err;
5549d25f 5922
aed242ff 5923 if (dev_priv->rps.cur_freq <= val)
76c3552f
D
5924 return;
5925
c9efef7b
CW
5926 /* The punit delays the write of the frequency and voltage until it
5927 * determines the GPU is awake. During normal usage we don't want to
5928 * waste power changing the frequency if the GPU is sleeping (rc6).
5929 * However, the GPU and driver is now idle and we do not want to delay
5930 * switching to minimum voltage (reducing power whilst idle) as we do
5931 * not expect to be woken in the near future and so must flush the
5932 * change by waking the device.
5933 *
5934 * We choose to take the media powerwell (either would do to trick the
5935 * punit into committing the voltage change) as that takes a lot less
5936 * power than the render powerwell.
5937 */
a7f6e231 5938 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
9fcee2f7 5939 err = valleyview_set_rps(dev_priv, val);
a7f6e231 5940 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
9fcee2f7
CW
5941
5942 if (err)
5943 DRM_ERROR("Failed to set RPS for idle\n");
76c3552f
D
5944}
5945
43cf3bf0
CW
5946void gen6_rps_busy(struct drm_i915_private *dev_priv)
5947{
5948 mutex_lock(&dev_priv->rps.hw_lock);
5949 if (dev_priv->rps.enabled) {
bd64818d
CW
5950 u8 freq;
5951
e0e8c7cb 5952 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
43cf3bf0
CW
5953 gen6_rps_reset_ei(dev_priv);
5954 I915_WRITE(GEN6_PMINTRMSK,
5955 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
2b83c4c4 5956
c33d247d
CW
5957 gen6_enable_rps_interrupts(dev_priv);
5958
bd64818d
CW
5959 /* Use the user's desired frequency as a guide, but for better
5960 * performance, jump directly to RPe as our starting frequency.
5961 */
5962 freq = max(dev_priv->rps.cur_freq,
5963 dev_priv->rps.efficient_freq);
5964
9fcee2f7 5965 if (intel_set_rps(dev_priv,
bd64818d 5966 clamp(freq,
9fcee2f7
CW
5967 dev_priv->rps.min_freq_softlimit,
5968 dev_priv->rps.max_freq_softlimit)))
5969 DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
43cf3bf0
CW
5970 }
5971 mutex_unlock(&dev_priv->rps.hw_lock);
5972}
5973
b29c19b6
CW
5974void gen6_rps_idle(struct drm_i915_private *dev_priv)
5975{
c33d247d
CW
5976 /* Flush our bottom-half so that it does not race with us
5977 * setting the idle frequency and so that it is bounded by
5978 * our rpm wakeref. And then disable the interrupts to stop any
5979 * futher RPS reclocking whilst we are asleep.
5980 */
5981 gen6_disable_rps_interrupts(dev_priv);
5982
b29c19b6 5983 mutex_lock(&dev_priv->rps.hw_lock);
c0951f0c 5984 if (dev_priv->rps.enabled) {
dc97997a 5985 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
76c3552f 5986 vlv_set_rps_idle(dev_priv);
7526ed79 5987 else
dc97997a 5988 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
c0951f0c 5989 dev_priv->rps.last_adj = 0;
12c100bf
VS
5990 I915_WRITE(GEN6_PMINTRMSK,
5991 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
c0951f0c 5992 }
8d3afd7d 5993 mutex_unlock(&dev_priv->rps.hw_lock);
1854d5ca 5994
8d3afd7d 5995 spin_lock(&dev_priv->rps.client_lock);
1854d5ca
CW
5996 while (!list_empty(&dev_priv->rps.clients))
5997 list_del_init(dev_priv->rps.clients.next);
8d3afd7d 5998 spin_unlock(&dev_priv->rps.client_lock);
b29c19b6
CW
5999}
6000
1854d5ca 6001void gen6_rps_boost(struct drm_i915_private *dev_priv,
e61b9958
CW
6002 struct intel_rps_client *rps,
6003 unsigned long submitted)
b29c19b6 6004{
8d3afd7d
CW
6005 /* This is intentionally racy! We peek at the state here, then
6006 * validate inside the RPS worker.
6007 */
67d97da3 6008 if (!(dev_priv->gt.awake &&
8d3afd7d 6009 dev_priv->rps.enabled &&
29ecd78d 6010 dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
8d3afd7d 6011 return;
43cf3bf0 6012
e61b9958
CW
6013 /* Force a RPS boost (and don't count it against the client) if
6014 * the GPU is severely congested.
6015 */
d0bc54f2 6016 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
e61b9958
CW
6017 rps = NULL;
6018
8d3afd7d
CW
6019 spin_lock(&dev_priv->rps.client_lock);
6020 if (rps == NULL || list_empty(&rps->link)) {
6021 spin_lock_irq(&dev_priv->irq_lock);
6022 if (dev_priv->rps.interrupts_enabled) {
6023 dev_priv->rps.client_boost = true;
c33d247d 6024 schedule_work(&dev_priv->rps.work);
8d3afd7d
CW
6025 }
6026 spin_unlock_irq(&dev_priv->irq_lock);
1854d5ca 6027
2e1b8730
CW
6028 if (rps != NULL) {
6029 list_add(&rps->link, &dev_priv->rps.clients);
6030 rps->boosts++;
1854d5ca
CW
6031 } else
6032 dev_priv->rps.boosts++;
c0951f0c 6033 }
8d3afd7d 6034 spin_unlock(&dev_priv->rps.client_lock);
b29c19b6
CW
6035}
6036
9fcee2f7 6037int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
0a073b84 6038{
9fcee2f7
CW
6039 int err;
6040
cfd1c488
CW
6041 lockdep_assert_held(&dev_priv->rps.hw_lock);
6042 GEM_BUG_ON(val > dev_priv->rps.max_freq);
6043 GEM_BUG_ON(val < dev_priv->rps.min_freq);
6044
76e4e4b5
CW
6045 if (!dev_priv->rps.enabled) {
6046 dev_priv->rps.cur_freq = val;
6047 return 0;
6048 }
6049
dc97997a 6050 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
9fcee2f7 6051 err = valleyview_set_rps(dev_priv, val);
ffe02b40 6052 else
9fcee2f7
CW
6053 err = gen6_set_rps(dev_priv, val);
6054
6055 return err;
0a073b84
JB
6056}
6057
dc97997a 6058static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
20e49366 6059{
20e49366 6060 I915_WRITE(GEN6_RC_CONTROL, 0);
38c23527 6061 I915_WRITE(GEN9_PG_ENABLE, 0);
20e49366
ZW
6062}
6063
dc97997a 6064static void gen9_disable_rps(struct drm_i915_private *dev_priv)
2030d684 6065{
2030d684
AG
6066 I915_WRITE(GEN6_RP_CONTROL, 0);
6067}
6068
dc97997a 6069static void gen6_disable_rps(struct drm_i915_private *dev_priv)
d20d4f0c 6070{
d20d4f0c 6071 I915_WRITE(GEN6_RC_CONTROL, 0);
44fc7d5c 6072 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2030d684 6073 I915_WRITE(GEN6_RP_CONTROL, 0);
44fc7d5c
DV
6074}
6075
dc97997a 6076static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
38807746 6077{
38807746
D
6078 I915_WRITE(GEN6_RC_CONTROL, 0);
6079}
6080
dc97997a 6081static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
44fc7d5c 6082{
98a2e5f9
D
6083 /* we're doing forcewake before Disabling RC6,
6084 * This what the BIOS expects when going into suspend */
59bad947 6085 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
98a2e5f9 6086
44fc7d5c 6087 I915_WRITE(GEN6_RC_CONTROL, 0);
d20d4f0c 6088
59bad947 6089 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
d20d4f0c
JB
6090}
6091
dc97997a 6092static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
dc39fff7 6093{
dc97997a 6094 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
91ca689a
ID
6095 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
6096 mode = GEN6_RC_CTL_RC6_ENABLE;
6097 else
6098 mode = 0;
6099 }
dc97997a 6100 if (HAS_RC6p(dev_priv))
b99d49cc
ID
6101 DRM_DEBUG_DRIVER("Enabling RC6 states: "
6102 "RC6 %s RC6p %s RC6pp %s\n",
6103 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
6104 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
6105 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
58abf1da
RV
6106
6107 else
b99d49cc
ID
6108 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
6109 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
dc39fff7
BW
6110}
6111
dc97997a 6112static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
274008e8 6113{
72e96d64 6114 struct i915_ggtt *ggtt = &dev_priv->ggtt;
274008e8
SAK
6115 bool enable_rc6 = true;
6116 unsigned long rc6_ctx_base;
fc619841
ID
6117 u32 rc_ctl;
6118 int rc_sw_target;
6119
6120 rc_ctl = I915_READ(GEN6_RC_CONTROL);
6121 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6122 RC_SW_TARGET_STATE_SHIFT;
6123 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6124 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6125 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6126 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6127 rc_sw_target);
274008e8
SAK
6128
6129 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
b99d49cc 6130 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
274008e8
SAK
6131 enable_rc6 = false;
6132 }
6133
6134 /*
6135 * The exact context size is not known for BXT, so assume a page size
6136 * for this check.
6137 */
6138 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
72e96d64
JL
6139 if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
6140 (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
6141 ggtt->stolen_reserved_size))) {
b99d49cc 6142 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
274008e8
SAK
6143 enable_rc6 = false;
6144 }
6145
6146 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6147 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6148 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6149 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
b99d49cc 6150 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
274008e8
SAK
6151 enable_rc6 = false;
6152 }
6153
fc619841
ID
6154 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6155 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6156 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6157 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6158 enable_rc6 = false;
6159 }
6160
6161 if (!I915_READ(GEN6_GFXPAUSE)) {
6162 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6163 enable_rc6 = false;
6164 }
6165
6166 if (!I915_READ(GEN8_MISC_CTRL0)) {
6167 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
274008e8
SAK
6168 enable_rc6 = false;
6169 }
6170
6171 return enable_rc6;
6172}
6173
dc97997a 6174int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
2b4e57bd 6175{
e7d66d89 6176 /* No RC6 before Ironlake and code is gone for ilk. */
dc97997a 6177 if (INTEL_INFO(dev_priv)->gen < 6)
e6069ca8
ID
6178 return 0;
6179
274008e8
SAK
6180 if (!enable_rc6)
6181 return 0;
6182
cc3f90f0 6183 if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
274008e8
SAK
6184 DRM_INFO("RC6 disabled by BIOS\n");
6185 return 0;
6186 }
6187
456470eb 6188 /* Respect the kernel parameter if it is set */
e6069ca8
ID
6189 if (enable_rc6 >= 0) {
6190 int mask;
6191
dc97997a 6192 if (HAS_RC6p(dev_priv))
e6069ca8
ID
6193 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
6194 INTEL_RC6pp_ENABLE;
6195 else
6196 mask = INTEL_RC6_ENABLE;
6197
6198 if ((enable_rc6 & mask) != enable_rc6)
b99d49cc
ID
6199 DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
6200 "(requested %d, valid %d)\n",
6201 enable_rc6 & mask, enable_rc6, mask);
e6069ca8
ID
6202
6203 return enable_rc6 & mask;
6204 }
2b4e57bd 6205
dc97997a 6206 if (IS_IVYBRIDGE(dev_priv))
cca84a1f 6207 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
8bade1ad
BW
6208
6209 return INTEL_RC6_ENABLE;
2b4e57bd
ED
6210}
6211
dc97997a 6212static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
3280e8b0
BW
6213{
6214 /* All of these values are in units of 50MHz */
773ea9a8 6215
93ee2920 6216 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
cc3f90f0 6217 if (IS_GEN9_LP(dev_priv)) {
773ea9a8 6218 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
35040562
BP
6219 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
6220 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
6221 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
6222 } else {
773ea9a8 6223 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
35040562
BP
6224 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
6225 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
6226 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
6227 }
3280e8b0 6228 /* hw_max = RP0 until we check for overclocking */
773ea9a8 6229 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
3280e8b0 6230
93ee2920 6231 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
dc97997a 6232 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
b976dc53 6233 IS_GEN9_BC(dev_priv)) {
773ea9a8
CW
6234 u32 ddcc_status = 0;
6235
6236 if (sandybridge_pcode_read(dev_priv,
6237 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6238 &ddcc_status) == 0)
93ee2920 6239 dev_priv->rps.efficient_freq =
46efa4ab
TR
6240 clamp_t(u8,
6241 ((ddcc_status >> 8) & 0xff),
6242 dev_priv->rps.min_freq,
6243 dev_priv->rps.max_freq);
93ee2920
TR
6244 }
6245
b976dc53 6246 if (IS_GEN9_BC(dev_priv)) {
c5e0688c 6247 /* Store the frequency values in 16.66 MHZ units, which is
773ea9a8
CW
6248 * the natural hardware unit for SKL
6249 */
c5e0688c
AG
6250 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
6251 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
6252 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
6253 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
6254 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
6255 }
3280e8b0
BW
6256}
6257
3a45b05c 6258static void reset_rps(struct drm_i915_private *dev_priv,
9fcee2f7 6259 int (*set)(struct drm_i915_private *, u8))
3a45b05c
CW
6260{
6261 u8 freq = dev_priv->rps.cur_freq;
6262
6263 /* force a reset */
6264 dev_priv->rps.power = -1;
6265 dev_priv->rps.cur_freq = -1;
6266
9fcee2f7
CW
6267 if (set(dev_priv, freq))
6268 DRM_ERROR("Failed to reset RPS to initial values\n");
3a45b05c
CW
6269}
6270
b6fef0ef 6271/* See the Gen9_GT_PM_Programming_Guide doc for the below */
dc97997a 6272static void gen9_enable_rps(struct drm_i915_private *dev_priv)
b6fef0ef 6273{
b6fef0ef
JB
6274 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6275
0beb059a
AG
6276 /* Program defaults and thresholds for RPS*/
6277 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6278 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
6279
6280 /* 1 second timeout*/
6281 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6282 GT_INTERVAL_FROM_US(dev_priv, 1000000));
6283
b6fef0ef 6284 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
b6fef0ef 6285
0beb059a
AG
6286 /* Leaning on the below call to gen6_set_rps to program/setup the
6287 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6288 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
3a45b05c 6289 reset_rps(dev_priv, gen6_set_rps);
b6fef0ef
JB
6290
6291 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6292}
6293
dc97997a 6294static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
20e49366 6295{
e2f80391 6296 struct intel_engine_cs *engine;
3b3f1650 6297 enum intel_engine_id id;
20e49366 6298 uint32_t rc6_mask = 0;
20e49366
ZW
6299
6300 /* 1a: Software RC state - RC0 */
6301 I915_WRITE(GEN6_RC_STATE, 0);
6302
6303 /* 1b: Get forcewake during program sequence. Although the driver
6304 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
59bad947 6305 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
20e49366
ZW
6306
6307 /* 2a: Disable RC states. */
6308 I915_WRITE(GEN6_RC_CONTROL, 0);
6309
6310 /* 2b: Program RC6 thresholds.*/
63a4dec2
SAK
6311
6312 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
dc97997a 6313 if (IS_SKYLAKE(dev_priv))
63a4dec2
SAK
6314 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6315 else
6316 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
20e49366
ZW
6317 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6318 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3b3f1650 6319 for_each_engine(engine, dev_priv, id)
e2f80391 6320 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
97c322e7 6321
1a3d1898 6322 if (HAS_GUC(dev_priv))
97c322e7
SAK
6323 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6324
20e49366 6325 I915_WRITE(GEN6_RC_SLEEP, 0);
20e49366 6326
38c23527
ZW
6327 /* 2c: Program Coarse Power Gating Policies. */
6328 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
6329 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
6330
20e49366 6331 /* 3a: Enable RC6 */
dc97997a 6332 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
20e49366 6333 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
87ad3212 6334 DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
1c044f9b
CW
6335 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6336 I915_WRITE(GEN6_RC_CONTROL,
6337 GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
20e49366 6338
cb07bae0
SK
6339 /*
6340 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
f2d2fe95 6341 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
cb07bae0 6342 */
dc97997a 6343 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
f2d2fe95
SAK
6344 I915_WRITE(GEN9_PG_ENABLE, 0);
6345 else
6346 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
6347 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
38c23527 6348
59bad947 6349 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
20e49366
ZW
6350}
6351
dc97997a 6352static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6edee7f3 6353{
e2f80391 6354 struct intel_engine_cs *engine;
3b3f1650 6355 enum intel_engine_id id;
93ee2920 6356 uint32_t rc6_mask = 0;
6edee7f3
BW
6357
6358 /* 1a: Software RC state - RC0 */
6359 I915_WRITE(GEN6_RC_STATE, 0);
6360
6361 /* 1c & 1d: Get forcewake during program sequence. Although the driver
6362 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
59bad947 6363 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6edee7f3
BW
6364
6365 /* 2a: Disable RC states. */
6366 I915_WRITE(GEN6_RC_CONTROL, 0);
6367
6edee7f3
BW
6368 /* 2b: Program RC6 thresholds.*/
6369 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6370 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6371 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3b3f1650 6372 for_each_engine(engine, dev_priv, id)
e2f80391 6373 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6edee7f3 6374 I915_WRITE(GEN6_RC_SLEEP, 0);
dc97997a 6375 if (IS_BROADWELL(dev_priv))
0d68b25e
TR
6376 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6377 else
6378 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
6edee7f3
BW
6379
6380 /* 3: Enable RC6 */
dc97997a 6381 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6edee7f3 6382 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
dc97997a
CW
6383 intel_print_rc6_info(dev_priv, rc6_mask);
6384 if (IS_BROADWELL(dev_priv))
0d68b25e
TR
6385 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
6386 GEN7_RC_CTL_TO_MODE |
6387 rc6_mask);
6388 else
6389 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
6390 GEN6_RC_CTL_EI_MODE(1) |
6391 rc6_mask);
6edee7f3
BW
6392
6393 /* 4 Program defaults and thresholds for RPS*/
f9bdc585
BW
6394 I915_WRITE(GEN6_RPNSWREQ,
6395 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
6396 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6397 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
7526ed79
DV
6398 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
6399 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
6400
6401 /* Docs recommend 900MHz, and 300 MHz respectively */
6402 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6403 dev_priv->rps.max_freq_softlimit << 24 |
6404 dev_priv->rps.min_freq_softlimit << 16);
6405
6406 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
6407 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
6408 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
6409 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
6410
6411 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6edee7f3
BW
6412
6413 /* 5: Enable RPS */
7526ed79
DV
6414 I915_WRITE(GEN6_RP_CONTROL,
6415 GEN6_RP_MEDIA_TURBO |
6416 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6417 GEN6_RP_MEDIA_IS_GFX |
6418 GEN6_RP_ENABLE |
6419 GEN6_RP_UP_BUSY_AVG |
6420 GEN6_RP_DOWN_IDLE_AVG);
6421
6422 /* 6: Ring frequency + overclocking (our driver does this later */
6423
3a45b05c 6424 reset_rps(dev_priv, gen6_set_rps);
7526ed79 6425
59bad947 6426 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6edee7f3
BW
6427}
6428
dc97997a 6429static void gen6_enable_rps(struct drm_i915_private *dev_priv)
2b4e57bd 6430{
e2f80391 6431 struct intel_engine_cs *engine;
3b3f1650 6432 enum intel_engine_id id;
99ac9612 6433 u32 rc6vids, rc6_mask = 0;
2b4e57bd 6434 u32 gtfifodbg;
2b4e57bd 6435 int rc6_mode;
b4ac5afc 6436 int ret;
2b4e57bd 6437
4fc688ce 6438 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79f5b2c7 6439
2b4e57bd
ED
6440 /* Here begins a magic sequence of register writes to enable
6441 * auto-downclocking.
6442 *
6443 * Perhaps there might be some value in exposing these to
6444 * userspace...
6445 */
6446 I915_WRITE(GEN6_RC_STATE, 0);
2b4e57bd
ED
6447
6448 /* Clear the DBG now so we don't confuse earlier errors */
297b32ec
VS
6449 gtfifodbg = I915_READ(GTFIFODBG);
6450 if (gtfifodbg) {
2b4e57bd
ED
6451 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
6452 I915_WRITE(GTFIFODBG, gtfifodbg);
6453 }
6454
59bad947 6455 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2b4e57bd
ED
6456
6457 /* disable the counters and set deterministic thresholds */
6458 I915_WRITE(GEN6_RC_CONTROL, 0);
6459
6460 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6461 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6462 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6463 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6464 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6465
3b3f1650 6466 for_each_engine(engine, dev_priv, id)
e2f80391 6467 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
2b4e57bd
ED
6468
6469 I915_WRITE(GEN6_RC_SLEEP, 0);
6470 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
dc97997a 6471 if (IS_IVYBRIDGE(dev_priv))
351aa566
SM
6472 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
6473 else
6474 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
0920a487 6475 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2b4e57bd
ED
6476 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6477
5a7dc92a 6478 /* Check if we are enabling RC6 */
dc97997a 6479 rc6_mode = intel_enable_rc6();
2b4e57bd
ED
6480 if (rc6_mode & INTEL_RC6_ENABLE)
6481 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
6482
5a7dc92a 6483 /* We don't use those on Haswell */
dc97997a 6484 if (!IS_HASWELL(dev_priv)) {
5a7dc92a
ED
6485 if (rc6_mode & INTEL_RC6p_ENABLE)
6486 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2b4e57bd 6487
5a7dc92a
ED
6488 if (rc6_mode & INTEL_RC6pp_ENABLE)
6489 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
6490 }
2b4e57bd 6491
dc97997a 6492 intel_print_rc6_info(dev_priv, rc6_mask);
2b4e57bd
ED
6493
6494 I915_WRITE(GEN6_RC_CONTROL,
6495 rc6_mask |
6496 GEN6_RC_CTL_EI_MODE(1) |
6497 GEN6_RC_CTL_HW_ENABLE);
6498
dd75fdc8
CW
6499 /* Power down if completely idle for over 50ms */
6500 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
2b4e57bd 6501 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2b4e57bd 6502
3a45b05c 6503 reset_rps(dev_priv, gen6_set_rps);
2b4e57bd 6504
31643d54
BW
6505 rc6vids = 0;
6506 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
dc97997a 6507 if (IS_GEN6(dev_priv) && ret) {
31643d54 6508 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
dc97997a 6509 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
31643d54
BW
6510 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
6511 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
6512 rc6vids &= 0xffff00;
6513 rc6vids |= GEN6_ENCODE_RC6_VID(450);
6514 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
6515 if (ret)
6516 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
6517 }
6518
59bad947 6519 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2b4e57bd
ED
6520}
6521
fb7404e8 6522static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
2b4e57bd
ED
6523{
6524 int min_freq = 15;
3ebecd07
CW
6525 unsigned int gpu_freq;
6526 unsigned int max_ia_freq, min_ring_freq;
4c8c7743 6527 unsigned int max_gpu_freq, min_gpu_freq;
2b4e57bd 6528 int scaling_factor = 180;
eda79642 6529 struct cpufreq_policy *policy;
2b4e57bd 6530
4fc688ce 6531 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79f5b2c7 6532
eda79642
BW
6533 policy = cpufreq_cpu_get(0);
6534 if (policy) {
6535 max_ia_freq = policy->cpuinfo.max_freq;
6536 cpufreq_cpu_put(policy);
6537 } else {
6538 /*
6539 * Default to measured freq if none found, PCU will ensure we
6540 * don't go over
6541 */
2b4e57bd 6542 max_ia_freq = tsc_khz;
eda79642 6543 }
2b4e57bd
ED
6544
6545 /* Convert from kHz to MHz */
6546 max_ia_freq /= 1000;
6547
153b4b95 6548 min_ring_freq = I915_READ(DCLK) & 0xf;
f6aca45c
BW
6549 /* convert DDR frequency from units of 266.6MHz to bandwidth */
6550 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3ebecd07 6551
b976dc53 6552 if (IS_GEN9_BC(dev_priv)) {
4c8c7743
AG
6553 /* Convert GT frequency to 50 HZ units */
6554 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
6555 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
6556 } else {
6557 min_gpu_freq = dev_priv->rps.min_freq;
6558 max_gpu_freq = dev_priv->rps.max_freq;
6559 }
6560
2b4e57bd
ED
6561 /*
6562 * For each potential GPU frequency, load a ring frequency we'd like
6563 * to use for memory access. We do this by specifying the IA frequency
6564 * the PCU should use as a reference to determine the ring frequency.
6565 */
4c8c7743
AG
6566 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
6567 int diff = max_gpu_freq - gpu_freq;
3ebecd07
CW
6568 unsigned int ia_freq = 0, ring_freq = 0;
6569
b976dc53 6570 if (IS_GEN9_BC(dev_priv)) {
4c8c7743
AG
6571 /*
6572 * ring_freq = 2 * GT. ring_freq is in 100MHz units
6573 * No floor required for ring frequency on SKL.
6574 */
6575 ring_freq = gpu_freq;
dc97997a 6576 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
46c764d4
BW
6577 /* max(2 * GT, DDR). NB: GT is 50MHz units */
6578 ring_freq = max(min_ring_freq, gpu_freq);
dc97997a 6579 } else if (IS_HASWELL(dev_priv)) {
f6aca45c 6580 ring_freq = mult_frac(gpu_freq, 5, 4);
3ebecd07
CW
6581 ring_freq = max(min_ring_freq, ring_freq);
6582 /* leave ia_freq as the default, chosen by cpufreq */
6583 } else {
6584 /* On older processors, there is no separate ring
6585 * clock domain, so in order to boost the bandwidth
6586 * of the ring, we need to upclock the CPU (ia_freq).
6587 *
6588 * For GPU frequencies less than 750MHz,
6589 * just use the lowest ring freq.
6590 */
6591 if (gpu_freq < min_freq)
6592 ia_freq = 800;
6593 else
6594 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
6595 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
6596 }
2b4e57bd 6597
42c0526c
BW
6598 sandybridge_pcode_write(dev_priv,
6599 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3ebecd07
CW
6600 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
6601 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
6602 gpu_freq);
2b4e57bd 6603 }
2b4e57bd
ED
6604}
6605
03af2045 6606static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
2b6b3a09
D
6607{
6608 u32 val, rp0;
6609
5b5929cb 6610 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
2b6b3a09 6611
43b67998 6612 switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5b5929cb
JN
6613 case 8:
6614 /* (2 * 4) config */
6615 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
6616 break;
6617 case 12:
6618 /* (2 * 6) config */
6619 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
6620 break;
6621 case 16:
6622 /* (2 * 8) config */
6623 default:
6624 /* Setting (2 * 8) Min RP0 for any other combination */
6625 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
6626 break;
095acd5f 6627 }
5b5929cb
JN
6628
6629 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
6630
2b6b3a09
D
6631 return rp0;
6632}
6633
6634static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6635{
6636 u32 val, rpe;
6637
6638 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
6639 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
6640
6641 return rpe;
6642}
6643
7707df4a
D
6644static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
6645{
6646 u32 val, rp1;
6647
5b5929cb
JN
6648 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6649 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
6650
7707df4a
D
6651 return rp1;
6652}
6653
96676fe3
D
6654static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
6655{
6656 u32 val, rpn;
6657
6658 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
6659 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
6660 FB_GFX_FREQ_FUSE_MASK);
6661
6662 return rpn;
6663}
6664
f8f2b001
D
6665static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
6666{
6667 u32 val, rp1;
6668
6669 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6670
6671 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
6672
6673 return rp1;
6674}
6675
03af2045 6676static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
0a073b84
JB
6677{
6678 u32 val, rp0;
6679
64936258 6680 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
0a073b84
JB
6681
6682 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
6683 /* Clamp to max */
6684 rp0 = min_t(u32, rp0, 0xea);
6685
6686 return rp0;
6687}
6688
6689static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6690{
6691 u32 val, rpe;
6692
64936258 6693 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
0a073b84 6694 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
64936258 6695 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
0a073b84
JB
6696 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
6697
6698 return rpe;
6699}
6700
03af2045 6701static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
0a073b84 6702{
36146035
ID
6703 u32 val;
6704
6705 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
6706 /*
6707 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
6708 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
6709 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
6710 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
6711 * to make sure it matches what Punit accepts.
6712 */
6713 return max_t(u32, val, 0xc0);
0a073b84
JB
6714}
6715
ae48434c
ID
6716/* Check that the pctx buffer wasn't move under us. */
6717static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
6718{
6719 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
6720
6721 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
6722 dev_priv->vlv_pctx->stolen->start);
6723}
6724
38807746
D
6725
6726/* Check that the pcbr address is not empty. */
6727static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
6728{
6729 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
6730
6731 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
6732}
6733
dc97997a 6734static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
38807746 6735{
62106b4f 6736 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 6737 unsigned long pctx_paddr, paddr;
38807746
D
6738 u32 pcbr;
6739 int pctx_size = 32*1024;
6740
38807746
D
6741 pcbr = I915_READ(VLV_PCBR);
6742 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
ce611ef8 6743 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
38807746 6744 paddr = (dev_priv->mm.stolen_base +
62106b4f 6745 (ggtt->stolen_size - pctx_size));
38807746
D
6746
6747 pctx_paddr = (paddr & (~4095));
6748 I915_WRITE(VLV_PCBR, pctx_paddr);
6749 }
ce611ef8
VS
6750
6751 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
38807746
D
6752}
6753
dc97997a 6754static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
c9cddffc 6755{
c9cddffc
JB
6756 struct drm_i915_gem_object *pctx;
6757 unsigned long pctx_paddr;
6758 u32 pcbr;
6759 int pctx_size = 24*1024;
6760
6761 pcbr = I915_READ(VLV_PCBR);
6762 if (pcbr) {
6763 /* BIOS set it up already, grab the pre-alloc'd space */
6764 int pcbr_offset;
6765
6766 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
187685cb 6767 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
c9cddffc 6768 pcbr_offset,
190d6cd5 6769 I915_GTT_OFFSET_NONE,
c9cddffc
JB
6770 pctx_size);
6771 goto out;
6772 }
6773
ce611ef8
VS
6774 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6775
c9cddffc
JB
6776 /*
6777 * From the Gunit register HAS:
6778 * The Gfx driver is expected to program this register and ensure
6779 * proper allocation within Gfx stolen memory. For example, this
6780 * register should be programmed such than the PCBR range does not
6781 * overlap with other ranges, such as the frame buffer, protected
6782 * memory, or any other relevant ranges.
6783 */
187685cb 6784 pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
c9cddffc
JB
6785 if (!pctx) {
6786 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
ee504898 6787 goto out;
c9cddffc
JB
6788 }
6789
6790 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
6791 I915_WRITE(VLV_PCBR, pctx_paddr);
6792
6793out:
ce611ef8 6794 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
c9cddffc
JB
6795 dev_priv->vlv_pctx = pctx;
6796}
6797
dc97997a 6798static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
ae48434c 6799{
ae48434c
ID
6800 if (WARN_ON(!dev_priv->vlv_pctx))
6801 return;
6802
f0cd5182 6803 i915_gem_object_put(dev_priv->vlv_pctx);
ae48434c
ID
6804 dev_priv->vlv_pctx = NULL;
6805}
6806
c30fec65
VS
6807static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
6808{
6809 dev_priv->rps.gpll_ref_freq =
6810 vlv_get_cck_clock(dev_priv, "GPLL ref",
6811 CCK_GPLL_CLOCK_CONTROL,
6812 dev_priv->czclk_freq);
6813
6814 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
6815 dev_priv->rps.gpll_ref_freq);
6816}
6817
dc97997a 6818static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
4e80519e 6819{
2bb25c17 6820 u32 val;
4e80519e 6821
dc97997a 6822 valleyview_setup_pctx(dev_priv);
4e80519e 6823
c30fec65
VS
6824 vlv_init_gpll_ref_freq(dev_priv);
6825
2bb25c17
VS
6826 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6827 switch ((val >> 6) & 3) {
6828 case 0:
6829 case 1:
6830 dev_priv->mem_freq = 800;
6831 break;
6832 case 2:
6833 dev_priv->mem_freq = 1066;
6834 break;
6835 case 3:
6836 dev_priv->mem_freq = 1333;
6837 break;
6838 }
80b83b62 6839 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
2bb25c17 6840
4e80519e
ID
6841 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
6842 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
6843 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7c59a9c1 6844 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4e80519e
ID
6845 dev_priv->rps.max_freq);
6846
6847 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
6848 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7c59a9c1 6849 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4e80519e
ID
6850 dev_priv->rps.efficient_freq);
6851
f8f2b001
D
6852 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
6853 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7c59a9c1 6854 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
f8f2b001
D
6855 dev_priv->rps.rp1_freq);
6856
4e80519e
ID
6857 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
6858 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7c59a9c1 6859 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4e80519e 6860 dev_priv->rps.min_freq);
4e80519e
ID
6861}
6862
dc97997a 6863static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
38807746 6864{
2bb25c17 6865 u32 val;
2b6b3a09 6866
dc97997a 6867 cherryview_setup_pctx(dev_priv);
2b6b3a09 6868
c30fec65
VS
6869 vlv_init_gpll_ref_freq(dev_priv);
6870
a580516d 6871 mutex_lock(&dev_priv->sb_lock);
c6e8f39d 6872 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
a580516d 6873 mutex_unlock(&dev_priv->sb_lock);
c6e8f39d 6874
2bb25c17 6875 switch ((val >> 2) & 0x7) {
2bb25c17 6876 case 3:
2bb25c17
VS
6877 dev_priv->mem_freq = 2000;
6878 break;
bfa7df01 6879 default:
2bb25c17
VS
6880 dev_priv->mem_freq = 1600;
6881 break;
6882 }
80b83b62 6883 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
2bb25c17 6884
2b6b3a09
D
6885 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
6886 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
6887 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7c59a9c1 6888 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
2b6b3a09
D
6889 dev_priv->rps.max_freq);
6890
6891 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
6892 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7c59a9c1 6893 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2b6b3a09
D
6894 dev_priv->rps.efficient_freq);
6895
7707df4a
D
6896 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
6897 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7c59a9c1 6898 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
7707df4a
D
6899 dev_priv->rps.rp1_freq);
6900
96676fe3 6901 dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
2b6b3a09 6902 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7c59a9c1 6903 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2b6b3a09
D
6904 dev_priv->rps.min_freq);
6905
1c14762d
VS
6906 WARN_ONCE((dev_priv->rps.max_freq |
6907 dev_priv->rps.efficient_freq |
6908 dev_priv->rps.rp1_freq |
6909 dev_priv->rps.min_freq) & 1,
6910 "Odd GPU freq values\n");
38807746
D
6911}
6912
dc97997a 6913static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
4e80519e 6914{
dc97997a 6915 valleyview_cleanup_pctx(dev_priv);
4e80519e
ID
6916}
6917
dc97997a 6918static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
38807746 6919{
e2f80391 6920 struct intel_engine_cs *engine;
3b3f1650 6921 enum intel_engine_id id;
2b6b3a09 6922 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
38807746
D
6923
6924 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6925
297b32ec
VS
6926 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
6927 GT_FIFO_FREE_ENTRIES_CHV);
38807746
D
6928 if (gtfifodbg) {
6929 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6930 gtfifodbg);
6931 I915_WRITE(GTFIFODBG, gtfifodbg);
6932 }
6933
6934 cherryview_check_pctx(dev_priv);
6935
6936 /* 1a & 1b: Get forcewake during program sequence. Although the driver
6937 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
59bad947 6938 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
38807746 6939
160614a2
VS
6940 /* Disable RC states. */
6941 I915_WRITE(GEN6_RC_CONTROL, 0);
6942
38807746
D
6943 /* 2a: Program RC6 thresholds.*/
6944 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6945 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6946 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6947
3b3f1650 6948 for_each_engine(engine, dev_priv, id)
e2f80391 6949 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
38807746
D
6950 I915_WRITE(GEN6_RC_SLEEP, 0);
6951
f4f71c7d
D
6952 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
6953 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
38807746
D
6954
6955 /* allows RC6 residency counter to work */
6956 I915_WRITE(VLV_COUNTER_CONTROL,
6957 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
6958 VLV_MEDIA_RC6_COUNT_EN |
6959 VLV_RENDER_RC6_COUNT_EN));
6960
6961 /* For now we assume BIOS is allocating and populating the PCBR */
6962 pcbr = I915_READ(VLV_PCBR);
6963
38807746 6964 /* 3: Enable RC6 */
dc97997a
CW
6965 if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
6966 (pcbr >> VLV_PCBR_ADDR_SHIFT))
af5a75a3 6967 rc6_mode = GEN7_RC_CTL_TO_MODE;
38807746
D
6968
6969 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6970
2b6b3a09 6971 /* 4 Program defaults and thresholds for RPS*/
3cbdb48f 6972 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2b6b3a09
D
6973 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6974 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6975 I915_WRITE(GEN6_RP_UP_EI, 66000);
6976 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6977
6978 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6979
6980 /* 5: Enable RPS */
6981 I915_WRITE(GEN6_RP_CONTROL,
6982 GEN6_RP_MEDIA_HW_NORMAL_MODE |
eb973a5e 6983 GEN6_RP_MEDIA_IS_GFX |
2b6b3a09
D
6984 GEN6_RP_ENABLE |
6985 GEN6_RP_UP_BUSY_AVG |
6986 GEN6_RP_DOWN_IDLE_AVG);
6987
3ef62342
D
6988 /* Setting Fixed Bias */
6989 val = VLV_OVERRIDE_EN |
6990 VLV_SOC_TDP_EN |
6991 CHV_BIAS_CPU_50_SOC_50;
6992 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6993
2b6b3a09
D
6994 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6995
8d40c3ae
VS
6996 /* RPS code assumes GPLL is used */
6997 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6998
742f491d 6999 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
2b6b3a09
D
7000 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7001
3a45b05c 7002 reset_rps(dev_priv, valleyview_set_rps);
2b6b3a09 7003
59bad947 7004 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
38807746
D
7005}
7006
dc97997a 7007static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
0a073b84 7008{
e2f80391 7009 struct intel_engine_cs *engine;
3b3f1650 7010 enum intel_engine_id id;
2a5913a8 7011 u32 gtfifodbg, val, rc6_mode = 0;
0a073b84
JB
7012
7013 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7014
ae48434c
ID
7015 valleyview_check_pctx(dev_priv);
7016
297b32ec
VS
7017 gtfifodbg = I915_READ(GTFIFODBG);
7018 if (gtfifodbg) {
f7d85c1e
JB
7019 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7020 gtfifodbg);
0a073b84
JB
7021 I915_WRITE(GTFIFODBG, gtfifodbg);
7022 }
7023
c8d9a590 7024 /* If VLV, Forcewake all wells, else re-direct to regular path */
59bad947 7025 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
0a073b84 7026
160614a2
VS
7027 /* Disable RC states. */
7028 I915_WRITE(GEN6_RC_CONTROL, 0);
7029
cad725fe 7030 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
0a073b84
JB
7031 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7032 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7033 I915_WRITE(GEN6_RP_UP_EI, 66000);
7034 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7035
7036 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7037
7038 I915_WRITE(GEN6_RP_CONTROL,
7039 GEN6_RP_MEDIA_TURBO |
7040 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7041 GEN6_RP_MEDIA_IS_GFX |
7042 GEN6_RP_ENABLE |
7043 GEN6_RP_UP_BUSY_AVG |
7044 GEN6_RP_DOWN_IDLE_CONT);
7045
7046 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7047 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7048 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7049
3b3f1650 7050 for_each_engine(engine, dev_priv, id)
e2f80391 7051 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
0a073b84 7052
2f0aa304 7053 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
0a073b84
JB
7054
7055 /* allows RC6 residency counter to work */
49798eb2 7056 I915_WRITE(VLV_COUNTER_CONTROL,
6b7f6aa7
MK
7057 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7058 VLV_MEDIA_RC0_COUNT_EN |
31685c25 7059 VLV_RENDER_RC0_COUNT_EN |
49798eb2
JB
7060 VLV_MEDIA_RC6_COUNT_EN |
7061 VLV_RENDER_RC6_COUNT_EN));
31685c25 7062
dc97997a 7063 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6b88f295 7064 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
dc39fff7 7065
dc97997a 7066 intel_print_rc6_info(dev_priv, rc6_mode);
dc39fff7 7067
a2b23fe0 7068 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
0a073b84 7069
3ef62342
D
7070 /* Setting Fixed Bias */
7071 val = VLV_OVERRIDE_EN |
7072 VLV_SOC_TDP_EN |
7073 VLV_BIAS_CPU_125_SOC_875;
7074 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7075
64936258 7076 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
0a073b84 7077
8d40c3ae
VS
7078 /* RPS code assumes GPLL is used */
7079 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7080
742f491d 7081 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
0a073b84
JB
7082 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7083
3a45b05c 7084 reset_rps(dev_priv, valleyview_set_rps);
0a073b84 7085
59bad947 7086 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
0a073b84
JB
7087}
7088
dde18883
ED
7089static unsigned long intel_pxfreq(u32 vidfreq)
7090{
7091 unsigned long freq;
7092 int div = (vidfreq & 0x3f0000) >> 16;
7093 int post = (vidfreq & 0x3000) >> 12;
7094 int pre = (vidfreq & 0x7);
7095
7096 if (!pre)
7097 return 0;
7098
7099 freq = ((div * 133333) / ((1<<post) * pre));
7100
7101 return freq;
7102}
7103
eb48eb00
DV
7104static const struct cparams {
7105 u16 i;
7106 u16 t;
7107 u16 m;
7108 u16 c;
7109} cparams[] = {
7110 { 1, 1333, 301, 28664 },
7111 { 1, 1066, 294, 24460 },
7112 { 1, 800, 294, 25192 },
7113 { 0, 1333, 276, 27605 },
7114 { 0, 1066, 276, 27605 },
7115 { 0, 800, 231, 23784 },
7116};
7117
f531dcb2 7118static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
7119{
7120 u64 total_count, diff, ret;
7121 u32 count1, count2, count3, m = 0, c = 0;
7122 unsigned long now = jiffies_to_msecs(jiffies), diff1;
7123 int i;
7124
67520415 7125 lockdep_assert_held(&mchdev_lock);
02d71956 7126
20e4d407 7127 diff1 = now - dev_priv->ips.last_time1;
eb48eb00
DV
7128
7129 /* Prevent division-by-zero if we are asking too fast.
7130 * Also, we don't get interesting results if we are polling
7131 * faster than once in 10ms, so just return the saved value
7132 * in such cases.
7133 */
7134 if (diff1 <= 10)
20e4d407 7135 return dev_priv->ips.chipset_power;
eb48eb00
DV
7136
7137 count1 = I915_READ(DMIEC);
7138 count2 = I915_READ(DDREC);
7139 count3 = I915_READ(CSIEC);
7140
7141 total_count = count1 + count2 + count3;
7142
7143 /* FIXME: handle per-counter overflow */
20e4d407
DV
7144 if (total_count < dev_priv->ips.last_count1) {
7145 diff = ~0UL - dev_priv->ips.last_count1;
eb48eb00
DV
7146 diff += total_count;
7147 } else {
20e4d407 7148 diff = total_count - dev_priv->ips.last_count1;
eb48eb00
DV
7149 }
7150
7151 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
20e4d407
DV
7152 if (cparams[i].i == dev_priv->ips.c_m &&
7153 cparams[i].t == dev_priv->ips.r_t) {
eb48eb00
DV
7154 m = cparams[i].m;
7155 c = cparams[i].c;
7156 break;
7157 }
7158 }
7159
7160 diff = div_u64(diff, diff1);
7161 ret = ((m * diff) + c);
7162 ret = div_u64(ret, 10);
7163
20e4d407
DV
7164 dev_priv->ips.last_count1 = total_count;
7165 dev_priv->ips.last_time1 = now;
eb48eb00 7166
20e4d407 7167 dev_priv->ips.chipset_power = ret;
eb48eb00
DV
7168
7169 return ret;
7170}
7171
f531dcb2
CW
7172unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7173{
7174 unsigned long val;
7175
dc97997a 7176 if (INTEL_INFO(dev_priv)->gen != 5)
f531dcb2
CW
7177 return 0;
7178
7179 spin_lock_irq(&mchdev_lock);
7180
7181 val = __i915_chipset_val(dev_priv);
7182
7183 spin_unlock_irq(&mchdev_lock);
7184
7185 return val;
7186}
7187
eb48eb00
DV
7188unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7189{
7190 unsigned long m, x, b;
7191 u32 tsfs;
7192
7193 tsfs = I915_READ(TSFS);
7194
7195 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7196 x = I915_READ8(TR1);
7197
7198 b = tsfs & TSFS_INTR_MASK;
7199
7200 return ((m * x) / 127) - b;
7201}
7202
d972d6ee
MK
7203static int _pxvid_to_vd(u8 pxvid)
7204{
7205 if (pxvid == 0)
7206 return 0;
7207
7208 if (pxvid >= 8 && pxvid < 31)
7209 pxvid = 31;
7210
7211 return (pxvid + 2) * 125;
7212}
7213
7214static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
eb48eb00 7215{
d972d6ee
MK
7216 const int vd = _pxvid_to_vd(pxvid);
7217 const int vm = vd - 1125;
7218
dc97997a 7219 if (INTEL_INFO(dev_priv)->is_mobile)
d972d6ee
MK
7220 return vm > 0 ? vm : 0;
7221
7222 return vd;
eb48eb00
DV
7223}
7224
02d71956 7225static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
eb48eb00 7226{
5ed0bdf2 7227 u64 now, diff, diffms;
eb48eb00
DV
7228 u32 count;
7229
67520415 7230 lockdep_assert_held(&mchdev_lock);
eb48eb00 7231
5ed0bdf2
TG
7232 now = ktime_get_raw_ns();
7233 diffms = now - dev_priv->ips.last_time2;
7234 do_div(diffms, NSEC_PER_MSEC);
eb48eb00
DV
7235
7236 /* Don't divide by 0 */
eb48eb00
DV
7237 if (!diffms)
7238 return;
7239
7240 count = I915_READ(GFXEC);
7241
20e4d407
DV
7242 if (count < dev_priv->ips.last_count2) {
7243 diff = ~0UL - dev_priv->ips.last_count2;
eb48eb00
DV
7244 diff += count;
7245 } else {
20e4d407 7246 diff = count - dev_priv->ips.last_count2;
eb48eb00
DV
7247 }
7248
20e4d407
DV
7249 dev_priv->ips.last_count2 = count;
7250 dev_priv->ips.last_time2 = now;
eb48eb00
DV
7251
7252 /* More magic constants... */
7253 diff = diff * 1181;
7254 diff = div_u64(diff, diffms * 10);
20e4d407 7255 dev_priv->ips.gfx_power = diff;
eb48eb00
DV
7256}
7257
02d71956
DV
7258void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7259{
dc97997a 7260 if (INTEL_INFO(dev_priv)->gen != 5)
02d71956
DV
7261 return;
7262
9270388e 7263 spin_lock_irq(&mchdev_lock);
02d71956
DV
7264
7265 __i915_update_gfx_val(dev_priv);
7266
9270388e 7267 spin_unlock_irq(&mchdev_lock);
02d71956
DV
7268}
7269
f531dcb2 7270static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
7271{
7272 unsigned long t, corr, state1, corr2, state2;
7273 u32 pxvid, ext_v;
7274
67520415 7275 lockdep_assert_held(&mchdev_lock);
02d71956 7276
616847e7 7277 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
eb48eb00
DV
7278 pxvid = (pxvid >> 24) & 0x7f;
7279 ext_v = pvid_to_extvid(dev_priv, pxvid);
7280
7281 state1 = ext_v;
7282
7283 t = i915_mch_val(dev_priv);
7284
7285 /* Revel in the empirically derived constants */
7286
7287 /* Correction factor in 1/100000 units */
7288 if (t > 80)
7289 corr = ((t * 2349) + 135940);
7290 else if (t >= 50)
7291 corr = ((t * 964) + 29317);
7292 else /* < 50 */
7293 corr = ((t * 301) + 1004);
7294
7295 corr = corr * ((150142 * state1) / 10000 - 78642);
7296 corr /= 100000;
20e4d407 7297 corr2 = (corr * dev_priv->ips.corr);
eb48eb00
DV
7298
7299 state2 = (corr2 * state1) / 10000;
7300 state2 /= 100; /* convert to mW */
7301
02d71956 7302 __i915_update_gfx_val(dev_priv);
eb48eb00 7303
20e4d407 7304 return dev_priv->ips.gfx_power + state2;
eb48eb00
DV
7305}
7306
f531dcb2
CW
7307unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7308{
7309 unsigned long val;
7310
dc97997a 7311 if (INTEL_INFO(dev_priv)->gen != 5)
f531dcb2
CW
7312 return 0;
7313
7314 spin_lock_irq(&mchdev_lock);
7315
7316 val = __i915_gfx_val(dev_priv);
7317
7318 spin_unlock_irq(&mchdev_lock);
7319
7320 return val;
7321}
7322
eb48eb00
DV
7323/**
7324 * i915_read_mch_val - return value for IPS use
7325 *
7326 * Calculate and return a value for the IPS driver to use when deciding whether
7327 * we have thermal and power headroom to increase CPU or GPU power budget.
7328 */
7329unsigned long i915_read_mch_val(void)
7330{
7331 struct drm_i915_private *dev_priv;
7332 unsigned long chipset_val, graphics_val, ret = 0;
7333
9270388e 7334 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
7335 if (!i915_mch_dev)
7336 goto out_unlock;
7337 dev_priv = i915_mch_dev;
7338
f531dcb2
CW
7339 chipset_val = __i915_chipset_val(dev_priv);
7340 graphics_val = __i915_gfx_val(dev_priv);
eb48eb00
DV
7341
7342 ret = chipset_val + graphics_val;
7343
7344out_unlock:
9270388e 7345 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
7346
7347 return ret;
7348}
7349EXPORT_SYMBOL_GPL(i915_read_mch_val);
7350
7351/**
7352 * i915_gpu_raise - raise GPU frequency limit
7353 *
7354 * Raise the limit; IPS indicates we have thermal headroom.
7355 */
7356bool i915_gpu_raise(void)
7357{
7358 struct drm_i915_private *dev_priv;
7359 bool ret = true;
7360
9270388e 7361 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
7362 if (!i915_mch_dev) {
7363 ret = false;
7364 goto out_unlock;
7365 }
7366 dev_priv = i915_mch_dev;
7367
20e4d407
DV
7368 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7369 dev_priv->ips.max_delay--;
eb48eb00
DV
7370
7371out_unlock:
9270388e 7372 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
7373
7374 return ret;
7375}
7376EXPORT_SYMBOL_GPL(i915_gpu_raise);
7377
7378/**
7379 * i915_gpu_lower - lower GPU frequency limit
7380 *
7381 * IPS indicates we're close to a thermal limit, so throttle back the GPU
7382 * frequency maximum.
7383 */
7384bool i915_gpu_lower(void)
7385{
7386 struct drm_i915_private *dev_priv;
7387 bool ret = true;
7388
9270388e 7389 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
7390 if (!i915_mch_dev) {
7391 ret = false;
7392 goto out_unlock;
7393 }
7394 dev_priv = i915_mch_dev;
7395
20e4d407
DV
7396 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
7397 dev_priv->ips.max_delay++;
eb48eb00
DV
7398
7399out_unlock:
9270388e 7400 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
7401
7402 return ret;
7403}
7404EXPORT_SYMBOL_GPL(i915_gpu_lower);
7405
7406/**
7407 * i915_gpu_busy - indicate GPU business to IPS
7408 *
7409 * Tell the IPS driver whether or not the GPU is busy.
7410 */
7411bool i915_gpu_busy(void)
7412{
eb48eb00
DV
7413 bool ret = false;
7414
9270388e 7415 spin_lock_irq(&mchdev_lock);
dcff85c8
CW
7416 if (i915_mch_dev)
7417 ret = i915_mch_dev->gt.awake;
9270388e 7418 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
7419
7420 return ret;
7421}
7422EXPORT_SYMBOL_GPL(i915_gpu_busy);
7423
7424/**
7425 * i915_gpu_turbo_disable - disable graphics turbo
7426 *
7427 * Disable graphics turbo by resetting the max frequency and setting the
7428 * current frequency to the default.
7429 */
7430bool i915_gpu_turbo_disable(void)
7431{
7432 struct drm_i915_private *dev_priv;
7433 bool ret = true;
7434
9270388e 7435 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
7436 if (!i915_mch_dev) {
7437 ret = false;
7438 goto out_unlock;
7439 }
7440 dev_priv = i915_mch_dev;
7441
20e4d407 7442 dev_priv->ips.max_delay = dev_priv->ips.fstart;
eb48eb00 7443
91d14251 7444 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
eb48eb00
DV
7445 ret = false;
7446
7447out_unlock:
9270388e 7448 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
7449
7450 return ret;
7451}
7452EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
7453
7454/**
7455 * Tells the intel_ips driver that the i915 driver is now loaded, if
7456 * IPS got loaded first.
7457 *
7458 * This awkward dance is so that neither module has to depend on the
7459 * other in order for IPS to do the appropriate communication of
7460 * GPU turbo limits to i915.
7461 */
7462static void
7463ips_ping_for_i915_load(void)
7464{
7465 void (*link)(void);
7466
7467 link = symbol_get(ips_link_to_i915_driver);
7468 if (link) {
7469 link();
7470 symbol_put(ips_link_to_i915_driver);
7471 }
7472}
7473
7474void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
7475{
02d71956
DV
7476 /* We only register the i915 ips part with intel-ips once everything is
7477 * set up, to avoid intel-ips sneaking in and reading bogus values. */
9270388e 7478 spin_lock_irq(&mchdev_lock);
eb48eb00 7479 i915_mch_dev = dev_priv;
9270388e 7480 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
7481
7482 ips_ping_for_i915_load();
7483}
7484
7485void intel_gpu_ips_teardown(void)
7486{
9270388e 7487 spin_lock_irq(&mchdev_lock);
eb48eb00 7488 i915_mch_dev = NULL;
9270388e 7489 spin_unlock_irq(&mchdev_lock);
eb48eb00 7490}
76c3552f 7491
dc97997a 7492static void intel_init_emon(struct drm_i915_private *dev_priv)
dde18883 7493{
dde18883
ED
7494 u32 lcfuse;
7495 u8 pxw[16];
7496 int i;
7497
7498 /* Disable to program */
7499 I915_WRITE(ECR, 0);
7500 POSTING_READ(ECR);
7501
7502 /* Program energy weights for various events */
7503 I915_WRITE(SDEW, 0x15040d00);
7504 I915_WRITE(CSIEW0, 0x007f0000);
7505 I915_WRITE(CSIEW1, 0x1e220004);
7506 I915_WRITE(CSIEW2, 0x04000004);
7507
7508 for (i = 0; i < 5; i++)
616847e7 7509 I915_WRITE(PEW(i), 0);
dde18883 7510 for (i = 0; i < 3; i++)
616847e7 7511 I915_WRITE(DEW(i), 0);
dde18883
ED
7512
7513 /* Program P-state weights to account for frequency power adjustment */
7514 for (i = 0; i < 16; i++) {
616847e7 7515 u32 pxvidfreq = I915_READ(PXVFREQ(i));
dde18883
ED
7516 unsigned long freq = intel_pxfreq(pxvidfreq);
7517 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7518 PXVFREQ_PX_SHIFT;
7519 unsigned long val;
7520
7521 val = vid * vid;
7522 val *= (freq / 1000);
7523 val *= 255;
7524 val /= (127*127*900);
7525 if (val > 0xff)
7526 DRM_ERROR("bad pxval: %ld\n", val);
7527 pxw[i] = val;
7528 }
7529 /* Render standby states get 0 weight */
7530 pxw[14] = 0;
7531 pxw[15] = 0;
7532
7533 for (i = 0; i < 4; i++) {
7534 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7535 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
616847e7 7536 I915_WRITE(PXW(i), val);
dde18883
ED
7537 }
7538
7539 /* Adjust magic regs to magic values (more experimental results) */
7540 I915_WRITE(OGW0, 0);
7541 I915_WRITE(OGW1, 0);
7542 I915_WRITE(EG0, 0x00007f00);
7543 I915_WRITE(EG1, 0x0000000e);
7544 I915_WRITE(EG2, 0x000e0000);
7545 I915_WRITE(EG3, 0x68000300);
7546 I915_WRITE(EG4, 0x42000000);
7547 I915_WRITE(EG5, 0x00140031);
7548 I915_WRITE(EG6, 0);
7549 I915_WRITE(EG7, 0);
7550
7551 for (i = 0; i < 8; i++)
616847e7 7552 I915_WRITE(PXWL(i), 0);
dde18883
ED
7553
7554 /* Enable PMON + select events */
7555 I915_WRITE(ECR, 0x80000019);
7556
7557 lcfuse = I915_READ(LCFUSE02);
7558
20e4d407 7559 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
dde18883
ED
7560}
7561
dc97997a 7562void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
ae48434c 7563{
b268c699
ID
7564 /*
7565 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7566 * requirement.
7567 */
7568 if (!i915.enable_rc6) {
7569 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7570 intel_runtime_pm_get(dev_priv);
7571 }
e6069ca8 7572
b5163dbb 7573 mutex_lock(&dev_priv->drm.struct_mutex);
773ea9a8
CW
7574 mutex_lock(&dev_priv->rps.hw_lock);
7575
7576 /* Initialize RPS limits (for userspace) */
dc97997a
CW
7577 if (IS_CHERRYVIEW(dev_priv))
7578 cherryview_init_gt_powersave(dev_priv);
7579 else if (IS_VALLEYVIEW(dev_priv))
7580 valleyview_init_gt_powersave(dev_priv);
2a13ae79 7581 else if (INTEL_GEN(dev_priv) >= 6)
773ea9a8
CW
7582 gen6_init_rps_frequencies(dev_priv);
7583
7584 /* Derive initial user preferences/limits from the hardware limits */
7585 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
7586 dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
7587
7588 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
7589 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
7590
7591 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7592 dev_priv->rps.min_freq_softlimit =
7593 max_t(int,
7594 dev_priv->rps.efficient_freq,
7595 intel_freq_opcode(dev_priv, 450));
7596
99ac9612
CW
7597 /* After setting max-softlimit, find the overclock max freq */
7598 if (IS_GEN6(dev_priv) ||
7599 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
7600 u32 params = 0;
7601
7602 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
7603 if (params & BIT(31)) { /* OC supported */
7604 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7605 (dev_priv->rps.max_freq & 0xff) * 50,
7606 (params & 0xff) * 50);
7607 dev_priv->rps.max_freq = params & 0xff;
7608 }
7609 }
7610
29ecd78d
CW
7611 /* Finally allow us to boost to max by default */
7612 dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
7613
773ea9a8 7614 mutex_unlock(&dev_priv->rps.hw_lock);
b5163dbb 7615 mutex_unlock(&dev_priv->drm.struct_mutex);
54b4f68f
CW
7616
7617 intel_autoenable_gt_powersave(dev_priv);
ae48434c
ID
7618}
7619
dc97997a 7620void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
ae48434c 7621{
8dac1e1f 7622 if (IS_VALLEYVIEW(dev_priv))
dc97997a 7623 valleyview_cleanup_gt_powersave(dev_priv);
b268c699
ID
7624
7625 if (!i915.enable_rc6)
7626 intel_runtime_pm_put(dev_priv);
ae48434c
ID
7627}
7628
54b4f68f
CW
7629/**
7630 * intel_suspend_gt_powersave - suspend PM work and helper threads
7631 * @dev_priv: i915 device
7632 *
7633 * We don't want to disable RC6 or other features here, we just want
7634 * to make sure any work we've queued has finished and won't bother
7635 * us while we're suspended.
7636 */
7637void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
7638{
7639 if (INTEL_GEN(dev_priv) < 6)
7640 return;
7641
7642 if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
7643 intel_runtime_pm_put(dev_priv);
7644
7645 /* gen6_rps_idle() will be called later to disable interrupts */
7646}
7647
b7137e0c
CW
7648void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
7649{
7650 dev_priv->rps.enabled = true; /* force disabling */
7651 intel_disable_gt_powersave(dev_priv);
54b4f68f
CW
7652
7653 gen6_reset_rps_interrupts(dev_priv);
156c7ca0
JB
7654}
7655
dc97997a 7656void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8090c6b9 7657{
b7137e0c
CW
7658 if (!READ_ONCE(dev_priv->rps.enabled))
7659 return;
e494837a 7660
b7137e0c 7661 mutex_lock(&dev_priv->rps.hw_lock);
e534770a 7662
b7137e0c
CW
7663 if (INTEL_GEN(dev_priv) >= 9) {
7664 gen9_disable_rc6(dev_priv);
7665 gen9_disable_rps(dev_priv);
7666 } else if (IS_CHERRYVIEW(dev_priv)) {
7667 cherryview_disable_rps(dev_priv);
7668 } else if (IS_VALLEYVIEW(dev_priv)) {
7669 valleyview_disable_rps(dev_priv);
7670 } else if (INTEL_GEN(dev_priv) >= 6) {
7671 gen6_disable_rps(dev_priv);
7672 } else if (IS_IRONLAKE_M(dev_priv)) {
7673 ironlake_disable_drps(dev_priv);
930ebb46 7674 }
b7137e0c
CW
7675
7676 dev_priv->rps.enabled = false;
7677 mutex_unlock(&dev_priv->rps.hw_lock);
8090c6b9
DV
7678}
7679
b7137e0c 7680void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
1a01ab3b 7681{
54b4f68f
CW
7682 /* We shouldn't be disabling as we submit, so this should be less
7683 * racy than it appears!
7684 */
b7137e0c
CW
7685 if (READ_ONCE(dev_priv->rps.enabled))
7686 return;
1a01ab3b 7687
b7137e0c
CW
7688 /* Powersaving is controlled by the host when inside a VM */
7689 if (intel_vgpu_active(dev_priv))
7690 return;
0a073b84 7691
b7137e0c 7692 mutex_lock(&dev_priv->rps.hw_lock);
dc97997a
CW
7693
7694 if (IS_CHERRYVIEW(dev_priv)) {
7695 cherryview_enable_rps(dev_priv);
7696 } else if (IS_VALLEYVIEW(dev_priv)) {
7697 valleyview_enable_rps(dev_priv);
b7137e0c 7698 } else if (INTEL_GEN(dev_priv) >= 9) {
dc97997a
CW
7699 gen9_enable_rc6(dev_priv);
7700 gen9_enable_rps(dev_priv);
b976dc53 7701 if (IS_GEN9_BC(dev_priv))
fb7404e8 7702 gen6_update_ring_freq(dev_priv);
dc97997a
CW
7703 } else if (IS_BROADWELL(dev_priv)) {
7704 gen8_enable_rps(dev_priv);
fb7404e8 7705 gen6_update_ring_freq(dev_priv);
b7137e0c 7706 } else if (INTEL_GEN(dev_priv) >= 6) {
dc97997a 7707 gen6_enable_rps(dev_priv);
fb7404e8 7708 gen6_update_ring_freq(dev_priv);
b7137e0c
CW
7709 } else if (IS_IRONLAKE_M(dev_priv)) {
7710 ironlake_enable_drps(dev_priv);
7711 intel_init_emon(dev_priv);
0a073b84 7712 }
aed242ff
CW
7713
7714 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
7715 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
7716
7717 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
7718 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
7719
54b4f68f 7720 dev_priv->rps.enabled = true;
b7137e0c
CW
7721 mutex_unlock(&dev_priv->rps.hw_lock);
7722}
3cc134e3 7723
54b4f68f
CW
7724static void __intel_autoenable_gt_powersave(struct work_struct *work)
7725{
7726 struct drm_i915_private *dev_priv =
7727 container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
7728 struct intel_engine_cs *rcs;
7729 struct drm_i915_gem_request *req;
7730
7731 if (READ_ONCE(dev_priv->rps.enabled))
7732 goto out;
7733
3b3f1650 7734 rcs = dev_priv->engine[RCS];
e8a9c58f 7735 if (rcs->last_retired_context)
54b4f68f
CW
7736 goto out;
7737
7738 if (!rcs->init_context)
7739 goto out;
7740
7741 mutex_lock(&dev_priv->drm.struct_mutex);
7742
7743 req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
7744 if (IS_ERR(req))
7745 goto unlock;
7746
7747 if (!i915.enable_execlists && i915_switch_context(req) == 0)
7748 rcs->init_context(req);
7749
7750 /* Mark the device busy, calling intel_enable_gt_powersave() */
e642c85b 7751 i915_add_request(req);
54b4f68f
CW
7752
7753unlock:
7754 mutex_unlock(&dev_priv->drm.struct_mutex);
7755out:
7756 intel_runtime_pm_put(dev_priv);
7757}
7758
7759void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
7760{
7761 if (READ_ONCE(dev_priv->rps.enabled))
7762 return;
7763
7764 if (IS_IRONLAKE_M(dev_priv)) {
7765 ironlake_enable_drps(dev_priv);
54b4f68f 7766 intel_init_emon(dev_priv);
54b4f68f
CW
7767 } else if (INTEL_INFO(dev_priv)->gen >= 6) {
7768 /*
7769 * PCU communication is slow and this doesn't need to be
7770 * done at any specific time, so do this out of our fast path
7771 * to make resume and init faster.
7772 *
7773 * We depend on the HW RC6 power context save/restore
7774 * mechanism when entering D3 through runtime PM suspend. So
7775 * disable RPM until RPS/RC6 is properly setup. We can only
7776 * get here via the driver load/system resume/runtime resume
7777 * paths, so the _noresume version is enough (and in case of
7778 * runtime resume it's necessary).
7779 */
7780 if (queue_delayed_work(dev_priv->wq,
7781 &dev_priv->rps.autoenable_work,
7782 round_jiffies_up_relative(HZ)))
7783 intel_runtime_pm_get_noresume(dev_priv);
7784 }
7785}
7786
46f16e63 7787static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
3107bd48 7788{
3107bd48
DV
7789 /*
7790 * On Ibex Peak and Cougar Point, we need to disable clock
7791 * gating for the panel power sequencer or it will fail to
7792 * start up when no ports are active.
7793 */
7794 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7795}
7796
46f16e63 7797static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
0e088b8f 7798{
b12ce1d8 7799 enum pipe pipe;
0e088b8f 7800
055e393f 7801 for_each_pipe(dev_priv, pipe) {
0e088b8f
VS
7802 I915_WRITE(DSPCNTR(pipe),
7803 I915_READ(DSPCNTR(pipe)) |
7804 DISPPLANE_TRICKLE_FEED_DISABLE);
b12ce1d8
VS
7805
7806 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
7807 POSTING_READ(DSPSURF(pipe));
0e088b8f
VS
7808 }
7809}
7810
46f16e63 7811static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
017636cc 7812{
017636cc
VS
7813 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
7814 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
7815 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
7816
7817 /*
7818 * Don't touch WM1S_LP_EN here.
7819 * Doing so could cause underruns.
7820 */
7821}
7822
46f16e63 7823static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6f1d69b0 7824{
231e54f6 7825 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6f1d69b0 7826
f1e8fa56
DL
7827 /*
7828 * Required for FBC
7829 * WaFbcDisableDpfcClockGating:ilk
7830 */
4d47e4f5
DL
7831 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
7832 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
7833 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6f1d69b0
ED
7834
7835 I915_WRITE(PCH_3DCGDIS0,
7836 MARIUNIT_CLOCK_GATE_DISABLE |
7837 SVSMUNIT_CLOCK_GATE_DISABLE);
7838 I915_WRITE(PCH_3DCGDIS1,
7839 VFMUNIT_CLOCK_GATE_DISABLE);
7840
6f1d69b0
ED
7841 /*
7842 * According to the spec the following bits should be set in
7843 * order to enable memory self-refresh
7844 * The bit 22/21 of 0x42004
7845 * The bit 5 of 0x42020
7846 * The bit 15 of 0x45000
7847 */
7848 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7849 (I915_READ(ILK_DISPLAY_CHICKEN2) |
7850 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4d47e4f5 7851 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6f1d69b0
ED
7852 I915_WRITE(DISP_ARB_CTL,
7853 (I915_READ(DISP_ARB_CTL) |
7854 DISP_FBC_WM_DIS));
017636cc 7855
46f16e63 7856 ilk_init_lp_watermarks(dev_priv);
6f1d69b0
ED
7857
7858 /*
7859 * Based on the document from hardware guys the following bits
7860 * should be set unconditionally in order to enable FBC.
7861 * The bit 22 of 0x42000
7862 * The bit 22 of 0x42004
7863 * The bit 7,8,9 of 0x42020.
7864 */
50a0bc90 7865 if (IS_IRONLAKE_M(dev_priv)) {
4bb35334 7866 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6f1d69b0
ED
7867 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7868 I915_READ(ILK_DISPLAY_CHICKEN1) |
7869 ILK_FBCQ_DIS);
7870 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7871 I915_READ(ILK_DISPLAY_CHICKEN2) |
7872 ILK_DPARB_GATE);
6f1d69b0
ED
7873 }
7874
4d47e4f5
DL
7875 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7876
6f1d69b0
ED
7877 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7878 I915_READ(ILK_DISPLAY_CHICKEN2) |
7879 ILK_ELPIN_409_SELECT);
7880 I915_WRITE(_3D_CHICKEN2,
7881 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7882 _3D_CHICKEN2_WM_READ_PIPELINED);
4358a374 7883
ecdb4eb7 7884 /* WaDisableRenderCachePipelinedFlush:ilk */
4358a374
DV
7885 I915_WRITE(CACHE_MODE_0,
7886 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3107bd48 7887
4e04632e
AG
7888 /* WaDisable_RenderCache_OperationalFlush:ilk */
7889 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7890
46f16e63 7891 g4x_disable_trickle_feed(dev_priv);
bdad2b2f 7892
46f16e63 7893 ibx_init_clock_gating(dev_priv);
3107bd48
DV
7894}
7895
46f16e63 7896static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
3107bd48 7897{
3107bd48 7898 int pipe;
3f704fa2 7899 uint32_t val;
3107bd48
DV
7900
7901 /*
7902 * On Ibex Peak and Cougar Point, we need to disable clock
7903 * gating for the panel power sequencer or it will fail to
7904 * start up when no ports are active.
7905 */
cd664078
JB
7906 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
7907 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
7908 PCH_CPUNIT_CLOCK_GATE_DISABLE);
3107bd48
DV
7909 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7910 DPLS_EDP_PPS_FIX_DIS);
335c07b7
TI
7911 /* The below fixes the weird display corruption, a few pixels shifted
7912 * downward, on (only) LVDS of some HP laptops with IVY.
7913 */
055e393f 7914 for_each_pipe(dev_priv, pipe) {
dc4bd2d1
PZ
7915 val = I915_READ(TRANS_CHICKEN2(pipe));
7916 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
7917 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
41aa3448 7918 if (dev_priv->vbt.fdi_rx_polarity_inverted)
3f704fa2 7919 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
dc4bd2d1
PZ
7920 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
7921 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
7922 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
3f704fa2
PZ
7923 I915_WRITE(TRANS_CHICKEN2(pipe), val);
7924 }
3107bd48 7925 /* WADP0ClockGatingDisable */
055e393f 7926 for_each_pipe(dev_priv, pipe) {
3107bd48
DV
7927 I915_WRITE(TRANS_CHICKEN1(pipe),
7928 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7929 }
6f1d69b0
ED
7930}
7931
46f16e63 7932static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
1d7aaa0c 7933{
1d7aaa0c
DV
7934 uint32_t tmp;
7935
7936 tmp = I915_READ(MCH_SSKPD);
df662a28
DV
7937 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
7938 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7939 tmp);
1d7aaa0c
DV
7940}
7941
46f16e63 7942static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6f1d69b0 7943{
231e54f6 7944 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6f1d69b0 7945
231e54f6 7946 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6f1d69b0
ED
7947
7948 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7949 I915_READ(ILK_DISPLAY_CHICKEN2) |
7950 ILK_ELPIN_409_SELECT);
7951
ecdb4eb7 7952 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4283908e
DV
7953 I915_WRITE(_3D_CHICKEN,
7954 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
7955
4e04632e
AG
7956 /* WaDisable_RenderCache_OperationalFlush:snb */
7957 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7958
8d85d272
VS
7959 /*
7960 * BSpec recoomends 8x4 when MSAA is used,
7961 * however in practice 16x4 seems fastest.
c5c98a58
VS
7962 *
7963 * Note that PS/WM thread counts depend on the WIZ hashing
7964 * disable bit, which we don't touch here, but it's good
7965 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8d85d272
VS
7966 */
7967 I915_WRITE(GEN6_GT_MODE,
98533251 7968 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8d85d272 7969
46f16e63 7970 ilk_init_lp_watermarks(dev_priv);
6f1d69b0 7971
6f1d69b0 7972 I915_WRITE(CACHE_MODE_0,
50743298 7973 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6f1d69b0
ED
7974
7975 I915_WRITE(GEN6_UCGCTL1,
7976 I915_READ(GEN6_UCGCTL1) |
7977 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7978 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7979
7980 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7981 * gating disable must be set. Failure to set it results in
7982 * flickering pixels due to Z write ordering failures after
7983 * some amount of runtime in the Mesa "fire" demo, and Unigine
7984 * Sanctuary and Tropics, and apparently anything else with
7985 * alpha test or pixel discard.
7986 *
7987 * According to the spec, bit 11 (RCCUNIT) must also be set,
7988 * but we didn't debug actual testcases to find it out.
0f846f81 7989 *
ef59318c
VS
7990 * WaDisableRCCUnitClockGating:snb
7991 * WaDisableRCPBUnitClockGating:snb
6f1d69b0
ED
7992 */
7993 I915_WRITE(GEN6_UCGCTL2,
7994 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7995 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7996
5eb146dd 7997 /* WaStripsFansDisableFastClipPerformanceFix:snb */
743b57d8
VS
7998 I915_WRITE(_3D_CHICKEN3,
7999 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6f1d69b0 8000
e927ecde
VS
8001 /*
8002 * Bspec says:
8003 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8004 * 3DSTATE_SF number of SF output attributes is more than 16."
8005 */
8006 I915_WRITE(_3D_CHICKEN3,
8007 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8008
6f1d69b0
ED
8009 /*
8010 * According to the spec the following bits should be
8011 * set in order to enable memory self-refresh and fbc:
8012 * The bit21 and bit22 of 0x42000
8013 * The bit21 and bit22 of 0x42004
8014 * The bit5 and bit7 of 0x42020
8015 * The bit14 of 0x70180
8016 * The bit14 of 0x71180
4bb35334
DL
8017 *
8018 * WaFbcAsynchFlipDisableFbcQueue:snb
6f1d69b0
ED
8019 */
8020 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8021 I915_READ(ILK_DISPLAY_CHICKEN1) |
8022 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8023 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8024 I915_READ(ILK_DISPLAY_CHICKEN2) |
8025 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
231e54f6
DL
8026 I915_WRITE(ILK_DSPCLK_GATE_D,
8027 I915_READ(ILK_DSPCLK_GATE_D) |
8028 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
8029 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6f1d69b0 8030
46f16e63 8031 g4x_disable_trickle_feed(dev_priv);
f8f2ac9a 8032
46f16e63 8033 cpt_init_clock_gating(dev_priv);
1d7aaa0c 8034
46f16e63 8035 gen6_check_mch_setup(dev_priv);
6f1d69b0
ED
8036}
8037
8038static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8039{
8040 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8041
3aad9059 8042 /*
46680e0a 8043 * WaVSThreadDispatchOverride:ivb,vlv
3aad9059
VS
8044 *
8045 * This actually overrides the dispatch
8046 * mode for all thread types.
8047 */
6f1d69b0
ED
8048 reg &= ~GEN7_FF_SCHED_MASK;
8049 reg |= GEN7_FF_TS_SCHED_HW;
8050 reg |= GEN7_FF_VS_SCHED_HW;
8051 reg |= GEN7_FF_DS_SCHED_HW;
8052
8053 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8054}
8055
46f16e63 8056static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
17a303ec 8057{
17a303ec
PZ
8058 /*
8059 * TODO: this bit should only be enabled when really needed, then
8060 * disabled when not needed anymore in order to save power.
8061 */
4f8036a2 8062 if (HAS_PCH_LPT_LP(dev_priv))
17a303ec
PZ
8063 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8064 I915_READ(SOUTH_DSPCLK_GATE_D) |
8065 PCH_LP_PARTITION_LEVEL_DISABLE);
0a790cdb
PZ
8066
8067 /* WADPOClockGatingDisable:hsw */
36c0d0cf
VS
8068 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8069 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
0a790cdb 8070 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
17a303ec
PZ
8071}
8072
712bf364 8073static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7d708ee4 8074{
4f8036a2 8075 if (HAS_PCH_LPT_LP(dev_priv)) {
7d708ee4
ID
8076 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8077
8078 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8079 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8080 }
8081}
8082
450174fe
ID
8083static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8084 int general_prio_credits,
8085 int high_prio_credits)
8086{
8087 u32 misccpctl;
8088
8089 /* WaTempDisableDOPClkGating:bdw */
8090 misccpctl = I915_READ(GEN7_MISCCPCTL);
8091 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8092
8093 I915_WRITE(GEN8_L3SQCREG1,
8094 L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
8095 L3_HIGH_PRIO_CREDITS(high_prio_credits));
8096
8097 /*
8098 * Wait at least 100 clocks before re-enabling clock gating.
8099 * See the definition of L3SQCREG1 in BSpec.
8100 */
8101 POSTING_READ(GEN8_L3SQCREG1);
8102 udelay(1);
8103 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8104}
8105
46f16e63 8106static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
9498dba7 8107{
46f16e63 8108 gen9_init_clock_gating(dev_priv);
9498dba7
MK
8109
8110 /* WaDisableSDEUnitClockGating:kbl */
8111 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8112 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8113 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8aeb7f62
MK
8114
8115 /* WaDisableGamClockGating:kbl */
8116 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8117 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8118 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
031cd8c8
MK
8119
8120 /* WaFbcNukeOnHostModify:kbl */
8121 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8122 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9498dba7
MK
8123}
8124
46f16e63 8125static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
dc00b6a0 8126{
46f16e63 8127 gen9_init_clock_gating(dev_priv);
44fff99f
MK
8128
8129 /* WAC6entrylatency:skl */
8130 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8131 FBC_LLC_FULLY_OPEN);
031cd8c8
MK
8132
8133 /* WaFbcNukeOnHostModify:skl */
8134 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8135 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
dc00b6a0
DV
8136}
8137
46f16e63 8138static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
1020a5c2 8139{
07d27e20 8140 enum pipe pipe;
1020a5c2 8141
46f16e63 8142 ilk_init_lp_watermarks(dev_priv);
50ed5fbd 8143
ab57fff1 8144 /* WaSwitchSolVfFArbitrationPriority:bdw */
50ed5fbd 8145 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
fe4ab3ce 8146
ab57fff1 8147 /* WaPsrDPAMaskVBlankInSRD:bdw */
fe4ab3ce
BW
8148 I915_WRITE(CHICKEN_PAR1_1,
8149 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8150
ab57fff1 8151 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
055e393f 8152 for_each_pipe(dev_priv, pipe) {
07d27e20 8153 I915_WRITE(CHICKEN_PIPESL_1(pipe),
c7c65622 8154 I915_READ(CHICKEN_PIPESL_1(pipe)) |
8f670bb1 8155 BDW_DPRS_MASK_VBLANK_SRD);
fe4ab3ce 8156 }
63801f21 8157
ab57fff1
BW
8158 /* WaVSRefCountFullforceMissDisable:bdw */
8159 /* WaDSRefCountFullforceMissDisable:bdw */
8160 I915_WRITE(GEN7_FF_THREAD_MODE,
8161 I915_READ(GEN7_FF_THREAD_MODE) &
8162 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
36075a4c 8163
295e8bb7
VS
8164 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8165 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
4f1ca9e9
VS
8166
8167 /* WaDisableSDEUnitClockGating:bdw */
8168 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8169 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5d708680 8170
450174fe
ID
8171 /* WaProgramL3SqcReg1Default:bdw */
8172 gen8_set_l3sqc_credits(dev_priv, 30, 2);
4d487cff 8173
6d50b065
VS
8174 /*
8175 * WaGttCachingOffByDefault:bdw
8176 * GTT cache may not work with big pages, so if those
8177 * are ever enabled GTT cache may need to be disabled.
8178 */
8179 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8180
17e0adf0
MK
8181 /* WaKVMNotificationOnConfigChange:bdw */
8182 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8183 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8184
46f16e63 8185 lpt_init_clock_gating(dev_priv);
9cc19733
RB
8186
8187 /* WaDisableDopClockGating:bdw
8188 *
8189 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8190 * clock gating.
8191 */
8192 I915_WRITE(GEN6_UCGCTL1,
8193 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
1020a5c2
BW
8194}
8195
46f16e63 8196static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
cad2a2d7 8197{
46f16e63 8198 ilk_init_lp_watermarks(dev_priv);
cad2a2d7 8199
f3fc4884
FJ
8200 /* L3 caching of data atomics doesn't work -- disable it. */
8201 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8202 I915_WRITE(HSW_ROW_CHICKEN3,
8203 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8204
ecdb4eb7 8205 /* This is required by WaCatErrorRejectionIssue:hsw */
cad2a2d7
ED
8206 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8207 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8208 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8209
e36ea7ff
VS
8210 /* WaVSRefCountFullforceMissDisable:hsw */
8211 I915_WRITE(GEN7_FF_THREAD_MODE,
8212 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
cad2a2d7 8213
4e04632e
AG
8214 /* WaDisable_RenderCache_OperationalFlush:hsw */
8215 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8216
fe27c606
CW
8217 /* enable HiZ Raw Stall Optimization */
8218 I915_WRITE(CACHE_MODE_0_GEN7,
8219 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8220
ecdb4eb7 8221 /* WaDisable4x2SubspanOptimization:hsw */
cad2a2d7
ED
8222 I915_WRITE(CACHE_MODE_1,
8223 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
1544d9d5 8224
a12c4967
VS
8225 /*
8226 * BSpec recommends 8x4 when MSAA is used,
8227 * however in practice 16x4 seems fastest.
c5c98a58
VS
8228 *
8229 * Note that PS/WM thread counts depend on the WIZ hashing
8230 * disable bit, which we don't touch here, but it's good
8231 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
a12c4967
VS
8232 */
8233 I915_WRITE(GEN7_GT_MODE,
98533251 8234 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
a12c4967 8235
94411593
KG
8236 /* WaSampleCChickenBitEnable:hsw */
8237 I915_WRITE(HALF_SLICE_CHICKEN3,
8238 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8239
ecdb4eb7 8240 /* WaSwitchSolVfFArbitrationPriority:hsw */
e3dff585
BW
8241 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8242
90a88643
PZ
8243 /* WaRsPkgCStateDisplayPMReq:hsw */
8244 I915_WRITE(CHICKEN_PAR1_1,
8245 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
1544d9d5 8246
46f16e63 8247 lpt_init_clock_gating(dev_priv);
cad2a2d7
ED
8248}
8249
46f16e63 8250static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
6f1d69b0 8251{
20848223 8252 uint32_t snpcr;
6f1d69b0 8253
46f16e63 8254 ilk_init_lp_watermarks(dev_priv);
6f1d69b0 8255
231e54f6 8256 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6f1d69b0 8257
ecdb4eb7 8258 /* WaDisableEarlyCull:ivb */
87f8020e
JB
8259 I915_WRITE(_3D_CHICKEN3,
8260 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8261
ecdb4eb7 8262 /* WaDisableBackToBackFlipFix:ivb */
6f1d69b0
ED
8263 I915_WRITE(IVB_CHICKEN3,
8264 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8265 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8266
ecdb4eb7 8267 /* WaDisablePSDDualDispatchEnable:ivb */
50a0bc90 8268 if (IS_IVB_GT1(dev_priv))
12f3382b
JB
8269 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8270 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
12f3382b 8271
4e04632e
AG
8272 /* WaDisable_RenderCache_OperationalFlush:ivb */
8273 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8274
ecdb4eb7 8275 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6f1d69b0
ED
8276 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8277 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8278
ecdb4eb7 8279 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6f1d69b0
ED
8280 I915_WRITE(GEN7_L3CNTLREG1,
8281 GEN7_WA_FOR_GEN7_L3_CONTROL);
8282 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8ab43976 8283 GEN7_WA_L3_CHICKEN_MODE);
50a0bc90 8284 if (IS_IVB_GT1(dev_priv))
8ab43976
JB
8285 I915_WRITE(GEN7_ROW_CHICKEN2,
8286 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
412236c2
VS
8287 else {
8288 /* must write both registers */
8289 I915_WRITE(GEN7_ROW_CHICKEN2,
8290 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8ab43976
JB
8291 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8292 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
412236c2 8293 }
6f1d69b0 8294
ecdb4eb7 8295 /* WaForceL3Serialization:ivb */
61939d97
JB
8296 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8297 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8298
1b80a19a 8299 /*
0f846f81 8300 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 8301 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
0f846f81
JB
8302 */
8303 I915_WRITE(GEN6_UCGCTL2,
28acf3b2 8304 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
0f846f81 8305
ecdb4eb7 8306 /* This is required by WaCatErrorRejectionIssue:ivb */
6f1d69b0
ED
8307 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8308 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8309 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8310
46f16e63 8311 g4x_disable_trickle_feed(dev_priv);
6f1d69b0
ED
8312
8313 gen7_setup_fixed_func_scheduler(dev_priv);
97e1930f 8314
22721343
CW
8315 if (0) { /* causes HiZ corruption on ivb:gt1 */
8316 /* enable HiZ Raw Stall Optimization */
8317 I915_WRITE(CACHE_MODE_0_GEN7,
8318 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8319 }
116f2b6d 8320
ecdb4eb7 8321 /* WaDisable4x2SubspanOptimization:ivb */
97e1930f
DV
8322 I915_WRITE(CACHE_MODE_1,
8323 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
20848223 8324
a607c1a4
VS
8325 /*
8326 * BSpec recommends 8x4 when MSAA is used,
8327 * however in practice 16x4 seems fastest.
c5c98a58
VS
8328 *
8329 * Note that PS/WM thread counts depend on the WIZ hashing
8330 * disable bit, which we don't touch here, but it's good
8331 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
a607c1a4
VS
8332 */
8333 I915_WRITE(GEN7_GT_MODE,
98533251 8334 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
a607c1a4 8335
20848223
BW
8336 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
8337 snpcr &= ~GEN6_MBC_SNPCR_MASK;
8338 snpcr |= GEN6_MBC_SNPCR_MED;
8339 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3107bd48 8340
6e266956 8341 if (!HAS_PCH_NOP(dev_priv))
46f16e63 8342 cpt_init_clock_gating(dev_priv);
1d7aaa0c 8343
46f16e63 8344 gen6_check_mch_setup(dev_priv);
6f1d69b0
ED
8345}
8346
46f16e63 8347static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
6f1d69b0 8348{
ecdb4eb7 8349 /* WaDisableEarlyCull:vlv */
87f8020e
JB
8350 I915_WRITE(_3D_CHICKEN3,
8351 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8352
ecdb4eb7 8353 /* WaDisableBackToBackFlipFix:vlv */
6f1d69b0
ED
8354 I915_WRITE(IVB_CHICKEN3,
8355 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8356 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8357
fad7d36e 8358 /* WaPsdDispatchEnable:vlv */
ecdb4eb7 8359 /* WaDisablePSDDualDispatchEnable:vlv */
12f3382b 8360 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
d3bc0303
JB
8361 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
8362 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
12f3382b 8363
4e04632e
AG
8364 /* WaDisable_RenderCache_OperationalFlush:vlv */
8365 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8366
ecdb4eb7 8367 /* WaForceL3Serialization:vlv */
61939d97
JB
8368 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8369 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8370
ecdb4eb7 8371 /* WaDisableDopClockGating:vlv */
8ab43976
JB
8372 I915_WRITE(GEN7_ROW_CHICKEN2,
8373 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8374
ecdb4eb7 8375 /* This is required by WaCatErrorRejectionIssue:vlv */
6f1d69b0
ED
8376 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8377 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8378 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8379
46680e0a
VS
8380 gen7_setup_fixed_func_scheduler(dev_priv);
8381
3c0edaeb 8382 /*
0f846f81 8383 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 8384 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
0f846f81
JB
8385 */
8386 I915_WRITE(GEN6_UCGCTL2,
3c0edaeb 8387 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
0f846f81 8388
c98f5062
AG
8389 /* WaDisableL3Bank2xClockGate:vlv
8390 * Disabling L3 clock gating- MMIO 940c[25] = 1
8391 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
8392 I915_WRITE(GEN7_UCGCTL4,
8393 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
e3f33d46 8394
afd58e79
VS
8395 /*
8396 * BSpec says this must be set, even though
8397 * WaDisable4x2SubspanOptimization isn't listed for VLV.
8398 */
6b26c86d
DV
8399 I915_WRITE(CACHE_MODE_1,
8400 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7983117f 8401
da2518f9
VS
8402 /*
8403 * BSpec recommends 8x4 when MSAA is used,
8404 * however in practice 16x4 seems fastest.
8405 *
8406 * Note that PS/WM thread counts depend on the WIZ hashing
8407 * disable bit, which we don't touch here, but it's good
8408 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8409 */
8410 I915_WRITE(GEN7_GT_MODE,
8411 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8412
031994ee
VS
8413 /*
8414 * WaIncreaseL3CreditsForVLVB0:vlv
8415 * This is the hardware default actually.
8416 */
8417 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
8418
2d809570 8419 /*
ecdb4eb7 8420 * WaDisableVLVClockGating_VBIIssue:vlv
2d809570
JB
8421 * Disable clock gating on th GCFG unit to prevent a delay
8422 * in the reporting of vblank events.
8423 */
7a0d1eed 8424 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6f1d69b0
ED
8425}
8426
46f16e63 8427static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
a4565da8 8428{
232ce337
VS
8429 /* WaVSRefCountFullforceMissDisable:chv */
8430 /* WaDSRefCountFullforceMissDisable:chv */
8431 I915_WRITE(GEN7_FF_THREAD_MODE,
8432 I915_READ(GEN7_FF_THREAD_MODE) &
8433 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
acea6f95
VS
8434
8435 /* WaDisableSemaphoreAndSyncFlipWait:chv */
8436 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8437 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
0846697c
VS
8438
8439 /* WaDisableCSUnitClockGating:chv */
8440 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8441 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
c631780f
VS
8442
8443 /* WaDisableSDEUnitClockGating:chv */
8444 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8445 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6d50b065 8446
450174fe
ID
8447 /*
8448 * WaProgramL3SqcReg1Default:chv
8449 * See gfxspecs/Related Documents/Performance Guide/
8450 * LSQC Setting Recommendations.
8451 */
8452 gen8_set_l3sqc_credits(dev_priv, 38, 2);
8453
6d50b065
VS
8454 /*
8455 * GTT cache may not work with big pages, so if those
8456 * are ever enabled GTT cache may need to be disabled.
8457 */
8458 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
a4565da8
VS
8459}
8460
46f16e63 8461static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
6f1d69b0 8462{
6f1d69b0
ED
8463 uint32_t dspclk_gate;
8464
8465 I915_WRITE(RENCLK_GATE_D1, 0);
8466 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8467 GS_UNIT_CLOCK_GATE_DISABLE |
8468 CL_UNIT_CLOCK_GATE_DISABLE);
8469 I915_WRITE(RAMCLK_GATE_D, 0);
8470 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8471 OVRUNIT_CLOCK_GATE_DISABLE |
8472 OVCUNIT_CLOCK_GATE_DISABLE;
50a0bc90 8473 if (IS_GM45(dev_priv))
6f1d69b0
ED
8474 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8475 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4358a374
DV
8476
8477 /* WaDisableRenderCachePipelinedFlush */
8478 I915_WRITE(CACHE_MODE_0,
8479 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
de1aa629 8480
4e04632e
AG
8481 /* WaDisable_RenderCache_OperationalFlush:g4x */
8482 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8483
46f16e63 8484 g4x_disable_trickle_feed(dev_priv);
6f1d69b0
ED
8485}
8486
46f16e63 8487static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
6f1d69b0 8488{
6f1d69b0
ED
8489 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8490 I915_WRITE(RENCLK_GATE_D2, 0);
8491 I915_WRITE(DSPCLK_GATE_D, 0);
8492 I915_WRITE(RAMCLK_GATE_D, 0);
8493 I915_WRITE16(DEUC, 0);
20f94967
VS
8494 I915_WRITE(MI_ARB_STATE,
8495 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4e04632e
AG
8496
8497 /* WaDisable_RenderCache_OperationalFlush:gen4 */
8498 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6f1d69b0
ED
8499}
8500
46f16e63 8501static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
6f1d69b0 8502{
6f1d69b0
ED
8503 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8504 I965_RCC_CLOCK_GATE_DISABLE |
8505 I965_RCPB_CLOCK_GATE_DISABLE |
8506 I965_ISC_CLOCK_GATE_DISABLE |
8507 I965_FBC_CLOCK_GATE_DISABLE);
8508 I915_WRITE(RENCLK_GATE_D2, 0);
20f94967
VS
8509 I915_WRITE(MI_ARB_STATE,
8510 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4e04632e
AG
8511
8512 /* WaDisable_RenderCache_OperationalFlush:gen4 */
8513 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6f1d69b0
ED
8514}
8515
46f16e63 8516static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
6f1d69b0 8517{
6f1d69b0
ED
8518 u32 dstate = I915_READ(D_STATE);
8519
8520 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8521 DSTATE_DOT_CLOCK_GATING;
8522 I915_WRITE(D_STATE, dstate);
13a86b85 8523
9b1e14f4 8524 if (IS_PINEVIEW(dev_priv))
13a86b85 8525 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
974a3b0f
DV
8526
8527 /* IIR "flip pending" means done if this bit is set */
8528 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
12fabbcb
VS
8529
8530 /* interrupts should cause a wake up from C3 */
3299254f 8531 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
dbb42748
VS
8532
8533 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
8534 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
1038392b
VS
8535
8536 I915_WRITE(MI_ARB_STATE,
8537 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6f1d69b0
ED
8538}
8539
46f16e63 8540static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
6f1d69b0 8541{
6f1d69b0 8542 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
54e472ae
VS
8543
8544 /* interrupts should cause a wake up from C3 */
8545 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
8546 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
1038392b
VS
8547
8548 I915_WRITE(MEM_MODE,
8549 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6f1d69b0
ED
8550}
8551
46f16e63 8552static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
6f1d69b0 8553{
1038392b
VS
8554 I915_WRITE(MEM_MODE,
8555 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
8556 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6f1d69b0
ED
8557}
8558
46f16e63 8559void intel_init_clock_gating(struct drm_i915_private *dev_priv)
6f1d69b0 8560{
46f16e63 8561 dev_priv->display.init_clock_gating(dev_priv);
6f1d69b0
ED
8562}
8563
712bf364 8564void intel_suspend_hw(struct drm_i915_private *dev_priv)
7d708ee4 8565{
712bf364
VS
8566 if (HAS_PCH_LPT(dev_priv))
8567 lpt_suspend_hw(dev_priv);
7d708ee4
ID
8568}
8569
46f16e63 8570static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
bb400da9
ID
8571{
8572 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
8573}
8574
8575/**
8576 * intel_init_clock_gating_hooks - setup the clock gating hooks
8577 * @dev_priv: device private
8578 *
8579 * Setup the hooks that configure which clocks of a given platform can be
8580 * gated and also apply various GT and display specific workarounds for these
8581 * platforms. Note that some GT specific workarounds are applied separately
8582 * when GPU contexts or batchbuffers start their execution.
8583 */
8584void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
8585{
8586 if (IS_SKYLAKE(dev_priv))
dc00b6a0 8587 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
bb400da9 8588 else if (IS_KABYLAKE(dev_priv))
9498dba7 8589 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
9fb5026f 8590 else if (IS_BROXTON(dev_priv))
bb400da9 8591 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9fb5026f
ACO
8592 else if (IS_GEMINILAKE(dev_priv))
8593 dev_priv->display.init_clock_gating = glk_init_clock_gating;
bb400da9
ID
8594 else if (IS_BROADWELL(dev_priv))
8595 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
8596 else if (IS_CHERRYVIEW(dev_priv))
8597 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
8598 else if (IS_HASWELL(dev_priv))
8599 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
8600 else if (IS_IVYBRIDGE(dev_priv))
8601 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8602 else if (IS_VALLEYVIEW(dev_priv))
8603 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
8604 else if (IS_GEN6(dev_priv))
8605 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8606 else if (IS_GEN5(dev_priv))
8607 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8608 else if (IS_G4X(dev_priv))
8609 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
c0f86832 8610 else if (IS_I965GM(dev_priv))
bb400da9 8611 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
c0f86832 8612 else if (IS_I965G(dev_priv))
bb400da9
ID
8613 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8614 else if (IS_GEN3(dev_priv))
8615 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8616 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
8617 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8618 else if (IS_GEN2(dev_priv))
8619 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8620 else {
8621 MISSING_CASE(INTEL_DEVID(dev_priv));
8622 dev_priv->display.init_clock_gating = nop_init_clock_gating;
8623 }
8624}
8625
1fa61106 8626/* Set up chip specific power management-related functions */
62d75df7 8627void intel_init_pm(struct drm_i915_private *dev_priv)
1fa61106 8628{
7ff0ebcc 8629 intel_fbc_init(dev_priv);
1fa61106 8630
c921aba8 8631 /* For cxsr */
9b1e14f4 8632 if (IS_PINEVIEW(dev_priv))
148ac1f3 8633 i915_pineview_get_mem_freq(dev_priv);
5db94019 8634 else if (IS_GEN5(dev_priv))
148ac1f3 8635 i915_ironlake_get_mem_freq(dev_priv);
c921aba8 8636
1fa61106 8637 /* For FIFO watermark updates */
62d75df7 8638 if (INTEL_GEN(dev_priv) >= 9) {
bb726519 8639 skl_setup_wm_latency(dev_priv);
e62929b3 8640 dev_priv->display.initial_watermarks = skl_initial_wm;
ccf010fb 8641 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
98d39494 8642 dev_priv->display.compute_global_watermarks = skl_compute_wm;
6e266956 8643 } else if (HAS_PCH_SPLIT(dev_priv)) {
bb726519 8644 ilk_setup_wm_latency(dev_priv);
53615a5e 8645
5db94019 8646 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
bd602544 8647 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
5db94019 8648 (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
bd602544 8649 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
86c8bbbe 8650 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
ed4a6a7c
MR
8651 dev_priv->display.compute_intermediate_wm =
8652 ilk_compute_intermediate_wm;
8653 dev_priv->display.initial_watermarks =
8654 ilk_initial_watermarks;
8655 dev_priv->display.optimize_watermarks =
8656 ilk_optimize_watermarks;
bd602544
VS
8657 } else {
8658 DRM_DEBUG_KMS("Failed to read display plane latency. "
8659 "Disable CxSR\n");
8660 }
6b6b3eef 8661 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
bb726519 8662 vlv_setup_wm_latency(dev_priv);
ff32c54e 8663 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
4841da51 8664 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
ff32c54e 8665 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
4841da51 8666 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
ff32c54e 8667 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
04548cba
VS
8668 } else if (IS_G4X(dev_priv)) {
8669 g4x_setup_wm_latency(dev_priv);
8670 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
8671 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
8672 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
8673 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9b1e14f4 8674 } else if (IS_PINEVIEW(dev_priv)) {
50a0bc90 8675 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
1fa61106
ED
8676 dev_priv->is_ddr3,
8677 dev_priv->fsb_freq,
8678 dev_priv->mem_freq)) {
8679 DRM_INFO("failed to find known CxSR latency "
8680 "(found ddr%s fsb freq %d, mem freq %d), "
8681 "disabling CxSR\n",
8682 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8683 dev_priv->fsb_freq, dev_priv->mem_freq);
8684 /* Disable CxSR and never update its watermark again */
5209b1f4 8685 intel_set_memory_cxsr(dev_priv, false);
1fa61106
ED
8686 dev_priv->display.update_wm = NULL;
8687 } else
8688 dev_priv->display.update_wm = pineview_update_wm;
5db94019 8689 } else if (IS_GEN4(dev_priv)) {
1fa61106 8690 dev_priv->display.update_wm = i965_update_wm;
5db94019 8691 } else if (IS_GEN3(dev_priv)) {
1fa61106
ED
8692 dev_priv->display.update_wm = i9xx_update_wm;
8693 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5db94019 8694 } else if (IS_GEN2(dev_priv)) {
62d75df7 8695 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
feb56b93 8696 dev_priv->display.update_wm = i845_update_wm;
1fa61106 8697 dev_priv->display.get_fifo_size = i845_get_fifo_size;
feb56b93
DV
8698 } else {
8699 dev_priv->display.update_wm = i9xx_update_wm;
1fa61106 8700 dev_priv->display.get_fifo_size = i830_get_fifo_size;
feb56b93 8701 }
feb56b93
DV
8702 } else {
8703 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
1fa61106
ED
8704 }
8705}
8706
87660502
L
8707static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
8708{
8709 uint32_t flags =
8710 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
8711
8712 switch (flags) {
8713 case GEN6_PCODE_SUCCESS:
8714 return 0;
8715 case GEN6_PCODE_UNIMPLEMENTED_CMD:
8716 case GEN6_PCODE_ILLEGAL_CMD:
8717 return -ENXIO;
8718 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7850d1c3 8719 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
87660502
L
8720 return -EOVERFLOW;
8721 case GEN6_PCODE_TIMEOUT:
8722 return -ETIMEDOUT;
8723 default:
f0d66153 8724 MISSING_CASE(flags);
87660502
L
8725 return 0;
8726 }
8727}
8728
8729static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
8730{
8731 uint32_t flags =
8732 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
8733
8734 switch (flags) {
8735 case GEN6_PCODE_SUCCESS:
8736 return 0;
8737 case GEN6_PCODE_ILLEGAL_CMD:
8738 return -ENXIO;
8739 case GEN7_PCODE_TIMEOUT:
8740 return -ETIMEDOUT;
8741 case GEN7_PCODE_ILLEGAL_DATA:
8742 return -EINVAL;
8743 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8744 return -EOVERFLOW;
8745 default:
8746 MISSING_CASE(flags);
8747 return 0;
8748 }
8749}
8750
151a49d0 8751int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
42c0526c 8752{
87660502
L
8753 int status;
8754
4fc688ce 8755 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
42c0526c 8756
3f5582dd
CW
8757 /* GEN6_PCODE_* are outside of the forcewake domain, we can
8758 * use te fw I915_READ variants to reduce the amount of work
8759 * required when reading/writing.
8760 */
8761
8762 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
42c0526c
BW
8763 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
8764 return -EAGAIN;
8765 }
8766
3f5582dd
CW
8767 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
8768 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8769 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
42c0526c 8770
e09a3036
CW
8771 if (__intel_wait_for_register_fw(dev_priv,
8772 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
8773 500, 0, NULL)) {
42c0526c
BW
8774 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
8775 return -ETIMEDOUT;
8776 }
8777
3f5582dd
CW
8778 *val = I915_READ_FW(GEN6_PCODE_DATA);
8779 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
42c0526c 8780
87660502
L
8781 if (INTEL_GEN(dev_priv) > 6)
8782 status = gen7_check_mailbox_status(dev_priv);
8783 else
8784 status = gen6_check_mailbox_status(dev_priv);
8785
8786 if (status) {
8787 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
8788 status);
8789 return status;
8790 }
8791
42c0526c
BW
8792 return 0;
8793}
8794
3f5582dd 8795int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
87660502 8796 u32 mbox, u32 val)
42c0526c 8797{
87660502
L
8798 int status;
8799
4fc688ce 8800 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
42c0526c 8801
3f5582dd
CW
8802 /* GEN6_PCODE_* are outside of the forcewake domain, we can
8803 * use te fw I915_READ variants to reduce the amount of work
8804 * required when reading/writing.
8805 */
8806
8807 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
42c0526c
BW
8808 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
8809 return -EAGAIN;
8810 }
8811
3f5582dd 8812 I915_WRITE_FW(GEN6_PCODE_DATA, val);
8bf41b72 8813 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
3f5582dd 8814 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
42c0526c 8815
e09a3036
CW
8816 if (__intel_wait_for_register_fw(dev_priv,
8817 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
8818 500, 0, NULL)) {
42c0526c
BW
8819 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
8820 return -ETIMEDOUT;
8821 }
8822
3f5582dd 8823 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
42c0526c 8824
87660502
L
8825 if (INTEL_GEN(dev_priv) > 6)
8826 status = gen7_check_mailbox_status(dev_priv);
8827 else
8828 status = gen6_check_mailbox_status(dev_priv);
8829
8830 if (status) {
8831 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
8832 status);
8833 return status;
8834 }
8835
42c0526c
BW
8836 return 0;
8837}
a0e4e199 8838
a0b8a1fe
ID
8839static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
8840 u32 request, u32 reply_mask, u32 reply,
8841 u32 *status)
8842{
8843 u32 val = request;
8844
8845 *status = sandybridge_pcode_read(dev_priv, mbox, &val);
8846
8847 return *status || ((val & reply_mask) == reply);
8848}
8849
8850/**
8851 * skl_pcode_request - send PCODE request until acknowledgment
8852 * @dev_priv: device private
8853 * @mbox: PCODE mailbox ID the request is targeted for
8854 * @request: request ID
8855 * @reply_mask: mask used to check for request acknowledgment
8856 * @reply: value used to check for request acknowledgment
8857 * @timeout_base_ms: timeout for polling with preemption enabled
8858 *
8859 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
0129936d 8860 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
a0b8a1fe
ID
8861 * The request is acknowledged once the PCODE reply dword equals @reply after
8862 * applying @reply_mask. Polling is first attempted with preemption enabled
0129936d 8863 * for @timeout_base_ms and if this times out for another 50 ms with
a0b8a1fe
ID
8864 * preemption disabled.
8865 *
8866 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
8867 * other error as reported by PCODE.
8868 */
8869int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
8870 u32 reply_mask, u32 reply, int timeout_base_ms)
8871{
8872 u32 status;
8873 int ret;
8874
8875 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8876
8877#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
8878 &status)
8879
8880 /*
8881 * Prime the PCODE by doing a request first. Normally it guarantees
8882 * that a subsequent request, at most @timeout_base_ms later, succeeds.
8883 * _wait_for() doesn't guarantee when its passed condition is evaluated
8884 * first, so send the first request explicitly.
8885 */
8886 if (COND) {
8887 ret = 0;
8888 goto out;
8889 }
8890 ret = _wait_for(COND, timeout_base_ms * 1000, 10);
8891 if (!ret)
8892 goto out;
8893
8894 /*
8895 * The above can time out if the number of requests was low (2 in the
8896 * worst case) _and_ PCODE was busy for some reason even after a
8897 * (queued) request and @timeout_base_ms delay. As a workaround retry
8898 * the poll with preemption disabled to maximize the number of
0129936d 8899 * requests. Increase the timeout from @timeout_base_ms to 50ms to
a0b8a1fe 8900 * account for interrupts that could reduce the number of these
0129936d
ID
8901 * requests, and for any quirks of the PCODE firmware that delays
8902 * the request completion.
a0b8a1fe
ID
8903 */
8904 DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
8905 WARN_ON_ONCE(timeout_base_ms > 3);
8906 preempt_disable();
0129936d 8907 ret = wait_for_atomic(COND, 50);
a0b8a1fe
ID
8908 preempt_enable();
8909
8910out:
8911 return ret ? ret : status;
8912#undef COND
8913}
8914
dd06f88c
VS
8915static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
8916{
c30fec65
VS
8917 /*
8918 * N = val - 0xb7
8919 * Slow = Fast = GPLL ref * N
8920 */
8921 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
855ba3be
JB
8922}
8923
b55dd647 8924static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
855ba3be 8925{
c30fec65 8926 return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
855ba3be
JB
8927}
8928
b55dd647 8929static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
22b1b2f8 8930{
c30fec65
VS
8931 /*
8932 * N = val / 2
8933 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
8934 */
8935 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
22b1b2f8
D
8936}
8937
b55dd647 8938static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
22b1b2f8 8939{
1c14762d 8940 /* CHV needs even values */
c30fec65 8941 return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
22b1b2f8
D
8942}
8943
616bc820 8944int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
22b1b2f8 8945{
2d1fe073 8946 if (IS_GEN9(dev_priv))
500a3d2e
MK
8947 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
8948 GEN9_FREQ_SCALER);
2d1fe073 8949 else if (IS_CHERRYVIEW(dev_priv))
616bc820 8950 return chv_gpu_freq(dev_priv, val);
2d1fe073 8951 else if (IS_VALLEYVIEW(dev_priv))
616bc820
VS
8952 return byt_gpu_freq(dev_priv, val);
8953 else
8954 return val * GT_FREQUENCY_MULTIPLIER;
22b1b2f8
D
8955}
8956
616bc820
VS
8957int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
8958{
2d1fe073 8959 if (IS_GEN9(dev_priv))
500a3d2e
MK
8960 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
8961 GT_FREQUENCY_MULTIPLIER);
2d1fe073 8962 else if (IS_CHERRYVIEW(dev_priv))
616bc820 8963 return chv_freq_opcode(dev_priv, val);
2d1fe073 8964 else if (IS_VALLEYVIEW(dev_priv))
616bc820
VS
8965 return byt_freq_opcode(dev_priv, val);
8966 else
500a3d2e 8967 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
616bc820 8968}
22b1b2f8 8969
6ad790c0
CW
8970struct request_boost {
8971 struct work_struct work;
eed29a5b 8972 struct drm_i915_gem_request *req;
6ad790c0
CW
8973};
8974
8975static void __intel_rps_boost_work(struct work_struct *work)
8976{
8977 struct request_boost *boost = container_of(work, struct request_boost, work);
e61b9958 8978 struct drm_i915_gem_request *req = boost->req;
6ad790c0 8979
f69a02c9 8980 if (!i915_gem_request_completed(req))
c033666a 8981 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
6ad790c0 8982
e8a261ea 8983 i915_gem_request_put(req);
6ad790c0
CW
8984 kfree(boost);
8985}
8986
91d14251 8987void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
6ad790c0
CW
8988{
8989 struct request_boost *boost;
8990
91d14251 8991 if (req == NULL || INTEL_GEN(req->i915) < 6)
6ad790c0
CW
8992 return;
8993
f69a02c9 8994 if (i915_gem_request_completed(req))
e61b9958
CW
8995 return;
8996
6ad790c0
CW
8997 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
8998 if (boost == NULL)
8999 return;
9000
e8a261ea 9001 boost->req = i915_gem_request_get(req);
6ad790c0
CW
9002
9003 INIT_WORK(&boost->work, __intel_rps_boost_work);
91d14251 9004 queue_work(req->i915->wq, &boost->work);
6ad790c0
CW
9005}
9006
192aa181 9007void intel_pm_setup(struct drm_i915_private *dev_priv)
907b28c5 9008{
f742a552 9009 mutex_init(&dev_priv->rps.hw_lock);
8d3afd7d 9010 spin_lock_init(&dev_priv->rps.client_lock);
f742a552 9011
54b4f68f
CW
9012 INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
9013 __intel_autoenable_gt_powersave);
1854d5ca 9014 INIT_LIST_HEAD(&dev_priv->rps.clients);
5d584b2e 9015
33688d95 9016 dev_priv->pm.suspended = false;
1f814dac 9017 atomic_set(&dev_priv->pm.wakeref_count, 0);
907b28c5 9018}
135bafa5 9019
47c21d9a
MK
9020static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9021 const i915_reg_t reg)
9022{
facbecad 9023 u32 lower, upper, tmp;
71cc2b18 9024 int loop = 2;
47c21d9a
MK
9025
9026 /* The register accessed do not need forcewake. We borrow
9027 * uncore lock to prevent concurrent access to range reg.
9028 */
9029 spin_lock_irq(&dev_priv->uncore.lock);
47c21d9a
MK
9030
9031 /* vlv and chv residency counters are 40 bits in width.
9032 * With a control bit, we can choose between upper or lower
9033 * 32bit window into this counter.
facbecad
CW
9034 *
9035 * Although we always use the counter in high-range mode elsewhere,
9036 * userspace may attempt to read the value before rc6 is initialised,
9037 * before we have set the default VLV_COUNTER_CONTROL value. So always
9038 * set the high bit to be safe.
47c21d9a 9039 */
facbecad
CW
9040 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9041 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
47c21d9a
MK
9042 upper = I915_READ_FW(reg);
9043 do {
9044 tmp = upper;
9045
9046 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9047 _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9048 lower = I915_READ_FW(reg);
9049
9050 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9051 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9052 upper = I915_READ_FW(reg);
71cc2b18 9053 } while (upper != tmp && --loop);
47c21d9a 9054
facbecad
CW
9055 /* Everywhere else we always use VLV_COUNTER_CONTROL with the
9056 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9057 * now.
9058 */
9059
47c21d9a
MK
9060 spin_unlock_irq(&dev_priv->uncore.lock);
9061
9062 return lower | (u64)upper << 8;
9063}
9064
c5a0ad11
MK
9065u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
9066 const i915_reg_t reg)
135bafa5 9067{
47c21d9a 9068 u64 time_hw, units, div;
135bafa5
MK
9069
9070 if (!intel_enable_rc6())
9071 return 0;
9072
9073 intel_runtime_pm_get(dev_priv);
9074
9075 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9076 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
c5a0ad11 9077 units = 1000;
135bafa5
MK
9078 div = dev_priv->czclk_freq;
9079
47c21d9a 9080 time_hw = vlv_residency_raw(dev_priv, reg);
135bafa5 9081 } else if (IS_GEN9_LP(dev_priv)) {
c5a0ad11 9082 units = 1000;
135bafa5 9083 div = 1200; /* 833.33ns */
135bafa5 9084
47c21d9a
MK
9085 time_hw = I915_READ(reg);
9086 } else {
9087 units = 128000; /* 1.28us */
9088 div = 100000;
9089
9090 time_hw = I915_READ(reg);
9091 }
135bafa5
MK
9092
9093 intel_runtime_pm_put(dev_priv);
47c21d9a 9094 return DIV_ROUND_UP_ULL(time_hw * units, div);
135bafa5 9095}