]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/intel_pm.c
drm/i915: Disable trickle feed in ironlake_init_clock_gating()
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
CommitLineData
85208be0
ED
1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
2b4e57bd 28#include <linux/cpufreq.h>
85208be0
ED
29#include "i915_drv.h"
30#include "intel_drv.h"
eb48eb00
DV
31#include "../../../platform/x86/intel_ips.h"
32#include <linux/module.h>
85208be0 33
057d3860 34#define FORCEWAKE_ACK_TIMEOUT_MS 2
b67a4376 35
f6750b3c
ED
36/* FBC, or Frame Buffer Compression, is a technique employed to compress the
37 * framebuffer contents in-memory, aiming at reducing the required bandwidth
38 * during in-memory transfers and, therefore, reduce the power packet.
85208be0 39 *
f6750b3c
ED
40 * The benefits of FBC are mostly visible with solid backgrounds and
41 * variation-less patterns.
85208be0 42 *
f6750b3c
ED
43 * FBC-related functionality can be enabled by the means of the
44 * i915.i915_enable_fbc parameter
85208be0
ED
45 */
46
3490ea5d
CW
47static bool intel_crtc_active(struct drm_crtc *crtc)
48{
49 /* Be paranoid as we can arrive here with only partial
50 * state retrieved from the hardware during setup.
51 */
52 return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
53}
54
1fa61106 55static void i8xx_disable_fbc(struct drm_device *dev)
85208be0
ED
56{
57 struct drm_i915_private *dev_priv = dev->dev_private;
58 u32 fbc_ctl;
59
60 /* Disable compression */
61 fbc_ctl = I915_READ(FBC_CONTROL);
62 if ((fbc_ctl & FBC_CTL_EN) == 0)
63 return;
64
65 fbc_ctl &= ~FBC_CTL_EN;
66 I915_WRITE(FBC_CONTROL, fbc_ctl);
67
68 /* Wait for compressing bit to clear */
69 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
70 DRM_DEBUG_KMS("FBC idle timed out\n");
71 return;
72 }
73
74 DRM_DEBUG_KMS("disabled FBC\n");
75}
76
1fa61106 77static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
85208be0
ED
78{
79 struct drm_device *dev = crtc->dev;
80 struct drm_i915_private *dev_priv = dev->dev_private;
81 struct drm_framebuffer *fb = crtc->fb;
82 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
83 struct drm_i915_gem_object *obj = intel_fb->obj;
84 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
85 int cfb_pitch;
86 int plane, i;
87 u32 fbc_ctl, fbc_ctl2;
88
89 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
90 if (fb->pitches[0] < cfb_pitch)
91 cfb_pitch = fb->pitches[0];
92
93 /* FBC_CTL wants 64B units */
94 cfb_pitch = (cfb_pitch / 64) - 1;
95 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
96
97 /* Clear old tags */
98 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
99 I915_WRITE(FBC_TAG + (i * 4), 0);
100
101 /* Set it up... */
102 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
103 fbc_ctl2 |= plane;
104 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
105 I915_WRITE(FBC_FENCE_OFF, crtc->y);
106
107 /* enable it... */
108 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
109 if (IS_I945GM(dev))
110 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
111 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
112 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
113 fbc_ctl |= obj->fence_reg;
114 I915_WRITE(FBC_CONTROL, fbc_ctl);
115
84f44ce7
VS
116 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
117 cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
85208be0
ED
118}
119
1fa61106 120static bool i8xx_fbc_enabled(struct drm_device *dev)
85208be0
ED
121{
122 struct drm_i915_private *dev_priv = dev->dev_private;
123
124 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
125}
126
1fa61106 127static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
85208be0
ED
128{
129 struct drm_device *dev = crtc->dev;
130 struct drm_i915_private *dev_priv = dev->dev_private;
131 struct drm_framebuffer *fb = crtc->fb;
132 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
133 struct drm_i915_gem_object *obj = intel_fb->obj;
134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
135 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
136 unsigned long stall_watermark = 200;
137 u32 dpfc_ctl;
138
139 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
140 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
141 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
142
143 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
144 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
145 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
146 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
147
148 /* enable it... */
149 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
150
84f44ce7 151 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
85208be0
ED
152}
153
1fa61106 154static void g4x_disable_fbc(struct drm_device *dev)
85208be0
ED
155{
156 struct drm_i915_private *dev_priv = dev->dev_private;
157 u32 dpfc_ctl;
158
159 /* Disable compression */
160 dpfc_ctl = I915_READ(DPFC_CONTROL);
161 if (dpfc_ctl & DPFC_CTL_EN) {
162 dpfc_ctl &= ~DPFC_CTL_EN;
163 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
164
165 DRM_DEBUG_KMS("disabled FBC\n");
166 }
167}
168
1fa61106 169static bool g4x_fbc_enabled(struct drm_device *dev)
85208be0
ED
170{
171 struct drm_i915_private *dev_priv = dev->dev_private;
172
173 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
174}
175
176static void sandybridge_blit_fbc_update(struct drm_device *dev)
177{
178 struct drm_i915_private *dev_priv = dev->dev_private;
179 u32 blt_ecoskpd;
180
181 /* Make sure blitter notifies FBC of writes */
182 gen6_gt_force_wake_get(dev_priv);
183 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
184 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
185 GEN6_BLITTER_LOCK_SHIFT;
186 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
187 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
188 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
189 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
190 GEN6_BLITTER_LOCK_SHIFT);
191 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
192 POSTING_READ(GEN6_BLITTER_ECOSKPD);
193 gen6_gt_force_wake_put(dev_priv);
194}
195
1fa61106 196static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
85208be0
ED
197{
198 struct drm_device *dev = crtc->dev;
199 struct drm_i915_private *dev_priv = dev->dev_private;
200 struct drm_framebuffer *fb = crtc->fb;
201 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
202 struct drm_i915_gem_object *obj = intel_fb->obj;
203 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
204 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
205 unsigned long stall_watermark = 200;
206 u32 dpfc_ctl;
207
208 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
209 dpfc_ctl &= DPFC_RESERVED;
210 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
211 /* Set persistent mode for front-buffer rendering, ala X. */
212 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
213 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
214 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
215
216 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
217 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
218 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
219 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
220 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
221 /* enable it... */
222 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
223
224 if (IS_GEN6(dev)) {
225 I915_WRITE(SNB_DPFC_CTL_SA,
226 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
227 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
228 sandybridge_blit_fbc_update(dev);
229 }
230
84f44ce7 231 DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
85208be0
ED
232}
233
1fa61106 234static void ironlake_disable_fbc(struct drm_device *dev)
85208be0
ED
235{
236 struct drm_i915_private *dev_priv = dev->dev_private;
237 u32 dpfc_ctl;
238
239 /* Disable compression */
240 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
241 if (dpfc_ctl & DPFC_CTL_EN) {
242 dpfc_ctl &= ~DPFC_CTL_EN;
243 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
244
b74ea102 245 if (IS_IVYBRIDGE(dev))
7dd23ba0 246 /* WaFbcDisableDpfcClockGating:ivb */
b74ea102
RV
247 I915_WRITE(ILK_DSPCLK_GATE_D,
248 I915_READ(ILK_DSPCLK_GATE_D) &
249 ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
250
d89f2071 251 if (IS_HASWELL(dev))
7dd23ba0 252 /* WaFbcDisableDpfcClockGating:hsw */
d89f2071
RV
253 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
254 I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
255 ~HSW_DPFC_GATING_DISABLE);
256
85208be0
ED
257 DRM_DEBUG_KMS("disabled FBC\n");
258 }
259}
260
1fa61106 261static bool ironlake_fbc_enabled(struct drm_device *dev)
85208be0
ED
262{
263 struct drm_i915_private *dev_priv = dev->dev_private;
264
265 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
266}
267
abe959c7
RV
268static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
269{
270 struct drm_device *dev = crtc->dev;
271 struct drm_i915_private *dev_priv = dev->dev_private;
272 struct drm_framebuffer *fb = crtc->fb;
273 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
274 struct drm_i915_gem_object *obj = intel_fb->obj;
275 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
276
277 I915_WRITE(IVB_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
278
279 I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
280 IVB_DPFC_CTL_FENCE_EN |
281 intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
282
891348b2 283 if (IS_IVYBRIDGE(dev)) {
7dd23ba0 284 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
891348b2 285 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
7dd23ba0 286 /* WaFbcDisableDpfcClockGating:ivb */
891348b2
RV
287 I915_WRITE(ILK_DSPCLK_GATE_D,
288 I915_READ(ILK_DSPCLK_GATE_D) |
289 ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
28554164 290 } else {
7dd23ba0 291 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
28554164
RV
292 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
293 HSW_BYPASS_FBC_QUEUE);
7dd23ba0 294 /* WaFbcDisableDpfcClockGating:hsw */
d89f2071
RV
295 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
296 I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
297 HSW_DPFC_GATING_DISABLE);
891348b2 298 }
b74ea102 299
abe959c7
RV
300 I915_WRITE(SNB_DPFC_CTL_SA,
301 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
302 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
303
304 sandybridge_blit_fbc_update(dev);
305
306 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
307}
308
85208be0
ED
309bool intel_fbc_enabled(struct drm_device *dev)
310{
311 struct drm_i915_private *dev_priv = dev->dev_private;
312
313 if (!dev_priv->display.fbc_enabled)
314 return false;
315
316 return dev_priv->display.fbc_enabled(dev);
317}
318
319static void intel_fbc_work_fn(struct work_struct *__work)
320{
321 struct intel_fbc_work *work =
322 container_of(to_delayed_work(__work),
323 struct intel_fbc_work, work);
324 struct drm_device *dev = work->crtc->dev;
325 struct drm_i915_private *dev_priv = dev->dev_private;
326
327 mutex_lock(&dev->struct_mutex);
328 if (work == dev_priv->fbc_work) {
329 /* Double check that we haven't switched fb without cancelling
330 * the prior work.
331 */
332 if (work->crtc->fb == work->fb) {
333 dev_priv->display.enable_fbc(work->crtc,
334 work->interval);
335
336 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
337 dev_priv->cfb_fb = work->crtc->fb->base.id;
338 dev_priv->cfb_y = work->crtc->y;
339 }
340
341 dev_priv->fbc_work = NULL;
342 }
343 mutex_unlock(&dev->struct_mutex);
344
345 kfree(work);
346}
347
348static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
349{
350 if (dev_priv->fbc_work == NULL)
351 return;
352
353 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
354
355 /* Synchronisation is provided by struct_mutex and checking of
356 * dev_priv->fbc_work, so we can perform the cancellation
357 * entirely asynchronously.
358 */
359 if (cancel_delayed_work(&dev_priv->fbc_work->work))
360 /* tasklet was killed before being run, clean up */
361 kfree(dev_priv->fbc_work);
362
363 /* Mark the work as no longer wanted so that if it does
364 * wake-up (because the work was already running and waiting
365 * for our mutex), it will discover that is no longer
366 * necessary to run.
367 */
368 dev_priv->fbc_work = NULL;
369}
370
371void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
372{
373 struct intel_fbc_work *work;
374 struct drm_device *dev = crtc->dev;
375 struct drm_i915_private *dev_priv = dev->dev_private;
376
377 if (!dev_priv->display.enable_fbc)
378 return;
379
380 intel_cancel_fbc_work(dev_priv);
381
382 work = kzalloc(sizeof *work, GFP_KERNEL);
383 if (work == NULL) {
384 dev_priv->display.enable_fbc(crtc, interval);
385 return;
386 }
387
388 work->crtc = crtc;
389 work->fb = crtc->fb;
390 work->interval = interval;
391 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
392
393 dev_priv->fbc_work = work;
394
395 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
396
397 /* Delay the actual enabling to let pageflipping cease and the
398 * display to settle before starting the compression. Note that
399 * this delay also serves a second purpose: it allows for a
400 * vblank to pass after disabling the FBC before we attempt
401 * to modify the control registers.
402 *
403 * A more complicated solution would involve tracking vblanks
404 * following the termination of the page-flipping sequence
405 * and indeed performing the enable as a co-routine and not
406 * waiting synchronously upon the vblank.
407 */
408 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
409}
410
411void intel_disable_fbc(struct drm_device *dev)
412{
413 struct drm_i915_private *dev_priv = dev->dev_private;
414
415 intel_cancel_fbc_work(dev_priv);
416
417 if (!dev_priv->display.disable_fbc)
418 return;
419
420 dev_priv->display.disable_fbc(dev);
421 dev_priv->cfb_plane = -1;
422}
423
424/**
425 * intel_update_fbc - enable/disable FBC as needed
426 * @dev: the drm_device
427 *
428 * Set up the framebuffer compression hardware at mode set time. We
429 * enable it if possible:
430 * - plane A only (on pre-965)
431 * - no pixel mulitply/line duplication
432 * - no alpha buffer discard
433 * - no dual wide
f85da868 434 * - framebuffer <= max_hdisplay in width, max_vdisplay in height
85208be0
ED
435 *
436 * We can't assume that any compression will take place (worst case),
437 * so the compressed buffer has to be the same size as the uncompressed
438 * one. It also must reside (along with the line length buffer) in
439 * stolen memory.
440 *
441 * We need to enable/disable FBC on a global basis.
442 */
443void intel_update_fbc(struct drm_device *dev)
444{
445 struct drm_i915_private *dev_priv = dev->dev_private;
446 struct drm_crtc *crtc = NULL, *tmp_crtc;
447 struct intel_crtc *intel_crtc;
448 struct drm_framebuffer *fb;
449 struct intel_framebuffer *intel_fb;
450 struct drm_i915_gem_object *obj;
451 int enable_fbc;
f85da868 452 unsigned int max_hdisplay, max_vdisplay;
85208be0 453
85208be0
ED
454 if (!i915_powersave)
455 return;
456
457 if (!I915_HAS_FBC(dev))
458 return;
459
460 /*
461 * If FBC is already on, we just have to verify that we can
462 * keep it that way...
463 * Need to disable if:
464 * - more than one pipe is active
465 * - changing FBC params (stride, fence, mode)
466 * - new fb is too large to fit in compressed buffer
467 * - going to an unsupported config (interlace, pixel multiply, etc.)
468 */
469 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
3490ea5d
CW
470 if (intel_crtc_active(tmp_crtc) &&
471 !to_intel_crtc(tmp_crtc)->primary_disabled) {
85208be0
ED
472 if (crtc) {
473 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
474 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
475 goto out_disable;
476 }
477 crtc = tmp_crtc;
478 }
479 }
480
481 if (!crtc || crtc->fb == NULL) {
482 DRM_DEBUG_KMS("no output, disabling\n");
483 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
484 goto out_disable;
485 }
486
487 intel_crtc = to_intel_crtc(crtc);
488 fb = crtc->fb;
489 intel_fb = to_intel_framebuffer(fb);
490 obj = intel_fb->obj;
491
492 enable_fbc = i915_enable_fbc;
493 if (enable_fbc < 0) {
494 DRM_DEBUG_KMS("fbc set to per-chip default\n");
495 enable_fbc = 1;
891348b2 496 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
85208be0
ED
497 enable_fbc = 0;
498 }
499 if (!enable_fbc) {
500 DRM_DEBUG_KMS("fbc disabled per module param\n");
501 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
502 goto out_disable;
503 }
85208be0
ED
504 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
505 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
506 DRM_DEBUG_KMS("mode incompatible with compression, "
507 "disabling\n");
508 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
509 goto out_disable;
510 }
f85da868
PZ
511
512 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
513 max_hdisplay = 4096;
514 max_vdisplay = 2048;
515 } else {
516 max_hdisplay = 2048;
517 max_vdisplay = 1536;
518 }
519 if ((crtc->mode.hdisplay > max_hdisplay) ||
520 (crtc->mode.vdisplay > max_vdisplay)) {
85208be0
ED
521 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
522 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
523 goto out_disable;
524 }
891348b2
RV
525 if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
526 intel_crtc->plane != 0) {
85208be0
ED
527 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
528 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
529 goto out_disable;
530 }
531
532 /* The use of a CPU fence is mandatory in order to detect writes
533 * by the CPU to the scanout and trigger updates to the FBC.
534 */
535 if (obj->tiling_mode != I915_TILING_X ||
536 obj->fence_reg == I915_FENCE_REG_NONE) {
537 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
538 dev_priv->no_fbc_reason = FBC_NOT_TILED;
539 goto out_disable;
540 }
541
542 /* If the kernel debugger is active, always disable compression */
543 if (in_dbg_master())
544 goto out_disable;
545
11be49eb 546 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
11be49eb
CW
547 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
548 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
549 goto out_disable;
550 }
551
85208be0
ED
552 /* If the scanout has not changed, don't modify the FBC settings.
553 * Note that we make the fundamental assumption that the fb->obj
554 * cannot be unpinned (and have its GTT offset and fence revoked)
555 * without first being decoupled from the scanout and FBC disabled.
556 */
557 if (dev_priv->cfb_plane == intel_crtc->plane &&
558 dev_priv->cfb_fb == fb->base.id &&
559 dev_priv->cfb_y == crtc->y)
560 return;
561
562 if (intel_fbc_enabled(dev)) {
563 /* We update FBC along two paths, after changing fb/crtc
564 * configuration (modeswitching) and after page-flipping
565 * finishes. For the latter, we know that not only did
566 * we disable the FBC at the start of the page-flip
567 * sequence, but also more than one vblank has passed.
568 *
569 * For the former case of modeswitching, it is possible
570 * to switch between two FBC valid configurations
571 * instantaneously so we do need to disable the FBC
572 * before we can modify its control registers. We also
573 * have to wait for the next vblank for that to take
574 * effect. However, since we delay enabling FBC we can
575 * assume that a vblank has passed since disabling and
576 * that we can safely alter the registers in the deferred
577 * callback.
578 *
579 * In the scenario that we go from a valid to invalid
580 * and then back to valid FBC configuration we have
581 * no strict enforcement that a vblank occurred since
582 * disabling the FBC. However, along all current pipe
583 * disabling paths we do need to wait for a vblank at
584 * some point. And we wait before enabling FBC anyway.
585 */
586 DRM_DEBUG_KMS("disabling active FBC for update\n");
587 intel_disable_fbc(dev);
588 }
589
590 intel_enable_fbc(crtc, 500);
591 return;
592
593out_disable:
594 /* Multiple disables should be harmless */
595 if (intel_fbc_enabled(dev)) {
596 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
597 intel_disable_fbc(dev);
598 }
11be49eb 599 i915_gem_stolen_cleanup_compression(dev);
85208be0
ED
600}
601
c921aba8
DV
602static void i915_pineview_get_mem_freq(struct drm_device *dev)
603{
604 drm_i915_private_t *dev_priv = dev->dev_private;
605 u32 tmp;
606
607 tmp = I915_READ(CLKCFG);
608
609 switch (tmp & CLKCFG_FSB_MASK) {
610 case CLKCFG_FSB_533:
611 dev_priv->fsb_freq = 533; /* 133*4 */
612 break;
613 case CLKCFG_FSB_800:
614 dev_priv->fsb_freq = 800; /* 200*4 */
615 break;
616 case CLKCFG_FSB_667:
617 dev_priv->fsb_freq = 667; /* 167*4 */
618 break;
619 case CLKCFG_FSB_400:
620 dev_priv->fsb_freq = 400; /* 100*4 */
621 break;
622 }
623
624 switch (tmp & CLKCFG_MEM_MASK) {
625 case CLKCFG_MEM_533:
626 dev_priv->mem_freq = 533;
627 break;
628 case CLKCFG_MEM_667:
629 dev_priv->mem_freq = 667;
630 break;
631 case CLKCFG_MEM_800:
632 dev_priv->mem_freq = 800;
633 break;
634 }
635
636 /* detect pineview DDR3 setting */
637 tmp = I915_READ(CSHRDDR3CTL);
638 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
639}
640
641static void i915_ironlake_get_mem_freq(struct drm_device *dev)
642{
643 drm_i915_private_t *dev_priv = dev->dev_private;
644 u16 ddrpll, csipll;
645
646 ddrpll = I915_READ16(DDRMPLL1);
647 csipll = I915_READ16(CSIPLL0);
648
649 switch (ddrpll & 0xff) {
650 case 0xc:
651 dev_priv->mem_freq = 800;
652 break;
653 case 0x10:
654 dev_priv->mem_freq = 1066;
655 break;
656 case 0x14:
657 dev_priv->mem_freq = 1333;
658 break;
659 case 0x18:
660 dev_priv->mem_freq = 1600;
661 break;
662 default:
663 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
664 ddrpll & 0xff);
665 dev_priv->mem_freq = 0;
666 break;
667 }
668
20e4d407 669 dev_priv->ips.r_t = dev_priv->mem_freq;
c921aba8
DV
670
671 switch (csipll & 0x3ff) {
672 case 0x00c:
673 dev_priv->fsb_freq = 3200;
674 break;
675 case 0x00e:
676 dev_priv->fsb_freq = 3733;
677 break;
678 case 0x010:
679 dev_priv->fsb_freq = 4266;
680 break;
681 case 0x012:
682 dev_priv->fsb_freq = 4800;
683 break;
684 case 0x014:
685 dev_priv->fsb_freq = 5333;
686 break;
687 case 0x016:
688 dev_priv->fsb_freq = 5866;
689 break;
690 case 0x018:
691 dev_priv->fsb_freq = 6400;
692 break;
693 default:
694 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
695 csipll & 0x3ff);
696 dev_priv->fsb_freq = 0;
697 break;
698 }
699
700 if (dev_priv->fsb_freq == 3200) {
20e4d407 701 dev_priv->ips.c_m = 0;
c921aba8 702 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
20e4d407 703 dev_priv->ips.c_m = 1;
c921aba8 704 } else {
20e4d407 705 dev_priv->ips.c_m = 2;
c921aba8
DV
706 }
707}
708
b445e3b0
ED
709static const struct cxsr_latency cxsr_latency_table[] = {
710 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
711 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
712 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
713 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
714 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
715
716 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
717 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
718 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
719 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
720 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
721
722 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
723 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
724 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
725 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
726 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
727
728 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
729 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
730 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
731 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
732 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
733
734 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
735 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
736 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
737 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
738 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
739
740 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
741 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
742 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
743 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
744 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
745};
746
63c62275 747static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
b445e3b0
ED
748 int is_ddr3,
749 int fsb,
750 int mem)
751{
752 const struct cxsr_latency *latency;
753 int i;
754
755 if (fsb == 0 || mem == 0)
756 return NULL;
757
758 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
759 latency = &cxsr_latency_table[i];
760 if (is_desktop == latency->is_desktop &&
761 is_ddr3 == latency->is_ddr3 &&
762 fsb == latency->fsb_freq && mem == latency->mem_freq)
763 return latency;
764 }
765
766 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
767
768 return NULL;
769}
770
1fa61106 771static void pineview_disable_cxsr(struct drm_device *dev)
b445e3b0
ED
772{
773 struct drm_i915_private *dev_priv = dev->dev_private;
774
775 /* deactivate cxsr */
776 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
777}
778
779/*
780 * Latency for FIFO fetches is dependent on several factors:
781 * - memory configuration (speed, channels)
782 * - chipset
783 * - current MCH state
784 * It can be fairly high in some situations, so here we assume a fairly
785 * pessimal value. It's a tradeoff between extra memory fetches (if we
786 * set this value too high, the FIFO will fetch frequently to stay full)
787 * and power consumption (set it too low to save power and we might see
788 * FIFO underruns and display "flicker").
789 *
790 * A value of 5us seems to be a good balance; safe for very low end
791 * platforms but not overly aggressive on lower latency configs.
792 */
793static const int latency_ns = 5000;
794
1fa61106 795static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
796{
797 struct drm_i915_private *dev_priv = dev->dev_private;
798 uint32_t dsparb = I915_READ(DSPARB);
799 int size;
800
801 size = dsparb & 0x7f;
802 if (plane)
803 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
804
805 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
806 plane ? "B" : "A", size);
807
808 return size;
809}
810
1fa61106 811static int i85x_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
812{
813 struct drm_i915_private *dev_priv = dev->dev_private;
814 uint32_t dsparb = I915_READ(DSPARB);
815 int size;
816
817 size = dsparb & 0x1ff;
818 if (plane)
819 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
820 size >>= 1; /* Convert to cachelines */
821
822 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
823 plane ? "B" : "A", size);
824
825 return size;
826}
827
1fa61106 828static int i845_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
829{
830 struct drm_i915_private *dev_priv = dev->dev_private;
831 uint32_t dsparb = I915_READ(DSPARB);
832 int size;
833
834 size = dsparb & 0x7f;
835 size >>= 2; /* Convert to cachelines */
836
837 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
838 plane ? "B" : "A",
839 size);
840
841 return size;
842}
843
1fa61106 844static int i830_get_fifo_size(struct drm_device *dev, int plane)
b445e3b0
ED
845{
846 struct drm_i915_private *dev_priv = dev->dev_private;
847 uint32_t dsparb = I915_READ(DSPARB);
848 int size;
849
850 size = dsparb & 0x7f;
851 size >>= 1; /* Convert to cachelines */
852
853 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
854 plane ? "B" : "A", size);
855
856 return size;
857}
858
859/* Pineview has different values for various configs */
860static const struct intel_watermark_params pineview_display_wm = {
861 PINEVIEW_DISPLAY_FIFO,
862 PINEVIEW_MAX_WM,
863 PINEVIEW_DFT_WM,
864 PINEVIEW_GUARD_WM,
865 PINEVIEW_FIFO_LINE_SIZE
866};
867static const struct intel_watermark_params pineview_display_hplloff_wm = {
868 PINEVIEW_DISPLAY_FIFO,
869 PINEVIEW_MAX_WM,
870 PINEVIEW_DFT_HPLLOFF_WM,
871 PINEVIEW_GUARD_WM,
872 PINEVIEW_FIFO_LINE_SIZE
873};
874static const struct intel_watermark_params pineview_cursor_wm = {
875 PINEVIEW_CURSOR_FIFO,
876 PINEVIEW_CURSOR_MAX_WM,
877 PINEVIEW_CURSOR_DFT_WM,
878 PINEVIEW_CURSOR_GUARD_WM,
879 PINEVIEW_FIFO_LINE_SIZE,
880};
881static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
882 PINEVIEW_CURSOR_FIFO,
883 PINEVIEW_CURSOR_MAX_WM,
884 PINEVIEW_CURSOR_DFT_WM,
885 PINEVIEW_CURSOR_GUARD_WM,
886 PINEVIEW_FIFO_LINE_SIZE
887};
888static const struct intel_watermark_params g4x_wm_info = {
889 G4X_FIFO_SIZE,
890 G4X_MAX_WM,
891 G4X_MAX_WM,
892 2,
893 G4X_FIFO_LINE_SIZE,
894};
895static const struct intel_watermark_params g4x_cursor_wm_info = {
896 I965_CURSOR_FIFO,
897 I965_CURSOR_MAX_WM,
898 I965_CURSOR_DFT_WM,
899 2,
900 G4X_FIFO_LINE_SIZE,
901};
902static const struct intel_watermark_params valleyview_wm_info = {
903 VALLEYVIEW_FIFO_SIZE,
904 VALLEYVIEW_MAX_WM,
905 VALLEYVIEW_MAX_WM,
906 2,
907 G4X_FIFO_LINE_SIZE,
908};
909static const struct intel_watermark_params valleyview_cursor_wm_info = {
910 I965_CURSOR_FIFO,
911 VALLEYVIEW_CURSOR_MAX_WM,
912 I965_CURSOR_DFT_WM,
913 2,
914 G4X_FIFO_LINE_SIZE,
915};
916static const struct intel_watermark_params i965_cursor_wm_info = {
917 I965_CURSOR_FIFO,
918 I965_CURSOR_MAX_WM,
919 I965_CURSOR_DFT_WM,
920 2,
921 I915_FIFO_LINE_SIZE,
922};
923static const struct intel_watermark_params i945_wm_info = {
924 I945_FIFO_SIZE,
925 I915_MAX_WM,
926 1,
927 2,
928 I915_FIFO_LINE_SIZE
929};
930static const struct intel_watermark_params i915_wm_info = {
931 I915_FIFO_SIZE,
932 I915_MAX_WM,
933 1,
934 2,
935 I915_FIFO_LINE_SIZE
936};
937static const struct intel_watermark_params i855_wm_info = {
938 I855GM_FIFO_SIZE,
939 I915_MAX_WM,
940 1,
941 2,
942 I830_FIFO_LINE_SIZE
943};
944static const struct intel_watermark_params i830_wm_info = {
945 I830_FIFO_SIZE,
946 I915_MAX_WM,
947 1,
948 2,
949 I830_FIFO_LINE_SIZE
950};
951
952static const struct intel_watermark_params ironlake_display_wm_info = {
953 ILK_DISPLAY_FIFO,
954 ILK_DISPLAY_MAXWM,
955 ILK_DISPLAY_DFTWM,
956 2,
957 ILK_FIFO_LINE_SIZE
958};
959static const struct intel_watermark_params ironlake_cursor_wm_info = {
960 ILK_CURSOR_FIFO,
961 ILK_CURSOR_MAXWM,
962 ILK_CURSOR_DFTWM,
963 2,
964 ILK_FIFO_LINE_SIZE
965};
966static const struct intel_watermark_params ironlake_display_srwm_info = {
967 ILK_DISPLAY_SR_FIFO,
968 ILK_DISPLAY_MAX_SRWM,
969 ILK_DISPLAY_DFT_SRWM,
970 2,
971 ILK_FIFO_LINE_SIZE
972};
973static const struct intel_watermark_params ironlake_cursor_srwm_info = {
974 ILK_CURSOR_SR_FIFO,
975 ILK_CURSOR_MAX_SRWM,
976 ILK_CURSOR_DFT_SRWM,
977 2,
978 ILK_FIFO_LINE_SIZE
979};
980
981static const struct intel_watermark_params sandybridge_display_wm_info = {
982 SNB_DISPLAY_FIFO,
983 SNB_DISPLAY_MAXWM,
984 SNB_DISPLAY_DFTWM,
985 2,
986 SNB_FIFO_LINE_SIZE
987};
988static const struct intel_watermark_params sandybridge_cursor_wm_info = {
989 SNB_CURSOR_FIFO,
990 SNB_CURSOR_MAXWM,
991 SNB_CURSOR_DFTWM,
992 2,
993 SNB_FIFO_LINE_SIZE
994};
995static const struct intel_watermark_params sandybridge_display_srwm_info = {
996 SNB_DISPLAY_SR_FIFO,
997 SNB_DISPLAY_MAX_SRWM,
998 SNB_DISPLAY_DFT_SRWM,
999 2,
1000 SNB_FIFO_LINE_SIZE
1001};
1002static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1003 SNB_CURSOR_SR_FIFO,
1004 SNB_CURSOR_MAX_SRWM,
1005 SNB_CURSOR_DFT_SRWM,
1006 2,
1007 SNB_FIFO_LINE_SIZE
1008};
1009
1010
1011/**
1012 * intel_calculate_wm - calculate watermark level
1013 * @clock_in_khz: pixel clock
1014 * @wm: chip FIFO params
1015 * @pixel_size: display pixel size
1016 * @latency_ns: memory latency for the platform
1017 *
1018 * Calculate the watermark level (the level at which the display plane will
1019 * start fetching from memory again). Each chip has a different display
1020 * FIFO size and allocation, so the caller needs to figure that out and pass
1021 * in the correct intel_watermark_params structure.
1022 *
1023 * As the pixel clock runs, the FIFO will be drained at a rate that depends
1024 * on the pixel size. When it reaches the watermark level, it'll start
1025 * fetching FIFO line sized based chunks from memory until the FIFO fills
1026 * past the watermark point. If the FIFO drains completely, a FIFO underrun
1027 * will occur, and a display engine hang could result.
1028 */
1029static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1030 const struct intel_watermark_params *wm,
1031 int fifo_size,
1032 int pixel_size,
1033 unsigned long latency_ns)
1034{
1035 long entries_required, wm_size;
1036
1037 /*
1038 * Note: we need to make sure we don't overflow for various clock &
1039 * latency values.
1040 * clocks go from a few thousand to several hundred thousand.
1041 * latency is usually a few thousand
1042 */
1043 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1044 1000;
1045 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1046
1047 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1048
1049 wm_size = fifo_size - (entries_required + wm->guard_size);
1050
1051 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1052
1053 /* Don't promote wm_size to unsigned... */
1054 if (wm_size > (long)wm->max_wm)
1055 wm_size = wm->max_wm;
1056 if (wm_size <= 0)
1057 wm_size = wm->default_wm;
1058 return wm_size;
1059}
1060
1061static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1062{
1063 struct drm_crtc *crtc, *enabled = NULL;
1064
1065 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3490ea5d 1066 if (intel_crtc_active(crtc)) {
b445e3b0
ED
1067 if (enabled)
1068 return NULL;
1069 enabled = crtc;
1070 }
1071 }
1072
1073 return enabled;
1074}
1075
1fa61106 1076static void pineview_update_wm(struct drm_device *dev)
b445e3b0
ED
1077{
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 struct drm_crtc *crtc;
1080 const struct cxsr_latency *latency;
1081 u32 reg;
1082 unsigned long wm;
1083
1084 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1085 dev_priv->fsb_freq, dev_priv->mem_freq);
1086 if (!latency) {
1087 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1088 pineview_disable_cxsr(dev);
1089 return;
1090 }
1091
1092 crtc = single_enabled_crtc(dev);
1093 if (crtc) {
1094 int clock = crtc->mode.clock;
1095 int pixel_size = crtc->fb->bits_per_pixel / 8;
1096
1097 /* Display SR */
1098 wm = intel_calculate_wm(clock, &pineview_display_wm,
1099 pineview_display_wm.fifo_size,
1100 pixel_size, latency->display_sr);
1101 reg = I915_READ(DSPFW1);
1102 reg &= ~DSPFW_SR_MASK;
1103 reg |= wm << DSPFW_SR_SHIFT;
1104 I915_WRITE(DSPFW1, reg);
1105 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1106
1107 /* cursor SR */
1108 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1109 pineview_display_wm.fifo_size,
1110 pixel_size, latency->cursor_sr);
1111 reg = I915_READ(DSPFW3);
1112 reg &= ~DSPFW_CURSOR_SR_MASK;
1113 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1114 I915_WRITE(DSPFW3, reg);
1115
1116 /* Display HPLL off SR */
1117 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1118 pineview_display_hplloff_wm.fifo_size,
1119 pixel_size, latency->display_hpll_disable);
1120 reg = I915_READ(DSPFW3);
1121 reg &= ~DSPFW_HPLL_SR_MASK;
1122 reg |= wm & DSPFW_HPLL_SR_MASK;
1123 I915_WRITE(DSPFW3, reg);
1124
1125 /* cursor HPLL off SR */
1126 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1127 pineview_display_hplloff_wm.fifo_size,
1128 pixel_size, latency->cursor_hpll_disable);
1129 reg = I915_READ(DSPFW3);
1130 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1131 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1132 I915_WRITE(DSPFW3, reg);
1133 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1134
1135 /* activate cxsr */
1136 I915_WRITE(DSPFW3,
1137 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1138 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1139 } else {
1140 pineview_disable_cxsr(dev);
1141 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1142 }
1143}
1144
1145static bool g4x_compute_wm0(struct drm_device *dev,
1146 int plane,
1147 const struct intel_watermark_params *display,
1148 int display_latency_ns,
1149 const struct intel_watermark_params *cursor,
1150 int cursor_latency_ns,
1151 int *plane_wm,
1152 int *cursor_wm)
1153{
1154 struct drm_crtc *crtc;
1155 int htotal, hdisplay, clock, pixel_size;
1156 int line_time_us, line_count;
1157 int entries, tlb_miss;
1158
1159 crtc = intel_get_crtc_for_plane(dev, plane);
3490ea5d 1160 if (!intel_crtc_active(crtc)) {
b445e3b0
ED
1161 *cursor_wm = cursor->guard_size;
1162 *plane_wm = display->guard_size;
1163 return false;
1164 }
1165
1166 htotal = crtc->mode.htotal;
1167 hdisplay = crtc->mode.hdisplay;
1168 clock = crtc->mode.clock;
1169 pixel_size = crtc->fb->bits_per_pixel / 8;
1170
1171 /* Use the small buffer method to calculate plane watermark */
1172 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1173 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1174 if (tlb_miss > 0)
1175 entries += tlb_miss;
1176 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1177 *plane_wm = entries + display->guard_size;
1178 if (*plane_wm > (int)display->max_wm)
1179 *plane_wm = display->max_wm;
1180
1181 /* Use the large buffer method to calculate cursor watermark */
1182 line_time_us = ((htotal * 1000) / clock);
1183 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1184 entries = line_count * 64 * pixel_size;
1185 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1186 if (tlb_miss > 0)
1187 entries += tlb_miss;
1188 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1189 *cursor_wm = entries + cursor->guard_size;
1190 if (*cursor_wm > (int)cursor->max_wm)
1191 *cursor_wm = (int)cursor->max_wm;
1192
1193 return true;
1194}
1195
1196/*
1197 * Check the wm result.
1198 *
1199 * If any calculated watermark values is larger than the maximum value that
1200 * can be programmed into the associated watermark register, that watermark
1201 * must be disabled.
1202 */
1203static bool g4x_check_srwm(struct drm_device *dev,
1204 int display_wm, int cursor_wm,
1205 const struct intel_watermark_params *display,
1206 const struct intel_watermark_params *cursor)
1207{
1208 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1209 display_wm, cursor_wm);
1210
1211 if (display_wm > display->max_wm) {
1212 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1213 display_wm, display->max_wm);
1214 return false;
1215 }
1216
1217 if (cursor_wm > cursor->max_wm) {
1218 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1219 cursor_wm, cursor->max_wm);
1220 return false;
1221 }
1222
1223 if (!(display_wm || cursor_wm)) {
1224 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1225 return false;
1226 }
1227
1228 return true;
1229}
1230
1231static bool g4x_compute_srwm(struct drm_device *dev,
1232 int plane,
1233 int latency_ns,
1234 const struct intel_watermark_params *display,
1235 const struct intel_watermark_params *cursor,
1236 int *display_wm, int *cursor_wm)
1237{
1238 struct drm_crtc *crtc;
1239 int hdisplay, htotal, pixel_size, clock;
1240 unsigned long line_time_us;
1241 int line_count, line_size;
1242 int small, large;
1243 int entries;
1244
1245 if (!latency_ns) {
1246 *display_wm = *cursor_wm = 0;
1247 return false;
1248 }
1249
1250 crtc = intel_get_crtc_for_plane(dev, plane);
1251 hdisplay = crtc->mode.hdisplay;
1252 htotal = crtc->mode.htotal;
1253 clock = crtc->mode.clock;
1254 pixel_size = crtc->fb->bits_per_pixel / 8;
1255
1256 line_time_us = (htotal * 1000) / clock;
1257 line_count = (latency_ns / line_time_us + 1000) / 1000;
1258 line_size = hdisplay * pixel_size;
1259
1260 /* Use the minimum of the small and large buffer method for primary */
1261 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1262 large = line_count * line_size;
1263
1264 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1265 *display_wm = entries + display->guard_size;
1266
1267 /* calculate the self-refresh watermark for display cursor */
1268 entries = line_count * pixel_size * 64;
1269 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1270 *cursor_wm = entries + cursor->guard_size;
1271
1272 return g4x_check_srwm(dev,
1273 *display_wm, *cursor_wm,
1274 display, cursor);
1275}
1276
1277static bool vlv_compute_drain_latency(struct drm_device *dev,
1278 int plane,
1279 int *plane_prec_mult,
1280 int *plane_dl,
1281 int *cursor_prec_mult,
1282 int *cursor_dl)
1283{
1284 struct drm_crtc *crtc;
1285 int clock, pixel_size;
1286 int entries;
1287
1288 crtc = intel_get_crtc_for_plane(dev, plane);
3490ea5d 1289 if (!intel_crtc_active(crtc))
b445e3b0
ED
1290 return false;
1291
1292 clock = crtc->mode.clock; /* VESA DOT Clock */
1293 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1294
1295 entries = (clock / 1000) * pixel_size;
1296 *plane_prec_mult = (entries > 256) ?
1297 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1298 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1299 pixel_size);
1300
1301 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1302 *cursor_prec_mult = (entries > 256) ?
1303 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1304 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1305
1306 return true;
1307}
1308
1309/*
1310 * Update drain latency registers of memory arbiter
1311 *
1312 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1313 * to be programmed. Each plane has a drain latency multiplier and a drain
1314 * latency value.
1315 */
1316
1317static void vlv_update_drain_latency(struct drm_device *dev)
1318{
1319 struct drm_i915_private *dev_priv = dev->dev_private;
1320 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1321 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1322 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1323 either 16 or 32 */
1324
1325 /* For plane A, Cursor A */
1326 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1327 &cursor_prec_mult, &cursora_dl)) {
1328 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1329 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1330 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1331 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1332
1333 I915_WRITE(VLV_DDL1, cursora_prec |
1334 (cursora_dl << DDL_CURSORA_SHIFT) |
1335 planea_prec | planea_dl);
1336 }
1337
1338 /* For plane B, Cursor B */
1339 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1340 &cursor_prec_mult, &cursorb_dl)) {
1341 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1342 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1343 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1344 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1345
1346 I915_WRITE(VLV_DDL2, cursorb_prec |
1347 (cursorb_dl << DDL_CURSORB_SHIFT) |
1348 planeb_prec | planeb_dl);
1349 }
1350}
1351
1352#define single_plane_enabled(mask) is_power_of_2(mask)
1353
1fa61106 1354static void valleyview_update_wm(struct drm_device *dev)
b445e3b0
ED
1355{
1356 static const int sr_latency_ns = 12000;
1357 struct drm_i915_private *dev_priv = dev->dev_private;
1358 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1359 int plane_sr, cursor_sr;
af6c4575 1360 int ignore_plane_sr, ignore_cursor_sr;
b445e3b0
ED
1361 unsigned int enabled = 0;
1362
1363 vlv_update_drain_latency(dev);
1364
51cea1f4 1365 if (g4x_compute_wm0(dev, PIPE_A,
b445e3b0
ED
1366 &valleyview_wm_info, latency_ns,
1367 &valleyview_cursor_wm_info, latency_ns,
1368 &planea_wm, &cursora_wm))
51cea1f4 1369 enabled |= 1 << PIPE_A;
b445e3b0 1370
51cea1f4 1371 if (g4x_compute_wm0(dev, PIPE_B,
b445e3b0
ED
1372 &valleyview_wm_info, latency_ns,
1373 &valleyview_cursor_wm_info, latency_ns,
1374 &planeb_wm, &cursorb_wm))
51cea1f4 1375 enabled |= 1 << PIPE_B;
b445e3b0 1376
b445e3b0
ED
1377 if (single_plane_enabled(enabled) &&
1378 g4x_compute_srwm(dev, ffs(enabled) - 1,
1379 sr_latency_ns,
1380 &valleyview_wm_info,
1381 &valleyview_cursor_wm_info,
af6c4575
CW
1382 &plane_sr, &ignore_cursor_sr) &&
1383 g4x_compute_srwm(dev, ffs(enabled) - 1,
1384 2*sr_latency_ns,
1385 &valleyview_wm_info,
1386 &valleyview_cursor_wm_info,
52bd02d8 1387 &ignore_plane_sr, &cursor_sr)) {
b445e3b0 1388 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
52bd02d8 1389 } else {
b445e3b0
ED
1390 I915_WRITE(FW_BLC_SELF_VLV,
1391 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
52bd02d8
CW
1392 plane_sr = cursor_sr = 0;
1393 }
b445e3b0
ED
1394
1395 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1396 planea_wm, cursora_wm,
1397 planeb_wm, cursorb_wm,
1398 plane_sr, cursor_sr);
1399
1400 I915_WRITE(DSPFW1,
1401 (plane_sr << DSPFW_SR_SHIFT) |
1402 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1403 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1404 planea_wm);
1405 I915_WRITE(DSPFW2,
8c919b28 1406 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
b445e3b0
ED
1407 (cursora_wm << DSPFW_CURSORA_SHIFT));
1408 I915_WRITE(DSPFW3,
8c919b28
CW
1409 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1410 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
b445e3b0
ED
1411}
1412
1fa61106 1413static void g4x_update_wm(struct drm_device *dev)
b445e3b0
ED
1414{
1415 static const int sr_latency_ns = 12000;
1416 struct drm_i915_private *dev_priv = dev->dev_private;
1417 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1418 int plane_sr, cursor_sr;
1419 unsigned int enabled = 0;
1420
51cea1f4 1421 if (g4x_compute_wm0(dev, PIPE_A,
b445e3b0
ED
1422 &g4x_wm_info, latency_ns,
1423 &g4x_cursor_wm_info, latency_ns,
1424 &planea_wm, &cursora_wm))
51cea1f4 1425 enabled |= 1 << PIPE_A;
b445e3b0 1426
51cea1f4 1427 if (g4x_compute_wm0(dev, PIPE_B,
b445e3b0
ED
1428 &g4x_wm_info, latency_ns,
1429 &g4x_cursor_wm_info, latency_ns,
1430 &planeb_wm, &cursorb_wm))
51cea1f4 1431 enabled |= 1 << PIPE_B;
b445e3b0 1432
b445e3b0
ED
1433 if (single_plane_enabled(enabled) &&
1434 g4x_compute_srwm(dev, ffs(enabled) - 1,
1435 sr_latency_ns,
1436 &g4x_wm_info,
1437 &g4x_cursor_wm_info,
52bd02d8 1438 &plane_sr, &cursor_sr)) {
b445e3b0 1439 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
52bd02d8 1440 } else {
b445e3b0
ED
1441 I915_WRITE(FW_BLC_SELF,
1442 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
52bd02d8
CW
1443 plane_sr = cursor_sr = 0;
1444 }
b445e3b0
ED
1445
1446 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1447 planea_wm, cursora_wm,
1448 planeb_wm, cursorb_wm,
1449 plane_sr, cursor_sr);
1450
1451 I915_WRITE(DSPFW1,
1452 (plane_sr << DSPFW_SR_SHIFT) |
1453 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1454 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1455 planea_wm);
1456 I915_WRITE(DSPFW2,
8c919b28 1457 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
b445e3b0
ED
1458 (cursora_wm << DSPFW_CURSORA_SHIFT));
1459 /* HPLL off in SR has some issues on G4x... disable it */
1460 I915_WRITE(DSPFW3,
8c919b28 1461 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
b445e3b0
ED
1462 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1463}
1464
1fa61106 1465static void i965_update_wm(struct drm_device *dev)
b445e3b0
ED
1466{
1467 struct drm_i915_private *dev_priv = dev->dev_private;
1468 struct drm_crtc *crtc;
1469 int srwm = 1;
1470 int cursor_sr = 16;
1471
1472 /* Calc sr entries for one plane configs */
1473 crtc = single_enabled_crtc(dev);
1474 if (crtc) {
1475 /* self-refresh has much higher latency */
1476 static const int sr_latency_ns = 12000;
1477 int clock = crtc->mode.clock;
1478 int htotal = crtc->mode.htotal;
1479 int hdisplay = crtc->mode.hdisplay;
1480 int pixel_size = crtc->fb->bits_per_pixel / 8;
1481 unsigned long line_time_us;
1482 int entries;
1483
1484 line_time_us = ((htotal * 1000) / clock);
1485
1486 /* Use ns/us then divide to preserve precision */
1487 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1488 pixel_size * hdisplay;
1489 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1490 srwm = I965_FIFO_SIZE - entries;
1491 if (srwm < 0)
1492 srwm = 1;
1493 srwm &= 0x1ff;
1494 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1495 entries, srwm);
1496
1497 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1498 pixel_size * 64;
1499 entries = DIV_ROUND_UP(entries,
1500 i965_cursor_wm_info.cacheline_size);
1501 cursor_sr = i965_cursor_wm_info.fifo_size -
1502 (entries + i965_cursor_wm_info.guard_size);
1503
1504 if (cursor_sr > i965_cursor_wm_info.max_wm)
1505 cursor_sr = i965_cursor_wm_info.max_wm;
1506
1507 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1508 "cursor %d\n", srwm, cursor_sr);
1509
1510 if (IS_CRESTLINE(dev))
1511 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1512 } else {
1513 /* Turn off self refresh if both pipes are enabled */
1514 if (IS_CRESTLINE(dev))
1515 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1516 & ~FW_BLC_SELF_EN);
1517 }
1518
1519 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1520 srwm);
1521
1522 /* 965 has limitations... */
1523 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1524 (8 << 16) | (8 << 8) | (8 << 0));
1525 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1526 /* update cursor SR watermark */
1527 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1528}
1529
1fa61106 1530static void i9xx_update_wm(struct drm_device *dev)
b445e3b0
ED
1531{
1532 struct drm_i915_private *dev_priv = dev->dev_private;
1533 const struct intel_watermark_params *wm_info;
1534 uint32_t fwater_lo;
1535 uint32_t fwater_hi;
1536 int cwm, srwm = 1;
1537 int fifo_size;
1538 int planea_wm, planeb_wm;
1539 struct drm_crtc *crtc, *enabled = NULL;
1540
1541 if (IS_I945GM(dev))
1542 wm_info = &i945_wm_info;
1543 else if (!IS_GEN2(dev))
1544 wm_info = &i915_wm_info;
1545 else
1546 wm_info = &i855_wm_info;
1547
1548 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1549 crtc = intel_get_crtc_for_plane(dev, 0);
3490ea5d 1550 if (intel_crtc_active(crtc)) {
b9e0bda3
CW
1551 int cpp = crtc->fb->bits_per_pixel / 8;
1552 if (IS_GEN2(dev))
1553 cpp = 4;
1554
b445e3b0 1555 planea_wm = intel_calculate_wm(crtc->mode.clock,
b9e0bda3 1556 wm_info, fifo_size, cpp,
b445e3b0
ED
1557 latency_ns);
1558 enabled = crtc;
1559 } else
1560 planea_wm = fifo_size - wm_info->guard_size;
1561
1562 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1563 crtc = intel_get_crtc_for_plane(dev, 1);
3490ea5d 1564 if (intel_crtc_active(crtc)) {
b9e0bda3
CW
1565 int cpp = crtc->fb->bits_per_pixel / 8;
1566 if (IS_GEN2(dev))
1567 cpp = 4;
1568
b445e3b0 1569 planeb_wm = intel_calculate_wm(crtc->mode.clock,
b9e0bda3 1570 wm_info, fifo_size, cpp,
b445e3b0
ED
1571 latency_ns);
1572 if (enabled == NULL)
1573 enabled = crtc;
1574 else
1575 enabled = NULL;
1576 } else
1577 planeb_wm = fifo_size - wm_info->guard_size;
1578
1579 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1580
1581 /*
1582 * Overlay gets an aggressive default since video jitter is bad.
1583 */
1584 cwm = 2;
1585
1586 /* Play safe and disable self-refresh before adjusting watermarks. */
1587 if (IS_I945G(dev) || IS_I945GM(dev))
1588 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1589 else if (IS_I915GM(dev))
1590 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1591
1592 /* Calc sr entries for one plane configs */
1593 if (HAS_FW_BLC(dev) && enabled) {
1594 /* self-refresh has much higher latency */
1595 static const int sr_latency_ns = 6000;
1596 int clock = enabled->mode.clock;
1597 int htotal = enabled->mode.htotal;
1598 int hdisplay = enabled->mode.hdisplay;
1599 int pixel_size = enabled->fb->bits_per_pixel / 8;
1600 unsigned long line_time_us;
1601 int entries;
1602
1603 line_time_us = (htotal * 1000) / clock;
1604
1605 /* Use ns/us then divide to preserve precision */
1606 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1607 pixel_size * hdisplay;
1608 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1609 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1610 srwm = wm_info->fifo_size - entries;
1611 if (srwm < 0)
1612 srwm = 1;
1613
1614 if (IS_I945G(dev) || IS_I945GM(dev))
1615 I915_WRITE(FW_BLC_SELF,
1616 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1617 else if (IS_I915GM(dev))
1618 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1619 }
1620
1621 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1622 planea_wm, planeb_wm, cwm, srwm);
1623
1624 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1625 fwater_hi = (cwm & 0x1f);
1626
1627 /* Set request length to 8 cachelines per fetch */
1628 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1629 fwater_hi = fwater_hi | (1 << 8);
1630
1631 I915_WRITE(FW_BLC, fwater_lo);
1632 I915_WRITE(FW_BLC2, fwater_hi);
1633
1634 if (HAS_FW_BLC(dev)) {
1635 if (enabled) {
1636 if (IS_I945G(dev) || IS_I945GM(dev))
1637 I915_WRITE(FW_BLC_SELF,
1638 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1639 else if (IS_I915GM(dev))
1640 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1641 DRM_DEBUG_KMS("memory self refresh enabled\n");
1642 } else
1643 DRM_DEBUG_KMS("memory self refresh disabled\n");
1644 }
1645}
1646
1fa61106 1647static void i830_update_wm(struct drm_device *dev)
b445e3b0
ED
1648{
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 struct drm_crtc *crtc;
1651 uint32_t fwater_lo;
1652 int planea_wm;
1653
1654 crtc = single_enabled_crtc(dev);
1655 if (crtc == NULL)
1656 return;
1657
1658 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1659 dev_priv->display.get_fifo_size(dev, 0),
b9e0bda3 1660 4, latency_ns);
b445e3b0
ED
1661 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1662 fwater_lo |= (3<<8) | planea_wm;
1663
1664 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1665
1666 I915_WRITE(FW_BLC, fwater_lo);
1667}
1668
1669#define ILK_LP0_PLANE_LATENCY 700
1670#define ILK_LP0_CURSOR_LATENCY 1300
1671
1672/*
1673 * Check the wm result.
1674 *
1675 * If any calculated watermark values is larger than the maximum value that
1676 * can be programmed into the associated watermark register, that watermark
1677 * must be disabled.
1678 */
1679static bool ironlake_check_srwm(struct drm_device *dev, int level,
1680 int fbc_wm, int display_wm, int cursor_wm,
1681 const struct intel_watermark_params *display,
1682 const struct intel_watermark_params *cursor)
1683{
1684 struct drm_i915_private *dev_priv = dev->dev_private;
1685
1686 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1687 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1688
1689 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1690 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1691 fbc_wm, SNB_FBC_MAX_SRWM, level);
1692
1693 /* fbc has it's own way to disable FBC WM */
1694 I915_WRITE(DISP_ARB_CTL,
1695 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1696 return false;
615aaa5f
VS
1697 } else if (INTEL_INFO(dev)->gen >= 6) {
1698 /* enable FBC WM (except on ILK, where it must remain off) */
1699 I915_WRITE(DISP_ARB_CTL,
1700 I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
b445e3b0
ED
1701 }
1702
1703 if (display_wm > display->max_wm) {
1704 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1705 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1706 return false;
1707 }
1708
1709 if (cursor_wm > cursor->max_wm) {
1710 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1711 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1712 return false;
1713 }
1714
1715 if (!(fbc_wm || display_wm || cursor_wm)) {
1716 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1717 return false;
1718 }
1719
1720 return true;
1721}
1722
1723/*
1724 * Compute watermark values of WM[1-3],
1725 */
1726static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1727 int latency_ns,
1728 const struct intel_watermark_params *display,
1729 const struct intel_watermark_params *cursor,
1730 int *fbc_wm, int *display_wm, int *cursor_wm)
1731{
1732 struct drm_crtc *crtc;
1733 unsigned long line_time_us;
1734 int hdisplay, htotal, pixel_size, clock;
1735 int line_count, line_size;
1736 int small, large;
1737 int entries;
1738
1739 if (!latency_ns) {
1740 *fbc_wm = *display_wm = *cursor_wm = 0;
1741 return false;
1742 }
1743
1744 crtc = intel_get_crtc_for_plane(dev, plane);
1745 hdisplay = crtc->mode.hdisplay;
1746 htotal = crtc->mode.htotal;
1747 clock = crtc->mode.clock;
1748 pixel_size = crtc->fb->bits_per_pixel / 8;
1749
1750 line_time_us = (htotal * 1000) / clock;
1751 line_count = (latency_ns / line_time_us + 1000) / 1000;
1752 line_size = hdisplay * pixel_size;
1753
1754 /* Use the minimum of the small and large buffer method for primary */
1755 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1756 large = line_count * line_size;
1757
1758 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1759 *display_wm = entries + display->guard_size;
1760
1761 /*
1762 * Spec says:
1763 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1764 */
1765 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1766
1767 /* calculate the self-refresh watermark for display cursor */
1768 entries = line_count * pixel_size * 64;
1769 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1770 *cursor_wm = entries + cursor->guard_size;
1771
1772 return ironlake_check_srwm(dev, level,
1773 *fbc_wm, *display_wm, *cursor_wm,
1774 display, cursor);
1775}
1776
1fa61106 1777static void ironlake_update_wm(struct drm_device *dev)
b445e3b0
ED
1778{
1779 struct drm_i915_private *dev_priv = dev->dev_private;
1780 int fbc_wm, plane_wm, cursor_wm;
1781 unsigned int enabled;
1782
1783 enabled = 0;
51cea1f4 1784 if (g4x_compute_wm0(dev, PIPE_A,
b445e3b0
ED
1785 &ironlake_display_wm_info,
1786 ILK_LP0_PLANE_LATENCY,
1787 &ironlake_cursor_wm_info,
1788 ILK_LP0_CURSOR_LATENCY,
1789 &plane_wm, &cursor_wm)) {
1790 I915_WRITE(WM0_PIPEA_ILK,
1791 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1792 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1793 " plane %d, " "cursor: %d\n",
1794 plane_wm, cursor_wm);
51cea1f4 1795 enabled |= 1 << PIPE_A;
b445e3b0
ED
1796 }
1797
51cea1f4 1798 if (g4x_compute_wm0(dev, PIPE_B,
b445e3b0
ED
1799 &ironlake_display_wm_info,
1800 ILK_LP0_PLANE_LATENCY,
1801 &ironlake_cursor_wm_info,
1802 ILK_LP0_CURSOR_LATENCY,
1803 &plane_wm, &cursor_wm)) {
1804 I915_WRITE(WM0_PIPEB_ILK,
1805 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1806 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1807 " plane %d, cursor: %d\n",
1808 plane_wm, cursor_wm);
51cea1f4 1809 enabled |= 1 << PIPE_B;
b445e3b0
ED
1810 }
1811
1812 /*
1813 * Calculate and update the self-refresh watermark only when one
1814 * display plane is used.
1815 */
1816 I915_WRITE(WM3_LP_ILK, 0);
1817 I915_WRITE(WM2_LP_ILK, 0);
1818 I915_WRITE(WM1_LP_ILK, 0);
1819
1820 if (!single_plane_enabled(enabled))
1821 return;
1822 enabled = ffs(enabled) - 1;
1823
1824 /* WM1 */
1825 if (!ironlake_compute_srwm(dev, 1, enabled,
1826 ILK_READ_WM1_LATENCY() * 500,
1827 &ironlake_display_srwm_info,
1828 &ironlake_cursor_srwm_info,
1829 &fbc_wm, &plane_wm, &cursor_wm))
1830 return;
1831
1832 I915_WRITE(WM1_LP_ILK,
1833 WM1_LP_SR_EN |
1834 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1835 (fbc_wm << WM1_LP_FBC_SHIFT) |
1836 (plane_wm << WM1_LP_SR_SHIFT) |
1837 cursor_wm);
1838
1839 /* WM2 */
1840 if (!ironlake_compute_srwm(dev, 2, enabled,
1841 ILK_READ_WM2_LATENCY() * 500,
1842 &ironlake_display_srwm_info,
1843 &ironlake_cursor_srwm_info,
1844 &fbc_wm, &plane_wm, &cursor_wm))
1845 return;
1846
1847 I915_WRITE(WM2_LP_ILK,
1848 WM2_LP_EN |
1849 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1850 (fbc_wm << WM1_LP_FBC_SHIFT) |
1851 (plane_wm << WM1_LP_SR_SHIFT) |
1852 cursor_wm);
1853
1854 /*
1855 * WM3 is unsupported on ILK, probably because we don't have latency
1856 * data for that power state
1857 */
1858}
1859
1fa61106 1860static void sandybridge_update_wm(struct drm_device *dev)
b445e3b0
ED
1861{
1862 struct drm_i915_private *dev_priv = dev->dev_private;
1863 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1864 u32 val;
1865 int fbc_wm, plane_wm, cursor_wm;
1866 unsigned int enabled;
1867
1868 enabled = 0;
51cea1f4 1869 if (g4x_compute_wm0(dev, PIPE_A,
b445e3b0
ED
1870 &sandybridge_display_wm_info, latency,
1871 &sandybridge_cursor_wm_info, latency,
1872 &plane_wm, &cursor_wm)) {
1873 val = I915_READ(WM0_PIPEA_ILK);
1874 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1875 I915_WRITE(WM0_PIPEA_ILK, val |
1876 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1877 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1878 " plane %d, " "cursor: %d\n",
1879 plane_wm, cursor_wm);
51cea1f4 1880 enabled |= 1 << PIPE_A;
b445e3b0
ED
1881 }
1882
51cea1f4 1883 if (g4x_compute_wm0(dev, PIPE_B,
b445e3b0
ED
1884 &sandybridge_display_wm_info, latency,
1885 &sandybridge_cursor_wm_info, latency,
1886 &plane_wm, &cursor_wm)) {
1887 val = I915_READ(WM0_PIPEB_ILK);
1888 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1889 I915_WRITE(WM0_PIPEB_ILK, val |
1890 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1891 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1892 " plane %d, cursor: %d\n",
1893 plane_wm, cursor_wm);
51cea1f4 1894 enabled |= 1 << PIPE_B;
b445e3b0
ED
1895 }
1896
c43d0188
CW
1897 /*
1898 * Calculate and update the self-refresh watermark only when one
1899 * display plane is used.
1900 *
1901 * SNB support 3 levels of watermark.
1902 *
1903 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1904 * and disabled in the descending order
1905 *
1906 */
1907 I915_WRITE(WM3_LP_ILK, 0);
1908 I915_WRITE(WM2_LP_ILK, 0);
1909 I915_WRITE(WM1_LP_ILK, 0);
1910
1911 if (!single_plane_enabled(enabled) ||
1912 dev_priv->sprite_scaling_enabled)
1913 return;
1914 enabled = ffs(enabled) - 1;
1915
1916 /* WM1 */
1917 if (!ironlake_compute_srwm(dev, 1, enabled,
1918 SNB_READ_WM1_LATENCY() * 500,
1919 &sandybridge_display_srwm_info,
1920 &sandybridge_cursor_srwm_info,
1921 &fbc_wm, &plane_wm, &cursor_wm))
1922 return;
1923
1924 I915_WRITE(WM1_LP_ILK,
1925 WM1_LP_SR_EN |
1926 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1927 (fbc_wm << WM1_LP_FBC_SHIFT) |
1928 (plane_wm << WM1_LP_SR_SHIFT) |
1929 cursor_wm);
1930
1931 /* WM2 */
1932 if (!ironlake_compute_srwm(dev, 2, enabled,
1933 SNB_READ_WM2_LATENCY() * 500,
1934 &sandybridge_display_srwm_info,
1935 &sandybridge_cursor_srwm_info,
1936 &fbc_wm, &plane_wm, &cursor_wm))
1937 return;
1938
1939 I915_WRITE(WM2_LP_ILK,
1940 WM2_LP_EN |
1941 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1942 (fbc_wm << WM1_LP_FBC_SHIFT) |
1943 (plane_wm << WM1_LP_SR_SHIFT) |
1944 cursor_wm);
1945
1946 /* WM3 */
1947 if (!ironlake_compute_srwm(dev, 3, enabled,
1948 SNB_READ_WM3_LATENCY() * 500,
1949 &sandybridge_display_srwm_info,
1950 &sandybridge_cursor_srwm_info,
1951 &fbc_wm, &plane_wm, &cursor_wm))
1952 return;
1953
1954 I915_WRITE(WM3_LP_ILK,
1955 WM3_LP_EN |
1956 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1957 (fbc_wm << WM1_LP_FBC_SHIFT) |
1958 (plane_wm << WM1_LP_SR_SHIFT) |
1959 cursor_wm);
1960}
1961
1962static void ivybridge_update_wm(struct drm_device *dev)
1963{
1964 struct drm_i915_private *dev_priv = dev->dev_private;
1965 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1966 u32 val;
1967 int fbc_wm, plane_wm, cursor_wm;
1968 int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1969 unsigned int enabled;
1970
1971 enabled = 0;
51cea1f4 1972 if (g4x_compute_wm0(dev, PIPE_A,
c43d0188
CW
1973 &sandybridge_display_wm_info, latency,
1974 &sandybridge_cursor_wm_info, latency,
1975 &plane_wm, &cursor_wm)) {
1976 val = I915_READ(WM0_PIPEA_ILK);
1977 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1978 I915_WRITE(WM0_PIPEA_ILK, val |
1979 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1980 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1981 " plane %d, " "cursor: %d\n",
1982 plane_wm, cursor_wm);
51cea1f4 1983 enabled |= 1 << PIPE_A;
c43d0188
CW
1984 }
1985
51cea1f4 1986 if (g4x_compute_wm0(dev, PIPE_B,
c43d0188
CW
1987 &sandybridge_display_wm_info, latency,
1988 &sandybridge_cursor_wm_info, latency,
1989 &plane_wm, &cursor_wm)) {
1990 val = I915_READ(WM0_PIPEB_ILK);
1991 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1992 I915_WRITE(WM0_PIPEB_ILK, val |
1993 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1994 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1995 " plane %d, cursor: %d\n",
1996 plane_wm, cursor_wm);
51cea1f4 1997 enabled |= 1 << PIPE_B;
c43d0188
CW
1998 }
1999
51cea1f4 2000 if (g4x_compute_wm0(dev, PIPE_C,
b445e3b0
ED
2001 &sandybridge_display_wm_info, latency,
2002 &sandybridge_cursor_wm_info, latency,
2003 &plane_wm, &cursor_wm)) {
2004 val = I915_READ(WM0_PIPEC_IVB);
2005 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2006 I915_WRITE(WM0_PIPEC_IVB, val |
2007 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2008 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2009 " plane %d, cursor: %d\n",
2010 plane_wm, cursor_wm);
51cea1f4 2011 enabled |= 1 << PIPE_C;
b445e3b0
ED
2012 }
2013
2014 /*
2015 * Calculate and update the self-refresh watermark only when one
2016 * display plane is used.
2017 *
2018 * SNB support 3 levels of watermark.
2019 *
2020 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2021 * and disabled in the descending order
2022 *
2023 */
2024 I915_WRITE(WM3_LP_ILK, 0);
2025 I915_WRITE(WM2_LP_ILK, 0);
2026 I915_WRITE(WM1_LP_ILK, 0);
2027
2028 if (!single_plane_enabled(enabled) ||
2029 dev_priv->sprite_scaling_enabled)
2030 return;
2031 enabled = ffs(enabled) - 1;
2032
2033 /* WM1 */
2034 if (!ironlake_compute_srwm(dev, 1, enabled,
2035 SNB_READ_WM1_LATENCY() * 500,
2036 &sandybridge_display_srwm_info,
2037 &sandybridge_cursor_srwm_info,
2038 &fbc_wm, &plane_wm, &cursor_wm))
2039 return;
2040
2041 I915_WRITE(WM1_LP_ILK,
2042 WM1_LP_SR_EN |
2043 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2044 (fbc_wm << WM1_LP_FBC_SHIFT) |
2045 (plane_wm << WM1_LP_SR_SHIFT) |
2046 cursor_wm);
2047
2048 /* WM2 */
2049 if (!ironlake_compute_srwm(dev, 2, enabled,
2050 SNB_READ_WM2_LATENCY() * 500,
2051 &sandybridge_display_srwm_info,
2052 &sandybridge_cursor_srwm_info,
2053 &fbc_wm, &plane_wm, &cursor_wm))
2054 return;
2055
2056 I915_WRITE(WM2_LP_ILK,
2057 WM2_LP_EN |
2058 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2059 (fbc_wm << WM1_LP_FBC_SHIFT) |
2060 (plane_wm << WM1_LP_SR_SHIFT) |
2061 cursor_wm);
2062
c43d0188 2063 /* WM3, note we have to correct the cursor latency */
b445e3b0
ED
2064 if (!ironlake_compute_srwm(dev, 3, enabled,
2065 SNB_READ_WM3_LATENCY() * 500,
2066 &sandybridge_display_srwm_info,
2067 &sandybridge_cursor_srwm_info,
c43d0188
CW
2068 &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2069 !ironlake_compute_srwm(dev, 3, enabled,
2070 2 * SNB_READ_WM3_LATENCY() * 500,
2071 &sandybridge_display_srwm_info,
2072 &sandybridge_cursor_srwm_info,
2073 &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
b445e3b0
ED
2074 return;
2075
2076 I915_WRITE(WM3_LP_ILK,
2077 WM3_LP_EN |
2078 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2079 (fbc_wm << WM1_LP_FBC_SHIFT) |
2080 (plane_wm << WM1_LP_SR_SHIFT) |
2081 cursor_wm);
2082}
2083
801bcfff
PZ
2084static uint32_t hsw_wm_get_pixel_rate(struct drm_device *dev,
2085 struct drm_crtc *crtc)
2086{
2087 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2088 uint32_t pixel_rate, pfit_size;
2089
ff9a6750 2090 pixel_rate = intel_crtc->config.adjusted_mode.clock;
801bcfff
PZ
2091
2092 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2093 * adjust the pixel_rate here. */
2094
2095 pfit_size = intel_crtc->config.pch_pfit.size;
2096 if (pfit_size) {
2097 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2098
2099 pipe_w = intel_crtc->config.requested_mode.hdisplay;
2100 pipe_h = intel_crtc->config.requested_mode.vdisplay;
2101 pfit_w = (pfit_size >> 16) & 0xFFFF;
2102 pfit_h = pfit_size & 0xFFFF;
2103 if (pipe_w < pfit_w)
2104 pipe_w = pfit_w;
2105 if (pipe_h < pfit_h)
2106 pipe_h = pfit_h;
2107
2108 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2109 pfit_w * pfit_h);
2110 }
2111
2112 return pixel_rate;
2113}
2114
2115static uint32_t hsw_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2116 uint32_t latency)
2117{
2118 uint64_t ret;
2119
2120 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2121 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2122
2123 return ret;
2124}
2125
2126static uint32_t hsw_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2127 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2128 uint32_t latency)
2129{
2130 uint32_t ret;
2131
2132 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2133 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2134 ret = DIV_ROUND_UP(ret, 64) + 2;
2135 return ret;
2136}
2137
cca32e9a
PZ
2138static uint32_t hsw_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2139 uint8_t bytes_per_pixel)
2140{
2141 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2142}
2143
801bcfff
PZ
2144struct hsw_pipe_wm_parameters {
2145 bool active;
2146 bool sprite_enabled;
2147 uint8_t pri_bytes_per_pixel;
2148 uint8_t spr_bytes_per_pixel;
2149 uint8_t cur_bytes_per_pixel;
2150 uint32_t pri_horiz_pixels;
2151 uint32_t spr_horiz_pixels;
2152 uint32_t cur_horiz_pixels;
2153 uint32_t pipe_htotal;
2154 uint32_t pixel_rate;
2155};
2156
cca32e9a
PZ
2157struct hsw_wm_maximums {
2158 uint16_t pri;
2159 uint16_t spr;
2160 uint16_t cur;
2161 uint16_t fbc;
2162};
2163
2164struct hsw_lp_wm_result {
2165 bool enable;
2166 bool fbc_enable;
2167 uint32_t pri_val;
2168 uint32_t spr_val;
2169 uint32_t cur_val;
2170 uint32_t fbc_val;
2171};
2172
801bcfff
PZ
2173struct hsw_wm_values {
2174 uint32_t wm_pipe[3];
2175 uint32_t wm_lp[3];
2176 uint32_t wm_lp_spr[3];
2177 uint32_t wm_linetime[3];
cca32e9a 2178 bool enable_fbc_wm;
801bcfff
PZ
2179};
2180
2181enum hsw_data_buf_partitioning {
2182 HSW_DATA_BUF_PART_1_2,
2183 HSW_DATA_BUF_PART_5_6,
2184};
2185
cca32e9a
PZ
2186/* For both WM_PIPE and WM_LP. */
2187static uint32_t hsw_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
2188 uint32_t mem_value,
2189 bool is_lp)
801bcfff 2190{
cca32e9a
PZ
2191 uint32_t method1, method2;
2192
801bcfff
PZ
2193 /* TODO: for now, assume the primary plane is always enabled. */
2194 if (!params->active)
2195 return 0;
2196
cca32e9a
PZ
2197 method1 = hsw_wm_method1(params->pixel_rate,
2198 params->pri_bytes_per_pixel,
2199 mem_value);
2200
2201 if (!is_lp)
2202 return method1;
2203
2204 method2 = hsw_wm_method2(params->pixel_rate,
2205 params->pipe_htotal,
2206 params->pri_horiz_pixels,
2207 params->pri_bytes_per_pixel,
2208 mem_value);
2209
2210 return min(method1, method2);
801bcfff
PZ
2211}
2212
2213/* For both WM_PIPE and WM_LP. */
2214static uint32_t hsw_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
2215 uint32_t mem_value)
2216{
2217 uint32_t method1, method2;
2218
2219 if (!params->active || !params->sprite_enabled)
2220 return 0;
2221
2222 method1 = hsw_wm_method1(params->pixel_rate,
2223 params->spr_bytes_per_pixel,
2224 mem_value);
2225 method2 = hsw_wm_method2(params->pixel_rate,
2226 params->pipe_htotal,
2227 params->spr_horiz_pixels,
2228 params->spr_bytes_per_pixel,
2229 mem_value);
2230 return min(method1, method2);
2231}
2232
2233/* For both WM_PIPE and WM_LP. */
2234static uint32_t hsw_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
2235 uint32_t mem_value)
2236{
2237 if (!params->active)
2238 return 0;
2239
2240 return hsw_wm_method2(params->pixel_rate,
2241 params->pipe_htotal,
2242 params->cur_horiz_pixels,
2243 params->cur_bytes_per_pixel,
2244 mem_value);
2245}
2246
cca32e9a
PZ
2247/* Only for WM_LP. */
2248static uint32_t hsw_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
2249 uint32_t pri_val,
2250 uint32_t mem_value)
2251{
2252 if (!params->active)
2253 return 0;
2254
2255 return hsw_wm_fbc(pri_val,
2256 params->pri_horiz_pixels,
2257 params->pri_bytes_per_pixel);
2258}
2259
2260static bool hsw_compute_lp_wm(uint32_t mem_value, struct hsw_wm_maximums *max,
2261 struct hsw_pipe_wm_parameters *params,
2262 struct hsw_lp_wm_result *result)
2263{
2264 enum pipe pipe;
2265 uint32_t pri_val[3], spr_val[3], cur_val[3], fbc_val[3];
2266
2267 for (pipe = PIPE_A; pipe <= PIPE_C; pipe++) {
2268 struct hsw_pipe_wm_parameters *p = &params[pipe];
2269
2270 pri_val[pipe] = hsw_compute_pri_wm(p, mem_value, true);
2271 spr_val[pipe] = hsw_compute_spr_wm(p, mem_value);
2272 cur_val[pipe] = hsw_compute_cur_wm(p, mem_value);
2273 fbc_val[pipe] = hsw_compute_fbc_wm(p, pri_val[pipe], mem_value);
2274 }
2275
2276 result->pri_val = max3(pri_val[0], pri_val[1], pri_val[2]);
2277 result->spr_val = max3(spr_val[0], spr_val[1], spr_val[2]);
2278 result->cur_val = max3(cur_val[0], cur_val[1], cur_val[2]);
2279 result->fbc_val = max3(fbc_val[0], fbc_val[1], fbc_val[2]);
2280
2281 if (result->fbc_val > max->fbc) {
2282 result->fbc_enable = false;
2283 result->fbc_val = 0;
2284 } else {
2285 result->fbc_enable = true;
2286 }
2287
2288 result->enable = result->pri_val <= max->pri &&
2289 result->spr_val <= max->spr &&
2290 result->cur_val <= max->cur;
2291 return result->enable;
2292}
2293
801bcfff
PZ
2294static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
2295 uint32_t mem_value, enum pipe pipe,
2296 struct hsw_pipe_wm_parameters *params)
2297{
2298 uint32_t pri_val, cur_val, spr_val;
2299
cca32e9a 2300 pri_val = hsw_compute_pri_wm(params, mem_value, false);
801bcfff
PZ
2301 spr_val = hsw_compute_spr_wm(params, mem_value);
2302 cur_val = hsw_compute_cur_wm(params, mem_value);
2303
2304 WARN(pri_val > 127,
2305 "Primary WM error, mode not supported for pipe %c\n",
2306 pipe_name(pipe));
2307 WARN(spr_val > 127,
2308 "Sprite WM error, mode not supported for pipe %c\n",
2309 pipe_name(pipe));
2310 WARN(cur_val > 63,
2311 "Cursor WM error, mode not supported for pipe %c\n",
2312 pipe_name(pipe));
2313
2314 return (pri_val << WM0_PIPE_PLANE_SHIFT) |
2315 (spr_val << WM0_PIPE_SPRITE_SHIFT) |
2316 cur_val;
2317}
2318
2319static uint32_t
2320hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1f8eeabf
ED
2321{
2322 struct drm_i915_private *dev_priv = dev->dev_private;
1011d8c4 2323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1011d8c4 2324 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
85a02deb 2325 u32 linetime, ips_linetime;
1f8eeabf 2326
801bcfff
PZ
2327 if (!intel_crtc_active(crtc))
2328 return 0;
1011d8c4 2329
1f8eeabf
ED
2330 /* The WM are computed with base on how long it takes to fill a single
2331 * row at the given clock rate, multiplied by 8.
2332 * */
85a02deb
PZ
2333 linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2334 ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2335 intel_ddi_get_cdclk_freq(dev_priv));
1f8eeabf 2336
801bcfff
PZ
2337 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2338 PIPE_WM_LINETIME_TIME(linetime);
1f8eeabf
ED
2339}
2340
801bcfff
PZ
2341static void hsw_compute_wm_parameters(struct drm_device *dev,
2342 struct hsw_pipe_wm_parameters *params,
cca32e9a 2343 uint32_t *wm,
861f3389
PZ
2344 struct hsw_wm_maximums *lp_max_1_2,
2345 struct hsw_wm_maximums *lp_max_5_6)
1011d8c4
PZ
2346{
2347 struct drm_i915_private *dev_priv = dev->dev_private;
2348 struct drm_crtc *crtc;
801bcfff
PZ
2349 struct drm_plane *plane;
2350 uint64_t sskpd = I915_READ64(MCH_SSKPD);
1011d8c4 2351 enum pipe pipe;
cca32e9a 2352 int pipes_active = 0, sprites_enabled = 0;
1011d8c4 2353
801bcfff
PZ
2354 if ((sskpd >> 56) & 0xFF)
2355 wm[0] = (sskpd >> 56) & 0xFF;
2356 else
2357 wm[0] = sskpd & 0xF;
2358 wm[1] = ((sskpd >> 4) & 0xFF) * 5;
2359 wm[2] = ((sskpd >> 12) & 0xFF) * 5;
2360 wm[3] = ((sskpd >> 20) & 0x1FF) * 5;
2361 wm[4] = ((sskpd >> 32) & 0x1FF) * 5;
2362
2363 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2364 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2365 struct hsw_pipe_wm_parameters *p;
2366
2367 pipe = intel_crtc->pipe;
2368 p = &params[pipe];
2369
2370 p->active = intel_crtc_active(crtc);
2371 if (!p->active)
2372 continue;
2373
cca32e9a
PZ
2374 pipes_active++;
2375
801bcfff
PZ
2376 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2377 p->pixel_rate = hsw_wm_get_pixel_rate(dev, crtc);
2378 p->pri_bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2379 p->cur_bytes_per_pixel = 4;
2380 p->pri_horiz_pixels =
2381 intel_crtc->config.requested_mode.hdisplay;
2382 p->cur_horiz_pixels = 64;
2383 }
2384
2385 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2386 struct intel_plane *intel_plane = to_intel_plane(plane);
2387 struct hsw_pipe_wm_parameters *p;
2388
2389 pipe = intel_plane->pipe;
2390 p = &params[pipe];
2391
2392 p->sprite_enabled = intel_plane->wm.enable;
2393 p->spr_bytes_per_pixel = intel_plane->wm.bytes_per_pixel;
2394 p->spr_horiz_pixels = intel_plane->wm.horiz_pixels;
cca32e9a
PZ
2395
2396 if (p->sprite_enabled)
2397 sprites_enabled++;
2398 }
2399
2400 if (pipes_active > 1) {
861f3389
PZ
2401 lp_max_1_2->pri = lp_max_5_6->pri = sprites_enabled ? 128 : 256;
2402 lp_max_1_2->spr = lp_max_5_6->spr = 128;
2403 lp_max_1_2->cur = lp_max_5_6->cur = 64;
cca32e9a
PZ
2404 } else {
2405 lp_max_1_2->pri = sprites_enabled ? 384 : 768;
861f3389 2406 lp_max_5_6->pri = sprites_enabled ? 128 : 768;
cca32e9a 2407 lp_max_1_2->spr = 384;
861f3389
PZ
2408 lp_max_5_6->spr = 640;
2409 lp_max_1_2->cur = lp_max_5_6->cur = 255;
801bcfff 2410 }
861f3389 2411 lp_max_1_2->fbc = lp_max_5_6->fbc = 15;
801bcfff
PZ
2412}
2413
2414static void hsw_compute_wm_results(struct drm_device *dev,
2415 struct hsw_pipe_wm_parameters *params,
2416 uint32_t *wm,
cca32e9a 2417 struct hsw_wm_maximums *lp_maximums,
801bcfff
PZ
2418 struct hsw_wm_values *results)
2419{
2420 struct drm_i915_private *dev_priv = dev->dev_private;
2421 struct drm_crtc *crtc;
cca32e9a 2422 struct hsw_lp_wm_result lp_results[4] = {};
801bcfff 2423 enum pipe pipe;
cca32e9a
PZ
2424 int level, max_level, wm_lp;
2425
2426 for (level = 1; level <= 4; level++)
2427 if (!hsw_compute_lp_wm(wm[level], lp_maximums, params,
2428 &lp_results[level - 1]))
2429 break;
2430 max_level = level - 1;
2431
2432 /* The spec says it is preferred to disable FBC WMs instead of disabling
2433 * a WM level. */
2434 results->enable_fbc_wm = true;
2435 for (level = 1; level <= max_level; level++) {
2436 if (!lp_results[level - 1].fbc_enable) {
2437 results->enable_fbc_wm = false;
2438 break;
2439 }
2440 }
2441
2442 memset(results, 0, sizeof(*results));
2443 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2444 const struct hsw_lp_wm_result *r;
801bcfff 2445
cca32e9a
PZ
2446 level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
2447 if (level > max_level)
2448 break;
2449
2450 r = &lp_results[level - 1];
2451 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2452 r->fbc_val,
2453 r->pri_val,
2454 r->cur_val);
2455 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2456 }
801bcfff
PZ
2457
2458 for_each_pipe(pipe)
2459 results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, wm[0],
2460 pipe,
2461 &params[pipe]);
1011d8c4
PZ
2462
2463 for_each_pipe(pipe) {
2464 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
801bcfff
PZ
2465 results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
2466 }
2467}
2468
861f3389
PZ
2469/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2470 * case both are at the same level. Prefer r1 in case they're the same. */
2471struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
2472 struct hsw_wm_values *r2)
2473{
2474 int i, val_r1 = 0, val_r2 = 0;
2475
2476 for (i = 0; i < 3; i++) {
2477 if (r1->wm_lp[i] & WM3_LP_EN)
2478 val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
2479 if (r2->wm_lp[i] & WM3_LP_EN)
2480 val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
2481 }
2482
2483 if (val_r1 == val_r2) {
2484 if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
2485 return r2;
2486 else
2487 return r1;
2488 } else if (val_r1 > val_r2) {
2489 return r1;
2490 } else {
2491 return r2;
2492 }
2493}
2494
801bcfff
PZ
2495/*
2496 * The spec says we shouldn't write when we don't need, because every write
2497 * causes WMs to be re-evaluated, expending some power.
2498 */
2499static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2500 struct hsw_wm_values *results,
2501 enum hsw_data_buf_partitioning partitioning)
2502{
2503 struct hsw_wm_values previous;
2504 uint32_t val;
2505 enum hsw_data_buf_partitioning prev_partitioning;
cca32e9a 2506 bool prev_enable_fbc_wm;
801bcfff
PZ
2507
2508 previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
2509 previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
2510 previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
2511 previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
2512 previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
2513 previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
2514 previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2515 previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2516 previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2517 previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
2518 previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
2519 previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
2520
2521 prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2522 HSW_DATA_BUF_PART_5_6 : HSW_DATA_BUF_PART_1_2;
2523
cca32e9a
PZ
2524 prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2525
801bcfff
PZ
2526 if (memcmp(results->wm_pipe, previous.wm_pipe,
2527 sizeof(results->wm_pipe)) == 0 &&
2528 memcmp(results->wm_lp, previous.wm_lp,
2529 sizeof(results->wm_lp)) == 0 &&
2530 memcmp(results->wm_lp_spr, previous.wm_lp_spr,
2531 sizeof(results->wm_lp_spr)) == 0 &&
2532 memcmp(results->wm_linetime, previous.wm_linetime,
2533 sizeof(results->wm_linetime)) == 0 &&
cca32e9a
PZ
2534 partitioning == prev_partitioning &&
2535 results->enable_fbc_wm == prev_enable_fbc_wm)
801bcfff
PZ
2536 return;
2537
2538 if (previous.wm_lp[2] != 0)
2539 I915_WRITE(WM3_LP_ILK, 0);
2540 if (previous.wm_lp[1] != 0)
2541 I915_WRITE(WM2_LP_ILK, 0);
2542 if (previous.wm_lp[0] != 0)
2543 I915_WRITE(WM1_LP_ILK, 0);
2544
2545 if (previous.wm_pipe[0] != results->wm_pipe[0])
2546 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2547 if (previous.wm_pipe[1] != results->wm_pipe[1])
2548 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2549 if (previous.wm_pipe[2] != results->wm_pipe[2])
2550 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2551
2552 if (previous.wm_linetime[0] != results->wm_linetime[0])
2553 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2554 if (previous.wm_linetime[1] != results->wm_linetime[1])
2555 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2556 if (previous.wm_linetime[2] != results->wm_linetime[2])
2557 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2558
2559 if (prev_partitioning != partitioning) {
2560 val = I915_READ(WM_MISC);
2561 if (partitioning == HSW_DATA_BUF_PART_1_2)
2562 val &= ~WM_MISC_DATA_PARTITION_5_6;
2563 else
2564 val |= WM_MISC_DATA_PARTITION_5_6;
2565 I915_WRITE(WM_MISC, val);
1011d8c4
PZ
2566 }
2567
cca32e9a
PZ
2568 if (prev_enable_fbc_wm != results->enable_fbc_wm) {
2569 val = I915_READ(DISP_ARB_CTL);
2570 if (results->enable_fbc_wm)
2571 val &= ~DISP_FBC_WM_DIS;
2572 else
2573 val |= DISP_FBC_WM_DIS;
2574 I915_WRITE(DISP_ARB_CTL, val);
2575 }
2576
801bcfff
PZ
2577 if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
2578 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2579 if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
2580 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2581 if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
2582 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2583
2584 if (results->wm_lp[0] != 0)
2585 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2586 if (results->wm_lp[1] != 0)
2587 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2588 if (results->wm_lp[2] != 0)
2589 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2590}
2591
2592static void haswell_update_wm(struct drm_device *dev)
2593{
2594 struct drm_i915_private *dev_priv = dev->dev_private;
861f3389 2595 struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
801bcfff 2596 struct hsw_pipe_wm_parameters params[3];
861f3389 2597 struct hsw_wm_values results_1_2, results_5_6, *best_results;
801bcfff 2598 uint32_t wm[5];
861f3389
PZ
2599 enum hsw_data_buf_partitioning partitioning;
2600
2601 hsw_compute_wm_parameters(dev, params, wm, &lp_max_1_2, &lp_max_5_6);
2602
2603 hsw_compute_wm_results(dev, params, wm, &lp_max_1_2, &results_1_2);
2604 if (lp_max_1_2.pri != lp_max_5_6.pri) {
2605 hsw_compute_wm_results(dev, params, wm, &lp_max_5_6,
2606 &results_5_6);
2607 best_results = hsw_find_best_result(&results_1_2, &results_5_6);
2608 } else {
2609 best_results = &results_1_2;
2610 }
2611
2612 partitioning = (best_results == &results_1_2) ?
2613 HSW_DATA_BUF_PART_1_2 : HSW_DATA_BUF_PART_5_6;
801bcfff 2614
861f3389 2615 hsw_write_wm_values(dev_priv, best_results, partitioning);
1011d8c4
PZ
2616}
2617
526682e9
PZ
2618static void haswell_update_sprite_wm(struct drm_device *dev, int pipe,
2619 uint32_t sprite_width, int pixel_size,
2620 bool enable)
2621{
2622 struct drm_plane *plane;
2623
2624 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2625 struct intel_plane *intel_plane = to_intel_plane(plane);
2626
2627 if (intel_plane->pipe == pipe) {
2628 intel_plane->wm.enable = enable;
2629 intel_plane->wm.horiz_pixels = sprite_width + 1;
2630 intel_plane->wm.bytes_per_pixel = pixel_size;
2631 break;
2632 }
2633 }
2634
2635 haswell_update_wm(dev);
2636}
2637
b445e3b0
ED
2638static bool
2639sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2640 uint32_t sprite_width, int pixel_size,
2641 const struct intel_watermark_params *display,
2642 int display_latency_ns, int *sprite_wm)
2643{
2644 struct drm_crtc *crtc;
2645 int clock;
2646 int entries, tlb_miss;
2647
2648 crtc = intel_get_crtc_for_plane(dev, plane);
3490ea5d 2649 if (!intel_crtc_active(crtc)) {
b445e3b0
ED
2650 *sprite_wm = display->guard_size;
2651 return false;
2652 }
2653
2654 clock = crtc->mode.clock;
2655
2656 /* Use the small buffer method to calculate the sprite watermark */
2657 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2658 tlb_miss = display->fifo_size*display->cacheline_size -
2659 sprite_width * 8;
2660 if (tlb_miss > 0)
2661 entries += tlb_miss;
2662 entries = DIV_ROUND_UP(entries, display->cacheline_size);
2663 *sprite_wm = entries + display->guard_size;
2664 if (*sprite_wm > (int)display->max_wm)
2665 *sprite_wm = display->max_wm;
2666
2667 return true;
2668}
2669
2670static bool
2671sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2672 uint32_t sprite_width, int pixel_size,
2673 const struct intel_watermark_params *display,
2674 int latency_ns, int *sprite_wm)
2675{
2676 struct drm_crtc *crtc;
2677 unsigned long line_time_us;
2678 int clock;
2679 int line_count, line_size;
2680 int small, large;
2681 int entries;
2682
2683 if (!latency_ns) {
2684 *sprite_wm = 0;
2685 return false;
2686 }
2687
2688 crtc = intel_get_crtc_for_plane(dev, plane);
2689 clock = crtc->mode.clock;
2690 if (!clock) {
2691 *sprite_wm = 0;
2692 return false;
2693 }
2694
2695 line_time_us = (sprite_width * 1000) / clock;
2696 if (!line_time_us) {
2697 *sprite_wm = 0;
2698 return false;
2699 }
2700
2701 line_count = (latency_ns / line_time_us + 1000) / 1000;
2702 line_size = sprite_width * pixel_size;
2703
2704 /* Use the minimum of the small and large buffer method for primary */
2705 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2706 large = line_count * line_size;
2707
2708 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2709 *sprite_wm = entries + display->guard_size;
2710
2711 return *sprite_wm > 0x3ff ? false : true;
2712}
2713
1fa61106 2714static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
4c4ff43a
PZ
2715 uint32_t sprite_width, int pixel_size,
2716 bool enable)
b445e3b0
ED
2717{
2718 struct drm_i915_private *dev_priv = dev->dev_private;
2719 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
2720 u32 val;
2721 int sprite_wm, reg;
2722 int ret;
2723
4c4ff43a
PZ
2724 if (!enable)
2725 return;
2726
b445e3b0
ED
2727 switch (pipe) {
2728 case 0:
2729 reg = WM0_PIPEA_ILK;
2730 break;
2731 case 1:
2732 reg = WM0_PIPEB_ILK;
2733 break;
2734 case 2:
2735 reg = WM0_PIPEC_IVB;
2736 break;
2737 default:
2738 return; /* bad pipe */
2739 }
2740
2741 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2742 &sandybridge_display_wm_info,
2743 latency, &sprite_wm);
2744 if (!ret) {
84f44ce7
VS
2745 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
2746 pipe_name(pipe));
b445e3b0
ED
2747 return;
2748 }
2749
2750 val = I915_READ(reg);
2751 val &= ~WM0_PIPE_SPRITE_MASK;
2752 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
84f44ce7 2753 DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
b445e3b0
ED
2754
2755
2756 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2757 pixel_size,
2758 &sandybridge_display_srwm_info,
2759 SNB_READ_WM1_LATENCY() * 500,
2760 &sprite_wm);
2761 if (!ret) {
84f44ce7
VS
2762 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
2763 pipe_name(pipe));
b445e3b0
ED
2764 return;
2765 }
2766 I915_WRITE(WM1S_LP_ILK, sprite_wm);
2767
2768 /* Only IVB has two more LP watermarks for sprite */
2769 if (!IS_IVYBRIDGE(dev))
2770 return;
2771
2772 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2773 pixel_size,
2774 &sandybridge_display_srwm_info,
2775 SNB_READ_WM2_LATENCY() * 500,
2776 &sprite_wm);
2777 if (!ret) {
84f44ce7
VS
2778 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
2779 pipe_name(pipe));
b445e3b0
ED
2780 return;
2781 }
2782 I915_WRITE(WM2S_LP_IVB, sprite_wm);
2783
2784 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2785 pixel_size,
2786 &sandybridge_display_srwm_info,
2787 SNB_READ_WM3_LATENCY() * 500,
2788 &sprite_wm);
2789 if (!ret) {
84f44ce7
VS
2790 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
2791 pipe_name(pipe));
b445e3b0
ED
2792 return;
2793 }
2794 I915_WRITE(WM3S_LP_IVB, sprite_wm);
2795}
2796
2797/**
2798 * intel_update_watermarks - update FIFO watermark values based on current modes
2799 *
2800 * Calculate watermark values for the various WM regs based on current mode
2801 * and plane configuration.
2802 *
2803 * There are several cases to deal with here:
2804 * - normal (i.e. non-self-refresh)
2805 * - self-refresh (SR) mode
2806 * - lines are large relative to FIFO size (buffer can hold up to 2)
2807 * - lines are small relative to FIFO size (buffer can hold more than 2
2808 * lines), so need to account for TLB latency
2809 *
2810 * The normal calculation is:
2811 * watermark = dotclock * bytes per pixel * latency
2812 * where latency is platform & configuration dependent (we assume pessimal
2813 * values here).
2814 *
2815 * The SR calculation is:
2816 * watermark = (trunc(latency/line time)+1) * surface width *
2817 * bytes per pixel
2818 * where
2819 * line time = htotal / dotclock
2820 * surface width = hdisplay for normal plane and 64 for cursor
2821 * and latency is assumed to be high, as above.
2822 *
2823 * The final value programmed to the register should always be rounded up,
2824 * and include an extra 2 entries to account for clock crossings.
2825 *
2826 * We don't use the sprite, so we can ignore that. And on Crestline we have
2827 * to set the non-SR watermarks to 8.
2828 */
2829void intel_update_watermarks(struct drm_device *dev)
2830{
2831 struct drm_i915_private *dev_priv = dev->dev_private;
2832
2833 if (dev_priv->display.update_wm)
2834 dev_priv->display.update_wm(dev);
2835}
2836
2837void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
4c4ff43a
PZ
2838 uint32_t sprite_width, int pixel_size,
2839 bool enable)
b445e3b0
ED
2840{
2841 struct drm_i915_private *dev_priv = dev->dev_private;
2842
2843 if (dev_priv->display.update_sprite_wm)
2844 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
4c4ff43a 2845 pixel_size, enable);
b445e3b0
ED
2846}
2847
2b4e57bd
ED
2848static struct drm_i915_gem_object *
2849intel_alloc_context_page(struct drm_device *dev)
2850{
2851 struct drm_i915_gem_object *ctx;
2852 int ret;
2853
2854 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2855
2856 ctx = i915_gem_alloc_object(dev, 4096);
2857 if (!ctx) {
2858 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2859 return NULL;
2860 }
2861
86a1ee26 2862 ret = i915_gem_object_pin(ctx, 4096, true, false);
2b4e57bd
ED
2863 if (ret) {
2864 DRM_ERROR("failed to pin power context: %d\n", ret);
2865 goto err_unref;
2866 }
2867
2868 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2869 if (ret) {
2870 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2871 goto err_unpin;
2872 }
2873
2874 return ctx;
2875
2876err_unpin:
2877 i915_gem_object_unpin(ctx);
2878err_unref:
2879 drm_gem_object_unreference(&ctx->base);
2b4e57bd
ED
2880 return NULL;
2881}
2882
9270388e
DV
2883/**
2884 * Lock protecting IPS related data structures
9270388e
DV
2885 */
2886DEFINE_SPINLOCK(mchdev_lock);
2887
2888/* Global for IPS driver to get at the current i915 device. Protected by
2889 * mchdev_lock. */
2890static struct drm_i915_private *i915_mch_dev;
2891
2b4e57bd
ED
2892bool ironlake_set_drps(struct drm_device *dev, u8 val)
2893{
2894 struct drm_i915_private *dev_priv = dev->dev_private;
2895 u16 rgvswctl;
2896
9270388e
DV
2897 assert_spin_locked(&mchdev_lock);
2898
2b4e57bd
ED
2899 rgvswctl = I915_READ16(MEMSWCTL);
2900 if (rgvswctl & MEMCTL_CMD_STS) {
2901 DRM_DEBUG("gpu busy, RCS change rejected\n");
2902 return false; /* still busy with another command */
2903 }
2904
2905 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2906 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2907 I915_WRITE16(MEMSWCTL, rgvswctl);
2908 POSTING_READ16(MEMSWCTL);
2909
2910 rgvswctl |= MEMCTL_CMD_STS;
2911 I915_WRITE16(MEMSWCTL, rgvswctl);
2912
2913 return true;
2914}
2915
8090c6b9 2916static void ironlake_enable_drps(struct drm_device *dev)
2b4e57bd
ED
2917{
2918 struct drm_i915_private *dev_priv = dev->dev_private;
2919 u32 rgvmodectl = I915_READ(MEMMODECTL);
2920 u8 fmax, fmin, fstart, vstart;
2921
9270388e
DV
2922 spin_lock_irq(&mchdev_lock);
2923
2b4e57bd
ED
2924 /* Enable temp reporting */
2925 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2926 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2927
2928 /* 100ms RC evaluation intervals */
2929 I915_WRITE(RCUPEI, 100000);
2930 I915_WRITE(RCDNEI, 100000);
2931
2932 /* Set max/min thresholds to 90ms and 80ms respectively */
2933 I915_WRITE(RCBMAXAVG, 90000);
2934 I915_WRITE(RCBMINAVG, 80000);
2935
2936 I915_WRITE(MEMIHYST, 1);
2937
2938 /* Set up min, max, and cur for interrupt handling */
2939 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2940 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2941 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2942 MEMMODE_FSTART_SHIFT;
2943
2944 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2945 PXVFREQ_PX_SHIFT;
2946
20e4d407
DV
2947 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2948 dev_priv->ips.fstart = fstart;
2b4e57bd 2949
20e4d407
DV
2950 dev_priv->ips.max_delay = fstart;
2951 dev_priv->ips.min_delay = fmin;
2952 dev_priv->ips.cur_delay = fstart;
2b4e57bd
ED
2953
2954 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2955 fmax, fmin, fstart);
2956
2957 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2958
2959 /*
2960 * Interrupts will be enabled in ironlake_irq_postinstall
2961 */
2962
2963 I915_WRITE(VIDSTART, vstart);
2964 POSTING_READ(VIDSTART);
2965
2966 rgvmodectl |= MEMMODE_SWMODE_EN;
2967 I915_WRITE(MEMMODECTL, rgvmodectl);
2968
9270388e 2969 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2b4e57bd 2970 DRM_ERROR("stuck trying to change perf mode\n");
9270388e 2971 mdelay(1);
2b4e57bd
ED
2972
2973 ironlake_set_drps(dev, fstart);
2974
20e4d407 2975 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2b4e57bd 2976 I915_READ(0x112e0);
20e4d407
DV
2977 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2978 dev_priv->ips.last_count2 = I915_READ(0x112f4);
2979 getrawmonotonic(&dev_priv->ips.last_time2);
9270388e
DV
2980
2981 spin_unlock_irq(&mchdev_lock);
2b4e57bd
ED
2982}
2983
8090c6b9 2984static void ironlake_disable_drps(struct drm_device *dev)
2b4e57bd
ED
2985{
2986 struct drm_i915_private *dev_priv = dev->dev_private;
9270388e
DV
2987 u16 rgvswctl;
2988
2989 spin_lock_irq(&mchdev_lock);
2990
2991 rgvswctl = I915_READ16(MEMSWCTL);
2b4e57bd
ED
2992
2993 /* Ack interrupts, disable EFC interrupt */
2994 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2995 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2996 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2997 I915_WRITE(DEIIR, DE_PCU_EVENT);
2998 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2999
3000 /* Go back to the starting frequency */
20e4d407 3001 ironlake_set_drps(dev, dev_priv->ips.fstart);
9270388e 3002 mdelay(1);
2b4e57bd
ED
3003 rgvswctl |= MEMCTL_CMD_STS;
3004 I915_WRITE(MEMSWCTL, rgvswctl);
9270388e 3005 mdelay(1);
2b4e57bd 3006
9270388e 3007 spin_unlock_irq(&mchdev_lock);
2b4e57bd
ED
3008}
3009
acbe9475
DV
3010/* There's a funny hw issue where the hw returns all 0 when reading from
3011 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3012 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3013 * all limits and the gpu stuck at whatever frequency it is at atm).
3014 */
65bccb5c 3015static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2b4e57bd 3016{
7b9e0ae6 3017 u32 limits;
2b4e57bd 3018
7b9e0ae6 3019 limits = 0;
c6a828d3
DV
3020
3021 if (*val >= dev_priv->rps.max_delay)
3022 *val = dev_priv->rps.max_delay;
3023 limits |= dev_priv->rps.max_delay << 24;
20b46e59
DV
3024
3025 /* Only set the down limit when we've reached the lowest level to avoid
3026 * getting more interrupts, otherwise leave this clear. This prevents a
3027 * race in the hw when coming out of rc6: There's a tiny window where
3028 * the hw runs at the minimal clock before selecting the desired
3029 * frequency, if the down threshold expires in that window we will not
3030 * receive a down interrupt. */
c6a828d3
DV
3031 if (*val <= dev_priv->rps.min_delay) {
3032 *val = dev_priv->rps.min_delay;
3033 limits |= dev_priv->rps.min_delay << 16;
20b46e59
DV
3034 }
3035
3036 return limits;
3037}
3038
3039void gen6_set_rps(struct drm_device *dev, u8 val)
3040{
3041 struct drm_i915_private *dev_priv = dev->dev_private;
65bccb5c 3042 u32 limits = gen6_rps_limits(dev_priv, &val);
7b9e0ae6 3043
4fc688ce 3044 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79249636
BW
3045 WARN_ON(val > dev_priv->rps.max_delay);
3046 WARN_ON(val < dev_priv->rps.min_delay);
004777cb 3047
c6a828d3 3048 if (val == dev_priv->rps.cur_delay)
7b9e0ae6
CW
3049 return;
3050
92bd1bf0
RV
3051 if (IS_HASWELL(dev))
3052 I915_WRITE(GEN6_RPNSWREQ,
3053 HSW_FREQUENCY(val));
3054 else
3055 I915_WRITE(GEN6_RPNSWREQ,
3056 GEN6_FREQUENCY(val) |
3057 GEN6_OFFSET(0) |
3058 GEN6_AGGRESSIVE_TURBO);
7b9e0ae6
CW
3059
3060 /* Make sure we continue to get interrupts
3061 * until we hit the minimum or maximum frequencies.
3062 */
3063 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3064
d5570a72
BW
3065 POSTING_READ(GEN6_RPNSWREQ);
3066
c6a828d3 3067 dev_priv->rps.cur_delay = val;
be2cde9a
DV
3068
3069 trace_intel_gpu_freq_change(val * 50);
2b4e57bd
ED
3070}
3071
0a073b84
JB
3072void valleyview_set_rps(struct drm_device *dev, u8 val)
3073{
3074 struct drm_i915_private *dev_priv = dev->dev_private;
3075 unsigned long timeout = jiffies + msecs_to_jiffies(10);
3076 u32 limits = gen6_rps_limits(dev_priv, &val);
3077 u32 pval;
3078
3079 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3080 WARN_ON(val > dev_priv->rps.max_delay);
3081 WARN_ON(val < dev_priv->rps.min_delay);
3082
3083 DRM_DEBUG_DRIVER("gpu freq request from %d to %d\n",
3084 vlv_gpu_freq(dev_priv->mem_freq,
3085 dev_priv->rps.cur_delay),
3086 vlv_gpu_freq(dev_priv->mem_freq, val));
3087
3088 if (val == dev_priv->rps.cur_delay)
3089 return;
3090
ae99258f 3091 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
0a073b84
JB
3092
3093 do {
64936258 3094 pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
0a073b84
JB
3095 if (time_after(jiffies, timeout)) {
3096 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3097 break;
3098 }
3099 udelay(10);
3100 } while (pval & 1);
3101
64936258 3102 pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
0a073b84
JB
3103 if ((pval >> 8) != val)
3104 DRM_DEBUG_DRIVER("punit overrode freq: %d requested, but got %d\n",
3105 val, pval >> 8);
3106
3107 /* Make sure we continue to get interrupts
3108 * until we hit the minimum or maximum frequencies.
3109 */
3110 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3111
3112 dev_priv->rps.cur_delay = pval >> 8;
3113
3114 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3115}
3116
3117
8090c6b9 3118static void gen6_disable_rps(struct drm_device *dev)
2b4e57bd
ED
3119{
3120 struct drm_i915_private *dev_priv = dev->dev_private;
3121
88509484 3122 I915_WRITE(GEN6_RC_CONTROL, 0);
2b4e57bd
ED
3123 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3124 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4848405c 3125 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
2b4e57bd
ED
3126 /* Complete PM interrupt masking here doesn't race with the rps work
3127 * item again unmasking PM interrupts because that is using a different
3128 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3129 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3130
c6a828d3
DV
3131 spin_lock_irq(&dev_priv->rps.lock);
3132 dev_priv->rps.pm_iir = 0;
3133 spin_unlock_irq(&dev_priv->rps.lock);
2b4e57bd 3134
4848405c 3135 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
2b4e57bd
ED
3136}
3137
d20d4f0c
JB
3138static void valleyview_disable_rps(struct drm_device *dev)
3139{
3140 struct drm_i915_private *dev_priv = dev->dev_private;
3141
3142 I915_WRITE(GEN6_RC_CONTROL, 0);
3143 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3144 I915_WRITE(GEN6_PMIER, 0);
3145 /* Complete PM interrupt masking here doesn't race with the rps work
3146 * item again unmasking PM interrupts because that is using a different
3147 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3148 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3149
3150 spin_lock_irq(&dev_priv->rps.lock);
3151 dev_priv->rps.pm_iir = 0;
3152 spin_unlock_irq(&dev_priv->rps.lock);
3153
3154 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
c9cddffc
JB
3155
3156 if (dev_priv->vlv_pctx) {
3157 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3158 dev_priv->vlv_pctx = NULL;
3159 }
d20d4f0c
JB
3160}
3161
2b4e57bd
ED
3162int intel_enable_rc6(const struct drm_device *dev)
3163{
456470eb 3164 /* Respect the kernel parameter if it is set */
2b4e57bd
ED
3165 if (i915_enable_rc6 >= 0)
3166 return i915_enable_rc6;
3167
6567d748
CW
3168 /* Disable RC6 on Ironlake */
3169 if (INTEL_INFO(dev)->gen == 5)
3170 return 0;
2b4e57bd 3171
456470eb
DV
3172 if (IS_HASWELL(dev)) {
3173 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
4a637c2c 3174 return INTEL_RC6_ENABLE;
456470eb 3175 }
2b4e57bd 3176
456470eb 3177 /* snb/ivb have more than one rc6 state. */
2b4e57bd
ED
3178 if (INTEL_INFO(dev)->gen == 6) {
3179 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3180 return INTEL_RC6_ENABLE;
3181 }
456470eb 3182
2b4e57bd
ED
3183 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3184 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3185}
3186
79f5b2c7 3187static void gen6_enable_rps(struct drm_device *dev)
2b4e57bd 3188{
79f5b2c7 3189 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 3190 struct intel_ring_buffer *ring;
7b9e0ae6
CW
3191 u32 rp_state_cap;
3192 u32 gt_perf_status;
31643d54 3193 u32 rc6vids, pcu_mbox, rc6_mask = 0;
2b4e57bd 3194 u32 gtfifodbg;
2b4e57bd 3195 int rc6_mode;
42c0526c 3196 int i, ret;
2b4e57bd 3197
4fc688ce 3198 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79f5b2c7 3199
2b4e57bd
ED
3200 /* Here begins a magic sequence of register writes to enable
3201 * auto-downclocking.
3202 *
3203 * Perhaps there might be some value in exposing these to
3204 * userspace...
3205 */
3206 I915_WRITE(GEN6_RC_STATE, 0);
2b4e57bd
ED
3207
3208 /* Clear the DBG now so we don't confuse earlier errors */
3209 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3210 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3211 I915_WRITE(GTFIFODBG, gtfifodbg);
3212 }
3213
3214 gen6_gt_force_wake_get(dev_priv);
3215
7b9e0ae6
CW
3216 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3217 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3218
31c77388
BW
3219 /* In units of 50MHz */
3220 dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
c6a828d3
DV
3221 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
3222 dev_priv->rps.cur_delay = 0;
7b9e0ae6 3223
2b4e57bd
ED
3224 /* disable the counters and set deterministic thresholds */
3225 I915_WRITE(GEN6_RC_CONTROL, 0);
3226
3227 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3228 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3229 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3230 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3231 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3232
b4519513
CW
3233 for_each_ring(ring, dev_priv, i)
3234 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2b4e57bd
ED
3235
3236 I915_WRITE(GEN6_RC_SLEEP, 0);
3237 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3238 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
0920a487 3239 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2b4e57bd
ED
3240 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3241
5a7dc92a 3242 /* Check if we are enabling RC6 */
2b4e57bd
ED
3243 rc6_mode = intel_enable_rc6(dev_priv->dev);
3244 if (rc6_mode & INTEL_RC6_ENABLE)
3245 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3246
5a7dc92a
ED
3247 /* We don't use those on Haswell */
3248 if (!IS_HASWELL(dev)) {
3249 if (rc6_mode & INTEL_RC6p_ENABLE)
3250 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2b4e57bd 3251
5a7dc92a
ED
3252 if (rc6_mode & INTEL_RC6pp_ENABLE)
3253 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3254 }
2b4e57bd
ED
3255
3256 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
5a7dc92a
ED
3257 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3258 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3259 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2b4e57bd
ED
3260
3261 I915_WRITE(GEN6_RC_CONTROL,
3262 rc6_mask |
3263 GEN6_RC_CTL_EI_MODE(1) |
3264 GEN6_RC_CTL_HW_ENABLE);
3265
92bd1bf0
RV
3266 if (IS_HASWELL(dev)) {
3267 I915_WRITE(GEN6_RPNSWREQ,
3268 HSW_FREQUENCY(10));
3269 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3270 HSW_FREQUENCY(12));
3271 } else {
3272 I915_WRITE(GEN6_RPNSWREQ,
3273 GEN6_FREQUENCY(10) |
3274 GEN6_OFFSET(0) |
3275 GEN6_AGGRESSIVE_TURBO);
3276 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3277 GEN6_FREQUENCY(12));
3278 }
2b4e57bd
ED
3279
3280 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
3281 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
c6a828d3
DV
3282 dev_priv->rps.max_delay << 24 |
3283 dev_priv->rps.min_delay << 16);
5a7dc92a 3284
1ee9ae32
DV
3285 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3286 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3287 I915_WRITE(GEN6_RP_UP_EI, 66000);
3288 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5a7dc92a 3289
2b4e57bd
ED
3290 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3291 I915_WRITE(GEN6_RP_CONTROL,
3292 GEN6_RP_MEDIA_TURBO |
89ba829e 3293 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2b4e57bd
ED
3294 GEN6_RP_MEDIA_IS_GFX |
3295 GEN6_RP_ENABLE |
3296 GEN6_RP_UP_BUSY_AVG |
5a7dc92a 3297 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2b4e57bd 3298
42c0526c 3299 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
988b36e5 3300 if (!ret) {
42c0526c
BW
3301 pcu_mbox = 0;
3302 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
a2b3fc01 3303 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
10e08497 3304 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
a2b3fc01
BW
3305 (dev_priv->rps.max_delay & 0xff) * 50,
3306 (pcu_mbox & 0xff) * 50);
31c77388 3307 dev_priv->rps.hw_max = pcu_mbox & 0xff;
42c0526c
BW
3308 }
3309 } else {
3310 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2b4e57bd
ED
3311 }
3312
7b9e0ae6 3313 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2b4e57bd
ED
3314
3315 /* requires MSI enabled */
4848405c 3316 I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) | GEN6_PM_RPS_EVENTS);
c6a828d3 3317 spin_lock_irq(&dev_priv->rps.lock);
eda63ffb
BW
3318 /* FIXME: Our interrupt enabling sequence is bonghits.
3319 * dev_priv->rps.pm_iir really should be 0 here. */
3320 dev_priv->rps.pm_iir = 0;
4848405c
BW
3321 I915_WRITE(GEN6_PMIMR, I915_READ(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
3322 I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
c6a828d3 3323 spin_unlock_irq(&dev_priv->rps.lock);
4848405c 3324 /* unmask all PM interrupts */
2b4e57bd
ED
3325 I915_WRITE(GEN6_PMINTRMSK, 0);
3326
31643d54
BW
3327 rc6vids = 0;
3328 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3329 if (IS_GEN6(dev) && ret) {
3330 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3331 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3332 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3333 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3334 rc6vids &= 0xffff00;
3335 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3336 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3337 if (ret)
3338 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3339 }
3340
2b4e57bd 3341 gen6_gt_force_wake_put(dev_priv);
2b4e57bd
ED
3342}
3343
79f5b2c7 3344static void gen6_update_ring_freq(struct drm_device *dev)
2b4e57bd 3345{
79f5b2c7 3346 struct drm_i915_private *dev_priv = dev->dev_private;
2b4e57bd 3347 int min_freq = 15;
3ebecd07
CW
3348 unsigned int gpu_freq;
3349 unsigned int max_ia_freq, min_ring_freq;
2b4e57bd
ED
3350 int scaling_factor = 180;
3351
4fc688ce 3352 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
79f5b2c7 3353
2b4e57bd
ED
3354 max_ia_freq = cpufreq_quick_get_max(0);
3355 /*
3356 * Default to measured freq if none found, PCU will ensure we don't go
3357 * over
3358 */
3359 if (!max_ia_freq)
3360 max_ia_freq = tsc_khz;
3361
3362 /* Convert from kHz to MHz */
3363 max_ia_freq /= 1000;
3364
3ebecd07
CW
3365 min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
3366 /* convert DDR frequency from units of 133.3MHz to bandwidth */
3367 min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
3368
2b4e57bd
ED
3369 /*
3370 * For each potential GPU frequency, load a ring frequency we'd like
3371 * to use for memory access. We do this by specifying the IA frequency
3372 * the PCU should use as a reference to determine the ring frequency.
3373 */
c6a828d3 3374 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2b4e57bd 3375 gpu_freq--) {
c6a828d3 3376 int diff = dev_priv->rps.max_delay - gpu_freq;
3ebecd07
CW
3377 unsigned int ia_freq = 0, ring_freq = 0;
3378
3379 if (IS_HASWELL(dev)) {
3380 ring_freq = (gpu_freq * 5 + 3) / 4;
3381 ring_freq = max(min_ring_freq, ring_freq);
3382 /* leave ia_freq as the default, chosen by cpufreq */
3383 } else {
3384 /* On older processors, there is no separate ring
3385 * clock domain, so in order to boost the bandwidth
3386 * of the ring, we need to upclock the CPU (ia_freq).
3387 *
3388 * For GPU frequencies less than 750MHz,
3389 * just use the lowest ring freq.
3390 */
3391 if (gpu_freq < min_freq)
3392 ia_freq = 800;
3393 else
3394 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3395 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3396 }
2b4e57bd 3397
42c0526c
BW
3398 sandybridge_pcode_write(dev_priv,
3399 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3ebecd07
CW
3400 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3401 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3402 gpu_freq);
2b4e57bd 3403 }
2b4e57bd
ED
3404}
3405
0a073b84
JB
3406int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3407{
3408 u32 val, rp0;
3409
64936258 3410 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
0a073b84
JB
3411
3412 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3413 /* Clamp to max */
3414 rp0 = min_t(u32, rp0, 0xea);
3415
3416 return rp0;
3417}
3418
3419static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3420{
3421 u32 val, rpe;
3422
64936258 3423 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
0a073b84 3424 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
64936258 3425 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
0a073b84
JB
3426 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3427
3428 return rpe;
3429}
3430
3431int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3432{
64936258 3433 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
0a073b84
JB
3434}
3435
52ceb908
JB
3436static void vlv_rps_timer_work(struct work_struct *work)
3437{
3438 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3439 rps.vlv_work.work);
3440
3441 /*
3442 * Timer fired, we must be idle. Drop to min voltage state.
3443 * Note: we use RPe here since it should match the
3444 * Vmin we were shooting for. That should give us better
3445 * perf when we come back out of RC6 than if we used the
3446 * min freq available.
3447 */
3448 mutex_lock(&dev_priv->rps.hw_lock);
3449 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3450 mutex_unlock(&dev_priv->rps.hw_lock);
3451}
3452
c9cddffc
JB
3453static void valleyview_setup_pctx(struct drm_device *dev)
3454{
3455 struct drm_i915_private *dev_priv = dev->dev_private;
3456 struct drm_i915_gem_object *pctx;
3457 unsigned long pctx_paddr;
3458 u32 pcbr;
3459 int pctx_size = 24*1024;
3460
3461 pcbr = I915_READ(VLV_PCBR);
3462 if (pcbr) {
3463 /* BIOS set it up already, grab the pre-alloc'd space */
3464 int pcbr_offset;
3465
3466 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3467 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3468 pcbr_offset,
3727d55e 3469 -1,
c9cddffc
JB
3470 pctx_size);
3471 goto out;
3472 }
3473
3474 /*
3475 * From the Gunit register HAS:
3476 * The Gfx driver is expected to program this register and ensure
3477 * proper allocation within Gfx stolen memory. For example, this
3478 * register should be programmed such than the PCBR range does not
3479 * overlap with other ranges, such as the frame buffer, protected
3480 * memory, or any other relevant ranges.
3481 */
3482 pctx = i915_gem_object_create_stolen(dev, pctx_size);
3483 if (!pctx) {
3484 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3485 return;
3486 }
3487
3488 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3489 I915_WRITE(VLV_PCBR, pctx_paddr);
3490
3491out:
3492 dev_priv->vlv_pctx = pctx;
3493}
3494
0a073b84
JB
3495static void valleyview_enable_rps(struct drm_device *dev)
3496{
3497 struct drm_i915_private *dev_priv = dev->dev_private;
3498 struct intel_ring_buffer *ring;
3499 u32 gtfifodbg, val, rpe;
3500 int i;
3501
3502 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3503
3504 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3505 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3506 I915_WRITE(GTFIFODBG, gtfifodbg);
3507 }
3508
c9cddffc
JB
3509 valleyview_setup_pctx(dev);
3510
0a073b84
JB
3511 gen6_gt_force_wake_get(dev_priv);
3512
3513 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3514 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3515 I915_WRITE(GEN6_RP_UP_EI, 66000);
3516 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3517
3518 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3519
3520 I915_WRITE(GEN6_RP_CONTROL,
3521 GEN6_RP_MEDIA_TURBO |
3522 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3523 GEN6_RP_MEDIA_IS_GFX |
3524 GEN6_RP_ENABLE |
3525 GEN6_RP_UP_BUSY_AVG |
3526 GEN6_RP_DOWN_IDLE_CONT);
3527
3528 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3529 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3530 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3531
3532 for_each_ring(ring, dev_priv, i)
3533 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3534
3535 I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3536
3537 /* allows RC6 residency counter to work */
3538 I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3539 I915_WRITE(GEN6_RC_CONTROL,
3540 GEN7_RC_CTL_TO_MODE);
3541
64936258 3542 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
2445966e
JB
3543 switch ((val >> 6) & 3) {
3544 case 0:
3545 case 1:
3546 dev_priv->mem_freq = 800;
3547 break;
3548 case 2:
3549 dev_priv->mem_freq = 1066;
3550 break;
3551 case 3:
3552 dev_priv->mem_freq = 1333;
3553 break;
3554 }
0a073b84
JB
3555 DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3556
3557 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3558 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3559
3560 DRM_DEBUG_DRIVER("current GPU freq: %d\n",
3561 vlv_gpu_freq(dev_priv->mem_freq, (val >> 8) & 0xff));
3562 dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3563
3564 dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3565 dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3566 DRM_DEBUG_DRIVER("max GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
3567 dev_priv->rps.max_delay));
3568
3569 rpe = valleyview_rps_rpe_freq(dev_priv);
3570 DRM_DEBUG_DRIVER("RPe GPU freq: %d\n",
3571 vlv_gpu_freq(dev_priv->mem_freq, rpe));
52ceb908 3572 dev_priv->rps.rpe_delay = rpe;
0a073b84
JB
3573
3574 val = valleyview_rps_min_freq(dev_priv);
3575 DRM_DEBUG_DRIVER("min GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
3576 val));
3577 dev_priv->rps.min_delay = val;
3578
3579 DRM_DEBUG_DRIVER("setting GPU freq to %d\n",
3580 vlv_gpu_freq(dev_priv->mem_freq, rpe));
3581
52ceb908
JB
3582 INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
3583
0a073b84
JB
3584 valleyview_set_rps(dev_priv->dev, rpe);
3585
3586 /* requires MSI enabled */
4848405c 3587 I915_WRITE(GEN6_PMIER, GEN6_PM_RPS_EVENTS);
0a073b84
JB
3588 spin_lock_irq(&dev_priv->rps.lock);
3589 WARN_ON(dev_priv->rps.pm_iir != 0);
3590 I915_WRITE(GEN6_PMIMR, 0);
3591 spin_unlock_irq(&dev_priv->rps.lock);
3592 /* enable all PM interrupts */
3593 I915_WRITE(GEN6_PMINTRMSK, 0);
3594
3595 gen6_gt_force_wake_put(dev_priv);
3596}
3597
930ebb46 3598void ironlake_teardown_rc6(struct drm_device *dev)
2b4e57bd
ED
3599{
3600 struct drm_i915_private *dev_priv = dev->dev_private;
3601
3e373948
DV
3602 if (dev_priv->ips.renderctx) {
3603 i915_gem_object_unpin(dev_priv->ips.renderctx);
3604 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3605 dev_priv->ips.renderctx = NULL;
2b4e57bd
ED
3606 }
3607
3e373948
DV
3608 if (dev_priv->ips.pwrctx) {
3609 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3610 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3611 dev_priv->ips.pwrctx = NULL;
2b4e57bd
ED
3612 }
3613}
3614
930ebb46 3615static void ironlake_disable_rc6(struct drm_device *dev)
2b4e57bd
ED
3616{
3617 struct drm_i915_private *dev_priv = dev->dev_private;
3618
3619 if (I915_READ(PWRCTXA)) {
3620 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3621 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3622 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3623 50);
3624
3625 I915_WRITE(PWRCTXA, 0);
3626 POSTING_READ(PWRCTXA);
3627
3628 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3629 POSTING_READ(RSTDBYCTL);
3630 }
2b4e57bd
ED
3631}
3632
3633static int ironlake_setup_rc6(struct drm_device *dev)
3634{
3635 struct drm_i915_private *dev_priv = dev->dev_private;
3636
3e373948
DV
3637 if (dev_priv->ips.renderctx == NULL)
3638 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3639 if (!dev_priv->ips.renderctx)
2b4e57bd
ED
3640 return -ENOMEM;
3641
3e373948
DV
3642 if (dev_priv->ips.pwrctx == NULL)
3643 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3644 if (!dev_priv->ips.pwrctx) {
2b4e57bd
ED
3645 ironlake_teardown_rc6(dev);
3646 return -ENOMEM;
3647 }
3648
3649 return 0;
3650}
3651
930ebb46 3652static void ironlake_enable_rc6(struct drm_device *dev)
2b4e57bd
ED
3653{
3654 struct drm_i915_private *dev_priv = dev->dev_private;
6d90c952 3655 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3e960501 3656 bool was_interruptible;
2b4e57bd
ED
3657 int ret;
3658
3659 /* rc6 disabled by default due to repeated reports of hanging during
3660 * boot and resume.
3661 */
3662 if (!intel_enable_rc6(dev))
3663 return;
3664
79f5b2c7
DV
3665 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3666
2b4e57bd 3667 ret = ironlake_setup_rc6(dev);
79f5b2c7 3668 if (ret)
2b4e57bd 3669 return;
2b4e57bd 3670
3e960501
CW
3671 was_interruptible = dev_priv->mm.interruptible;
3672 dev_priv->mm.interruptible = false;
3673
2b4e57bd
ED
3674 /*
3675 * GPU can automatically power down the render unit if given a page
3676 * to save state.
3677 */
6d90c952 3678 ret = intel_ring_begin(ring, 6);
2b4e57bd
ED
3679 if (ret) {
3680 ironlake_teardown_rc6(dev);
3e960501 3681 dev_priv->mm.interruptible = was_interruptible;
2b4e57bd
ED
3682 return;
3683 }
3684
6d90c952
DV
3685 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3686 intel_ring_emit(ring, MI_SET_CONTEXT);
3e373948 3687 intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
6d90c952
DV
3688 MI_MM_SPACE_GTT |
3689 MI_SAVE_EXT_STATE_EN |
3690 MI_RESTORE_EXT_STATE_EN |
3691 MI_RESTORE_INHIBIT);
3692 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3693 intel_ring_emit(ring, MI_NOOP);
3694 intel_ring_emit(ring, MI_FLUSH);
3695 intel_ring_advance(ring);
2b4e57bd
ED
3696
3697 /*
3698 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3699 * does an implicit flush, combined with MI_FLUSH above, it should be
3700 * safe to assume that renderctx is valid
3701 */
3e960501
CW
3702 ret = intel_ring_idle(ring);
3703 dev_priv->mm.interruptible = was_interruptible;
2b4e57bd 3704 if (ret) {
def27a58 3705 DRM_ERROR("failed to enable ironlake power savings\n");
2b4e57bd 3706 ironlake_teardown_rc6(dev);
2b4e57bd
ED
3707 return;
3708 }
3709
3e373948 3710 I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
2b4e57bd 3711 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2b4e57bd
ED
3712}
3713
dde18883
ED
3714static unsigned long intel_pxfreq(u32 vidfreq)
3715{
3716 unsigned long freq;
3717 int div = (vidfreq & 0x3f0000) >> 16;
3718 int post = (vidfreq & 0x3000) >> 12;
3719 int pre = (vidfreq & 0x7);
3720
3721 if (!pre)
3722 return 0;
3723
3724 freq = ((div * 133333) / ((1<<post) * pre));
3725
3726 return freq;
3727}
3728
eb48eb00
DV
3729static const struct cparams {
3730 u16 i;
3731 u16 t;
3732 u16 m;
3733 u16 c;
3734} cparams[] = {
3735 { 1, 1333, 301, 28664 },
3736 { 1, 1066, 294, 24460 },
3737 { 1, 800, 294, 25192 },
3738 { 0, 1333, 276, 27605 },
3739 { 0, 1066, 276, 27605 },
3740 { 0, 800, 231, 23784 },
3741};
3742
f531dcb2 3743static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
3744{
3745 u64 total_count, diff, ret;
3746 u32 count1, count2, count3, m = 0, c = 0;
3747 unsigned long now = jiffies_to_msecs(jiffies), diff1;
3748 int i;
3749
02d71956
DV
3750 assert_spin_locked(&mchdev_lock);
3751
20e4d407 3752 diff1 = now - dev_priv->ips.last_time1;
eb48eb00
DV
3753
3754 /* Prevent division-by-zero if we are asking too fast.
3755 * Also, we don't get interesting results if we are polling
3756 * faster than once in 10ms, so just return the saved value
3757 * in such cases.
3758 */
3759 if (diff1 <= 10)
20e4d407 3760 return dev_priv->ips.chipset_power;
eb48eb00
DV
3761
3762 count1 = I915_READ(DMIEC);
3763 count2 = I915_READ(DDREC);
3764 count3 = I915_READ(CSIEC);
3765
3766 total_count = count1 + count2 + count3;
3767
3768 /* FIXME: handle per-counter overflow */
20e4d407
DV
3769 if (total_count < dev_priv->ips.last_count1) {
3770 diff = ~0UL - dev_priv->ips.last_count1;
eb48eb00
DV
3771 diff += total_count;
3772 } else {
20e4d407 3773 diff = total_count - dev_priv->ips.last_count1;
eb48eb00
DV
3774 }
3775
3776 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
20e4d407
DV
3777 if (cparams[i].i == dev_priv->ips.c_m &&
3778 cparams[i].t == dev_priv->ips.r_t) {
eb48eb00
DV
3779 m = cparams[i].m;
3780 c = cparams[i].c;
3781 break;
3782 }
3783 }
3784
3785 diff = div_u64(diff, diff1);
3786 ret = ((m * diff) + c);
3787 ret = div_u64(ret, 10);
3788
20e4d407
DV
3789 dev_priv->ips.last_count1 = total_count;
3790 dev_priv->ips.last_time1 = now;
eb48eb00 3791
20e4d407 3792 dev_priv->ips.chipset_power = ret;
eb48eb00
DV
3793
3794 return ret;
3795}
3796
f531dcb2
CW
3797unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3798{
3799 unsigned long val;
3800
3801 if (dev_priv->info->gen != 5)
3802 return 0;
3803
3804 spin_lock_irq(&mchdev_lock);
3805
3806 val = __i915_chipset_val(dev_priv);
3807
3808 spin_unlock_irq(&mchdev_lock);
3809
3810 return val;
3811}
3812
eb48eb00
DV
3813unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3814{
3815 unsigned long m, x, b;
3816 u32 tsfs;
3817
3818 tsfs = I915_READ(TSFS);
3819
3820 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3821 x = I915_READ8(TR1);
3822
3823 b = tsfs & TSFS_INTR_MASK;
3824
3825 return ((m * x) / 127) - b;
3826}
3827
3828static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3829{
3830 static const struct v_table {
3831 u16 vd; /* in .1 mil */
3832 u16 vm; /* in .1 mil */
3833 } v_table[] = {
3834 { 0, 0, },
3835 { 375, 0, },
3836 { 500, 0, },
3837 { 625, 0, },
3838 { 750, 0, },
3839 { 875, 0, },
3840 { 1000, 0, },
3841 { 1125, 0, },
3842 { 4125, 3000, },
3843 { 4125, 3000, },
3844 { 4125, 3000, },
3845 { 4125, 3000, },
3846 { 4125, 3000, },
3847 { 4125, 3000, },
3848 { 4125, 3000, },
3849 { 4125, 3000, },
3850 { 4125, 3000, },
3851 { 4125, 3000, },
3852 { 4125, 3000, },
3853 { 4125, 3000, },
3854 { 4125, 3000, },
3855 { 4125, 3000, },
3856 { 4125, 3000, },
3857 { 4125, 3000, },
3858 { 4125, 3000, },
3859 { 4125, 3000, },
3860 { 4125, 3000, },
3861 { 4125, 3000, },
3862 { 4125, 3000, },
3863 { 4125, 3000, },
3864 { 4125, 3000, },
3865 { 4125, 3000, },
3866 { 4250, 3125, },
3867 { 4375, 3250, },
3868 { 4500, 3375, },
3869 { 4625, 3500, },
3870 { 4750, 3625, },
3871 { 4875, 3750, },
3872 { 5000, 3875, },
3873 { 5125, 4000, },
3874 { 5250, 4125, },
3875 { 5375, 4250, },
3876 { 5500, 4375, },
3877 { 5625, 4500, },
3878 { 5750, 4625, },
3879 { 5875, 4750, },
3880 { 6000, 4875, },
3881 { 6125, 5000, },
3882 { 6250, 5125, },
3883 { 6375, 5250, },
3884 { 6500, 5375, },
3885 { 6625, 5500, },
3886 { 6750, 5625, },
3887 { 6875, 5750, },
3888 { 7000, 5875, },
3889 { 7125, 6000, },
3890 { 7250, 6125, },
3891 { 7375, 6250, },
3892 { 7500, 6375, },
3893 { 7625, 6500, },
3894 { 7750, 6625, },
3895 { 7875, 6750, },
3896 { 8000, 6875, },
3897 { 8125, 7000, },
3898 { 8250, 7125, },
3899 { 8375, 7250, },
3900 { 8500, 7375, },
3901 { 8625, 7500, },
3902 { 8750, 7625, },
3903 { 8875, 7750, },
3904 { 9000, 7875, },
3905 { 9125, 8000, },
3906 { 9250, 8125, },
3907 { 9375, 8250, },
3908 { 9500, 8375, },
3909 { 9625, 8500, },
3910 { 9750, 8625, },
3911 { 9875, 8750, },
3912 { 10000, 8875, },
3913 { 10125, 9000, },
3914 { 10250, 9125, },
3915 { 10375, 9250, },
3916 { 10500, 9375, },
3917 { 10625, 9500, },
3918 { 10750, 9625, },
3919 { 10875, 9750, },
3920 { 11000, 9875, },
3921 { 11125, 10000, },
3922 { 11250, 10125, },
3923 { 11375, 10250, },
3924 { 11500, 10375, },
3925 { 11625, 10500, },
3926 { 11750, 10625, },
3927 { 11875, 10750, },
3928 { 12000, 10875, },
3929 { 12125, 11000, },
3930 { 12250, 11125, },
3931 { 12375, 11250, },
3932 { 12500, 11375, },
3933 { 12625, 11500, },
3934 { 12750, 11625, },
3935 { 12875, 11750, },
3936 { 13000, 11875, },
3937 { 13125, 12000, },
3938 { 13250, 12125, },
3939 { 13375, 12250, },
3940 { 13500, 12375, },
3941 { 13625, 12500, },
3942 { 13750, 12625, },
3943 { 13875, 12750, },
3944 { 14000, 12875, },
3945 { 14125, 13000, },
3946 { 14250, 13125, },
3947 { 14375, 13250, },
3948 { 14500, 13375, },
3949 { 14625, 13500, },
3950 { 14750, 13625, },
3951 { 14875, 13750, },
3952 { 15000, 13875, },
3953 { 15125, 14000, },
3954 { 15250, 14125, },
3955 { 15375, 14250, },
3956 { 15500, 14375, },
3957 { 15625, 14500, },
3958 { 15750, 14625, },
3959 { 15875, 14750, },
3960 { 16000, 14875, },
3961 { 16125, 15000, },
3962 };
3963 if (dev_priv->info->is_mobile)
3964 return v_table[pxvid].vm;
3965 else
3966 return v_table[pxvid].vd;
3967}
3968
02d71956 3969static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
3970{
3971 struct timespec now, diff1;
3972 u64 diff;
3973 unsigned long diffms;
3974 u32 count;
3975
02d71956 3976 assert_spin_locked(&mchdev_lock);
eb48eb00
DV
3977
3978 getrawmonotonic(&now);
20e4d407 3979 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
eb48eb00
DV
3980
3981 /* Don't divide by 0 */
3982 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3983 if (!diffms)
3984 return;
3985
3986 count = I915_READ(GFXEC);
3987
20e4d407
DV
3988 if (count < dev_priv->ips.last_count2) {
3989 diff = ~0UL - dev_priv->ips.last_count2;
eb48eb00
DV
3990 diff += count;
3991 } else {
20e4d407 3992 diff = count - dev_priv->ips.last_count2;
eb48eb00
DV
3993 }
3994
20e4d407
DV
3995 dev_priv->ips.last_count2 = count;
3996 dev_priv->ips.last_time2 = now;
eb48eb00
DV
3997
3998 /* More magic constants... */
3999 diff = diff * 1181;
4000 diff = div_u64(diff, diffms * 10);
20e4d407 4001 dev_priv->ips.gfx_power = diff;
eb48eb00
DV
4002}
4003
02d71956
DV
4004void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4005{
4006 if (dev_priv->info->gen != 5)
4007 return;
4008
9270388e 4009 spin_lock_irq(&mchdev_lock);
02d71956
DV
4010
4011 __i915_update_gfx_val(dev_priv);
4012
9270388e 4013 spin_unlock_irq(&mchdev_lock);
02d71956
DV
4014}
4015
f531dcb2 4016static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
eb48eb00
DV
4017{
4018 unsigned long t, corr, state1, corr2, state2;
4019 u32 pxvid, ext_v;
4020
02d71956
DV
4021 assert_spin_locked(&mchdev_lock);
4022
c6a828d3 4023 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
eb48eb00
DV
4024 pxvid = (pxvid >> 24) & 0x7f;
4025 ext_v = pvid_to_extvid(dev_priv, pxvid);
4026
4027 state1 = ext_v;
4028
4029 t = i915_mch_val(dev_priv);
4030
4031 /* Revel in the empirically derived constants */
4032
4033 /* Correction factor in 1/100000 units */
4034 if (t > 80)
4035 corr = ((t * 2349) + 135940);
4036 else if (t >= 50)
4037 corr = ((t * 964) + 29317);
4038 else /* < 50 */
4039 corr = ((t * 301) + 1004);
4040
4041 corr = corr * ((150142 * state1) / 10000 - 78642);
4042 corr /= 100000;
20e4d407 4043 corr2 = (corr * dev_priv->ips.corr);
eb48eb00
DV
4044
4045 state2 = (corr2 * state1) / 10000;
4046 state2 /= 100; /* convert to mW */
4047
02d71956 4048 __i915_update_gfx_val(dev_priv);
eb48eb00 4049
20e4d407 4050 return dev_priv->ips.gfx_power + state2;
eb48eb00
DV
4051}
4052
f531dcb2
CW
4053unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4054{
4055 unsigned long val;
4056
4057 if (dev_priv->info->gen != 5)
4058 return 0;
4059
4060 spin_lock_irq(&mchdev_lock);
4061
4062 val = __i915_gfx_val(dev_priv);
4063
4064 spin_unlock_irq(&mchdev_lock);
4065
4066 return val;
4067}
4068
eb48eb00
DV
4069/**
4070 * i915_read_mch_val - return value for IPS use
4071 *
4072 * Calculate and return a value for the IPS driver to use when deciding whether
4073 * we have thermal and power headroom to increase CPU or GPU power budget.
4074 */
4075unsigned long i915_read_mch_val(void)
4076{
4077 struct drm_i915_private *dev_priv;
4078 unsigned long chipset_val, graphics_val, ret = 0;
4079
9270388e 4080 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4081 if (!i915_mch_dev)
4082 goto out_unlock;
4083 dev_priv = i915_mch_dev;
4084
f531dcb2
CW
4085 chipset_val = __i915_chipset_val(dev_priv);
4086 graphics_val = __i915_gfx_val(dev_priv);
eb48eb00
DV
4087
4088 ret = chipset_val + graphics_val;
4089
4090out_unlock:
9270388e 4091 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4092
4093 return ret;
4094}
4095EXPORT_SYMBOL_GPL(i915_read_mch_val);
4096
4097/**
4098 * i915_gpu_raise - raise GPU frequency limit
4099 *
4100 * Raise the limit; IPS indicates we have thermal headroom.
4101 */
4102bool i915_gpu_raise(void)
4103{
4104 struct drm_i915_private *dev_priv;
4105 bool ret = true;
4106
9270388e 4107 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4108 if (!i915_mch_dev) {
4109 ret = false;
4110 goto out_unlock;
4111 }
4112 dev_priv = i915_mch_dev;
4113
20e4d407
DV
4114 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4115 dev_priv->ips.max_delay--;
eb48eb00
DV
4116
4117out_unlock:
9270388e 4118 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4119
4120 return ret;
4121}
4122EXPORT_SYMBOL_GPL(i915_gpu_raise);
4123
4124/**
4125 * i915_gpu_lower - lower GPU frequency limit
4126 *
4127 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4128 * frequency maximum.
4129 */
4130bool i915_gpu_lower(void)
4131{
4132 struct drm_i915_private *dev_priv;
4133 bool ret = true;
4134
9270388e 4135 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4136 if (!i915_mch_dev) {
4137 ret = false;
4138 goto out_unlock;
4139 }
4140 dev_priv = i915_mch_dev;
4141
20e4d407
DV
4142 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4143 dev_priv->ips.max_delay++;
eb48eb00
DV
4144
4145out_unlock:
9270388e 4146 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4147
4148 return ret;
4149}
4150EXPORT_SYMBOL_GPL(i915_gpu_lower);
4151
4152/**
4153 * i915_gpu_busy - indicate GPU business to IPS
4154 *
4155 * Tell the IPS driver whether or not the GPU is busy.
4156 */
4157bool i915_gpu_busy(void)
4158{
4159 struct drm_i915_private *dev_priv;
f047e395 4160 struct intel_ring_buffer *ring;
eb48eb00 4161 bool ret = false;
f047e395 4162 int i;
eb48eb00 4163
9270388e 4164 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4165 if (!i915_mch_dev)
4166 goto out_unlock;
4167 dev_priv = i915_mch_dev;
4168
f047e395
CW
4169 for_each_ring(ring, dev_priv, i)
4170 ret |= !list_empty(&ring->request_list);
eb48eb00
DV
4171
4172out_unlock:
9270388e 4173 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4174
4175 return ret;
4176}
4177EXPORT_SYMBOL_GPL(i915_gpu_busy);
4178
4179/**
4180 * i915_gpu_turbo_disable - disable graphics turbo
4181 *
4182 * Disable graphics turbo by resetting the max frequency and setting the
4183 * current frequency to the default.
4184 */
4185bool i915_gpu_turbo_disable(void)
4186{
4187 struct drm_i915_private *dev_priv;
4188 bool ret = true;
4189
9270388e 4190 spin_lock_irq(&mchdev_lock);
eb48eb00
DV
4191 if (!i915_mch_dev) {
4192 ret = false;
4193 goto out_unlock;
4194 }
4195 dev_priv = i915_mch_dev;
4196
20e4d407 4197 dev_priv->ips.max_delay = dev_priv->ips.fstart;
eb48eb00 4198
20e4d407 4199 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
eb48eb00
DV
4200 ret = false;
4201
4202out_unlock:
9270388e 4203 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4204
4205 return ret;
4206}
4207EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4208
4209/**
4210 * Tells the intel_ips driver that the i915 driver is now loaded, if
4211 * IPS got loaded first.
4212 *
4213 * This awkward dance is so that neither module has to depend on the
4214 * other in order for IPS to do the appropriate communication of
4215 * GPU turbo limits to i915.
4216 */
4217static void
4218ips_ping_for_i915_load(void)
4219{
4220 void (*link)(void);
4221
4222 link = symbol_get(ips_link_to_i915_driver);
4223 if (link) {
4224 link();
4225 symbol_put(ips_link_to_i915_driver);
4226 }
4227}
4228
4229void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4230{
02d71956
DV
4231 /* We only register the i915 ips part with intel-ips once everything is
4232 * set up, to avoid intel-ips sneaking in and reading bogus values. */
9270388e 4233 spin_lock_irq(&mchdev_lock);
eb48eb00 4234 i915_mch_dev = dev_priv;
9270388e 4235 spin_unlock_irq(&mchdev_lock);
eb48eb00
DV
4236
4237 ips_ping_for_i915_load();
4238}
4239
4240void intel_gpu_ips_teardown(void)
4241{
9270388e 4242 spin_lock_irq(&mchdev_lock);
eb48eb00 4243 i915_mch_dev = NULL;
9270388e 4244 spin_unlock_irq(&mchdev_lock);
eb48eb00 4245}
8090c6b9 4246static void intel_init_emon(struct drm_device *dev)
dde18883
ED
4247{
4248 struct drm_i915_private *dev_priv = dev->dev_private;
4249 u32 lcfuse;
4250 u8 pxw[16];
4251 int i;
4252
4253 /* Disable to program */
4254 I915_WRITE(ECR, 0);
4255 POSTING_READ(ECR);
4256
4257 /* Program energy weights for various events */
4258 I915_WRITE(SDEW, 0x15040d00);
4259 I915_WRITE(CSIEW0, 0x007f0000);
4260 I915_WRITE(CSIEW1, 0x1e220004);
4261 I915_WRITE(CSIEW2, 0x04000004);
4262
4263 for (i = 0; i < 5; i++)
4264 I915_WRITE(PEW + (i * 4), 0);
4265 for (i = 0; i < 3; i++)
4266 I915_WRITE(DEW + (i * 4), 0);
4267
4268 /* Program P-state weights to account for frequency power adjustment */
4269 for (i = 0; i < 16; i++) {
4270 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4271 unsigned long freq = intel_pxfreq(pxvidfreq);
4272 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4273 PXVFREQ_PX_SHIFT;
4274 unsigned long val;
4275
4276 val = vid * vid;
4277 val *= (freq / 1000);
4278 val *= 255;
4279 val /= (127*127*900);
4280 if (val > 0xff)
4281 DRM_ERROR("bad pxval: %ld\n", val);
4282 pxw[i] = val;
4283 }
4284 /* Render standby states get 0 weight */
4285 pxw[14] = 0;
4286 pxw[15] = 0;
4287
4288 for (i = 0; i < 4; i++) {
4289 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4290 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4291 I915_WRITE(PXW + (i * 4), val);
4292 }
4293
4294 /* Adjust magic regs to magic values (more experimental results) */
4295 I915_WRITE(OGW0, 0);
4296 I915_WRITE(OGW1, 0);
4297 I915_WRITE(EG0, 0x00007f00);
4298 I915_WRITE(EG1, 0x0000000e);
4299 I915_WRITE(EG2, 0x000e0000);
4300 I915_WRITE(EG3, 0x68000300);
4301 I915_WRITE(EG4, 0x42000000);
4302 I915_WRITE(EG5, 0x00140031);
4303 I915_WRITE(EG6, 0);
4304 I915_WRITE(EG7, 0);
4305
4306 for (i = 0; i < 8; i++)
4307 I915_WRITE(PXWL + (i * 4), 0);
4308
4309 /* Enable PMON + select events */
4310 I915_WRITE(ECR, 0x80000019);
4311
4312 lcfuse = I915_READ(LCFUSE02);
4313
20e4d407 4314 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
dde18883
ED
4315}
4316
8090c6b9
DV
4317void intel_disable_gt_powersave(struct drm_device *dev)
4318{
1a01ab3b
JB
4319 struct drm_i915_private *dev_priv = dev->dev_private;
4320
fd0c0642
DV
4321 /* Interrupts should be disabled already to avoid re-arming. */
4322 WARN_ON(dev->irq_enabled);
4323
930ebb46 4324 if (IS_IRONLAKE_M(dev)) {
8090c6b9 4325 ironlake_disable_drps(dev);
930ebb46 4326 ironlake_disable_rc6(dev);
0a073b84 4327 } else if (INTEL_INFO(dev)->gen >= 6) {
1a01ab3b 4328 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
250848ca 4329 cancel_work_sync(&dev_priv->rps.work);
52ceb908
JB
4330 if (IS_VALLEYVIEW(dev))
4331 cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4fc688ce 4332 mutex_lock(&dev_priv->rps.hw_lock);
d20d4f0c
JB
4333 if (IS_VALLEYVIEW(dev))
4334 valleyview_disable_rps(dev);
4335 else
4336 gen6_disable_rps(dev);
4fc688ce 4337 mutex_unlock(&dev_priv->rps.hw_lock);
930ebb46 4338 }
8090c6b9
DV
4339}
4340
1a01ab3b
JB
4341static void intel_gen6_powersave_work(struct work_struct *work)
4342{
4343 struct drm_i915_private *dev_priv =
4344 container_of(work, struct drm_i915_private,
4345 rps.delayed_resume_work.work);
4346 struct drm_device *dev = dev_priv->dev;
4347
4fc688ce 4348 mutex_lock(&dev_priv->rps.hw_lock);
0a073b84
JB
4349
4350 if (IS_VALLEYVIEW(dev)) {
4351 valleyview_enable_rps(dev);
4352 } else {
4353 gen6_enable_rps(dev);
4354 gen6_update_ring_freq(dev);
4355 }
4fc688ce 4356 mutex_unlock(&dev_priv->rps.hw_lock);
1a01ab3b
JB
4357}
4358
8090c6b9
DV
4359void intel_enable_gt_powersave(struct drm_device *dev)
4360{
1a01ab3b
JB
4361 struct drm_i915_private *dev_priv = dev->dev_private;
4362
8090c6b9
DV
4363 if (IS_IRONLAKE_M(dev)) {
4364 ironlake_enable_drps(dev);
4365 ironlake_enable_rc6(dev);
4366 intel_init_emon(dev);
0a073b84 4367 } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
1a01ab3b
JB
4368 /*
4369 * PCU communication is slow and this doesn't need to be
4370 * done at any specific time, so do this out of our fast path
4371 * to make resume and init faster.
4372 */
4373 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4374 round_jiffies_up_relative(HZ));
8090c6b9
DV
4375 }
4376}
4377
3107bd48
DV
4378static void ibx_init_clock_gating(struct drm_device *dev)
4379{
4380 struct drm_i915_private *dev_priv = dev->dev_private;
4381
4382 /*
4383 * On Ibex Peak and Cougar Point, we need to disable clock
4384 * gating for the panel power sequencer or it will fail to
4385 * start up when no ports are active.
4386 */
4387 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4388}
4389
1fa61106 4390static void ironlake_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4391{
4392 struct drm_i915_private *dev_priv = dev->dev_private;
231e54f6 4393 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
bdad2b2f 4394 int pipe;
6f1d69b0
ED
4395
4396 /* Required for FBC */
4d47e4f5
DL
4397 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4398 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4399 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6f1d69b0
ED
4400
4401 I915_WRITE(PCH_3DCGDIS0,
4402 MARIUNIT_CLOCK_GATE_DISABLE |
4403 SVSMUNIT_CLOCK_GATE_DISABLE);
4404 I915_WRITE(PCH_3DCGDIS1,
4405 VFMUNIT_CLOCK_GATE_DISABLE);
4406
6f1d69b0
ED
4407 /*
4408 * According to the spec the following bits should be set in
4409 * order to enable memory self-refresh
4410 * The bit 22/21 of 0x42004
4411 * The bit 5 of 0x42020
4412 * The bit 15 of 0x45000
4413 */
4414 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4415 (I915_READ(ILK_DISPLAY_CHICKEN2) |
4416 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4d47e4f5 4417 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6f1d69b0
ED
4418 I915_WRITE(DISP_ARB_CTL,
4419 (I915_READ(DISP_ARB_CTL) |
4420 DISP_FBC_WM_DIS));
4421 I915_WRITE(WM3_LP_ILK, 0);
4422 I915_WRITE(WM2_LP_ILK, 0);
4423 I915_WRITE(WM1_LP_ILK, 0);
4424
4425 /*
4426 * Based on the document from hardware guys the following bits
4427 * should be set unconditionally in order to enable FBC.
4428 * The bit 22 of 0x42000
4429 * The bit 22 of 0x42004
4430 * The bit 7,8,9 of 0x42020.
4431 */
4432 if (IS_IRONLAKE_M(dev)) {
4433 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4434 I915_READ(ILK_DISPLAY_CHICKEN1) |
4435 ILK_FBCQ_DIS);
4436 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4437 I915_READ(ILK_DISPLAY_CHICKEN2) |
4438 ILK_DPARB_GATE);
6f1d69b0
ED
4439 }
4440
4d47e4f5
DL
4441 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4442
6f1d69b0
ED
4443 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4444 I915_READ(ILK_DISPLAY_CHICKEN2) |
4445 ILK_ELPIN_409_SELECT);
4446 I915_WRITE(_3D_CHICKEN2,
4447 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4448 _3D_CHICKEN2_WM_READ_PIPELINED);
4358a374 4449
ecdb4eb7 4450 /* WaDisableRenderCachePipelinedFlush:ilk */
4358a374
DV
4451 I915_WRITE(CACHE_MODE_0,
4452 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3107bd48 4453
bdad2b2f
VS
4454 for_each_pipe(pipe) {
4455 I915_WRITE(DSPCNTR(pipe),
4456 I915_READ(DSPCNTR(pipe)) |
4457 DISPPLANE_TRICKLE_FEED_DISABLE);
4458 intel_flush_display_plane(dev_priv, pipe);
4459 }
4460
3107bd48
DV
4461 ibx_init_clock_gating(dev);
4462}
4463
4464static void cpt_init_clock_gating(struct drm_device *dev)
4465{
4466 struct drm_i915_private *dev_priv = dev->dev_private;
4467 int pipe;
3f704fa2 4468 uint32_t val;
3107bd48
DV
4469
4470 /*
4471 * On Ibex Peak and Cougar Point, we need to disable clock
4472 * gating for the panel power sequencer or it will fail to
4473 * start up when no ports are active.
4474 */
4475 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4476 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4477 DPLS_EDP_PPS_FIX_DIS);
335c07b7
TI
4478 /* The below fixes the weird display corruption, a few pixels shifted
4479 * downward, on (only) LVDS of some HP laptops with IVY.
4480 */
3f704fa2 4481 for_each_pipe(pipe) {
dc4bd2d1
PZ
4482 val = I915_READ(TRANS_CHICKEN2(pipe));
4483 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4484 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
41aa3448 4485 if (dev_priv->vbt.fdi_rx_polarity_inverted)
3f704fa2 4486 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
dc4bd2d1
PZ
4487 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4488 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4489 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
3f704fa2
PZ
4490 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4491 }
3107bd48
DV
4492 /* WADP0ClockGatingDisable */
4493 for_each_pipe(pipe) {
4494 I915_WRITE(TRANS_CHICKEN1(pipe),
4495 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4496 }
6f1d69b0
ED
4497}
4498
1d7aaa0c
DV
4499static void gen6_check_mch_setup(struct drm_device *dev)
4500{
4501 struct drm_i915_private *dev_priv = dev->dev_private;
4502 uint32_t tmp;
4503
4504 tmp = I915_READ(MCH_SSKPD);
4505 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4506 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4507 DRM_INFO("This can cause pipe underruns and display issues.\n");
4508 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4509 }
4510}
4511
1fa61106 4512static void gen6_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4513{
4514 struct drm_i915_private *dev_priv = dev->dev_private;
4515 int pipe;
231e54f6 4516 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6f1d69b0 4517
231e54f6 4518 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6f1d69b0
ED
4519
4520 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4521 I915_READ(ILK_DISPLAY_CHICKEN2) |
4522 ILK_ELPIN_409_SELECT);
4523
ecdb4eb7 4524 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4283908e
DV
4525 I915_WRITE(_3D_CHICKEN,
4526 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4527
ecdb4eb7 4528 /* WaSetupGtModeTdRowDispatch:snb */
6547fbdb
DV
4529 if (IS_SNB_GT1(dev))
4530 I915_WRITE(GEN6_GT_MODE,
4531 _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4532
6f1d69b0
ED
4533 I915_WRITE(WM3_LP_ILK, 0);
4534 I915_WRITE(WM2_LP_ILK, 0);
4535 I915_WRITE(WM1_LP_ILK, 0);
4536
6f1d69b0 4537 I915_WRITE(CACHE_MODE_0,
50743298 4538 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6f1d69b0
ED
4539
4540 I915_WRITE(GEN6_UCGCTL1,
4541 I915_READ(GEN6_UCGCTL1) |
4542 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4543 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4544
4545 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4546 * gating disable must be set. Failure to set it results in
4547 * flickering pixels due to Z write ordering failures after
4548 * some amount of runtime in the Mesa "fire" demo, and Unigine
4549 * Sanctuary and Tropics, and apparently anything else with
4550 * alpha test or pixel discard.
4551 *
4552 * According to the spec, bit 11 (RCCUNIT) must also be set,
4553 * but we didn't debug actual testcases to find it out.
0f846f81 4554 *
ecdb4eb7
DL
4555 * Also apply WaDisableVDSUnitClockGating:snb and
4556 * WaDisableRCPBUnitClockGating:snb.
6f1d69b0
ED
4557 */
4558 I915_WRITE(GEN6_UCGCTL2,
0f846f81 4559 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
6f1d69b0
ED
4560 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4561 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4562
4563 /* Bspec says we need to always set all mask bits. */
26b6e44a
KG
4564 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4565 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
6f1d69b0
ED
4566
4567 /*
4568 * According to the spec the following bits should be
4569 * set in order to enable memory self-refresh and fbc:
4570 * The bit21 and bit22 of 0x42000
4571 * The bit21 and bit22 of 0x42004
4572 * The bit5 and bit7 of 0x42020
4573 * The bit14 of 0x70180
4574 * The bit14 of 0x71180
4575 */
4576 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4577 I915_READ(ILK_DISPLAY_CHICKEN1) |
4578 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4579 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4580 I915_READ(ILK_DISPLAY_CHICKEN2) |
4581 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
231e54f6
DL
4582 I915_WRITE(ILK_DSPCLK_GATE_D,
4583 I915_READ(ILK_DSPCLK_GATE_D) |
4584 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
4585 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6f1d69b0 4586
ecdb4eb7 4587 /* WaMbcDriverBootEnable:snb */
b4ae3f22
JB
4588 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4589 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4590
6f1d69b0
ED
4591 for_each_pipe(pipe) {
4592 I915_WRITE(DSPCNTR(pipe),
4593 I915_READ(DSPCNTR(pipe)) |
4594 DISPPLANE_TRICKLE_FEED_DISABLE);
4595 intel_flush_display_plane(dev_priv, pipe);
4596 }
f8f2ac9a
BW
4597
4598 /* The default value should be 0x200 according to docs, but the two
4599 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4600 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4601 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3107bd48
DV
4602
4603 cpt_init_clock_gating(dev);
1d7aaa0c
DV
4604
4605 gen6_check_mch_setup(dev);
6f1d69b0
ED
4606}
4607
4608static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4609{
4610 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4611
4612 reg &= ~GEN7_FF_SCHED_MASK;
4613 reg |= GEN7_FF_TS_SCHED_HW;
4614 reg |= GEN7_FF_VS_SCHED_HW;
4615 reg |= GEN7_FF_DS_SCHED_HW;
4616
41c0b3a8
BW
4617 if (IS_HASWELL(dev_priv->dev))
4618 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4619
6f1d69b0
ED
4620 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4621}
4622
17a303ec
PZ
4623static void lpt_init_clock_gating(struct drm_device *dev)
4624{
4625 struct drm_i915_private *dev_priv = dev->dev_private;
4626
4627 /*
4628 * TODO: this bit should only be enabled when really needed, then
4629 * disabled when not needed anymore in order to save power.
4630 */
4631 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4632 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4633 I915_READ(SOUTH_DSPCLK_GATE_D) |
4634 PCH_LP_PARTITION_LEVEL_DISABLE);
0a790cdb
PZ
4635
4636 /* WADPOClockGatingDisable:hsw */
4637 I915_WRITE(_TRANSA_CHICKEN1,
4638 I915_READ(_TRANSA_CHICKEN1) |
4639 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
17a303ec
PZ
4640}
4641
7d708ee4
ID
4642static void lpt_suspend_hw(struct drm_device *dev)
4643{
4644 struct drm_i915_private *dev_priv = dev->dev_private;
4645
4646 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4647 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4648
4649 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4650 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4651 }
4652}
4653
cad2a2d7
ED
4654static void haswell_init_clock_gating(struct drm_device *dev)
4655{
4656 struct drm_i915_private *dev_priv = dev->dev_private;
4657 int pipe;
cad2a2d7
ED
4658
4659 I915_WRITE(WM3_LP_ILK, 0);
4660 I915_WRITE(WM2_LP_ILK, 0);
4661 I915_WRITE(WM1_LP_ILK, 0);
4662
4663 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 4664 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
cad2a2d7
ED
4665 */
4666 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4667
ecdb4eb7 4668 /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
cad2a2d7
ED
4669 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4670 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4671
ecdb4eb7 4672 /* WaApplyL3ControlAndL3ChickenMode:hsw */
cad2a2d7
ED
4673 I915_WRITE(GEN7_L3CNTLREG1,
4674 GEN7_WA_FOR_GEN7_L3_CONTROL);
4675 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4676 GEN7_WA_L3_CHICKEN_MODE);
4677
ecdb4eb7 4678 /* This is required by WaCatErrorRejectionIssue:hsw */
cad2a2d7
ED
4679 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4680 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4681 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4682
4683 for_each_pipe(pipe) {
4684 I915_WRITE(DSPCNTR(pipe),
4685 I915_READ(DSPCNTR(pipe)) |
4686 DISPPLANE_TRICKLE_FEED_DISABLE);
4687 intel_flush_display_plane(dev_priv, pipe);
4688 }
4689
ecdb4eb7 4690 /* WaVSRefCountFullforceMissDisable:hsw */
cad2a2d7
ED
4691 gen7_setup_fixed_func_scheduler(dev_priv);
4692
ecdb4eb7 4693 /* WaDisable4x2SubspanOptimization:hsw */
cad2a2d7
ED
4694 I915_WRITE(CACHE_MODE_1,
4695 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
1544d9d5 4696
ecdb4eb7 4697 /* WaMbcDriverBootEnable:hsw */
b3bf0766
PZ
4698 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4699 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4700
ecdb4eb7 4701 /* WaSwitchSolVfFArbitrationPriority:hsw */
e3dff585
BW
4702 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4703
90a88643
PZ
4704 /* WaRsPkgCStateDisplayPMReq:hsw */
4705 I915_WRITE(CHICKEN_PAR1_1,
4706 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
1544d9d5 4707
17a303ec 4708 lpt_init_clock_gating(dev);
cad2a2d7
ED
4709}
4710
1fa61106 4711static void ivybridge_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4712{
4713 struct drm_i915_private *dev_priv = dev->dev_private;
4714 int pipe;
20848223 4715 uint32_t snpcr;
6f1d69b0 4716
6f1d69b0
ED
4717 I915_WRITE(WM3_LP_ILK, 0);
4718 I915_WRITE(WM2_LP_ILK, 0);
4719 I915_WRITE(WM1_LP_ILK, 0);
4720
231e54f6 4721 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6f1d69b0 4722
ecdb4eb7 4723 /* WaDisableEarlyCull:ivb */
87f8020e
JB
4724 I915_WRITE(_3D_CHICKEN3,
4725 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4726
ecdb4eb7 4727 /* WaDisableBackToBackFlipFix:ivb */
6f1d69b0
ED
4728 I915_WRITE(IVB_CHICKEN3,
4729 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4730 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4731
ecdb4eb7 4732 /* WaDisablePSDDualDispatchEnable:ivb */
12f3382b
JB
4733 if (IS_IVB_GT1(dev))
4734 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4735 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4736 else
4737 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4738 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4739
ecdb4eb7 4740 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6f1d69b0
ED
4741 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4742 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4743
ecdb4eb7 4744 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6f1d69b0
ED
4745 I915_WRITE(GEN7_L3CNTLREG1,
4746 GEN7_WA_FOR_GEN7_L3_CONTROL);
4747 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8ab43976
JB
4748 GEN7_WA_L3_CHICKEN_MODE);
4749 if (IS_IVB_GT1(dev))
4750 I915_WRITE(GEN7_ROW_CHICKEN2,
4751 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4752 else
4753 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4754 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4755
6f1d69b0 4756
ecdb4eb7 4757 /* WaForceL3Serialization:ivb */
61939d97
JB
4758 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4759 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4760
0f846f81
JB
4761 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4762 * gating disable must be set. Failure to set it results in
4763 * flickering pixels due to Z write ordering failures after
4764 * some amount of runtime in the Mesa "fire" demo, and Unigine
4765 * Sanctuary and Tropics, and apparently anything else with
4766 * alpha test or pixel discard.
4767 *
4768 * According to the spec, bit 11 (RCCUNIT) must also be set,
4769 * but we didn't debug actual testcases to find it out.
4770 *
4771 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 4772 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
0f846f81
JB
4773 */
4774 I915_WRITE(GEN6_UCGCTL2,
4775 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4776 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4777
ecdb4eb7 4778 /* This is required by WaCatErrorRejectionIssue:ivb */
6f1d69b0
ED
4779 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4780 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4781 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4782
4783 for_each_pipe(pipe) {
4784 I915_WRITE(DSPCNTR(pipe),
4785 I915_READ(DSPCNTR(pipe)) |
4786 DISPPLANE_TRICKLE_FEED_DISABLE);
4787 intel_flush_display_plane(dev_priv, pipe);
4788 }
4789
ecdb4eb7 4790 /* WaMbcDriverBootEnable:ivb */
b4ae3f22
JB
4791 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4792 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4793
ecdb4eb7 4794 /* WaVSRefCountFullforceMissDisable:ivb */
6f1d69b0 4795 gen7_setup_fixed_func_scheduler(dev_priv);
97e1930f 4796
ecdb4eb7 4797 /* WaDisable4x2SubspanOptimization:ivb */
97e1930f
DV
4798 I915_WRITE(CACHE_MODE_1,
4799 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
20848223
BW
4800
4801 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4802 snpcr &= ~GEN6_MBC_SNPCR_MASK;
4803 snpcr |= GEN6_MBC_SNPCR_MED;
4804 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3107bd48 4805
ab5c608b
BW
4806 if (!HAS_PCH_NOP(dev))
4807 cpt_init_clock_gating(dev);
1d7aaa0c
DV
4808
4809 gen6_check_mch_setup(dev);
6f1d69b0
ED
4810}
4811
1fa61106 4812static void valleyview_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4813{
4814 struct drm_i915_private *dev_priv = dev->dev_private;
4815 int pipe;
6f1d69b0 4816
d7fe0cc0 4817 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6f1d69b0 4818
ecdb4eb7 4819 /* WaDisableEarlyCull:vlv */
87f8020e
JB
4820 I915_WRITE(_3D_CHICKEN3,
4821 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4822
ecdb4eb7 4823 /* WaDisableBackToBackFlipFix:vlv */
6f1d69b0
ED
4824 I915_WRITE(IVB_CHICKEN3,
4825 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4826 CHICKEN3_DGMG_DONE_FIX_DISABLE);
4827
ecdb4eb7 4828 /* WaDisablePSDDualDispatchEnable:vlv */
12f3382b 4829 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
d3bc0303
JB
4830 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4831 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
12f3382b 4832
ecdb4eb7 4833 /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
6f1d69b0
ED
4834 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4835 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4836
ecdb4eb7 4837 /* WaApplyL3ControlAndL3ChickenMode:vlv */
d0cf5ead 4838 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
6f1d69b0
ED
4839 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4840
ecdb4eb7 4841 /* WaForceL3Serialization:vlv */
61939d97
JB
4842 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4843 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4844
ecdb4eb7 4845 /* WaDisableDopClockGating:vlv */
8ab43976
JB
4846 I915_WRITE(GEN7_ROW_CHICKEN2,
4847 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4848
ecdb4eb7 4849 /* WaForceL3Serialization:vlv */
5c9664d7
JB
4850 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4851 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4852
ecdb4eb7 4853 /* This is required by WaCatErrorRejectionIssue:vlv */
6f1d69b0
ED
4854 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4855 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4856 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4857
ecdb4eb7 4858 /* WaMbcDriverBootEnable:vlv */
b4ae3f22
JB
4859 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4860 GEN6_MBCTL_ENABLE_BOOT_FETCH);
4861
0f846f81
JB
4862
4863 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4864 * gating disable must be set. Failure to set it results in
4865 * flickering pixels due to Z write ordering failures after
4866 * some amount of runtime in the Mesa "fire" demo, and Unigine
4867 * Sanctuary and Tropics, and apparently anything else with
4868 * alpha test or pixel discard.
4869 *
4870 * According to the spec, bit 11 (RCCUNIT) must also be set,
4871 * but we didn't debug actual testcases to find it out.
4872 *
4873 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
ecdb4eb7 4874 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
0f846f81 4875 *
ecdb4eb7
DL
4876 * Also apply WaDisableVDSUnitClockGating:vlv and
4877 * WaDisableRCPBUnitClockGating:vlv.
0f846f81
JB
4878 */
4879 I915_WRITE(GEN6_UCGCTL2,
4880 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
6edaa7fc 4881 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
0f846f81
JB
4882 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4883 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4884 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4885
e3f33d46
JB
4886 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4887
6f1d69b0
ED
4888 for_each_pipe(pipe) {
4889 I915_WRITE(DSPCNTR(pipe),
4890 I915_READ(DSPCNTR(pipe)) |
4891 DISPPLANE_TRICKLE_FEED_DISABLE);
4892 intel_flush_display_plane(dev_priv, pipe);
4893 }
4894
6b26c86d
DV
4895 I915_WRITE(CACHE_MODE_1,
4896 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7983117f 4897
2d809570 4898 /*
ecdb4eb7 4899 * WaDisableVLVClockGating_VBIIssue:vlv
2d809570
JB
4900 * Disable clock gating on th GCFG unit to prevent a delay
4901 * in the reporting of vblank events.
4902 */
4e8c84a5
JB
4903 I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4904
4905 /* Conservative clock gating settings for now */
4906 I915_WRITE(0x9400, 0xffffffff);
4907 I915_WRITE(0x9404, 0xffffffff);
4908 I915_WRITE(0x9408, 0xffffffff);
4909 I915_WRITE(0x940c, 0xffffffff);
4910 I915_WRITE(0x9410, 0xffffffff);
4911 I915_WRITE(0x9414, 0xffffffff);
4912 I915_WRITE(0x9418, 0xffffffff);
6f1d69b0
ED
4913}
4914
1fa61106 4915static void g4x_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4916{
4917 struct drm_i915_private *dev_priv = dev->dev_private;
4918 uint32_t dspclk_gate;
de1aa629 4919 int pipe;
6f1d69b0
ED
4920
4921 I915_WRITE(RENCLK_GATE_D1, 0);
4922 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4923 GS_UNIT_CLOCK_GATE_DISABLE |
4924 CL_UNIT_CLOCK_GATE_DISABLE);
4925 I915_WRITE(RAMCLK_GATE_D, 0);
4926 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4927 OVRUNIT_CLOCK_GATE_DISABLE |
4928 OVCUNIT_CLOCK_GATE_DISABLE;
4929 if (IS_GM45(dev))
4930 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4931 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4358a374
DV
4932
4933 /* WaDisableRenderCachePipelinedFlush */
4934 I915_WRITE(CACHE_MODE_0,
4935 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
de1aa629
VS
4936
4937 for_each_pipe(pipe) {
4938 I915_WRITE(DSPCNTR(pipe),
4939 I915_READ(DSPCNTR(pipe)) |
4940 DISPPLANE_TRICKLE_FEED_DISABLE);
4941 intel_flush_display_plane(dev_priv, pipe);
4942 }
4943
6f1d69b0
ED
4944}
4945
1fa61106 4946static void crestline_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4947{
4948 struct drm_i915_private *dev_priv = dev->dev_private;
4949
4950 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4951 I915_WRITE(RENCLK_GATE_D2, 0);
4952 I915_WRITE(DSPCLK_GATE_D, 0);
4953 I915_WRITE(RAMCLK_GATE_D, 0);
4954 I915_WRITE16(DEUC, 0);
20f94967
VS
4955 I915_WRITE(MI_ARB_STATE,
4956 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6f1d69b0
ED
4957}
4958
1fa61106 4959static void broadwater_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4960{
4961 struct drm_i915_private *dev_priv = dev->dev_private;
4962
4963 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4964 I965_RCC_CLOCK_GATE_DISABLE |
4965 I965_RCPB_CLOCK_GATE_DISABLE |
4966 I965_ISC_CLOCK_GATE_DISABLE |
4967 I965_FBC_CLOCK_GATE_DISABLE);
4968 I915_WRITE(RENCLK_GATE_D2, 0);
20f94967
VS
4969 I915_WRITE(MI_ARB_STATE,
4970 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6f1d69b0
ED
4971}
4972
1fa61106 4973static void gen3_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4974{
4975 struct drm_i915_private *dev_priv = dev->dev_private;
4976 u32 dstate = I915_READ(D_STATE);
4977
4978 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4979 DSTATE_DOT_CLOCK_GATING;
4980 I915_WRITE(D_STATE, dstate);
13a86b85
CW
4981
4982 if (IS_PINEVIEW(dev))
4983 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
974a3b0f
DV
4984
4985 /* IIR "flip pending" means done if this bit is set */
4986 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6f1d69b0
ED
4987}
4988
1fa61106 4989static void i85x_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4990{
4991 struct drm_i915_private *dev_priv = dev->dev_private;
4992
4993 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4994}
4995
1fa61106 4996static void i830_init_clock_gating(struct drm_device *dev)
6f1d69b0
ED
4997{
4998 struct drm_i915_private *dev_priv = dev->dev_private;
4999
5000 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5001}
5002
6f1d69b0
ED
5003void intel_init_clock_gating(struct drm_device *dev)
5004{
5005 struct drm_i915_private *dev_priv = dev->dev_private;
5006
5007 dev_priv->display.init_clock_gating(dev);
6f1d69b0
ED
5008}
5009
7d708ee4
ID
5010void intel_suspend_hw(struct drm_device *dev)
5011{
5012 if (HAS_PCH_LPT(dev))
5013 lpt_suspend_hw(dev);
5014}
5015
15d199ea
PZ
5016/**
5017 * We should only use the power well if we explicitly asked the hardware to
5018 * enable it, so check if it's enabled and also check if we've requested it to
5019 * be enabled.
5020 */
b97186f0
PZ
5021bool intel_display_power_enabled(struct drm_device *dev,
5022 enum intel_display_power_domain domain)
15d199ea
PZ
5023{
5024 struct drm_i915_private *dev_priv = dev->dev_private;
5025
b97186f0
PZ
5026 if (!HAS_POWER_WELL(dev))
5027 return true;
5028
5029 switch (domain) {
5030 case POWER_DOMAIN_PIPE_A:
5031 case POWER_DOMAIN_TRANSCODER_EDP:
5032 return true;
5033 case POWER_DOMAIN_PIPE_B:
5034 case POWER_DOMAIN_PIPE_C:
5035 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5036 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5037 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5038 case POWER_DOMAIN_TRANSCODER_A:
5039 case POWER_DOMAIN_TRANSCODER_B:
5040 case POWER_DOMAIN_TRANSCODER_C:
15d199ea
PZ
5041 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5042 (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
b97186f0
PZ
5043 default:
5044 BUG();
5045 }
15d199ea
PZ
5046}
5047
a38911a3 5048static void __intel_set_power_well(struct drm_device *dev, bool enable)
d0d3e513
ED
5049{
5050 struct drm_i915_private *dev_priv = dev->dev_private;
fa42e23c
PZ
5051 bool is_enabled, enable_requested;
5052 uint32_t tmp;
d0d3e513 5053
fa42e23c
PZ
5054 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5055 is_enabled = tmp & HSW_PWR_WELL_STATE;
5056 enable_requested = tmp & HSW_PWR_WELL_ENABLE;
d0d3e513 5057
fa42e23c
PZ
5058 if (enable) {
5059 if (!enable_requested)
5060 I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
d0d3e513 5061
fa42e23c
PZ
5062 if (!is_enabled) {
5063 DRM_DEBUG_KMS("Enabling power well\n");
5064 if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5065 HSW_PWR_WELL_STATE), 20))
5066 DRM_ERROR("Timeout enabling power well\n");
5067 }
5068 } else {
5069 if (enable_requested) {
5070 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5071 DRM_DEBUG_KMS("Requesting to disable the power well\n");
d0d3e513
ED
5072 }
5073 }
fa42e23c 5074}
d0d3e513 5075
a38911a3
WX
5076static struct i915_power_well *hsw_pwr;
5077
5078/* Display audio driver power well request */
5079void i915_request_power_well(void)
5080{
5081 if (WARN_ON(!hsw_pwr))
5082 return;
5083
5084 spin_lock_irq(&hsw_pwr->lock);
5085 if (!hsw_pwr->count++ &&
5086 !hsw_pwr->i915_request)
5087 __intel_set_power_well(hsw_pwr->device, true);
5088 spin_unlock_irq(&hsw_pwr->lock);
5089}
5090EXPORT_SYMBOL_GPL(i915_request_power_well);
5091
5092/* Display audio driver power well release */
5093void i915_release_power_well(void)
5094{
5095 if (WARN_ON(!hsw_pwr))
5096 return;
5097
5098 spin_lock_irq(&hsw_pwr->lock);
5099 WARN_ON(!hsw_pwr->count);
5100 if (!--hsw_pwr->count &&
5101 !hsw_pwr->i915_request)
5102 __intel_set_power_well(hsw_pwr->device, false);
5103 spin_unlock_irq(&hsw_pwr->lock);
5104}
5105EXPORT_SYMBOL_GPL(i915_release_power_well);
5106
5107int i915_init_power_well(struct drm_device *dev)
5108{
5109 struct drm_i915_private *dev_priv = dev->dev_private;
5110
5111 hsw_pwr = &dev_priv->power_well;
5112
5113 hsw_pwr->device = dev;
5114 spin_lock_init(&hsw_pwr->lock);
5115 hsw_pwr->count = 0;
5116
5117 return 0;
5118}
5119
5120void i915_remove_power_well(struct drm_device *dev)
5121{
5122 hsw_pwr = NULL;
5123}
5124
5125void intel_set_power_well(struct drm_device *dev, bool enable)
5126{
5127 struct drm_i915_private *dev_priv = dev->dev_private;
5128 struct i915_power_well *power_well = &dev_priv->power_well;
5129
5130 if (!HAS_POWER_WELL(dev))
5131 return;
5132
5133 if (!i915_disable_power_well && !enable)
5134 return;
5135
5136 spin_lock_irq(&power_well->lock);
5137 power_well->i915_request = enable;
5138
5139 /* only reject "disable" power well request */
5140 if (power_well->count && !enable) {
5141 spin_unlock_irq(&power_well->lock);
5142 return;
5143 }
5144
5145 __intel_set_power_well(dev, enable);
5146 spin_unlock_irq(&power_well->lock);
5147}
5148
fa42e23c
PZ
5149/*
5150 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5151 * when not needed anymore. We have 4 registers that can request the power well
5152 * to be enabled, and it will only be disabled if none of the registers is
5153 * requesting it to be enabled.
d0d3e513 5154 */
fa42e23c 5155void intel_init_power_well(struct drm_device *dev)
d0d3e513
ED
5156{
5157 struct drm_i915_private *dev_priv = dev->dev_private;
d0d3e513 5158
86d52df6 5159 if (!HAS_POWER_WELL(dev))
d0d3e513
ED
5160 return;
5161
fa42e23c
PZ
5162 /* For now, we need the power well to be always enabled. */
5163 intel_set_power_well(dev, true);
d0d3e513 5164
fa42e23c
PZ
5165 /* We're taking over the BIOS, so clear any requests made by it since
5166 * the driver is in charge now. */
5167 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
5168 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
d0d3e513
ED
5169}
5170
1fa61106
ED
5171/* Set up chip specific power management-related functions */
5172void intel_init_pm(struct drm_device *dev)
5173{
5174 struct drm_i915_private *dev_priv = dev->dev_private;
5175
5176 if (I915_HAS_FBC(dev)) {
5177 if (HAS_PCH_SPLIT(dev)) {
5178 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
891348b2 5179 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
abe959c7
RV
5180 dev_priv->display.enable_fbc =
5181 gen7_enable_fbc;
5182 else
5183 dev_priv->display.enable_fbc =
5184 ironlake_enable_fbc;
1fa61106
ED
5185 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5186 } else if (IS_GM45(dev)) {
5187 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5188 dev_priv->display.enable_fbc = g4x_enable_fbc;
5189 dev_priv->display.disable_fbc = g4x_disable_fbc;
5190 } else if (IS_CRESTLINE(dev)) {
5191 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5192 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5193 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5194 }
5195 /* 855GM needs testing */
5196 }
5197
c921aba8
DV
5198 /* For cxsr */
5199 if (IS_PINEVIEW(dev))
5200 i915_pineview_get_mem_freq(dev);
5201 else if (IS_GEN5(dev))
5202 i915_ironlake_get_mem_freq(dev);
5203
1fa61106
ED
5204 /* For FIFO watermark updates */
5205 if (HAS_PCH_SPLIT(dev)) {
1fa61106
ED
5206 if (IS_GEN5(dev)) {
5207 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5208 dev_priv->display.update_wm = ironlake_update_wm;
5209 else {
5210 DRM_DEBUG_KMS("Failed to get proper latency. "
5211 "Disable CxSR\n");
5212 dev_priv->display.update_wm = NULL;
5213 }
5214 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5215 } else if (IS_GEN6(dev)) {
5216 if (SNB_READ_WM0_LATENCY()) {
5217 dev_priv->display.update_wm = sandybridge_update_wm;
5218 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5219 } else {
5220 DRM_DEBUG_KMS("Failed to read display plane latency. "
5221 "Disable CxSR\n");
5222 dev_priv->display.update_wm = NULL;
5223 }
5224 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5225 } else if (IS_IVYBRIDGE(dev)) {
1fa61106 5226 if (SNB_READ_WM0_LATENCY()) {
c43d0188 5227 dev_priv->display.update_wm = ivybridge_update_wm;
1fa61106
ED
5228 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5229 } else {
5230 DRM_DEBUG_KMS("Failed to read display plane latency. "
5231 "Disable CxSR\n");
5232 dev_priv->display.update_wm = NULL;
5233 }
5234 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6b8a5eeb 5235 } else if (IS_HASWELL(dev)) {
3e1f7266 5236 if (I915_READ64(MCH_SSKPD)) {
1011d8c4 5237 dev_priv->display.update_wm = haswell_update_wm;
526682e9
PZ
5238 dev_priv->display.update_sprite_wm =
5239 haswell_update_sprite_wm;
6b8a5eeb
ED
5240 } else {
5241 DRM_DEBUG_KMS("Failed to read display plane latency. "
5242 "Disable CxSR\n");
5243 dev_priv->display.update_wm = NULL;
5244 }
cad2a2d7 5245 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
1fa61106
ED
5246 } else
5247 dev_priv->display.update_wm = NULL;
5248 } else if (IS_VALLEYVIEW(dev)) {
5249 dev_priv->display.update_wm = valleyview_update_wm;
5250 dev_priv->display.init_clock_gating =
5251 valleyview_init_clock_gating;
1fa61106
ED
5252 } else if (IS_PINEVIEW(dev)) {
5253 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5254 dev_priv->is_ddr3,
5255 dev_priv->fsb_freq,
5256 dev_priv->mem_freq)) {
5257 DRM_INFO("failed to find known CxSR latency "
5258 "(found ddr%s fsb freq %d, mem freq %d), "
5259 "disabling CxSR\n",
5260 (dev_priv->is_ddr3 == 1) ? "3" : "2",
5261 dev_priv->fsb_freq, dev_priv->mem_freq);
5262 /* Disable CxSR and never update its watermark again */
5263 pineview_disable_cxsr(dev);
5264 dev_priv->display.update_wm = NULL;
5265 } else
5266 dev_priv->display.update_wm = pineview_update_wm;
5267 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5268 } else if (IS_G4X(dev)) {
5269 dev_priv->display.update_wm = g4x_update_wm;
5270 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5271 } else if (IS_GEN4(dev)) {
5272 dev_priv->display.update_wm = i965_update_wm;
5273 if (IS_CRESTLINE(dev))
5274 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5275 else if (IS_BROADWATER(dev))
5276 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5277 } else if (IS_GEN3(dev)) {
5278 dev_priv->display.update_wm = i9xx_update_wm;
5279 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5280 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5281 } else if (IS_I865G(dev)) {
5282 dev_priv->display.update_wm = i830_update_wm;
5283 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5284 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5285 } else if (IS_I85X(dev)) {
5286 dev_priv->display.update_wm = i9xx_update_wm;
5287 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5288 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5289 } else {
5290 dev_priv->display.update_wm = i830_update_wm;
5291 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5292 if (IS_845G(dev))
5293 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5294 else
5295 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5296 }
5297}
5298
6590190d
ED
5299static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
5300{
5301 u32 gt_thread_status_mask;
5302
5303 if (IS_HASWELL(dev_priv->dev))
5304 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
5305 else
5306 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
5307
5308 /* w/a for a sporadic read returning 0 by waiting for the GT
5309 * thread to wake up.
5310 */
5311 if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
5312 DRM_ERROR("GT thread status wait timed out\n");
5313}
5314
16995a9f
CW
5315static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
5316{
5317 I915_WRITE_NOTRACE(FORCEWAKE, 0);
5318 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
5319}
5320
6590190d
ED
5321static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
5322{
ebd37ce1 5323 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
057d3860 5324 FORCEWAKE_ACK_TIMEOUT_MS))
8a038fd6 5325 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
6590190d 5326
30771e16 5327 I915_WRITE_NOTRACE(FORCEWAKE, 1);
8dee3eea 5328 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
6590190d 5329
ebd37ce1 5330 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
057d3860 5331 FORCEWAKE_ACK_TIMEOUT_MS))
8a038fd6 5332 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
6590190d 5333
8693a824 5334 /* WaRsForcewakeWaitTC0:snb */
6590190d
ED
5335 __gen6_gt_wait_for_thread_c0(dev_priv);
5336}
5337
16995a9f
CW
5338static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
5339{
5340 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
b5144075
JN
5341 /* something from same cacheline, but !FORCEWAKE_MT */
5342 POSTING_READ(ECOBUS);
16995a9f
CW
5343}
5344
6590190d
ED
5345static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
5346{
5347 u32 forcewake_ack;
5348
5349 if (IS_HASWELL(dev_priv->dev))
5350 forcewake_ack = FORCEWAKE_ACK_HSW;
5351 else
5352 forcewake_ack = FORCEWAKE_MT_ACK;
5353
83983c8b 5354 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
057d3860 5355 FORCEWAKE_ACK_TIMEOUT_MS))
8a038fd6 5356 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
6590190d 5357
c5836c27 5358 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
b5144075
JN
5359 /* something from same cacheline, but !FORCEWAKE_MT */
5360 POSTING_READ(ECOBUS);
6590190d 5361
83983c8b 5362 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
057d3860 5363 FORCEWAKE_ACK_TIMEOUT_MS))
8a038fd6 5364 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
6590190d 5365
8693a824 5366 /* WaRsForcewakeWaitTC0:ivb,hsw */
6590190d
ED
5367 __gen6_gt_wait_for_thread_c0(dev_priv);
5368}
5369
5370/*
5371 * Generally this is called implicitly by the register read function. However,
5372 * if some sequence requires the GT to not power down then this function should
5373 * be called at the beginning of the sequence followed by a call to
5374 * gen6_gt_force_wake_put() at the end of the sequence.
5375 */
5376void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
5377{
5378 unsigned long irqflags;
5379
5380 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
5381 if (dev_priv->forcewake_count++ == 0)
5382 dev_priv->gt.force_wake_get(dev_priv);
5383 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
5384}
5385
5386void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
5387{
5388 u32 gtfifodbg;
5389 gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
5390 if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
5391 "MMIO read or write has been dropped %x\n", gtfifodbg))
5392 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
5393}
5394
5395static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
5396{
5397 I915_WRITE_NOTRACE(FORCEWAKE, 0);
b5144075
JN
5398 /* something from same cacheline, but !FORCEWAKE */
5399 POSTING_READ(ECOBUS);
6590190d
ED
5400 gen6_gt_check_fifodbg(dev_priv);
5401}
5402
5403static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
5404{
c5836c27 5405 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
b5144075
JN
5406 /* something from same cacheline, but !FORCEWAKE_MT */
5407 POSTING_READ(ECOBUS);
6590190d
ED
5408 gen6_gt_check_fifodbg(dev_priv);
5409}
5410
5411/*
5412 * see gen6_gt_force_wake_get()
5413 */
5414void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
5415{
5416 unsigned long irqflags;
5417
5418 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
5419 if (--dev_priv->forcewake_count == 0)
5420 dev_priv->gt.force_wake_put(dev_priv);
5421 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
5422}
5423
5424int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
5425{
5426 int ret = 0;
5427
5428 if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
5429 int loop = 500;
5430 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
5431 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
5432 udelay(10);
5433 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
5434 }
5435 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
5436 ++ret;
5437 dev_priv->gt_fifo_count = fifo;
5438 }
5439 dev_priv->gt_fifo_count--;
5440
5441 return ret;
5442}
5443
16995a9f
CW
5444static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
5445{
5446 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
b5144075
JN
5447 /* something from same cacheline, but !FORCEWAKE_VLV */
5448 POSTING_READ(FORCEWAKE_ACK_VLV);
16995a9f
CW
5449}
5450
6590190d
ED
5451static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
5452{
83983c8b 5453 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
057d3860 5454 FORCEWAKE_ACK_TIMEOUT_MS))
8a038fd6 5455 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
6590190d 5456
c5836c27 5457 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
ed5de399
JB
5458 I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
5459 _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
6590190d 5460
83983c8b 5461 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
057d3860 5462 FORCEWAKE_ACK_TIMEOUT_MS))
ed5de399
JB
5463 DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
5464
5465 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
5466 FORCEWAKE_KERNEL),
5467 FORCEWAKE_ACK_TIMEOUT_MS))
5468 DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
6590190d 5469
8693a824 5470 /* WaRsForcewakeWaitTC0:vlv */
6590190d
ED
5471 __gen6_gt_wait_for_thread_c0(dev_priv);
5472}
5473
5474static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
5475{
c5836c27 5476 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
ed5de399
JB
5477 I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
5478 _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5479 /* The below doubles as a POSTING_READ */
5ab140a4 5480 gen6_gt_check_fifodbg(dev_priv);
6590190d
ED
5481}
5482
16995a9f
CW
5483void intel_gt_reset(struct drm_device *dev)
5484{
5485 struct drm_i915_private *dev_priv = dev->dev_private;
5486
5487 if (IS_VALLEYVIEW(dev)) {
5488 vlv_force_wake_reset(dev_priv);
5489 } else if (INTEL_INFO(dev)->gen >= 6) {
5490 __gen6_gt_force_wake_reset(dev_priv);
5491 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5492 __gen6_gt_force_wake_mt_reset(dev_priv);
5493 }
5494}
5495
6590190d
ED
5496void intel_gt_init(struct drm_device *dev)
5497{
5498 struct drm_i915_private *dev_priv = dev->dev_private;
5499
5500 spin_lock_init(&dev_priv->gt_lock);
5501
16995a9f
CW
5502 intel_gt_reset(dev);
5503
6590190d
ED
5504 if (IS_VALLEYVIEW(dev)) {
5505 dev_priv->gt.force_wake_get = vlv_force_wake_get;
5506 dev_priv->gt.force_wake_put = vlv_force_wake_put;
36ec8f87
DV
5507 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5508 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
5509 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
5510 } else if (IS_GEN6(dev)) {
6590190d
ED
5511 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
5512 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
6590190d 5513 }
1a01ab3b
JB
5514 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5515 intel_gen6_powersave_work);
6590190d
ED
5516}
5517
42c0526c
BW
5518int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5519{
4fc688ce 5520 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
42c0526c
BW
5521
5522 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5523 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5524 return -EAGAIN;
5525 }
5526
5527 I915_WRITE(GEN6_PCODE_DATA, *val);
5528 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5529
5530 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5531 500)) {
5532 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5533 return -ETIMEDOUT;
5534 }
5535
5536 *val = I915_READ(GEN6_PCODE_DATA);
5537 I915_WRITE(GEN6_PCODE_DATA, 0);
5538
5539 return 0;
5540}
5541
5542int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5543{
4fc688ce 5544 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
42c0526c
BW
5545
5546 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5547 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5548 return -EAGAIN;
5549 }
5550
5551 I915_WRITE(GEN6_PCODE_DATA, val);
5552 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5553
5554 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5555 500)) {
5556 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5557 return -ETIMEDOUT;
5558 }
5559
5560 I915_WRITE(GEN6_PCODE_DATA, 0);
5561
5562 return 0;
5563}
a0e4e199 5564
855ba3be
JB
5565int vlv_gpu_freq(int ddr_freq, int val)
5566{
5567 int mult, base;
5568
5569 switch (ddr_freq) {
5570 case 800:
5571 mult = 20;
5572 base = 120;
5573 break;
5574 case 1066:
5575 mult = 22;
5576 base = 133;
5577 break;
5578 case 1333:
5579 mult = 21;
5580 base = 125;
5581 break;
5582 default:
5583 return -1;
5584 }
5585
5586 return ((val - 0xbd) * mult) + base;
5587}
5588
5589int vlv_freq_opcode(int ddr_freq, int val)
5590{
5591 int mult, base;
5592
5593 switch (ddr_freq) {
5594 case 800:
5595 mult = 20;
5596 base = 120;
5597 break;
5598 case 1066:
5599 mult = 22;
5600 base = 133;
5601 break;
5602 case 1333:
5603 mult = 21;
5604 base = 125;
5605 break;
5606 default:
5607 return -1;
5608 }
5609
5610 val /= mult;
5611 val -= base / mult;
5612 val += 0xbd;
5613
5614 if (val > 0xea)
5615 val = 0xea;
5616
5617 return val;
5618}
5619