]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/intel_ringbuffer.c
drm/i915: Reset the HEAD pointer for the ring after writing START
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
CommitLineData
62fdfeaf
EA
1/*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
760285e7 30#include <drm/drmP.h>
62fdfeaf 31#include "i915_drv.h"
760285e7 32#include <drm/i915_drm.h>
62fdfeaf 33#include "i915_trace.h"
881f47b6 34#include "intel_drv.h"
62fdfeaf 35
48d82387
OM
36bool
37intel_ring_initialized(struct intel_engine_cs *ring)
38{
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51}
52
82e104cc 53int __intel_ring_space(int head, int tail, int size)
c7dca47b 54{
1cf0ba14 55 int space = head - (tail + I915_RING_FREE_SPACE);
c7dca47b 56 if (space < 0)
1cf0ba14 57 space += size;
c7dca47b
CW
58 return space;
59}
60
82e104cc 61int intel_ring_space(struct intel_ringbuffer *ringbuf)
1cf0ba14 62{
82e104cc
OM
63 return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64 ringbuf->tail, ringbuf->size);
1cf0ba14
CW
65}
66
82e104cc 67bool intel_ring_stopped(struct intel_engine_cs *ring)
09246732
CW
68{
69 struct drm_i915_private *dev_priv = ring->dev->dev_private;
88b4aa87
MK
70 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
71}
09246732 72
a4872ba6 73void __intel_ring_advance(struct intel_engine_cs *ring)
88b4aa87 74{
93b0a4e0
OM
75 struct intel_ringbuffer *ringbuf = ring->buffer;
76 ringbuf->tail &= ringbuf->size - 1;
88b4aa87 77 if (intel_ring_stopped(ring))
09246732 78 return;
93b0a4e0 79 ring->write_tail(ring, ringbuf->tail);
09246732
CW
80}
81
b72f3acb 82static int
a4872ba6 83gen2_render_ring_flush(struct intel_engine_cs *ring,
46f0f8d1
CW
84 u32 invalidate_domains,
85 u32 flush_domains)
86{
87 u32 cmd;
88 int ret;
89
90 cmd = MI_FLUSH;
31b14c9f 91 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
46f0f8d1
CW
92 cmd |= MI_NO_WRITE_FLUSH;
93
94 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
95 cmd |= MI_READ_FLUSH;
96
97 ret = intel_ring_begin(ring, 2);
98 if (ret)
99 return ret;
100
101 intel_ring_emit(ring, cmd);
102 intel_ring_emit(ring, MI_NOOP);
103 intel_ring_advance(ring);
104
105 return 0;
106}
107
108static int
a4872ba6 109gen4_render_ring_flush(struct intel_engine_cs *ring,
46f0f8d1
CW
110 u32 invalidate_domains,
111 u32 flush_domains)
62fdfeaf 112{
78501eac 113 struct drm_device *dev = ring->dev;
6f392d54 114 u32 cmd;
b72f3acb 115 int ret;
6f392d54 116
36d527de
CW
117 /*
118 * read/write caches:
119 *
120 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
122 * also flushed at 2d versus 3d pipeline switches.
123 *
124 * read-only caches:
125 *
126 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127 * MI_READ_FLUSH is set, and is always flushed on 965.
128 *
129 * I915_GEM_DOMAIN_COMMAND may not exist?
130 *
131 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132 * invalidated when MI_EXE_FLUSH is set.
133 *
134 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135 * invalidated with every MI_FLUSH.
136 *
137 * TLBs:
138 *
139 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142 * are flushed at any MI_FLUSH.
143 */
144
145 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
46f0f8d1 146 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
36d527de 147 cmd &= ~MI_NO_WRITE_FLUSH;
36d527de
CW
148 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
149 cmd |= MI_EXE_FLUSH;
62fdfeaf 150
36d527de
CW
151 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152 (IS_G4X(dev) || IS_GEN5(dev)))
153 cmd |= MI_INVALIDATE_ISP;
70eac33e 154
36d527de
CW
155 ret = intel_ring_begin(ring, 2);
156 if (ret)
157 return ret;
b72f3acb 158
36d527de
CW
159 intel_ring_emit(ring, cmd);
160 intel_ring_emit(ring, MI_NOOP);
161 intel_ring_advance(ring);
b72f3acb
CW
162
163 return 0;
8187a2b7
ZN
164}
165
8d315287
JB
166/**
167 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168 * implementing two workarounds on gen6. From section 1.4.7.1
169 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
170 *
171 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172 * produced by non-pipelined state commands), software needs to first
173 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
174 * 0.
175 *
176 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
178 *
179 * And the workaround for these two requires this workaround first:
180 *
181 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182 * BEFORE the pipe-control with a post-sync op and no write-cache
183 * flushes.
184 *
185 * And this last workaround is tricky because of the requirements on
186 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
187 * volume 2 part 1:
188 *
189 * "1 of the following must also be set:
190 * - Render Target Cache Flush Enable ([12] of DW1)
191 * - Depth Cache Flush Enable ([0] of DW1)
192 * - Stall at Pixel Scoreboard ([1] of DW1)
193 * - Depth Stall ([13] of DW1)
194 * - Post-Sync Operation ([13] of DW1)
195 * - Notify Enable ([8] of DW1)"
196 *
197 * The cache flushes require the workaround flush that triggered this
198 * one, so we can't use it. Depth stall would trigger the same.
199 * Post-sync nonzero is what triggered this second workaround, so we
200 * can't use that one either. Notify enable is IRQs, which aren't
201 * really our business. That leaves only stall at scoreboard.
202 */
203static int
a4872ba6 204intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
8d315287 205{
18393f63 206 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
8d315287
JB
207 int ret;
208
209
210 ret = intel_ring_begin(ring, 6);
211 if (ret)
212 return ret;
213
214 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216 PIPE_CONTROL_STALL_AT_SCOREBOARD);
217 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218 intel_ring_emit(ring, 0); /* low dword */
219 intel_ring_emit(ring, 0); /* high dword */
220 intel_ring_emit(ring, MI_NOOP);
221 intel_ring_advance(ring);
222
223 ret = intel_ring_begin(ring, 6);
224 if (ret)
225 return ret;
226
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230 intel_ring_emit(ring, 0);
231 intel_ring_emit(ring, 0);
232 intel_ring_emit(ring, MI_NOOP);
233 intel_ring_advance(ring);
234
235 return 0;
236}
237
238static int
a4872ba6 239gen6_render_ring_flush(struct intel_engine_cs *ring,
8d315287
JB
240 u32 invalidate_domains, u32 flush_domains)
241{
242 u32 flags = 0;
18393f63 243 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
8d315287
JB
244 int ret;
245
b3111509
PZ
246 /* Force SNB workarounds for PIPE_CONTROL flushes */
247 ret = intel_emit_post_sync_nonzero_flush(ring);
248 if (ret)
249 return ret;
250
8d315287
JB
251 /* Just flush everything. Experiments have shown that reducing the
252 * number of bits based on the write domains has little performance
253 * impact.
254 */
7d54a904
CW
255 if (flush_domains) {
256 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258 /*
259 * Ensure that any following seqno writes only happen
260 * when the render cache is indeed flushed.
261 */
97f209bc 262 flags |= PIPE_CONTROL_CS_STALL;
7d54a904
CW
263 }
264 if (invalidate_domains) {
265 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271 /*
272 * TLB invalidate requires a post-sync write.
273 */
3ac78313 274 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
7d54a904 275 }
8d315287 276
6c6cf5aa 277 ret = intel_ring_begin(ring, 4);
8d315287
JB
278 if (ret)
279 return ret;
280
6c6cf5aa 281 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
8d315287
JB
282 intel_ring_emit(ring, flags);
283 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
6c6cf5aa 284 intel_ring_emit(ring, 0);
8d315287
JB
285 intel_ring_advance(ring);
286
287 return 0;
288}
289
f3987631 290static int
a4872ba6 291gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
f3987631
PZ
292{
293 int ret;
294
295 ret = intel_ring_begin(ring, 4);
296 if (ret)
297 return ret;
298
299 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301 PIPE_CONTROL_STALL_AT_SCOREBOARD);
302 intel_ring_emit(ring, 0);
303 intel_ring_emit(ring, 0);
304 intel_ring_advance(ring);
305
306 return 0;
307}
308
a4872ba6 309static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
fd3da6c9
RV
310{
311 int ret;
312
313 if (!ring->fbc_dirty)
314 return 0;
315
37c1d94f 316 ret = intel_ring_begin(ring, 6);
fd3da6c9
RV
317 if (ret)
318 return ret;
fd3da6c9
RV
319 /* WaFbcNukeOn3DBlt:ivb/hsw */
320 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321 intel_ring_emit(ring, MSG_FBC_REND_STATE);
322 intel_ring_emit(ring, value);
37c1d94f
VS
323 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324 intel_ring_emit(ring, MSG_FBC_REND_STATE);
325 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
fd3da6c9
RV
326 intel_ring_advance(ring);
327
328 ring->fbc_dirty = false;
329 return 0;
330}
331
4772eaeb 332static int
a4872ba6 333gen7_render_ring_flush(struct intel_engine_cs *ring,
4772eaeb
PZ
334 u32 invalidate_domains, u32 flush_domains)
335{
336 u32 flags = 0;
18393f63 337 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
4772eaeb
PZ
338 int ret;
339
f3987631
PZ
340 /*
341 * Ensure that any following seqno writes only happen when the render
342 * cache is indeed flushed.
343 *
344 * Workaround: 4th PIPE_CONTROL command (except the ones with only
345 * read-cache invalidate bits set) must have the CS_STALL bit set. We
346 * don't try to be clever and just set it unconditionally.
347 */
348 flags |= PIPE_CONTROL_CS_STALL;
349
4772eaeb
PZ
350 /* Just flush everything. Experiments have shown that reducing the
351 * number of bits based on the write domains has little performance
352 * impact.
353 */
354 if (flush_domains) {
355 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
4772eaeb
PZ
357 }
358 if (invalidate_domains) {
359 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365 /*
366 * TLB invalidate requires a post-sync write.
367 */
368 flags |= PIPE_CONTROL_QW_WRITE;
b9e1faa7 369 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
f3987631
PZ
370
371 /* Workaround: we must issue a pipe_control with CS-stall bit
372 * set before a pipe_control command that has the state cache
373 * invalidate bit set. */
374 gen7_render_ring_cs_stall_wa(ring);
4772eaeb
PZ
375 }
376
377 ret = intel_ring_begin(ring, 4);
378 if (ret)
379 return ret;
380
381 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
382 intel_ring_emit(ring, flags);
b9e1faa7 383 intel_ring_emit(ring, scratch_addr);
4772eaeb
PZ
384 intel_ring_emit(ring, 0);
385 intel_ring_advance(ring);
386
9688ecad 387 if (!invalidate_domains && flush_domains)
fd3da6c9
RV
388 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
389
4772eaeb
PZ
390 return 0;
391}
392
884ceace
KG
393static int
394gen8_emit_pipe_control(struct intel_engine_cs *ring,
395 u32 flags, u32 scratch_addr)
396{
397 int ret;
398
399 ret = intel_ring_begin(ring, 6);
400 if (ret)
401 return ret;
402
403 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
404 intel_ring_emit(ring, flags);
405 intel_ring_emit(ring, scratch_addr);
406 intel_ring_emit(ring, 0);
407 intel_ring_emit(ring, 0);
408 intel_ring_emit(ring, 0);
409 intel_ring_advance(ring);
410
411 return 0;
412}
413
a5f3d68e 414static int
a4872ba6 415gen8_render_ring_flush(struct intel_engine_cs *ring,
a5f3d68e
BW
416 u32 invalidate_domains, u32 flush_domains)
417{
418 u32 flags = 0;
18393f63 419 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
02c9f7e3 420 int ret;
a5f3d68e
BW
421
422 flags |= PIPE_CONTROL_CS_STALL;
423
424 if (flush_domains) {
425 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
426 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
427 }
428 if (invalidate_domains) {
429 flags |= PIPE_CONTROL_TLB_INVALIDATE;
430 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
431 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
432 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
433 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
434 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
435 flags |= PIPE_CONTROL_QW_WRITE;
436 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
02c9f7e3
KG
437
438 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
439 ret = gen8_emit_pipe_control(ring,
440 PIPE_CONTROL_CS_STALL |
441 PIPE_CONTROL_STALL_AT_SCOREBOARD,
442 0);
443 if (ret)
444 return ret;
a5f3d68e
BW
445 }
446
c5ad011d
RV
447 ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
448 if (ret)
449 return ret;
450
451 if (!invalidate_domains && flush_domains)
452 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
453
454 return 0;
a5f3d68e
BW
455}
456
a4872ba6 457static void ring_write_tail(struct intel_engine_cs *ring,
297b0c5b 458 u32 value)
d46eefa2 459{
4640c4ff 460 struct drm_i915_private *dev_priv = ring->dev->dev_private;
297b0c5b 461 I915_WRITE_TAIL(ring, value);
d46eefa2
XH
462}
463
a4872ba6 464u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
8187a2b7 465{
4640c4ff 466 struct drm_i915_private *dev_priv = ring->dev->dev_private;
50877445 467 u64 acthd;
8187a2b7 468
50877445
CW
469 if (INTEL_INFO(ring->dev)->gen >= 8)
470 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
471 RING_ACTHD_UDW(ring->mmio_base));
472 else if (INTEL_INFO(ring->dev)->gen >= 4)
473 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
474 else
475 acthd = I915_READ(ACTHD);
476
477 return acthd;
8187a2b7
ZN
478}
479
a4872ba6 480static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
035dc1e0
DV
481{
482 struct drm_i915_private *dev_priv = ring->dev->dev_private;
483 u32 addr;
484
485 addr = dev_priv->status_page_dmah->busaddr;
486 if (INTEL_INFO(ring->dev)->gen >= 4)
487 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
488 I915_WRITE(HWS_PGA, addr);
489}
490
a4872ba6 491static bool stop_ring(struct intel_engine_cs *ring)
8187a2b7 492{
9991ae78 493 struct drm_i915_private *dev_priv = to_i915(ring->dev);
8187a2b7 494
9991ae78
CW
495 if (!IS_GEN2(ring->dev)) {
496 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
403bdd10
DV
497 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
498 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
9bec9b13
CW
499 /* Sometimes we observe that the idle flag is not
500 * set even though the ring is empty. So double
501 * check before giving up.
502 */
503 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
504 return false;
9991ae78
CW
505 }
506 }
b7884eb4 507
7f2ab699 508 I915_WRITE_CTL(ring, 0);
570ef608 509 I915_WRITE_HEAD(ring, 0);
78501eac 510 ring->write_tail(ring, 0);
8187a2b7 511
9991ae78
CW
512 if (!IS_GEN2(ring->dev)) {
513 (void)I915_READ_CTL(ring);
514 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
515 }
a51435a3 516
9991ae78
CW
517 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
518}
8187a2b7 519
a4872ba6 520static int init_ring_common(struct intel_engine_cs *ring)
9991ae78
CW
521{
522 struct drm_device *dev = ring->dev;
523 struct drm_i915_private *dev_priv = dev->dev_private;
93b0a4e0
OM
524 struct intel_ringbuffer *ringbuf = ring->buffer;
525 struct drm_i915_gem_object *obj = ringbuf->obj;
9991ae78
CW
526 int ret = 0;
527
528 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
529
530 if (!stop_ring(ring)) {
531 /* G45 ring initialization often fails to reset head to zero */
6fd0d56e
CW
532 DRM_DEBUG_KMS("%s head not reset to zero "
533 "ctl %08x head %08x tail %08x start %08x\n",
534 ring->name,
535 I915_READ_CTL(ring),
536 I915_READ_HEAD(ring),
537 I915_READ_TAIL(ring),
538 I915_READ_START(ring));
8187a2b7 539
9991ae78 540 if (!stop_ring(ring)) {
6fd0d56e
CW
541 DRM_ERROR("failed to set %s head to zero "
542 "ctl %08x head %08x tail %08x start %08x\n",
543 ring->name,
544 I915_READ_CTL(ring),
545 I915_READ_HEAD(ring),
546 I915_READ_TAIL(ring),
547 I915_READ_START(ring));
9991ae78
CW
548 ret = -EIO;
549 goto out;
6fd0d56e 550 }
8187a2b7
ZN
551 }
552
9991ae78
CW
553 if (I915_NEED_GFX_HWS(dev))
554 intel_ring_setup_status_page(ring);
555 else
556 ring_setup_phys_status_page(ring);
557
ece4a17d
JK
558 /* Enforce ordering by reading HEAD register back */
559 I915_READ_HEAD(ring);
560
0d8957c8
DV
561 /* Initialize the ring. This must happen _after_ we've cleared the ring
562 * registers with the above sequence (the readback of the HEAD registers
563 * also enforces ordering), otherwise the hw might lose the new ring
564 * register values. */
f343c5f6 565 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
95468892
CW
566
567 /* WaClearRingBufHeadRegAtInit:ctg,elk */
568 if (I915_READ_HEAD(ring))
569 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
570 ring->name, I915_READ_HEAD(ring));
571 I915_WRITE_HEAD(ring, 0);
572 (void)I915_READ_HEAD(ring);
573
7f2ab699 574 I915_WRITE_CTL(ring,
93b0a4e0 575 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
5d031e5b 576 | RING_VALID);
8187a2b7 577
8187a2b7 578 /* If the head is still not zero, the ring is dead */
f01db988 579 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
f343c5f6 580 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
f01db988 581 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
e74cfed5 582 DRM_ERROR("%s initialization failed "
48e48a0b
CW
583 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
584 ring->name,
585 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
586 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
587 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
b7884eb4
DV
588 ret = -EIO;
589 goto out;
8187a2b7
ZN
590 }
591
78501eac
CW
592 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
593 i915_kernel_lost_context(ring->dev);
8187a2b7 594 else {
93b0a4e0
OM
595 ringbuf->head = I915_READ_HEAD(ring);
596 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
82e104cc 597 ringbuf->space = intel_ring_space(ringbuf);
93b0a4e0 598 ringbuf->last_retired_head = -1;
8187a2b7 599 }
1ec14ad3 600
50f018df
CW
601 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
602
b7884eb4 603out:
c8d9a590 604 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
b7884eb4
DV
605
606 return ret;
8187a2b7
ZN
607}
608
9b1136d5
OM
609void
610intel_fini_pipe_control(struct intel_engine_cs *ring)
611{
612 struct drm_device *dev = ring->dev;
613
614 if (ring->scratch.obj == NULL)
615 return;
616
617 if (INTEL_INFO(dev)->gen >= 5) {
618 kunmap(sg_page(ring->scratch.obj->pages->sgl));
619 i915_gem_object_ggtt_unpin(ring->scratch.obj);
620 }
621
622 drm_gem_object_unreference(&ring->scratch.obj->base);
623 ring->scratch.obj = NULL;
624}
625
626int
627intel_init_pipe_control(struct intel_engine_cs *ring)
c6df541c 628{
c6df541c
CW
629 int ret;
630
0d1aacac 631 if (ring->scratch.obj)
c6df541c
CW
632 return 0;
633
0d1aacac
CW
634 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
635 if (ring->scratch.obj == NULL) {
c6df541c
CW
636 DRM_ERROR("Failed to allocate seqno page\n");
637 ret = -ENOMEM;
638 goto err;
639 }
e4ffd173 640
a9cc726c
DV
641 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
642 if (ret)
643 goto err_unref;
c6df541c 644
1ec9e26d 645 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
c6df541c
CW
646 if (ret)
647 goto err_unref;
648
0d1aacac
CW
649 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
650 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
651 if (ring->scratch.cpu_page == NULL) {
56b085a0 652 ret = -ENOMEM;
c6df541c 653 goto err_unpin;
56b085a0 654 }
c6df541c 655
2b1086cc 656 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
0d1aacac 657 ring->name, ring->scratch.gtt_offset);
c6df541c
CW
658 return 0;
659
660err_unpin:
d7f46fc4 661 i915_gem_object_ggtt_unpin(ring->scratch.obj);
c6df541c 662err_unref:
0d1aacac 663 drm_gem_object_unreference(&ring->scratch.obj->base);
c6df541c 664err:
c6df541c
CW
665 return ret;
666}
667
86d7f238
AS
668static inline void intel_ring_emit_wa(struct intel_engine_cs *ring,
669 u32 addr, u32 value)
670{
888b5995
AS
671 struct drm_device *dev = ring->dev;
672 struct drm_i915_private *dev_priv = dev->dev_private;
673
04ad2dc7 674 if (WARN_ON(dev_priv->num_wa_regs >= I915_MAX_WA_REGS))
888b5995
AS
675 return;
676
86d7f238
AS
677 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
678 intel_ring_emit(ring, addr);
679 intel_ring_emit(ring, value);
888b5995
AS
680
681 dev_priv->intel_wa_regs[dev_priv->num_wa_regs].addr = addr;
b07ba1dc 682 dev_priv->intel_wa_regs[dev_priv->num_wa_regs].mask = value & 0xFFFF;
888b5995
AS
683 /* value is updated with the status of remaining bits of this
684 * register when it is read from debugfs file
685 */
686 dev_priv->intel_wa_regs[dev_priv->num_wa_regs].value = value;
687 dev_priv->num_wa_regs++;
688
689 return;
86d7f238
AS
690}
691
00e1e623 692static int bdw_init_workarounds(struct intel_engine_cs *ring)
86d7f238
AS
693{
694 int ret;
888b5995
AS
695 struct drm_device *dev = ring->dev;
696 struct drm_i915_private *dev_priv = dev->dev_private;
86d7f238
AS
697
698 /*
699 * workarounds applied in this fn are part of register state context,
700 * they need to be re-initialized followed by gpu reset, suspend/resume,
701 * module reload.
702 */
888b5995
AS
703 dev_priv->num_wa_regs = 0;
704 memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
86d7f238
AS
705
706 /*
707 * update the number of dwords required based on the
708 * actual number of workarounds applied
709 */
710 ret = intel_ring_begin(ring, 24);
711 if (ret)
712 return ret;
713
714 /* WaDisablePartialInstShootdown:bdw */
715 /* WaDisableThreadStallDopClockGating:bdw */
716 /* FIXME: Unclear whether we really need this on production bdw. */
717 intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
718 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
719 | STALL_DOP_GATING_DISABLE));
720
721 /* WaDisableDopClockGating:bdw May not be needed for production */
722 intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
723 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
724
725 /*
726 * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
727 * pre-production hardware
728 */
729 intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
730 _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS
731 | GEN8_SAMPLER_POWER_BYPASS_DIS));
732
733 intel_ring_emit_wa(ring, GEN7_HALF_SLICE_CHICKEN1,
734 _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
735
736 intel_ring_emit_wa(ring, COMMON_SLICE_CHICKEN2,
737 _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
738
739 /* Use Force Non-Coherent whenever executing a 3D context. This is a
740 * workaround for for a possible hang in the unlikely event a TLB
741 * invalidation occurs during a PSD flush.
742 */
743 intel_ring_emit_wa(ring, HDC_CHICKEN0,
744 _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
745
746 /* Wa4x4STCOptimizationDisable:bdw */
747 intel_ring_emit_wa(ring, CACHE_MODE_1,
748 _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
749
750 /*
751 * BSpec recommends 8x4 when MSAA is used,
752 * however in practice 16x4 seems fastest.
753 *
754 * Note that PS/WM thread counts depend on the WIZ hashing
755 * disable bit, which we don't touch here, but it's good
756 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
757 */
758 intel_ring_emit_wa(ring, GEN7_GT_MODE,
759 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
760
761 intel_ring_advance(ring);
762
888b5995
AS
763 DRM_DEBUG_DRIVER("Number of Workarounds applied: %d\n",
764 dev_priv->num_wa_regs);
765
86d7f238
AS
766 return 0;
767}
768
00e1e623
VS
769static int chv_init_workarounds(struct intel_engine_cs *ring)
770{
771 int ret;
772 struct drm_device *dev = ring->dev;
773 struct drm_i915_private *dev_priv = dev->dev_private;
774
775 /*
776 * workarounds applied in this fn are part of register state context,
777 * they need to be re-initialized followed by gpu reset, suspend/resume,
778 * module reload.
779 */
780 dev_priv->num_wa_regs = 0;
781 memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
782
783 ret = intel_ring_begin(ring, 12);
784 if (ret)
785 return ret;
786
787 /* WaDisablePartialInstShootdown:chv */
788 intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
789 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
790
791 /* WaDisableThreadStallDopClockGating:chv */
792 intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
793 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
794
795 /* WaDisableDopClockGating:chv (pre-production hw) */
796 intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
797 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
798
799 /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
800 intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
801 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
802
803 intel_ring_advance(ring);
804
805 return 0;
806}
807
a4872ba6 808static int init_render_ring(struct intel_engine_cs *ring)
8187a2b7 809{
78501eac 810 struct drm_device *dev = ring->dev;
1ec14ad3 811 struct drm_i915_private *dev_priv = dev->dev_private;
78501eac 812 int ret = init_ring_common(ring);
9c33baa6
KZ
813 if (ret)
814 return ret;
a69ffdbf 815
61a563a2
AG
816 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
817 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
6b26c86d 818 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1c8c38c5
CW
819
820 /* We need to disable the AsyncFlip performance optimisations in order
821 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
822 * programmed to '1' on all products.
8693a824 823 *
b3f797ac 824 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1c8c38c5
CW
825 */
826 if (INTEL_INFO(dev)->gen >= 6)
827 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
828
f05bb0c7 829 /* Required for the hardware to program scanline values for waiting */
01fa0302 830 /* WaEnableFlushTlbInvalidationMode:snb */
f05bb0c7
CW
831 if (INTEL_INFO(dev)->gen == 6)
832 I915_WRITE(GFX_MODE,
aa83e30d 833 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
f05bb0c7 834
01fa0302 835 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1c8c38c5
CW
836 if (IS_GEN7(dev))
837 I915_WRITE(GFX_MODE_GEN7,
01fa0302 838 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1c8c38c5 839 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
78501eac 840
8d315287 841 if (INTEL_INFO(dev)->gen >= 5) {
9b1136d5 842 ret = intel_init_pipe_control(ring);
c6df541c
CW
843 if (ret)
844 return ret;
845 }
846
5e13a0c5 847 if (IS_GEN6(dev)) {
3a69ddd6
KG
848 /* From the Sandybridge PRM, volume 1 part 3, page 24:
849 * "If this bit is set, STCunit will have LRA as replacement
850 * policy. [...] This bit must be reset. LRA replacement
851 * policy is not supported."
852 */
853 I915_WRITE(CACHE_MODE_0,
5e13a0c5 854 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
84f9f938
BW
855 }
856
6b26c86d
DV
857 if (INTEL_INFO(dev)->gen >= 6)
858 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
84f9f938 859
040d2baa 860 if (HAS_L3_DPF(dev))
35a85ac6 861 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
15b9f80e 862
8187a2b7
ZN
863 return ret;
864}
865
a4872ba6 866static void render_ring_cleanup(struct intel_engine_cs *ring)
c6df541c 867{
b45305fc 868 struct drm_device *dev = ring->dev;
3e78998a
BW
869 struct drm_i915_private *dev_priv = dev->dev_private;
870
871 if (dev_priv->semaphore_obj) {
872 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
873 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
874 dev_priv->semaphore_obj = NULL;
875 }
b45305fc 876
9b1136d5 877 intel_fini_pipe_control(ring);
c6df541c
CW
878}
879
3e78998a
BW
880static int gen8_rcs_signal(struct intel_engine_cs *signaller,
881 unsigned int num_dwords)
882{
883#define MBOX_UPDATE_DWORDS 8
884 struct drm_device *dev = signaller->dev;
885 struct drm_i915_private *dev_priv = dev->dev_private;
886 struct intel_engine_cs *waiter;
887 int i, ret, num_rings;
888
889 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
890 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
891#undef MBOX_UPDATE_DWORDS
892
893 ret = intel_ring_begin(signaller, num_dwords);
894 if (ret)
895 return ret;
896
897 for_each_ring(waiter, dev_priv, i) {
898 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
899 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
900 continue;
901
902 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
903 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
904 PIPE_CONTROL_QW_WRITE |
905 PIPE_CONTROL_FLUSH_ENABLE);
906 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
907 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
908 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
909 intel_ring_emit(signaller, 0);
910 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
911 MI_SEMAPHORE_TARGET(waiter->id));
912 intel_ring_emit(signaller, 0);
913 }
914
915 return 0;
916}
917
918static int gen8_xcs_signal(struct intel_engine_cs *signaller,
919 unsigned int num_dwords)
920{
921#define MBOX_UPDATE_DWORDS 6
922 struct drm_device *dev = signaller->dev;
923 struct drm_i915_private *dev_priv = dev->dev_private;
924 struct intel_engine_cs *waiter;
925 int i, ret, num_rings;
926
927 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
928 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
929#undef MBOX_UPDATE_DWORDS
930
931 ret = intel_ring_begin(signaller, num_dwords);
932 if (ret)
933 return ret;
934
935 for_each_ring(waiter, dev_priv, i) {
936 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
937 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
938 continue;
939
940 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
941 MI_FLUSH_DW_OP_STOREDW);
942 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
943 MI_FLUSH_DW_USE_GTT);
944 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
945 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
946 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
947 MI_SEMAPHORE_TARGET(waiter->id));
948 intel_ring_emit(signaller, 0);
949 }
950
951 return 0;
952}
953
a4872ba6 954static int gen6_signal(struct intel_engine_cs *signaller,
024a43e1 955 unsigned int num_dwords)
1ec14ad3 956{
024a43e1
BW
957 struct drm_device *dev = signaller->dev;
958 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 959 struct intel_engine_cs *useless;
a1444b79 960 int i, ret, num_rings;
78325f2d 961
a1444b79
BW
962#define MBOX_UPDATE_DWORDS 3
963 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
964 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
965#undef MBOX_UPDATE_DWORDS
024a43e1
BW
966
967 ret = intel_ring_begin(signaller, num_dwords);
968 if (ret)
969 return ret;
024a43e1 970
78325f2d
BW
971 for_each_ring(useless, dev_priv, i) {
972 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
973 if (mbox_reg != GEN6_NOSYNC) {
974 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
975 intel_ring_emit(signaller, mbox_reg);
976 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
78325f2d
BW
977 }
978 }
024a43e1 979
a1444b79
BW
980 /* If num_dwords was rounded, make sure the tail pointer is correct */
981 if (num_rings % 2 == 0)
982 intel_ring_emit(signaller, MI_NOOP);
983
024a43e1 984 return 0;
1ec14ad3
CW
985}
986
c8c99b0f
BW
987/**
988 * gen6_add_request - Update the semaphore mailbox registers
989 *
990 * @ring - ring that is adding a request
991 * @seqno - return seqno stuck into the ring
992 *
993 * Update the mailbox registers in the *other* rings with the current seqno.
994 * This acts like a signal in the canonical semaphore.
995 */
1ec14ad3 996static int
a4872ba6 997gen6_add_request(struct intel_engine_cs *ring)
1ec14ad3 998{
024a43e1 999 int ret;
52ed2325 1000
707d9cf9
BW
1001 if (ring->semaphore.signal)
1002 ret = ring->semaphore.signal(ring, 4);
1003 else
1004 ret = intel_ring_begin(ring, 4);
1005
1ec14ad3
CW
1006 if (ret)
1007 return ret;
1008
1ec14ad3
CW
1009 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1010 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1823521d 1011 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1ec14ad3 1012 intel_ring_emit(ring, MI_USER_INTERRUPT);
09246732 1013 __intel_ring_advance(ring);
1ec14ad3 1014
1ec14ad3
CW
1015 return 0;
1016}
1017
f72b3435
MK
1018static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1019 u32 seqno)
1020{
1021 struct drm_i915_private *dev_priv = dev->dev_private;
1022 return dev_priv->last_seqno < seqno;
1023}
1024
c8c99b0f
BW
1025/**
1026 * intel_ring_sync - sync the waiter to the signaller on seqno
1027 *
1028 * @waiter - ring that is waiting
1029 * @signaller - ring which has, or will signal
1030 * @seqno - seqno which the waiter will block on
1031 */
5ee426ca
BW
1032
1033static int
1034gen8_ring_sync(struct intel_engine_cs *waiter,
1035 struct intel_engine_cs *signaller,
1036 u32 seqno)
1037{
1038 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1039 int ret;
1040
1041 ret = intel_ring_begin(waiter, 4);
1042 if (ret)
1043 return ret;
1044
1045 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1046 MI_SEMAPHORE_GLOBAL_GTT |
bae4fcd2 1047 MI_SEMAPHORE_POLL |
5ee426ca
BW
1048 MI_SEMAPHORE_SAD_GTE_SDD);
1049 intel_ring_emit(waiter, seqno);
1050 intel_ring_emit(waiter,
1051 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1052 intel_ring_emit(waiter,
1053 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1054 intel_ring_advance(waiter);
1055 return 0;
1056}
1057
c8c99b0f 1058static int
a4872ba6
OM
1059gen6_ring_sync(struct intel_engine_cs *waiter,
1060 struct intel_engine_cs *signaller,
686cb5f9 1061 u32 seqno)
1ec14ad3 1062{
c8c99b0f
BW
1063 u32 dw1 = MI_SEMAPHORE_MBOX |
1064 MI_SEMAPHORE_COMPARE |
1065 MI_SEMAPHORE_REGISTER;
ebc348b2
BW
1066 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1067 int ret;
1ec14ad3 1068
1500f7ea
BW
1069 /* Throughout all of the GEM code, seqno passed implies our current
1070 * seqno is >= the last seqno executed. However for hardware the
1071 * comparison is strictly greater than.
1072 */
1073 seqno -= 1;
1074
ebc348b2 1075 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
686cb5f9 1076
c8c99b0f 1077 ret = intel_ring_begin(waiter, 4);
1ec14ad3
CW
1078 if (ret)
1079 return ret;
1080
f72b3435
MK
1081 /* If seqno wrap happened, omit the wait with no-ops */
1082 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
ebc348b2 1083 intel_ring_emit(waiter, dw1 | wait_mbox);
f72b3435
MK
1084 intel_ring_emit(waiter, seqno);
1085 intel_ring_emit(waiter, 0);
1086 intel_ring_emit(waiter, MI_NOOP);
1087 } else {
1088 intel_ring_emit(waiter, MI_NOOP);
1089 intel_ring_emit(waiter, MI_NOOP);
1090 intel_ring_emit(waiter, MI_NOOP);
1091 intel_ring_emit(waiter, MI_NOOP);
1092 }
c8c99b0f 1093 intel_ring_advance(waiter);
1ec14ad3
CW
1094
1095 return 0;
1096}
1097
c6df541c
CW
1098#define PIPE_CONTROL_FLUSH(ring__, addr__) \
1099do { \
fcbc34e4
KG
1100 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1101 PIPE_CONTROL_DEPTH_STALL); \
c6df541c
CW
1102 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1103 intel_ring_emit(ring__, 0); \
1104 intel_ring_emit(ring__, 0); \
1105} while (0)
1106
1107static int
a4872ba6 1108pc_render_add_request(struct intel_engine_cs *ring)
c6df541c 1109{
18393f63 1110 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
c6df541c
CW
1111 int ret;
1112
1113 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1114 * incoherent with writes to memory, i.e. completely fubar,
1115 * so we need to use PIPE_NOTIFY instead.
1116 *
1117 * However, we also need to workaround the qword write
1118 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1119 * memory before requesting an interrupt.
1120 */
1121 ret = intel_ring_begin(ring, 32);
1122 if (ret)
1123 return ret;
1124
fcbc34e4 1125 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
9d971b37
KG
1126 PIPE_CONTROL_WRITE_FLUSH |
1127 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
0d1aacac 1128 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1823521d 1129 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
c6df541c
CW
1130 intel_ring_emit(ring, 0);
1131 PIPE_CONTROL_FLUSH(ring, scratch_addr);
18393f63 1132 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
c6df541c 1133 PIPE_CONTROL_FLUSH(ring, scratch_addr);
18393f63 1134 scratch_addr += 2 * CACHELINE_BYTES;
c6df541c 1135 PIPE_CONTROL_FLUSH(ring, scratch_addr);
18393f63 1136 scratch_addr += 2 * CACHELINE_BYTES;
c6df541c 1137 PIPE_CONTROL_FLUSH(ring, scratch_addr);
18393f63 1138 scratch_addr += 2 * CACHELINE_BYTES;
c6df541c 1139 PIPE_CONTROL_FLUSH(ring, scratch_addr);
18393f63 1140 scratch_addr += 2 * CACHELINE_BYTES;
c6df541c 1141 PIPE_CONTROL_FLUSH(ring, scratch_addr);
a71d8d94 1142
fcbc34e4 1143 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
9d971b37
KG
1144 PIPE_CONTROL_WRITE_FLUSH |
1145 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
c6df541c 1146 PIPE_CONTROL_NOTIFY);
0d1aacac 1147 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1823521d 1148 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
c6df541c 1149 intel_ring_emit(ring, 0);
09246732 1150 __intel_ring_advance(ring);
c6df541c 1151
c6df541c
CW
1152 return 0;
1153}
1154
4cd53c0c 1155static u32
a4872ba6 1156gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
4cd53c0c 1157{
4cd53c0c
DV
1158 /* Workaround to force correct ordering between irq and seqno writes on
1159 * ivb (and maybe also on snb) by reading from a CS register (like
1160 * ACTHD) before reading the status page. */
50877445
CW
1161 if (!lazy_coherency) {
1162 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1163 POSTING_READ(RING_ACTHD(ring->mmio_base));
1164 }
1165
4cd53c0c
DV
1166 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1167}
1168
8187a2b7 1169static u32
a4872ba6 1170ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
8187a2b7 1171{
1ec14ad3
CW
1172 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1173}
1174
b70ec5bf 1175static void
a4872ba6 1176ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
b70ec5bf
MK
1177{
1178 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1179}
1180
c6df541c 1181static u32
a4872ba6 1182pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
c6df541c 1183{
0d1aacac 1184 return ring->scratch.cpu_page[0];
c6df541c
CW
1185}
1186
b70ec5bf 1187static void
a4872ba6 1188pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
b70ec5bf 1189{
0d1aacac 1190 ring->scratch.cpu_page[0] = seqno;
b70ec5bf
MK
1191}
1192
e48d8634 1193static bool
a4872ba6 1194gen5_ring_get_irq(struct intel_engine_cs *ring)
e48d8634
DV
1195{
1196 struct drm_device *dev = ring->dev;
4640c4ff 1197 struct drm_i915_private *dev_priv = dev->dev_private;
7338aefa 1198 unsigned long flags;
e48d8634
DV
1199
1200 if (!dev->irq_enabled)
1201 return false;
1202
7338aefa 1203 spin_lock_irqsave(&dev_priv->irq_lock, flags);
43eaea13 1204 if (ring->irq_refcount++ == 0)
480c8033 1205 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
7338aefa 1206 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
e48d8634
DV
1207
1208 return true;
1209}
1210
1211static void
a4872ba6 1212gen5_ring_put_irq(struct intel_engine_cs *ring)
e48d8634
DV
1213{
1214 struct drm_device *dev = ring->dev;
4640c4ff 1215 struct drm_i915_private *dev_priv = dev->dev_private;
7338aefa 1216 unsigned long flags;
e48d8634 1217
7338aefa 1218 spin_lock_irqsave(&dev_priv->irq_lock, flags);
43eaea13 1219 if (--ring->irq_refcount == 0)
480c8033 1220 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
7338aefa 1221 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
e48d8634
DV
1222}
1223
b13c2b96 1224static bool
a4872ba6 1225i9xx_ring_get_irq(struct intel_engine_cs *ring)
62fdfeaf 1226{
78501eac 1227 struct drm_device *dev = ring->dev;
4640c4ff 1228 struct drm_i915_private *dev_priv = dev->dev_private;
7338aefa 1229 unsigned long flags;
62fdfeaf 1230
b13c2b96
CW
1231 if (!dev->irq_enabled)
1232 return false;
1233
7338aefa 1234 spin_lock_irqsave(&dev_priv->irq_lock, flags);
c7113cc3 1235 if (ring->irq_refcount++ == 0) {
f637fde4
DV
1236 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1237 I915_WRITE(IMR, dev_priv->irq_mask);
1238 POSTING_READ(IMR);
1239 }
7338aefa 1240 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
b13c2b96
CW
1241
1242 return true;
62fdfeaf
EA
1243}
1244
8187a2b7 1245static void
a4872ba6 1246i9xx_ring_put_irq(struct intel_engine_cs *ring)
62fdfeaf 1247{
78501eac 1248 struct drm_device *dev = ring->dev;
4640c4ff 1249 struct drm_i915_private *dev_priv = dev->dev_private;
7338aefa 1250 unsigned long flags;
62fdfeaf 1251
7338aefa 1252 spin_lock_irqsave(&dev_priv->irq_lock, flags);
c7113cc3 1253 if (--ring->irq_refcount == 0) {
f637fde4
DV
1254 dev_priv->irq_mask |= ring->irq_enable_mask;
1255 I915_WRITE(IMR, dev_priv->irq_mask);
1256 POSTING_READ(IMR);
1257 }
7338aefa 1258 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
62fdfeaf
EA
1259}
1260
c2798b19 1261static bool
a4872ba6 1262i8xx_ring_get_irq(struct intel_engine_cs *ring)
c2798b19
CW
1263{
1264 struct drm_device *dev = ring->dev;
4640c4ff 1265 struct drm_i915_private *dev_priv = dev->dev_private;
7338aefa 1266 unsigned long flags;
c2798b19
CW
1267
1268 if (!dev->irq_enabled)
1269 return false;
1270
7338aefa 1271 spin_lock_irqsave(&dev_priv->irq_lock, flags);
c7113cc3 1272 if (ring->irq_refcount++ == 0) {
c2798b19
CW
1273 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1274 I915_WRITE16(IMR, dev_priv->irq_mask);
1275 POSTING_READ16(IMR);
1276 }
7338aefa 1277 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
c2798b19
CW
1278
1279 return true;
1280}
1281
1282static void
a4872ba6 1283i8xx_ring_put_irq(struct intel_engine_cs *ring)
c2798b19
CW
1284{
1285 struct drm_device *dev = ring->dev;
4640c4ff 1286 struct drm_i915_private *dev_priv = dev->dev_private;
7338aefa 1287 unsigned long flags;
c2798b19 1288
7338aefa 1289 spin_lock_irqsave(&dev_priv->irq_lock, flags);
c7113cc3 1290 if (--ring->irq_refcount == 0) {
c2798b19
CW
1291 dev_priv->irq_mask |= ring->irq_enable_mask;
1292 I915_WRITE16(IMR, dev_priv->irq_mask);
1293 POSTING_READ16(IMR);
1294 }
7338aefa 1295 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
c2798b19
CW
1296}
1297
a4872ba6 1298void intel_ring_setup_status_page(struct intel_engine_cs *ring)
8187a2b7 1299{
4593010b 1300 struct drm_device *dev = ring->dev;
4640c4ff 1301 struct drm_i915_private *dev_priv = ring->dev->dev_private;
4593010b
EA
1302 u32 mmio = 0;
1303
1304 /* The ring status page addresses are no longer next to the rest of
1305 * the ring registers as of gen7.
1306 */
1307 if (IS_GEN7(dev)) {
1308 switch (ring->id) {
96154f2f 1309 case RCS:
4593010b
EA
1310 mmio = RENDER_HWS_PGA_GEN7;
1311 break;
96154f2f 1312 case BCS:
4593010b
EA
1313 mmio = BLT_HWS_PGA_GEN7;
1314 break;
77fe2ff3
ZY
1315 /*
1316 * VCS2 actually doesn't exist on Gen7. Only shut up
1317 * gcc switch check warning
1318 */
1319 case VCS2:
96154f2f 1320 case VCS:
4593010b
EA
1321 mmio = BSD_HWS_PGA_GEN7;
1322 break;
4a3dd19d 1323 case VECS:
9a8a2213
BW
1324 mmio = VEBOX_HWS_PGA_GEN7;
1325 break;
4593010b
EA
1326 }
1327 } else if (IS_GEN6(ring->dev)) {
1328 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1329 } else {
eb0d4b75 1330 /* XXX: gen8 returns to sanity */
4593010b
EA
1331 mmio = RING_HWS_PGA(ring->mmio_base);
1332 }
1333
78501eac
CW
1334 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1335 POSTING_READ(mmio);
884020bf 1336
dc616b89
DL
1337 /*
1338 * Flush the TLB for this page
1339 *
1340 * FIXME: These two bits have disappeared on gen8, so a question
1341 * arises: do we still need this and if so how should we go about
1342 * invalidating the TLB?
1343 */
1344 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
884020bf 1345 u32 reg = RING_INSTPM(ring->mmio_base);
02f6a1e7
NKK
1346
1347 /* ring should be idle before issuing a sync flush*/
1348 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1349
884020bf
CW
1350 I915_WRITE(reg,
1351 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1352 INSTPM_SYNC_FLUSH));
1353 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1354 1000))
1355 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1356 ring->name);
1357 }
8187a2b7
ZN
1358}
1359
b72f3acb 1360static int
a4872ba6 1361bsd_ring_flush(struct intel_engine_cs *ring,
78501eac
CW
1362 u32 invalidate_domains,
1363 u32 flush_domains)
d1b851fc 1364{
b72f3acb
CW
1365 int ret;
1366
b72f3acb
CW
1367 ret = intel_ring_begin(ring, 2);
1368 if (ret)
1369 return ret;
1370
1371 intel_ring_emit(ring, MI_FLUSH);
1372 intel_ring_emit(ring, MI_NOOP);
1373 intel_ring_advance(ring);
1374 return 0;
d1b851fc
ZN
1375}
1376
3cce469c 1377static int
a4872ba6 1378i9xx_add_request(struct intel_engine_cs *ring)
d1b851fc 1379{
3cce469c
CW
1380 int ret;
1381
1382 ret = intel_ring_begin(ring, 4);
1383 if (ret)
1384 return ret;
6f392d54 1385
3cce469c
CW
1386 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1387 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1823521d 1388 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
3cce469c 1389 intel_ring_emit(ring, MI_USER_INTERRUPT);
09246732 1390 __intel_ring_advance(ring);
d1b851fc 1391
3cce469c 1392 return 0;
d1b851fc
ZN
1393}
1394
0f46832f 1395static bool
a4872ba6 1396gen6_ring_get_irq(struct intel_engine_cs *ring)
0f46832f
CW
1397{
1398 struct drm_device *dev = ring->dev;
4640c4ff 1399 struct drm_i915_private *dev_priv = dev->dev_private;
7338aefa 1400 unsigned long flags;
0f46832f
CW
1401
1402 if (!dev->irq_enabled)
1403 return false;
1404
7338aefa 1405 spin_lock_irqsave(&dev_priv->irq_lock, flags);
c7113cc3 1406 if (ring->irq_refcount++ == 0) {
040d2baa 1407 if (HAS_L3_DPF(dev) && ring->id == RCS)
cc609d5d
BW
1408 I915_WRITE_IMR(ring,
1409 ~(ring->irq_enable_mask |
35a85ac6 1410 GT_PARITY_ERROR(dev)));
15b9f80e
BW
1411 else
1412 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
480c8033 1413 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
0f46832f 1414 }
7338aefa 1415 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
0f46832f
CW
1416
1417 return true;
1418}
1419
1420static void
a4872ba6 1421gen6_ring_put_irq(struct intel_engine_cs *ring)
0f46832f
CW
1422{
1423 struct drm_device *dev = ring->dev;
4640c4ff 1424 struct drm_i915_private *dev_priv = dev->dev_private;
7338aefa 1425 unsigned long flags;
0f46832f 1426
7338aefa 1427 spin_lock_irqsave(&dev_priv->irq_lock, flags);
c7113cc3 1428 if (--ring->irq_refcount == 0) {
040d2baa 1429 if (HAS_L3_DPF(dev) && ring->id == RCS)
35a85ac6 1430 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
15b9f80e
BW
1431 else
1432 I915_WRITE_IMR(ring, ~0);
480c8033 1433 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1ec14ad3 1434 }
7338aefa 1435 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
d1b851fc
ZN
1436}
1437
a19d2933 1438static bool
a4872ba6 1439hsw_vebox_get_irq(struct intel_engine_cs *ring)
a19d2933
BW
1440{
1441 struct drm_device *dev = ring->dev;
1442 struct drm_i915_private *dev_priv = dev->dev_private;
1443 unsigned long flags;
1444
1445 if (!dev->irq_enabled)
1446 return false;
1447
59cdb63d 1448 spin_lock_irqsave(&dev_priv->irq_lock, flags);
c7113cc3 1449 if (ring->irq_refcount++ == 0) {
a19d2933 1450 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
480c8033 1451 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
a19d2933 1452 }
59cdb63d 1453 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
a19d2933
BW
1454
1455 return true;
1456}
1457
1458static void
a4872ba6 1459hsw_vebox_put_irq(struct intel_engine_cs *ring)
a19d2933
BW
1460{
1461 struct drm_device *dev = ring->dev;
1462 struct drm_i915_private *dev_priv = dev->dev_private;
1463 unsigned long flags;
1464
1465 if (!dev->irq_enabled)
1466 return;
1467
59cdb63d 1468 spin_lock_irqsave(&dev_priv->irq_lock, flags);
c7113cc3 1469 if (--ring->irq_refcount == 0) {
a19d2933 1470 I915_WRITE_IMR(ring, ~0);
480c8033 1471 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
a19d2933 1472 }
59cdb63d 1473 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
a19d2933
BW
1474}
1475
abd58f01 1476static bool
a4872ba6 1477gen8_ring_get_irq(struct intel_engine_cs *ring)
abd58f01
BW
1478{
1479 struct drm_device *dev = ring->dev;
1480 struct drm_i915_private *dev_priv = dev->dev_private;
1481 unsigned long flags;
1482
1483 if (!dev->irq_enabled)
1484 return false;
1485
1486 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1487 if (ring->irq_refcount++ == 0) {
1488 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1489 I915_WRITE_IMR(ring,
1490 ~(ring->irq_enable_mask |
1491 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1492 } else {
1493 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1494 }
1495 POSTING_READ(RING_IMR(ring->mmio_base));
1496 }
1497 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1498
1499 return true;
1500}
1501
1502static void
a4872ba6 1503gen8_ring_put_irq(struct intel_engine_cs *ring)
abd58f01
BW
1504{
1505 struct drm_device *dev = ring->dev;
1506 struct drm_i915_private *dev_priv = dev->dev_private;
1507 unsigned long flags;
1508
1509 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1510 if (--ring->irq_refcount == 0) {
1511 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1512 I915_WRITE_IMR(ring,
1513 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1514 } else {
1515 I915_WRITE_IMR(ring, ~0);
1516 }
1517 POSTING_READ(RING_IMR(ring->mmio_base));
1518 }
1519 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1520}
1521
d1b851fc 1522static int
a4872ba6 1523i965_dispatch_execbuffer(struct intel_engine_cs *ring,
9bcb144c 1524 u64 offset, u32 length,
d7d4eedd 1525 unsigned flags)
d1b851fc 1526{
e1f99ce6 1527 int ret;
78501eac 1528
e1f99ce6
CW
1529 ret = intel_ring_begin(ring, 2);
1530 if (ret)
1531 return ret;
1532
78501eac 1533 intel_ring_emit(ring,
65f56876
CW
1534 MI_BATCH_BUFFER_START |
1535 MI_BATCH_GTT |
d7d4eedd 1536 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
c4e7a414 1537 intel_ring_emit(ring, offset);
78501eac
CW
1538 intel_ring_advance(ring);
1539
d1b851fc
ZN
1540 return 0;
1541}
1542
b45305fc
DV
1543/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1544#define I830_BATCH_LIMIT (256*1024)
8187a2b7 1545static int
a4872ba6 1546i830_dispatch_execbuffer(struct intel_engine_cs *ring,
9bcb144c 1547 u64 offset, u32 len,
d7d4eedd 1548 unsigned flags)
62fdfeaf 1549{
c4e7a414 1550 int ret;
62fdfeaf 1551
b45305fc
DV
1552 if (flags & I915_DISPATCH_PINNED) {
1553 ret = intel_ring_begin(ring, 4);
1554 if (ret)
1555 return ret;
62fdfeaf 1556
b45305fc
DV
1557 intel_ring_emit(ring, MI_BATCH_BUFFER);
1558 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1559 intel_ring_emit(ring, offset + len - 8);
1560 intel_ring_emit(ring, MI_NOOP);
1561 intel_ring_advance(ring);
1562 } else {
0d1aacac 1563 u32 cs_offset = ring->scratch.gtt_offset;
b45305fc
DV
1564
1565 if (len > I830_BATCH_LIMIT)
1566 return -ENOSPC;
1567
1568 ret = intel_ring_begin(ring, 9+3);
1569 if (ret)
1570 return ret;
1571 /* Blit the batch (which has now all relocs applied) to the stable batch
1572 * scratch bo area (so that the CS never stumbles over its tlb
1573 * invalidation bug) ... */
1574 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1575 XY_SRC_COPY_BLT_WRITE_ALPHA |
1576 XY_SRC_COPY_BLT_WRITE_RGB);
1577 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1578 intel_ring_emit(ring, 0);
1579 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1580 intel_ring_emit(ring, cs_offset);
1581 intel_ring_emit(ring, 0);
1582 intel_ring_emit(ring, 4096);
1583 intel_ring_emit(ring, offset);
1584 intel_ring_emit(ring, MI_FLUSH);
1585
1586 /* ... and execute it. */
1587 intel_ring_emit(ring, MI_BATCH_BUFFER);
1588 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1589 intel_ring_emit(ring, cs_offset + len - 8);
1590 intel_ring_advance(ring);
1591 }
e1f99ce6 1592
fb3256da
DV
1593 return 0;
1594}
1595
1596static int
a4872ba6 1597i915_dispatch_execbuffer(struct intel_engine_cs *ring,
9bcb144c 1598 u64 offset, u32 len,
d7d4eedd 1599 unsigned flags)
fb3256da
DV
1600{
1601 int ret;
1602
1603 ret = intel_ring_begin(ring, 2);
1604 if (ret)
1605 return ret;
1606
65f56876 1607 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
d7d4eedd 1608 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
c4e7a414 1609 intel_ring_advance(ring);
62fdfeaf 1610
62fdfeaf
EA
1611 return 0;
1612}
1613
a4872ba6 1614static void cleanup_status_page(struct intel_engine_cs *ring)
62fdfeaf 1615{
05394f39 1616 struct drm_i915_gem_object *obj;
62fdfeaf 1617
8187a2b7
ZN
1618 obj = ring->status_page.obj;
1619 if (obj == NULL)
62fdfeaf 1620 return;
62fdfeaf 1621
9da3da66 1622 kunmap(sg_page(obj->pages->sgl));
d7f46fc4 1623 i915_gem_object_ggtt_unpin(obj);
05394f39 1624 drm_gem_object_unreference(&obj->base);
8187a2b7 1625 ring->status_page.obj = NULL;
62fdfeaf
EA
1626}
1627
a4872ba6 1628static int init_status_page(struct intel_engine_cs *ring)
62fdfeaf 1629{
05394f39 1630 struct drm_i915_gem_object *obj;
62fdfeaf 1631
e3efda49 1632 if ((obj = ring->status_page.obj) == NULL) {
1f767e02 1633 unsigned flags;
e3efda49 1634 int ret;
e4ffd173 1635
e3efda49
CW
1636 obj = i915_gem_alloc_object(ring->dev, 4096);
1637 if (obj == NULL) {
1638 DRM_ERROR("Failed to allocate status page\n");
1639 return -ENOMEM;
1640 }
62fdfeaf 1641
e3efda49
CW
1642 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1643 if (ret)
1644 goto err_unref;
1645
1f767e02
CW
1646 flags = 0;
1647 if (!HAS_LLC(ring->dev))
1648 /* On g33, we cannot place HWS above 256MiB, so
1649 * restrict its pinning to the low mappable arena.
1650 * Though this restriction is not documented for
1651 * gen4, gen5, or byt, they also behave similarly
1652 * and hang if the HWS is placed at the top of the
1653 * GTT. To generalise, it appears that all !llc
1654 * platforms have issues with us placing the HWS
1655 * above the mappable region (even though we never
1656 * actualy map it).
1657 */
1658 flags |= PIN_MAPPABLE;
1659 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
e3efda49
CW
1660 if (ret) {
1661err_unref:
1662 drm_gem_object_unreference(&obj->base);
1663 return ret;
1664 }
1665
1666 ring->status_page.obj = obj;
1667 }
62fdfeaf 1668
f343c5f6 1669 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
9da3da66 1670 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
8187a2b7 1671 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
62fdfeaf 1672
8187a2b7
ZN
1673 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1674 ring->name, ring->status_page.gfx_addr);
62fdfeaf
EA
1675
1676 return 0;
62fdfeaf
EA
1677}
1678
a4872ba6 1679static int init_phys_status_page(struct intel_engine_cs *ring)
6b8294a4
CW
1680{
1681 struct drm_i915_private *dev_priv = ring->dev->dev_private;
6b8294a4
CW
1682
1683 if (!dev_priv->status_page_dmah) {
1684 dev_priv->status_page_dmah =
1685 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1686 if (!dev_priv->status_page_dmah)
1687 return -ENOMEM;
1688 }
1689
6b8294a4
CW
1690 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1691 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1692
1693 return 0;
1694}
1695
84c2377f 1696void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2919d291
OM
1697{
1698 if (!ringbuf->obj)
1699 return;
1700
1701 iounmap(ringbuf->virtual_start);
1702 i915_gem_object_ggtt_unpin(ringbuf->obj);
1703 drm_gem_object_unreference(&ringbuf->obj->base);
1704 ringbuf->obj = NULL;
1705}
1706
84c2377f
OM
1707int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1708 struct intel_ringbuffer *ringbuf)
62fdfeaf 1709{
e3efda49 1710 struct drm_i915_private *dev_priv = to_i915(dev);
05394f39 1711 struct drm_i915_gem_object *obj;
dd785e35
CW
1712 int ret;
1713
2919d291 1714 if (ringbuf->obj)
e3efda49 1715 return 0;
62fdfeaf 1716
ebc052e0
CW
1717 obj = NULL;
1718 if (!HAS_LLC(dev))
93b0a4e0 1719 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
ebc052e0 1720 if (obj == NULL)
93b0a4e0 1721 obj = i915_gem_alloc_object(dev, ringbuf->size);
e3efda49
CW
1722 if (obj == NULL)
1723 return -ENOMEM;
8187a2b7 1724
24f3a8cf
AG
1725 /* mark ring buffers as read-only from GPU side by default */
1726 obj->gt_ro = 1;
1727
1ec9e26d 1728 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
dd785e35
CW
1729 if (ret)
1730 goto err_unref;
62fdfeaf 1731
3eef8918
CW
1732 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1733 if (ret)
1734 goto err_unpin;
1735
93b0a4e0 1736 ringbuf->virtual_start =
f343c5f6 1737 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
93b0a4e0
OM
1738 ringbuf->size);
1739 if (ringbuf->virtual_start == NULL) {
8187a2b7 1740 ret = -EINVAL;
dd785e35 1741 goto err_unpin;
62fdfeaf
EA
1742 }
1743
93b0a4e0 1744 ringbuf->obj = obj;
e3efda49
CW
1745 return 0;
1746
1747err_unpin:
1748 i915_gem_object_ggtt_unpin(obj);
1749err_unref:
1750 drm_gem_object_unreference(&obj->base);
1751 return ret;
1752}
1753
1754static int intel_init_ring_buffer(struct drm_device *dev,
a4872ba6 1755 struct intel_engine_cs *ring)
e3efda49 1756{
8ee14975 1757 struct intel_ringbuffer *ringbuf = ring->buffer;
e3efda49
CW
1758 int ret;
1759
8ee14975
OM
1760 if (ringbuf == NULL) {
1761 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1762 if (!ringbuf)
1763 return -ENOMEM;
1764 ring->buffer = ringbuf;
1765 }
1766
e3efda49
CW
1767 ring->dev = dev;
1768 INIT_LIST_HEAD(&ring->active_list);
1769 INIT_LIST_HEAD(&ring->request_list);
cc9130be 1770 INIT_LIST_HEAD(&ring->execlist_queue);
93b0a4e0 1771 ringbuf->size = 32 * PAGE_SIZE;
0c7dd53b 1772 ringbuf->ring = ring;
ebc348b2 1773 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
e3efda49
CW
1774
1775 init_waitqueue_head(&ring->irq_queue);
1776
1777 if (I915_NEED_GFX_HWS(dev)) {
1778 ret = init_status_page(ring);
1779 if (ret)
8ee14975 1780 goto error;
e3efda49
CW
1781 } else {
1782 BUG_ON(ring->id != RCS);
1783 ret = init_phys_status_page(ring);
1784 if (ret)
8ee14975 1785 goto error;
e3efda49
CW
1786 }
1787
2919d291 1788 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
e3efda49
CW
1789 if (ret) {
1790 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
8ee14975 1791 goto error;
e3efda49 1792 }
62fdfeaf 1793
55249baa
CW
1794 /* Workaround an erratum on the i830 which causes a hang if
1795 * the TAIL pointer points to within the last 2 cachelines
1796 * of the buffer.
1797 */
93b0a4e0 1798 ringbuf->effective_size = ringbuf->size;
e3efda49 1799 if (IS_I830(dev) || IS_845G(dev))
93b0a4e0 1800 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
55249baa 1801
44e895a8
BV
1802 ret = i915_cmd_parser_init_ring(ring);
1803 if (ret)
8ee14975
OM
1804 goto error;
1805
1806 ret = ring->init(ring);
1807 if (ret)
1808 goto error;
1809
1810 return 0;
351e3db2 1811
8ee14975
OM
1812error:
1813 kfree(ringbuf);
1814 ring->buffer = NULL;
1815 return ret;
62fdfeaf
EA
1816}
1817
a4872ba6 1818void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
62fdfeaf 1819{
e3efda49 1820 struct drm_i915_private *dev_priv = to_i915(ring->dev);
93b0a4e0 1821 struct intel_ringbuffer *ringbuf = ring->buffer;
33626e6a 1822
93b0a4e0 1823 if (!intel_ring_initialized(ring))
62fdfeaf
EA
1824 return;
1825
e3efda49 1826 intel_stop_ring_buffer(ring);
de8f0a50 1827 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
33626e6a 1828
2919d291 1829 intel_destroy_ringbuffer_obj(ringbuf);
3d57e5bd
BW
1830 ring->preallocated_lazy_request = NULL;
1831 ring->outstanding_lazy_seqno = 0;
78501eac 1832
8d19215b
ZN
1833 if (ring->cleanup)
1834 ring->cleanup(ring);
1835
78501eac 1836 cleanup_status_page(ring);
44e895a8
BV
1837
1838 i915_cmd_parser_fini_ring(ring);
8ee14975 1839
93b0a4e0 1840 kfree(ringbuf);
8ee14975 1841 ring->buffer = NULL;
62fdfeaf
EA
1842}
1843
a4872ba6 1844static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
a71d8d94 1845{
93b0a4e0 1846 struct intel_ringbuffer *ringbuf = ring->buffer;
a71d8d94 1847 struct drm_i915_gem_request *request;
1cf0ba14 1848 u32 seqno = 0;
a71d8d94
CW
1849 int ret;
1850
93b0a4e0
OM
1851 if (ringbuf->last_retired_head != -1) {
1852 ringbuf->head = ringbuf->last_retired_head;
1853 ringbuf->last_retired_head = -1;
1f70999f 1854
82e104cc 1855 ringbuf->space = intel_ring_space(ringbuf);
93b0a4e0 1856 if (ringbuf->space >= n)
a71d8d94
CW
1857 return 0;
1858 }
1859
1860 list_for_each_entry(request, &ring->request_list, list) {
82e104cc
OM
1861 if (__intel_ring_space(request->tail, ringbuf->tail,
1862 ringbuf->size) >= n) {
a71d8d94
CW
1863 seqno = request->seqno;
1864 break;
1865 }
a71d8d94
CW
1866 }
1867
1868 if (seqno == 0)
1869 return -ENOSPC;
1870
1f70999f 1871 ret = i915_wait_seqno(ring, seqno);
a71d8d94
CW
1872 if (ret)
1873 return ret;
1874
1cf0ba14 1875 i915_gem_retire_requests_ring(ring);
93b0a4e0
OM
1876 ringbuf->head = ringbuf->last_retired_head;
1877 ringbuf->last_retired_head = -1;
a71d8d94 1878
82e104cc 1879 ringbuf->space = intel_ring_space(ringbuf);
a71d8d94
CW
1880 return 0;
1881}
1882
a4872ba6 1883static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
62fdfeaf 1884{
78501eac 1885 struct drm_device *dev = ring->dev;
cae5852d 1886 struct drm_i915_private *dev_priv = dev->dev_private;
93b0a4e0 1887 struct intel_ringbuffer *ringbuf = ring->buffer;
78501eac 1888 unsigned long end;
a71d8d94 1889 int ret;
c7dca47b 1890
a71d8d94
CW
1891 ret = intel_ring_wait_request(ring, n);
1892 if (ret != -ENOSPC)
1893 return ret;
1894
09246732
CW
1895 /* force the tail write in case we have been skipping them */
1896 __intel_ring_advance(ring);
1897
63ed2cb2
DV
1898 /* With GEM the hangcheck timer should kick us out of the loop,
1899 * leaving it early runs the risk of corrupting GEM state (due
1900 * to running on almost untested codepaths). But on resume
1901 * timers don't work yet, so prevent a complete hang in that
1902 * case by choosing an insanely large timeout. */
1903 end = jiffies + 60 * HZ;
e6bfaf85 1904
dcfe0506 1905 trace_i915_ring_wait_begin(ring);
8187a2b7 1906 do {
93b0a4e0 1907 ringbuf->head = I915_READ_HEAD(ring);
82e104cc 1908 ringbuf->space = intel_ring_space(ringbuf);
93b0a4e0 1909 if (ringbuf->space >= n) {
dcfe0506
CW
1910 ret = 0;
1911 break;
62fdfeaf
EA
1912 }
1913
fb19e2ac
DV
1914 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1915 dev->primary->master) {
62fdfeaf
EA
1916 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1917 if (master_priv->sarea_priv)
1918 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1919 }
d1b851fc 1920
e60a0b10 1921 msleep(1);
d6b2c790 1922
dcfe0506
CW
1923 if (dev_priv->mm.interruptible && signal_pending(current)) {
1924 ret = -ERESTARTSYS;
1925 break;
1926 }
1927
33196ded
DV
1928 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1929 dev_priv->mm.interruptible);
d6b2c790 1930 if (ret)
dcfe0506
CW
1931 break;
1932
1933 if (time_after(jiffies, end)) {
1934 ret = -EBUSY;
1935 break;
1936 }
1937 } while (1);
db53a302 1938 trace_i915_ring_wait_end(ring);
dcfe0506 1939 return ret;
8187a2b7 1940}
62fdfeaf 1941
a4872ba6 1942static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
3e960501
CW
1943{
1944 uint32_t __iomem *virt;
93b0a4e0
OM
1945 struct intel_ringbuffer *ringbuf = ring->buffer;
1946 int rem = ringbuf->size - ringbuf->tail;
3e960501 1947
93b0a4e0 1948 if (ringbuf->space < rem) {
3e960501
CW
1949 int ret = ring_wait_for_space(ring, rem);
1950 if (ret)
1951 return ret;
1952 }
1953
93b0a4e0 1954 virt = ringbuf->virtual_start + ringbuf->tail;
3e960501
CW
1955 rem /= 4;
1956 while (rem--)
1957 iowrite32(MI_NOOP, virt++);
1958
93b0a4e0 1959 ringbuf->tail = 0;
82e104cc 1960 ringbuf->space = intel_ring_space(ringbuf);
3e960501
CW
1961
1962 return 0;
1963}
1964
a4872ba6 1965int intel_ring_idle(struct intel_engine_cs *ring)
3e960501
CW
1966{
1967 u32 seqno;
1968 int ret;
1969
1970 /* We need to add any requests required to flush the objects and ring */
1823521d 1971 if (ring->outstanding_lazy_seqno) {
0025c077 1972 ret = i915_add_request(ring, NULL);
3e960501
CW
1973 if (ret)
1974 return ret;
1975 }
1976
1977 /* Wait upon the last request to be completed */
1978 if (list_empty(&ring->request_list))
1979 return 0;
1980
1981 seqno = list_entry(ring->request_list.prev,
1982 struct drm_i915_gem_request,
1983 list)->seqno;
1984
1985 return i915_wait_seqno(ring, seqno);
1986}
1987
9d773091 1988static int
a4872ba6 1989intel_ring_alloc_seqno(struct intel_engine_cs *ring)
9d773091 1990{
1823521d 1991 if (ring->outstanding_lazy_seqno)
9d773091
CW
1992 return 0;
1993
3c0e234c
CW
1994 if (ring->preallocated_lazy_request == NULL) {
1995 struct drm_i915_gem_request *request;
1996
1997 request = kmalloc(sizeof(*request), GFP_KERNEL);
1998 if (request == NULL)
1999 return -ENOMEM;
2000
2001 ring->preallocated_lazy_request = request;
2002 }
2003
1823521d 2004 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
9d773091
CW
2005}
2006
a4872ba6 2007static int __intel_ring_prepare(struct intel_engine_cs *ring,
304d695c 2008 int bytes)
cbcc80df 2009{
93b0a4e0 2010 struct intel_ringbuffer *ringbuf = ring->buffer;
cbcc80df
MK
2011 int ret;
2012
93b0a4e0 2013 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
cbcc80df
MK
2014 ret = intel_wrap_ring_buffer(ring);
2015 if (unlikely(ret))
2016 return ret;
2017 }
2018
93b0a4e0 2019 if (unlikely(ringbuf->space < bytes)) {
cbcc80df
MK
2020 ret = ring_wait_for_space(ring, bytes);
2021 if (unlikely(ret))
2022 return ret;
2023 }
2024
cbcc80df
MK
2025 return 0;
2026}
2027
a4872ba6 2028int intel_ring_begin(struct intel_engine_cs *ring,
e1f99ce6 2029 int num_dwords)
8187a2b7 2030{
4640c4ff 2031 struct drm_i915_private *dev_priv = ring->dev->dev_private;
e1f99ce6 2032 int ret;
78501eac 2033
33196ded
DV
2034 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2035 dev_priv->mm.interruptible);
de2b9985
DV
2036 if (ret)
2037 return ret;
21dd3734 2038
304d695c
CW
2039 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2040 if (ret)
2041 return ret;
2042
9d773091
CW
2043 /* Preallocate the olr before touching the ring */
2044 ret = intel_ring_alloc_seqno(ring);
2045 if (ret)
2046 return ret;
2047
ee1b1e5e 2048 ring->buffer->space -= num_dwords * sizeof(uint32_t);
304d695c 2049 return 0;
8187a2b7 2050}
78501eac 2051
753b1ad4 2052/* Align the ring tail to a cacheline boundary */
a4872ba6 2053int intel_ring_cacheline_align(struct intel_engine_cs *ring)
753b1ad4 2054{
ee1b1e5e 2055 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
753b1ad4
VS
2056 int ret;
2057
2058 if (num_dwords == 0)
2059 return 0;
2060
18393f63 2061 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
753b1ad4
VS
2062 ret = intel_ring_begin(ring, num_dwords);
2063 if (ret)
2064 return ret;
2065
2066 while (num_dwords--)
2067 intel_ring_emit(ring, MI_NOOP);
2068
2069 intel_ring_advance(ring);
2070
2071 return 0;
2072}
2073
a4872ba6 2074void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
498d2ac1 2075{
3b2cc8ab
OM
2076 struct drm_device *dev = ring->dev;
2077 struct drm_i915_private *dev_priv = dev->dev_private;
498d2ac1 2078
1823521d 2079 BUG_ON(ring->outstanding_lazy_seqno);
498d2ac1 2080
3b2cc8ab 2081 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
f7e98ad4
MK
2082 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2083 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
3b2cc8ab 2084 if (HAS_VEBOX(dev))
5020150b 2085 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
e1f99ce6 2086 }
d97ed339 2087
f7e98ad4 2088 ring->set_seqno(ring, seqno);
92cab734 2089 ring->hangcheck.seqno = seqno;
8187a2b7 2090}
62fdfeaf 2091
a4872ba6 2092static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
297b0c5b 2093 u32 value)
881f47b6 2094{
4640c4ff 2095 struct drm_i915_private *dev_priv = ring->dev->dev_private;
881f47b6
XH
2096
2097 /* Every tail move must follow the sequence below */
12f55818
CW
2098
2099 /* Disable notification that the ring is IDLE. The GT
2100 * will then assume that it is busy and bring it out of rc6.
2101 */
0206e353 2102 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
12f55818
CW
2103 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2104
2105 /* Clear the context id. Here be magic! */
2106 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
0206e353 2107
12f55818 2108 /* Wait for the ring not to be idle, i.e. for it to wake up. */
0206e353 2109 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
12f55818
CW
2110 GEN6_BSD_SLEEP_INDICATOR) == 0,
2111 50))
2112 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
0206e353 2113
12f55818 2114 /* Now that the ring is fully powered up, update the tail */
0206e353 2115 I915_WRITE_TAIL(ring, value);
12f55818
CW
2116 POSTING_READ(RING_TAIL(ring->mmio_base));
2117
2118 /* Let the ring send IDLE messages to the GT again,
2119 * and so let it sleep to conserve power when idle.
2120 */
0206e353 2121 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
12f55818 2122 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
881f47b6
XH
2123}
2124
a4872ba6 2125static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
ea251324 2126 u32 invalidate, u32 flush)
881f47b6 2127{
71a77e07 2128 uint32_t cmd;
b72f3acb
CW
2129 int ret;
2130
b72f3acb
CW
2131 ret = intel_ring_begin(ring, 4);
2132 if (ret)
2133 return ret;
2134
71a77e07 2135 cmd = MI_FLUSH_DW;
075b3bba
BW
2136 if (INTEL_INFO(ring->dev)->gen >= 8)
2137 cmd += 1;
9a289771
JB
2138 /*
2139 * Bspec vol 1c.5 - video engine command streamer:
2140 * "If ENABLED, all TLBs will be invalidated once the flush
2141 * operation is complete. This bit is only valid when the
2142 * Post-Sync Operation field is a value of 1h or 3h."
2143 */
71a77e07 2144 if (invalidate & I915_GEM_GPU_DOMAINS)
9a289771
JB
2145 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2146 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
71a77e07 2147 intel_ring_emit(ring, cmd);
9a289771 2148 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
075b3bba
BW
2149 if (INTEL_INFO(ring->dev)->gen >= 8) {
2150 intel_ring_emit(ring, 0); /* upper addr */
2151 intel_ring_emit(ring, 0); /* value */
2152 } else {
2153 intel_ring_emit(ring, 0);
2154 intel_ring_emit(ring, MI_NOOP);
2155 }
b72f3acb
CW
2156 intel_ring_advance(ring);
2157 return 0;
881f47b6
XH
2158}
2159
1c7a0623 2160static int
a4872ba6 2161gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
9bcb144c 2162 u64 offset, u32 len,
1c7a0623
BW
2163 unsigned flags)
2164{
896ab1a5 2165 bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
1c7a0623
BW
2166 int ret;
2167
2168 ret = intel_ring_begin(ring, 4);
2169 if (ret)
2170 return ret;
2171
2172 /* FIXME(BDW): Address space and security selectors. */
28cf5415 2173 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
9bcb144c
BW
2174 intel_ring_emit(ring, lower_32_bits(offset));
2175 intel_ring_emit(ring, upper_32_bits(offset));
1c7a0623
BW
2176 intel_ring_emit(ring, MI_NOOP);
2177 intel_ring_advance(ring);
2178
2179 return 0;
2180}
2181
d7d4eedd 2182static int
a4872ba6 2183hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
9bcb144c 2184 u64 offset, u32 len,
d7d4eedd
CW
2185 unsigned flags)
2186{
2187 int ret;
2188
2189 ret = intel_ring_begin(ring, 2);
2190 if (ret)
2191 return ret;
2192
2193 intel_ring_emit(ring,
2194 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
2195 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
2196 /* bit0-7 is the length on GEN6+ */
2197 intel_ring_emit(ring, offset);
2198 intel_ring_advance(ring);
2199
2200 return 0;
2201}
2202
881f47b6 2203static int
a4872ba6 2204gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
9bcb144c 2205 u64 offset, u32 len,
d7d4eedd 2206 unsigned flags)
881f47b6 2207{
0206e353 2208 int ret;
ab6f8e32 2209
0206e353
AJ
2210 ret = intel_ring_begin(ring, 2);
2211 if (ret)
2212 return ret;
e1f99ce6 2213
d7d4eedd
CW
2214 intel_ring_emit(ring,
2215 MI_BATCH_BUFFER_START |
2216 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
0206e353
AJ
2217 /* bit0-7 is the length on GEN6+ */
2218 intel_ring_emit(ring, offset);
2219 intel_ring_advance(ring);
ab6f8e32 2220
0206e353 2221 return 0;
881f47b6
XH
2222}
2223
549f7365
CW
2224/* Blitter support (SandyBridge+) */
2225
a4872ba6 2226static int gen6_ring_flush(struct intel_engine_cs *ring,
ea251324 2227 u32 invalidate, u32 flush)
8d19215b 2228{
fd3da6c9 2229 struct drm_device *dev = ring->dev;
71a77e07 2230 uint32_t cmd;
b72f3acb
CW
2231 int ret;
2232
6a233c78 2233 ret = intel_ring_begin(ring, 4);
b72f3acb
CW
2234 if (ret)
2235 return ret;
2236
71a77e07 2237 cmd = MI_FLUSH_DW;
075b3bba
BW
2238 if (INTEL_INFO(ring->dev)->gen >= 8)
2239 cmd += 1;
9a289771
JB
2240 /*
2241 * Bspec vol 1c.3 - blitter engine command streamer:
2242 * "If ENABLED, all TLBs will be invalidated once the flush
2243 * operation is complete. This bit is only valid when the
2244 * Post-Sync Operation field is a value of 1h or 3h."
2245 */
71a77e07 2246 if (invalidate & I915_GEM_DOMAIN_RENDER)
9a289771 2247 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
b3fcabb1 2248 MI_FLUSH_DW_OP_STOREDW;
71a77e07 2249 intel_ring_emit(ring, cmd);
9a289771 2250 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
075b3bba
BW
2251 if (INTEL_INFO(ring->dev)->gen >= 8) {
2252 intel_ring_emit(ring, 0); /* upper addr */
2253 intel_ring_emit(ring, 0); /* value */
2254 } else {
2255 intel_ring_emit(ring, 0);
2256 intel_ring_emit(ring, MI_NOOP);
2257 }
b72f3acb 2258 intel_ring_advance(ring);
fd3da6c9 2259
9688ecad 2260 if (IS_GEN7(dev) && !invalidate && flush)
fd3da6c9
RV
2261 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2262
b72f3acb 2263 return 0;
8d19215b
ZN
2264}
2265
5c1143bb
XH
2266int intel_init_render_ring_buffer(struct drm_device *dev)
2267{
4640c4ff 2268 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2269 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
3e78998a
BW
2270 struct drm_i915_gem_object *obj;
2271 int ret;
5c1143bb 2272
59465b5f
DV
2273 ring->name = "render ring";
2274 ring->id = RCS;
2275 ring->mmio_base = RENDER_RING_BASE;
2276
707d9cf9 2277 if (INTEL_INFO(dev)->gen >= 8) {
3e78998a
BW
2278 if (i915_semaphore_is_enabled(dev)) {
2279 obj = i915_gem_alloc_object(dev, 4096);
2280 if (obj == NULL) {
2281 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2282 i915.semaphores = 0;
2283 } else {
2284 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2285 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2286 if (ret != 0) {
2287 drm_gem_object_unreference(&obj->base);
2288 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2289 i915.semaphores = 0;
2290 } else
2291 dev_priv->semaphore_obj = obj;
2292 }
2293 }
00e1e623
VS
2294 if (IS_CHERRYVIEW(dev))
2295 ring->init_context = chv_init_workarounds;
2296 else
2297 ring->init_context = bdw_init_workarounds;
707d9cf9
BW
2298 ring->add_request = gen6_add_request;
2299 ring->flush = gen8_render_ring_flush;
2300 ring->irq_get = gen8_ring_get_irq;
2301 ring->irq_put = gen8_ring_put_irq;
2302 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2303 ring->get_seqno = gen6_ring_get_seqno;
2304 ring->set_seqno = ring_set_seqno;
2305 if (i915_semaphore_is_enabled(dev)) {
3e78998a 2306 WARN_ON(!dev_priv->semaphore_obj);
5ee426ca 2307 ring->semaphore.sync_to = gen8_ring_sync;
3e78998a
BW
2308 ring->semaphore.signal = gen8_rcs_signal;
2309 GEN8_RING_SEMAPHORE_INIT;
707d9cf9
BW
2310 }
2311 } else if (INTEL_INFO(dev)->gen >= 6) {
1ec14ad3 2312 ring->add_request = gen6_add_request;
4772eaeb 2313 ring->flush = gen7_render_ring_flush;
6c6cf5aa 2314 if (INTEL_INFO(dev)->gen == 6)
b3111509 2315 ring->flush = gen6_render_ring_flush;
707d9cf9
BW
2316 ring->irq_get = gen6_ring_get_irq;
2317 ring->irq_put = gen6_ring_put_irq;
cc609d5d 2318 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
4cd53c0c 2319 ring->get_seqno = gen6_ring_get_seqno;
b70ec5bf 2320 ring->set_seqno = ring_set_seqno;
707d9cf9
BW
2321 if (i915_semaphore_is_enabled(dev)) {
2322 ring->semaphore.sync_to = gen6_ring_sync;
2323 ring->semaphore.signal = gen6_signal;
2324 /*
2325 * The current semaphore is only applied on pre-gen8
2326 * platform. And there is no VCS2 ring on the pre-gen8
2327 * platform. So the semaphore between RCS and VCS2 is
2328 * initialized as INVALID. Gen8 will initialize the
2329 * sema between VCS2 and RCS later.
2330 */
2331 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2332 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2333 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2334 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2335 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2336 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2337 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2338 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2339 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2340 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2341 }
c6df541c
CW
2342 } else if (IS_GEN5(dev)) {
2343 ring->add_request = pc_render_add_request;
46f0f8d1 2344 ring->flush = gen4_render_ring_flush;
c6df541c 2345 ring->get_seqno = pc_render_get_seqno;
b70ec5bf 2346 ring->set_seqno = pc_render_set_seqno;
e48d8634
DV
2347 ring->irq_get = gen5_ring_get_irq;
2348 ring->irq_put = gen5_ring_put_irq;
cc609d5d
BW
2349 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2350 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
59465b5f 2351 } else {
8620a3a9 2352 ring->add_request = i9xx_add_request;
46f0f8d1
CW
2353 if (INTEL_INFO(dev)->gen < 4)
2354 ring->flush = gen2_render_ring_flush;
2355 else
2356 ring->flush = gen4_render_ring_flush;
59465b5f 2357 ring->get_seqno = ring_get_seqno;
b70ec5bf 2358 ring->set_seqno = ring_set_seqno;
c2798b19
CW
2359 if (IS_GEN2(dev)) {
2360 ring->irq_get = i8xx_ring_get_irq;
2361 ring->irq_put = i8xx_ring_put_irq;
2362 } else {
2363 ring->irq_get = i9xx_ring_get_irq;
2364 ring->irq_put = i9xx_ring_put_irq;
2365 }
e3670319 2366 ring->irq_enable_mask = I915_USER_INTERRUPT;
1ec14ad3 2367 }
59465b5f 2368 ring->write_tail = ring_write_tail;
707d9cf9 2369
d7d4eedd
CW
2370 if (IS_HASWELL(dev))
2371 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1c7a0623
BW
2372 else if (IS_GEN8(dev))
2373 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
d7d4eedd 2374 else if (INTEL_INFO(dev)->gen >= 6)
fb3256da
DV
2375 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2376 else if (INTEL_INFO(dev)->gen >= 4)
2377 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2378 else if (IS_I830(dev) || IS_845G(dev))
2379 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2380 else
2381 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
59465b5f
DV
2382 ring->init = init_render_ring;
2383 ring->cleanup = render_ring_cleanup;
2384
b45305fc
DV
2385 /* Workaround batchbuffer to combat CS tlb bug. */
2386 if (HAS_BROKEN_CS_TLB(dev)) {
b45305fc
DV
2387 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2388 if (obj == NULL) {
2389 DRM_ERROR("Failed to allocate batch bo\n");
2390 return -ENOMEM;
2391 }
2392
be1fa129 2393 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
b45305fc
DV
2394 if (ret != 0) {
2395 drm_gem_object_unreference(&obj->base);
2396 DRM_ERROR("Failed to ping batch bo\n");
2397 return ret;
2398 }
2399
0d1aacac
CW
2400 ring->scratch.obj = obj;
2401 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
b45305fc
DV
2402 }
2403
1ec14ad3 2404 return intel_init_ring_buffer(dev, ring);
5c1143bb
XH
2405}
2406
e8616b6c
CW
2407int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2408{
4640c4ff 2409 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2410 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
8ee14975 2411 struct intel_ringbuffer *ringbuf = ring->buffer;
6b8294a4 2412 int ret;
e8616b6c 2413
8ee14975
OM
2414 if (ringbuf == NULL) {
2415 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2416 if (!ringbuf)
2417 return -ENOMEM;
2418 ring->buffer = ringbuf;
2419 }
2420
59465b5f
DV
2421 ring->name = "render ring";
2422 ring->id = RCS;
2423 ring->mmio_base = RENDER_RING_BASE;
2424
e8616b6c 2425 if (INTEL_INFO(dev)->gen >= 6) {
b4178f8a 2426 /* non-kms not supported on gen6+ */
8ee14975
OM
2427 ret = -ENODEV;
2428 goto err_ringbuf;
e8616b6c 2429 }
28f0cbf7
DV
2430
2431 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2432 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2433 * the special gen5 functions. */
2434 ring->add_request = i9xx_add_request;
46f0f8d1
CW
2435 if (INTEL_INFO(dev)->gen < 4)
2436 ring->flush = gen2_render_ring_flush;
2437 else
2438 ring->flush = gen4_render_ring_flush;
28f0cbf7 2439 ring->get_seqno = ring_get_seqno;
b70ec5bf 2440 ring->set_seqno = ring_set_seqno;
c2798b19
CW
2441 if (IS_GEN2(dev)) {
2442 ring->irq_get = i8xx_ring_get_irq;
2443 ring->irq_put = i8xx_ring_put_irq;
2444 } else {
2445 ring->irq_get = i9xx_ring_get_irq;
2446 ring->irq_put = i9xx_ring_put_irq;
2447 }
28f0cbf7 2448 ring->irq_enable_mask = I915_USER_INTERRUPT;
59465b5f 2449 ring->write_tail = ring_write_tail;
fb3256da
DV
2450 if (INTEL_INFO(dev)->gen >= 4)
2451 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2452 else if (IS_I830(dev) || IS_845G(dev))
2453 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2454 else
2455 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
59465b5f
DV
2456 ring->init = init_render_ring;
2457 ring->cleanup = render_ring_cleanup;
e8616b6c
CW
2458
2459 ring->dev = dev;
2460 INIT_LIST_HEAD(&ring->active_list);
2461 INIT_LIST_HEAD(&ring->request_list);
e8616b6c 2462
93b0a4e0
OM
2463 ringbuf->size = size;
2464 ringbuf->effective_size = ringbuf->size;
17f10fdc 2465 if (IS_I830(ring->dev) || IS_845G(ring->dev))
93b0a4e0 2466 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
e8616b6c 2467
93b0a4e0
OM
2468 ringbuf->virtual_start = ioremap_wc(start, size);
2469 if (ringbuf->virtual_start == NULL) {
e8616b6c
CW
2470 DRM_ERROR("can not ioremap virtual address for"
2471 " ring buffer\n");
8ee14975
OM
2472 ret = -ENOMEM;
2473 goto err_ringbuf;
e8616b6c
CW
2474 }
2475
6b8294a4 2476 if (!I915_NEED_GFX_HWS(dev)) {
035dc1e0 2477 ret = init_phys_status_page(ring);
6b8294a4 2478 if (ret)
8ee14975 2479 goto err_vstart;
6b8294a4
CW
2480 }
2481
e8616b6c 2482 return 0;
8ee14975
OM
2483
2484err_vstart:
93b0a4e0 2485 iounmap(ringbuf->virtual_start);
8ee14975
OM
2486err_ringbuf:
2487 kfree(ringbuf);
2488 ring->buffer = NULL;
2489 return ret;
e8616b6c
CW
2490}
2491
5c1143bb
XH
2492int intel_init_bsd_ring_buffer(struct drm_device *dev)
2493{
4640c4ff 2494 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2495 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
5c1143bb 2496
58fa3835
DV
2497 ring->name = "bsd ring";
2498 ring->id = VCS;
2499
0fd2c201 2500 ring->write_tail = ring_write_tail;
780f18c8 2501 if (INTEL_INFO(dev)->gen >= 6) {
58fa3835 2502 ring->mmio_base = GEN6_BSD_RING_BASE;
0fd2c201
DV
2503 /* gen6 bsd needs a special wa for tail updates */
2504 if (IS_GEN6(dev))
2505 ring->write_tail = gen6_bsd_ring_write_tail;
ea251324 2506 ring->flush = gen6_bsd_ring_flush;
58fa3835
DV
2507 ring->add_request = gen6_add_request;
2508 ring->get_seqno = gen6_ring_get_seqno;
b70ec5bf 2509 ring->set_seqno = ring_set_seqno;
abd58f01
BW
2510 if (INTEL_INFO(dev)->gen >= 8) {
2511 ring->irq_enable_mask =
2512 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2513 ring->irq_get = gen8_ring_get_irq;
2514 ring->irq_put = gen8_ring_put_irq;
1c7a0623
BW
2515 ring->dispatch_execbuffer =
2516 gen8_ring_dispatch_execbuffer;
707d9cf9 2517 if (i915_semaphore_is_enabled(dev)) {
5ee426ca 2518 ring->semaphore.sync_to = gen8_ring_sync;
3e78998a
BW
2519 ring->semaphore.signal = gen8_xcs_signal;
2520 GEN8_RING_SEMAPHORE_INIT;
707d9cf9 2521 }
abd58f01
BW
2522 } else {
2523 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2524 ring->irq_get = gen6_ring_get_irq;
2525 ring->irq_put = gen6_ring_put_irq;
1c7a0623
BW
2526 ring->dispatch_execbuffer =
2527 gen6_ring_dispatch_execbuffer;
707d9cf9
BW
2528 if (i915_semaphore_is_enabled(dev)) {
2529 ring->semaphore.sync_to = gen6_ring_sync;
2530 ring->semaphore.signal = gen6_signal;
2531 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2532 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2533 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2534 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2535 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2536 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2537 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2538 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2539 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2540 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2541 }
abd58f01 2542 }
58fa3835
DV
2543 } else {
2544 ring->mmio_base = BSD_RING_BASE;
58fa3835 2545 ring->flush = bsd_ring_flush;
8620a3a9 2546 ring->add_request = i9xx_add_request;
58fa3835 2547 ring->get_seqno = ring_get_seqno;
b70ec5bf 2548 ring->set_seqno = ring_set_seqno;
e48d8634 2549 if (IS_GEN5(dev)) {
cc609d5d 2550 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
e48d8634
DV
2551 ring->irq_get = gen5_ring_get_irq;
2552 ring->irq_put = gen5_ring_put_irq;
2553 } else {
e3670319 2554 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
e48d8634
DV
2555 ring->irq_get = i9xx_ring_get_irq;
2556 ring->irq_put = i9xx_ring_put_irq;
2557 }
fb3256da 2558 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
58fa3835
DV
2559 }
2560 ring->init = init_ring_common;
2561
1ec14ad3 2562 return intel_init_ring_buffer(dev, ring);
5c1143bb 2563}
549f7365 2564
845f74a7
ZY
2565/**
2566 * Initialize the second BSD ring for Broadwell GT3.
2567 * It is noted that this only exists on Broadwell GT3.
2568 */
2569int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2570{
2571 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2572 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
845f74a7
ZY
2573
2574 if ((INTEL_INFO(dev)->gen != 8)) {
2575 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2576 return -EINVAL;
2577 }
2578
f7b64236 2579 ring->name = "bsd2 ring";
845f74a7
ZY
2580 ring->id = VCS2;
2581
2582 ring->write_tail = ring_write_tail;
2583 ring->mmio_base = GEN8_BSD2_RING_BASE;
2584 ring->flush = gen6_bsd_ring_flush;
2585 ring->add_request = gen6_add_request;
2586 ring->get_seqno = gen6_ring_get_seqno;
2587 ring->set_seqno = ring_set_seqno;
2588 ring->irq_enable_mask =
2589 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2590 ring->irq_get = gen8_ring_get_irq;
2591 ring->irq_put = gen8_ring_put_irq;
2592 ring->dispatch_execbuffer =
2593 gen8_ring_dispatch_execbuffer;
3e78998a 2594 if (i915_semaphore_is_enabled(dev)) {
5ee426ca 2595 ring->semaphore.sync_to = gen8_ring_sync;
3e78998a
BW
2596 ring->semaphore.signal = gen8_xcs_signal;
2597 GEN8_RING_SEMAPHORE_INIT;
2598 }
845f74a7
ZY
2599 ring->init = init_ring_common;
2600
2601 return intel_init_ring_buffer(dev, ring);
2602}
2603
549f7365
CW
2604int intel_init_blt_ring_buffer(struct drm_device *dev)
2605{
4640c4ff 2606 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2607 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
549f7365 2608
3535d9dd
DV
2609 ring->name = "blitter ring";
2610 ring->id = BCS;
2611
2612 ring->mmio_base = BLT_RING_BASE;
2613 ring->write_tail = ring_write_tail;
ea251324 2614 ring->flush = gen6_ring_flush;
3535d9dd
DV
2615 ring->add_request = gen6_add_request;
2616 ring->get_seqno = gen6_ring_get_seqno;
b70ec5bf 2617 ring->set_seqno = ring_set_seqno;
abd58f01
BW
2618 if (INTEL_INFO(dev)->gen >= 8) {
2619 ring->irq_enable_mask =
2620 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2621 ring->irq_get = gen8_ring_get_irq;
2622 ring->irq_put = gen8_ring_put_irq;
1c7a0623 2623 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
707d9cf9 2624 if (i915_semaphore_is_enabled(dev)) {
5ee426ca 2625 ring->semaphore.sync_to = gen8_ring_sync;
3e78998a
BW
2626 ring->semaphore.signal = gen8_xcs_signal;
2627 GEN8_RING_SEMAPHORE_INIT;
707d9cf9 2628 }
abd58f01
BW
2629 } else {
2630 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2631 ring->irq_get = gen6_ring_get_irq;
2632 ring->irq_put = gen6_ring_put_irq;
1c7a0623 2633 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
707d9cf9
BW
2634 if (i915_semaphore_is_enabled(dev)) {
2635 ring->semaphore.signal = gen6_signal;
2636 ring->semaphore.sync_to = gen6_ring_sync;
2637 /*
2638 * The current semaphore is only applied on pre-gen8
2639 * platform. And there is no VCS2 ring on the pre-gen8
2640 * platform. So the semaphore between BCS and VCS2 is
2641 * initialized as INVALID. Gen8 will initialize the
2642 * sema between BCS and VCS2 later.
2643 */
2644 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2645 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2646 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2647 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2648 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2649 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2650 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2651 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2652 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2653 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2654 }
abd58f01 2655 }
3535d9dd 2656 ring->init = init_ring_common;
549f7365 2657
1ec14ad3 2658 return intel_init_ring_buffer(dev, ring);
549f7365 2659}
a7b9761d 2660
9a8a2213
BW
2661int intel_init_vebox_ring_buffer(struct drm_device *dev)
2662{
4640c4ff 2663 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2664 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
9a8a2213
BW
2665
2666 ring->name = "video enhancement ring";
2667 ring->id = VECS;
2668
2669 ring->mmio_base = VEBOX_RING_BASE;
2670 ring->write_tail = ring_write_tail;
2671 ring->flush = gen6_ring_flush;
2672 ring->add_request = gen6_add_request;
2673 ring->get_seqno = gen6_ring_get_seqno;
2674 ring->set_seqno = ring_set_seqno;
abd58f01
BW
2675
2676 if (INTEL_INFO(dev)->gen >= 8) {
2677 ring->irq_enable_mask =
40c499f9 2678 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
abd58f01
BW
2679 ring->irq_get = gen8_ring_get_irq;
2680 ring->irq_put = gen8_ring_put_irq;
1c7a0623 2681 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
707d9cf9 2682 if (i915_semaphore_is_enabled(dev)) {
5ee426ca 2683 ring->semaphore.sync_to = gen8_ring_sync;
3e78998a
BW
2684 ring->semaphore.signal = gen8_xcs_signal;
2685 GEN8_RING_SEMAPHORE_INIT;
707d9cf9 2686 }
abd58f01
BW
2687 } else {
2688 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2689 ring->irq_get = hsw_vebox_get_irq;
2690 ring->irq_put = hsw_vebox_put_irq;
1c7a0623 2691 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
707d9cf9
BW
2692 if (i915_semaphore_is_enabled(dev)) {
2693 ring->semaphore.sync_to = gen6_ring_sync;
2694 ring->semaphore.signal = gen6_signal;
2695 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2696 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2697 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2698 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2699 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2700 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2701 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2702 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2703 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2704 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2705 }
abd58f01 2706 }
9a8a2213
BW
2707 ring->init = init_ring_common;
2708
2709 return intel_init_ring_buffer(dev, ring);
2710}
2711
a7b9761d 2712int
a4872ba6 2713intel_ring_flush_all_caches(struct intel_engine_cs *ring)
a7b9761d
CW
2714{
2715 int ret;
2716
2717 if (!ring->gpu_caches_dirty)
2718 return 0;
2719
2720 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2721 if (ret)
2722 return ret;
2723
2724 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2725
2726 ring->gpu_caches_dirty = false;
2727 return 0;
2728}
2729
2730int
a4872ba6 2731intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
a7b9761d
CW
2732{
2733 uint32_t flush_domains;
2734 int ret;
2735
2736 flush_domains = 0;
2737 if (ring->gpu_caches_dirty)
2738 flush_domains = I915_GEM_GPU_DOMAINS;
2739
2740 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2741 if (ret)
2742 return ret;
2743
2744 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2745
2746 ring->gpu_caches_dirty = false;
2747 return 0;
2748}
e3efda49
CW
2749
2750void
a4872ba6 2751intel_stop_ring_buffer(struct intel_engine_cs *ring)
e3efda49
CW
2752{
2753 int ret;
2754
2755 if (!intel_ring_initialized(ring))
2756 return;
2757
2758 ret = intel_ring_idle(ring);
2759 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2760 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2761 ring->name, ret);
2762
2763 stop_ring(ring);
2764}