]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_ringbuffer.h
drm/i915: Filter out spurious execlists context-switch interrupts
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.h
CommitLineData
8187a2b7
ZN
1#ifndef _INTEL_RINGBUFFER_H_
2#define _INTEL_RINGBUFFER_H_
3
44e895a8 4#include <linux/hashtable.h>
06fbca71 5#include "i915_gem_batch_pool.h"
dcff85c8 6#include "i915_gem_request.h"
73cb9701 7#include "i915_gem_timeline.h"
f97fbf96 8#include "i915_selftest.h"
44e895a8 9
f636edb2
CW
10struct drm_printer;
11
44e895a8
BV
12#define I915_CMD_HASH_ORDER 9
13
4712274c
OM
14/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
15 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
16 * to give some inclination as to some of the magic values used in the various
17 * workarounds!
18 */
19#define CACHELINE_BYTES 64
17ee950d 20#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
4712274c 21
57e88531
CW
22struct intel_hw_status_page {
23 struct i915_vma *vma;
24 u32 *page_addr;
25 u32 ggtt_offset;
8187a2b7
ZN
26};
27
bbdc070a
DG
28#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
29#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
cae5852d 30
bbdc070a
DG
31#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
32#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
cae5852d 33
bbdc070a
DG
34#define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
35#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
cae5852d 36
bbdc070a
DG
37#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
38#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
cae5852d 39
bbdc070a
DG
40#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
41#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
870e86dd 42
bbdc070a
DG
43#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
44#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
e9fea574 45
3e78998a
BW
46/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
47 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
48 */
8c12672e
CW
49#define gen8_semaphore_seqno_size sizeof(uint64_t)
50#define GEN8_SEMAPHORE_OFFSET(__from, __to) \
51 (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
3e78998a 52#define GEN8_SIGNAL_OFFSET(__ring, to) \
51d545d0 53 (dev_priv->semaphore->node.start + \
8c12672e 54 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
3e78998a 55#define GEN8_WAIT_OFFSET(__ring, from) \
51d545d0 56 (dev_priv->semaphore->node.start + \
8c12672e 57 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
3e78998a 58
7e37f889 59enum intel_engine_hangcheck_action {
3fe3b030
MK
60 ENGINE_IDLE = 0,
61 ENGINE_WAIT,
62 ENGINE_ACTIVE_SEQNO,
63 ENGINE_ACTIVE_HEAD,
64 ENGINE_ACTIVE_SUBUNITS,
65 ENGINE_WAIT_KICK,
66 ENGINE_DEAD,
f2f4d82f 67};
ad8beaea 68
3fe3b030
MK
69static inline const char *
70hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
71{
72 switch (a) {
73 case ENGINE_IDLE:
74 return "idle";
75 case ENGINE_WAIT:
76 return "wait";
77 case ENGINE_ACTIVE_SEQNO:
78 return "active seqno";
79 case ENGINE_ACTIVE_HEAD:
80 return "active head";
81 case ENGINE_ACTIVE_SUBUNITS:
82 return "active subunits";
83 case ENGINE_WAIT_KICK:
84 return "wait kick";
85 case ENGINE_DEAD:
86 return "dead";
87 }
88
89 return "unknown";
90}
b6b0fac0 91
f9e61372
BW
92#define I915_MAX_SLICES 3
93#define I915_MAX_SUBSLICES 3
94
95#define instdone_slice_mask(dev_priv__) \
96 (INTEL_GEN(dev_priv__) == 7 ? \
97 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
98
99#define instdone_subslice_mask(dev_priv__) \
100 (INTEL_GEN(dev_priv__) == 7 ? \
101 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
102
103#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
104 for ((slice__) = 0, (subslice__) = 0; \
105 (slice__) < I915_MAX_SLICES; \
106 (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
107 (slice__) += ((subslice__) == 0)) \
108 for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
109 (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
110
d636951e
BW
111struct intel_instdone {
112 u32 instdone;
113 /* The following exist only in the RCS engine */
114 u32 slice_common;
f9e61372
BW
115 u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
116 u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
d636951e
BW
117};
118
7e37f889 119struct intel_engine_hangcheck {
50877445 120 u64 acthd;
92cab734 121 u32 seqno;
7e37f889 122 enum intel_engine_hangcheck_action action;
3fe3b030 123 unsigned long action_timestamp;
4be17381 124 int deadlock;
d636951e 125 struct intel_instdone instdone;
c64992e0 126 struct drm_i915_gem_request *active_request;
3fe3b030 127 bool stalled;
92cab734
MK
128};
129
7e37f889 130struct intel_ring {
0eb973d3 131 struct i915_vma *vma;
57e88531 132 void *vaddr;
8ee14975 133
675d9ad7
CW
134 struct list_head request_list;
135
8ee14975
OM
136 u32 head;
137 u32 tail;
e6ba9992 138 u32 emit;
eca56a35 139
605d5b32
CW
140 u32 space;
141 u32 size;
142 u32 effective_size;
8ee14975
OM
143};
144
e2efd130 145struct i915_gem_context;
361b027b 146struct drm_i915_reg_table;
21076372 147
17ee950d
AS
148/*
149 * we use a single page to load ctx workarounds so all of these
150 * values are referred in terms of dwords
151 *
152 * struct i915_wa_ctx_bb:
153 * offset: specifies batch starting position, also helpful in case
154 * if we want to have multiple batches at different offsets based on
155 * some criteria. It is not a requirement at the moment but provides
156 * an option for future use.
157 * size: size of the batch in DWORDS
158 */
48bb74e4 159struct i915_ctx_workarounds {
17ee950d
AS
160 struct i915_wa_ctx_bb {
161 u32 offset;
162 u32 size;
163 } indirect_ctx, per_ctx;
48bb74e4 164 struct i915_vma *vma;
17ee950d
AS
165};
166
c81d4613 167struct drm_i915_gem_request;
4e50f082 168struct intel_render_state;
c81d4613 169
237ae7c7
MW
170/*
171 * Engine IDs definitions.
172 * Keep instances of the same type engine together.
173 */
174enum intel_engine_id {
175 RCS = 0,
176 BCS,
177 VCS,
178 VCS2,
179#define _VCS(n) (VCS + (n))
180 VECS
181};
182
6c067579
CW
183struct i915_priolist {
184 struct rb_node node;
185 struct list_head requests;
186 int priority;
187};
188
b620e870
MK
189/**
190 * struct intel_engine_execlists - execlist submission queue and port state
191 *
192 * The struct intel_engine_execlists represents the combined logical state of
193 * driver and the hardware state for execlist mode of submission.
194 */
195struct intel_engine_execlists {
196 /**
197 * @irq_tasklet: softirq tasklet for bottom handler
198 */
199 struct tasklet_struct irq_tasklet;
200
201 /**
202 * @default_priolist: priority list for I915_PRIORITY_NORMAL
203 */
204 struct i915_priolist default_priolist;
205
206 /**
207 * @no_priolist: priority lists disabled
208 */
209 bool no_priolist;
210
211 /**
212 * @port: execlist port states
213 *
214 * For each hardware ELSP (ExecList Submission Port) we keep
215 * track of the last request and the number of times we submitted
216 * that port to hw. We then count the number of times the hw reports
217 * a context completion or preemption. As only one context can
218 * be active on hw, we limit resubmission of context to port[0]. This
219 * is called Lite Restore, of the context.
220 */
221 struct execlist_port {
222 /**
223 * @request_count: combined request and submission count
224 */
225 struct drm_i915_gem_request *request_count;
226#define EXECLIST_COUNT_BITS 2
227#define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
228#define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
229#define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
230#define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
231#define port_set(p, packed) ((p)->request_count = (packed))
232#define port_isset(p) ((p)->request_count)
7a62cc61 233#define port_index(p, execlists) ((p) - (execlists)->port)
b620e870
MK
234
235 /**
236 * @context_id: context ID for port
237 */
238 GEM_DEBUG_DECL(u32 context_id);
76e70087
MK
239
240#define EXECLIST_MAX_PORTS 2
241 } port[EXECLIST_MAX_PORTS];
242
beecec90 243 /**
5d266692
CW
244 * @active: is the HW active? We consider the HW as active after
245 * submitting any context for execution and until we have seen the
246 * last context completion event. After that, we do not expect any
247 * more events until we submit, and so can park the HW.
248 *
249 * As we have a small number of different sources from which we feed
250 * the HW, we track the state of each inside a single bitfield.
beecec90 251 */
5d266692
CW
252 unsigned int active;
253#define EXECLISTS_ACTIVE_USER 0
254#define EXECLISTS_ACTIVE_PREEMPT 1
beecec90 255
76e70087
MK
256 /**
257 * @port_mask: number of execlist ports - 1
258 */
259 unsigned int port_mask;
b620e870
MK
260
261 /**
262 * @queue: queue of requests, in priority lists
263 */
264 struct rb_root queue;
265
266 /**
267 * @first: leftmost level in priority @queue
268 */
269 struct rb_node *first;
270
271 /**
272 * @fw_domains: forcewake domains for irq tasklet
273 */
274 unsigned int fw_domains;
275
276 /**
277 * @csb_head: context status buffer head
278 */
279 unsigned int csb_head;
280
281 /**
282 * @csb_use_mmio: access csb through mmio, instead of hwsp
283 */
284 bool csb_use_mmio;
285};
286
6e516148
OM
287#define INTEL_ENGINE_CS_MAX_NAME 8
288
c033666a
CW
289struct intel_engine_cs {
290 struct drm_i915_private *i915;
6e516148 291 char name[INTEL_ENGINE_CS_MAX_NAME];
237ae7c7 292 enum intel_engine_id id;
1d39f281 293 unsigned int uabi_id;
237ae7c7 294 unsigned int hw_id;
63ffbcda 295 unsigned int guc_id;
0908180b
DCS
296
297 u8 class;
298 u8 instance;
63ffbcda
JL
299 u32 context_size;
300 u32 mmio_base;
c2c7f240 301 unsigned int irq_shift;
63ffbcda 302
7e37f889 303 struct intel_ring *buffer;
73cb9701 304 struct intel_timeline *timeline;
8187a2b7 305
4e50f082
CW
306 struct intel_render_state *render_state;
307
2246bea6 308 atomic_t irq_count;
538b257d
CW
309 unsigned long irq_posted;
310#define ENGINE_IRQ_BREADCRUMB 0
f747026c 311#define ENGINE_IRQ_EXECLIST 1
538b257d 312
688e6c72
CW
313 /* Rather than have every client wait upon all user interrupts,
314 * with the herd waking after every interrupt and each doing the
315 * heavyweight seqno dance, we delegate the task (of being the
316 * bottom-half of the user interrupt) to the first client. After
317 * every interrupt, we wake up one client, who does the heavyweight
318 * coherent seqno read and either goes back to sleep (if incomplete),
319 * or wakes up all the completed clients in parallel, before then
320 * transferring the bottom-half status to the next client in the queue.
321 *
322 * Compared to walking the entire list of waiters in a single dedicated
323 * bottom-half, we reduce the latency of the first waiter by avoiding
324 * a context switch, but incur additional coherent seqno reads when
325 * following the chain of request breadcrumbs. Since it is most likely
326 * that we have a single client waiting on each seqno, then reducing
327 * the overhead of waking that client is much preferred.
328 */
329 struct intel_breadcrumbs {
61d3dc70
CW
330 spinlock_t irq_lock; /* protects irq_*; irqsafe */
331 struct intel_wait *irq_wait; /* oldest waiter by retirement */
332
333 spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
688e6c72 334 struct rb_root waiters; /* sorted by retirement, priority */
c81d4613 335 struct rb_root signals; /* sorted by retirement */
c81d4613 336 struct task_struct *signaler; /* used for fence signalling */
cced5e2f 337 struct drm_i915_gem_request __rcu *first_signal;
688e6c72 338 struct timer_list fake_irq; /* used after a missed interrupt */
83348ba8
CW
339 struct timer_list hangcheck; /* detect missed interrupts */
340
2246bea6 341 unsigned int hangcheck_interrupts;
aca34b6e 342
67b807a8 343 bool irq_armed : 1;
aca34b6e 344 bool irq_enabled : 1;
f97fbf96 345 I915_SELFTEST_DECLARE(bool mock : 1);
688e6c72
CW
346 } breadcrumbs;
347
06fbca71
CW
348 /*
349 * A pool of objects to use as shadow copies of client batch buffers
350 * when the command parser is enabled. Prevents the client from
351 * modifying the batch contents after software parsing.
352 */
353 struct i915_gem_batch_pool batch_pool;
354
8187a2b7 355 struct intel_hw_status_page status_page;
17ee950d 356 struct i915_ctx_workarounds wa_ctx;
56c0f1a7 357 struct i915_vma *scratch;
8187a2b7 358
61ff75ac
CW
359 u32 irq_keep_mask; /* always keep these interrupts */
360 u32 irq_enable_mask; /* bitmask to enable ring interrupt */
38a0f2db
DG
361 void (*irq_enable)(struct intel_engine_cs *engine);
362 void (*irq_disable)(struct intel_engine_cs *engine);
8187a2b7 363
38a0f2db 364 int (*init_hw)(struct intel_engine_cs *engine);
821ed7df
CW
365 void (*reset_hw)(struct intel_engine_cs *engine,
366 struct drm_i915_gem_request *req);
8187a2b7 367
ff44ad51
CW
368 void (*set_default_submission)(struct intel_engine_cs *engine);
369
266a240b
CW
370 struct intel_ring *(*context_pin)(struct intel_engine_cs *engine,
371 struct i915_gem_context *ctx);
e8a9c58f
CW
372 void (*context_unpin)(struct intel_engine_cs *engine,
373 struct i915_gem_context *ctx);
f73e7399 374 int (*request_alloc)(struct drm_i915_gem_request *req);
8753181e 375 int (*init_context)(struct drm_i915_gem_request *req);
86d7f238 376
ddd66c51
CW
377 int (*emit_flush)(struct drm_i915_gem_request *request,
378 u32 mode);
379#define EMIT_INVALIDATE BIT(0)
380#define EMIT_FLUSH BIT(1)
381#define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
382 int (*emit_bb_start)(struct drm_i915_gem_request *req,
383 u64 offset, u32 length,
384 unsigned int dispatch_flags);
385#define I915_DISPATCH_SECURE BIT(0)
386#define I915_DISPATCH_PINNED BIT(1)
387#define I915_DISPATCH_RS BIT(2)
caddfe71 388 void (*emit_breadcrumb)(struct drm_i915_gem_request *req,
73dec95e 389 u32 *cs);
98f29e8d 390 int emit_breadcrumb_sz;
5590af3e
CW
391
392 /* Pass the request to the hardware queue (e.g. directly into
393 * the legacy ringbuffer or to the end of an execlist).
394 *
395 * This is called from an atomic context with irqs disabled; must
396 * be irq safe.
397 */
ddd66c51 398 void (*submit_request)(struct drm_i915_gem_request *req);
5590af3e 399
0de9136d
CW
400 /* Call when the priority on a request has changed and it and its
401 * dependencies may need rescheduling. Note the request itself may
402 * not be ready to run!
403 *
404 * Called under the struct_mutex.
405 */
406 void (*schedule)(struct drm_i915_gem_request *request,
407 int priority);
408
27a5f61b
CW
409 /*
410 * Cancel all requests on the hardware, or queued for execution.
411 * This should only cancel the ready requests that have been
412 * submitted to the engine (via the engine->submit_request callback).
413 * This is called when marking the device as wedged.
414 */
415 void (*cancel_requests)(struct intel_engine_cs *engine);
416
b2eadbc8
CW
417 /* Some chipsets are not quite as coherent as advertised and need
418 * an expensive kick to force a true read of the up-to-date seqno.
419 * However, the up-to-date seqno is not always required and the last
420 * seen value is good enough. Note that the seqno will always be
421 * monotonic, even if not coherent.
422 */
38a0f2db 423 void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
38a0f2db 424 void (*cleanup)(struct intel_engine_cs *engine);
ebc348b2 425
3e78998a
BW
426 /* GEN8 signal/wait table - never trust comments!
427 * signal to signal to signal to signal to signal to
428 * RCS VCS BCS VECS VCS2
429 * --------------------------------------------------------------------
430 * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
431 * |-------------------------------------------------------------------
432 * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
433 * |-------------------------------------------------------------------
434 * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
435 * |-------------------------------------------------------------------
436 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
437 * |-------------------------------------------------------------------
438 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
439 * |-------------------------------------------------------------------
440 *
441 * Generalization:
442 * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
443 * ie. transpose of g(x, y)
444 *
445 * sync from sync from sync from sync from sync from
446 * RCS VCS BCS VECS VCS2
447 * --------------------------------------------------------------------
448 * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
449 * |-------------------------------------------------------------------
450 * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
451 * |-------------------------------------------------------------------
452 * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
453 * |-------------------------------------------------------------------
454 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
455 * |-------------------------------------------------------------------
456 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
457 * |-------------------------------------------------------------------
458 *
459 * Generalization:
460 * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
461 * ie. transpose of f(x, y)
462 */
ebc348b2 463 struct {
3e78998a 464 union {
318f89ca
TU
465#define GEN6_SEMAPHORE_LAST VECS_HW
466#define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
467#define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
3e78998a
BW
468 struct {
469 /* our mbox written by others */
318f89ca 470 u32 wait[GEN6_NUM_SEMAPHORES];
3e78998a 471 /* mboxes this ring signals to */
318f89ca 472 i915_reg_t signal[GEN6_NUM_SEMAPHORES];
3e78998a 473 } mbox;
666796da 474 u64 signal_ggtt[I915_NUM_ENGINES];
3e78998a 475 };
78325f2d
BW
476
477 /* AKA wait() */
ad7bdb2b
CW
478 int (*sync_to)(struct drm_i915_gem_request *req,
479 struct drm_i915_gem_request *signal);
73dec95e 480 u32 *(*signal)(struct drm_i915_gem_request *req, u32 *cs);
ebc348b2 481 } semaphore;
ad776f8b 482
b620e870 483 struct intel_engine_execlists execlists;
4da46e1e 484
e8a9c58f
CW
485 /* Contexts are pinned whilst they are active on the GPU. The last
486 * context executed remains active whilst the GPU is idle - the
487 * switch away and write to the context object only occurs on the
488 * next execution. Contexts are only unpinned on retirement of the
489 * following request ensuring that we can always write to the object
490 * on the context switch even after idling. Across suspend, we switch
491 * to the kernel context and trash it as the save may not happen
492 * before the hardware is powered down.
493 */
494 struct i915_gem_context *last_retired_context;
495
496 /* We track the current MI_SET_CONTEXT in order to eliminate
497 * redudant context switches. This presumes that requests are not
498 * reordered! Or when they are the tracking is updated along with
499 * the emission of individual requests into the legacy command
500 * stream (ring).
501 */
502 struct i915_gem_context *legacy_active_context;
40521054 503
3fc03069
CD
504 /* status_notifier: list of callbacks for context-switch changes */
505 struct atomic_notifier_head context_status_notifier;
506
7e37f889 507 struct intel_engine_hangcheck hangcheck;
92cab734 508
44e895a8
BV
509 bool needs_cmd_parser;
510
351e3db2 511 /*
44e895a8 512 * Table of commands the command parser needs to know about
33a051a5 513 * for this engine.
351e3db2 514 */
44e895a8 515 DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
351e3db2
BV
516
517 /*
518 * Table of registers allowed in commands that read/write registers.
519 */
361b027b
JJ
520 const struct drm_i915_reg_table *reg_tables;
521 int reg_table_count;
351e3db2
BV
522
523 /*
524 * Returns the bitmask for the length field of the specified command.
525 * Return 0 for an unrecognized/invalid command.
526 *
33a051a5 527 * If the command parser finds an entry for a command in the engine's
351e3db2 528 * cmd_tables, it gets the command's length based on the table entry.
33a051a5
CW
529 * If not, it calls this function to determine the per-engine length
530 * field encoding for the command (i.e. different opcode ranges use
531 * certain bits to encode the command length in the header).
351e3db2
BV
532 */
533 u32 (*get_cmd_length_mask)(u32 cmd_header);
8187a2b7
ZN
534};
535
5d266692
CW
536static inline void
537execlists_set_active(struct intel_engine_execlists *execlists,
538 unsigned int bit)
539{
540 __set_bit(bit, (unsigned long *)&execlists->active);
541}
542
543static inline void
544execlists_clear_active(struct intel_engine_execlists *execlists,
545 unsigned int bit)
546{
547 __clear_bit(bit, (unsigned long *)&execlists->active);
548}
549
550static inline bool
551execlists_is_active(const struct intel_engine_execlists *execlists,
552 unsigned int bit)
553{
554 return test_bit(bit, (unsigned long *)&execlists->active);
555}
556
76e70087
MK
557static inline unsigned int
558execlists_num_ports(const struct intel_engine_execlists * const execlists)
559{
560 return execlists->port_mask + 1;
561}
562
7a62cc61
MK
563static inline void
564execlists_port_complete(struct intel_engine_execlists * const execlists,
565 struct execlist_port * const port)
566{
76e70087 567 const unsigned int m = execlists->port_mask;
7a62cc61
MK
568
569 GEM_BUG_ON(port_index(port, execlists) != 0);
5d266692 570 GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
7a62cc61 571
76e70087
MK
572 memmove(port, port + 1, m * sizeof(struct execlist_port));
573 memset(port + m, 0, sizeof(struct execlist_port));
7a62cc61
MK
574}
575
59ce1310 576static inline unsigned int
67d97da3 577intel_engine_flag(const struct intel_engine_cs *engine)
96154f2f 578{
59ce1310 579 return BIT(engine->id);
96154f2f
DV
580}
581
8187a2b7 582static inline u32
5dd8e50c 583intel_read_status_page(struct intel_engine_cs *engine, int reg)
8187a2b7 584{
4225d0f2 585 /* Ensure that the compiler doesn't optimize away the load. */
5dd8e50c 586 return READ_ONCE(engine->status_page.page_addr[reg]);
8187a2b7
ZN
587}
588
b70ec5bf 589static inline void
9a29dd85 590intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
b70ec5bf 591{
9a29dd85
CW
592 /* Writing into the status page should be done sparingly. Since
593 * we do when we are uncertain of the device state, we take a bit
594 * of extra paranoia to try and ensure that the HWS takes the value
595 * we give and that it doesn't end up trapped inside the CPU!
596 */
597 if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
598 mb();
599 clflush(&engine->status_page.page_addr[reg]);
600 engine->status_page.page_addr[reg] = value;
601 clflush(&engine->status_page.page_addr[reg]);
602 mb();
603 } else {
604 WRITE_ONCE(engine->status_page.page_addr[reg], value);
605 }
b70ec5bf
MK
606}
607
e2828914 608/*
311bd68e
CW
609 * Reads a dword out of the status page, which is written to from the command
610 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
611 * MI_STORE_DATA_IMM.
612 *
613 * The following dwords have a reserved meaning:
614 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
615 * 0x04: ring 0 head pointer
616 * 0x05: ring 1 head pointer (915-class)
617 * 0x06: ring 2 head pointer (915-class)
618 * 0x10-0x1b: Context status DWords (GM45)
619 * 0x1f: Last written status offset. (GM45)
b07da53c 620 * 0x20-0x2f: Reserved (Gen6+)
311bd68e 621 *
b07da53c 622 * The area from dword 0x30 to 0x3ff is available for driver usage.
311bd68e 623 */
b07da53c 624#define I915_GEM_HWS_INDEX 0x30
7c17d377 625#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
b07da53c 626#define I915_GEM_HWS_SCRATCH_INDEX 0x40
9a289771 627#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
311bd68e 628
6d2cb5aa 629#define I915_HWS_CSB_BUF0_INDEX 0x10
767a983a
CW
630#define I915_HWS_CSB_WRITE_INDEX 0x1f
631#define CNL_HWS_CSB_WRITE_INDEX 0x2f
6d2cb5aa 632
7e37f889
CW
633struct intel_ring *
634intel_engine_create_ring(struct intel_engine_cs *engine, int size);
d822bb18
CW
635int intel_ring_pin(struct intel_ring *ring,
636 struct drm_i915_private *i915,
637 unsigned int offset_bias);
e6ba9992 638void intel_ring_reset(struct intel_ring *ring, u32 tail);
95aebcb2 639unsigned int intel_ring_update_space(struct intel_ring *ring);
aad29fbb 640void intel_ring_unpin(struct intel_ring *ring);
7e37f889 641void intel_ring_free(struct intel_ring *ring);
84c2377f 642
7e37f889
CW
643void intel_engine_stop(struct intel_engine_cs *engine);
644void intel_engine_cleanup(struct intel_engine_cs *engine);
96f298aa 645
821ed7df
CW
646void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
647
bba09b12 648int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
406ea8d2 649
5e5655c3
CW
650u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req,
651 unsigned int n);
406ea8d2 652
73dec95e
TU
653static inline void
654intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
09246732 655{
8f942018
CW
656 /* Dummy function.
657 *
658 * This serves as a placeholder in the code so that the reader
659 * can compare against the preceding intel_ring_begin() and
660 * check that the number of dwords emitted matches the space
661 * reserved for the command packet (i.e. the value passed to
662 * intel_ring_begin()).
c5efa1ad 663 */
e6ba9992 664 GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
8f942018
CW
665}
666
73dec95e 667static inline u32
450362d3
CW
668intel_ring_wrap(const struct intel_ring *ring, u32 pos)
669{
670 return pos & (ring->size - 1);
671}
672
673static inline u32
674intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
8f942018
CW
675{
676 /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
73dec95e
TU
677 u32 offset = addr - req->ring->vaddr;
678 GEM_BUG_ON(offset > req->ring->size);
450362d3 679 return intel_ring_wrap(req->ring, offset);
09246732 680}
406ea8d2 681
ed1501d4
CW
682static inline void
683assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
684{
685 /* We could combine these into a single tail operation, but keeping
686 * them as seperate tests will help identify the cause should one
687 * ever fire.
688 */
689 GEM_BUG_ON(!IS_ALIGNED(tail, 8));
690 GEM_BUG_ON(tail >= ring->size);
605d5b32
CW
691
692 /*
693 * "Ring Buffer Use"
694 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6
695 * Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
696 * Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
697 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
698 * same cacheline, the Head Pointer must not be greater than the Tail
699 * Pointer."
700 *
701 * We use ring->head as the last known location of the actual RING_HEAD,
702 * it may have advanced but in the worst case it is equally the same
703 * as ring->head and so we should never program RING_TAIL to advance
704 * into the same cacheline as ring->head.
705 */
706#define cacheline(a) round_down(a, CACHELINE_BYTES)
707 GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
708 tail < ring->head);
709#undef cacheline
ed1501d4
CW
710}
711
e6ba9992
CW
712static inline unsigned int
713intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
714{
715 /* Whilst writes to the tail are strictly order, there is no
716 * serialisation between readers and the writers. The tail may be
717 * read by i915_gem_request_retire() just as it is being updated
718 * by execlists, as although the breadcrumb is complete, the context
719 * switch hasn't been seen.
720 */
721 assert_ring_tail_valid(ring, tail);
722 ring->tail = tail;
723 return tail;
724}
09246732 725
73cb9701 726void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
8187a2b7 727
019bf277
TU
728void intel_engine_setup_common(struct intel_engine_cs *engine);
729int intel_engine_init_common(struct intel_engine_cs *engine);
adc320c4 730int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
96a945aa 731void intel_engine_cleanup_common(struct intel_engine_cs *engine);
019bf277 732
8b3e2d36
TU
733int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
734int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
8b3e2d36
TU
735int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
736int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
8187a2b7 737
7e37f889 738u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
1b36595f
CW
739u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
740
1b7744e7
CW
741static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
742{
743 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
744}
79f321b7 745
cb399eab
CW
746static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
747{
748 /* We are only peeking at the tail of the submit queue (and not the
749 * queue itself) in order to gain a hint as to the current active
750 * state of the engine. Callers are not expected to be taking
751 * engine->timeline->lock, nor are they expected to be concerned
752 * wtih serialising this hint with anything, so document it as
753 * a hint and nothing more.
754 */
9b6586ae 755 return READ_ONCE(engine->timeline->seqno);
cb399eab
CW
756}
757
0bc40be8 758int init_workarounds_ring(struct intel_engine_cs *engine);
4ac9659e 759int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
771b9a53 760
0e704476
CW
761void intel_engine_get_instdone(struct intel_engine_cs *engine,
762 struct intel_instdone *instdone);
763
29b1b415
JH
764/*
765 * Arbitrary size for largest possible 'add request' sequence. The code paths
766 * are complex and variable. Empirical measurement shows that the worst case
596e5efc
CW
767 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
768 * we need to allocate double the largest single packet within that emission
769 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
29b1b415 770 */
596e5efc 771#define MIN_SPACE_FOR_ADD_REQUEST 336
29b1b415 772
a58c01aa
CW
773static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
774{
57e88531 775 return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
a58c01aa
CW
776}
777
688e6c72 778/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
688e6c72
CW
779int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
780
56299fb7
CW
781static inline void intel_wait_init(struct intel_wait *wait,
782 struct drm_i915_gem_request *rq)
688e6c72
CW
783{
784 wait->tsk = current;
56299fb7 785 wait->request = rq;
754c9fd5
CW
786}
787
788static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
789{
790 wait->tsk = current;
791 wait->seqno = seqno;
792}
793
794static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
795{
796 return wait->seqno;
797}
798
799static inline bool
800intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
801{
688e6c72 802 wait->seqno = seqno;
754c9fd5
CW
803 return intel_wait_has_seqno(wait);
804}
805
806static inline bool
807intel_wait_update_request(struct intel_wait *wait,
808 const struct drm_i915_gem_request *rq)
809{
810 return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
811}
812
813static inline bool
814intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
815{
816 return wait->seqno == seqno;
817}
818
819static inline bool
820intel_wait_check_request(const struct intel_wait *wait,
821 const struct drm_i915_gem_request *rq)
822{
823 return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
688e6c72
CW
824}
825
826static inline bool intel_wait_complete(const struct intel_wait *wait)
827{
828 return RB_EMPTY_NODE(&wait->node);
829}
830
831bool intel_engine_add_wait(struct intel_engine_cs *engine,
832 struct intel_wait *wait);
833void intel_engine_remove_wait(struct intel_engine_cs *engine,
834 struct intel_wait *wait);
f7b02a52
CW
835void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
836 bool wakeup);
9eb143bb 837void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
688e6c72 838
dbd6ef29 839static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
688e6c72 840{
61d3dc70 841 return READ_ONCE(engine->breadcrumbs.irq_wait);
688e6c72
CW
842}
843
8d769ea7
CW
844unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
845#define ENGINE_WAKEUP_WAITER BIT(0)
67b807a8
CW
846#define ENGINE_WAKEUP_ASLEEP BIT(1)
847
848void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
849void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
688e6c72 850
ad07dfcd 851void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
688e6c72 852void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
9b6586ae 853bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
688e6c72 854
9f235dfa
TU
855static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
856{
857 memset(batch, 0, 6 * sizeof(u32));
858
859 batch[0] = GFX_OP_PIPE_CONTROL(6);
860 batch[1] = flags;
861 batch[2] = offset;
862
863 return batch + 6;
864}
865
5400367a 866bool intel_engine_is_idle(struct intel_engine_cs *engine);
05425249 867bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
5400367a 868
6c067579 869void intel_engines_mark_idle(struct drm_i915_private *i915);
ff44ad51
CW
870void intel_engines_reset_default_submission(struct drm_i915_private *i915);
871
90cad095 872bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
f2f5c061 873
f636edb2
CW
874void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *p);
875
8187a2b7 876#endif /* _INTEL_RINGBUFFER_H_ */