]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_ringbuffer.h
Merge tag 'drm-for-v4.15' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
8187a2b7
ZN
2#ifndef _INTEL_RINGBUFFER_H_
3#define _INTEL_RINGBUFFER_H_
4
44e895a8 5#include <linux/hashtable.h>
06fbca71 6#include "i915_gem_batch_pool.h"
dcff85c8 7#include "i915_gem_request.h"
73cb9701 8#include "i915_gem_timeline.h"
f97fbf96 9#include "i915_selftest.h"
44e895a8 10
f636edb2
CW
11struct drm_printer;
12
44e895a8
BV
13#define I915_CMD_HASH_ORDER 9
14
4712274c
OM
15/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
16 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
17 * to give some inclination as to some of the magic values used in the various
18 * workarounds!
19 */
20#define CACHELINE_BYTES 64
17ee950d 21#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
4712274c 22
57e88531
CW
23struct intel_hw_status_page {
24 struct i915_vma *vma;
25 u32 *page_addr;
26 u32 ggtt_offset;
8187a2b7
ZN
27};
28
bbdc070a
DG
29#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
30#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
cae5852d 31
bbdc070a
DG
32#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
33#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
cae5852d 34
bbdc070a
DG
35#define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
36#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
cae5852d 37
bbdc070a
DG
38#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
39#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
cae5852d 40
bbdc070a
DG
41#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
42#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
870e86dd 43
bbdc070a
DG
44#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
45#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
e9fea574 46
3e78998a
BW
47/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
48 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
49 */
8c12672e
CW
50#define gen8_semaphore_seqno_size sizeof(uint64_t)
51#define GEN8_SEMAPHORE_OFFSET(__from, __to) \
52 (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
3e78998a 53#define GEN8_SIGNAL_OFFSET(__ring, to) \
51d545d0 54 (dev_priv->semaphore->node.start + \
8c12672e 55 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
3e78998a 56#define GEN8_WAIT_OFFSET(__ring, from) \
51d545d0 57 (dev_priv->semaphore->node.start + \
8c12672e 58 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
3e78998a 59
7e37f889 60enum intel_engine_hangcheck_action {
3fe3b030
MK
61 ENGINE_IDLE = 0,
62 ENGINE_WAIT,
63 ENGINE_ACTIVE_SEQNO,
64 ENGINE_ACTIVE_HEAD,
65 ENGINE_ACTIVE_SUBUNITS,
66 ENGINE_WAIT_KICK,
67 ENGINE_DEAD,
f2f4d82f 68};
ad8beaea 69
3fe3b030
MK
70static inline const char *
71hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
72{
73 switch (a) {
74 case ENGINE_IDLE:
75 return "idle";
76 case ENGINE_WAIT:
77 return "wait";
78 case ENGINE_ACTIVE_SEQNO:
79 return "active seqno";
80 case ENGINE_ACTIVE_HEAD:
81 return "active head";
82 case ENGINE_ACTIVE_SUBUNITS:
83 return "active subunits";
84 case ENGINE_WAIT_KICK:
85 return "wait kick";
86 case ENGINE_DEAD:
87 return "dead";
88 }
89
90 return "unknown";
91}
b6b0fac0 92
f9e61372
BW
93#define I915_MAX_SLICES 3
94#define I915_MAX_SUBSLICES 3
95
96#define instdone_slice_mask(dev_priv__) \
97 (INTEL_GEN(dev_priv__) == 7 ? \
98 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
99
100#define instdone_subslice_mask(dev_priv__) \
101 (INTEL_GEN(dev_priv__) == 7 ? \
102 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
103
104#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
105 for ((slice__) = 0, (subslice__) = 0; \
106 (slice__) < I915_MAX_SLICES; \
107 (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
108 (slice__) += ((subslice__) == 0)) \
109 for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
110 (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
111
d636951e
BW
112struct intel_instdone {
113 u32 instdone;
114 /* The following exist only in the RCS engine */
115 u32 slice_common;
f9e61372
BW
116 u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
117 u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
d636951e
BW
118};
119
7e37f889 120struct intel_engine_hangcheck {
50877445 121 u64 acthd;
92cab734 122 u32 seqno;
7e37f889 123 enum intel_engine_hangcheck_action action;
3fe3b030 124 unsigned long action_timestamp;
4be17381 125 int deadlock;
d636951e 126 struct intel_instdone instdone;
c64992e0 127 struct drm_i915_gem_request *active_request;
3fe3b030 128 bool stalled;
92cab734
MK
129};
130
7e37f889 131struct intel_ring {
0eb973d3 132 struct i915_vma *vma;
57e88531 133 void *vaddr;
8ee14975 134
675d9ad7
CW
135 struct list_head request_list;
136
8ee14975
OM
137 u32 head;
138 u32 tail;
e6ba9992 139 u32 emit;
eca56a35 140
605d5b32
CW
141 u32 space;
142 u32 size;
143 u32 effective_size;
8ee14975
OM
144};
145
e2efd130 146struct i915_gem_context;
361b027b 147struct drm_i915_reg_table;
21076372 148
17ee950d
AS
149/*
150 * we use a single page to load ctx workarounds so all of these
151 * values are referred in terms of dwords
152 *
153 * struct i915_wa_ctx_bb:
154 * offset: specifies batch starting position, also helpful in case
155 * if we want to have multiple batches at different offsets based on
156 * some criteria. It is not a requirement at the moment but provides
157 * an option for future use.
158 * size: size of the batch in DWORDS
159 */
48bb74e4 160struct i915_ctx_workarounds {
17ee950d
AS
161 struct i915_wa_ctx_bb {
162 u32 offset;
163 u32 size;
164 } indirect_ctx, per_ctx;
48bb74e4 165 struct i915_vma *vma;
17ee950d
AS
166};
167
c81d4613 168struct drm_i915_gem_request;
4e50f082 169struct intel_render_state;
c81d4613 170
237ae7c7
MW
171/*
172 * Engine IDs definitions.
173 * Keep instances of the same type engine together.
174 */
175enum intel_engine_id {
176 RCS = 0,
177 BCS,
178 VCS,
179 VCS2,
180#define _VCS(n) (VCS + (n))
181 VECS
182};
183
6c067579
CW
184struct i915_priolist {
185 struct rb_node node;
186 struct list_head requests;
187 int priority;
188};
189
b620e870
MK
190/**
191 * struct intel_engine_execlists - execlist submission queue and port state
192 *
193 * The struct intel_engine_execlists represents the combined logical state of
194 * driver and the hardware state for execlist mode of submission.
195 */
196struct intel_engine_execlists {
197 /**
198 * @irq_tasklet: softirq tasklet for bottom handler
199 */
200 struct tasklet_struct irq_tasklet;
201
202 /**
203 * @default_priolist: priority list for I915_PRIORITY_NORMAL
204 */
205 struct i915_priolist default_priolist;
206
207 /**
208 * @no_priolist: priority lists disabled
209 */
210 bool no_priolist;
211
212 /**
213 * @port: execlist port states
214 *
215 * For each hardware ELSP (ExecList Submission Port) we keep
216 * track of the last request and the number of times we submitted
217 * that port to hw. We then count the number of times the hw reports
218 * a context completion or preemption. As only one context can
219 * be active on hw, we limit resubmission of context to port[0]. This
220 * is called Lite Restore, of the context.
221 */
222 struct execlist_port {
223 /**
224 * @request_count: combined request and submission count
225 */
226 struct drm_i915_gem_request *request_count;
227#define EXECLIST_COUNT_BITS 2
228#define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
229#define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
230#define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
231#define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
232#define port_set(p, packed) ((p)->request_count = (packed))
233#define port_isset(p) ((p)->request_count)
7a62cc61 234#define port_index(p, execlists) ((p) - (execlists)->port)
b620e870
MK
235
236 /**
237 * @context_id: context ID for port
238 */
239 GEM_DEBUG_DECL(u32 context_id);
76e70087
MK
240
241#define EXECLIST_MAX_PORTS 2
242 } port[EXECLIST_MAX_PORTS];
243
beecec90 244 /**
5d266692
CW
245 * @active: is the HW active? We consider the HW as active after
246 * submitting any context for execution and until we have seen the
247 * last context completion event. After that, we do not expect any
248 * more events until we submit, and so can park the HW.
249 *
250 * As we have a small number of different sources from which we feed
251 * the HW, we track the state of each inside a single bitfield.
beecec90 252 */
5d266692
CW
253 unsigned int active;
254#define EXECLISTS_ACTIVE_USER 0
255#define EXECLISTS_ACTIVE_PREEMPT 1
beecec90 256
76e70087
MK
257 /**
258 * @port_mask: number of execlist ports - 1
259 */
260 unsigned int port_mask;
b620e870
MK
261
262 /**
263 * @queue: queue of requests, in priority lists
264 */
265 struct rb_root queue;
266
267 /**
268 * @first: leftmost level in priority @queue
269 */
270 struct rb_node *first;
271
272 /**
273 * @fw_domains: forcewake domains for irq tasklet
274 */
275 unsigned int fw_domains;
276
277 /**
278 * @csb_head: context status buffer head
279 */
280 unsigned int csb_head;
281
282 /**
283 * @csb_use_mmio: access csb through mmio, instead of hwsp
284 */
285 bool csb_use_mmio;
286};
287
6e516148
OM
288#define INTEL_ENGINE_CS_MAX_NAME 8
289
c033666a
CW
290struct intel_engine_cs {
291 struct drm_i915_private *i915;
6e516148 292 char name[INTEL_ENGINE_CS_MAX_NAME];
237ae7c7 293 enum intel_engine_id id;
1d39f281 294 unsigned int uabi_id;
237ae7c7 295 unsigned int hw_id;
63ffbcda 296 unsigned int guc_id;
0908180b
DCS
297
298 u8 class;
299 u8 instance;
63ffbcda
JL
300 u32 context_size;
301 u32 mmio_base;
c2c7f240 302 unsigned int irq_shift;
63ffbcda 303
7e37f889 304 struct intel_ring *buffer;
73cb9701 305 struct intel_timeline *timeline;
8187a2b7 306
4e50f082
CW
307 struct intel_render_state *render_state;
308
2246bea6 309 atomic_t irq_count;
538b257d
CW
310 unsigned long irq_posted;
311#define ENGINE_IRQ_BREADCRUMB 0
f747026c 312#define ENGINE_IRQ_EXECLIST 1
538b257d 313
688e6c72
CW
314 /* Rather than have every client wait upon all user interrupts,
315 * with the herd waking after every interrupt and each doing the
316 * heavyweight seqno dance, we delegate the task (of being the
317 * bottom-half of the user interrupt) to the first client. After
318 * every interrupt, we wake up one client, who does the heavyweight
319 * coherent seqno read and either goes back to sleep (if incomplete),
320 * or wakes up all the completed clients in parallel, before then
321 * transferring the bottom-half status to the next client in the queue.
322 *
323 * Compared to walking the entire list of waiters in a single dedicated
324 * bottom-half, we reduce the latency of the first waiter by avoiding
325 * a context switch, but incur additional coherent seqno reads when
326 * following the chain of request breadcrumbs. Since it is most likely
327 * that we have a single client waiting on each seqno, then reducing
328 * the overhead of waking that client is much preferred.
329 */
330 struct intel_breadcrumbs {
61d3dc70
CW
331 spinlock_t irq_lock; /* protects irq_*; irqsafe */
332 struct intel_wait *irq_wait; /* oldest waiter by retirement */
333
334 spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
688e6c72 335 struct rb_root waiters; /* sorted by retirement, priority */
c81d4613 336 struct rb_root signals; /* sorted by retirement */
c81d4613 337 struct task_struct *signaler; /* used for fence signalling */
cced5e2f 338 struct drm_i915_gem_request __rcu *first_signal;
688e6c72 339 struct timer_list fake_irq; /* used after a missed interrupt */
83348ba8
CW
340 struct timer_list hangcheck; /* detect missed interrupts */
341
2246bea6 342 unsigned int hangcheck_interrupts;
aca34b6e 343
67b807a8 344 bool irq_armed : 1;
aca34b6e 345 bool irq_enabled : 1;
f97fbf96 346 I915_SELFTEST_DECLARE(bool mock : 1);
688e6c72
CW
347 } breadcrumbs;
348
06fbca71
CW
349 /*
350 * A pool of objects to use as shadow copies of client batch buffers
351 * when the command parser is enabled. Prevents the client from
352 * modifying the batch contents after software parsing.
353 */
354 struct i915_gem_batch_pool batch_pool;
355
8187a2b7 356 struct intel_hw_status_page status_page;
17ee950d 357 struct i915_ctx_workarounds wa_ctx;
56c0f1a7 358 struct i915_vma *scratch;
8187a2b7 359
61ff75ac
CW
360 u32 irq_keep_mask; /* always keep these interrupts */
361 u32 irq_enable_mask; /* bitmask to enable ring interrupt */
38a0f2db
DG
362 void (*irq_enable)(struct intel_engine_cs *engine);
363 void (*irq_disable)(struct intel_engine_cs *engine);
8187a2b7 364
38a0f2db 365 int (*init_hw)(struct intel_engine_cs *engine);
821ed7df
CW
366 void (*reset_hw)(struct intel_engine_cs *engine,
367 struct drm_i915_gem_request *req);
8187a2b7 368
ff44ad51
CW
369 void (*set_default_submission)(struct intel_engine_cs *engine);
370
266a240b
CW
371 struct intel_ring *(*context_pin)(struct intel_engine_cs *engine,
372 struct i915_gem_context *ctx);
e8a9c58f
CW
373 void (*context_unpin)(struct intel_engine_cs *engine,
374 struct i915_gem_context *ctx);
f73e7399 375 int (*request_alloc)(struct drm_i915_gem_request *req);
8753181e 376 int (*init_context)(struct drm_i915_gem_request *req);
86d7f238 377
ddd66c51
CW
378 int (*emit_flush)(struct drm_i915_gem_request *request,
379 u32 mode);
380#define EMIT_INVALIDATE BIT(0)
381#define EMIT_FLUSH BIT(1)
382#define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
383 int (*emit_bb_start)(struct drm_i915_gem_request *req,
384 u64 offset, u32 length,
385 unsigned int dispatch_flags);
386#define I915_DISPATCH_SECURE BIT(0)
387#define I915_DISPATCH_PINNED BIT(1)
388#define I915_DISPATCH_RS BIT(2)
caddfe71 389 void (*emit_breadcrumb)(struct drm_i915_gem_request *req,
73dec95e 390 u32 *cs);
98f29e8d 391 int emit_breadcrumb_sz;
5590af3e
CW
392
393 /* Pass the request to the hardware queue (e.g. directly into
394 * the legacy ringbuffer or to the end of an execlist).
395 *
396 * This is called from an atomic context with irqs disabled; must
397 * be irq safe.
398 */
ddd66c51 399 void (*submit_request)(struct drm_i915_gem_request *req);
5590af3e 400
0de9136d
CW
401 /* Call when the priority on a request has changed and it and its
402 * dependencies may need rescheduling. Note the request itself may
403 * not be ready to run!
404 *
405 * Called under the struct_mutex.
406 */
407 void (*schedule)(struct drm_i915_gem_request *request,
408 int priority);
409
27a5f61b
CW
410 /*
411 * Cancel all requests on the hardware, or queued for execution.
412 * This should only cancel the ready requests that have been
413 * submitted to the engine (via the engine->submit_request callback).
414 * This is called when marking the device as wedged.
415 */
416 void (*cancel_requests)(struct intel_engine_cs *engine);
417
b2eadbc8
CW
418 /* Some chipsets are not quite as coherent as advertised and need
419 * an expensive kick to force a true read of the up-to-date seqno.
420 * However, the up-to-date seqno is not always required and the last
421 * seen value is good enough. Note that the seqno will always be
422 * monotonic, even if not coherent.
423 */
38a0f2db 424 void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
38a0f2db 425 void (*cleanup)(struct intel_engine_cs *engine);
ebc348b2 426
3e78998a
BW
427 /* GEN8 signal/wait table - never trust comments!
428 * signal to signal to signal to signal to signal to
429 * RCS VCS BCS VECS VCS2
430 * --------------------------------------------------------------------
431 * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
432 * |-------------------------------------------------------------------
433 * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
434 * |-------------------------------------------------------------------
435 * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
436 * |-------------------------------------------------------------------
437 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
438 * |-------------------------------------------------------------------
439 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
440 * |-------------------------------------------------------------------
441 *
442 * Generalization:
443 * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
444 * ie. transpose of g(x, y)
445 *
446 * sync from sync from sync from sync from sync from
447 * RCS VCS BCS VECS VCS2
448 * --------------------------------------------------------------------
449 * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
450 * |-------------------------------------------------------------------
451 * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
452 * |-------------------------------------------------------------------
453 * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
454 * |-------------------------------------------------------------------
455 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
456 * |-------------------------------------------------------------------
457 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
458 * |-------------------------------------------------------------------
459 *
460 * Generalization:
461 * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
462 * ie. transpose of f(x, y)
463 */
ebc348b2 464 struct {
3e78998a 465 union {
318f89ca
TU
466#define GEN6_SEMAPHORE_LAST VECS_HW
467#define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
468#define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
3e78998a
BW
469 struct {
470 /* our mbox written by others */
318f89ca 471 u32 wait[GEN6_NUM_SEMAPHORES];
3e78998a 472 /* mboxes this ring signals to */
318f89ca 473 i915_reg_t signal[GEN6_NUM_SEMAPHORES];
3e78998a 474 } mbox;
666796da 475 u64 signal_ggtt[I915_NUM_ENGINES];
3e78998a 476 };
78325f2d
BW
477
478 /* AKA wait() */
ad7bdb2b
CW
479 int (*sync_to)(struct drm_i915_gem_request *req,
480 struct drm_i915_gem_request *signal);
73dec95e 481 u32 *(*signal)(struct drm_i915_gem_request *req, u32 *cs);
ebc348b2 482 } semaphore;
ad776f8b 483
b620e870 484 struct intel_engine_execlists execlists;
4da46e1e 485
e8a9c58f
CW
486 /* Contexts are pinned whilst they are active on the GPU. The last
487 * context executed remains active whilst the GPU is idle - the
488 * switch away and write to the context object only occurs on the
489 * next execution. Contexts are only unpinned on retirement of the
490 * following request ensuring that we can always write to the object
491 * on the context switch even after idling. Across suspend, we switch
492 * to the kernel context and trash it as the save may not happen
493 * before the hardware is powered down.
494 */
495 struct i915_gem_context *last_retired_context;
496
497 /* We track the current MI_SET_CONTEXT in order to eliminate
498 * redudant context switches. This presumes that requests are not
499 * reordered! Or when they are the tracking is updated along with
500 * the emission of individual requests into the legacy command
501 * stream (ring).
502 */
503 struct i915_gem_context *legacy_active_context;
40521054 504
3fc03069
CD
505 /* status_notifier: list of callbacks for context-switch changes */
506 struct atomic_notifier_head context_status_notifier;
507
7e37f889 508 struct intel_engine_hangcheck hangcheck;
92cab734 509
44e895a8
BV
510 bool needs_cmd_parser;
511
351e3db2 512 /*
44e895a8 513 * Table of commands the command parser needs to know about
33a051a5 514 * for this engine.
351e3db2 515 */
44e895a8 516 DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
351e3db2
BV
517
518 /*
519 * Table of registers allowed in commands that read/write registers.
520 */
361b027b
JJ
521 const struct drm_i915_reg_table *reg_tables;
522 int reg_table_count;
351e3db2
BV
523
524 /*
525 * Returns the bitmask for the length field of the specified command.
526 * Return 0 for an unrecognized/invalid command.
527 *
33a051a5 528 * If the command parser finds an entry for a command in the engine's
351e3db2 529 * cmd_tables, it gets the command's length based on the table entry.
33a051a5
CW
530 * If not, it calls this function to determine the per-engine length
531 * field encoding for the command (i.e. different opcode ranges use
532 * certain bits to encode the command length in the header).
351e3db2
BV
533 */
534 u32 (*get_cmd_length_mask)(u32 cmd_header);
8187a2b7
ZN
535};
536
5d266692
CW
537static inline void
538execlists_set_active(struct intel_engine_execlists *execlists,
539 unsigned int bit)
540{
541 __set_bit(bit, (unsigned long *)&execlists->active);
542}
543
544static inline void
545execlists_clear_active(struct intel_engine_execlists *execlists,
546 unsigned int bit)
547{
548 __clear_bit(bit, (unsigned long *)&execlists->active);
549}
550
551static inline bool
552execlists_is_active(const struct intel_engine_execlists *execlists,
553 unsigned int bit)
554{
555 return test_bit(bit, (unsigned long *)&execlists->active);
556}
557
76e70087
MK
558static inline unsigned int
559execlists_num_ports(const struct intel_engine_execlists * const execlists)
560{
561 return execlists->port_mask + 1;
562}
563
7a62cc61
MK
564static inline void
565execlists_port_complete(struct intel_engine_execlists * const execlists,
566 struct execlist_port * const port)
567{
76e70087 568 const unsigned int m = execlists->port_mask;
7a62cc61
MK
569
570 GEM_BUG_ON(port_index(port, execlists) != 0);
5d266692 571 GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
7a62cc61 572
76e70087
MK
573 memmove(port, port + 1, m * sizeof(struct execlist_port));
574 memset(port + m, 0, sizeof(struct execlist_port));
7a62cc61
MK
575}
576
59ce1310 577static inline unsigned int
67d97da3 578intel_engine_flag(const struct intel_engine_cs *engine)
96154f2f 579{
59ce1310 580 return BIT(engine->id);
96154f2f
DV
581}
582
8187a2b7 583static inline u32
5dd8e50c 584intel_read_status_page(struct intel_engine_cs *engine, int reg)
8187a2b7 585{
4225d0f2 586 /* Ensure that the compiler doesn't optimize away the load. */
5dd8e50c 587 return READ_ONCE(engine->status_page.page_addr[reg]);
8187a2b7
ZN
588}
589
b70ec5bf 590static inline void
9a29dd85 591intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
b70ec5bf 592{
9a29dd85
CW
593 /* Writing into the status page should be done sparingly. Since
594 * we do when we are uncertain of the device state, we take a bit
595 * of extra paranoia to try and ensure that the HWS takes the value
596 * we give and that it doesn't end up trapped inside the CPU!
597 */
598 if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
599 mb();
600 clflush(&engine->status_page.page_addr[reg]);
601 engine->status_page.page_addr[reg] = value;
602 clflush(&engine->status_page.page_addr[reg]);
603 mb();
604 } else {
605 WRITE_ONCE(engine->status_page.page_addr[reg], value);
606 }
b70ec5bf
MK
607}
608
e2828914 609/*
311bd68e
CW
610 * Reads a dword out of the status page, which is written to from the command
611 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
612 * MI_STORE_DATA_IMM.
613 *
614 * The following dwords have a reserved meaning:
615 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
616 * 0x04: ring 0 head pointer
617 * 0x05: ring 1 head pointer (915-class)
618 * 0x06: ring 2 head pointer (915-class)
619 * 0x10-0x1b: Context status DWords (GM45)
620 * 0x1f: Last written status offset. (GM45)
b07da53c 621 * 0x20-0x2f: Reserved (Gen6+)
311bd68e 622 *
b07da53c 623 * The area from dword 0x30 to 0x3ff is available for driver usage.
311bd68e 624 */
b07da53c 625#define I915_GEM_HWS_INDEX 0x30
7c17d377 626#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
b07da53c 627#define I915_GEM_HWS_SCRATCH_INDEX 0x40
9a289771 628#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
311bd68e 629
6d2cb5aa 630#define I915_HWS_CSB_BUF0_INDEX 0x10
767a983a
CW
631#define I915_HWS_CSB_WRITE_INDEX 0x1f
632#define CNL_HWS_CSB_WRITE_INDEX 0x2f
6d2cb5aa 633
7e37f889
CW
634struct intel_ring *
635intel_engine_create_ring(struct intel_engine_cs *engine, int size);
d822bb18
CW
636int intel_ring_pin(struct intel_ring *ring,
637 struct drm_i915_private *i915,
638 unsigned int offset_bias);
e6ba9992 639void intel_ring_reset(struct intel_ring *ring, u32 tail);
95aebcb2 640unsigned int intel_ring_update_space(struct intel_ring *ring);
aad29fbb 641void intel_ring_unpin(struct intel_ring *ring);
7e37f889 642void intel_ring_free(struct intel_ring *ring);
84c2377f 643
7e37f889
CW
644void intel_engine_stop(struct intel_engine_cs *engine);
645void intel_engine_cleanup(struct intel_engine_cs *engine);
96f298aa 646
821ed7df
CW
647void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
648
bba09b12 649int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
406ea8d2 650
5e5655c3
CW
651u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req,
652 unsigned int n);
406ea8d2 653
73dec95e
TU
654static inline void
655intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
09246732 656{
8f942018
CW
657 /* Dummy function.
658 *
659 * This serves as a placeholder in the code so that the reader
660 * can compare against the preceding intel_ring_begin() and
661 * check that the number of dwords emitted matches the space
662 * reserved for the command packet (i.e. the value passed to
663 * intel_ring_begin()).
c5efa1ad 664 */
e6ba9992 665 GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
8f942018
CW
666}
667
73dec95e 668static inline u32
450362d3
CW
669intel_ring_wrap(const struct intel_ring *ring, u32 pos)
670{
671 return pos & (ring->size - 1);
672}
673
674static inline u32
675intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
8f942018
CW
676{
677 /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
73dec95e
TU
678 u32 offset = addr - req->ring->vaddr;
679 GEM_BUG_ON(offset > req->ring->size);
450362d3 680 return intel_ring_wrap(req->ring, offset);
09246732 681}
406ea8d2 682
ed1501d4
CW
683static inline void
684assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
685{
686 /* We could combine these into a single tail operation, but keeping
687 * them as seperate tests will help identify the cause should one
688 * ever fire.
689 */
690 GEM_BUG_ON(!IS_ALIGNED(tail, 8));
691 GEM_BUG_ON(tail >= ring->size);
605d5b32
CW
692
693 /*
694 * "Ring Buffer Use"
695 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6
696 * Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
697 * Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
698 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
699 * same cacheline, the Head Pointer must not be greater than the Tail
700 * Pointer."
701 *
702 * We use ring->head as the last known location of the actual RING_HEAD,
703 * it may have advanced but in the worst case it is equally the same
704 * as ring->head and so we should never program RING_TAIL to advance
705 * into the same cacheline as ring->head.
706 */
707#define cacheline(a) round_down(a, CACHELINE_BYTES)
708 GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
709 tail < ring->head);
710#undef cacheline
ed1501d4
CW
711}
712
e6ba9992
CW
713static inline unsigned int
714intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
715{
716 /* Whilst writes to the tail are strictly order, there is no
717 * serialisation between readers and the writers. The tail may be
718 * read by i915_gem_request_retire() just as it is being updated
719 * by execlists, as although the breadcrumb is complete, the context
720 * switch hasn't been seen.
721 */
722 assert_ring_tail_valid(ring, tail);
723 ring->tail = tail;
724 return tail;
725}
09246732 726
73cb9701 727void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
8187a2b7 728
019bf277
TU
729void intel_engine_setup_common(struct intel_engine_cs *engine);
730int intel_engine_init_common(struct intel_engine_cs *engine);
adc320c4 731int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
96a945aa 732void intel_engine_cleanup_common(struct intel_engine_cs *engine);
019bf277 733
8b3e2d36
TU
734int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
735int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
8b3e2d36
TU
736int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
737int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
8187a2b7 738
7e37f889 739u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
1b36595f
CW
740u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
741
1b7744e7
CW
742static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
743{
744 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
745}
79f321b7 746
cb399eab
CW
747static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
748{
749 /* We are only peeking at the tail of the submit queue (and not the
750 * queue itself) in order to gain a hint as to the current active
751 * state of the engine. Callers are not expected to be taking
752 * engine->timeline->lock, nor are they expected to be concerned
753 * wtih serialising this hint with anything, so document it as
754 * a hint and nothing more.
755 */
9b6586ae 756 return READ_ONCE(engine->timeline->seqno);
cb399eab
CW
757}
758
0bc40be8 759int init_workarounds_ring(struct intel_engine_cs *engine);
4ac9659e 760int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
771b9a53 761
0e704476
CW
762void intel_engine_get_instdone(struct intel_engine_cs *engine,
763 struct intel_instdone *instdone);
764
29b1b415
JH
765/*
766 * Arbitrary size for largest possible 'add request' sequence. The code paths
767 * are complex and variable. Empirical measurement shows that the worst case
596e5efc
CW
768 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
769 * we need to allocate double the largest single packet within that emission
770 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
29b1b415 771 */
596e5efc 772#define MIN_SPACE_FOR_ADD_REQUEST 336
29b1b415 773
a58c01aa
CW
774static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
775{
57e88531 776 return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
a58c01aa
CW
777}
778
688e6c72 779/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
688e6c72
CW
780int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
781
56299fb7
CW
782static inline void intel_wait_init(struct intel_wait *wait,
783 struct drm_i915_gem_request *rq)
688e6c72
CW
784{
785 wait->tsk = current;
56299fb7 786 wait->request = rq;
754c9fd5
CW
787}
788
789static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
790{
791 wait->tsk = current;
792 wait->seqno = seqno;
793}
794
795static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
796{
797 return wait->seqno;
798}
799
800static inline bool
801intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
802{
688e6c72 803 wait->seqno = seqno;
754c9fd5
CW
804 return intel_wait_has_seqno(wait);
805}
806
807static inline bool
808intel_wait_update_request(struct intel_wait *wait,
809 const struct drm_i915_gem_request *rq)
810{
811 return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
812}
813
814static inline bool
815intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
816{
817 return wait->seqno == seqno;
818}
819
820static inline bool
821intel_wait_check_request(const struct intel_wait *wait,
822 const struct drm_i915_gem_request *rq)
823{
824 return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
688e6c72
CW
825}
826
827static inline bool intel_wait_complete(const struct intel_wait *wait)
828{
829 return RB_EMPTY_NODE(&wait->node);
830}
831
832bool intel_engine_add_wait(struct intel_engine_cs *engine,
833 struct intel_wait *wait);
834void intel_engine_remove_wait(struct intel_engine_cs *engine,
835 struct intel_wait *wait);
f7b02a52
CW
836void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
837 bool wakeup);
9eb143bb 838void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
688e6c72 839
dbd6ef29 840static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
688e6c72 841{
61d3dc70 842 return READ_ONCE(engine->breadcrumbs.irq_wait);
688e6c72
CW
843}
844
8d769ea7
CW
845unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
846#define ENGINE_WAKEUP_WAITER BIT(0)
67b807a8
CW
847#define ENGINE_WAKEUP_ASLEEP BIT(1)
848
849void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
850void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
688e6c72 851
ad07dfcd 852void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
688e6c72 853void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
9b6586ae 854bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
688e6c72 855
9f235dfa
TU
856static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
857{
858 memset(batch, 0, 6 * sizeof(u32));
859
860 batch[0] = GFX_OP_PIPE_CONTROL(6);
861 batch[1] = flags;
862 batch[2] = offset;
863
864 return batch + 6;
865}
866
5400367a 867bool intel_engine_is_idle(struct intel_engine_cs *engine);
05425249 868bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
5400367a 869
6c067579 870void intel_engines_mark_idle(struct drm_i915_private *i915);
ff44ad51
CW
871void intel_engines_reset_default_submission(struct drm_i915_private *i915);
872
90cad095 873bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
f2f5c061 874
f636edb2 875void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *p);
f2f5c061 876
8187a2b7 877#endif /* _INTEL_RINGBUFFER_H_ */