]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/mgag200/mgag200_mode.c
drm/edid: Fix potential memory leak in edid_load()
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / mgag200 / mgag200_mode.c
CommitLineData
414c4531
DA
1/*
2 * Copyright 2010 Matt Turner.
3 * Copyright 2012 Red Hat
4 *
5 * This file is subject to the terms and conditions of the GNU General
6 * Public License version 2. See the file COPYING in the main
7 * directory of this archive for more details.
8 *
9 * Authors: Matthew Garrett
10 * Matt Turner
11 * Dave Airlie
12 */
13
14#include <linux/delay.h>
15
16#include "drmP.h"
17#include "drm.h"
18#include "drm_crtc_helper.h"
19
20#include "mgag200_drv.h"
21
22#define MGAG200_LUT_SIZE 256
23
24/*
25 * This file contains setup code for the CRTC.
26 */
27
28static void mga_crtc_load_lut(struct drm_crtc *crtc)
29{
30 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
31 struct drm_device *dev = crtc->dev;
32 struct mga_device *mdev = dev->dev_private;
33 int i;
34
35 if (!crtc->enabled)
36 return;
37
38 WREG8(DAC_INDEX + MGA1064_INDEX, 0);
39
40 for (i = 0; i < MGAG200_LUT_SIZE; i++) {
41 /* VGA registers */
42 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]);
43 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
44 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]);
45 }
46}
47
48static inline void mga_wait_vsync(struct mga_device *mdev)
49{
50 unsigned int count = 0;
51 unsigned int status = 0;
52
53 do {
54 status = RREG32(MGAREG_Status);
55 count++;
56 } while ((status & 0x08) && (count < 250000));
57 count = 0;
58 status = 0;
59 do {
60 status = RREG32(MGAREG_Status);
61 count++;
62 } while (!(status & 0x08) && (count < 250000));
63}
64
65static inline void mga_wait_busy(struct mga_device *mdev)
66{
67 unsigned int count = 0;
68 unsigned int status = 0;
69 do {
70 status = RREG8(MGAREG_Status + 2);
71 count++;
72 } while ((status & 0x01) && (count < 500000));
73}
74
75/*
76 * The core passes the desired mode to the CRTC code to see whether any
77 * CRTC-specific modifications need to be made to it. We're in a position
78 * to just pass that straight through, so this does nothing
79 */
80static bool mga_crtc_mode_fixup(struct drm_crtc *crtc,
e811f5ae
LP
81 const struct drm_display_mode *mode,
82 struct drm_display_mode *adjusted_mode)
414c4531
DA
83{
84 return true;
85}
86
87static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
88{
89 unsigned int vcomax, vcomin, pllreffreq;
90 unsigned int delta, tmpdelta, permitteddelta;
91 unsigned int testp, testm, testn;
92 unsigned int p, m, n;
93 unsigned int computed;
94
95 m = n = p = 0;
96 vcomax = 320000;
97 vcomin = 160000;
98 pllreffreq = 25000;
99
100 delta = 0xffffffff;
101 permitteddelta = clock * 5 / 1000;
102
103 for (testp = 8; testp > 0; testp /= 2) {
104 if (clock * testp > vcomax)
105 continue;
106 if (clock * testp < vcomin)
107 continue;
108
109 for (testn = 17; testn < 256; testn++) {
110 for (testm = 1; testm < 32; testm++) {
111 computed = (pllreffreq * testn) /
112 (testm * testp);
113 if (computed > clock)
114 tmpdelta = computed - clock;
115 else
116 tmpdelta = clock - computed;
117 if (tmpdelta < delta) {
118 delta = tmpdelta;
119 m = testm - 1;
120 n = testn - 1;
121 p = testp - 1;
122 }
123 }
124 }
125 }
126
127 if (delta > permitteddelta) {
128 printk(KERN_WARNING "PLL delta too large\n");
129 return 1;
130 }
131
132 WREG_DAC(MGA1064_PIX_PLLC_M, m);
133 WREG_DAC(MGA1064_PIX_PLLC_N, n);
134 WREG_DAC(MGA1064_PIX_PLLC_P, p);
135 return 0;
136}
137
138static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
139{
140 unsigned int vcomax, vcomin, pllreffreq;
141 unsigned int delta, tmpdelta, permitteddelta;
142 unsigned int testp, testm, testn;
143 unsigned int p, m, n;
144 unsigned int computed;
145 int i, j, tmpcount, vcount;
146 bool pll_locked = false;
147 u8 tmp;
148
149 m = n = p = 0;
150 vcomax = 550000;
151 vcomin = 150000;
152 pllreffreq = 48000;
153
154 delta = 0xffffffff;
155 permitteddelta = clock * 5 / 1000;
156
157 for (testp = 1; testp < 9; testp++) {
158 if (clock * testp > vcomax)
159 continue;
160 if (clock * testp < vcomin)
161 continue;
162
163 for (testm = 1; testm < 17; testm++) {
164 for (testn = 1; testn < 151; testn++) {
165 computed = (pllreffreq * testn) /
166 (testm * testp);
167 if (computed > clock)
168 tmpdelta = computed - clock;
169 else
170 tmpdelta = clock - computed;
171 if (tmpdelta < delta) {
172 delta = tmpdelta;
173 n = testn - 1;
174 m = (testm - 1) | ((n >> 1) & 0x80);
175 p = testp - 1;
176 }
177 }
178 }
179 }
180
181 for (i = 0; i <= 32 && pll_locked == false; i++) {
182 if (i > 0) {
183 WREG8(MGAREG_CRTC_INDEX, 0x1e);
184 tmp = RREG8(MGAREG_CRTC_DATA);
185 if (tmp < 0xff)
186 WREG8(MGAREG_CRTC_DATA, tmp+1);
187 }
188
189 /* set pixclkdis to 1 */
190 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
191 tmp = RREG8(DAC_DATA);
192 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
193 WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp);
194
195 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
196 tmp = RREG8(DAC_DATA);
197 tmp |= MGA1064_REMHEADCTL_CLKDIS;
198 WREG_DAC(MGA1064_REMHEADCTL, tmp);
199
200 /* select PLL Set C */
201 tmp = RREG8(MGAREG_MEM_MISC_READ);
202 tmp |= 0x3 << 2;
203 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
204
205 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
206 tmp = RREG8(DAC_DATA);
207 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
208 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
209
210 udelay(500);
211
212 /* reset the PLL */
213 WREG8(DAC_INDEX, MGA1064_VREF_CTL);
214 tmp = RREG8(DAC_DATA);
215 tmp &= ~0x04;
216 WREG_DAC(MGA1064_VREF_CTL, tmp);
217
218 udelay(50);
219
220 /* program pixel pll register */
221 WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
222 WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
223 WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
224
225 udelay(50);
226
227 /* turn pll on */
228 WREG8(DAC_INDEX, MGA1064_VREF_CTL);
229 tmp = RREG8(DAC_DATA);
230 tmp |= 0x04;
231 WREG_DAC(MGA1064_VREF_CTL, tmp);
232
233 udelay(500);
234
235 /* select the pixel pll */
236 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
237 tmp = RREG8(DAC_DATA);
238 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
239 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
240 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
241
242 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
243 tmp = RREG8(DAC_DATA);
244 tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
245 tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
246 WREG_DAC(MGA1064_REMHEADCTL, tmp);
247
248 /* reset dotclock rate bit */
249 WREG8(MGAREG_SEQ_INDEX, 1);
250 tmp = RREG8(MGAREG_SEQ_DATA);
251 tmp &= ~0x8;
252 WREG8(MGAREG_SEQ_DATA, tmp);
253
254 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
255 tmp = RREG8(DAC_DATA);
256 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
257 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
258
259 vcount = RREG8(MGAREG_VCOUNT);
260
261 for (j = 0; j < 30 && pll_locked == false; j++) {
262 tmpcount = RREG8(MGAREG_VCOUNT);
263 if (tmpcount < vcount)
264 vcount = 0;
265 if ((tmpcount - vcount) > 2)
266 pll_locked = true;
267 else
268 udelay(5);
269 }
270 }
271 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
272 tmp = RREG8(DAC_DATA);
273 tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
274 WREG_DAC(MGA1064_REMHEADCTL, tmp);
275 return 0;
276}
277
278static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
279{
280 unsigned int vcomax, vcomin, pllreffreq;
281 unsigned int delta, tmpdelta, permitteddelta;
282 unsigned int testp, testm, testn;
283 unsigned int p, m, n;
284 unsigned int computed;
285 u8 tmp;
286
287 m = n = p = 0;
288 vcomax = 550000;
289 vcomin = 150000;
290 pllreffreq = 50000;
291
292 delta = 0xffffffff;
293 permitteddelta = clock * 5 / 1000;
294
295 for (testp = 16; testp > 0; testp--) {
296 if (clock * testp > vcomax)
297 continue;
298 if (clock * testp < vcomin)
299 continue;
300
301 for (testn = 1; testn < 257; testn++) {
302 for (testm = 1; testm < 17; testm++) {
303 computed = (pllreffreq * testn) /
304 (testm * testp);
305 if (computed > clock)
306 tmpdelta = computed - clock;
307 else
308 tmpdelta = clock - computed;
309 if (tmpdelta < delta) {
310 delta = tmpdelta;
311 n = testn - 1;
312 m = testm - 1;
313 p = testp - 1;
314 }
315 }
316 }
317 }
318
319 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
320 tmp = RREG8(DAC_DATA);
321 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
322 WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp);
323
324 tmp = RREG8(MGAREG_MEM_MISC_READ);
325 tmp |= 0x3 << 2;
326 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
327
328 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
329 tmp = RREG8(DAC_DATA);
330 WREG_DAC(MGA1064_PIX_PLL_STAT, tmp & ~0x40);
331
332 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
333 tmp = RREG8(DAC_DATA);
334 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
335 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
336
337 WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
338 WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
339 WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
340
341 udelay(50);
342
343 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
344 tmp = RREG8(DAC_DATA);
345 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
346 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
347
348 udelay(500);
349
350 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
351 tmp = RREG8(DAC_DATA);
352 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
353 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
354 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
355
356 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
357 tmp = RREG8(DAC_DATA);
358 WREG_DAC(MGA1064_PIX_PLL_STAT, tmp | 0x40);
359
360 tmp = RREG8(MGAREG_MEM_MISC_READ);
361 tmp |= (0x3 << 2);
362 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
363
364 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
365 tmp = RREG8(DAC_DATA);
366 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
367 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
368
369 return 0;
370}
371
372static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
373{
374 unsigned int vcomax, vcomin, pllreffreq;
375 unsigned int delta, tmpdelta, permitteddelta;
376 unsigned int testp, testm, testn;
377 unsigned int p, m, n;
378 unsigned int computed;
379 int i, j, tmpcount, vcount;
380 u8 tmp;
381 bool pll_locked = false;
382
383 m = n = p = 0;
384 vcomax = 800000;
385 vcomin = 400000;
386 pllreffreq = 3333;
387
388 delta = 0xffffffff;
389 permitteddelta = clock * 5 / 1000;
390
391 for (testp = 16; testp > 0; testp--) {
392 if (clock * testp > vcomax)
393 continue;
394 if (clock * testp < vcomin)
395 continue;
396
397 for (testm = 1; testm < 33; testm++) {
398 for (testn = 1; testn < 257; testn++) {
399 computed = (pllreffreq * testn) /
400 (testm * testp);
401 if (computed > clock)
402 tmpdelta = computed - clock;
403 else
404 tmpdelta = clock - computed;
405 if (tmpdelta < delta) {
406 delta = tmpdelta;
407 n = testn - 1;
408 m = (testm - 1) | ((n >> 1) & 0x80);
409 p = testp - 1;
410 }
411 if ((clock * testp) >= 600000)
412 p |= 80;
413 }
414 }
415 }
416 for (i = 0; i <= 32 && pll_locked == false; i++) {
417 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
418 tmp = RREG8(DAC_DATA);
419 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
420 WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp);
421
422 tmp = RREG8(MGAREG_MEM_MISC_READ);
423 tmp |= 0x3 << 2;
424 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
425
426 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
427 tmp = RREG8(DAC_DATA);
428 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
429 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
430
431 udelay(500);
432
433 WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
434 WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
435 WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
436
437 udelay(500);
438
439 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
440 tmp = RREG8(DAC_DATA);
441 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
442 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
443 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
444
445 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
446 tmp = RREG8(DAC_DATA);
447 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
448 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
449 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
450
451 vcount = RREG8(MGAREG_VCOUNT);
452
453 for (j = 0; j < 30 && pll_locked == false; j++) {
454 tmpcount = RREG8(MGAREG_VCOUNT);
455 if (tmpcount < vcount)
456 vcount = 0;
457 if ((tmpcount - vcount) > 2)
458 pll_locked = true;
459 else
460 udelay(5);
461 }
462 }
463
464 return 0;
465}
466
467static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
468{
469 unsigned int vcomax, vcomin, pllreffreq;
470 unsigned int delta, tmpdelta;
471 unsigned int testr, testn, testm, testo;
472 unsigned int p, m, n;
473 unsigned int computed;
474 int tmp;
475
476 m = n = p = 0;
477 vcomax = 1488000;
478 vcomin = 1056000;
479 pllreffreq = 48000;
480
481 delta = 0xffffffff;
482
483 for (testr = 0; testr < 4; testr++) {
484 if (delta == 0)
485 break;
486 for (testn = 5; testn < 129; testn++) {
487 if (delta == 0)
488 break;
489 for (testm = 3; testm >= 0; testm--) {
490 if (delta == 0)
491 break;
492 for (testo = 5; testo < 33; testo++) {
493 computed = pllreffreq * (testn + 1) /
494 (testr + 1);
495 if (computed < vcomin)
496 continue;
497 if (computed > vcomax)
498 continue;
499 if (computed > clock)
500 tmpdelta = computed - clock;
501 else
502 tmpdelta = clock - computed;
503 if (tmpdelta < delta) {
504 delta = tmpdelta;
505 m = testm | (testo << 3);
506 n = testn;
507 p = testr | (testr << 3);
508 }
509 }
510 }
511 }
512 }
513
514 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
515 tmp = RREG8(DAC_DATA);
516 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
517 WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp);
518
519 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
520 tmp = RREG8(DAC_DATA);
521 tmp |= MGA1064_REMHEADCTL_CLKDIS;
522 WREG_DAC(MGA1064_REMHEADCTL, tmp);
523
524 tmp = RREG8(MGAREG_MEM_MISC_READ);
525 tmp |= (0x3<<2) | 0xc0;
526 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
527
528 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
529 tmp = RREG8(DAC_DATA);
530 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
531 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
532 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
533
534 udelay(500);
535
536 WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
537 WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
538 WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
539
540 udelay(50);
541
542 return 0;
543}
544
545static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
546{
547 switch(mdev->type) {
548 case G200_SE_A:
549 case G200_SE_B:
550 return mga_g200se_set_plls(mdev, clock);
551 break;
552 case G200_WB:
553 return mga_g200wb_set_plls(mdev, clock);
554 break;
555 case G200_EV:
556 return mga_g200ev_set_plls(mdev, clock);
557 break;
558 case G200_EH:
559 return mga_g200eh_set_plls(mdev, clock);
560 break;
561 case G200_ER:
562 return mga_g200er_set_plls(mdev, clock);
563 break;
564 }
565 return 0;
566}
567
568static void mga_g200wb_prepare(struct drm_crtc *crtc)
569{
570 struct mga_device *mdev = crtc->dev->dev_private;
571 u8 tmp;
572 int iter_max;
573
574 /* 1- The first step is to warn the BMC of an upcoming mode change.
575 * We are putting the misc<0> to output.*/
576
577 WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
578 tmp = RREG8(DAC_DATA);
579 tmp |= 0x10;
580 WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
581
582 /* we are putting a 1 on the misc<0> line */
583 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
584 tmp = RREG8(DAC_DATA);
585 tmp |= 0x10;
586 WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
587
588 /* 2- Second step to mask and further scan request
589 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
590 */
591 WREG8(DAC_INDEX, MGA1064_SPAREREG);
592 tmp = RREG8(DAC_DATA);
593 tmp |= 0x80;
594 WREG_DAC(MGA1064_SPAREREG, tmp);
595
596 /* 3a- the third step is to verifu if there is an active scan
597 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
598 */
599 iter_max = 300;
600 while (!(tmp & 0x1) && iter_max) {
601 WREG8(DAC_INDEX, MGA1064_SPAREREG);
602 tmp = RREG8(DAC_DATA);
603 udelay(1000);
604 iter_max--;
605 }
606
607 /* 3b- this step occurs only if the remove is actually scanning
608 * we are waiting for the end of the frame which is a 1 on
609 * remvsyncsts (XSPAREREG<1>)
610 */
611 if (iter_max) {
612 iter_max = 300;
613 while ((tmp & 0x2) && iter_max) {
614 WREG8(DAC_INDEX, MGA1064_SPAREREG);
615 tmp = RREG8(DAC_DATA);
616 udelay(1000);
617 iter_max--;
618 }
619 }
620}
621
622static void mga_g200wb_commit(struct drm_crtc *crtc)
623{
624 u8 tmp;
625 struct mga_device *mdev = crtc->dev->dev_private;
626
627 /* 1- The first step is to ensure that the vrsten and hrsten are set */
628 WREG8(MGAREG_CRTCEXT_INDEX, 1);
629 tmp = RREG8(MGAREG_CRTCEXT_DATA);
630 WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
631
632 /* 2- second step is to assert the rstlvl2 */
633 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
634 tmp = RREG8(DAC_DATA);
635 tmp |= 0x8;
636 WREG8(DAC_DATA, tmp);
637
638 /* wait 10 us */
639 udelay(10);
640
641 /* 3- deassert rstlvl2 */
642 tmp &= ~0x08;
643 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
644 WREG8(DAC_DATA, tmp);
645
646 /* 4- remove mask of scan request */
647 WREG8(DAC_INDEX, MGA1064_SPAREREG);
648 tmp = RREG8(DAC_DATA);
649 tmp &= ~0x80;
650 WREG8(DAC_DATA, tmp);
651
652 /* 5- put back a 0 on the misc<0> line */
653 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
654 tmp = RREG8(DAC_DATA);
655 tmp &= ~0x10;
656 WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
657}
658
659
660void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
661{
662 struct mga_device *mdev = crtc->dev->dev_private;
663 u32 addr;
664 int count;
665
666 while (RREG8(0x1fda) & 0x08);
667 while (!(RREG8(0x1fda) & 0x08));
668
669 count = RREG8(MGAREG_VCOUNT) + 2;
670 while (RREG8(MGAREG_VCOUNT) < count);
671
672 addr = offset >> 2;
673 WREG_CRT(0x0d, (u8)(addr & 0xff));
674 WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
675 WREG_CRT(0xaf, (u8)(addr >> 16) & 0xf);
676}
677
678
679/* ast is different - we will force move buffers out of VRAM */
680static int mga_crtc_do_set_base(struct drm_crtc *crtc,
681 struct drm_framebuffer *fb,
682 int x, int y, int atomic)
683{
684 struct mga_device *mdev = crtc->dev->dev_private;
685 struct drm_gem_object *obj;
686 struct mga_framebuffer *mga_fb;
687 struct mgag200_bo *bo;
688 int ret;
689 u64 gpu_addr;
690
691 /* push the previous fb to system ram */
692 if (!atomic && fb) {
693 mga_fb = to_mga_framebuffer(fb);
694 obj = mga_fb->obj;
695 bo = gem_to_mga_bo(obj);
696 ret = mgag200_bo_reserve(bo, false);
697 if (ret)
698 return ret;
699 mgag200_bo_push_sysram(bo);
700 mgag200_bo_unreserve(bo);
701 }
702
703 mga_fb = to_mga_framebuffer(crtc->fb);
704 obj = mga_fb->obj;
705 bo = gem_to_mga_bo(obj);
706
707 ret = mgag200_bo_reserve(bo, false);
708 if (ret)
709 return ret;
710
711 ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr);
712 if (ret) {
713 mgag200_bo_unreserve(bo);
714 return ret;
715 }
716
717 if (&mdev->mfbdev->mfb == mga_fb) {
718 /* if pushing console in kmap it */
719 ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
720 if (ret)
721 DRM_ERROR("failed to kmap fbcon\n");
722
723 }
724 mgag200_bo_unreserve(bo);
725
726 DRM_INFO("mga base %llx\n", gpu_addr);
727
728 mga_set_start_address(crtc, (u32)gpu_addr);
729
730 return 0;
731}
732
733static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
734 struct drm_framebuffer *old_fb)
735{
736 return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
737}
738
739static int mga_crtc_mode_set(struct drm_crtc *crtc,
740 struct drm_display_mode *mode,
741 struct drm_display_mode *adjusted_mode,
742 int x, int y, struct drm_framebuffer *old_fb)
743{
744 struct drm_device *dev = crtc->dev;
745 struct mga_device *mdev = dev->dev_private;
746 int hdisplay, hsyncstart, hsyncend, htotal;
747 int vdisplay, vsyncstart, vsyncend, vtotal;
748 int pitch;
749 int option = 0, option2 = 0;
750 int i;
751 unsigned char misc = 0;
752 unsigned char ext_vga[6];
753 unsigned char ext_vga_index24;
754 unsigned char dac_index90 = 0;
755 u8 bppshift;
756
757 static unsigned char dacvalue[] = {
758 /* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0,
759 /* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0,
760 /* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0,
761 /* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
762 /* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
763 /* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40,
764 /* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
765 /* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
766 /* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0,
767 /* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0
768 };
769
770 bppshift = mdev->bpp_shifts[(crtc->fb->bits_per_pixel >> 3) - 1];
771
772 switch (mdev->type) {
773 case G200_SE_A:
774 case G200_SE_B:
775 dacvalue[MGA1064_VREF_CTL] = 0x03;
776 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
777 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
778 MGA1064_MISC_CTL_VGA8 |
779 MGA1064_MISC_CTL_DAC_RAM_CS;
780 if (mdev->has_sdram)
781 option = 0x40049120;
782 else
783 option = 0x4004d120;
784 option2 = 0x00008000;
785 break;
786 case G200_WB:
787 dacvalue[MGA1064_VREF_CTL] = 0x07;
788 option = 0x41049120;
789 option2 = 0x0000b000;
790 break;
791 case G200_EV:
792 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
793 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
794 MGA1064_MISC_CTL_DAC_RAM_CS;
795 option = 0x00000120;
796 option2 = 0x0000b000;
797 break;
798 case G200_EH:
799 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
800 MGA1064_MISC_CTL_DAC_RAM_CS;
801 option = 0x00000120;
802 option2 = 0x0000b000;
803 break;
804 case G200_ER:
805 dac_index90 = 0;
806 break;
807 }
808
809 switch (crtc->fb->bits_per_pixel) {
810 case 8:
811 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
812 break;
813 case 16:
814 if (crtc->fb->depth == 15)
815 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
816 else
817 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
818 break;
819 case 24:
820 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
821 break;
822 case 32:
823 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
824 break;
825 }
826
827 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
828 misc |= 0x40;
829 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
830 misc |= 0x80;
831
832
833 for (i = 0; i < sizeof(dacvalue); i++) {
834 if ((i <= 0x03) ||
835 (i == 0x07) ||
836 (i == 0x0b) ||
837 (i == 0x0f) ||
838 ((i >= 0x13) && (i <= 0x17)) ||
839 (i == 0x1b) ||
840 (i == 0x1c) ||
841 ((i >= 0x1f) && (i <= 0x29)) ||
842 ((i >= 0x30) && (i <= 0x37)))
843 continue;
844 if (IS_G200_SE(mdev) &&
845 ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
846 continue;
847 if ((mdev->type == G200_EV || mdev->type == G200_WB || mdev->type == G200_EH) &&
848 (i >= 0x44) && (i <= 0x4e))
849 continue;
850
851 WREG_DAC(i, dacvalue[i]);
852 }
853
854 if (mdev->type == G200_ER) {
855 WREG_DAC(0x90, dac_index90);
856 }
857
858
859 if (option)
860 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
861 if (option2)
862 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
863
864 WREG_SEQ(2, 0xf);
865 WREG_SEQ(3, 0);
866 WREG_SEQ(4, 0xe);
867
868 pitch = crtc->fb->pitches[0] / (crtc->fb->bits_per_pixel / 8);
869 if (crtc->fb->bits_per_pixel == 24)
870 pitch = pitch >> (4 - bppshift);
871 else
872 pitch = pitch >> (4 - bppshift);
873
874 hdisplay = mode->hdisplay / 8 - 1;
875 hsyncstart = mode->hsync_start / 8 - 1;
876 hsyncend = mode->hsync_end / 8 - 1;
877 htotal = mode->htotal / 8 - 1;
878
879 /* Work around hardware quirk */
880 if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
881 htotal++;
882
883 vdisplay = mode->vdisplay - 1;
884 vsyncstart = mode->vsync_start - 1;
885 vsyncend = mode->vsync_end - 1;
886 vtotal = mode->vtotal - 2;
887
888 WREG_GFX(0, 0);
889 WREG_GFX(1, 0);
890 WREG_GFX(2, 0);
891 WREG_GFX(3, 0);
892 WREG_GFX(4, 0);
893 WREG_GFX(5, 0x40);
894 WREG_GFX(6, 0x5);
895 WREG_GFX(7, 0xf);
896 WREG_GFX(8, 0xf);
897
898 WREG_CRT(0, htotal - 4);
899 WREG_CRT(1, hdisplay);
900 WREG_CRT(2, hdisplay);
901 WREG_CRT(3, (htotal & 0x1F) | 0x80);
902 WREG_CRT(4, hsyncstart);
903 WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
904 WREG_CRT(6, vtotal & 0xFF);
905 WREG_CRT(7, ((vtotal & 0x100) >> 8) |
906 ((vdisplay & 0x100) >> 7) |
907 ((vsyncstart & 0x100) >> 6) |
908 ((vdisplay & 0x100) >> 5) |
909 ((vdisplay & 0x100) >> 4) | /* linecomp */
910 ((vtotal & 0x200) >> 4)|
911 ((vdisplay & 0x200) >> 3) |
912 ((vsyncstart & 0x200) >> 2));
913 WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
914 ((vdisplay & 0x200) >> 3));
915 WREG_CRT(10, 0);
916 WREG_CRT(11, 0);
917 WREG_CRT(12, 0);
918 WREG_CRT(13, 0);
919 WREG_CRT(14, 0);
920 WREG_CRT(15, 0);
921 WREG_CRT(16, vsyncstart & 0xFF);
922 WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
923 WREG_CRT(18, vdisplay & 0xFF);
924 WREG_CRT(19, pitch & 0xFF);
925 WREG_CRT(20, 0);
926 WREG_CRT(21, vdisplay & 0xFF);
927 WREG_CRT(22, (vtotal + 1) & 0xFF);
928 WREG_CRT(23, 0xc3);
929 WREG_CRT(24, vdisplay & 0xFF);
930
931 ext_vga[0] = 0;
932 ext_vga[5] = 0;
933
934 /* TODO interlace */
935
936 ext_vga[0] |= (pitch & 0x300) >> 4;
937 ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
938 ((hdisplay & 0x100) >> 7) |
939 ((hsyncstart & 0x100) >> 6) |
940 (htotal & 0x40);
941 ext_vga[2] = ((vtotal & 0xc00) >> 10) |
942 ((vdisplay & 0x400) >> 8) |
943 ((vdisplay & 0xc00) >> 7) |
944 ((vsyncstart & 0xc00) >> 5) |
945 ((vdisplay & 0x400) >> 3);
946 if (crtc->fb->bits_per_pixel == 24)
947 ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
948 else
949 ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
950 ext_vga[4] = 0;
951 if (mdev->type == G200_WB)
952 ext_vga[1] |= 0x88;
953
954 ext_vga_index24 = 0x05;
955
956 /* Set pixel clocks */
957 misc = 0x2d;
958 WREG8(MGA_MISC_OUT, misc);
959
960 mga_crtc_set_plls(mdev, mode->clock);
961
962 for (i = 0; i < 6; i++) {
963 WREG_ECRT(i, ext_vga[i]);
964 }
965
966 if (mdev->type == G200_ER)
967 WREG_ECRT(24, ext_vga_index24);
968
969 if (mdev->type == G200_EV) {
970 WREG_ECRT(6, 0);
971 }
972
973 WREG_ECRT(0, ext_vga[0]);
974 /* Enable mga pixel clock */
975 misc = 0x2d;
976
977 WREG8(MGA_MISC_OUT, misc);
978
979 if (adjusted_mode)
980 memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
981
982 mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
983
984 /* reset tagfifo */
985 if (mdev->type == G200_ER) {
986 u32 mem_ctl = RREG32(MGAREG_MEMCTL);
987 u8 seq1;
988
989 /* screen off */
990 WREG8(MGAREG_SEQ_INDEX, 0x01);
991 seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
992 WREG8(MGAREG_SEQ_DATA, seq1);
993
994 WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
995 udelay(1000);
996 WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
997
998 WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
999 }
1000
1001
1002 if (IS_G200_SE(mdev)) {
1003 if (mdev->reg_1e24 >= 0x02) {
1004 u8 hi_pri_lvl;
1005 u32 bpp;
1006 u32 mb;
1007
1008 if (crtc->fb->bits_per_pixel > 16)
1009 bpp = 32;
1010 else if (crtc->fb->bits_per_pixel > 8)
1011 bpp = 16;
1012 else
1013 bpp = 8;
1014
1015 mb = (mode->clock * bpp) / 1000;
1016 if (mb > 3100)
1017 hi_pri_lvl = 0;
1018 else if (mb > 2600)
1019 hi_pri_lvl = 1;
1020 else if (mb > 1900)
1021 hi_pri_lvl = 2;
1022 else if (mb > 1160)
1023 hi_pri_lvl = 3;
1024 else if (mb > 440)
1025 hi_pri_lvl = 4;
1026 else
1027 hi_pri_lvl = 5;
1028
1029 WREG8(0x1fde, 0x06);
1030 WREG8(0x1fdf, hi_pri_lvl);
1031 } else {
1032 if (mdev->reg_1e24 >= 0x01)
1033 WREG8(0x1fdf, 0x03);
1034 else
1035 WREG8(0x1fdf, 0x04);
1036 }
1037 }
1038 return 0;
1039}
1040
1041#if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1042static int mga_suspend(struct drm_crtc *crtc)
1043{
1044 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1045 struct drm_device *dev = crtc->dev;
1046 struct mga_device *mdev = dev->dev_private;
1047 struct pci_dev *pdev = dev->pdev;
1048 int option;
1049
1050 if (mdev->suspended)
1051 return 0;
1052
1053 WREG_SEQ(1, 0x20);
1054 WREG_ECRT(1, 0x30);
1055 /* Disable the pixel clock */
1056 WREG_DAC(0x1a, 0x05);
1057 /* Power down the DAC */
1058 WREG_DAC(0x1e, 0x18);
1059 /* Power down the pixel PLL */
1060 WREG_DAC(0x1a, 0x0d);
1061
1062 /* Disable PLLs and clocks */
1063 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1064 option &= ~(0x1F8024);
1065 pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1066 pci_set_power_state(pdev, PCI_D3hot);
1067 pci_disable_device(pdev);
1068
1069 mdev->suspended = true;
1070
1071 return 0;
1072}
1073
1074static int mga_resume(struct drm_crtc *crtc)
1075{
1076 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1077 struct drm_device *dev = crtc->dev;
1078 struct mga_device *mdev = dev->dev_private;
1079 struct pci_dev *pdev = dev->pdev;
1080 int option;
1081
1082 if (!mdev->suspended)
1083 return 0;
1084
1085 pci_set_power_state(pdev, PCI_D0);
1086 pci_enable_device(pdev);
1087
1088 /* Disable sysclk */
1089 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1090 option &= ~(0x4);
1091 pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1092
1093 mdev->suspended = false;
1094
1095 return 0;
1096}
1097
1098#endif
1099
1100static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1101{
1102 struct drm_device *dev = crtc->dev;
1103 struct mga_device *mdev = dev->dev_private;
1104 u8 seq1 = 0, crtcext1 = 0;
1105
1106 switch (mode) {
1107 case DRM_MODE_DPMS_ON:
1108 seq1 = 0;
1109 crtcext1 = 0;
1110 mga_crtc_load_lut(crtc);
1111 break;
1112 case DRM_MODE_DPMS_STANDBY:
1113 seq1 = 0x20;
1114 crtcext1 = 0x10;
1115 break;
1116 case DRM_MODE_DPMS_SUSPEND:
1117 seq1 = 0x20;
1118 crtcext1 = 0x20;
1119 break;
1120 case DRM_MODE_DPMS_OFF:
1121 seq1 = 0x20;
1122 crtcext1 = 0x30;
1123 break;
1124 }
1125
1126#if 0
1127 if (mode == DRM_MODE_DPMS_OFF) {
1128 mga_suspend(crtc);
1129 }
1130#endif
1131 WREG8(MGAREG_SEQ_INDEX, 0x01);
1132 seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1133 mga_wait_vsync(mdev);
1134 mga_wait_busy(mdev);
1135 WREG8(MGAREG_SEQ_DATA, seq1);
1136 msleep(20);
1137 WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1138 crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1139 WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1140
1141#if 0
1142 if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1143 mga_resume(crtc);
1144 drm_helper_resume_force_mode(dev);
1145 }
1146#endif
1147}
1148
1149/*
1150 * This is called before a mode is programmed. A typical use might be to
1151 * enable DPMS during the programming to avoid seeing intermediate stages,
1152 * but that's not relevant to us
1153 */
1154static void mga_crtc_prepare(struct drm_crtc *crtc)
1155{
1156 struct drm_device *dev = crtc->dev;
1157 struct mga_device *mdev = dev->dev_private;
1158 u8 tmp;
1159
1160 /* mga_resume(crtc);*/
1161
1162 WREG8(MGAREG_CRTC_INDEX, 0x11);
1163 tmp = RREG8(MGAREG_CRTC_DATA);
1164 WREG_CRT(0x11, tmp | 0x80);
1165
1166 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1167 WREG_SEQ(0, 1);
1168 msleep(50);
1169 WREG_SEQ(1, 0x20);
1170 msleep(20);
1171 } else {
1172 WREG8(MGAREG_SEQ_INDEX, 0x1);
1173 tmp = RREG8(MGAREG_SEQ_DATA);
1174
1175 /* start sync reset */
1176 WREG_SEQ(0, 1);
1177 WREG_SEQ(1, tmp | 0x20);
1178 }
1179
1180 if (mdev->type == G200_WB)
1181 mga_g200wb_prepare(crtc);
1182
1183 WREG_CRT(17, 0);
1184}
1185
1186/*
1187 * This is called after a mode is programmed. It should reverse anything done
1188 * by the prepare function
1189 */
1190static void mga_crtc_commit(struct drm_crtc *crtc)
1191{
1192 struct drm_device *dev = crtc->dev;
1193 struct mga_device *mdev = dev->dev_private;
1194 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1195 u8 tmp;
1196
1197 if (mdev->type == G200_WB)
1198 mga_g200wb_commit(crtc);
1199
1200 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1201 msleep(50);
1202 WREG_SEQ(1, 0x0);
1203 msleep(20);
1204 WREG_SEQ(0, 0x3);
1205 } else {
1206 WREG8(MGAREG_SEQ_INDEX, 0x1);
1207 tmp = RREG8(MGAREG_SEQ_DATA);
1208
1209 tmp &= ~0x20;
1210 WREG_SEQ(0x1, tmp);
1211 WREG_SEQ(0, 3);
1212 }
1213 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1214}
1215
1216/*
1217 * The core can pass us a set of gamma values to program. We actually only
1218 * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1219 * but it's a requirement that we provide the function
1220 */
1221static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1222 u16 *blue, uint32_t start, uint32_t size)
1223{
1224 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1225 int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size;
1226 int i;
1227
1228 for (i = start; i < end; i++) {
1229 mga_crtc->lut_r[i] = red[i] >> 8;
1230 mga_crtc->lut_g[i] = green[i] >> 8;
1231 mga_crtc->lut_b[i] = blue[i] >> 8;
1232 }
1233 mga_crtc_load_lut(crtc);
1234}
1235
1236/* Simple cleanup function */
1237static void mga_crtc_destroy(struct drm_crtc *crtc)
1238{
1239 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1240
1241 drm_crtc_cleanup(crtc);
1242 kfree(mga_crtc);
1243}
1244
1245/* These provide the minimum set of functions required to handle a CRTC */
1246static const struct drm_crtc_funcs mga_crtc_funcs = {
1247 .gamma_set = mga_crtc_gamma_set,
1248 .set_config = drm_crtc_helper_set_config,
1249 .destroy = mga_crtc_destroy,
1250};
1251
1252static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1253 .dpms = mga_crtc_dpms,
1254 .mode_fixup = mga_crtc_mode_fixup,
1255 .mode_set = mga_crtc_mode_set,
1256 .mode_set_base = mga_crtc_mode_set_base,
1257 .prepare = mga_crtc_prepare,
1258 .commit = mga_crtc_commit,
1259 .load_lut = mga_crtc_load_lut,
1260};
1261
1262/* CRTC setup */
1263static void mga_crtc_init(struct drm_device *dev)
1264{
1265 struct mga_device *mdev = dev->dev_private;
1266 struct mga_crtc *mga_crtc;
1267 int i;
1268
1269 mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1270 (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1271 GFP_KERNEL);
1272
1273 if (mga_crtc == NULL)
1274 return;
1275
1276 drm_crtc_init(dev, &mga_crtc->base, &mga_crtc_funcs);
1277
1278 drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
1279 mdev->mode_info.crtc = mga_crtc;
1280
1281 for (i = 0; i < MGAG200_LUT_SIZE; i++) {
1282 mga_crtc->lut_r[i] = i;
1283 mga_crtc->lut_g[i] = i;
1284 mga_crtc->lut_b[i] = i;
1285 }
1286
1287 drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1288}
1289
1290/** Sets the color ramps on behalf of fbcon */
1291void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1292 u16 blue, int regno)
1293{
1294 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1295
1296 mga_crtc->lut_r[regno] = red >> 8;
1297 mga_crtc->lut_g[regno] = green >> 8;
1298 mga_crtc->lut_b[regno] = blue >> 8;
1299}
1300
1301/** Gets the color ramps on behalf of fbcon */
1302void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
1303 u16 *blue, int regno)
1304{
1305 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1306
1307 *red = (u16)mga_crtc->lut_r[regno] << 8;
1308 *green = (u16)mga_crtc->lut_g[regno] << 8;
1309 *blue = (u16)mga_crtc->lut_b[regno] << 8;
1310}
1311
1312/*
1313 * The encoder comes after the CRTC in the output pipeline, but before
1314 * the connector. It's responsible for ensuring that the digital
1315 * stream is appropriately converted into the output format. Setup is
1316 * very simple in this case - all we have to do is inform qemu of the
1317 * colour depth in order to ensure that it displays appropriately
1318 */
1319
1320/*
1321 * These functions are analagous to those in the CRTC code, but are intended
1322 * to handle any encoder-specific limitations
1323 */
1324static bool mga_encoder_mode_fixup(struct drm_encoder *encoder,
e811f5ae
LP
1325 const struct drm_display_mode *mode,
1326 struct drm_display_mode *adjusted_mode)
414c4531
DA
1327{
1328 return true;
1329}
1330
1331static void mga_encoder_mode_set(struct drm_encoder *encoder,
1332 struct drm_display_mode *mode,
1333 struct drm_display_mode *adjusted_mode)
1334{
1335
1336}
1337
1338static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1339{
1340 return;
1341}
1342
1343static void mga_encoder_prepare(struct drm_encoder *encoder)
1344{
1345}
1346
1347static void mga_encoder_commit(struct drm_encoder *encoder)
1348{
1349}
1350
1351void mga_encoder_destroy(struct drm_encoder *encoder)
1352{
1353 struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1354 drm_encoder_cleanup(encoder);
1355 kfree(mga_encoder);
1356}
1357
1358static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1359 .dpms = mga_encoder_dpms,
1360 .mode_fixup = mga_encoder_mode_fixup,
1361 .mode_set = mga_encoder_mode_set,
1362 .prepare = mga_encoder_prepare,
1363 .commit = mga_encoder_commit,
1364};
1365
1366static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1367 .destroy = mga_encoder_destroy,
1368};
1369
1370static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1371{
1372 struct drm_encoder *encoder;
1373 struct mga_encoder *mga_encoder;
1374
1375 mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1376 if (!mga_encoder)
1377 return NULL;
1378
1379 encoder = &mga_encoder->base;
1380 encoder->possible_crtcs = 0x1;
1381
1382 drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1383 DRM_MODE_ENCODER_DAC);
1384 drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1385
1386 return encoder;
1387}
1388
1389
1390static int mga_vga_get_modes(struct drm_connector *connector)
1391{
1392 struct mga_connector *mga_connector = to_mga_connector(connector);
1393 struct edid *edid;
1394 int ret = 0;
1395
1396 edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1397 if (edid) {
1398 drm_mode_connector_update_edid_property(connector, edid);
1399 ret = drm_add_edid_modes(connector, edid);
1400 connector->display_info.raw_edid = NULL;
1401 kfree(edid);
1402 }
1403 return ret;
1404}
1405
1406static int mga_vga_mode_valid(struct drm_connector *connector,
1407 struct drm_display_mode *mode)
1408{
1409 /* FIXME: Add bandwidth and g200se limitations */
1410
1411 if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1412 mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1413 mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1414 mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1415 return MODE_BAD;
1416 }
1417
1418 return MODE_OK;
1419}
1420
1421struct drm_encoder *mga_connector_best_encoder(struct drm_connector
1422 *connector)
1423{
1424 int enc_id = connector->encoder_ids[0];
1425 struct drm_mode_object *obj;
1426 struct drm_encoder *encoder;
1427
1428 /* pick the encoder ids */
1429 if (enc_id) {
1430 obj =
1431 drm_mode_object_find(connector->dev, enc_id,
1432 DRM_MODE_OBJECT_ENCODER);
1433 if (!obj)
1434 return NULL;
1435 encoder = obj_to_encoder(obj);
1436 return encoder;
1437 }
1438 return NULL;
1439}
1440
1441static enum drm_connector_status mga_vga_detect(struct drm_connector
1442 *connector, bool force)
1443{
1444 return connector_status_connected;
1445}
1446
1447static void mga_connector_destroy(struct drm_connector *connector)
1448{
1449 struct mga_connector *mga_connector = to_mga_connector(connector);
1450 mgag200_i2c_destroy(mga_connector->i2c);
1451 drm_connector_cleanup(connector);
1452 kfree(connector);
1453}
1454
1455struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
1456 .get_modes = mga_vga_get_modes,
1457 .mode_valid = mga_vga_mode_valid,
1458 .best_encoder = mga_connector_best_encoder,
1459};
1460
1461struct drm_connector_funcs mga_vga_connector_funcs = {
1462 .dpms = drm_helper_connector_dpms,
1463 .detect = mga_vga_detect,
1464 .fill_modes = drm_helper_probe_single_connector_modes,
1465 .destroy = mga_connector_destroy,
1466};
1467
1468static struct drm_connector *mga_vga_init(struct drm_device *dev)
1469{
1470 struct drm_connector *connector;
1471 struct mga_connector *mga_connector;
1472
1473 mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1474 if (!mga_connector)
1475 return NULL;
1476
1477 connector = &mga_connector->base;
1478
1479 drm_connector_init(dev, connector,
1480 &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1481
1482 drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1483
1484 mga_connector->i2c = mgag200_i2c_create(dev);
1485 if (!mga_connector->i2c)
1486 DRM_ERROR("failed to add ddc bus\n");
1487
1488 return connector;
1489}
1490
1491
1492int mgag200_modeset_init(struct mga_device *mdev)
1493{
1494 struct drm_encoder *encoder;
1495 struct drm_connector *connector;
1496 int ret;
1497
1498 mdev->mode_info.mode_config_initialized = true;
1499
1500 mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1501 mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1502
1503 mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1504
1505 mga_crtc_init(mdev->dev);
1506
1507 encoder = mga_encoder_init(mdev->dev);
1508 if (!encoder) {
1509 DRM_ERROR("mga_encoder_init failed\n");
1510 return -1;
1511 }
1512
1513 connector = mga_vga_init(mdev->dev);
1514 if (!connector) {
1515 DRM_ERROR("mga_vga_init failed\n");
1516 return -1;
1517 }
1518
1519 drm_mode_connector_attach_encoder(connector, encoder);
1520
1521 ret = mgag200_fbdev_init(mdev);
1522 if (ret) {
1523 DRM_ERROR("mga_fbdev_init failed\n");
1524 return ret;
1525 }
1526
1527 return 0;
1528}
1529
1530void mgag200_modeset_fini(struct mga_device *mdev)
1531{
1532
1533}