]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/gpu/drm/nouveau/nvkm/subdev/clk/gf100.c
drm/nouveau/bios: convert to new-style nvkm_subdev
[mirror_ubuntu-eoan-kernel.git] / drivers / gpu / drm / nouveau / nvkm / subdev / clk / gf100.c
CommitLineData
8aceb7de
BS
1/*
2 * Copyright 2012 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
f3867f43 24#include <subdev/clk.h>
7632b30e
BS
25#include "pll.h"
26
70790f4f
BS
27#include <subdev/bios.h>
28#include <subdev/bios/pll.h>
7c856522 29#include <subdev/timer.h>
70790f4f 30
7632b30e 31struct gf100_clk_info {
7c856522
BS
32 u32 freq;
33 u32 ssel;
34 u32 mdiv;
35 u32 dsrc;
36 u32 ddiv;
37 u32 coef;
38};
39
3eca809b 40struct gf100_clk {
7632b30e
BS
41 struct nvkm_clk base;
42 struct gf100_clk_info eng[16];
7c856522
BS
43};
44
3eca809b 45static u32 read_div(struct gf100_clk *, int, u32, u32);
7c856522
BS
46
47static u32
3eca809b 48read_vco(struct gf100_clk *clk, u32 dsrc)
7c856522 49{
822ad79f
BS
50 struct nvkm_device *device = clk->base.subdev.device;
51 u32 ssrc = nvkm_rd32(device, dsrc);
7c856522 52 if (!(ssrc & 0x00000100))
3eca809b
BS
53 return clk->base.read(&clk->base, nv_clk_src_sppll0);
54 return clk->base.read(&clk->base, nv_clk_src_sppll1);
7c856522
BS
55}
56
57static u32
3eca809b 58read_pll(struct gf100_clk *clk, u32 pll)
7c856522 59{
822ad79f
BS
60 struct nvkm_device *device = clk->base.subdev.device;
61 u32 ctrl = nvkm_rd32(device, pll + 0x00);
62 u32 coef = nvkm_rd32(device, pll + 0x04);
7c856522
BS
63 u32 P = (coef & 0x003f0000) >> 16;
64 u32 N = (coef & 0x0000ff00) >> 8;
65 u32 M = (coef & 0x000000ff) >> 0;
66 u32 sclk;
67
68 if (!(ctrl & 0x00000001))
69 return 0;
70
71 switch (pll) {
72 case 0x00e800:
73 case 0x00e820:
822ad79f 74 sclk = device->crystal;
7c856522
BS
75 P = 1;
76 break;
77 case 0x132000:
3eca809b 78 sclk = clk->base.read(&clk->base, nv_clk_src_mpllsrc);
7c856522
BS
79 break;
80 case 0x132020:
3eca809b 81 sclk = clk->base.read(&clk->base, nv_clk_src_mpllsrcref);
7c856522
BS
82 break;
83 case 0x137000:
84 case 0x137020:
85 case 0x137040:
86 case 0x1370e0:
3eca809b 87 sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
7c856522
BS
88 break;
89 default:
90 return 0;
91 }
92
93 return sclk * N / M / P;
94}
95
96static u32
3eca809b 97read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl)
7c856522 98{
822ad79f
BS
99 struct nvkm_device *device = clk->base.subdev.device;
100 u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
101 u32 sctl = nvkm_rd32(device, dctl + (doff * 4));
7c856522
BS
102
103 switch (ssrc & 0x00000003) {
104 case 0:
105 if ((ssrc & 0x00030000) != 0x00030000)
822ad79f 106 return device->crystal;
7c856522
BS
107 return 108000;
108 case 2:
109 return 100000;
110 case 3:
111 if (sctl & 0x80000000) {
3eca809b 112 u32 sclk = read_vco(clk, dsrc + (doff * 4));
7c856522
BS
113 u32 sdiv = (sctl & 0x0000003f) + 2;
114 return (sclk * 2) / sdiv;
115 }
116
3eca809b 117 return read_vco(clk, dsrc + (doff * 4));
7c856522
BS
118 default:
119 return 0;
120 }
121}
122
123static u32
3eca809b 124read_clk(struct gf100_clk *clk, int idx)
7c856522 125{
822ad79f
BS
126 struct nvkm_device *device = clk->base.subdev.device;
127 u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
128 u32 ssel = nvkm_rd32(device, 0x137100);
7c856522
BS
129 u32 sclk, sdiv;
130
3eca809b
BS
131 if (ssel & (1 << idx)) {
132 if (idx < 7)
133 sclk = read_pll(clk, 0x137000 + (idx * 0x20));
7c856522 134 else
3eca809b 135 sclk = read_pll(clk, 0x1370e0);
7c856522
BS
136 sdiv = ((sctl & 0x00003f00) >> 8) + 2;
137 } else {
3eca809b 138 sclk = read_div(clk, idx, 0x137160, 0x1371d0);
7c856522
BS
139 sdiv = ((sctl & 0x0000003f) >> 0) + 2;
140 }
141
142 if (sctl & 0x80000000)
143 return (sclk * 2) / sdiv;
144
145 return sclk;
146}
147
148static int
3eca809b 149gf100_clk_read(struct nvkm_clk *obj, enum nv_clk_src src)
7c856522 150{
3eca809b 151 struct gf100_clk *clk = container_of(obj, typeof(*clk), base);
b907649e
BS
152 struct nvkm_subdev *subdev = &clk->base.subdev;
153 struct nvkm_device *device = subdev->device;
7c856522
BS
154
155 switch (src) {
156 case nv_clk_src_crystal:
157 return device->crystal;
158 case nv_clk_src_href:
159 return 100000;
160 case nv_clk_src_sppll0:
3eca809b 161 return read_pll(clk, 0x00e800);
7c856522 162 case nv_clk_src_sppll1:
3eca809b 163 return read_pll(clk, 0x00e820);
7c856522
BS
164
165 case nv_clk_src_mpllsrcref:
3eca809b 166 return read_div(clk, 0, 0x137320, 0x137330);
7c856522 167 case nv_clk_src_mpllsrc:
3eca809b 168 return read_pll(clk, 0x132020);
7c856522 169 case nv_clk_src_mpll:
3eca809b 170 return read_pll(clk, 0x132000);
7c856522 171 case nv_clk_src_mdiv:
3eca809b 172 return read_div(clk, 0, 0x137300, 0x137310);
7c856522 173 case nv_clk_src_mem:
822ad79f 174 if (nvkm_rd32(device, 0x1373f0) & 0x00000002)
3eca809b
BS
175 return clk->base.read(&clk->base, nv_clk_src_mpll);
176 return clk->base.read(&clk->base, nv_clk_src_mdiv);
7c856522
BS
177
178 case nv_clk_src_gpc:
3eca809b 179 return read_clk(clk, 0x00);
7c856522 180 case nv_clk_src_rop:
3eca809b 181 return read_clk(clk, 0x01);
7c856522 182 case nv_clk_src_hubk07:
3eca809b 183 return read_clk(clk, 0x02);
7c856522 184 case nv_clk_src_hubk06:
3eca809b 185 return read_clk(clk, 0x07);
7c856522 186 case nv_clk_src_hubk01:
3eca809b 187 return read_clk(clk, 0x08);
7c856522 188 case nv_clk_src_copy:
3eca809b 189 return read_clk(clk, 0x09);
7c856522 190 case nv_clk_src_daemon:
3eca809b 191 return read_clk(clk, 0x0c);
7c856522 192 case nv_clk_src_vdec:
3eca809b 193 return read_clk(clk, 0x0e);
7c856522 194 default:
b907649e 195 nvkm_error(subdev, "invalid clock source %d\n", src);
7c856522
BS
196 return -EINVAL;
197 }
198}
199
200static u32
3eca809b 201calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
7c856522
BS
202{
203 u32 div = min((ref * 2) / freq, (u32)65);
204 if (div < 2)
205 div = 2;
206
207 *ddiv = div - 2;
208 return (ref * 2) / div;
209}
210
211static u32
3eca809b 212calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
7c856522
BS
213{
214 u32 sclk;
215
216 /* use one of the fixed frequencies if possible */
217 *ddiv = 0x00000000;
218 switch (freq) {
219 case 27000:
220 case 108000:
221 *dsrc = 0x00000000;
222 if (freq == 108000)
223 *dsrc |= 0x00030000;
224 return freq;
225 case 100000:
226 *dsrc = 0x00000002;
227 return freq;
228 default:
229 *dsrc = 0x00000003;
230 break;
231 }
232
233 /* otherwise, calculate the closest divider */
3eca809b
BS
234 sclk = read_vco(clk, 0x137160 + (idx * 4));
235 if (idx < 7)
236 sclk = calc_div(clk, idx, sclk, freq, ddiv);
7c856522
BS
237 return sclk;
238}
239
240static u32
3eca809b 241calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef)
7c856522 242{
46484438
BS
243 struct nvkm_subdev *subdev = &clk->base.subdev;
244 struct nvkm_bios *bios = subdev->device->bios;
7c856522
BS
245 struct nvbios_pll limits;
246 int N, M, P, ret;
247
3eca809b 248 ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
7c856522
BS
249 if (ret)
250 return 0;
251
3eca809b 252 limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
7c856522
BS
253 if (!limits.refclk)
254 return 0;
255
46484438 256 ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
7c856522
BS
257 if (ret <= 0)
258 return 0;
259
260 *coef = (P << 16) | (N << 8) | M;
261 return ret;
262}
263
264static int
3eca809b 265calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom)
7c856522 266{
3eca809b 267 struct gf100_clk_info *info = &clk->eng[idx];
7c856522
BS
268 u32 freq = cstate->domain[dom];
269 u32 src0, div0, div1D, div1P = 0;
270 u32 clk0, clk1 = 0;
271
272 /* invalid clock domain */
273 if (!freq)
274 return 0;
275
276 /* first possible path, using only dividers */
3eca809b
BS
277 clk0 = calc_src(clk, idx, freq, &src0, &div0);
278 clk0 = calc_div(clk, idx, clk0, freq, &div1D);
7c856522
BS
279
280 /* see if we can get any closer using PLLs */
3eca809b
BS
281 if (clk0 != freq && (0x00004387 & (1 << idx))) {
282 if (idx <= 7)
283 clk1 = calc_pll(clk, idx, freq, &info->coef);
7c856522
BS
284 else
285 clk1 = cstate->domain[nv_clk_src_hubk06];
3eca809b 286 clk1 = calc_div(clk, idx, clk1, freq, &div1P);
7c856522
BS
287 }
288
289 /* select the method which gets closest to target freq */
290 if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
291 info->dsrc = src0;
292 if (div0) {
293 info->ddiv |= 0x80000000;
294 info->ddiv |= div0 << 8;
295 info->ddiv |= div0;
296 }
297 if (div1D) {
298 info->mdiv |= 0x80000000;
299 info->mdiv |= div1D;
300 }
301 info->ssel = info->coef = 0;
302 info->freq = clk0;
303 } else {
304 if (div1P) {
305 info->mdiv |= 0x80000000;
306 info->mdiv |= div1P << 8;
307 }
3eca809b 308 info->ssel = (1 << idx);
7c856522
BS
309 info->freq = clk1;
310 }
311
312 return 0;
313}
314
315static int
3eca809b 316gf100_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate)
7c856522 317{
3eca809b 318 struct gf100_clk *clk = container_of(obj, typeof(*clk), base);
7c856522
BS
319 int ret;
320
3eca809b
BS
321 if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
322 (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
323 (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
324 (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
325 (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
326 (ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) ||
327 (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_daemon)) ||
328 (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
7c856522
BS
329 return ret;
330
331 return 0;
332}
333
334static void
3eca809b 335gf100_clk_prog_0(struct gf100_clk *clk, int idx)
7c856522 336{
3eca809b 337 struct gf100_clk_info *info = &clk->eng[idx];
822ad79f 338 struct nvkm_device *device = clk->base.subdev.device;
3eca809b 339 if (idx < 7 && !info->ssel) {
822ad79f
BS
340 nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv);
341 nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
7c856522
BS
342 }
343}
344
345static void
3eca809b 346gf100_clk_prog_1(struct gf100_clk *clk, int idx)
7c856522 347{
822ad79f
BS
348 struct nvkm_device *device = clk->base.subdev.device;
349 nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
6979c630
BS
350 nvkm_msec(device, 2000,
351 if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
352 break;
353 );
7c856522
BS
354}
355
356static void
3eca809b 357gf100_clk_prog_2(struct gf100_clk *clk, int idx)
7c856522 358{
3eca809b 359 struct gf100_clk_info *info = &clk->eng[idx];
822ad79f 360 struct nvkm_device *device = clk->base.subdev.device;
3eca809b
BS
361 const u32 addr = 0x137000 + (idx * 0x20);
362 if (idx <= 7) {
822ad79f
BS
363 nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
364 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
7c856522 365 if (info->coef) {
822ad79f
BS
366 nvkm_wr32(device, addr + 0x04, info->coef);
367 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
6979c630
BS
368 nvkm_msec(device, 2000,
369 if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
370 break;
371 );
822ad79f 372 nvkm_mask(device, addr + 0x00, 0x00020004, 0x00000004);
7c856522
BS
373 }
374 }
375}
376
377static void
3eca809b 378gf100_clk_prog_3(struct gf100_clk *clk, int idx)
7c856522 379{
3eca809b 380 struct gf100_clk_info *info = &clk->eng[idx];
822ad79f 381 struct nvkm_device *device = clk->base.subdev.device;
7c856522 382 if (info->ssel) {
822ad79f 383 nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
6979c630
BS
384 nvkm_msec(device, 2000,
385 u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
386 if (tmp == info->ssel)
387 break;
388 );
7c856522
BS
389 }
390}
391
392static void
3eca809b 393gf100_clk_prog_4(struct gf100_clk *clk, int idx)
7c856522 394{
3eca809b 395 struct gf100_clk_info *info = &clk->eng[idx];
822ad79f
BS
396 struct nvkm_device *device = clk->base.subdev.device;
397 nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv);
7c856522
BS
398}
399
400static int
3eca809b 401gf100_clk_prog(struct nvkm_clk *obj)
7c856522 402{
3eca809b 403 struct gf100_clk *clk = container_of(obj, typeof(*clk), base);
7c856522 404 struct {
3eca809b 405 void (*exec)(struct gf100_clk *, int);
7c856522 406 } stage[] = {
7632b30e
BS
407 { gf100_clk_prog_0 }, /* div programming */
408 { gf100_clk_prog_1 }, /* select div mode */
409 { gf100_clk_prog_2 }, /* (maybe) program pll */
410 { gf100_clk_prog_3 }, /* (maybe) select pll mode */
411 { gf100_clk_prog_4 }, /* final divider */
7c856522
BS
412 };
413 int i, j;
414
415 for (i = 0; i < ARRAY_SIZE(stage); i++) {
3eca809b
BS
416 for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
417 if (!clk->eng[j].freq)
7c856522 418 continue;
3eca809b 419 stage[i].exec(clk, j);
7c856522
BS
420 }
421 }
422
423 return 0;
424}
425
426static void
3eca809b 427gf100_clk_tidy(struct nvkm_clk *obj)
7c856522 428{
3eca809b
BS
429 struct gf100_clk *clk = container_of(obj, typeof(*clk), base);
430 memset(clk->eng, 0x00, sizeof(clk->eng));
7c856522
BS
431}
432
7632b30e
BS
433static struct nvkm_domain
434gf100_domain[] = {
7c856522
BS
435 { nv_clk_src_crystal, 0xff },
436 { nv_clk_src_href , 0xff },
437 { nv_clk_src_hubk06 , 0x00 },
438 { nv_clk_src_hubk01 , 0x01 },
439 { nv_clk_src_copy , 0x02 },
440 { nv_clk_src_gpc , 0x03, 0, "core", 2000 },
441 { nv_clk_src_rop , 0x04 },
442 { nv_clk_src_mem , 0x05, 0, "memory", 1000 },
443 { nv_clk_src_vdec , 0x06 },
444 { nv_clk_src_daemon , 0x0a },
445 { nv_clk_src_hubk07 , 0x0b },
446 { nv_clk_src_max }
8aceb7de
BS
447};
448
8aceb7de 449static int
7632b30e
BS
450gf100_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
451 struct nvkm_oclass *oclass, void *data, u32 size,
452 struct nvkm_object **pobject)
8aceb7de 453{
3eca809b 454 struct gf100_clk *clk;
8aceb7de
BS
455 int ret;
456
7632b30e 457 ret = nvkm_clk_create(parent, engine, oclass, gf100_domain,
3eca809b
BS
458 NULL, 0, false, &clk);
459 *pobject = nv_object(clk);
8aceb7de
BS
460 if (ret)
461 return ret;
462
3eca809b
BS
463 clk->base.read = gf100_clk_read;
464 clk->base.calc = gf100_clk_calc;
465 clk->base.prog = gf100_clk_prog;
466 clk->base.tidy = gf100_clk_tidy;
8aceb7de
BS
467 return 0;
468}
469
7632b30e
BS
470struct nvkm_oclass
471gf100_clk_oclass = {
f3867f43 472 .handle = NV_SUBDEV(CLK, 0xc0),
7632b30e
BS
473 .ofuncs = &(struct nvkm_ofuncs) {
474 .ctor = gf100_clk_ctor,
475 .dtor = _nvkm_clk_dtor,
476 .init = _nvkm_clk_init,
477 .fini = _nvkm_clk_fini,
8aceb7de
BS
478 },
479};