]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/gpu/drm/vc4/vc4_crtc.c
drm/vc4: Add support for feeding DSI encoders from the pixel valve.
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
CommitLineData
c8b75bca
EA
1/*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9/**
10 * DOC: VC4 CRTC module
11 *
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * output's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
16 *
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, this file also manages
19 * setup of the VC4 HVS's display elements on the CRTC.
20 *
21 * The 2835 has 3 different pixel valves. pv0 in the audio power
22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
23 * image domain can feed either HDMI or the SDTV controller. The
24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25 * SDTV, etc.) according to which output type is chosen in the mux.
26 *
27 * For power management, the pixel valve's registers are all clocked
28 * by the AXI clock, while the timings and FIFOs make use of the
29 * output-specific clock. Since the encoders also directly consume
30 * the CPRMAN clocks, and know what timings they need, they are the
31 * ones that set the clock.
32 */
33
34#include "drm_atomic.h"
35#include "drm_atomic_helper.h"
36#include "drm_crtc_helper.h"
37#include "linux/clk.h"
b501bacc 38#include "drm_fb_cma_helper.h"
c8b75bca
EA
39#include "linux/component.h"
40#include "linux/of_device.h"
41#include "vc4_drv.h"
42#include "vc4_regs.h"
43
44struct vc4_crtc {
45 struct drm_crtc base;
46 const struct vc4_crtc_data *data;
47 void __iomem *regs;
48
1bf59f1d
MK
49 /* Timestamp at start of vblank irq - unaffected by lock delays. */
50 ktime_t t_vblank;
51
c8b75bca
EA
52 /* Which HVS channel we're using for our CRTC. */
53 int channel;
54
e582b6c7
EA
55 u8 lut_r[256];
56 u8 lut_g[256];
57 u8 lut_b[256];
1bf59f1d
MK
58 /* Size in pixels of the COB memory allocated to this CRTC. */
59 u32 cob_size;
e582b6c7 60
c8b75bca
EA
61 struct drm_pending_vblank_event *event;
62};
63
d8dbf44f
EA
64struct vc4_crtc_state {
65 struct drm_crtc_state base;
66 /* Dlist area for this CRTC configuration. */
67 struct drm_mm_node mm;
68};
69
c8b75bca
EA
70static inline struct vc4_crtc *
71to_vc4_crtc(struct drm_crtc *crtc)
72{
73 return (struct vc4_crtc *)crtc;
74}
75
d8dbf44f
EA
76static inline struct vc4_crtc_state *
77to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
78{
79 return (struct vc4_crtc_state *)crtc_state;
80}
81
c8b75bca
EA
82struct vc4_crtc_data {
83 /* Which channel of the HVS this pixelvalve sources from. */
84 int hvs_channel;
85
ab8df60e 86 enum vc4_encoder_type encoder_types[4];
c8b75bca
EA
87};
88
89#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
90#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
91
92#define CRTC_REG(reg) { reg, #reg }
93static const struct {
94 u32 reg;
95 const char *name;
96} crtc_regs[] = {
97 CRTC_REG(PV_CONTROL),
98 CRTC_REG(PV_V_CONTROL),
c31806fb 99 CRTC_REG(PV_VSYNCD_EVEN),
c8b75bca
EA
100 CRTC_REG(PV_HORZA),
101 CRTC_REG(PV_HORZB),
102 CRTC_REG(PV_VERTA),
103 CRTC_REG(PV_VERTB),
104 CRTC_REG(PV_VERTA_EVEN),
105 CRTC_REG(PV_VERTB_EVEN),
106 CRTC_REG(PV_INTEN),
107 CRTC_REG(PV_INTSTAT),
108 CRTC_REG(PV_STAT),
109 CRTC_REG(PV_HACT_ACT),
110};
111
112static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
113{
114 int i;
115
116 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
117 DRM_INFO("0x%04x (%s): 0x%08x\n",
118 crtc_regs[i].reg, crtc_regs[i].name,
119 CRTC_READ(crtc_regs[i].reg));
120 }
121}
122
123#ifdef CONFIG_DEBUG_FS
124int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
125{
126 struct drm_info_node *node = (struct drm_info_node *)m->private;
127 struct drm_device *dev = node->minor->dev;
128 int crtc_index = (uintptr_t)node->info_ent->data;
129 struct drm_crtc *crtc;
130 struct vc4_crtc *vc4_crtc;
131 int i;
132
133 i = 0;
134 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
135 if (i == crtc_index)
136 break;
137 i++;
138 }
139 if (!crtc)
140 return 0;
141 vc4_crtc = to_vc4_crtc(crtc);
142
143 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
144 seq_printf(m, "%s (0x%04x): 0x%08x\n",
145 crtc_regs[i].name, crtc_regs[i].reg,
146 CRTC_READ(crtc_regs[i].reg));
147 }
148
149 return 0;
150}
151#endif
152
1bf59f1d
MK
153int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
154 unsigned int flags, int *vpos, int *hpos,
155 ktime_t *stime, ktime_t *etime,
156 const struct drm_display_mode *mode)
157{
158 struct vc4_dev *vc4 = to_vc4_dev(dev);
159 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
160 u32 val;
161 int fifo_lines;
162 int vblank_lines;
163 int ret = 0;
164
30c897dd
EA
165 if (vc4->firmware_kms)
166 return 0;
167
1bf59f1d
MK
168 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
169
170 /* Get optional system timestamp before query. */
171 if (stime)
172 *stime = ktime_get();
173
174 /*
175 * Read vertical scanline which is currently composed for our
176 * pixelvalve by the HVS, and also the scaler status.
177 */
178 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
179
180 /* Get optional system timestamp after query. */
181 if (etime)
182 *etime = ktime_get();
183
184 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
185
186 /* Vertical position of hvs composed scanline. */
187 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
e538092c
MK
188 *hpos = 0;
189
190 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
191 *vpos /= 2;
1bf59f1d 192
e538092c
MK
193 /* Use hpos to correct for field offset in interlaced mode. */
194 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
195 *hpos += mode->crtc_htotal / 2;
196 }
1bf59f1d
MK
197
198 /* This is the offset we need for translating hvs -> pv scanout pos. */
199 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
200
201 if (fifo_lines > 0)
202 ret |= DRM_SCANOUTPOS_VALID;
203
204 /* HVS more than fifo_lines into frame for compositing? */
205 if (*vpos > fifo_lines) {
206 /*
207 * We are in active scanout and can get some meaningful results
208 * from HVS. The actual PV scanout can not trail behind more
209 * than fifo_lines as that is the fifo's capacity. Assume that
210 * in active scanout the HVS and PV work in lockstep wrt. HVS
211 * refilling the fifo and PV consuming from the fifo, ie.
212 * whenever the PV consumes and frees up a scanline in the
213 * fifo, the HVS will immediately refill it, therefore
214 * incrementing vpos. Therefore we choose HVS read position -
215 * fifo size in scanlines as a estimate of the real scanout
216 * position of the PV.
217 */
218 *vpos -= fifo_lines + 1;
1bf59f1d
MK
219
220 ret |= DRM_SCANOUTPOS_ACCURATE;
221 return ret;
222 }
223
224 /*
225 * Less: This happens when we are in vblank and the HVS, after getting
226 * the VSTART restart signal from the PV, just started refilling its
227 * fifo with new lines from the top-most lines of the new framebuffers.
228 * The PV does not scan out in vblank, so does not remove lines from
229 * the fifo, so the fifo will be full quickly and the HVS has to pause.
230 * We can't get meaningful readings wrt. scanline position of the PV
231 * and need to make things up in a approximative but consistent way.
232 */
233 ret |= DRM_SCANOUTPOS_IN_VBLANK;
682e62c4 234 vblank_lines = mode->vtotal - mode->vdisplay;
1bf59f1d
MK
235
236 if (flags & DRM_CALLED_FROM_VBLIRQ) {
237 /*
238 * Assume the irq handler got called close to first
239 * line of vblank, so PV has about a full vblank
240 * scanlines to go, and as a base timestamp use the
241 * one taken at entry into vblank irq handler, so it
242 * is not affected by random delays due to lock
243 * contention on event_lock or vblank_time lock in
244 * the core.
245 */
246 *vpos = -vblank_lines;
247
248 if (stime)
249 *stime = vc4_crtc->t_vblank;
250 if (etime)
251 *etime = vc4_crtc->t_vblank;
252
253 /*
254 * If the HVS fifo is not yet full then we know for certain
255 * we are at the very beginning of vblank, as the hvs just
256 * started refilling, and the stime and etime timestamps
257 * truly correspond to start of vblank.
258 */
259 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
260 ret |= DRM_SCANOUTPOS_ACCURATE;
261 } else {
262 /*
263 * No clue where we are inside vblank. Return a vpos of zero,
264 * which will cause calling code to just return the etime
265 * timestamp uncorrected. At least this is no worse than the
266 * standard fallback.
267 */
268 *vpos = 0;
269 }
270
271 return ret;
272}
273
274int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
275 int *max_error, struct timeval *vblank_time,
276 unsigned flags)
277{
278 struct vc4_dev *vc4 = to_vc4_dev(dev);
279 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
280 struct drm_crtc *crtc = &vc4_crtc->base;
281 struct drm_crtc_state *state = crtc->state;
282
283 /* Helper routine in DRM core does all the work: */
284 return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
285 vblank_time, flags,
286 &state->adjusted_mode);
287}
288
c8b75bca
EA
289static void vc4_crtc_destroy(struct drm_crtc *crtc)
290{
291 drm_crtc_cleanup(crtc);
292}
293
e582b6c7
EA
294static void
295vc4_crtc_lut_load(struct drm_crtc *crtc)
296{
297 struct drm_device *dev = crtc->dev;
298 struct vc4_dev *vc4 = to_vc4_dev(dev);
299 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
300 u32 i;
301
302 /* The LUT memory is laid out with each HVS channel in order,
303 * each of which takes 256 writes for R, 256 for G, then 256
304 * for B.
305 */
306 HVS_WRITE(SCALER_GAMADDR,
307 SCALER_GAMADDR_AUTOINC |
308 (vc4_crtc->channel * 3 * crtc->gamma_size));
309
310 for (i = 0; i < crtc->gamma_size; i++)
311 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
312 for (i = 0; i < crtc->gamma_size; i++)
313 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
314 for (i = 0; i < crtc->gamma_size; i++)
315 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
316}
317
7ea77283 318static int
e582b6c7 319vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
7ea77283 320 uint32_t size)
e582b6c7
EA
321{
322 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
323 u32 i;
324
7ea77283 325 for (i = 0; i < size; i++) {
e582b6c7
EA
326 vc4_crtc->lut_r[i] = r[i] >> 8;
327 vc4_crtc->lut_g[i] = g[i] >> 8;
328 vc4_crtc->lut_b[i] = b[i] >> 8;
329 }
330
331 vc4_crtc_lut_load(crtc);
7ea77283
ML
332
333 return 0;
e582b6c7
EA
334}
335
c8b75bca
EA
336static u32 vc4_get_fifo_full_level(u32 format)
337{
338 static const u32 fifo_len_bytes = 64;
339 static const u32 hvs_latency_pix = 6;
340
341 switch (format) {
342 case PV_CONTROL_FORMAT_DSIV_16:
343 case PV_CONTROL_FORMAT_DSIC_16:
344 return fifo_len_bytes - 2 * hvs_latency_pix;
345 case PV_CONTROL_FORMAT_DSIV_18:
346 return fifo_len_bytes - 14;
347 case PV_CONTROL_FORMAT_24:
348 case PV_CONTROL_FORMAT_DSIV_24:
349 default:
350 return fifo_len_bytes - 3 * hvs_latency_pix;
351 }
352}
353
354/*
1370dadf
EA
355 * Returns the encoder attached to the CRTC.
356 *
357 * VC4 can only scan out to one encoder at a time, while the DRM core
358 * allows drivers to push pixels to more than one encoder from the
359 * same CRTC.
c8b75bca 360 */
1370dadf 361static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
c8b75bca
EA
362{
363 struct drm_connector *connector;
364
365 drm_for_each_connector(connector, crtc->dev) {
2fa8e904 366 if (connector->state->crtc == crtc) {
1370dadf 367 return connector->encoder;
c8b75bca
EA
368 }
369 }
370
1370dadf 371 return NULL;
c8b75bca
EA
372}
373
374static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
375{
6a609209
EA
376 struct drm_device *dev = crtc->dev;
377 struct vc4_dev *vc4 = to_vc4_dev(dev);
1370dadf
EA
378 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
379 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
c8b75bca
EA
380 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
381 struct drm_crtc_state *state = crtc->state;
382 struct drm_display_mode *mode = &state->adjusted_mode;
383 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
dfccd937 384 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
1370dadf
EA
385 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
386 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
387 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
c8b75bca 388 bool debug_dump_regs = false;
c8b75bca
EA
389
390 if (debug_dump_regs) {
391 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
392 vc4_crtc_dump_regs(vc4_crtc);
393 }
394
395 /* Reset the PV fifo. */
396 CRTC_WRITE(PV_CONTROL, 0);
397 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
398 CRTC_WRITE(PV_CONTROL, 0);
399
400 CRTC_WRITE(PV_HORZA,
dfccd937
EA
401 VC4_SET_FIELD((mode->htotal -
402 mode->hsync_end) * pixel_rep,
c8b75bca 403 PV_HORZA_HBP) |
dfccd937
EA
404 VC4_SET_FIELD((mode->hsync_end -
405 mode->hsync_start) * pixel_rep,
c8b75bca
EA
406 PV_HORZA_HSYNC));
407 CRTC_WRITE(PV_HORZB,
dfccd937
EA
408 VC4_SET_FIELD((mode->hsync_start -
409 mode->hdisplay) * pixel_rep,
c8b75bca 410 PV_HORZB_HFP) |
dfccd937 411 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
c8b75bca 412
a7c5047d 413 CRTC_WRITE(PV_VERTA,
682e62c4 414 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
a7c5047d 415 PV_VERTA_VBP) |
682e62c4 416 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
a7c5047d
EA
417 PV_VERTA_VSYNC));
418 CRTC_WRITE(PV_VERTB,
682e62c4 419 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
a7c5047d 420 PV_VERTB_VFP) |
682e62c4 421 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
a7c5047d 422
c8b75bca
EA
423 if (interlace) {
424 CRTC_WRITE(PV_VERTA_EVEN,
682e62c4
EA
425 VC4_SET_FIELD(mode->crtc_vtotal -
426 mode->crtc_vsync_end - 1,
c8b75bca 427 PV_VERTA_VBP) |
682e62c4
EA
428 VC4_SET_FIELD(mode->crtc_vsync_end -
429 mode->crtc_vsync_start,
c8b75bca
EA
430 PV_VERTA_VSYNC));
431 CRTC_WRITE(PV_VERTB_EVEN,
682e62c4
EA
432 VC4_SET_FIELD(mode->crtc_vsync_start -
433 mode->crtc_vdisplay,
c8b75bca 434 PV_VERTB_VFP) |
682e62c4
EA
435 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
436
437 /* We set up first field even mode for HDMI. VEC's
438 * NTSC mode would want first field odd instead, once
439 * we support it (to do so, set ODD_FIRST and put the
440 * delay in VSYNCD_EVEN instead).
441 */
442 CRTC_WRITE(PV_V_CONTROL,
443 PV_VCONTROL_CONTINUOUS |
1370dadf 444 (is_dsi ? PV_VCONTROL_DSI : 0) |
682e62c4 445 PV_VCONTROL_INTERLACE |
dfccd937 446 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
682e62c4
EA
447 PV_VCONTROL_ODD_DELAY));
448 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
449 } else {
1370dadf
EA
450 CRTC_WRITE(PV_V_CONTROL,
451 PV_VCONTROL_CONTINUOUS |
452 (is_dsi ? PV_VCONTROL_DSI : 0));
c8b75bca
EA
453 }
454
dfccd937 455 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
c8b75bca 456
c8b75bca
EA
457 CRTC_WRITE(PV_CONTROL,
458 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
459 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
460 PV_CONTROL_FIFO_LEVEL) |
dfccd937 461 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
c8b75bca
EA
462 PV_CONTROL_CLR_AT_START |
463 PV_CONTROL_TRIGGER_UNDERFLOW |
464 PV_CONTROL_WAIT_HSTART |
1370dadf
EA
465 VC4_SET_FIELD(vc4_encoder->clock_select,
466 PV_CONTROL_CLK_SELECT) |
c8b75bca
EA
467 PV_CONTROL_FIFO_CLR |
468 PV_CONTROL_EN);
469
6a609209
EA
470 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
471 SCALER_DISPBKGND_AUTOHS |
e582b6c7 472 SCALER_DISPBKGND_GAMMA |
6a609209
EA
473 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
474
e582b6c7
EA
475 /* Reload the LUT, since the SRAMs would have been disabled if
476 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
477 */
478 vc4_crtc_lut_load(crtc);
479
c8b75bca
EA
480 if (debug_dump_regs) {
481 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
482 vc4_crtc_dump_regs(vc4_crtc);
483 }
484}
485
486static void require_hvs_enabled(struct drm_device *dev)
487{
488 struct vc4_dev *vc4 = to_vc4_dev(dev);
489
490 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
491 SCALER_DISPCTRL_ENABLE);
492}
493
494static void vc4_crtc_disable(struct drm_crtc *crtc)
495{
496 struct drm_device *dev = crtc->dev;
497 struct vc4_dev *vc4 = to_vc4_dev(dev);
498 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
499 u32 chan = vc4_crtc->channel;
500 int ret;
501 require_hvs_enabled(dev);
502
e941f05d
MK
503 /* Disable vblank irq handling before crtc is disabled. */
504 drm_crtc_vblank_off(crtc);
505
c8b75bca
EA
506 CRTC_WRITE(PV_V_CONTROL,
507 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
508 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
509 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
510
511 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
512 SCALER_DISPCTRLX_ENABLE) {
513 HVS_WRITE(SCALER_DISPCTRLX(chan),
514 SCALER_DISPCTRLX_RESET);
515
516 /* While the docs say that reset is self-clearing, it
517 * seems it doesn't actually.
518 */
519 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
520 }
521
522 /* Once we leave, the scaler should be disabled and its fifo empty. */
523
524 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
525
526 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
527 SCALER_DISPSTATX_MODE) !=
528 SCALER_DISPSTATX_MODE_DISABLED);
529
530 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
531 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
532 SCALER_DISPSTATX_EMPTY);
533}
534
535static void vc4_crtc_enable(struct drm_crtc *crtc)
536{
537 struct drm_device *dev = crtc->dev;
538 struct vc4_dev *vc4 = to_vc4_dev(dev);
539 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
540 struct drm_crtc_state *state = crtc->state;
541 struct drm_display_mode *mode = &state->adjusted_mode;
542
543 require_hvs_enabled(dev);
544
545 /* Turn on the scaler, which will wait for vstart to start
546 * compositing.
547 */
548 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
549 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
550 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
551 SCALER_DISPCTRLX_ENABLE);
552
553 /* Turn on the pixel valve, which will emit the vstart signal. */
554 CRTC_WRITE(PV_V_CONTROL,
555 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
e941f05d
MK
556
557 /* Enable vblank irq handling after crtc is started. */
558 drm_crtc_vblank_on(crtc);
c8b75bca
EA
559}
560
acc1be1d
MK
561static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
562 const struct drm_display_mode *mode,
563 struct drm_display_mode *adjusted_mode)
564{
36451467
MK
565 /* Do not allow doublescan modes from user space */
566 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
567 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
568 crtc->base.id);
569 return false;
570 }
571
acc1be1d
MK
572 return true;
573}
574
c8b75bca
EA
575static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
576 struct drm_crtc_state *state)
577{
d8dbf44f 578 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
c8b75bca
EA
579 struct drm_device *dev = crtc->dev;
580 struct vc4_dev *vc4 = to_vc4_dev(dev);
581 struct drm_plane *plane;
d8dbf44f 582 unsigned long flags;
2f196b7c 583 const struct drm_plane_state *plane_state;
c8b75bca 584 u32 dlist_count = 0;
d8dbf44f 585 int ret;
c8b75bca
EA
586
587 /* The pixelvalve can only feed one encoder (and encoders are
588 * 1:1 with connectors.)
589 */
14de6c44 590 if (hweight32(state->connector_mask) > 1)
c8b75bca
EA
591 return -EINVAL;
592
2f196b7c 593 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
c8b75bca 594 dlist_count += vc4_plane_dlist_size(plane_state);
c8b75bca
EA
595
596 dlist_count++; /* Account for SCALER_CTL0_END. */
597
d8dbf44f
EA
598 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
599 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
600 dlist_count, 1, 0);
601 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
602 if (ret)
603 return ret;
c8b75bca
EA
604
605 return 0;
606}
607
608static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
609 struct drm_crtc_state *old_state)
610{
611 struct drm_device *dev = crtc->dev;
612 struct vc4_dev *vc4 = to_vc4_dev(dev);
613 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
d8dbf44f 614 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
c8b75bca
EA
615 struct drm_plane *plane;
616 bool debug_dump_regs = false;
d8dbf44f
EA
617 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
618 u32 __iomem *dlist_next = dlist_start;
c8b75bca
EA
619
620 if (debug_dump_regs) {
621 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
622 vc4_hvs_dump_state(dev);
623 }
624
d8dbf44f 625 /* Copy all the active planes' dlist contents to the hardware dlist. */
c8b75bca
EA
626 drm_atomic_crtc_for_each_plane(plane, crtc) {
627 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
628 }
629
d8dbf44f
EA
630 writel(SCALER_CTL0_END, dlist_next);
631 dlist_next++;
632
633 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
634
c8b75bca
EA
635 if (crtc->state->event) {
636 unsigned long flags;
637
638 crtc->state->event->pipe = drm_crtc_index(crtc);
639
640 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
641
642 spin_lock_irqsave(&dev->event_lock, flags);
643 vc4_crtc->event = crtc->state->event;
c8b75bca 644 crtc->state->event = NULL;
56d1fe09
MK
645
646 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
647 vc4_state->mm.start);
648
649 spin_unlock_irqrestore(&dev->event_lock, flags);
650 } else {
651 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
652 vc4_state->mm.start);
653 }
654
655 if (debug_dump_regs) {
656 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
657 vc4_hvs_dump_state(dev);
c8b75bca
EA
658 }
659}
660
1f43710a 661int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
c8b75bca
EA
662{
663 struct vc4_dev *vc4 = to_vc4_dev(dev);
664 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
665
30c897dd
EA
666 if (vc4->firmware_kms) {
667 /* XXX: Can we mask the SMI interrupt? */
668 return 0;
669 }
670
c8b75bca
EA
671 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
672
673 return 0;
674}
675
1f43710a 676void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
c8b75bca
EA
677{
678 struct vc4_dev *vc4 = to_vc4_dev(dev);
679 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
680
30c897dd
EA
681 if (vc4->firmware_kms) {
682 /* XXX: Can we mask the SMI interrupt? */
683 return;
684 }
685
c8b75bca
EA
686 CRTC_WRITE(PV_INTEN, 0);
687}
688
26fc78f6
DF
689/* Must be called with the event lock held */
690bool vc4_event_pending(struct drm_crtc *crtc)
691{
692 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
693
694 return !!vc4_crtc->event;
695}
696
c8b75bca
EA
697static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
698{
699 struct drm_crtc *crtc = &vc4_crtc->base;
700 struct drm_device *dev = crtc->dev;
56d1fe09
MK
701 struct vc4_dev *vc4 = to_vc4_dev(dev);
702 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
703 u32 chan = vc4_crtc->channel;
c8b75bca
EA
704 unsigned long flags;
705
706 spin_lock_irqsave(&dev->event_lock, flags);
56d1fe09
MK
707 if (vc4_crtc->event &&
708 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
c8b75bca
EA
709 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
710 vc4_crtc->event = NULL;
ee7c10e1 711 drm_crtc_vblank_put(crtc);
c8b75bca
EA
712 }
713 spin_unlock_irqrestore(&dev->event_lock, flags);
714}
715
716static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
717{
718 struct vc4_crtc *vc4_crtc = data;
719 u32 stat = CRTC_READ(PV_INTSTAT);
720 irqreturn_t ret = IRQ_NONE;
721
722 if (stat & PV_INT_VFP_START) {
1bf59f1d 723 vc4_crtc->t_vblank = ktime_get();
c8b75bca
EA
724 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
725 drm_crtc_handle_vblank(&vc4_crtc->base);
726 vc4_crtc_handle_page_flip(vc4_crtc);
727 ret = IRQ_HANDLED;
728 }
729
730 return ret;
731}
732
b501bacc
EA
733struct vc4_async_flip_state {
734 struct drm_crtc *crtc;
735 struct drm_framebuffer *fb;
736 struct drm_pending_vblank_event *event;
737
738 struct vc4_seqno_cb cb;
739};
740
741/* Called when the V3D execution for the BO being flipped to is done, so that
742 * we can actually update the plane's address to point to it.
743 */
744static void
745vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
746{
747 struct vc4_async_flip_state *flip_state =
748 container_of(cb, struct vc4_async_flip_state, cb);
749 struct drm_crtc *crtc = flip_state->crtc;
750 struct drm_device *dev = crtc->dev;
751 struct vc4_dev *vc4 = to_vc4_dev(dev);
752 struct drm_plane *plane = crtc->primary;
753
754 vc4_plane_async_set_fb(plane, flip_state->fb);
755 if (flip_state->event) {
756 unsigned long flags;
757
758 spin_lock_irqsave(&dev->event_lock, flags);
759 drm_crtc_send_vblank_event(crtc, flip_state->event);
760 spin_unlock_irqrestore(&dev->event_lock, flags);
761 }
762
ee7c10e1 763 drm_crtc_vblank_put(crtc);
b501bacc
EA
764 drm_framebuffer_unreference(flip_state->fb);
765 kfree(flip_state);
766
767 up(&vc4->async_modeset);
768}
769
770/* Implements async (non-vblank-synced) page flips.
771 *
772 * The page flip ioctl needs to return immediately, so we grab the
773 * modeset semaphore on the pipe, and queue the address update for
774 * when V3D is done with the BO being flipped to.
775 */
776static int vc4_async_page_flip(struct drm_crtc *crtc,
777 struct drm_framebuffer *fb,
778 struct drm_pending_vblank_event *event,
779 uint32_t flags)
780{
781 struct drm_device *dev = crtc->dev;
782 struct vc4_dev *vc4 = to_vc4_dev(dev);
783 struct drm_plane *plane = crtc->primary;
784 int ret = 0;
785 struct vc4_async_flip_state *flip_state;
786 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
787 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
788
789 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
790 if (!flip_state)
791 return -ENOMEM;
792
793 drm_framebuffer_reference(fb);
794 flip_state->fb = fb;
795 flip_state->crtc = crtc;
796 flip_state->event = event;
797
798 /* Make sure all other async modesetes have landed. */
799 ret = down_interruptible(&vc4->async_modeset);
800 if (ret) {
48627eb8 801 drm_framebuffer_unreference(fb);
b501bacc
EA
802 kfree(flip_state);
803 return ret;
804 }
805
ee7c10e1
MK
806 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
807
b501bacc
EA
808 /* Immediately update the plane's legacy fb pointer, so that later
809 * modeset prep sees the state that will be present when the semaphore
810 * is released.
811 */
812 drm_atomic_set_fb_for_plane(plane->state, fb);
813 plane->fb = fb;
814
815 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
816 vc4_async_page_flip_complete);
817
818 /* Driver takes ownership of state on successful async commit. */
819 return 0;
820}
821
822static int vc4_page_flip(struct drm_crtc *crtc,
823 struct drm_framebuffer *fb,
824 struct drm_pending_vblank_event *event,
825 uint32_t flags)
826{
827 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
828 return vc4_async_page_flip(crtc, fb, event, flags);
829 else
830 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
831}
832
d8dbf44f
EA
833static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
834{
835 struct vc4_crtc_state *vc4_state;
836
837 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
838 if (!vc4_state)
839 return NULL;
840
841 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
842 return &vc4_state->base;
843}
844
845static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
846 struct drm_crtc_state *state)
847{
848 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
849 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
850
851 if (vc4_state->mm.allocated) {
852 unsigned long flags;
853
854 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
855 drm_mm_remove_node(&vc4_state->mm);
856 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
857
858 }
859
7622b255 860 drm_atomic_helper_crtc_destroy_state(crtc, state);
d8dbf44f
EA
861}
862
e8f3b40c
EA
863static void
864vc4_crtc_reset(struct drm_crtc *crtc)
865{
866 if (crtc->state)
867 __drm_atomic_helper_crtc_destroy_state(crtc->state);
868
869 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
870 if (crtc->state)
871 crtc->state->crtc = crtc;
872}
873
c8b75bca
EA
874static const struct drm_crtc_funcs vc4_crtc_funcs = {
875 .set_config = drm_atomic_helper_set_config,
876 .destroy = vc4_crtc_destroy,
b501bacc 877 .page_flip = vc4_page_flip,
c8b75bca
EA
878 .set_property = NULL,
879 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
880 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
e8f3b40c 881 .reset = vc4_crtc_reset,
d8dbf44f
EA
882 .atomic_duplicate_state = vc4_crtc_duplicate_state,
883 .atomic_destroy_state = vc4_crtc_destroy_state,
e582b6c7 884 .gamma_set = vc4_crtc_gamma_set,
c8b75bca
EA
885};
886
887static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
888 .mode_set_nofb = vc4_crtc_mode_set_nofb,
889 .disable = vc4_crtc_disable,
890 .enable = vc4_crtc_enable,
acc1be1d 891 .mode_fixup = vc4_crtc_mode_fixup,
c8b75bca
EA
892 .atomic_check = vc4_crtc_atomic_check,
893 .atomic_flush = vc4_crtc_atomic_flush,
894};
895
c8b75bca
EA
896static const struct vc4_crtc_data pv0_data = {
897 .hvs_channel = 0,
ab8df60e
BB
898 .encoder_types = {
899 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
900 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
901 },
c8b75bca
EA
902};
903
904static const struct vc4_crtc_data pv1_data = {
905 .hvs_channel = 2,
ab8df60e
BB
906 .encoder_types = {
907 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
908 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
909 },
c8b75bca
EA
910};
911
912static const struct vc4_crtc_data pv2_data = {
913 .hvs_channel = 1,
ab8df60e
BB
914 .encoder_types = {
915 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
916 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
917 },
c8b75bca
EA
918};
919
920static const struct of_device_id vc4_crtc_dt_match[] = {
921 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
922 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
923 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
924 {}
925};
926
927static void vc4_set_crtc_possible_masks(struct drm_device *drm,
928 struct drm_crtc *crtc)
929{
930 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
ab8df60e
BB
931 const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
932 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
c8b75bca
EA
933 struct drm_encoder *encoder;
934
935 drm_for_each_encoder(encoder, drm) {
936 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
ab8df60e
BB
937 int i;
938
939 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
940 if (vc4_encoder->type == encoder_types[i]) {
941 vc4_encoder->clock_select = i;
942 encoder->possible_crtcs |= drm_crtc_mask(crtc);
943 break;
944 }
c8b75bca
EA
945 }
946 }
947}
948
1bf59f1d
MK
949static void
950vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
951{
952 struct drm_device *drm = vc4_crtc->base.dev;
953 struct vc4_dev *vc4 = to_vc4_dev(drm);
954 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
955 /* Top/base are supposed to be 4-pixel aligned, but the
956 * Raspberry Pi firmware fills the low bits (which are
957 * presumably ignored).
958 */
959 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
960 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
961
962 vc4_crtc->cob_size = top - base + 4;
963}
964
c8b75bca
EA
965static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
966{
967 struct platform_device *pdev = to_platform_device(dev);
968 struct drm_device *drm = dev_get_drvdata(master);
969 struct vc4_dev *vc4 = to_vc4_dev(drm);
970 struct vc4_crtc *vc4_crtc;
971 struct drm_crtc *crtc;
fc2d6f1e 972 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
c8b75bca 973 const struct of_device_id *match;
fc2d6f1e 974 int ret, i;
c8b75bca
EA
975
976 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
977 if (!vc4_crtc)
978 return -ENOMEM;
979 crtc = &vc4_crtc->base;
980
981 match = of_match_device(vc4_crtc_dt_match, dev);
982 if (!match)
983 return -ENODEV;
984 vc4_crtc->data = match->data;
985
986 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
987 if (IS_ERR(vc4_crtc->regs))
988 return PTR_ERR(vc4_crtc->regs);
989
990 /* For now, we create just the primary and the legacy cursor
991 * planes. We should be able to stack more planes on easily,
992 * but to do that we would need to compute the bandwidth
993 * requirement of the plane configuration, and reject ones
994 * that will take too much.
995 */
996 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
79513237 997 if (IS_ERR(primary_plane)) {
c8b75bca
EA
998 dev_err(dev, "failed to construct primary plane\n");
999 ret = PTR_ERR(primary_plane);
1000 goto err;
1001 }
1002
fc2d6f1e 1003 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
f9882876 1004 &vc4_crtc_funcs, NULL);
c8b75bca
EA
1005 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1006 primary_plane->crtc = crtc;
c8b75bca
EA
1007 vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
1008 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
e582b6c7 1009 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
c8b75bca 1010
fc2d6f1e
EA
1011 /* Set up some arbitrary number of planes. We're not limited
1012 * by a set number of physical registers, just the space in
1013 * the HVS (16k) and how small an plane can be (28 bytes).
1014 * However, each plane we set up takes up some memory, and
1015 * increases the cost of looping over planes, which atomic
1016 * modesetting does quite a bit. As a result, we pick a
1017 * modest number of planes to expose, that should hopefully
1018 * still cover any sane usecase.
1019 */
1020 for (i = 0; i < 8; i++) {
1021 struct drm_plane *plane =
1022 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1023
1024 if (IS_ERR(plane))
1025 continue;
1026
1027 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1028 }
1029
1030 /* Set up the legacy cursor after overlay initialization,
1031 * since we overlay planes on the CRTC in the order they were
1032 * initialized.
1033 */
1034 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1035 if (!IS_ERR(cursor_plane)) {
1036 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1037 cursor_plane->crtc = crtc;
1038 crtc->cursor = cursor_plane;
1039 }
1040
1bf59f1d
MK
1041 vc4_crtc_get_cob_allocation(vc4_crtc);
1042
c8b75bca
EA
1043 CRTC_WRITE(PV_INTEN, 0);
1044 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1045 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1046 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1047 if (ret)
fc2d6f1e 1048 goto err_destroy_planes;
c8b75bca
EA
1049
1050 vc4_set_crtc_possible_masks(drm, crtc);
1051
e582b6c7
EA
1052 for (i = 0; i < crtc->gamma_size; i++) {
1053 vc4_crtc->lut_r[i] = i;
1054 vc4_crtc->lut_g[i] = i;
1055 vc4_crtc->lut_b[i] = i;
1056 }
1057
c8b75bca
EA
1058 platform_set_drvdata(pdev, vc4_crtc);
1059
1060 return 0;
1061
fc2d6f1e
EA
1062err_destroy_planes:
1063 list_for_each_entry_safe(destroy_plane, temp,
1064 &drm->mode_config.plane_list, head) {
1065 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1066 destroy_plane->funcs->destroy(destroy_plane);
1067 }
c8b75bca
EA
1068err:
1069 return ret;
1070}
1071
1072static void vc4_crtc_unbind(struct device *dev, struct device *master,
1073 void *data)
1074{
1075 struct platform_device *pdev = to_platform_device(dev);
1076 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1077
1078 vc4_crtc_destroy(&vc4_crtc->base);
1079
1080 CRTC_WRITE(PV_INTEN, 0);
1081
1082 platform_set_drvdata(pdev, NULL);
1083}
1084
1085static const struct component_ops vc4_crtc_ops = {
1086 .bind = vc4_crtc_bind,
1087 .unbind = vc4_crtc_unbind,
1088};
1089
1090static int vc4_crtc_dev_probe(struct platform_device *pdev)
1091{
1092 return component_add(&pdev->dev, &vc4_crtc_ops);
1093}
1094
1095static int vc4_crtc_dev_remove(struct platform_device *pdev)
1096{
1097 component_del(&pdev->dev, &vc4_crtc_ops);
1098 return 0;
1099}
1100
1101struct platform_driver vc4_crtc_driver = {
1102 .probe = vc4_crtc_dev_probe,
1103 .remove = vc4_crtc_dev_remove,
1104 .driver = {
1105 .name = "vc4_crtc",
1106 .of_match_table = vc4_crtc_dt_match,
1107 },
1108};