]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/vc4/vc4_crtc.c
drm/vc4: Remove dead vc4_event_pending().
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
CommitLineData
c8b75bca
EA
1/*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9/**
10 * DOC: VC4 CRTC module
11 *
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
f6c01530 14 * encoder's clock plus its configuration. It pulls scaled pixels from
c8b75bca
EA
15 * the HVS at that timing, and feeds it to the encoder.
16 *
17 * However, the DRM CRTC also collects the configuration of all the
f6c01530
EA
18 * DRM planes attached to it. As a result, the CRTC is also
19 * responsible for writing the display list for the HVS channel that
20 * the CRTC will use.
c8b75bca
EA
21 *
22 * The 2835 has 3 different pixel valves. pv0 in the audio power
23 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
24 * image domain can feed either HDMI or the SDTV controller. The
25 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26 * SDTV, etc.) according to which output type is chosen in the mux.
27 *
28 * For power management, the pixel valve's registers are all clocked
29 * by the AXI clock, while the timings and FIFOs make use of the
30 * output-specific clock. Since the encoders also directly consume
31 * the CPRMAN clocks, and know what timings they need, they are the
32 * ones that set the clock.
33 */
34
b7e8e25b
MY
35#include <drm/drm_atomic.h>
36#include <drm/drm_atomic_helper.h>
37#include <drm/drm_crtc_helper.h>
38#include <linux/clk.h>
39#include <drm/drm_fb_cma_helper.h>
40#include <linux/component.h>
41#include <linux/of_device.h>
c8b75bca
EA
42#include "vc4_drv.h"
43#include "vc4_regs.h"
44
45struct vc4_crtc {
46 struct drm_crtc base;
47 const struct vc4_crtc_data *data;
48 void __iomem *regs;
49
1bf59f1d
MK
50 /* Timestamp at start of vblank irq - unaffected by lock delays. */
51 ktime_t t_vblank;
52
c8b75bca
EA
53 /* Which HVS channel we're using for our CRTC. */
54 int channel;
55
e582b6c7
EA
56 u8 lut_r[256];
57 u8 lut_g[256];
58 u8 lut_b[256];
1bf59f1d
MK
59 /* Size in pixels of the COB memory allocated to this CRTC. */
60 u32 cob_size;
e582b6c7 61
c8b75bca
EA
62 struct drm_pending_vblank_event *event;
63};
64
d8dbf44f
EA
65struct vc4_crtc_state {
66 struct drm_crtc_state base;
67 /* Dlist area for this CRTC configuration. */
68 struct drm_mm_node mm;
69};
70
c8b75bca
EA
71static inline struct vc4_crtc *
72to_vc4_crtc(struct drm_crtc *crtc)
73{
74 return (struct vc4_crtc *)crtc;
75}
76
d8dbf44f
EA
77static inline struct vc4_crtc_state *
78to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
79{
80 return (struct vc4_crtc_state *)crtc_state;
81}
82
c8b75bca
EA
83struct vc4_crtc_data {
84 /* Which channel of the HVS this pixelvalve sources from. */
85 int hvs_channel;
86
ab8df60e 87 enum vc4_encoder_type encoder_types[4];
c8b75bca
EA
88};
89
90#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92
93#define CRTC_REG(reg) { reg, #reg }
94static const struct {
95 u32 reg;
96 const char *name;
97} crtc_regs[] = {
98 CRTC_REG(PV_CONTROL),
99 CRTC_REG(PV_V_CONTROL),
c31806fb 100 CRTC_REG(PV_VSYNCD_EVEN),
c8b75bca
EA
101 CRTC_REG(PV_HORZA),
102 CRTC_REG(PV_HORZB),
103 CRTC_REG(PV_VERTA),
104 CRTC_REG(PV_VERTB),
105 CRTC_REG(PV_VERTA_EVEN),
106 CRTC_REG(PV_VERTB_EVEN),
107 CRTC_REG(PV_INTEN),
108 CRTC_REG(PV_INTSTAT),
109 CRTC_REG(PV_STAT),
110 CRTC_REG(PV_HACT_ACT),
111};
112
113static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114{
115 int i;
116
117 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118 DRM_INFO("0x%04x (%s): 0x%08x\n",
119 crtc_regs[i].reg, crtc_regs[i].name,
120 CRTC_READ(crtc_regs[i].reg));
121 }
122}
123
124#ifdef CONFIG_DEBUG_FS
125int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126{
127 struct drm_info_node *node = (struct drm_info_node *)m->private;
128 struct drm_device *dev = node->minor->dev;
129 int crtc_index = (uintptr_t)node->info_ent->data;
130 struct drm_crtc *crtc;
131 struct vc4_crtc *vc4_crtc;
132 int i;
133
134 i = 0;
135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 if (i == crtc_index)
137 break;
138 i++;
139 }
140 if (!crtc)
141 return 0;
142 vc4_crtc = to_vc4_crtc(crtc);
143
144 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145 seq_printf(m, "%s (0x%04x): 0x%08x\n",
146 crtc_regs[i].name, crtc_regs[i].reg,
147 CRTC_READ(crtc_regs[i].reg));
148 }
149
150 return 0;
151}
152#endif
153
1bf6ad62
DV
154bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155 bool in_vblank_irq, int *vpos, int *hpos,
156 ktime_t *stime, ktime_t *etime,
157 const struct drm_display_mode *mode)
1bf59f1d
MK
158{
159 struct vc4_dev *vc4 = to_vc4_dev(dev);
c77b9abf
SG
160 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
161 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1bf59f1d
MK
162 u32 val;
163 int fifo_lines;
164 int vblank_lines;
1bf6ad62 165 bool ret = false;
1bf59f1d 166
1bf59f1d
MK
167 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
168
169 /* Get optional system timestamp before query. */
170 if (stime)
171 *stime = ktime_get();
172
173 /*
174 * Read vertical scanline which is currently composed for our
175 * pixelvalve by the HVS, and also the scaler status.
176 */
177 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
178
179 /* Get optional system timestamp after query. */
180 if (etime)
181 *etime = ktime_get();
182
183 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
184
185 /* Vertical position of hvs composed scanline. */
186 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
e538092c
MK
187 *hpos = 0;
188
189 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
190 *vpos /= 2;
1bf59f1d 191
e538092c
MK
192 /* Use hpos to correct for field offset in interlaced mode. */
193 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
194 *hpos += mode->crtc_htotal / 2;
195 }
1bf59f1d
MK
196
197 /* This is the offset we need for translating hvs -> pv scanout pos. */
198 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
199
200 if (fifo_lines > 0)
1bf6ad62 201 ret = true;
1bf59f1d
MK
202
203 /* HVS more than fifo_lines into frame for compositing? */
204 if (*vpos > fifo_lines) {
205 /*
206 * We are in active scanout and can get some meaningful results
207 * from HVS. The actual PV scanout can not trail behind more
208 * than fifo_lines as that is the fifo's capacity. Assume that
209 * in active scanout the HVS and PV work in lockstep wrt. HVS
210 * refilling the fifo and PV consuming from the fifo, ie.
211 * whenever the PV consumes and frees up a scanline in the
212 * fifo, the HVS will immediately refill it, therefore
213 * incrementing vpos. Therefore we choose HVS read position -
214 * fifo size in scanlines as a estimate of the real scanout
215 * position of the PV.
216 */
217 *vpos -= fifo_lines + 1;
1bf59f1d 218
1bf59f1d
MK
219 return ret;
220 }
221
222 /*
223 * Less: This happens when we are in vblank and the HVS, after getting
224 * the VSTART restart signal from the PV, just started refilling its
225 * fifo with new lines from the top-most lines of the new framebuffers.
226 * The PV does not scan out in vblank, so does not remove lines from
227 * the fifo, so the fifo will be full quickly and the HVS has to pause.
228 * We can't get meaningful readings wrt. scanline position of the PV
229 * and need to make things up in a approximative but consistent way.
230 */
682e62c4 231 vblank_lines = mode->vtotal - mode->vdisplay;
1bf59f1d 232
1bf6ad62 233 if (in_vblank_irq) {
1bf59f1d
MK
234 /*
235 * Assume the irq handler got called close to first
236 * line of vblank, so PV has about a full vblank
237 * scanlines to go, and as a base timestamp use the
238 * one taken at entry into vblank irq handler, so it
239 * is not affected by random delays due to lock
240 * contention on event_lock or vblank_time lock in
241 * the core.
242 */
243 *vpos = -vblank_lines;
244
245 if (stime)
246 *stime = vc4_crtc->t_vblank;
247 if (etime)
248 *etime = vc4_crtc->t_vblank;
249
250 /*
251 * If the HVS fifo is not yet full then we know for certain
252 * we are at the very beginning of vblank, as the hvs just
253 * started refilling, and the stime and etime timestamps
254 * truly correspond to start of vblank.
1bf6ad62
DV
255 *
256 * Unfortunately there's no way to report this to upper levels
257 * and make it more useful.
1bf59f1d 258 */
1bf59f1d
MK
259 } else {
260 /*
261 * No clue where we are inside vblank. Return a vpos of zero,
262 * which will cause calling code to just return the etime
263 * timestamp uncorrected. At least this is no worse than the
264 * standard fallback.
265 */
266 *vpos = 0;
267 }
268
269 return ret;
270}
271
c8b75bca
EA
272static void vc4_crtc_destroy(struct drm_crtc *crtc)
273{
274 drm_crtc_cleanup(crtc);
275}
276
e582b6c7
EA
277static void
278vc4_crtc_lut_load(struct drm_crtc *crtc)
279{
280 struct drm_device *dev = crtc->dev;
281 struct vc4_dev *vc4 = to_vc4_dev(dev);
282 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
283 u32 i;
284
285 /* The LUT memory is laid out with each HVS channel in order,
286 * each of which takes 256 writes for R, 256 for G, then 256
287 * for B.
288 */
289 HVS_WRITE(SCALER_GAMADDR,
290 SCALER_GAMADDR_AUTOINC |
291 (vc4_crtc->channel * 3 * crtc->gamma_size));
292
293 for (i = 0; i < crtc->gamma_size; i++)
294 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
295 for (i = 0; i < crtc->gamma_size; i++)
296 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
297 for (i = 0; i < crtc->gamma_size; i++)
298 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
299}
300
7ea77283 301static int
e582b6c7 302vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
6d124ff8
DV
303 uint32_t size,
304 struct drm_modeset_acquire_ctx *ctx)
e582b6c7
EA
305{
306 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
307 u32 i;
308
7ea77283 309 for (i = 0; i < size; i++) {
e582b6c7
EA
310 vc4_crtc->lut_r[i] = r[i] >> 8;
311 vc4_crtc->lut_g[i] = g[i] >> 8;
312 vc4_crtc->lut_b[i] = b[i] >> 8;
313 }
314
315 vc4_crtc_lut_load(crtc);
7ea77283
ML
316
317 return 0;
e582b6c7
EA
318}
319
c8b75bca
EA
320static u32 vc4_get_fifo_full_level(u32 format)
321{
322 static const u32 fifo_len_bytes = 64;
323 static const u32 hvs_latency_pix = 6;
324
325 switch (format) {
326 case PV_CONTROL_FORMAT_DSIV_16:
327 case PV_CONTROL_FORMAT_DSIC_16:
328 return fifo_len_bytes - 2 * hvs_latency_pix;
329 case PV_CONTROL_FORMAT_DSIV_18:
330 return fifo_len_bytes - 14;
331 case PV_CONTROL_FORMAT_24:
332 case PV_CONTROL_FORMAT_DSIV_24:
333 default:
334 return fifo_len_bytes - 3 * hvs_latency_pix;
335 }
336}
337
338/*
a86773d1
EA
339 * Returns the encoder attached to the CRTC.
340 *
341 * VC4 can only scan out to one encoder at a time, while the DRM core
342 * allows drivers to push pixels to more than one encoder from the
343 * same CRTC.
c8b75bca 344 */
a86773d1 345static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
c8b75bca
EA
346{
347 struct drm_connector *connector;
4894bf71 348 struct drm_connector_list_iter conn_iter;
c8b75bca 349
4894bf71
GP
350 drm_connector_list_iter_begin(crtc->dev, &conn_iter);
351 drm_for_each_connector_iter(connector, &conn_iter) {
2fa8e904 352 if (connector->state->crtc == crtc) {
4894bf71 353 drm_connector_list_iter_end(&conn_iter);
a86773d1 354 return connector->encoder;
c8b75bca
EA
355 }
356 }
4894bf71 357 drm_connector_list_iter_end(&conn_iter);
c8b75bca 358
a86773d1 359 return NULL;
c8b75bca
EA
360}
361
362static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
363{
6a609209
EA
364 struct drm_device *dev = crtc->dev;
365 struct vc4_dev *vc4 = to_vc4_dev(dev);
a86773d1
EA
366 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
367 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
c8b75bca
EA
368 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
369 struct drm_crtc_state *state = crtc->state;
370 struct drm_display_mode *mode = &state->adjusted_mode;
371 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
dfccd937 372 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
a86773d1
EA
373 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
374 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
375 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
c8b75bca 376 bool debug_dump_regs = false;
c8b75bca
EA
377
378 if (debug_dump_regs) {
379 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
380 vc4_crtc_dump_regs(vc4_crtc);
381 }
382
383 /* Reset the PV fifo. */
384 CRTC_WRITE(PV_CONTROL, 0);
385 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
386 CRTC_WRITE(PV_CONTROL, 0);
387
388 CRTC_WRITE(PV_HORZA,
dfccd937
EA
389 VC4_SET_FIELD((mode->htotal -
390 mode->hsync_end) * pixel_rep,
c8b75bca 391 PV_HORZA_HBP) |
dfccd937
EA
392 VC4_SET_FIELD((mode->hsync_end -
393 mode->hsync_start) * pixel_rep,
c8b75bca
EA
394 PV_HORZA_HSYNC));
395 CRTC_WRITE(PV_HORZB,
dfccd937
EA
396 VC4_SET_FIELD((mode->hsync_start -
397 mode->hdisplay) * pixel_rep,
c8b75bca 398 PV_HORZB_HFP) |
dfccd937 399 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
c8b75bca 400
a7c5047d 401 CRTC_WRITE(PV_VERTA,
682e62c4 402 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
a7c5047d 403 PV_VERTA_VBP) |
682e62c4 404 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
a7c5047d
EA
405 PV_VERTA_VSYNC));
406 CRTC_WRITE(PV_VERTB,
682e62c4 407 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
a7c5047d 408 PV_VERTB_VFP) |
682e62c4 409 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
a7c5047d 410
c8b75bca
EA
411 if (interlace) {
412 CRTC_WRITE(PV_VERTA_EVEN,
682e62c4
EA
413 VC4_SET_FIELD(mode->crtc_vtotal -
414 mode->crtc_vsync_end - 1,
c8b75bca 415 PV_VERTA_VBP) |
682e62c4
EA
416 VC4_SET_FIELD(mode->crtc_vsync_end -
417 mode->crtc_vsync_start,
c8b75bca
EA
418 PV_VERTA_VSYNC));
419 CRTC_WRITE(PV_VERTB_EVEN,
682e62c4
EA
420 VC4_SET_FIELD(mode->crtc_vsync_start -
421 mode->crtc_vdisplay,
c8b75bca 422 PV_VERTB_VFP) |
682e62c4
EA
423 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
424
425 /* We set up first field even mode for HDMI. VEC's
426 * NTSC mode would want first field odd instead, once
427 * we support it (to do so, set ODD_FIRST and put the
428 * delay in VSYNCD_EVEN instead).
429 */
430 CRTC_WRITE(PV_V_CONTROL,
431 PV_VCONTROL_CONTINUOUS |
a86773d1 432 (is_dsi ? PV_VCONTROL_DSI : 0) |
682e62c4 433 PV_VCONTROL_INTERLACE |
dfccd937 434 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
682e62c4
EA
435 PV_VCONTROL_ODD_DELAY));
436 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
437 } else {
a86773d1
EA
438 CRTC_WRITE(PV_V_CONTROL,
439 PV_VCONTROL_CONTINUOUS |
440 (is_dsi ? PV_VCONTROL_DSI : 0));
c8b75bca
EA
441 }
442
dfccd937 443 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
c8b75bca 444
c8b75bca
EA
445 CRTC_WRITE(PV_CONTROL,
446 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
447 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
448 PV_CONTROL_FIFO_LEVEL) |
dfccd937 449 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
c8b75bca
EA
450 PV_CONTROL_CLR_AT_START |
451 PV_CONTROL_TRIGGER_UNDERFLOW |
452 PV_CONTROL_WAIT_HSTART |
a86773d1
EA
453 VC4_SET_FIELD(vc4_encoder->clock_select,
454 PV_CONTROL_CLK_SELECT) |
c8b75bca
EA
455 PV_CONTROL_FIFO_CLR |
456 PV_CONTROL_EN);
457
6a609209
EA
458 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
459 SCALER_DISPBKGND_AUTOHS |
e582b6c7 460 SCALER_DISPBKGND_GAMMA |
6a609209
EA
461 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
462
e582b6c7
EA
463 /* Reload the LUT, since the SRAMs would have been disabled if
464 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
465 */
466 vc4_crtc_lut_load(crtc);
467
c8b75bca
EA
468 if (debug_dump_regs) {
469 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
470 vc4_crtc_dump_regs(vc4_crtc);
471 }
472}
473
474static void require_hvs_enabled(struct drm_device *dev)
475{
476 struct vc4_dev *vc4 = to_vc4_dev(dev);
477
478 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
479 SCALER_DISPCTRL_ENABLE);
480}
481
482static void vc4_crtc_disable(struct drm_crtc *crtc)
483{
484 struct drm_device *dev = crtc->dev;
485 struct vc4_dev *vc4 = to_vc4_dev(dev);
486 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
487 u32 chan = vc4_crtc->channel;
488 int ret;
489 require_hvs_enabled(dev);
490
e941f05d
MK
491 /* Disable vblank irq handling before crtc is disabled. */
492 drm_crtc_vblank_off(crtc);
493
c8b75bca
EA
494 CRTC_WRITE(PV_V_CONTROL,
495 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
496 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
497 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
498
499 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
500 SCALER_DISPCTRLX_ENABLE) {
501 HVS_WRITE(SCALER_DISPCTRLX(chan),
502 SCALER_DISPCTRLX_RESET);
503
504 /* While the docs say that reset is self-clearing, it
505 * seems it doesn't actually.
506 */
507 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
508 }
509
510 /* Once we leave, the scaler should be disabled and its fifo empty. */
511
512 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
513
514 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
515 SCALER_DISPSTATX_MODE) !=
516 SCALER_DISPSTATX_MODE_DISABLED);
517
518 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
519 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
520 SCALER_DISPSTATX_EMPTY);
edeb729f
BB
521
522 /*
523 * Make sure we issue a vblank event after disabling the CRTC if
524 * someone was waiting it.
525 */
526 if (crtc->state->event) {
527 unsigned long flags;
528
529 spin_lock_irqsave(&dev->event_lock, flags);
530 drm_crtc_send_vblank_event(crtc, crtc->state->event);
531 crtc->state->event = NULL;
532 spin_unlock_irqrestore(&dev->event_lock, flags);
533 }
c8b75bca
EA
534}
535
536static void vc4_crtc_enable(struct drm_crtc *crtc)
537{
538 struct drm_device *dev = crtc->dev;
539 struct vc4_dev *vc4 = to_vc4_dev(dev);
540 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
541 struct drm_crtc_state *state = crtc->state;
542 struct drm_display_mode *mode = &state->adjusted_mode;
543
544 require_hvs_enabled(dev);
545
546 /* Turn on the scaler, which will wait for vstart to start
547 * compositing.
548 */
549 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
550 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
551 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
552 SCALER_DISPCTRLX_ENABLE);
553
554 /* Turn on the pixel valve, which will emit the vstart signal. */
555 CRTC_WRITE(PV_V_CONTROL,
556 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
e941f05d
MK
557
558 /* Enable vblank irq handling after crtc is started. */
559 drm_crtc_vblank_on(crtc);
c8b75bca
EA
560}
561
c50a115b
JA
562static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
563 const struct drm_display_mode *mode)
acc1be1d 564{
36451467 565 /* Do not allow doublescan modes from user space */
c50a115b 566 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
36451467
MK
567 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
568 crtc->base.id);
c50a115b 569 return MODE_NO_DBLESCAN;
36451467
MK
570 }
571
c50a115b 572 return MODE_OK;
acc1be1d
MK
573}
574
c8b75bca
EA
575static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
576 struct drm_crtc_state *state)
577{
d8dbf44f 578 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
c8b75bca
EA
579 struct drm_device *dev = crtc->dev;
580 struct vc4_dev *vc4 = to_vc4_dev(dev);
581 struct drm_plane *plane;
d8dbf44f 582 unsigned long flags;
2f196b7c 583 const struct drm_plane_state *plane_state;
c8b75bca 584 u32 dlist_count = 0;
d8dbf44f 585 int ret;
c8b75bca
EA
586
587 /* The pixelvalve can only feed one encoder (and encoders are
588 * 1:1 with connectors.)
589 */
14de6c44 590 if (hweight32(state->connector_mask) > 1)
c8b75bca
EA
591 return -EINVAL;
592
2f196b7c 593 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
c8b75bca 594 dlist_count += vc4_plane_dlist_size(plane_state);
c8b75bca
EA
595
596 dlist_count++; /* Account for SCALER_CTL0_END. */
597
d8dbf44f
EA
598 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
599 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
4e64e553 600 dlist_count);
d8dbf44f
EA
601 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
602 if (ret)
603 return ret;
c8b75bca
EA
604
605 return 0;
606}
607
608static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
609 struct drm_crtc_state *old_state)
610{
611 struct drm_device *dev = crtc->dev;
612 struct vc4_dev *vc4 = to_vc4_dev(dev);
613 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
d8dbf44f 614 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
c8b75bca
EA
615 struct drm_plane *plane;
616 bool debug_dump_regs = false;
d8dbf44f
EA
617 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
618 u32 __iomem *dlist_next = dlist_start;
c8b75bca
EA
619
620 if (debug_dump_regs) {
621 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
622 vc4_hvs_dump_state(dev);
623 }
624
d8dbf44f 625 /* Copy all the active planes' dlist contents to the hardware dlist. */
c8b75bca
EA
626 drm_atomic_crtc_for_each_plane(plane, crtc) {
627 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
628 }
629
d8dbf44f
EA
630 writel(SCALER_CTL0_END, dlist_next);
631 dlist_next++;
632
633 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
634
c8b75bca
EA
635 if (crtc->state->event) {
636 unsigned long flags;
637
638 crtc->state->event->pipe = drm_crtc_index(crtc);
639
640 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
641
642 spin_lock_irqsave(&dev->event_lock, flags);
643 vc4_crtc->event = crtc->state->event;
c8b75bca 644 crtc->state->event = NULL;
56d1fe09
MK
645
646 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
647 vc4_state->mm.start);
648
649 spin_unlock_irqrestore(&dev->event_lock, flags);
650 } else {
651 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
652 vc4_state->mm.start);
653 }
654
655 if (debug_dump_regs) {
656 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
657 vc4_hvs_dump_state(dev);
c8b75bca
EA
658 }
659}
660
0d5f46fa 661static int vc4_enable_vblank(struct drm_crtc *crtc)
c8b75bca 662{
c77b9abf 663 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
c8b75bca
EA
664
665 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
666
667 return 0;
668}
669
0d5f46fa 670static void vc4_disable_vblank(struct drm_crtc *crtc)
c8b75bca 671{
c77b9abf 672 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
c8b75bca
EA
673
674 CRTC_WRITE(PV_INTEN, 0);
675}
676
677static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
678{
679 struct drm_crtc *crtc = &vc4_crtc->base;
680 struct drm_device *dev = crtc->dev;
56d1fe09
MK
681 struct vc4_dev *vc4 = to_vc4_dev(dev);
682 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
683 u32 chan = vc4_crtc->channel;
c8b75bca
EA
684 unsigned long flags;
685
686 spin_lock_irqsave(&dev->event_lock, flags);
56d1fe09
MK
687 if (vc4_crtc->event &&
688 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
c8b75bca
EA
689 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
690 vc4_crtc->event = NULL;
ee7c10e1 691 drm_crtc_vblank_put(crtc);
c8b75bca
EA
692 }
693 spin_unlock_irqrestore(&dev->event_lock, flags);
694}
695
696static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
697{
698 struct vc4_crtc *vc4_crtc = data;
699 u32 stat = CRTC_READ(PV_INTSTAT);
700 irqreturn_t ret = IRQ_NONE;
701
702 if (stat & PV_INT_VFP_START) {
1bf59f1d 703 vc4_crtc->t_vblank = ktime_get();
c8b75bca
EA
704 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
705 drm_crtc_handle_vblank(&vc4_crtc->base);
706 vc4_crtc_handle_page_flip(vc4_crtc);
707 ret = IRQ_HANDLED;
708 }
709
710 return ret;
711}
712
b501bacc
EA
713struct vc4_async_flip_state {
714 struct drm_crtc *crtc;
715 struct drm_framebuffer *fb;
716 struct drm_pending_vblank_event *event;
717
718 struct vc4_seqno_cb cb;
719};
720
721/* Called when the V3D execution for the BO being flipped to is done, so that
722 * we can actually update the plane's address to point to it.
723 */
724static void
725vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
726{
727 struct vc4_async_flip_state *flip_state =
728 container_of(cb, struct vc4_async_flip_state, cb);
729 struct drm_crtc *crtc = flip_state->crtc;
730 struct drm_device *dev = crtc->dev;
731 struct vc4_dev *vc4 = to_vc4_dev(dev);
732 struct drm_plane *plane = crtc->primary;
733
734 vc4_plane_async_set_fb(plane, flip_state->fb);
735 if (flip_state->event) {
736 unsigned long flags;
737
738 spin_lock_irqsave(&dev->event_lock, flags);
739 drm_crtc_send_vblank_event(crtc, flip_state->event);
740 spin_unlock_irqrestore(&dev->event_lock, flags);
741 }
742
ee7c10e1 743 drm_crtc_vblank_put(crtc);
b501bacc
EA
744 drm_framebuffer_unreference(flip_state->fb);
745 kfree(flip_state);
746
747 up(&vc4->async_modeset);
748}
749
750/* Implements async (non-vblank-synced) page flips.
751 *
752 * The page flip ioctl needs to return immediately, so we grab the
753 * modeset semaphore on the pipe, and queue the address update for
754 * when V3D is done with the BO being flipped to.
755 */
756static int vc4_async_page_flip(struct drm_crtc *crtc,
757 struct drm_framebuffer *fb,
758 struct drm_pending_vblank_event *event,
759 uint32_t flags)
760{
761 struct drm_device *dev = crtc->dev;
762 struct vc4_dev *vc4 = to_vc4_dev(dev);
763 struct drm_plane *plane = crtc->primary;
764 int ret = 0;
765 struct vc4_async_flip_state *flip_state;
766 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
767 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
768
769 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
770 if (!flip_state)
771 return -ENOMEM;
772
773 drm_framebuffer_reference(fb);
774 flip_state->fb = fb;
775 flip_state->crtc = crtc;
776 flip_state->event = event;
777
778 /* Make sure all other async modesetes have landed. */
779 ret = down_interruptible(&vc4->async_modeset);
780 if (ret) {
48627eb8 781 drm_framebuffer_unreference(fb);
b501bacc
EA
782 kfree(flip_state);
783 return ret;
784 }
785
ee7c10e1
MK
786 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
787
b501bacc
EA
788 /* Immediately update the plane's legacy fb pointer, so that later
789 * modeset prep sees the state that will be present when the semaphore
790 * is released.
791 */
792 drm_atomic_set_fb_for_plane(plane->state, fb);
793 plane->fb = fb;
794
795 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
796 vc4_async_page_flip_complete);
797
798 /* Driver takes ownership of state on successful async commit. */
799 return 0;
800}
801
802static int vc4_page_flip(struct drm_crtc *crtc,
803 struct drm_framebuffer *fb,
804 struct drm_pending_vblank_event *event,
41292b1f
DV
805 uint32_t flags,
806 struct drm_modeset_acquire_ctx *ctx)
b501bacc
EA
807{
808 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
809 return vc4_async_page_flip(crtc, fb, event, flags);
810 else
41292b1f 811 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
b501bacc
EA
812}
813
d8dbf44f
EA
814static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
815{
816 struct vc4_crtc_state *vc4_state;
817
818 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
819 if (!vc4_state)
820 return NULL;
821
822 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
823 return &vc4_state->base;
824}
825
826static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
827 struct drm_crtc_state *state)
828{
829 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
830 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
831
832 if (vc4_state->mm.allocated) {
833 unsigned long flags;
834
835 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
836 drm_mm_remove_node(&vc4_state->mm);
837 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
838
839 }
840
7622b255 841 drm_atomic_helper_crtc_destroy_state(crtc, state);
d8dbf44f
EA
842}
843
6d6e5003
EA
844static void
845vc4_crtc_reset(struct drm_crtc *crtc)
846{
847 if (crtc->state)
848 __drm_atomic_helper_crtc_destroy_state(crtc->state);
849
850 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
851 if (crtc->state)
852 crtc->state->crtc = crtc;
853}
854
c8b75bca
EA
855static const struct drm_crtc_funcs vc4_crtc_funcs = {
856 .set_config = drm_atomic_helper_set_config,
857 .destroy = vc4_crtc_destroy,
b501bacc 858 .page_flip = vc4_page_flip,
c8b75bca
EA
859 .set_property = NULL,
860 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
861 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
6d6e5003 862 .reset = vc4_crtc_reset,
d8dbf44f
EA
863 .atomic_duplicate_state = vc4_crtc_duplicate_state,
864 .atomic_destroy_state = vc4_crtc_destroy_state,
e582b6c7 865 .gamma_set = vc4_crtc_gamma_set,
0d5f46fa
SG
866 .enable_vblank = vc4_enable_vblank,
867 .disable_vblank = vc4_disable_vblank,
c8b75bca
EA
868};
869
870static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
871 .mode_set_nofb = vc4_crtc_mode_set_nofb,
872 .disable = vc4_crtc_disable,
873 .enable = vc4_crtc_enable,
c50a115b 874 .mode_valid = vc4_crtc_mode_valid,
c8b75bca
EA
875 .atomic_check = vc4_crtc_atomic_check,
876 .atomic_flush = vc4_crtc_atomic_flush,
877};
878
c8b75bca
EA
879static const struct vc4_crtc_data pv0_data = {
880 .hvs_channel = 0,
ab8df60e
BB
881 .encoder_types = {
882 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
883 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
884 },
c8b75bca
EA
885};
886
887static const struct vc4_crtc_data pv1_data = {
888 .hvs_channel = 2,
ab8df60e
BB
889 .encoder_types = {
890 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
891 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
892 },
c8b75bca
EA
893};
894
895static const struct vc4_crtc_data pv2_data = {
896 .hvs_channel = 1,
ab8df60e
BB
897 .encoder_types = {
898 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
899 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
900 },
c8b75bca
EA
901};
902
903static const struct of_device_id vc4_crtc_dt_match[] = {
904 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
905 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
906 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
907 {}
908};
909
910static void vc4_set_crtc_possible_masks(struct drm_device *drm,
911 struct drm_crtc *crtc)
912{
913 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
ab8df60e
BB
914 const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
915 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
c8b75bca
EA
916 struct drm_encoder *encoder;
917
918 drm_for_each_encoder(encoder, drm) {
919 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
ab8df60e
BB
920 int i;
921
922 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
923 if (vc4_encoder->type == encoder_types[i]) {
924 vc4_encoder->clock_select = i;
925 encoder->possible_crtcs |= drm_crtc_mask(crtc);
926 break;
927 }
c8b75bca
EA
928 }
929 }
930}
931
1bf59f1d
MK
932static void
933vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
934{
935 struct drm_device *drm = vc4_crtc->base.dev;
936 struct vc4_dev *vc4 = to_vc4_dev(drm);
937 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
938 /* Top/base are supposed to be 4-pixel aligned, but the
939 * Raspberry Pi firmware fills the low bits (which are
940 * presumably ignored).
941 */
942 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
943 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
944
945 vc4_crtc->cob_size = top - base + 4;
946}
947
c8b75bca
EA
948static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
949{
950 struct platform_device *pdev = to_platform_device(dev);
951 struct drm_device *drm = dev_get_drvdata(master);
c8b75bca
EA
952 struct vc4_crtc *vc4_crtc;
953 struct drm_crtc *crtc;
fc2d6f1e 954 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
c8b75bca 955 const struct of_device_id *match;
fc2d6f1e 956 int ret, i;
c8b75bca
EA
957
958 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
959 if (!vc4_crtc)
960 return -ENOMEM;
961 crtc = &vc4_crtc->base;
962
963 match = of_match_device(vc4_crtc_dt_match, dev);
964 if (!match)
965 return -ENODEV;
966 vc4_crtc->data = match->data;
967
968 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
969 if (IS_ERR(vc4_crtc->regs))
970 return PTR_ERR(vc4_crtc->regs);
971
972 /* For now, we create just the primary and the legacy cursor
973 * planes. We should be able to stack more planes on easily,
974 * but to do that we would need to compute the bandwidth
975 * requirement of the plane configuration, and reject ones
976 * that will take too much.
977 */
978 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
79513237 979 if (IS_ERR(primary_plane)) {
c8b75bca
EA
980 dev_err(dev, "failed to construct primary plane\n");
981 ret = PTR_ERR(primary_plane);
982 goto err;
983 }
984
fc2d6f1e 985 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
f9882876 986 &vc4_crtc_funcs, NULL);
c8b75bca
EA
987 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
988 primary_plane->crtc = crtc;
c8b75bca 989 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
e582b6c7 990 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
c8b75bca 991
fc2d6f1e
EA
992 /* Set up some arbitrary number of planes. We're not limited
993 * by a set number of physical registers, just the space in
994 * the HVS (16k) and how small an plane can be (28 bytes).
995 * However, each plane we set up takes up some memory, and
996 * increases the cost of looping over planes, which atomic
997 * modesetting does quite a bit. As a result, we pick a
998 * modest number of planes to expose, that should hopefully
999 * still cover any sane usecase.
1000 */
1001 for (i = 0; i < 8; i++) {
1002 struct drm_plane *plane =
1003 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1004
1005 if (IS_ERR(plane))
1006 continue;
1007
1008 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1009 }
1010
1011 /* Set up the legacy cursor after overlay initialization,
1012 * since we overlay planes on the CRTC in the order they were
1013 * initialized.
1014 */
1015 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1016 if (!IS_ERR(cursor_plane)) {
1017 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1018 cursor_plane->crtc = crtc;
1019 crtc->cursor = cursor_plane;
1020 }
1021
1bf59f1d
MK
1022 vc4_crtc_get_cob_allocation(vc4_crtc);
1023
c8b75bca
EA
1024 CRTC_WRITE(PV_INTEN, 0);
1025 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1026 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1027 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1028 if (ret)
fc2d6f1e 1029 goto err_destroy_planes;
c8b75bca
EA
1030
1031 vc4_set_crtc_possible_masks(drm, crtc);
1032
e582b6c7
EA
1033 for (i = 0; i < crtc->gamma_size; i++) {
1034 vc4_crtc->lut_r[i] = i;
1035 vc4_crtc->lut_g[i] = i;
1036 vc4_crtc->lut_b[i] = i;
1037 }
1038
c8b75bca
EA
1039 platform_set_drvdata(pdev, vc4_crtc);
1040
1041 return 0;
1042
fc2d6f1e
EA
1043err_destroy_planes:
1044 list_for_each_entry_safe(destroy_plane, temp,
1045 &drm->mode_config.plane_list, head) {
1046 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1047 destroy_plane->funcs->destroy(destroy_plane);
1048 }
c8b75bca
EA
1049err:
1050 return ret;
1051}
1052
1053static void vc4_crtc_unbind(struct device *dev, struct device *master,
1054 void *data)
1055{
1056 struct platform_device *pdev = to_platform_device(dev);
1057 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1058
1059 vc4_crtc_destroy(&vc4_crtc->base);
1060
1061 CRTC_WRITE(PV_INTEN, 0);
1062
1063 platform_set_drvdata(pdev, NULL);
1064}
1065
1066static const struct component_ops vc4_crtc_ops = {
1067 .bind = vc4_crtc_bind,
1068 .unbind = vc4_crtc_unbind,
1069};
1070
1071static int vc4_crtc_dev_probe(struct platform_device *pdev)
1072{
1073 return component_add(&pdev->dev, &vc4_crtc_ops);
1074}
1075
1076static int vc4_crtc_dev_remove(struct platform_device *pdev)
1077{
1078 component_del(&pdev->dev, &vc4_crtc_ops);
1079 return 0;
1080}
1081
1082struct platform_driver vc4_crtc_driver = {
1083 .probe = vc4_crtc_dev_probe,
1084 .remove = vc4_crtc_dev_remove,
1085 .driver = {
1086 .name = "vc4_crtc",
1087 .of_match_table = vc4_crtc_dt_match,
1088 },
1089};