]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/i2c/busses/i2c-img-scb.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-bionic-kernel.git] / drivers / i2c / busses / i2c-img-scb.c
CommitLineData
27bce457
JH
1/*
2 * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
3 *
4 * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * There are three ways that this I2C controller can be driven:
11 *
12 * - Raw control of the SDA and SCK signals.
13 *
14 * This corresponds to MODE_RAW, which takes control of the signals
15 * directly for a certain number of clock cycles (the INT_TIMING
16 * interrupt can be used for timing).
17 *
18 * - Atomic commands. A low level I2C symbol (such as generate
19 * start/stop/ack/nack bit, generate byte, receive byte, and receive
20 * ACK) is given to the hardware, with detection of completion by bits
21 * in the LINESTAT register.
22 *
23 * This mode of operation is used by MODE_ATOMIC, which uses an I2C
24 * state machine in the interrupt handler to compose/react to I2C
25 * transactions using atomic mode commands, and also by MODE_SEQUENCE,
26 * which emits a simple fixed sequence of atomic mode commands.
27 *
28 * Due to software control, the use of atomic commands usually results
29 * in suboptimal use of the bus, with gaps between the I2C symbols while
30 * the driver decides what to do next.
31 *
32 * - Automatic mode. A bus address, and whether to read/write is
33 * specified, and the hardware takes care of the I2C state machine,
34 * using a FIFO to send/receive bytes of data to an I2C slave. The
35 * driver just has to keep the FIFO drained or filled in response to the
36 * appropriate FIFO interrupts.
37 *
38 * This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
39 * with control of repeated start bits between I2C messages.
40 *
41 * Use of automatic mode and the FIFO can make much more efficient use
42 * of the bus compared to individual atomic commands, with potentially
43 * no wasted time between I2C symbols or I2C messages.
44 *
45 * In most cases MODE_AUTOMATIC is used, however if any of the messages in
46 * a transaction are zero byte writes (e.g. used by i2cdetect for probing
47 * the bus), MODE_ATOMIC must be used since automatic mode is normally
48 * started by the writing of data into the FIFO.
49 *
50 * The other modes are used in specific circumstances where MODE_ATOMIC and
51 * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
52 * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
53 * it is in a sane state.
54 *
55 * Notice that the driver implements a timer-based timeout mechanism.
56 * The reason for this mechanism is to reduce the number of interrupts
57 * received in automatic mode.
58 *
59 * The driver would get a slave event and transaction done interrupts for
60 * each atomic mode command that gets completed. However, these events are
61 * not needed in automatic mode, becase those atomic mode commands are
62 * managed automatically by the hardware.
63 *
64 * In practice, normal I2C transactions will be complete well before you
65 * get the timer interrupt, as the timer is re-scheduled during FIFO
66 * maintenance and disabled after the transaction is complete.
67 *
68 * In this way normal automatic mode operation isn't impacted by
69 * unnecessary interrupts, but the exceptional abort condition can still be
70 * detected (with a slight delay).
71 */
72
73#include <linux/bitops.h>
74#include <linux/clk.h>
75#include <linux/completion.h>
76#include <linux/err.h>
77#include <linux/i2c.h>
78#include <linux/init.h>
79#include <linux/interrupt.h>
80#include <linux/io.h>
81#include <linux/kernel.h>
82#include <linux/module.h>
83#include <linux/of_platform.h>
84#include <linux/platform_device.h>
93222bd9 85#include <linux/pm_runtime.h>
27bce457
JH
86#include <linux/slab.h>
87#include <linux/timer.h>
88
89/* Register offsets */
90
91#define SCB_STATUS_REG 0x00
92#define SCB_OVERRIDE_REG 0x04
93#define SCB_READ_ADDR_REG 0x08
94#define SCB_READ_COUNT_REG 0x0c
95#define SCB_WRITE_ADDR_REG 0x10
96#define SCB_READ_DATA_REG 0x14
97#define SCB_WRITE_DATA_REG 0x18
98#define SCB_FIFO_STATUS_REG 0x1c
99#define SCB_CONTROL_SOFT_RESET 0x1f
100#define SCB_CLK_SET_REG 0x3c
101#define SCB_INT_STATUS_REG 0x40
102#define SCB_INT_CLEAR_REG 0x44
103#define SCB_INT_MASK_REG 0x48
104#define SCB_CONTROL_REG 0x4c
105#define SCB_TIME_TPL_REG 0x50
106#define SCB_TIME_TPH_REG 0x54
107#define SCB_TIME_TP2S_REG 0x58
108#define SCB_TIME_TBI_REG 0x60
109#define SCB_TIME_TSL_REG 0x64
110#define SCB_TIME_TDL_REG 0x68
111#define SCB_TIME_TSDL_REG 0x6c
112#define SCB_TIME_TSDH_REG 0x70
113#define SCB_READ_XADDR_REG 0x74
114#define SCB_WRITE_XADDR_REG 0x78
115#define SCB_WRITE_COUNT_REG 0x7c
116#define SCB_CORE_REV_REG 0x80
117#define SCB_TIME_TCKH_REG 0x84
118#define SCB_TIME_TCKL_REG 0x88
119#define SCB_FIFO_FLUSH_REG 0x8c
120#define SCB_READ_FIFO_REG 0x94
121#define SCB_CLEAR_REG 0x98
122
123/* SCB_CONTROL_REG bits */
124
125#define SCB_CONTROL_CLK_ENABLE 0x1e0
126#define SCB_CONTROL_TRANSACTION_HALT 0x200
127
128#define FIFO_READ_FULL BIT(0)
129#define FIFO_READ_EMPTY BIT(1)
130#define FIFO_WRITE_FULL BIT(2)
131#define FIFO_WRITE_EMPTY BIT(3)
132
133/* SCB_CLK_SET_REG bits */
134#define SCB_FILT_DISABLE BIT(31)
135#define SCB_FILT_BYPASS BIT(30)
136#define SCB_FILT_INC_MASK 0x7f
137#define SCB_FILT_INC_SHIFT 16
138#define SCB_INC_MASK 0x7f
139#define SCB_INC_SHIFT 8
140
141/* SCB_INT_*_REG bits */
142
143#define INT_BUS_INACTIVE BIT(0)
144#define INT_UNEXPECTED_START BIT(1)
145#define INT_SCLK_LOW_TIMEOUT BIT(2)
146#define INT_SDAT_LOW_TIMEOUT BIT(3)
147#define INT_WRITE_ACK_ERR BIT(4)
148#define INT_ADDR_ACK_ERR BIT(5)
149#define INT_FIFO_FULL BIT(9)
150#define INT_FIFO_FILLING BIT(10)
151#define INT_FIFO_EMPTY BIT(11)
152#define INT_FIFO_EMPTYING BIT(12)
153#define INT_TRANSACTION_DONE BIT(15)
154#define INT_SLAVE_EVENT BIT(16)
c7b0a7c1 155#define INT_MASTER_HALTED BIT(17)
27bce457 156#define INT_TIMING BIT(18)
dd29207e 157#define INT_STOP_DETECTED BIT(19)
27bce457
JH
158
159#define INT_FIFO_FULL_FILLING (INT_FIFO_FULL | INT_FIFO_FILLING)
27bce457
JH
160
161/* Level interrupts need clearing after handling instead of before */
162#define INT_LEVEL 0x01e00
163
164/* Don't allow any interrupts while the clock may be off */
165#define INT_ENABLE_MASK_INACTIVE 0x00000
166
167/* Interrupt masks for the different driver modes */
168
169#define INT_ENABLE_MASK_RAW INT_TIMING
170
171#define INT_ENABLE_MASK_ATOMIC (INT_TRANSACTION_DONE | \
172 INT_SLAVE_EVENT | \
173 INT_ADDR_ACK_ERR | \
174 INT_WRITE_ACK_ERR)
175
176#define INT_ENABLE_MASK_AUTOMATIC (INT_SCLK_LOW_TIMEOUT | \
177 INT_ADDR_ACK_ERR | \
178 INT_WRITE_ACK_ERR | \
179 INT_FIFO_FULL | \
180 INT_FIFO_FILLING | \
dd29207e 181 INT_FIFO_EMPTY | \
c7b0a7c1 182 INT_MASTER_HALTED | \
dd29207e 183 INT_STOP_DETECTED)
27bce457
JH
184
185#define INT_ENABLE_MASK_WAITSTOP (INT_SLAVE_EVENT | \
186 INT_ADDR_ACK_ERR | \
187 INT_WRITE_ACK_ERR)
188
189/* SCB_STATUS_REG fields */
190
191#define LINESTAT_SCLK_LINE_STATUS BIT(0)
192#define LINESTAT_SCLK_EN BIT(1)
193#define LINESTAT_SDAT_LINE_STATUS BIT(2)
194#define LINESTAT_SDAT_EN BIT(3)
195#define LINESTAT_DET_START_STATUS BIT(4)
196#define LINESTAT_DET_STOP_STATUS BIT(5)
197#define LINESTAT_DET_ACK_STATUS BIT(6)
198#define LINESTAT_DET_NACK_STATUS BIT(7)
199#define LINESTAT_BUS_IDLE BIT(8)
200#define LINESTAT_T_DONE_STATUS BIT(9)
201#define LINESTAT_SCLK_OUT_STATUS BIT(10)
202#define LINESTAT_SDAT_OUT_STATUS BIT(11)
203#define LINESTAT_GEN_LINE_MASK_STATUS BIT(12)
204#define LINESTAT_START_BIT_DET BIT(13)
205#define LINESTAT_STOP_BIT_DET BIT(14)
206#define LINESTAT_ACK_DET BIT(15)
207#define LINESTAT_NACK_DET BIT(16)
208#define LINESTAT_INPUT_HELD_V BIT(17)
209#define LINESTAT_ABORT_DET BIT(18)
210#define LINESTAT_ACK_OR_NACK_DET (LINESTAT_ACK_DET | LINESTAT_NACK_DET)
211#define LINESTAT_INPUT_DATA 0xff000000
212#define LINESTAT_INPUT_DATA_SHIFT 24
213
214#define LINESTAT_CLEAR_SHIFT 13
215#define LINESTAT_LATCHED (0x3f << LINESTAT_CLEAR_SHIFT)
216
217/* SCB_OVERRIDE_REG fields */
218
219#define OVERRIDE_SCLK_OVR BIT(0)
220#define OVERRIDE_SCLKEN_OVR BIT(1)
221#define OVERRIDE_SDAT_OVR BIT(2)
222#define OVERRIDE_SDATEN_OVR BIT(3)
223#define OVERRIDE_MASTER BIT(9)
224#define OVERRIDE_LINE_OVR_EN BIT(10)
225#define OVERRIDE_DIRECT BIT(11)
226#define OVERRIDE_CMD_SHIFT 4
227#define OVERRIDE_CMD_MASK 0x1f
228#define OVERRIDE_DATA_SHIFT 24
229
230#define OVERRIDE_SCLK_DOWN (OVERRIDE_LINE_OVR_EN | \
231 OVERRIDE_SCLKEN_OVR)
232#define OVERRIDE_SCLK_UP (OVERRIDE_LINE_OVR_EN | \
233 OVERRIDE_SCLKEN_OVR | \
234 OVERRIDE_SCLK_OVR)
235#define OVERRIDE_SDAT_DOWN (OVERRIDE_LINE_OVR_EN | \
236 OVERRIDE_SDATEN_OVR)
237#define OVERRIDE_SDAT_UP (OVERRIDE_LINE_OVR_EN | \
238 OVERRIDE_SDATEN_OVR | \
239 OVERRIDE_SDAT_OVR)
240
241/* OVERRIDE_CMD values */
242
243#define CMD_PAUSE 0x00
244#define CMD_GEN_DATA 0x01
245#define CMD_GEN_START 0x02
246#define CMD_GEN_STOP 0x03
247#define CMD_GEN_ACK 0x04
248#define CMD_GEN_NACK 0x05
249#define CMD_RET_DATA 0x08
250#define CMD_RET_ACK 0x09
251
252/* Fixed timing values */
253
254#define TIMEOUT_TBI 0x0
255#define TIMEOUT_TSL 0xffff
256#define TIMEOUT_TDL 0x0
257
258/* Transaction timeout */
259
260#define IMG_I2C_TIMEOUT (msecs_to_jiffies(1000))
261
262/*
263 * Worst incs are 1 (innacurate) and 16*256 (irregular).
264 * So a sensible inc is the logarithmic mean: 64 (2^6), which is
265 * in the middle of the valid range (0-127).
266 */
267#define SCB_OPT_INC 64
268
269/* Setup the clock enable filtering for 25 ns */
270#define SCB_FILT_GLITCH 25
271
272/*
273 * Bits to return from interrupt handler functions for different modes.
274 * This delays completion until we've finished with the registers, so that the
275 * function waiting for completion can safely disable the clock to save power.
276 */
277#define ISR_COMPLETE_M BIT(31)
278#define ISR_FATAL_M BIT(30)
279#define ISR_WAITSTOP BIT(29)
280#define ISR_STATUS_M 0x0000ffff /* contains +ve errno */
281#define ISR_COMPLETE(err) (ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
282#define ISR_FATAL(err) (ISR_COMPLETE(err) | ISR_FATAL_M)
283
93222bd9
EB
284#define IMG_I2C_PM_TIMEOUT 1000 /* ms */
285
27bce457
JH
286enum img_i2c_mode {
287 MODE_INACTIVE,
288 MODE_RAW,
289 MODE_ATOMIC,
290 MODE_AUTOMATIC,
291 MODE_SEQUENCE,
292 MODE_FATAL,
293 MODE_WAITSTOP,
294 MODE_SUSPEND,
295};
296
297/* Timing parameters for i2c modes (in ns) */
298struct img_i2c_timings {
299 const char *name;
300 unsigned int max_bitrate;
301 unsigned int tckh, tckl, tsdh, tsdl;
302 unsigned int tp2s, tpl, tph;
303};
304
305/* The timings array must be ordered from slower to faster */
306static struct img_i2c_timings timings[] = {
307 /* Standard mode */
308 {
309 .name = "standard",
310 .max_bitrate = 100000,
311 .tckh = 4000,
312 .tckl = 4700,
313 .tsdh = 4700,
314 .tsdl = 8700,
315 .tp2s = 4700,
316 .tpl = 4700,
317 .tph = 4000,
318 },
319 /* Fast mode */
320 {
321 .name = "fast",
322 .max_bitrate = 400000,
323 .tckh = 600,
324 .tckl = 1300,
325 .tsdh = 600,
326 .tsdl = 1200,
327 .tp2s = 1300,
328 .tpl = 600,
329 .tph = 600,
330 },
331};
332
333/* Reset dance */
334static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
335 CMD_GEN_DATA, 0xff,
336 CMD_RET_ACK,
337 CMD_GEN_START,
338 CMD_GEN_STOP,
339 0 };
340/* Just issue a stop (after an abort condition) */
341static u8 img_i2c_stop_seq[] = { CMD_GEN_STOP,
342 0 };
343
344/* We're interested in different interrupts depending on the mode */
345static unsigned int img_i2c_int_enable_by_mode[] = {
346 [MODE_INACTIVE] = INT_ENABLE_MASK_INACTIVE,
347 [MODE_RAW] = INT_ENABLE_MASK_RAW,
348 [MODE_ATOMIC] = INT_ENABLE_MASK_ATOMIC,
349 [MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
350 [MODE_SEQUENCE] = INT_ENABLE_MASK_ATOMIC,
351 [MODE_FATAL] = 0,
352 [MODE_WAITSTOP] = INT_ENABLE_MASK_WAITSTOP,
353 [MODE_SUSPEND] = 0,
354};
355
356/* Atomic command names */
357static const char * const img_i2c_atomic_cmd_names[] = {
358 [CMD_PAUSE] = "PAUSE",
359 [CMD_GEN_DATA] = "GEN_DATA",
360 [CMD_GEN_START] = "GEN_START",
361 [CMD_GEN_STOP] = "GEN_STOP",
362 [CMD_GEN_ACK] = "GEN_ACK",
363 [CMD_GEN_NACK] = "GEN_NACK",
364 [CMD_RET_DATA] = "RET_DATA",
365 [CMD_RET_ACK] = "RET_ACK",
366};
367
368struct img_i2c {
369 struct i2c_adapter adap;
370
371 void __iomem *base;
372
373 /*
374 * The scb core clock is used to get the input frequency, and to disable
375 * it after every set of transactions to save some power.
376 */
377 struct clk *scb_clk, *sys_clk;
378 unsigned int bitrate;
379 bool need_wr_rd_fence;
380
381 /* state */
382 struct completion msg_complete;
383 spinlock_t lock; /* lock before doing anything with the state */
384 struct i2c_msg msg;
385
386 /* After the last transaction, wait for a stop bit */
387 bool last_msg;
388 int msg_status;
389
390 enum img_i2c_mode mode;
391 u32 int_enable; /* depends on mode */
392 u32 line_status; /* line status over command */
393
394 /*
395 * To avoid slave event interrupts in automatic mode, use a timer to
396 * poll the abort condition if we don't get an interrupt for too long.
397 */
398 struct timer_list check_timer;
399 bool t_halt;
400
401 /* atomic mode state */
402 bool at_t_done;
403 bool at_slave_event;
404 int at_cur_cmd;
405 u8 at_cur_data;
406
407 /* Sequence: either reset or stop. See img_i2c_sequence. */
408 u8 *seq;
409
410 /* raw mode */
411 unsigned int raw_timeout;
412};
413
93222bd9
EB
414static int img_i2c_runtime_suspend(struct device *dev);
415static int img_i2c_runtime_resume(struct device *dev);
416
27bce457
JH
417static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
418{
419 writel(value, i2c->base + offset);
420}
421
422static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
423{
424 return readl(i2c->base + offset);
425}
426
427/*
428 * The code to read from the master read fifo, and write to the master
429 * write fifo, checks a bit in an SCB register before every byte to
430 * ensure that the fifo is not full (write fifo) or empty (read fifo).
431 * Due to clock domain crossing inside the SCB block the updated value
432 * of this bit is only visible after 2 cycles.
433 *
434 * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
435 * revision register), and it's called after reading from or writing to the
436 * fifos to ensure that subsequent reads of the fifo status bits do not read
437 * stale values.
438 */
439static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
440{
441 if (i2c->need_wr_rd_fence) {
442 img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
443 img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
444 }
445}
446
447static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
448{
449 i2c->mode = mode;
450 i2c->int_enable = img_i2c_int_enable_by_mode[mode];
451 i2c->line_status = 0;
452}
453
454static void img_i2c_raw_op(struct img_i2c *i2c)
455{
456 i2c->raw_timeout = 0;
457 img_i2c_writel(i2c, SCB_OVERRIDE_REG,
458 OVERRIDE_SCLKEN_OVR |
459 OVERRIDE_SDATEN_OVR |
460 OVERRIDE_MASTER |
461 OVERRIDE_LINE_OVR_EN |
462 OVERRIDE_DIRECT |
463 ((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
464 (i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
465}
466
467static const char *img_i2c_atomic_op_name(unsigned int cmd)
468{
469 if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
470 return "UNKNOWN";
471 return img_i2c_atomic_cmd_names[cmd];
472}
473
474/* Send a single atomic mode command to the hardware */
475static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
476{
477 i2c->at_cur_cmd = cmd;
478 i2c->at_cur_data = data;
479
480 /* work around lack of data setup time when generating data */
481 if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
482 u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
483
484 if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
485 /* hold the data line down for a moment */
486 img_i2c_switch_mode(i2c, MODE_RAW);
487 img_i2c_raw_op(i2c);
488 return;
489 }
490 }
491
492 dev_dbg(i2c->adap.dev.parent,
493 "atomic cmd=%s (%d) data=%#x\n",
494 img_i2c_atomic_op_name(cmd), cmd, data);
495 i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
496 i2c->at_slave_event = false;
497 i2c->line_status = 0;
498
499 img_i2c_writel(i2c, SCB_OVERRIDE_REG,
500 ((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
501 OVERRIDE_MASTER |
502 OVERRIDE_DIRECT |
503 (data << OVERRIDE_DATA_SHIFT));
504}
505
506/* Start a transaction in atomic mode */
507static void img_i2c_atomic_start(struct img_i2c *i2c)
508{
509 img_i2c_switch_mode(i2c, MODE_ATOMIC);
510 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
511 img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
512}
513
514static void img_i2c_soft_reset(struct img_i2c *i2c)
515{
516 i2c->t_halt = false;
517 img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
518 img_i2c_writel(i2c, SCB_CONTROL_REG,
519 SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
520}
521
c20821a7
SN
522/*
523 * Enable or release transaction halt for control of repeated starts.
524 * In version 3.3 of the IP when transaction halt is set, an interrupt
525 * will be generated after each byte of a transfer instead of after
526 * every transfer but before the stop bit.
527 * Due to this behaviour we have to be careful that every time we
528 * release the transaction halt we have to re-enable it straight away
529 * so that we only process a single byte, not doing so will result in
530 * all remaining bytes been processed and a stop bit being issued,
531 * which will prevent us having a repeated start.
532 */
27bce457
JH
533static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
534{
535 u32 val;
536
537 if (i2c->t_halt == t_halt)
538 return;
539 i2c->t_halt = t_halt;
540 val = img_i2c_readl(i2c, SCB_CONTROL_REG);
541 if (t_halt)
542 val |= SCB_CONTROL_TRANSACTION_HALT;
543 else
544 val &= ~SCB_CONTROL_TRANSACTION_HALT;
545 img_i2c_writel(i2c, SCB_CONTROL_REG, val);
546}
547
548/* Drain data from the FIFO into the buffer (automatic mode) */
549static void img_i2c_read_fifo(struct img_i2c *i2c)
550{
551 while (i2c->msg.len) {
552 u32 fifo_status;
553 u8 data;
554
2aefb1bd 555 img_i2c_wr_rd_fence(i2c);
27bce457
JH
556 fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
557 if (fifo_status & FIFO_READ_EMPTY)
558 break;
559
560 data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
561 *i2c->msg.buf = data;
562
563 img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
27bce457
JH
564 i2c->msg.len--;
565 i2c->msg.buf++;
566 }
567}
568
569/* Fill the FIFO with data from the buffer (automatic mode) */
570static void img_i2c_write_fifo(struct img_i2c *i2c)
571{
572 while (i2c->msg.len) {
573 u32 fifo_status;
574
2aefb1bd 575 img_i2c_wr_rd_fence(i2c);
27bce457
JH
576 fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
577 if (fifo_status & FIFO_WRITE_FULL)
578 break;
579
580 img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
27bce457
JH
581 i2c->msg.len--;
582 i2c->msg.buf++;
583 }
584
585 /* Disable fifo emptying interrupt if nothing more to write */
586 if (!i2c->msg.len)
587 i2c->int_enable &= ~INT_FIFO_EMPTYING;
588}
589
590/* Start a read transaction in automatic mode */
591static void img_i2c_read(struct img_i2c *i2c)
592{
593 img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
594 if (!i2c->last_msg)
595 i2c->int_enable |= INT_SLAVE_EVENT;
596
597 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
598 img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
599 img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
600
27bce457
JH
601 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
602}
603
604/* Start a write transaction in automatic mode */
605static void img_i2c_write(struct img_i2c *i2c)
606{
607 img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
608 if (!i2c->last_msg)
609 i2c->int_enable |= INT_SLAVE_EVENT;
610
611 img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
612 img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
613
27bce457
JH
614 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
615 img_i2c_write_fifo(i2c);
616
617 /* img_i2c_write_fifo() may modify int_enable */
618 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
619}
620
621/*
622 * Indicate that the transaction is complete. This is called from the
623 * ISR to wake up the waiting thread, after which the ISR must not
624 * access any more SCB registers.
625 */
626static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
627{
628 img_i2c_switch_mode(i2c, MODE_INACTIVE);
629 if (status) {
630 i2c->msg_status = status;
631 img_i2c_transaction_halt(i2c, false);
632 }
633 complete(&i2c->msg_complete);
634}
635
636static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
637 u32 int_status, u32 line_status)
638{
639 /* Stay in raw mode for this, so we don't just loop infinitely */
640 img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
641 img_i2c_switch_mode(i2c, MODE_ATOMIC);
642 return 0;
643}
644
645static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
646 u32 line_status)
647{
648 if (int_status & INT_TIMING) {
649 if (i2c->raw_timeout == 0)
650 return img_i2c_raw_atomic_delay_handler(i2c,
651 int_status, line_status);
652 --i2c->raw_timeout;
653 }
654 return 0;
655}
656
657static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
658{
659 static const unsigned int continue_bits[] = {
660 [CMD_GEN_START] = LINESTAT_START_BIT_DET,
661 [CMD_GEN_DATA] = LINESTAT_INPUT_HELD_V,
662 [CMD_RET_ACK] = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
663 [CMD_RET_DATA] = LINESTAT_INPUT_HELD_V,
664 [CMD_GEN_STOP] = LINESTAT_STOP_BIT_DET,
665 };
666 int next_cmd = -1;
667 u8 next_data = 0x00;
668
669 if (int_status & INT_SLAVE_EVENT)
670 i2c->at_slave_event = true;
671 if (int_status & INT_TRANSACTION_DONE)
672 i2c->at_t_done = true;
673
674 if (!i2c->at_slave_event || !i2c->at_t_done)
675 return 0;
676
677 /* wait if no continue bits are set */
678 if (i2c->at_cur_cmd >= 0 &&
679 i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
680 unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
681
682 if (cont_bits) {
683 cont_bits |= LINESTAT_ABORT_DET;
684 if (!(i2c->line_status & cont_bits))
685 return 0;
686 }
687 }
688
689 /* follow the sequence of commands in i2c->seq */
690 next_cmd = *i2c->seq;
691 /* stop on a nil */
692 if (!next_cmd) {
693 img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
694 return ISR_COMPLETE(0);
695 }
696 /* when generating data, the next byte is the data */
697 if (next_cmd == CMD_GEN_DATA) {
698 ++i2c->seq;
699 next_data = *i2c->seq;
700 }
701 ++i2c->seq;
702 img_i2c_atomic_op(i2c, next_cmd, next_data);
703
704 return 0;
705}
706
707static void img_i2c_reset_start(struct img_i2c *i2c)
708{
709 /* Initiate the magic dance */
710 img_i2c_switch_mode(i2c, MODE_SEQUENCE);
711 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
712 i2c->seq = img_i2c_reset_seq;
713 i2c->at_slave_event = true;
714 i2c->at_t_done = true;
715 i2c->at_cur_cmd = -1;
716
717 /* img_i2c_reset_seq isn't empty so the following won't fail */
718 img_i2c_sequence(i2c, 0);
719}
720
721static void img_i2c_stop_start(struct img_i2c *i2c)
722{
723 /* Initiate a stop bit sequence */
724 img_i2c_switch_mode(i2c, MODE_SEQUENCE);
725 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
726 i2c->seq = img_i2c_stop_seq;
727 i2c->at_slave_event = true;
728 i2c->at_t_done = true;
729 i2c->at_cur_cmd = -1;
730
731 /* img_i2c_stop_seq isn't empty so the following won't fail */
732 img_i2c_sequence(i2c, 0);
733}
734
735static unsigned int img_i2c_atomic(struct img_i2c *i2c,
736 u32 int_status,
737 u32 line_status)
738{
739 int next_cmd = -1;
740 u8 next_data = 0x00;
741
742 if (int_status & INT_SLAVE_EVENT)
743 i2c->at_slave_event = true;
744 if (int_status & INT_TRANSACTION_DONE)
745 i2c->at_t_done = true;
746
747 if (!i2c->at_slave_event || !i2c->at_t_done)
748 goto next_atomic_cmd;
749 if (i2c->line_status & LINESTAT_ABORT_DET) {
750 dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
751 next_cmd = CMD_GEN_STOP;
752 i2c->msg_status = -EIO;
753 goto next_atomic_cmd;
754 }
755
756 /* i2c->at_cur_cmd may have completed */
757 switch (i2c->at_cur_cmd) {
758 case CMD_GEN_START:
759 next_cmd = CMD_GEN_DATA;
9c01cae8 760 next_data = i2c_8bit_addr_from_msg(&i2c->msg);
27bce457
JH
761 break;
762 case CMD_GEN_DATA:
763 if (i2c->line_status & LINESTAT_INPUT_HELD_V)
764 next_cmd = CMD_RET_ACK;
765 break;
766 case CMD_RET_ACK:
c55ebe0e
SN
767 if (i2c->line_status & LINESTAT_ACK_DET ||
768 (i2c->line_status & LINESTAT_NACK_DET &&
769 i2c->msg.flags & I2C_M_IGNORE_NAK)) {
27bce457
JH
770 if (i2c->msg.len == 0) {
771 next_cmd = CMD_GEN_STOP;
772 } else if (i2c->msg.flags & I2C_M_RD) {
773 next_cmd = CMD_RET_DATA;
774 } else {
775 next_cmd = CMD_GEN_DATA;
776 next_data = *i2c->msg.buf;
777 --i2c->msg.len;
778 ++i2c->msg.buf;
779 }
780 } else if (i2c->line_status & LINESTAT_NACK_DET) {
781 i2c->msg_status = -EIO;
782 next_cmd = CMD_GEN_STOP;
783 }
784 break;
785 case CMD_RET_DATA:
786 if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
787 *i2c->msg.buf = (i2c->line_status &
788 LINESTAT_INPUT_DATA)
789 >> LINESTAT_INPUT_DATA_SHIFT;
790 --i2c->msg.len;
791 ++i2c->msg.buf;
792 if (i2c->msg.len)
793 next_cmd = CMD_GEN_ACK;
794 else
795 next_cmd = CMD_GEN_NACK;
796 }
797 break;
798 case CMD_GEN_ACK:
799 if (i2c->line_status & LINESTAT_ACK_DET) {
800 next_cmd = CMD_RET_DATA;
801 } else {
802 i2c->msg_status = -EIO;
803 next_cmd = CMD_GEN_STOP;
804 }
805 break;
806 case CMD_GEN_NACK:
807 next_cmd = CMD_GEN_STOP;
808 break;
809 case CMD_GEN_STOP:
810 img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
811 return ISR_COMPLETE(0);
812 default:
813 dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
814 i2c->at_cur_cmd);
815 i2c->msg_status = -EIO;
816 next_cmd = CMD_GEN_STOP;
817 break;
818 }
819
820next_atomic_cmd:
821 if (next_cmd != -1) {
822 /* don't actually stop unless we're the last transaction */
823 if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
824 !i2c->last_msg)
825 return ISR_COMPLETE(0);
826 img_i2c_atomic_op(i2c, next_cmd, next_data);
827 }
828 return 0;
829}
830
831/*
832 * Timer function to check if something has gone wrong in automatic mode (so we
833 * don't have to handle so many interrupts just to catch an exception).
834 */
b9e43e36 835static void img_i2c_check_timer(struct timer_list *t)
27bce457 836{
b9e43e36 837 struct img_i2c *i2c = from_timer(i2c, t, check_timer);
27bce457
JH
838 unsigned long flags;
839 unsigned int line_status;
840
841 spin_lock_irqsave(&i2c->lock, flags);
842 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
843
844 /* check for an abort condition */
845 if (line_status & LINESTAT_ABORT_DET) {
846 dev_dbg(i2c->adap.dev.parent,
847 "abort condition detected by check timer\n");
848 /* enable slave event interrupt mask to trigger irq */
849 img_i2c_writel(i2c, SCB_INT_MASK_REG,
850 i2c->int_enable | INT_SLAVE_EVENT);
851 }
852
853 spin_unlock_irqrestore(&i2c->lock, flags);
854}
855
856static unsigned int img_i2c_auto(struct img_i2c *i2c,
857 unsigned int int_status,
858 unsigned int line_status)
859{
860 if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
861 return ISR_COMPLETE(EIO);
862
863 if (line_status & LINESTAT_ABORT_DET) {
864 dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
865 /* empty the read fifo */
866 if ((i2c->msg.flags & I2C_M_RD) &&
867 (int_status & INT_FIFO_FULL_FILLING))
868 img_i2c_read_fifo(i2c);
869 /* use atomic mode and try to force a stop bit */
870 i2c->msg_status = -EIO;
871 img_i2c_stop_start(i2c);
872 return 0;
873 }
874
875 /* Enable transaction halt on start bit */
0f0a3189 876 if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
c20821a7 877 img_i2c_transaction_halt(i2c, !i2c->last_msg);
27bce457
JH
878 /* we're no longer interested in the slave event */
879 i2c->int_enable &= ~INT_SLAVE_EVENT;
880 }
881
882 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
883
dd29207e
SN
884 if (int_status & INT_STOP_DETECTED) {
885 /* Drain remaining data in FIFO and complete transaction */
886 if (i2c->msg.flags & I2C_M_RD)
887 img_i2c_read_fifo(i2c);
888 return ISR_COMPLETE(0);
889 }
890
27bce457 891 if (i2c->msg.flags & I2C_M_RD) {
c7b0a7c1 892 if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) {
27bce457
JH
893 img_i2c_read_fifo(i2c);
894 if (i2c->msg.len == 0)
895 return ISR_WAITSTOP;
896 }
897 } else {
c7b0a7c1
SN
898 if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) {
899 if ((int_status & INT_FIFO_EMPTY) &&
900 i2c->msg.len == 0)
27bce457
JH
901 return ISR_WAITSTOP;
902 img_i2c_write_fifo(i2c);
903 }
904 }
c7b0a7c1
SN
905 if (int_status & INT_MASTER_HALTED) {
906 /*
907 * Release and then enable transaction halt, to
908 * allow only a single byte to proceed.
909 */
910 img_i2c_transaction_halt(i2c, false);
911 img_i2c_transaction_halt(i2c, !i2c->last_msg);
912 }
27bce457
JH
913
914 return 0;
915}
916
917static irqreturn_t img_i2c_isr(int irq, void *dev_id)
918{
919 struct img_i2c *i2c = (struct img_i2c *)dev_id;
920 u32 int_status, line_status;
921 /* We handle transaction completion AFTER accessing registers */
922 unsigned int hret;
923
924 /* Read interrupt status register. */
925 int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
926 /* Clear detected interrupts. */
927 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
928
929 /*
930 * Read line status and clear it until it actually is clear. We have
931 * to be careful not to lose any line status bits that get latched.
932 */
933 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
934 if (line_status & LINESTAT_LATCHED) {
935 img_i2c_writel(i2c, SCB_CLEAR_REG,
936 (line_status & LINESTAT_LATCHED)
937 >> LINESTAT_CLEAR_SHIFT);
938 img_i2c_wr_rd_fence(i2c);
939 }
940
941 spin_lock(&i2c->lock);
942
943 /* Keep track of line status bits received */
944 i2c->line_status &= ~LINESTAT_INPUT_DATA;
945 i2c->line_status |= line_status;
946
947 /*
948 * Certain interrupts indicate that sclk low timeout is not
949 * a problem. If any of these are set, just continue.
950 */
951 if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
952 !(int_status & (INT_SLAVE_EVENT |
953 INT_FIFO_EMPTY |
954 INT_FIFO_FULL))) {
955 dev_crit(i2c->adap.dev.parent,
956 "fatal: clock low timeout occurred %s addr 0x%02x\n",
957 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
958 i2c->msg.addr);
959 hret = ISR_FATAL(EIO);
960 goto out;
961 }
962
963 if (i2c->mode == MODE_ATOMIC)
964 hret = img_i2c_atomic(i2c, int_status, line_status);
965 else if (i2c->mode == MODE_AUTOMATIC)
966 hret = img_i2c_auto(i2c, int_status, line_status);
967 else if (i2c->mode == MODE_SEQUENCE)
968 hret = img_i2c_sequence(i2c, int_status);
969 else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
970 (line_status & LINESTAT_STOP_BIT_DET))
971 hret = ISR_COMPLETE(0);
972 else if (i2c->mode == MODE_RAW)
973 hret = img_i2c_raw(i2c, int_status, line_status);
974 else
975 hret = 0;
976
977 /* Clear detected level interrupts. */
978 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
979
980out:
981 if (hret & ISR_WAITSTOP) {
982 /*
983 * Only wait for stop on last message.
984 * Also we may already have detected the stop bit.
985 */
986 if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
987 hret = ISR_COMPLETE(0);
988 else
989 img_i2c_switch_mode(i2c, MODE_WAITSTOP);
990 }
991
992 /* now we've finished using regs, handle transaction completion */
993 if (hret & ISR_COMPLETE_M) {
994 int status = -(hret & ISR_STATUS_M);
995
996 img_i2c_complete_transaction(i2c, status);
997 if (hret & ISR_FATAL_M)
998 img_i2c_switch_mode(i2c, MODE_FATAL);
999 }
1000
1001 /* Enable interrupts (int_enable may be altered by changing mode) */
1002 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1003
1004 spin_unlock(&i2c->lock);
1005
1006 return IRQ_HANDLED;
1007}
1008
1009/* Force a bus reset sequence and wait for it to complete */
1010static int img_i2c_reset_bus(struct img_i2c *i2c)
1011{
1012 unsigned long flags;
913b1d85 1013 unsigned long time_left;
27bce457
JH
1014
1015 spin_lock_irqsave(&i2c->lock, flags);
1016 reinit_completion(&i2c->msg_complete);
1017 img_i2c_reset_start(i2c);
1018 spin_unlock_irqrestore(&i2c->lock, flags);
1019
913b1d85
NMG
1020 time_left = wait_for_completion_timeout(&i2c->msg_complete,
1021 IMG_I2C_TIMEOUT);
1022 if (time_left == 0)
27bce457
JH
1023 return -ETIMEDOUT;
1024 return 0;
1025}
1026
1027static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1028 int num)
1029{
1030 struct img_i2c *i2c = i2c_get_adapdata(adap);
1031 bool atomic = false;
1032 int i, ret;
913b1d85 1033 unsigned long time_left;
27bce457
JH
1034
1035 if (i2c->mode == MODE_SUSPEND) {
1036 WARN(1, "refusing to service transaction in suspended state\n");
1037 return -EIO;
1038 }
1039
1040 if (i2c->mode == MODE_FATAL)
1041 return -EIO;
1042
1043 for (i = 0; i < num; i++) {
27bce457
JH
1044 /*
1045 * 0 byte reads are not possible because the slave could try
1046 * and pull the data line low, preventing a stop bit.
1047 */
c55ebe0e 1048 if (!msgs[i].len && msgs[i].flags & I2C_M_RD)
27bce457
JH
1049 return -EIO;
1050 /*
1051 * 0 byte writes are possible and used for probing, but we
1052 * cannot do them in automatic mode, so use atomic mode
1053 * instead.
c55ebe0e
SN
1054 *
1055 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
1056 * in atomic mode.
27bce457 1057 */
c55ebe0e
SN
1058 if (!msgs[i].len ||
1059 (msgs[i].flags & I2C_M_IGNORE_NAK))
1060 atomic = true;
27bce457
JH
1061 }
1062
93222bd9
EB
1063 ret = pm_runtime_get_sync(adap->dev.parent);
1064 if (ret < 0)
27bce457
JH
1065 return ret;
1066
1067 for (i = 0; i < num; i++) {
1068 struct i2c_msg *msg = &msgs[i];
1069 unsigned long flags;
1070
1071 spin_lock_irqsave(&i2c->lock, flags);
1072
1073 /*
1074 * Make a copy of the message struct. We mustn't modify the
1075 * original or we'll confuse drivers and i2c-dev.
1076 */
1077 i2c->msg = *msg;
1078 i2c->msg_status = 0;
1079
1080 /*
1081 * After the last message we must have waited for a stop bit.
1082 * Not waiting can cause problems when the clock is disabled
1083 * before the stop bit is sent, and the linux I2C interface
1084 * requires separate transfers not to joined with repeated
1085 * start.
1086 */
1087 i2c->last_msg = (i == num - 1);
1088 reinit_completion(&i2c->msg_complete);
1089
1ed6faed
SN
1090 /*
1091 * Clear line status and all interrupts before starting a
1092 * transfer, as we may have unserviced interrupts from
1093 * previous transfers that might be handled in the context
1094 * of the new transfer.
1095 */
1096 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1097 img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1098
c20821a7 1099 if (atomic) {
27bce457 1100 img_i2c_atomic_start(i2c);
c20821a7
SN
1101 } else {
1102 /*
1103 * Enable transaction halt if not the last message in
1104 * the queue so that we can control repeated starts.
1105 */
1106 img_i2c_transaction_halt(i2c, !i2c->last_msg);
1107
1108 if (msg->flags & I2C_M_RD)
1109 img_i2c_read(i2c);
1110 else
1111 img_i2c_write(i2c);
1112
1113 /*
1114 * Release and then enable transaction halt, to
1115 * allow only a single byte to proceed.
1116 * This doesn't have an effect on the initial transfer
1117 * but will allow the following transfers to start
1118 * processing if the previous transfer was marked as
1119 * complete while the i2c block was halted.
1120 */
1121 img_i2c_transaction_halt(i2c, false);
1122 img_i2c_transaction_halt(i2c, !i2c->last_msg);
1123 }
27bce457
JH
1124 spin_unlock_irqrestore(&i2c->lock, flags);
1125
913b1d85
NMG
1126 time_left = wait_for_completion_timeout(&i2c->msg_complete,
1127 IMG_I2C_TIMEOUT);
27bce457
JH
1128 del_timer_sync(&i2c->check_timer);
1129
913b1d85 1130 if (time_left == 0) {
27bce457
JH
1131 dev_err(adap->dev.parent, "i2c transfer timed out\n");
1132 i2c->msg_status = -ETIMEDOUT;
1133 break;
1134 }
1135
1136 if (i2c->msg_status)
1137 break;
1138 }
1139
93222bd9
EB
1140 pm_runtime_mark_last_busy(adap->dev.parent);
1141 pm_runtime_put_autosuspend(adap->dev.parent);
27bce457
JH
1142
1143 return i2c->msg_status ? i2c->msg_status : num;
1144}
1145
1146static u32 img_i2c_func(struct i2c_adapter *adap)
1147{
1148 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1149}
1150
1151static const struct i2c_algorithm img_i2c_algo = {
1152 .master_xfer = img_i2c_xfer,
1153 .functionality = img_i2c_func,
1154};
1155
1156static int img_i2c_init(struct img_i2c *i2c)
1157{
1158 unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
93222bd9 1159 unsigned int i, data, prescale, inc, int_bitrate, filt;
27bce457
JH
1160 struct img_i2c_timings timing;
1161 u32 rev;
93222bd9 1162 int ret;
27bce457 1163
93222bd9
EB
1164 ret = pm_runtime_get_sync(i2c->adap.dev.parent);
1165 if (ret < 0)
27bce457
JH
1166 return ret;
1167
1168 rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1169 if ((rev & 0x00ffffff) < 0x00020200) {
1170 dev_info(i2c->adap.dev.parent,
1171 "Unknown hardware revision (%d.%d.%d.%d)\n",
1172 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1173 (rev >> 8) & 0xff, rev & 0xff);
93222bd9
EB
1174 pm_runtime_mark_last_busy(i2c->adap.dev.parent);
1175 pm_runtime_put_autosuspend(i2c->adap.dev.parent);
27bce457
JH
1176 return -EINVAL;
1177 }
1178
0e59378b
SN
1179 /* Fencing enabled by default. */
1180 i2c->need_wr_rd_fence = true;
27bce457 1181
27bce457
JH
1182 /* Determine what mode we're in from the bitrate */
1183 timing = timings[0];
1184 for (i = 0; i < ARRAY_SIZE(timings); i++) {
1185 if (i2c->bitrate <= timings[i].max_bitrate) {
1186 timing = timings[i];
1187 break;
1188 }
1189 }
58b0497d
SN
1190 if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
1191 dev_warn(i2c->adap.dev.parent,
1192 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1193 i2c->bitrate,
1194 timings[ARRAY_SIZE(timings) - 1].max_bitrate);
1195 timing = timings[ARRAY_SIZE(timings) - 1];
1196 i2c->bitrate = timing.max_bitrate;
1197 }
1198
1199 bitrate_khz = i2c->bitrate / 1000;
1200 clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
27bce457
JH
1201
1202 /* Find the prescale that would give us that inc (approx delay = 0) */
1203 prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1204 prescale = clamp_t(unsigned int, prescale, 1, 8);
1205 clk_khz /= prescale;
1206
1207 /* Setup the clock increment value */
1208 inc = (256 * 16 * bitrate_khz) / clk_khz;
1209
1210 /*
1211 * The clock generation logic allows to filter glitches on the bus.
1212 * This filter is able to remove bus glitches shorter than 50ns.
1213 * If the clock enable rate is greater than 20 MHz, no filtering
1214 * is required, so we need to disable it.
1215 * If it's between the 20-40 MHz range, there's no need to divide
1216 * the clock to get a filter.
1217 */
1218 if (clk_khz < 20000) {
1219 filt = SCB_FILT_DISABLE;
1220 } else if (clk_khz < 40000) {
1221 filt = SCB_FILT_BYPASS;
1222 } else {
1223 /* Calculate filter clock */
1224 filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1225
1226 /* Scale up if needed */
1227 if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1228 inc++;
1229
1230 if (filt > SCB_FILT_INC_MASK)
1231 filt = SCB_FILT_INC_MASK;
1232
1233 filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1234 }
1235 data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1236 img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
1237
1238 /* Obtain the clock period of the fx16 clock in ns */
1239 clk_period = (256 * 1000000) / (clk_khz * inc);
1240
1241 /* Calculate the bitrate in terms of internal clock pulses */
1242 int_bitrate = 1000000 / (bitrate_khz * clk_period);
1243 if ((1000000 % (bitrate_khz * clk_period)) >=
1244 ((bitrate_khz * clk_period) / 2))
1245 int_bitrate++;
1246
987008db
SN
1247 /*
1248 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1249 * values from there if they don't meet minimum timing requirements
1250 */
1251 tckh = int_bitrate / 2;
1252 tckl = int_bitrate - tckh;
27bce457 1253
987008db
SN
1254 /* Adjust TCKH and TCKL values */
1255 data = DIV_ROUND_UP(timing.tckl, clk_period);
27bce457 1256
987008db
SN
1257 if (tckl < data) {
1258 tckl = data;
1259 tckh = int_bitrate - tckl;
1260 }
27bce457 1261
987008db
SN
1262 if (tckh > 0)
1263 --tckh;
27bce457
JH
1264
1265 if (tckl > 0)
987008db 1266 --tckl;
27bce457 1267
987008db
SN
1268 img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
1269 img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
27bce457
JH
1270
1271 /* Setup TSDH value */
5728d95f 1272 tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
27bce457
JH
1273
1274 if (tsdh > 1)
1275 data = tsdh - 1;
1276 else
1277 data = 0x01;
1278 img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
1279
1280 /* This value is used later */
1281 tsdh = data;
1282
1283 /* Setup TPL value */
1284 data = timing.tpl / clk_period;
1285 if (data > 0)
1286 --data;
1287 img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
1288
1289 /* Setup TPH value */
1290 data = timing.tph / clk_period;
1291 if (data > 0)
1292 --data;
1293 img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
1294
1295 /* Setup TSDL value to TPL + TSDH + 2 */
1296 img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
1297
1298 /* Setup TP2S value */
1299 data = timing.tp2s / clk_period;
1300 if (data > 0)
1301 --data;
1302 img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
1303
1304 img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1305 img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1306 img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1307
1308 /* Take module out of soft reset and enable clocks */
1309 img_i2c_soft_reset(i2c);
1310
1311 /* Disable all interrupts */
1312 img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
1313
1314 /* Clear all interrupts */
1315 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1316
1317 /* Clear the scb_line_status events */
1318 img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1319
1320 /* Enable interrupts */
1321 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1322
1323 /* Perform a synchronous sequence to reset the bus */
1324 ret = img_i2c_reset_bus(i2c);
1325
93222bd9
EB
1326 pm_runtime_mark_last_busy(i2c->adap.dev.parent);
1327 pm_runtime_put_autosuspend(i2c->adap.dev.parent);
27bce457
JH
1328
1329 return ret;
1330}
1331
1332static int img_i2c_probe(struct platform_device *pdev)
1333{
1334 struct device_node *node = pdev->dev.of_node;
1335 struct img_i2c *i2c;
1336 struct resource *res;
1337 int irq, ret;
1338 u32 val;
1339
1340 i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
1341 if (!i2c)
1342 return -ENOMEM;
1343
1344 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1345 i2c->base = devm_ioremap_resource(&pdev->dev, res);
1346 if (IS_ERR(i2c->base))
1347 return PTR_ERR(i2c->base);
1348
1349 irq = platform_get_irq(pdev, 0);
1350 if (irq < 0) {
1351 dev_err(&pdev->dev, "can't get irq number\n");
1352 return irq;
1353 }
1354
1355 i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
1356 if (IS_ERR(i2c->sys_clk)) {
1357 dev_err(&pdev->dev, "can't get system clock\n");
1358 return PTR_ERR(i2c->sys_clk);
1359 }
1360
1361 i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
1362 if (IS_ERR(i2c->scb_clk)) {
1363 dev_err(&pdev->dev, "can't get core clock\n");
1364 return PTR_ERR(i2c->scb_clk);
1365 }
1366
1367 ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
1368 pdev->name, i2c);
1369 if (ret) {
1370 dev_err(&pdev->dev, "can't request irq %d\n", irq);
1371 return ret;
1372 }
1373
1374 /* Set up the exception check timer */
b9e43e36 1375 timer_setup(&i2c->check_timer, img_i2c_check_timer, 0);
27bce457
JH
1376
1377 i2c->bitrate = timings[0].max_bitrate;
1378 if (!of_property_read_u32(node, "clock-frequency", &val))
1379 i2c->bitrate = val;
1380
1381 i2c_set_adapdata(&i2c->adap, i2c);
1382 i2c->adap.dev.parent = &pdev->dev;
1383 i2c->adap.dev.of_node = node;
1384 i2c->adap.owner = THIS_MODULE;
1385 i2c->adap.algo = &img_i2c_algo;
1386 i2c->adap.retries = 5;
1387 i2c->adap.nr = pdev->id;
1388 snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
1389
1390 img_i2c_switch_mode(i2c, MODE_INACTIVE);
1391 spin_lock_init(&i2c->lock);
1392 init_completion(&i2c->msg_complete);
1393
1394 platform_set_drvdata(pdev, i2c);
1395
93222bd9
EB
1396 pm_runtime_set_autosuspend_delay(&pdev->dev, IMG_I2C_PM_TIMEOUT);
1397 pm_runtime_use_autosuspend(&pdev->dev);
1398 pm_runtime_enable(&pdev->dev);
1399 if (!pm_runtime_enabled(&pdev->dev)) {
1400 ret = img_i2c_runtime_resume(&pdev->dev);
1401 if (ret)
1402 return ret;
1403 }
27bce457
JH
1404
1405 ret = img_i2c_init(i2c);
1406 if (ret)
93222bd9 1407 goto rpm_disable;
27bce457
JH
1408
1409 ret = i2c_add_numbered_adapter(&i2c->adap);
ea734404 1410 if (ret < 0)
93222bd9 1411 goto rpm_disable;
27bce457
JH
1412
1413 return 0;
1414
93222bd9
EB
1415rpm_disable:
1416 if (!pm_runtime_enabled(&pdev->dev))
1417 img_i2c_runtime_suspend(&pdev->dev);
1418 pm_runtime_disable(&pdev->dev);
1419 pm_runtime_dont_use_autosuspend(&pdev->dev);
27bce457
JH
1420 return ret;
1421}
1422
1423static int img_i2c_remove(struct platform_device *dev)
1424{
1425 struct img_i2c *i2c = platform_get_drvdata(dev);
1426
1427 i2c_del_adapter(&i2c->adap);
93222bd9
EB
1428 pm_runtime_disable(&dev->dev);
1429 if (!pm_runtime_status_suspended(&dev->dev))
1430 img_i2c_runtime_suspend(&dev->dev);
1431
1432 return 0;
1433}
1434
1435static int img_i2c_runtime_suspend(struct device *dev)
1436{
1437 struct img_i2c *i2c = dev_get_drvdata(dev);
1438
1439 clk_disable_unprepare(i2c->scb_clk);
27bce457
JH
1440 clk_disable_unprepare(i2c->sys_clk);
1441
1442 return 0;
1443}
1444
93222bd9
EB
1445static int img_i2c_runtime_resume(struct device *dev)
1446{
1447 struct img_i2c *i2c = dev_get_drvdata(dev);
1448 int ret;
1449
1450 ret = clk_prepare_enable(i2c->sys_clk);
1451 if (ret) {
1452 dev_err(dev, "Unable to enable sys clock\n");
1453 return ret;
1454 }
1455
1456 ret = clk_prepare_enable(i2c->scb_clk);
1457 if (ret) {
1458 dev_err(dev, "Unable to enable scb clock\n");
1459 clk_disable_unprepare(i2c->sys_clk);
1460 return ret;
1461 }
1462
1463 return 0;
1464}
1465
27bce457
JH
1466#ifdef CONFIG_PM_SLEEP
1467static int img_i2c_suspend(struct device *dev)
1468{
1469 struct img_i2c *i2c = dev_get_drvdata(dev);
93222bd9 1470 int ret;
27bce457 1471
93222bd9
EB
1472 ret = pm_runtime_force_suspend(dev);
1473 if (ret)
1474 return ret;
27bce457 1475
93222bd9 1476 img_i2c_switch_mode(i2c, MODE_SUSPEND);
27bce457
JH
1477
1478 return 0;
1479}
1480
1481static int img_i2c_resume(struct device *dev)
1482{
1483 struct img_i2c *i2c = dev_get_drvdata(dev);
1484 int ret;
1485
93222bd9 1486 ret = pm_runtime_force_resume(dev);
27bce457
JH
1487 if (ret)
1488 return ret;
1489
1490 img_i2c_init(i2c);
1491
1492 return 0;
1493}
1494#endif /* CONFIG_PM_SLEEP */
1495
93222bd9
EB
1496static const struct dev_pm_ops img_i2c_pm = {
1497 SET_RUNTIME_PM_OPS(img_i2c_runtime_suspend,
1498 img_i2c_runtime_resume,
1499 NULL)
1500 SET_SYSTEM_SLEEP_PM_OPS(img_i2c_suspend, img_i2c_resume)
1501};
27bce457
JH
1502
1503static const struct of_device_id img_scb_i2c_match[] = {
1504 { .compatible = "img,scb-i2c" },
1505 { }
1506};
1507MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1508
1509static struct platform_driver img_scb_i2c_driver = {
1510 .driver = {
1511 .name = "img-i2c-scb",
1512 .of_match_table = img_scb_i2c_match,
1513 .pm = &img_i2c_pm,
1514 },
1515 .probe = img_i2c_probe,
1516 .remove = img_i2c_remove,
1517};
1518module_platform_driver(img_scb_i2c_driver);
1519
e0a86312 1520MODULE_AUTHOR("James Hogan <jhogan@kernel.org>");
27bce457
JH
1521MODULE_DESCRIPTION("IMG host I2C driver");
1522MODULE_LICENSE("GPL v2");