]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/ide/ide-io.c
serverworks: fix DMA
[mirror_ubuntu-bionic-kernel.git] / drivers / ide / ide-io.c
CommitLineData
1da177e4
LT
1/*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
1da177e4
LT
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50
51#include <asm/byteorder.h>
52#include <asm/irq.h>
53#include <asm/uaccess.h>
54#include <asm/io.h>
55#include <asm/bitops.h>
56
a7ff7d41 57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
41e9d344 58 int uptodate, unsigned int nr_bytes)
1da177e4
LT
59{
60 int ret = 1;
61
1da177e4
LT
62 /*
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
65 */
66 if (blk_noretry_request(rq) && end_io_error(uptodate))
41e9d344 67 nr_bytes = rq->hard_nr_sectors << 9;
1da177e4
LT
68
69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70 rq->errors = -EIO;
71
72 /*
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
75 */
76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77 drive->state = 0;
78 HWGROUP(drive)->hwif->ide_dma_on(drive);
79 }
80
41e9d344 81 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
ba027def 82 add_disk_randomness(rq->rq_disk);
ce42f191
HZ
83 if (!list_empty(&rq->queuelist))
84 blkdev_dequeue_request(rq);
1da177e4 85 HWGROUP(drive)->rq = NULL;
ba027def 86 end_that_request_last(rq, uptodate);
1da177e4
LT
87 ret = 0;
88 }
8672d571 89
1da177e4
LT
90 return ret;
91}
1da177e4
LT
92
93/**
94 * ide_end_request - complete an IDE I/O
95 * @drive: IDE device for the I/O
96 * @uptodate:
97 * @nr_sectors: number of sectors completed
98 *
99 * This is our end_request wrapper function. We complete the I/O
100 * update random number input and dequeue the request, which if
101 * it was tagged may be out of order.
102 */
103
104int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
105{
41e9d344 106 unsigned int nr_bytes = nr_sectors << 9;
1da177e4
LT
107 struct request *rq;
108 unsigned long flags;
109 int ret = 1;
110
8672d571
JA
111 /*
112 * room for locking improvements here, the calls below don't
113 * need the queue lock held at all
114 */
1da177e4
LT
115 spin_lock_irqsave(&ide_lock, flags);
116 rq = HWGROUP(drive)->rq;
117
41e9d344
JA
118 if (!nr_bytes) {
119 if (blk_pc_request(rq))
120 nr_bytes = rq->data_len;
121 else
122 nr_bytes = rq->hard_cur_sectors << 9;
123 }
1da177e4 124
41e9d344 125 ret = __ide_end_request(drive, rq, uptodate, nr_bytes);
1da177e4
LT
126
127 spin_unlock_irqrestore(&ide_lock, flags);
128 return ret;
129}
130EXPORT_SYMBOL(ide_end_request);
131
132/*
133 * Power Management state machine. This one is rather trivial for now,
134 * we should probably add more, like switching back to PIO on suspend
135 * to help some BIOSes, re-do the door locking on resume, etc...
136 */
137
138enum {
139 ide_pm_flush_cache = ide_pm_state_start_suspend,
140 idedisk_pm_standby,
141
8c2c0118
JL
142 idedisk_pm_restore_pio = ide_pm_state_start_resume,
143 idedisk_pm_idle,
1da177e4
LT
144 ide_pm_restore_dma,
145};
146
147static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
148{
c00895ab 149 struct request_pm_state *pm = rq->data;
ad3cadda 150
1da177e4
LT
151 if (drive->media != ide_disk)
152 return;
153
ad3cadda 154 switch (pm->pm_step) {
1da177e4 155 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
ad3cadda
JA
156 if (pm->pm_state == PM_EVENT_FREEZE)
157 pm->pm_step = ide_pm_state_completed;
1da177e4 158 else
ad3cadda 159 pm->pm_step = idedisk_pm_standby;
1da177e4
LT
160 break;
161 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
ad3cadda 162 pm->pm_step = ide_pm_state_completed;
1da177e4 163 break;
8c2c0118
JL
164 case idedisk_pm_restore_pio: /* Resume step 1 complete */
165 pm->pm_step = idedisk_pm_idle;
166 break;
167 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
ad3cadda 168 pm->pm_step = ide_pm_restore_dma;
1da177e4
LT
169 break;
170 }
171}
172
173static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
174{
c00895ab 175 struct request_pm_state *pm = rq->data;
1da177e4
LT
176 ide_task_t *args = rq->special;
177
178 memset(args, 0, sizeof(*args));
179
ad3cadda 180 switch (pm->pm_step) {
1da177e4
LT
181 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
182 if (drive->media != ide_disk)
183 break;
184 /* Not supported? Switch to next step now. */
185 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
186 ide_complete_power_step(drive, rq, 0, 0);
187 return ide_stopped;
188 }
189 if (ide_id_has_flush_cache_ext(drive->id))
190 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
191 else
192 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
193 args->command_type = IDE_DRIVE_TASK_NO_DATA;
194 args->handler = &task_no_data_intr;
195 return do_rw_taskfile(drive, args);
196
197 case idedisk_pm_standby: /* Suspend step 2 (standby) */
198 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
199 args->command_type = IDE_DRIVE_TASK_NO_DATA;
200 args->handler = &task_no_data_intr;
201 return do_rw_taskfile(drive, args);
202
8c2c0118
JL
203 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
204 if (drive->hwif->tuneproc != NULL)
205 drive->hwif->tuneproc(drive, 255);
317a46a2
BZ
206 /*
207 * skip idedisk_pm_idle for ATAPI devices
208 */
209 if (drive->media != ide_disk)
210 pm->pm_step = ide_pm_restore_dma;
211 else
212 ide_complete_power_step(drive, rq, 0, 0);
8c2c0118
JL
213 return ide_stopped;
214
215 case idedisk_pm_idle: /* Resume step 2 (idle) */
1da177e4
LT
216 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
217 args->command_type = IDE_DRIVE_TASK_NO_DATA;
218 args->handler = task_no_data_intr;
219 return do_rw_taskfile(drive, args);
220
8c2c0118 221 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
1da177e4
LT
222 /*
223 * Right now, all we do is call hwif->ide_dma_check(drive),
224 * we could be smarter and check for current xfer_speed
225 * in struct drive etc...
226 */
227 if ((drive->id->capability & 1) == 0)
228 break;
229 if (drive->hwif->ide_dma_check == NULL)
230 break;
793a9722 231 drive->hwif->dma_off_quietly(drive);
3608b5d7 232 ide_set_dma(drive);
1da177e4
LT
233 break;
234 }
ad3cadda 235 pm->pm_step = ide_pm_state_completed;
1da177e4
LT
236 return ide_stopped;
237}
238
dbe217af
AC
239/**
240 * ide_end_dequeued_request - complete an IDE I/O
241 * @drive: IDE device for the I/O
242 * @uptodate:
243 * @nr_sectors: number of sectors completed
244 *
245 * Complete an I/O that is no longer on the request queue. This
246 * typically occurs when we pull the request and issue a REQUEST_SENSE.
247 * We must still finish the old request but we must not tamper with the
248 * queue in the meantime.
249 *
250 * NOTE: This path does not handle barrier, but barrier is not supported
251 * on ide-cd anyway.
252 */
253
254int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255 int uptodate, int nr_sectors)
256{
257 unsigned long flags;
258 int ret = 1;
259
260 spin_lock_irqsave(&ide_lock, flags);
261
4aff5e23 262 BUG_ON(!blk_rq_started(rq));
dbe217af
AC
263
264 /*
265 * if failfast is set on a request, override number of sectors and
266 * complete the whole request right now
267 */
268 if (blk_noretry_request(rq) && end_io_error(uptodate))
269 nr_sectors = rq->hard_nr_sectors;
270
271 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
272 rq->errors = -EIO;
273
274 /*
275 * decide whether to reenable DMA -- 3 is a random magic for now,
276 * if we DMA timeout more than 3 times, just stay in PIO
277 */
278 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
279 drive->state = 0;
280 HWGROUP(drive)->hwif->ide_dma_on(drive);
281 }
282
283 if (!end_that_request_first(rq, uptodate, nr_sectors)) {
284 add_disk_randomness(rq->rq_disk);
285 if (blk_rq_tagged(rq))
286 blk_queue_end_tag(drive->queue, rq);
287 end_that_request_last(rq, uptodate);
288 ret = 0;
289 }
290 spin_unlock_irqrestore(&ide_lock, flags);
291 return ret;
292}
293EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
294
295
1da177e4
LT
296/**
297 * ide_complete_pm_request - end the current Power Management request
298 * @drive: target drive
299 * @rq: request
300 *
301 * This function cleans up the current PM request and stops the queue
302 * if necessary.
303 */
304static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
305{
306 unsigned long flags;
307
308#ifdef DEBUG_PM
309 printk("%s: completing PM request, %s\n", drive->name,
310 blk_pm_suspend_request(rq) ? "suspend" : "resume");
311#endif
312 spin_lock_irqsave(&ide_lock, flags);
313 if (blk_pm_suspend_request(rq)) {
314 blk_stop_queue(drive->queue);
315 } else {
316 drive->blocked = 0;
317 blk_start_queue(drive->queue);
318 }
319 blkdev_dequeue_request(rq);
320 HWGROUP(drive)->rq = NULL;
8ffdc655 321 end_that_request_last(rq, 1);
1da177e4
LT
322 spin_unlock_irqrestore(&ide_lock, flags);
323}
324
325/*
326 * FIXME: probably move this somewhere else, name is bad too :)
327 */
328u64 ide_get_error_location(ide_drive_t *drive, char *args)
329{
330 u32 high, low;
331 u8 hcyl, lcyl, sect;
332 u64 sector;
333
334 high = 0;
335 hcyl = args[5];
336 lcyl = args[4];
337 sect = args[3];
338
339 if (ide_id_has_flush_cache_ext(drive->id)) {
340 low = (hcyl << 16) | (lcyl << 8) | sect;
341 HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
342 high = ide_read_24(drive);
343 } else {
344 u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
345 if (cur & 0x40) {
346 high = cur & 0xf;
347 low = (hcyl << 16) | (lcyl << 8) | sect;
348 } else {
349 low = hcyl * drive->head * drive->sect;
350 low += lcyl * drive->sect;
351 low += sect - 1;
352 }
353 }
354
355 sector = ((u64) high << 24) | low;
356 return sector;
357}
358EXPORT_SYMBOL(ide_get_error_location);
359
360/**
361 * ide_end_drive_cmd - end an explicit drive command
362 * @drive: command
363 * @stat: status bits
364 * @err: error bits
365 *
366 * Clean up after success/failure of an explicit drive command.
367 * These get thrown onto the queue so they are synchronized with
368 * real I/O operations on the drive.
369 *
370 * In LBA48 mode we have to read the register set twice to get
371 * all the extra information out.
372 */
373
374void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
375{
376 ide_hwif_t *hwif = HWIF(drive);
377 unsigned long flags;
378 struct request *rq;
379
380 spin_lock_irqsave(&ide_lock, flags);
381 rq = HWGROUP(drive)->rq;
382 spin_unlock_irqrestore(&ide_lock, flags);
383
4aff5e23 384 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
1da177e4
LT
385 u8 *args = (u8 *) rq->buffer;
386 if (rq->errors == 0)
387 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
388
389 if (args) {
390 args[0] = stat;
391 args[1] = err;
392 args[2] = hwif->INB(IDE_NSECTOR_REG);
393 }
4aff5e23 394 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
1da177e4
LT
395 u8 *args = (u8 *) rq->buffer;
396 if (rq->errors == 0)
397 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
398
399 if (args) {
400 args[0] = stat;
401 args[1] = err;
402 args[2] = hwif->INB(IDE_NSECTOR_REG);
403 args[3] = hwif->INB(IDE_SECTOR_REG);
404 args[4] = hwif->INB(IDE_LCYL_REG);
405 args[5] = hwif->INB(IDE_HCYL_REG);
406 args[6] = hwif->INB(IDE_SELECT_REG);
407 }
4aff5e23 408 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
409 ide_task_t *args = (ide_task_t *) rq->special;
410 if (rq->errors == 0)
411 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
412
413 if (args) {
414 if (args->tf_in_flags.b.data) {
415 u16 data = hwif->INW(IDE_DATA_REG);
416 args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF;
417 args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF;
418 }
419 args->tfRegister[IDE_ERROR_OFFSET] = err;
420 /* be sure we're looking at the low order bits */
421 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
422 args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
423 args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
424 args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
425 args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
426 args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG);
427 args->tfRegister[IDE_STATUS_OFFSET] = stat;
428
429 if (drive->addressing == 1) {
430 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
431 args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG);
432 args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
433 args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
434 args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
435 args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
436 }
437 }
438 } else if (blk_pm_request(rq)) {
c00895ab 439 struct request_pm_state *pm = rq->data;
1da177e4
LT
440#ifdef DEBUG_PM
441 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
442 drive->name, rq->pm->pm_step, stat, err);
443#endif
444 ide_complete_power_step(drive, rq, stat, err);
ad3cadda 445 if (pm->pm_step == ide_pm_state_completed)
1da177e4
LT
446 ide_complete_pm_request(drive, rq);
447 return;
448 }
449
450 spin_lock_irqsave(&ide_lock, flags);
451 blkdev_dequeue_request(rq);
452 HWGROUP(drive)->rq = NULL;
453 rq->errors = err;
8ffdc655 454 end_that_request_last(rq, !rq->errors);
1da177e4
LT
455 spin_unlock_irqrestore(&ide_lock, flags);
456}
457
458EXPORT_SYMBOL(ide_end_drive_cmd);
459
460/**
461 * try_to_flush_leftover_data - flush junk
462 * @drive: drive to flush
463 *
464 * try_to_flush_leftover_data() is invoked in response to a drive
465 * unexpectedly having its DRQ_STAT bit set. As an alternative to
466 * resetting the drive, this routine tries to clear the condition
467 * by read a sector's worth of data from the drive. Of course,
468 * this may not help if the drive is *waiting* for data from *us*.
469 */
470static void try_to_flush_leftover_data (ide_drive_t *drive)
471{
472 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
473
474 if (drive->media != ide_disk)
475 return;
476 while (i > 0) {
477 u32 buffer[16];
478 u32 wcount = (i > 16) ? 16 : i;
479
480 i -= wcount;
481 HWIF(drive)->ata_input_data(drive, buffer, wcount);
482 }
483}
484
485static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
486{
487 if (rq->rq_disk) {
488 ide_driver_t *drv;
489
490 drv = *(ide_driver_t **)rq->rq_disk->private_data;
491 drv->end_request(drive, 0, 0);
492 } else
493 ide_end_request(drive, 0, 0);
494}
495
496static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
497{
498 ide_hwif_t *hwif = drive->hwif;
499
500 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
501 /* other bits are useless when BUSY */
502 rq->errors |= ERROR_RESET;
503 } else if (stat & ERR_STAT) {
504 /* err has different meaning on cdrom and tape */
505 if (err == ABRT_ERR) {
506 if (drive->select.b.lba &&
507 /* some newer drives don't support WIN_SPECIFY */
508 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
509 return ide_stopped;
510 } else if ((err & BAD_CRC) == BAD_CRC) {
511 /* UDMA crc error, just retry the operation */
512 drive->crc_count++;
513 } else if (err & (BBD_ERR | ECC_ERR)) {
514 /* retries won't help these */
515 rq->errors = ERROR_MAX;
516 } else if (err & TRK0_ERR) {
517 /* help it find track zero */
518 rq->errors |= ERROR_RECAL;
519 }
520 }
521
da574af7 522 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0)
1da177e4
LT
523 try_to_flush_leftover_data(drive);
524
513daadd
SS
525 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
526 ide_kill_rq(drive, rq);
527 return ide_stopped;
528 }
529
1da177e4 530 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
513daadd 531 rq->errors |= ERROR_RESET;
1da177e4 532
513daadd 533 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
1da177e4 534 ++rq->errors;
513daadd 535 return ide_do_reset(drive);
1da177e4 536 }
513daadd
SS
537
538 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
539 drive->special.b.recalibrate = 1;
540
541 ++rq->errors;
542
1da177e4
LT
543 return ide_stopped;
544}
545
546static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
547{
548 ide_hwif_t *hwif = drive->hwif;
549
550 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
551 /* other bits are useless when BUSY */
552 rq->errors |= ERROR_RESET;
553 } else {
554 /* add decoding error stuff */
555 }
556
557 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
558 /* force an abort */
559 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
560
561 if (rq->errors >= ERROR_MAX) {
562 ide_kill_rq(drive, rq);
563 } else {
564 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
565 ++rq->errors;
566 return ide_do_reset(drive);
567 }
568 ++rq->errors;
569 }
570
571 return ide_stopped;
572}
573
574ide_startstop_t
575__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
576{
577 if (drive->media == ide_disk)
578 return ide_ata_error(drive, rq, stat, err);
579 return ide_atapi_error(drive, rq, stat, err);
580}
581
582EXPORT_SYMBOL_GPL(__ide_error);
583
584/**
585 * ide_error - handle an error on the IDE
586 * @drive: drive the error occurred on
587 * @msg: message to report
588 * @stat: status bits
589 *
590 * ide_error() takes action based on the error returned by the drive.
591 * For normal I/O that may well include retries. We deal with
592 * both new-style (taskfile) and old style command handling here.
593 * In the case of taskfile command handling there is work left to
594 * do
595 */
596
597ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
598{
599 struct request *rq;
600 u8 err;
601
602 err = ide_dump_status(drive, msg, stat);
603
604 if ((rq = HWGROUP(drive)->rq) == NULL)
605 return ide_stopped;
606
607 /* retry only "normal" I/O: */
4aff5e23 608 if (!blk_fs_request(rq)) {
1da177e4
LT
609 rq->errors = 1;
610 ide_end_drive_cmd(drive, stat, err);
611 return ide_stopped;
612 }
613
614 if (rq->rq_disk) {
615 ide_driver_t *drv;
616
617 drv = *(ide_driver_t **)rq->rq_disk->private_data;
618 return drv->error(drive, rq, stat, err);
619 } else
620 return __ide_error(drive, rq, stat, err);
621}
622
623EXPORT_SYMBOL_GPL(ide_error);
624
625ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
626{
627 if (drive->media != ide_disk)
628 rq->errors |= ERROR_RESET;
629
630 ide_kill_rq(drive, rq);
631
632 return ide_stopped;
633}
634
635EXPORT_SYMBOL_GPL(__ide_abort);
636
637/**
338cec32 638 * ide_abort - abort pending IDE operations
1da177e4
LT
639 * @drive: drive the error occurred on
640 * @msg: message to report
641 *
642 * ide_abort kills and cleans up when we are about to do a
643 * host initiated reset on active commands. Longer term we
644 * want handlers to have sensible abort handling themselves
645 *
646 * This differs fundamentally from ide_error because in
647 * this case the command is doing just fine when we
648 * blow it away.
649 */
650
651ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
652{
653 struct request *rq;
654
655 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
656 return ide_stopped;
657
658 /* retry only "normal" I/O: */
4aff5e23 659 if (!blk_fs_request(rq)) {
1da177e4
LT
660 rq->errors = 1;
661 ide_end_drive_cmd(drive, BUSY_STAT, 0);
662 return ide_stopped;
663 }
664
665 if (rq->rq_disk) {
666 ide_driver_t *drv;
667
668 drv = *(ide_driver_t **)rq->rq_disk->private_data;
669 return drv->abort(drive, rq);
670 } else
671 return __ide_abort(drive, rq);
672}
673
674/**
675 * ide_cmd - issue a simple drive command
676 * @drive: drive the command is for
677 * @cmd: command byte
678 * @nsect: sector byte
679 * @handler: handler for the command completion
680 *
681 * Issue a simple drive command with interrupts.
682 * The drive must be selected beforehand.
683 */
684
685static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
686 ide_handler_t *handler)
687{
688 ide_hwif_t *hwif = HWIF(drive);
689 if (IDE_CONTROL_REG)
690 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
691 SELECT_MASK(drive,0);
692 hwif->OUTB(nsect,IDE_NSECTOR_REG);
693 ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
694}
695
696/**
697 * drive_cmd_intr - drive command completion interrupt
698 * @drive: drive the completion interrupt occurred on
699 *
700 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
338cec32 701 * We do any necessary data reading and then wait for the drive to
1da177e4
LT
702 * go non busy. At that point we may read the error data and complete
703 * the request
704 */
705
706static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
707{
708 struct request *rq = HWGROUP(drive)->rq;
709 ide_hwif_t *hwif = HWIF(drive);
710 u8 *args = (u8 *) rq->buffer;
711 u8 stat = hwif->INB(IDE_STATUS_REG);
712 int retries = 10;
713
366c7f55 714 local_irq_enable_in_hardirq();
1da177e4
LT
715 if ((stat & DRQ_STAT) && args && args[3]) {
716 u8 io_32bit = drive->io_32bit;
717 drive->io_32bit = 0;
718 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
719 drive->io_32bit = io_32bit;
720 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
721 udelay(100);
722 }
723
724 if (!OK_STAT(stat, READY_STAT, BAD_STAT))
725 return ide_error(drive, "drive_cmd", stat);
726 /* calls ide_end_drive_cmd */
727 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
728 return ide_stopped;
729}
730
731static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
732{
733 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
734 task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect;
735 task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl;
736 task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8;
737 task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF;
738 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
739
740 task->handler = &set_geometry_intr;
741}
742
743static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
744{
745 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
746 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
747
748 task->handler = &recal_intr;
749}
750
751static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
752{
753 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
754 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
755
756 task->handler = &set_multmode_intr;
757}
758
759static ide_startstop_t ide_disk_special(ide_drive_t *drive)
760{
761 special_t *s = &drive->special;
762 ide_task_t args;
763
764 memset(&args, 0, sizeof(ide_task_t));
765 args.command_type = IDE_DRIVE_TASK_NO_DATA;
766
767 if (s->b.set_geometry) {
768 s->b.set_geometry = 0;
769 ide_init_specify_cmd(drive, &args);
770 } else if (s->b.recalibrate) {
771 s->b.recalibrate = 0;
772 ide_init_restore_cmd(drive, &args);
773 } else if (s->b.set_multmode) {
774 s->b.set_multmode = 0;
775 if (drive->mult_req > drive->id->max_multsect)
776 drive->mult_req = drive->id->max_multsect;
777 ide_init_setmult_cmd(drive, &args);
778 } else if (s->all) {
779 int special = s->all;
780 s->all = 0;
781 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
782 return ide_stopped;
783 }
784
785 do_rw_taskfile(drive, &args);
786
787 return ide_started;
788}
789
790/**
791 * do_special - issue some special commands
792 * @drive: drive the command is for
793 *
794 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
795 * commands to a drive. It used to do much more, but has been scaled
796 * back.
797 */
798
799static ide_startstop_t do_special (ide_drive_t *drive)
800{
801 special_t *s = &drive->special;
802
803#ifdef DEBUG
804 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
805#endif
806 if (s->b.set_tune) {
807 s->b.set_tune = 0;
808 if (HWIF(drive)->tuneproc != NULL)
809 HWIF(drive)->tuneproc(drive, drive->tune_req);
810 return ide_stopped;
811 } else {
812 if (drive->media == ide_disk)
813 return ide_disk_special(drive);
814
815 s->all = 0;
816 drive->mult_req = 0;
817 return ide_stopped;
818 }
819}
820
821void ide_map_sg(ide_drive_t *drive, struct request *rq)
822{
823 ide_hwif_t *hwif = drive->hwif;
824 struct scatterlist *sg = hwif->sg_table;
825
826 if (hwif->sg_mapped) /* needed by ide-scsi */
827 return;
828
4aff5e23 829 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
830 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
831 } else {
832 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
833 hwif->sg_nents = 1;
834 }
835}
836
837EXPORT_SYMBOL_GPL(ide_map_sg);
838
839void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
840{
841 ide_hwif_t *hwif = drive->hwif;
842
843 hwif->nsect = hwif->nleft = rq->nr_sectors;
844 hwif->cursg = hwif->cursg_ofs = 0;
845}
846
847EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
848
849/**
850 * execute_drive_command - issue special drive command
338cec32 851 * @drive: the drive to issue the command on
1da177e4
LT
852 * @rq: the request structure holding the command
853 *
854 * execute_drive_cmd() issues a special drive command, usually
855 * initiated by ioctl() from the external hdparm program. The
856 * command can be a drive command, drive task or taskfile
857 * operation. Weirdly you can call it with NULL to wait for
858 * all commands to finish. Don't do this as that is due to change
859 */
860
861static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
862 struct request *rq)
863{
864 ide_hwif_t *hwif = HWIF(drive);
4aff5e23 865 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
866 ide_task_t *args = rq->special;
867
868 if (!args)
869 goto done;
870
871 hwif->data_phase = args->data_phase;
872
873 switch (hwif->data_phase) {
874 case TASKFILE_MULTI_OUT:
875 case TASKFILE_OUT:
876 case TASKFILE_MULTI_IN:
877 case TASKFILE_IN:
878 ide_init_sg_cmd(drive, rq);
879 ide_map_sg(drive, rq);
880 default:
881 break;
882 }
883
884 if (args->tf_out_flags.all != 0)
885 return flagged_taskfile(drive, args);
886 return do_rw_taskfile(drive, args);
4aff5e23 887 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
1da177e4
LT
888 u8 *args = rq->buffer;
889 u8 sel;
890
891 if (!args)
892 goto done;
893#ifdef DEBUG
894 printk("%s: DRIVE_TASK_CMD ", drive->name);
895 printk("cmd=0x%02x ", args[0]);
896 printk("fr=0x%02x ", args[1]);
897 printk("ns=0x%02x ", args[2]);
898 printk("sc=0x%02x ", args[3]);
899 printk("lcyl=0x%02x ", args[4]);
900 printk("hcyl=0x%02x ", args[5]);
901 printk("sel=0x%02x\n", args[6]);
902#endif
903 hwif->OUTB(args[1], IDE_FEATURE_REG);
904 hwif->OUTB(args[3], IDE_SECTOR_REG);
905 hwif->OUTB(args[4], IDE_LCYL_REG);
906 hwif->OUTB(args[5], IDE_HCYL_REG);
907 sel = (args[6] & ~0x10);
908 if (drive->select.b.unit)
909 sel |= 0x10;
910 hwif->OUTB(sel, IDE_SELECT_REG);
911 ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
912 return ide_started;
4aff5e23 913 } else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
1da177e4
LT
914 u8 *args = rq->buffer;
915
916 if (!args)
917 goto done;
918#ifdef DEBUG
919 printk("%s: DRIVE_CMD ", drive->name);
920 printk("cmd=0x%02x ", args[0]);
921 printk("sc=0x%02x ", args[1]);
922 printk("fr=0x%02x ", args[2]);
923 printk("xx=0x%02x\n", args[3]);
924#endif
925 if (args[0] == WIN_SMART) {
926 hwif->OUTB(0x4f, IDE_LCYL_REG);
927 hwif->OUTB(0xc2, IDE_HCYL_REG);
928 hwif->OUTB(args[2],IDE_FEATURE_REG);
929 hwif->OUTB(args[1],IDE_SECTOR_REG);
930 ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
931 return ide_started;
932 }
933 hwif->OUTB(args[2],IDE_FEATURE_REG);
934 ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
935 return ide_started;
936 }
937
938done:
939 /*
940 * NULL is actually a valid way of waiting for
941 * all current requests to be flushed from the queue.
942 */
943#ifdef DEBUG
944 printk("%s: DRIVE_CMD (null)\n", drive->name);
945#endif
946 ide_end_drive_cmd(drive,
947 hwif->INB(IDE_STATUS_REG),
948 hwif->INB(IDE_ERROR_REG));
949 return ide_stopped;
950}
951
ad3cadda
JA
952static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
953{
c00895ab 954 struct request_pm_state *pm = rq->data;
ad3cadda
JA
955
956 if (blk_pm_suspend_request(rq) &&
957 pm->pm_step == ide_pm_state_start_suspend)
958 /* Mark drive blocked when starting the suspend sequence. */
959 drive->blocked = 1;
960 else if (blk_pm_resume_request(rq) &&
961 pm->pm_step == ide_pm_state_start_resume) {
962 /*
963 * The first thing we do on wakeup is to wait for BSY bit to
964 * go away (with a looong timeout) as a drive on this hwif may
965 * just be POSTing itself.
966 * We do that before even selecting as the "other" device on
967 * the bus may be broken enough to walk on our toes at this
968 * point.
969 */
970 int rc;
971#ifdef DEBUG_PM
972 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
973#endif
974 rc = ide_wait_not_busy(HWIF(drive), 35000);
975 if (rc)
976 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
977 SELECT_DRIVE(drive);
978 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
178184b6 979 rc = ide_wait_not_busy(HWIF(drive), 100000);
ad3cadda
JA
980 if (rc)
981 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
982 }
983}
984
1da177e4
LT
985/**
986 * start_request - start of I/O and command issuing for IDE
987 *
988 * start_request() initiates handling of a new I/O request. It
989 * accepts commands and I/O (read/write) requests. It also does
990 * the final remapping for weird stuff like EZDrive. Once
991 * device mapper can work sector level the EZDrive stuff can go away
992 *
993 * FIXME: this function needs a rename
994 */
995
996static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
997{
998 ide_startstop_t startstop;
999 sector_t block;
1000
4aff5e23 1001 BUG_ON(!blk_rq_started(rq));
1da177e4
LT
1002
1003#ifdef DEBUG
1004 printk("%s: start_request: current=0x%08lx\n",
1005 HWIF(drive)->name, (unsigned long) rq);
1006#endif
1007
1008 /* bail early if we've exceeded max_failures */
1009 if (drive->max_failures && (drive->failures > drive->max_failures)) {
1010 goto kill_rq;
1011 }
1012
1013 block = rq->sector;
1014 if (blk_fs_request(rq) &&
1015 (drive->media == ide_disk || drive->media == ide_floppy)) {
1016 block += drive->sect0;
1017 }
1018 /* Yecch - this will shift the entire interval,
1019 possibly killing some innocent following sector */
1020 if (block == 0 && drive->remap_0_to_1 == 1)
1021 block = 1; /* redirect MBR access to EZ-Drive partn table */
1022
ad3cadda
JA
1023 if (blk_pm_request(rq))
1024 ide_check_pm_state(drive, rq);
1da177e4
LT
1025
1026 SELECT_DRIVE(drive);
1027 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1028 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1029 return startstop;
1030 }
1031 if (!drive->special.all) {
1032 ide_driver_t *drv;
1033
513daadd
SS
1034 /*
1035 * We reset the drive so we need to issue a SETFEATURES.
1036 * Do it _after_ do_special() restored device parameters.
1037 */
1038 if (drive->current_speed == 0xff)
1039 ide_config_drive_speed(drive, drive->desired_speed);
1040
4aff5e23
JA
1041 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1042 rq->cmd_type == REQ_TYPE_ATA_TASK ||
1043 rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1da177e4
LT
1044 return execute_drive_cmd(drive, rq);
1045 else if (blk_pm_request(rq)) {
c00895ab 1046 struct request_pm_state *pm = rq->data;
1da177e4
LT
1047#ifdef DEBUG_PM
1048 printk("%s: start_power_step(step: %d)\n",
1049 drive->name, rq->pm->pm_step);
1050#endif
1051 startstop = ide_start_power_step(drive, rq);
1052 if (startstop == ide_stopped &&
ad3cadda 1053 pm->pm_step == ide_pm_state_completed)
1da177e4
LT
1054 ide_complete_pm_request(drive, rq);
1055 return startstop;
1056 }
1057
1058 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1059 return drv->do_request(drive, rq, block);
1060 }
1061 return do_special(drive);
1062kill_rq:
1063 ide_kill_rq(drive, rq);
1064 return ide_stopped;
1065}
1066
1067/**
1068 * ide_stall_queue - pause an IDE device
1069 * @drive: drive to stall
1070 * @timeout: time to stall for (jiffies)
1071 *
1072 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1073 * to the hwgroup by sleeping for timeout jiffies.
1074 */
1075
1076void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1077{
1078 if (timeout > WAIT_WORSTCASE)
1079 timeout = WAIT_WORSTCASE;
1080 drive->sleep = timeout + jiffies;
1081 drive->sleeping = 1;
1082}
1083
1084EXPORT_SYMBOL(ide_stall_queue);
1085
1086#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1087
1088/**
1089 * choose_drive - select a drive to service
1090 * @hwgroup: hardware group to select on
1091 *
1092 * choose_drive() selects the next drive which will be serviced.
1093 * This is necessary because the IDE layer can't issue commands
1094 * to both drives on the same cable, unlike SCSI.
1095 */
1096
1097static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1098{
1099 ide_drive_t *drive, *best;
1100
1101repeat:
1102 best = NULL;
1103 drive = hwgroup->drive;
1104
1105 /*
1106 * drive is doing pre-flush, ordered write, post-flush sequence. even
1107 * though that is 3 requests, it must be seen as a single transaction.
1108 * we must not preempt this drive until that is complete
1109 */
1110 if (blk_queue_flushing(drive->queue)) {
1111 /*
1112 * small race where queue could get replugged during
1113 * the 3-request flush cycle, just yank the plug since
1114 * we want it to finish asap
1115 */
1116 blk_remove_plug(drive->queue);
1117 return drive;
1118 }
1119
1120 do {
1121 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1122 && !elv_queue_empty(drive->queue)) {
1123 if (!best
1124 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1125 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1126 {
1127 if (!blk_queue_plugged(drive->queue))
1128 best = drive;
1129 }
1130 }
1131 } while ((drive = drive->next) != hwgroup->drive);
1132 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1133 long t = (signed long)(WAKEUP(best) - jiffies);
1134 if (t >= WAIT_MIN_SLEEP) {
1135 /*
1136 * We *may* have some time to spare, but first let's see if
1137 * someone can potentially benefit from our nice mood today..
1138 */
1139 drive = best->next;
1140 do {
1141 if (!drive->sleeping
1142 && time_before(jiffies - best->service_time, WAKEUP(drive))
1143 && time_before(WAKEUP(drive), jiffies + t))
1144 {
1145 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1146 goto repeat;
1147 }
1148 } while ((drive = drive->next) != best);
1149 }
1150 }
1151 return best;
1152}
1153
1154/*
1155 * Issue a new request to a drive from hwgroup
1156 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1157 *
1158 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1159 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1160 * may have both interfaces in a single hwgroup to "serialize" access.
1161 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1162 * together into one hwgroup for serialized access.
1163 *
1164 * Note also that several hwgroups can end up sharing a single IRQ,
1165 * possibly along with many other devices. This is especially common in
1166 * PCI-based systems with off-board IDE controller cards.
1167 *
1168 * The IDE driver uses the single global ide_lock spinlock to protect
1169 * access to the request queues, and to protect the hwgroup->busy flag.
1170 *
1171 * The first thread into the driver for a particular hwgroup sets the
1172 * hwgroup->busy flag to indicate that this hwgroup is now active,
1173 * and then initiates processing of the top request from the request queue.
1174 *
1175 * Other threads attempting entry notice the busy setting, and will simply
1176 * queue their new requests and exit immediately. Note that hwgroup->busy
1177 * remains set even when the driver is merely awaiting the next interrupt.
1178 * Thus, the meaning is "this hwgroup is busy processing a request".
1179 *
1180 * When processing of a request completes, the completing thread or IRQ-handler
1181 * will start the next request from the queue. If no more work remains,
1182 * the driver will clear the hwgroup->busy flag and exit.
1183 *
1184 * The ide_lock (spinlock) is used to protect all access to the
1185 * hwgroup->busy flag, but is otherwise not needed for most processing in
1186 * the driver. This makes the driver much more friendlier to shared IRQs
1187 * than previous designs, while remaining 100% (?) SMP safe and capable.
1188 */
1189static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1190{
1191 ide_drive_t *drive;
1192 ide_hwif_t *hwif;
1193 struct request *rq;
1194 ide_startstop_t startstop;
867f8b4e 1195 int loops = 0;
1da177e4
LT
1196
1197 /* for atari only: POSSIBLY BROKEN HERE(?) */
1198 ide_get_lock(ide_intr, hwgroup);
1199
1200 /* caller must own ide_lock */
1201 BUG_ON(!irqs_disabled());
1202
1203 while (!hwgroup->busy) {
1204 hwgroup->busy = 1;
1205 drive = choose_drive(hwgroup);
1206 if (drive == NULL) {
1207 int sleeping = 0;
1208 unsigned long sleep = 0; /* shut up, gcc */
1209 hwgroup->rq = NULL;
1210 drive = hwgroup->drive;
1211 do {
1212 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1213 sleeping = 1;
1214 sleep = drive->sleep;
1215 }
1216 } while ((drive = drive->next) != hwgroup->drive);
1217 if (sleeping) {
1218 /*
1219 * Take a short snooze, and then wake up this hwgroup again.
1220 * This gives other hwgroups on the same a chance to
1221 * play fairly with us, just in case there are big differences
1222 * in relative throughputs.. don't want to hog the cpu too much.
1223 */
1224 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1225 sleep = jiffies + WAIT_MIN_SLEEP;
1226#if 1
1227 if (timer_pending(&hwgroup->timer))
1228 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1229#endif
1230 /* so that ide_timer_expiry knows what to do */
1231 hwgroup->sleeping = 1;
23450319 1232 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
1233 mod_timer(&hwgroup->timer, sleep);
1234 /* we purposely leave hwgroup->busy==1
1235 * while sleeping */
1236 } else {
1237 /* Ugly, but how can we sleep for the lock
1238 * otherwise? perhaps from tq_disk?
1239 */
1240
1241 /* for atari only */
1242 ide_release_lock();
1243 hwgroup->busy = 0;
1244 }
1245
1246 /* no more work for this hwgroup (for now) */
1247 return;
1248 }
867f8b4e 1249 again:
1da177e4
LT
1250 hwif = HWIF(drive);
1251 if (hwgroup->hwif->sharing_irq &&
1252 hwif != hwgroup->hwif &&
1253 hwif->io_ports[IDE_CONTROL_OFFSET]) {
1254 /* set nIEN for previous hwif */
1255 SELECT_INTERRUPT(drive);
1256 }
1257 hwgroup->hwif = hwif;
1258 hwgroup->drive = drive;
1259 drive->sleeping = 0;
1260 drive->service_start = jiffies;
1261
1262 if (blk_queue_plugged(drive->queue)) {
1263 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1264 break;
1265 }
1266
1267 /*
1268 * we know that the queue isn't empty, but this can happen
1269 * if the q->prep_rq_fn() decides to kill a request
1270 */
1271 rq = elv_next_request(drive->queue);
1272 if (!rq) {
1273 hwgroup->busy = 0;
1274 break;
1275 }
1276
1277 /*
1278 * Sanity: don't accept a request that isn't a PM request
1279 * if we are currently power managed. This is very important as
1280 * blk_stop_queue() doesn't prevent the elv_next_request()
1281 * above to return us whatever is in the queue. Since we call
1282 * ide_do_request() ourselves, we end up taking requests while
1283 * the queue is blocked...
1284 *
1285 * We let requests forced at head of queue with ide-preempt
1286 * though. I hope that doesn't happen too much, hopefully not
1287 * unless the subdriver triggers such a thing in its own PM
1288 * state machine.
867f8b4e
BH
1289 *
1290 * We count how many times we loop here to make sure we service
1291 * all drives in the hwgroup without looping for ever
1da177e4 1292 */
4aff5e23 1293 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
867f8b4e
BH
1294 drive = drive->next ? drive->next : hwgroup->drive;
1295 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1296 goto again;
1da177e4
LT
1297 /* We clear busy, there should be no pending ATA command at this point. */
1298 hwgroup->busy = 0;
1299 break;
1300 }
1301
1302 hwgroup->rq = rq;
1303
1304 /*
1305 * Some systems have trouble with IDE IRQs arriving while
1306 * the driver is still setting things up. So, here we disable
1307 * the IRQ used by this interface while the request is being started.
1308 * This may look bad at first, but pretty much the same thing
1309 * happens anyway when any interrupt comes in, IDE or otherwise
1310 * -- the kernel masks the IRQ while it is being handled.
1311 */
1312 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1313 disable_irq_nosync(hwif->irq);
1314 spin_unlock(&ide_lock);
366c7f55 1315 local_irq_enable_in_hardirq();
1da177e4
LT
1316 /* allow other IRQs while we start this request */
1317 startstop = start_request(drive, rq);
1318 spin_lock_irq(&ide_lock);
1319 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1320 enable_irq(hwif->irq);
1321 if (startstop == ide_stopped)
1322 hwgroup->busy = 0;
1323 }
1324}
1325
1326/*
1327 * Passes the stuff to ide_do_request
1328 */
1329void do_ide_request(request_queue_t *q)
1330{
1331 ide_drive_t *drive = q->queuedata;
1332
1333 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1334}
1335
1336/*
1337 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1338 * retry the current request in pio mode instead of risking tossing it
1339 * all away
1340 */
1341static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1342{
1343 ide_hwif_t *hwif = HWIF(drive);
1344 struct request *rq;
1345 ide_startstop_t ret = ide_stopped;
1346
1347 /*
1348 * end current dma transaction
1349 */
1350
1351 if (error < 0) {
1352 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1353 (void)HWIF(drive)->ide_dma_end(drive);
1354 ret = ide_error(drive, "dma timeout error",
1355 hwif->INB(IDE_STATUS_REG));
1356 } else {
1357 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
c283f5db 1358 hwif->dma_timeout(drive);
1da177e4
LT
1359 }
1360
1361 /*
1362 * disable dma for now, but remember that we did so because of
1363 * a timeout -- we'll reenable after we finish this next request
1364 * (or rather the first chunk of it) in pio.
1365 */
1366 drive->retry_pio++;
1367 drive->state = DMA_PIO_RETRY;
7469aaf6 1368 hwif->dma_off_quietly(drive);
1da177e4
LT
1369
1370 /*
1371 * un-busy drive etc (hwgroup->busy is cleared on return) and
1372 * make sure request is sane
1373 */
1374 rq = HWGROUP(drive)->rq;
ce42f191
HZ
1375
1376 if (!rq)
1377 goto out;
1378
1da177e4
LT
1379 HWGROUP(drive)->rq = NULL;
1380
1381 rq->errors = 0;
1382
1383 if (!rq->bio)
1384 goto out;
1385
1386 rq->sector = rq->bio->bi_sector;
1387 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1388 rq->hard_cur_sectors = rq->current_nr_sectors;
1389 rq->buffer = bio_data(rq->bio);
1390out:
1391 return ret;
1392}
1393
1394/**
1395 * ide_timer_expiry - handle lack of an IDE interrupt
1396 * @data: timer callback magic (hwgroup)
1397 *
1398 * An IDE command has timed out before the expected drive return
1399 * occurred. At this point we attempt to clean up the current
1400 * mess. If the current handler includes an expiry handler then
1401 * we invoke the expiry handler, and providing it is happy the
1402 * work is done. If that fails we apply generic recovery rules
1403 * invoking the handler and checking the drive DMA status. We
1404 * have an excessively incestuous relationship with the DMA
1405 * logic that wants cleaning up.
1406 */
1407
1408void ide_timer_expiry (unsigned long data)
1409{
1410 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1411 ide_handler_t *handler;
1412 ide_expiry_t *expiry;
1413 unsigned long flags;
1414 unsigned long wait = -1;
1415
1416 spin_lock_irqsave(&ide_lock, flags);
1417
23450319
SS
1418 if (((handler = hwgroup->handler) == NULL) ||
1419 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1da177e4
LT
1420 /*
1421 * Either a marginal timeout occurred
1422 * (got the interrupt just as timer expired),
1423 * or we were "sleeping" to give other devices a chance.
1424 * Either way, we don't really want to complain about anything.
1425 */
1426 if (hwgroup->sleeping) {
1427 hwgroup->sleeping = 0;
1428 hwgroup->busy = 0;
1429 }
1430 } else {
1431 ide_drive_t *drive = hwgroup->drive;
1432 if (!drive) {
1433 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1434 hwgroup->handler = NULL;
1435 } else {
1436 ide_hwif_t *hwif;
1437 ide_startstop_t startstop = ide_stopped;
1438 if (!hwgroup->busy) {
1439 hwgroup->busy = 1; /* paranoia */
1440 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1441 }
1442 if ((expiry = hwgroup->expiry) != NULL) {
1443 /* continue */
1444 if ((wait = expiry(drive)) > 0) {
1445 /* reset timer */
1446 hwgroup->timer.expires = jiffies + wait;
23450319 1447 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
1448 add_timer(&hwgroup->timer);
1449 spin_unlock_irqrestore(&ide_lock, flags);
1450 return;
1451 }
1452 }
1453 hwgroup->handler = NULL;
1454 /*
1455 * We need to simulate a real interrupt when invoking
1456 * the handler() function, which means we need to
1457 * globally mask the specific IRQ:
1458 */
1459 spin_unlock(&ide_lock);
1460 hwif = HWIF(drive);
1461#if DISABLE_IRQ_NOSYNC
1462 disable_irq_nosync(hwif->irq);
1463#else
1464 /* disable_irq_nosync ?? */
1465 disable_irq(hwif->irq);
1466#endif /* DISABLE_IRQ_NOSYNC */
1467 /* local CPU only,
1468 * as if we were handling an interrupt */
1469 local_irq_disable();
1470 if (hwgroup->polling) {
1471 startstop = handler(drive);
1472 } else if (drive_is_ready(drive)) {
1473 if (drive->waiting_for_dma)
841d2a9b 1474 hwgroup->hwif->dma_lost_irq(drive);
1da177e4
LT
1475 (void)ide_ack_intr(hwif);
1476 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1477 startstop = handler(drive);
1478 } else {
1479 if (drive->waiting_for_dma) {
1480 startstop = ide_dma_timeout_retry(drive, wait);
1481 } else
1482 startstop =
1483 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1484 }
1485 drive->service_time = jiffies - drive->service_start;
1486 spin_lock_irq(&ide_lock);
1487 enable_irq(hwif->irq);
1488 if (startstop == ide_stopped)
1489 hwgroup->busy = 0;
1490 }
1491 }
1492 ide_do_request(hwgroup, IDE_NO_IRQ);
1493 spin_unlock_irqrestore(&ide_lock, flags);
1494}
1495
1496/**
1497 * unexpected_intr - handle an unexpected IDE interrupt
1498 * @irq: interrupt line
1499 * @hwgroup: hwgroup being processed
1500 *
1501 * There's nothing really useful we can do with an unexpected interrupt,
1502 * other than reading the status register (to clear it), and logging it.
1503 * There should be no way that an irq can happen before we're ready for it,
1504 * so we needn't worry much about losing an "important" interrupt here.
1505 *
1506 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1507 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1508 * looks "good", we just ignore the interrupt completely.
1509 *
1510 * This routine assumes __cli() is in effect when called.
1511 *
1512 * If an unexpected interrupt happens on irq15 while we are handling irq14
1513 * and if the two interfaces are "serialized" (CMD640), then it looks like
1514 * we could screw up by interfering with a new request being set up for
1515 * irq15.
1516 *
1517 * In reality, this is a non-issue. The new command is not sent unless
1518 * the drive is ready to accept one, in which case we know the drive is
1519 * not trying to interrupt us. And ide_set_handler() is always invoked
1520 * before completing the issuance of any new drive command, so we will not
1521 * be accidentally invoked as a result of any valid command completion
1522 * interrupt.
1523 *
1524 * Note that we must walk the entire hwgroup here. We know which hwif
1525 * is doing the current command, but we don't know which hwif burped
1526 * mysteriously.
1527 */
1528
1529static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1530{
1531 u8 stat;
1532 ide_hwif_t *hwif = hwgroup->hwif;
1533
1534 /*
1535 * handle the unexpected interrupt
1536 */
1537 do {
1538 if (hwif->irq == irq) {
1539 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1540 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1541 /* Try to not flood the console with msgs */
1542 static unsigned long last_msgtime, count;
1543 ++count;
1544 if (time_after(jiffies, last_msgtime + HZ)) {
1545 last_msgtime = jiffies;
1546 printk(KERN_ERR "%s%s: unexpected interrupt, "
1547 "status=0x%02x, count=%ld\n",
1548 hwif->name,
1549 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1550 }
1551 }
1552 }
1553 } while ((hwif = hwif->next) != hwgroup->hwif);
1554}
1555
1556/**
1557 * ide_intr - default IDE interrupt handler
1558 * @irq: interrupt number
1559 * @dev_id: hwif group
1560 * @regs: unused weirdness from the kernel irq layer
1561 *
1562 * This is the default IRQ handler for the IDE layer. You should
1563 * not need to override it. If you do be aware it is subtle in
1564 * places
1565 *
1566 * hwgroup->hwif is the interface in the group currently performing
1567 * a command. hwgroup->drive is the drive and hwgroup->handler is
1568 * the IRQ handler to call. As we issue a command the handlers
1569 * step through multiple states, reassigning the handler to the
1570 * next step in the process. Unlike a smart SCSI controller IDE
1571 * expects the main processor to sequence the various transfer
1572 * stages. We also manage a poll timer to catch up with most
1573 * timeout situations. There are still a few where the handlers
1574 * don't ever decide to give up.
1575 *
1576 * The handler eventually returns ide_stopped to indicate the
1577 * request completed. At this point we issue the next request
1578 * on the hwgroup and the process begins again.
1579 */
1580
7d12e780 1581irqreturn_t ide_intr (int irq, void *dev_id)
1da177e4
LT
1582{
1583 unsigned long flags;
1584 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1585 ide_hwif_t *hwif;
1586 ide_drive_t *drive;
1587 ide_handler_t *handler;
1588 ide_startstop_t startstop;
1589
1590 spin_lock_irqsave(&ide_lock, flags);
1591 hwif = hwgroup->hwif;
1592
1593 if (!ide_ack_intr(hwif)) {
1594 spin_unlock_irqrestore(&ide_lock, flags);
1595 return IRQ_NONE;
1596 }
1597
1598 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1599 /*
1600 * Not expecting an interrupt from this drive.
1601 * That means this could be:
1602 * (1) an interrupt from another PCI device
1603 * sharing the same PCI INT# as us.
1604 * or (2) a drive just entered sleep or standby mode,
1605 * and is interrupting to let us know.
1606 * or (3) a spurious interrupt of unknown origin.
1607 *
1608 * For PCI, we cannot tell the difference,
1609 * so in that case we just ignore it and hope it goes away.
1610 *
1611 * FIXME: unexpected_intr should be hwif-> then we can
1612 * remove all the ifdef PCI crap
1613 */
1614#ifdef CONFIG_BLK_DEV_IDEPCI
1615 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1616#endif /* CONFIG_BLK_DEV_IDEPCI */
1617 {
1618 /*
1619 * Probably not a shared PCI interrupt,
1620 * so we can safely try to do something about it:
1621 */
1622 unexpected_intr(irq, hwgroup);
1623#ifdef CONFIG_BLK_DEV_IDEPCI
1624 } else {
1625 /*
1626 * Whack the status register, just in case
1627 * we have a leftover pending IRQ.
1628 */
1629 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1630#endif /* CONFIG_BLK_DEV_IDEPCI */
1631 }
1632 spin_unlock_irqrestore(&ide_lock, flags);
1633 return IRQ_NONE;
1634 }
1635 drive = hwgroup->drive;
1636 if (!drive) {
1637 /*
1638 * This should NEVER happen, and there isn't much
1639 * we could do about it here.
1640 *
1641 * [Note - this can occur if the drive is hot unplugged]
1642 */
1643 spin_unlock_irqrestore(&ide_lock, flags);
1644 return IRQ_HANDLED;
1645 }
1646 if (!drive_is_ready(drive)) {
1647 /*
1648 * This happens regularly when we share a PCI IRQ with
1649 * another device. Unfortunately, it can also happen
1650 * with some buggy drives that trigger the IRQ before
1651 * their status register is up to date. Hopefully we have
1652 * enough advance overhead that the latter isn't a problem.
1653 */
1654 spin_unlock_irqrestore(&ide_lock, flags);
1655 return IRQ_NONE;
1656 }
1657 if (!hwgroup->busy) {
1658 hwgroup->busy = 1; /* paranoia */
1659 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1660 }
1661 hwgroup->handler = NULL;
23450319 1662 hwgroup->req_gen++;
1da177e4
LT
1663 del_timer(&hwgroup->timer);
1664 spin_unlock(&ide_lock);
1665
f0dd8712
AL
1666 /* Some controllers might set DMA INTR no matter DMA or PIO;
1667 * bmdma status might need to be cleared even for
1668 * PIO interrupts to prevent spurious/lost irq.
1669 */
1670 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1671 /* ide_dma_end() needs bmdma status for error checking.
1672 * So, skip clearing bmdma status here and leave it
1673 * to ide_dma_end() if this is dma interrupt.
1674 */
1675 hwif->ide_dma_clear_irq(drive);
1676
1da177e4 1677 if (drive->unmask)
366c7f55 1678 local_irq_enable_in_hardirq();
1da177e4
LT
1679 /* service this interrupt, may set handler for next interrupt */
1680 startstop = handler(drive);
1681 spin_lock_irq(&ide_lock);
1682
1683 /*
1684 * Note that handler() may have set things up for another
1685 * interrupt to occur soon, but it cannot happen until
1686 * we exit from this routine, because it will be the
1687 * same irq as is currently being serviced here, and Linux
1688 * won't allow another of the same (on any CPU) until we return.
1689 */
1690 drive->service_time = jiffies - drive->service_start;
1691 if (startstop == ide_stopped) {
1692 if (hwgroup->handler == NULL) { /* paranoia */
1693 hwgroup->busy = 0;
1694 ide_do_request(hwgroup, hwif->irq);
1695 } else {
1696 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1697 "on exit\n", drive->name);
1698 }
1699 }
1700 spin_unlock_irqrestore(&ide_lock, flags);
1701 return IRQ_HANDLED;
1702}
1703
1704/**
1705 * ide_init_drive_cmd - initialize a drive command request
1706 * @rq: request object
1707 *
1708 * Initialize a request before we fill it in and send it down to
1709 * ide_do_drive_cmd. Commands must be set up by this function. Right
1710 * now it doesn't do a lot, but if that changes abusers will have a
d6e05edc 1711 * nasty surprise.
1da177e4
LT
1712 */
1713
1714void ide_init_drive_cmd (struct request *rq)
1715{
1716 memset(rq, 0, sizeof(*rq));
4aff5e23 1717 rq->cmd_type = REQ_TYPE_ATA_CMD;
1da177e4
LT
1718 rq->ref_count = 1;
1719}
1720
1721EXPORT_SYMBOL(ide_init_drive_cmd);
1722
1723/**
1724 * ide_do_drive_cmd - issue IDE special command
1725 * @drive: device to issue command
1726 * @rq: request to issue
1727 * @action: action for processing
1728 *
1729 * This function issues a special IDE device request
1730 * onto the request queue.
1731 *
1732 * If action is ide_wait, then the rq is queued at the end of the
1733 * request queue, and the function sleeps until it has been processed.
1734 * This is for use when invoked from an ioctl handler.
1735 *
1736 * If action is ide_preempt, then the rq is queued at the head of
1737 * the request queue, displacing the currently-being-processed
1738 * request and this function returns immediately without waiting
1739 * for the new rq to be completed. This is VERY DANGEROUS, and is
1740 * intended for careful use by the ATAPI tape/cdrom driver code.
1741 *
1da177e4
LT
1742 * If action is ide_end, then the rq is queued at the end of the
1743 * request queue, and the function returns immediately without waiting
1744 * for the new rq to be completed. This is again intended for careful
1745 * use by the ATAPI tape/cdrom driver code.
1746 */
1747
1748int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1749{
1750 unsigned long flags;
1751 ide_hwgroup_t *hwgroup = HWGROUP(drive);
60be6b9a 1752 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
1753 int where = ELEVATOR_INSERT_BACK, err;
1754 int must_wait = (action == ide_wait || action == ide_head_wait);
1755
1756 rq->errors = 0;
1da177e4
LT
1757
1758 /*
1759 * we need to hold an extra reference to request for safe inspection
1760 * after completion
1761 */
1762 if (must_wait) {
1763 rq->ref_count++;
c00895ab 1764 rq->end_io_data = &wait;
1da177e4
LT
1765 rq->end_io = blk_end_sync_rq;
1766 }
1767
1768 spin_lock_irqsave(&ide_lock, flags);
1769 if (action == ide_preempt)
1770 hwgroup->rq = NULL;
1771 if (action == ide_preempt || action == ide_head_wait) {
1772 where = ELEVATOR_INSERT_FRONT;
4aff5e23 1773 rq->cmd_flags |= REQ_PREEMPT;
1da177e4
LT
1774 }
1775 __elv_add_request(drive->queue, rq, where, 0);
1776 ide_do_request(hwgroup, IDE_NO_IRQ);
1777 spin_unlock_irqrestore(&ide_lock, flags);
1778
1779 err = 0;
1780 if (must_wait) {
1781 wait_for_completion(&wait);
1da177e4
LT
1782 if (rq->errors)
1783 err = -EIO;
1784
1785 blk_put_request(rq);
1786 }
1787
1788 return err;
1789}
1790
1791EXPORT_SYMBOL(ide_do_drive_cmd);