]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * IDE I/O functions | |
3 | * | |
4 | * Basic PIO and command management functionality. | |
5 | * | |
6 | * This code was split off from ide.c. See ide.c for history and original | |
7 | * copyrights. | |
8 | * | |
9 | * This program is free software; you can redistribute it and/or modify it | |
10 | * under the terms of the GNU General Public License as published by the | |
11 | * Free Software Foundation; either version 2, or (at your option) any | |
12 | * later version. | |
13 | * | |
14 | * This program is distributed in the hope that it will be useful, but | |
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
17 | * General Public License for more details. | |
18 | * | |
19 | * For the avoidance of doubt the "preferred form" of this code is one which | |
20 | * is in an open non patent encumbered format. Where cryptographic key signing | |
21 | * forms part of the process of creating an executable the information | |
22 | * including keys needed to generate an equivalently functional executable | |
23 | * are deemed to be part of the source code. | |
24 | */ | |
25 | ||
26 | ||
1da177e4 LT |
27 | #include <linux/module.h> |
28 | #include <linux/types.h> | |
29 | #include <linux/string.h> | |
30 | #include <linux/kernel.h> | |
31 | #include <linux/timer.h> | |
32 | #include <linux/mm.h> | |
33 | #include <linux/interrupt.h> | |
34 | #include <linux/major.h> | |
35 | #include <linux/errno.h> | |
36 | #include <linux/genhd.h> | |
37 | #include <linux/blkpg.h> | |
38 | #include <linux/slab.h> | |
39 | #include <linux/init.h> | |
40 | #include <linux/pci.h> | |
41 | #include <linux/delay.h> | |
42 | #include <linux/ide.h> | |
43 | #include <linux/completion.h> | |
44 | #include <linux/reboot.h> | |
45 | #include <linux/cdrom.h> | |
46 | #include <linux/seq_file.h> | |
47 | #include <linux/device.h> | |
48 | #include <linux/kmod.h> | |
49 | #include <linux/scatterlist.h> | |
50 | ||
51 | #include <asm/byteorder.h> | |
52 | #include <asm/irq.h> | |
53 | #include <asm/uaccess.h> | |
54 | #include <asm/io.h> | |
55 | #include <asm/bitops.h> | |
56 | ||
a7ff7d41 | 57 | static int __ide_end_request(ide_drive_t *drive, struct request *rq, |
41e9d344 | 58 | int uptodate, unsigned int nr_bytes) |
1da177e4 LT |
59 | { |
60 | int ret = 1; | |
61 | ||
1da177e4 LT |
62 | /* |
63 | * if failfast is set on a request, override number of sectors and | |
64 | * complete the whole request right now | |
65 | */ | |
66 | if (blk_noretry_request(rq) && end_io_error(uptodate)) | |
41e9d344 | 67 | nr_bytes = rq->hard_nr_sectors << 9; |
1da177e4 LT |
68 | |
69 | if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors) | |
70 | rq->errors = -EIO; | |
71 | ||
72 | /* | |
73 | * decide whether to reenable DMA -- 3 is a random magic for now, | |
74 | * if we DMA timeout more than 3 times, just stay in PIO | |
75 | */ | |
76 | if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { | |
77 | drive->state = 0; | |
78 | HWGROUP(drive)->hwif->ide_dma_on(drive); | |
79 | } | |
80 | ||
41e9d344 | 81 | if (!end_that_request_chunk(rq, uptodate, nr_bytes)) { |
ba027def | 82 | add_disk_randomness(rq->rq_disk); |
ce42f191 HZ |
83 | if (!list_empty(&rq->queuelist)) |
84 | blkdev_dequeue_request(rq); | |
1da177e4 | 85 | HWGROUP(drive)->rq = NULL; |
ba027def | 86 | end_that_request_last(rq, uptodate); |
1da177e4 LT |
87 | ret = 0; |
88 | } | |
8672d571 | 89 | |
1da177e4 LT |
90 | return ret; |
91 | } | |
1da177e4 LT |
92 | |
93 | /** | |
94 | * ide_end_request - complete an IDE I/O | |
95 | * @drive: IDE device for the I/O | |
96 | * @uptodate: | |
97 | * @nr_sectors: number of sectors completed | |
98 | * | |
99 | * This is our end_request wrapper function. We complete the I/O | |
100 | * update random number input and dequeue the request, which if | |
101 | * it was tagged may be out of order. | |
102 | */ | |
103 | ||
104 | int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) | |
105 | { | |
41e9d344 | 106 | unsigned int nr_bytes = nr_sectors << 9; |
1da177e4 LT |
107 | struct request *rq; |
108 | unsigned long flags; | |
109 | int ret = 1; | |
110 | ||
8672d571 JA |
111 | /* |
112 | * room for locking improvements here, the calls below don't | |
113 | * need the queue lock held at all | |
114 | */ | |
1da177e4 LT |
115 | spin_lock_irqsave(&ide_lock, flags); |
116 | rq = HWGROUP(drive)->rq; | |
117 | ||
41e9d344 JA |
118 | if (!nr_bytes) { |
119 | if (blk_pc_request(rq)) | |
120 | nr_bytes = rq->data_len; | |
121 | else | |
122 | nr_bytes = rq->hard_cur_sectors << 9; | |
123 | } | |
1da177e4 | 124 | |
41e9d344 | 125 | ret = __ide_end_request(drive, rq, uptodate, nr_bytes); |
1da177e4 LT |
126 | |
127 | spin_unlock_irqrestore(&ide_lock, flags); | |
128 | return ret; | |
129 | } | |
130 | EXPORT_SYMBOL(ide_end_request); | |
131 | ||
132 | /* | |
133 | * Power Management state machine. This one is rather trivial for now, | |
134 | * we should probably add more, like switching back to PIO on suspend | |
135 | * to help some BIOSes, re-do the door locking on resume, etc... | |
136 | */ | |
137 | ||
138 | enum { | |
139 | ide_pm_flush_cache = ide_pm_state_start_suspend, | |
140 | idedisk_pm_standby, | |
141 | ||
8c2c0118 JL |
142 | idedisk_pm_restore_pio = ide_pm_state_start_resume, |
143 | idedisk_pm_idle, | |
1da177e4 LT |
144 | ide_pm_restore_dma, |
145 | }; | |
146 | ||
147 | static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error) | |
148 | { | |
c00895ab | 149 | struct request_pm_state *pm = rq->data; |
ad3cadda | 150 | |
1da177e4 LT |
151 | if (drive->media != ide_disk) |
152 | return; | |
153 | ||
ad3cadda | 154 | switch (pm->pm_step) { |
1da177e4 | 155 | case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */ |
ad3cadda JA |
156 | if (pm->pm_state == PM_EVENT_FREEZE) |
157 | pm->pm_step = ide_pm_state_completed; | |
1da177e4 | 158 | else |
ad3cadda | 159 | pm->pm_step = idedisk_pm_standby; |
1da177e4 LT |
160 | break; |
161 | case idedisk_pm_standby: /* Suspend step 2 (standby) complete */ | |
ad3cadda | 162 | pm->pm_step = ide_pm_state_completed; |
1da177e4 | 163 | break; |
8c2c0118 JL |
164 | case idedisk_pm_restore_pio: /* Resume step 1 complete */ |
165 | pm->pm_step = idedisk_pm_idle; | |
166 | break; | |
167 | case idedisk_pm_idle: /* Resume step 2 (idle) complete */ | |
ad3cadda | 168 | pm->pm_step = ide_pm_restore_dma; |
1da177e4 LT |
169 | break; |
170 | } | |
171 | } | |
172 | ||
173 | static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq) | |
174 | { | |
c00895ab | 175 | struct request_pm_state *pm = rq->data; |
1da177e4 LT |
176 | ide_task_t *args = rq->special; |
177 | ||
178 | memset(args, 0, sizeof(*args)); | |
179 | ||
ad3cadda | 180 | switch (pm->pm_step) { |
1da177e4 LT |
181 | case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */ |
182 | if (drive->media != ide_disk) | |
183 | break; | |
184 | /* Not supported? Switch to next step now. */ | |
185 | if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) { | |
186 | ide_complete_power_step(drive, rq, 0, 0); | |
187 | return ide_stopped; | |
188 | } | |
189 | if (ide_id_has_flush_cache_ext(drive->id)) | |
190 | args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT; | |
191 | else | |
192 | args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE; | |
193 | args->command_type = IDE_DRIVE_TASK_NO_DATA; | |
194 | args->handler = &task_no_data_intr; | |
195 | return do_rw_taskfile(drive, args); | |
196 | ||
197 | case idedisk_pm_standby: /* Suspend step 2 (standby) */ | |
198 | args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1; | |
199 | args->command_type = IDE_DRIVE_TASK_NO_DATA; | |
200 | args->handler = &task_no_data_intr; | |
201 | return do_rw_taskfile(drive, args); | |
202 | ||
8c2c0118 JL |
203 | case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */ |
204 | if (drive->hwif->tuneproc != NULL) | |
205 | drive->hwif->tuneproc(drive, 255); | |
317a46a2 BZ |
206 | /* |
207 | * skip idedisk_pm_idle for ATAPI devices | |
208 | */ | |
209 | if (drive->media != ide_disk) | |
210 | pm->pm_step = ide_pm_restore_dma; | |
211 | else | |
212 | ide_complete_power_step(drive, rq, 0, 0); | |
8c2c0118 JL |
213 | return ide_stopped; |
214 | ||
215 | case idedisk_pm_idle: /* Resume step 2 (idle) */ | |
1da177e4 LT |
216 | args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE; |
217 | args->command_type = IDE_DRIVE_TASK_NO_DATA; | |
218 | args->handler = task_no_data_intr; | |
219 | return do_rw_taskfile(drive, args); | |
220 | ||
8c2c0118 | 221 | case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */ |
1da177e4 LT |
222 | /* |
223 | * Right now, all we do is call hwif->ide_dma_check(drive), | |
224 | * we could be smarter and check for current xfer_speed | |
225 | * in struct drive etc... | |
226 | */ | |
227 | if ((drive->id->capability & 1) == 0) | |
228 | break; | |
229 | if (drive->hwif->ide_dma_check == NULL) | |
230 | break; | |
793a9722 | 231 | drive->hwif->dma_off_quietly(drive); |
3608b5d7 | 232 | ide_set_dma(drive); |
1da177e4 LT |
233 | break; |
234 | } | |
ad3cadda | 235 | pm->pm_step = ide_pm_state_completed; |
1da177e4 LT |
236 | return ide_stopped; |
237 | } | |
238 | ||
dbe217af AC |
239 | /** |
240 | * ide_end_dequeued_request - complete an IDE I/O | |
241 | * @drive: IDE device for the I/O | |
242 | * @uptodate: | |
243 | * @nr_sectors: number of sectors completed | |
244 | * | |
245 | * Complete an I/O that is no longer on the request queue. This | |
246 | * typically occurs when we pull the request and issue a REQUEST_SENSE. | |
247 | * We must still finish the old request but we must not tamper with the | |
248 | * queue in the meantime. | |
249 | * | |
250 | * NOTE: This path does not handle barrier, but barrier is not supported | |
251 | * on ide-cd anyway. | |
252 | */ | |
253 | ||
254 | int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq, | |
255 | int uptodate, int nr_sectors) | |
256 | { | |
257 | unsigned long flags; | |
258 | int ret = 1; | |
259 | ||
260 | spin_lock_irqsave(&ide_lock, flags); | |
261 | ||
4aff5e23 | 262 | BUG_ON(!blk_rq_started(rq)); |
dbe217af AC |
263 | |
264 | /* | |
265 | * if failfast is set on a request, override number of sectors and | |
266 | * complete the whole request right now | |
267 | */ | |
268 | if (blk_noretry_request(rq) && end_io_error(uptodate)) | |
269 | nr_sectors = rq->hard_nr_sectors; | |
270 | ||
271 | if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors) | |
272 | rq->errors = -EIO; | |
273 | ||
274 | /* | |
275 | * decide whether to reenable DMA -- 3 is a random magic for now, | |
276 | * if we DMA timeout more than 3 times, just stay in PIO | |
277 | */ | |
278 | if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { | |
279 | drive->state = 0; | |
280 | HWGROUP(drive)->hwif->ide_dma_on(drive); | |
281 | } | |
282 | ||
283 | if (!end_that_request_first(rq, uptodate, nr_sectors)) { | |
284 | add_disk_randomness(rq->rq_disk); | |
285 | if (blk_rq_tagged(rq)) | |
286 | blk_queue_end_tag(drive->queue, rq); | |
287 | end_that_request_last(rq, uptodate); | |
288 | ret = 0; | |
289 | } | |
290 | spin_unlock_irqrestore(&ide_lock, flags); | |
291 | return ret; | |
292 | } | |
293 | EXPORT_SYMBOL_GPL(ide_end_dequeued_request); | |
294 | ||
295 | ||
1da177e4 LT |
296 | /** |
297 | * ide_complete_pm_request - end the current Power Management request | |
298 | * @drive: target drive | |
299 | * @rq: request | |
300 | * | |
301 | * This function cleans up the current PM request and stops the queue | |
302 | * if necessary. | |
303 | */ | |
304 | static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq) | |
305 | { | |
306 | unsigned long flags; | |
307 | ||
308 | #ifdef DEBUG_PM | |
309 | printk("%s: completing PM request, %s\n", drive->name, | |
310 | blk_pm_suspend_request(rq) ? "suspend" : "resume"); | |
311 | #endif | |
312 | spin_lock_irqsave(&ide_lock, flags); | |
313 | if (blk_pm_suspend_request(rq)) { | |
314 | blk_stop_queue(drive->queue); | |
315 | } else { | |
316 | drive->blocked = 0; | |
317 | blk_start_queue(drive->queue); | |
318 | } | |
319 | blkdev_dequeue_request(rq); | |
320 | HWGROUP(drive)->rq = NULL; | |
8ffdc655 | 321 | end_that_request_last(rq, 1); |
1da177e4 LT |
322 | spin_unlock_irqrestore(&ide_lock, flags); |
323 | } | |
324 | ||
325 | /* | |
326 | * FIXME: probably move this somewhere else, name is bad too :) | |
327 | */ | |
328 | u64 ide_get_error_location(ide_drive_t *drive, char *args) | |
329 | { | |
330 | u32 high, low; | |
331 | u8 hcyl, lcyl, sect; | |
332 | u64 sector; | |
333 | ||
334 | high = 0; | |
335 | hcyl = args[5]; | |
336 | lcyl = args[4]; | |
337 | sect = args[3]; | |
338 | ||
339 | if (ide_id_has_flush_cache_ext(drive->id)) { | |
340 | low = (hcyl << 16) | (lcyl << 8) | sect; | |
341 | HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); | |
342 | high = ide_read_24(drive); | |
343 | } else { | |
344 | u8 cur = HWIF(drive)->INB(IDE_SELECT_REG); | |
345 | if (cur & 0x40) { | |
346 | high = cur & 0xf; | |
347 | low = (hcyl << 16) | (lcyl << 8) | sect; | |
348 | } else { | |
349 | low = hcyl * drive->head * drive->sect; | |
350 | low += lcyl * drive->sect; | |
351 | low += sect - 1; | |
352 | } | |
353 | } | |
354 | ||
355 | sector = ((u64) high << 24) | low; | |
356 | return sector; | |
357 | } | |
358 | EXPORT_SYMBOL(ide_get_error_location); | |
359 | ||
360 | /** | |
361 | * ide_end_drive_cmd - end an explicit drive command | |
362 | * @drive: command | |
363 | * @stat: status bits | |
364 | * @err: error bits | |
365 | * | |
366 | * Clean up after success/failure of an explicit drive command. | |
367 | * These get thrown onto the queue so they are synchronized with | |
368 | * real I/O operations on the drive. | |
369 | * | |
370 | * In LBA48 mode we have to read the register set twice to get | |
371 | * all the extra information out. | |
372 | */ | |
373 | ||
374 | void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err) | |
375 | { | |
376 | ide_hwif_t *hwif = HWIF(drive); | |
377 | unsigned long flags; | |
378 | struct request *rq; | |
379 | ||
380 | spin_lock_irqsave(&ide_lock, flags); | |
381 | rq = HWGROUP(drive)->rq; | |
382 | spin_unlock_irqrestore(&ide_lock, flags); | |
383 | ||
4aff5e23 | 384 | if (rq->cmd_type == REQ_TYPE_ATA_CMD) { |
1da177e4 LT |
385 | u8 *args = (u8 *) rq->buffer; |
386 | if (rq->errors == 0) | |
387 | rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); | |
388 | ||
389 | if (args) { | |
390 | args[0] = stat; | |
391 | args[1] = err; | |
392 | args[2] = hwif->INB(IDE_NSECTOR_REG); | |
393 | } | |
4aff5e23 | 394 | } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) { |
1da177e4 LT |
395 | u8 *args = (u8 *) rq->buffer; |
396 | if (rq->errors == 0) | |
397 | rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); | |
398 | ||
399 | if (args) { | |
400 | args[0] = stat; | |
401 | args[1] = err; | |
402 | args[2] = hwif->INB(IDE_NSECTOR_REG); | |
403 | args[3] = hwif->INB(IDE_SECTOR_REG); | |
404 | args[4] = hwif->INB(IDE_LCYL_REG); | |
405 | args[5] = hwif->INB(IDE_HCYL_REG); | |
406 | args[6] = hwif->INB(IDE_SELECT_REG); | |
407 | } | |
4aff5e23 | 408 | } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { |
1da177e4 LT |
409 | ide_task_t *args = (ide_task_t *) rq->special; |
410 | if (rq->errors == 0) | |
411 | rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); | |
412 | ||
413 | if (args) { | |
414 | if (args->tf_in_flags.b.data) { | |
415 | u16 data = hwif->INW(IDE_DATA_REG); | |
416 | args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF; | |
417 | args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF; | |
418 | } | |
419 | args->tfRegister[IDE_ERROR_OFFSET] = err; | |
420 | /* be sure we're looking at the low order bits */ | |
421 | hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG); | |
422 | args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG); | |
423 | args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG); | |
424 | args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG); | |
425 | args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG); | |
426 | args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG); | |
427 | args->tfRegister[IDE_STATUS_OFFSET] = stat; | |
428 | ||
429 | if (drive->addressing == 1) { | |
430 | hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); | |
431 | args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG); | |
432 | args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG); | |
433 | args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG); | |
434 | args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG); | |
435 | args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG); | |
436 | } | |
437 | } | |
438 | } else if (blk_pm_request(rq)) { | |
c00895ab | 439 | struct request_pm_state *pm = rq->data; |
1da177e4 LT |
440 | #ifdef DEBUG_PM |
441 | printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n", | |
442 | drive->name, rq->pm->pm_step, stat, err); | |
443 | #endif | |
444 | ide_complete_power_step(drive, rq, stat, err); | |
ad3cadda | 445 | if (pm->pm_step == ide_pm_state_completed) |
1da177e4 LT |
446 | ide_complete_pm_request(drive, rq); |
447 | return; | |
448 | } | |
449 | ||
450 | spin_lock_irqsave(&ide_lock, flags); | |
451 | blkdev_dequeue_request(rq); | |
452 | HWGROUP(drive)->rq = NULL; | |
453 | rq->errors = err; | |
8ffdc655 | 454 | end_that_request_last(rq, !rq->errors); |
1da177e4 LT |
455 | spin_unlock_irqrestore(&ide_lock, flags); |
456 | } | |
457 | ||
458 | EXPORT_SYMBOL(ide_end_drive_cmd); | |
459 | ||
460 | /** | |
461 | * try_to_flush_leftover_data - flush junk | |
462 | * @drive: drive to flush | |
463 | * | |
464 | * try_to_flush_leftover_data() is invoked in response to a drive | |
465 | * unexpectedly having its DRQ_STAT bit set. As an alternative to | |
466 | * resetting the drive, this routine tries to clear the condition | |
467 | * by read a sector's worth of data from the drive. Of course, | |
468 | * this may not help if the drive is *waiting* for data from *us*. | |
469 | */ | |
470 | static void try_to_flush_leftover_data (ide_drive_t *drive) | |
471 | { | |
472 | int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS; | |
473 | ||
474 | if (drive->media != ide_disk) | |
475 | return; | |
476 | while (i > 0) { | |
477 | u32 buffer[16]; | |
478 | u32 wcount = (i > 16) ? 16 : i; | |
479 | ||
480 | i -= wcount; | |
481 | HWIF(drive)->ata_input_data(drive, buffer, wcount); | |
482 | } | |
483 | } | |
484 | ||
485 | static void ide_kill_rq(ide_drive_t *drive, struct request *rq) | |
486 | { | |
487 | if (rq->rq_disk) { | |
488 | ide_driver_t *drv; | |
489 | ||
490 | drv = *(ide_driver_t **)rq->rq_disk->private_data; | |
491 | drv->end_request(drive, 0, 0); | |
492 | } else | |
493 | ide_end_request(drive, 0, 0); | |
494 | } | |
495 | ||
496 | static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) | |
497 | { | |
498 | ide_hwif_t *hwif = drive->hwif; | |
499 | ||
500 | if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { | |
501 | /* other bits are useless when BUSY */ | |
502 | rq->errors |= ERROR_RESET; | |
503 | } else if (stat & ERR_STAT) { | |
504 | /* err has different meaning on cdrom and tape */ | |
505 | if (err == ABRT_ERR) { | |
506 | if (drive->select.b.lba && | |
507 | /* some newer drives don't support WIN_SPECIFY */ | |
508 | hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY) | |
509 | return ide_stopped; | |
510 | } else if ((err & BAD_CRC) == BAD_CRC) { | |
511 | /* UDMA crc error, just retry the operation */ | |
512 | drive->crc_count++; | |
513 | } else if (err & (BBD_ERR | ECC_ERR)) { | |
514 | /* retries won't help these */ | |
515 | rq->errors = ERROR_MAX; | |
516 | } else if (err & TRK0_ERR) { | |
517 | /* help it find track zero */ | |
518 | rq->errors |= ERROR_RECAL; | |
519 | } | |
520 | } | |
521 | ||
da574af7 | 522 | if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0) |
1da177e4 LT |
523 | try_to_flush_leftover_data(drive); |
524 | ||
513daadd SS |
525 | if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) { |
526 | ide_kill_rq(drive, rq); | |
527 | return ide_stopped; | |
528 | } | |
529 | ||
1da177e4 | 530 | if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) |
513daadd | 531 | rq->errors |= ERROR_RESET; |
1da177e4 | 532 | |
513daadd | 533 | if ((rq->errors & ERROR_RESET) == ERROR_RESET) { |
1da177e4 | 534 | ++rq->errors; |
513daadd | 535 | return ide_do_reset(drive); |
1da177e4 | 536 | } |
513daadd SS |
537 | |
538 | if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) | |
539 | drive->special.b.recalibrate = 1; | |
540 | ||
541 | ++rq->errors; | |
542 | ||
1da177e4 LT |
543 | return ide_stopped; |
544 | } | |
545 | ||
546 | static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) | |
547 | { | |
548 | ide_hwif_t *hwif = drive->hwif; | |
549 | ||
550 | if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { | |
551 | /* other bits are useless when BUSY */ | |
552 | rq->errors |= ERROR_RESET; | |
553 | } else { | |
554 | /* add decoding error stuff */ | |
555 | } | |
556 | ||
557 | if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) | |
558 | /* force an abort */ | |
559 | hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG); | |
560 | ||
561 | if (rq->errors >= ERROR_MAX) { | |
562 | ide_kill_rq(drive, rq); | |
563 | } else { | |
564 | if ((rq->errors & ERROR_RESET) == ERROR_RESET) { | |
565 | ++rq->errors; | |
566 | return ide_do_reset(drive); | |
567 | } | |
568 | ++rq->errors; | |
569 | } | |
570 | ||
571 | return ide_stopped; | |
572 | } | |
573 | ||
574 | ide_startstop_t | |
575 | __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) | |
576 | { | |
577 | if (drive->media == ide_disk) | |
578 | return ide_ata_error(drive, rq, stat, err); | |
579 | return ide_atapi_error(drive, rq, stat, err); | |
580 | } | |
581 | ||
582 | EXPORT_SYMBOL_GPL(__ide_error); | |
583 | ||
584 | /** | |
585 | * ide_error - handle an error on the IDE | |
586 | * @drive: drive the error occurred on | |
587 | * @msg: message to report | |
588 | * @stat: status bits | |
589 | * | |
590 | * ide_error() takes action based on the error returned by the drive. | |
591 | * For normal I/O that may well include retries. We deal with | |
592 | * both new-style (taskfile) and old style command handling here. | |
593 | * In the case of taskfile command handling there is work left to | |
594 | * do | |
595 | */ | |
596 | ||
597 | ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat) | |
598 | { | |
599 | struct request *rq; | |
600 | u8 err; | |
601 | ||
602 | err = ide_dump_status(drive, msg, stat); | |
603 | ||
604 | if ((rq = HWGROUP(drive)->rq) == NULL) | |
605 | return ide_stopped; | |
606 | ||
607 | /* retry only "normal" I/O: */ | |
4aff5e23 | 608 | if (!blk_fs_request(rq)) { |
1da177e4 LT |
609 | rq->errors = 1; |
610 | ide_end_drive_cmd(drive, stat, err); | |
611 | return ide_stopped; | |
612 | } | |
613 | ||
614 | if (rq->rq_disk) { | |
615 | ide_driver_t *drv; | |
616 | ||
617 | drv = *(ide_driver_t **)rq->rq_disk->private_data; | |
618 | return drv->error(drive, rq, stat, err); | |
619 | } else | |
620 | return __ide_error(drive, rq, stat, err); | |
621 | } | |
622 | ||
623 | EXPORT_SYMBOL_GPL(ide_error); | |
624 | ||
625 | ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq) | |
626 | { | |
627 | if (drive->media != ide_disk) | |
628 | rq->errors |= ERROR_RESET; | |
629 | ||
630 | ide_kill_rq(drive, rq); | |
631 | ||
632 | return ide_stopped; | |
633 | } | |
634 | ||
635 | EXPORT_SYMBOL_GPL(__ide_abort); | |
636 | ||
637 | /** | |
338cec32 | 638 | * ide_abort - abort pending IDE operations |
1da177e4 LT |
639 | * @drive: drive the error occurred on |
640 | * @msg: message to report | |
641 | * | |
642 | * ide_abort kills and cleans up when we are about to do a | |
643 | * host initiated reset on active commands. Longer term we | |
644 | * want handlers to have sensible abort handling themselves | |
645 | * | |
646 | * This differs fundamentally from ide_error because in | |
647 | * this case the command is doing just fine when we | |
648 | * blow it away. | |
649 | */ | |
650 | ||
651 | ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg) | |
652 | { | |
653 | struct request *rq; | |
654 | ||
655 | if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL) | |
656 | return ide_stopped; | |
657 | ||
658 | /* retry only "normal" I/O: */ | |
4aff5e23 | 659 | if (!blk_fs_request(rq)) { |
1da177e4 LT |
660 | rq->errors = 1; |
661 | ide_end_drive_cmd(drive, BUSY_STAT, 0); | |
662 | return ide_stopped; | |
663 | } | |
664 | ||
665 | if (rq->rq_disk) { | |
666 | ide_driver_t *drv; | |
667 | ||
668 | drv = *(ide_driver_t **)rq->rq_disk->private_data; | |
669 | return drv->abort(drive, rq); | |
670 | } else | |
671 | return __ide_abort(drive, rq); | |
672 | } | |
673 | ||
674 | /** | |
675 | * ide_cmd - issue a simple drive command | |
676 | * @drive: drive the command is for | |
677 | * @cmd: command byte | |
678 | * @nsect: sector byte | |
679 | * @handler: handler for the command completion | |
680 | * | |
681 | * Issue a simple drive command with interrupts. | |
682 | * The drive must be selected beforehand. | |
683 | */ | |
684 | ||
685 | static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect, | |
686 | ide_handler_t *handler) | |
687 | { | |
688 | ide_hwif_t *hwif = HWIF(drive); | |
689 | if (IDE_CONTROL_REG) | |
690 | hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */ | |
691 | SELECT_MASK(drive,0); | |
692 | hwif->OUTB(nsect,IDE_NSECTOR_REG); | |
693 | ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL); | |
694 | } | |
695 | ||
696 | /** | |
697 | * drive_cmd_intr - drive command completion interrupt | |
698 | * @drive: drive the completion interrupt occurred on | |
699 | * | |
700 | * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD. | |
338cec32 | 701 | * We do any necessary data reading and then wait for the drive to |
1da177e4 LT |
702 | * go non busy. At that point we may read the error data and complete |
703 | * the request | |
704 | */ | |
705 | ||
706 | static ide_startstop_t drive_cmd_intr (ide_drive_t *drive) | |
707 | { | |
708 | struct request *rq = HWGROUP(drive)->rq; | |
709 | ide_hwif_t *hwif = HWIF(drive); | |
710 | u8 *args = (u8 *) rq->buffer; | |
711 | u8 stat = hwif->INB(IDE_STATUS_REG); | |
712 | int retries = 10; | |
713 | ||
366c7f55 | 714 | local_irq_enable_in_hardirq(); |
1da177e4 LT |
715 | if ((stat & DRQ_STAT) && args && args[3]) { |
716 | u8 io_32bit = drive->io_32bit; | |
717 | drive->io_32bit = 0; | |
718 | hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS); | |
719 | drive->io_32bit = io_32bit; | |
720 | while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--) | |
721 | udelay(100); | |
722 | } | |
723 | ||
724 | if (!OK_STAT(stat, READY_STAT, BAD_STAT)) | |
725 | return ide_error(drive, "drive_cmd", stat); | |
726 | /* calls ide_end_drive_cmd */ | |
727 | ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG)); | |
728 | return ide_stopped; | |
729 | } | |
730 | ||
731 | static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task) | |
732 | { | |
733 | task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect; | |
734 | task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect; | |
735 | task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl; | |
736 | task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8; | |
737 | task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF; | |
738 | task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY; | |
739 | ||
740 | task->handler = &set_geometry_intr; | |
741 | } | |
742 | ||
743 | static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task) | |
744 | { | |
745 | task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect; | |
746 | task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE; | |
747 | ||
748 | task->handler = &recal_intr; | |
749 | } | |
750 | ||
751 | static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task) | |
752 | { | |
753 | task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req; | |
754 | task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT; | |
755 | ||
756 | task->handler = &set_multmode_intr; | |
757 | } | |
758 | ||
759 | static ide_startstop_t ide_disk_special(ide_drive_t *drive) | |
760 | { | |
761 | special_t *s = &drive->special; | |
762 | ide_task_t args; | |
763 | ||
764 | memset(&args, 0, sizeof(ide_task_t)); | |
765 | args.command_type = IDE_DRIVE_TASK_NO_DATA; | |
766 | ||
767 | if (s->b.set_geometry) { | |
768 | s->b.set_geometry = 0; | |
769 | ide_init_specify_cmd(drive, &args); | |
770 | } else if (s->b.recalibrate) { | |
771 | s->b.recalibrate = 0; | |
772 | ide_init_restore_cmd(drive, &args); | |
773 | } else if (s->b.set_multmode) { | |
774 | s->b.set_multmode = 0; | |
775 | if (drive->mult_req > drive->id->max_multsect) | |
776 | drive->mult_req = drive->id->max_multsect; | |
777 | ide_init_setmult_cmd(drive, &args); | |
778 | } else if (s->all) { | |
779 | int special = s->all; | |
780 | s->all = 0; | |
781 | printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); | |
782 | return ide_stopped; | |
783 | } | |
784 | ||
785 | do_rw_taskfile(drive, &args); | |
786 | ||
787 | return ide_started; | |
788 | } | |
789 | ||
790 | /** | |
791 | * do_special - issue some special commands | |
792 | * @drive: drive the command is for | |
793 | * | |
794 | * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT | |
795 | * commands to a drive. It used to do much more, but has been scaled | |
796 | * back. | |
797 | */ | |
798 | ||
799 | static ide_startstop_t do_special (ide_drive_t *drive) | |
800 | { | |
801 | special_t *s = &drive->special; | |
802 | ||
803 | #ifdef DEBUG | |
804 | printk("%s: do_special: 0x%02x\n", drive->name, s->all); | |
805 | #endif | |
806 | if (s->b.set_tune) { | |
807 | s->b.set_tune = 0; | |
808 | if (HWIF(drive)->tuneproc != NULL) | |
809 | HWIF(drive)->tuneproc(drive, drive->tune_req); | |
810 | return ide_stopped; | |
811 | } else { | |
812 | if (drive->media == ide_disk) | |
813 | return ide_disk_special(drive); | |
814 | ||
815 | s->all = 0; | |
816 | drive->mult_req = 0; | |
817 | return ide_stopped; | |
818 | } | |
819 | } | |
820 | ||
821 | void ide_map_sg(ide_drive_t *drive, struct request *rq) | |
822 | { | |
823 | ide_hwif_t *hwif = drive->hwif; | |
824 | struct scatterlist *sg = hwif->sg_table; | |
825 | ||
826 | if (hwif->sg_mapped) /* needed by ide-scsi */ | |
827 | return; | |
828 | ||
4aff5e23 | 829 | if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) { |
1da177e4 LT |
830 | hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); |
831 | } else { | |
832 | sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); | |
833 | hwif->sg_nents = 1; | |
834 | } | |
835 | } | |
836 | ||
837 | EXPORT_SYMBOL_GPL(ide_map_sg); | |
838 | ||
839 | void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq) | |
840 | { | |
841 | ide_hwif_t *hwif = drive->hwif; | |
842 | ||
843 | hwif->nsect = hwif->nleft = rq->nr_sectors; | |
844 | hwif->cursg = hwif->cursg_ofs = 0; | |
845 | } | |
846 | ||
847 | EXPORT_SYMBOL_GPL(ide_init_sg_cmd); | |
848 | ||
849 | /** | |
850 | * execute_drive_command - issue special drive command | |
338cec32 | 851 | * @drive: the drive to issue the command on |
1da177e4 LT |
852 | * @rq: the request structure holding the command |
853 | * | |
854 | * execute_drive_cmd() issues a special drive command, usually | |
855 | * initiated by ioctl() from the external hdparm program. The | |
856 | * command can be a drive command, drive task or taskfile | |
857 | * operation. Weirdly you can call it with NULL to wait for | |
858 | * all commands to finish. Don't do this as that is due to change | |
859 | */ | |
860 | ||
861 | static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, | |
862 | struct request *rq) | |
863 | { | |
864 | ide_hwif_t *hwif = HWIF(drive); | |
4aff5e23 | 865 | if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { |
1da177e4 LT |
866 | ide_task_t *args = rq->special; |
867 | ||
868 | if (!args) | |
869 | goto done; | |
870 | ||
871 | hwif->data_phase = args->data_phase; | |
872 | ||
873 | switch (hwif->data_phase) { | |
874 | case TASKFILE_MULTI_OUT: | |
875 | case TASKFILE_OUT: | |
876 | case TASKFILE_MULTI_IN: | |
877 | case TASKFILE_IN: | |
878 | ide_init_sg_cmd(drive, rq); | |
879 | ide_map_sg(drive, rq); | |
880 | default: | |
881 | break; | |
882 | } | |
883 | ||
884 | if (args->tf_out_flags.all != 0) | |
885 | return flagged_taskfile(drive, args); | |
886 | return do_rw_taskfile(drive, args); | |
4aff5e23 | 887 | } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) { |
1da177e4 LT |
888 | u8 *args = rq->buffer; |
889 | u8 sel; | |
890 | ||
891 | if (!args) | |
892 | goto done; | |
893 | #ifdef DEBUG | |
894 | printk("%s: DRIVE_TASK_CMD ", drive->name); | |
895 | printk("cmd=0x%02x ", args[0]); | |
896 | printk("fr=0x%02x ", args[1]); | |
897 | printk("ns=0x%02x ", args[2]); | |
898 | printk("sc=0x%02x ", args[3]); | |
899 | printk("lcyl=0x%02x ", args[4]); | |
900 | printk("hcyl=0x%02x ", args[5]); | |
901 | printk("sel=0x%02x\n", args[6]); | |
902 | #endif | |
903 | hwif->OUTB(args[1], IDE_FEATURE_REG); | |
904 | hwif->OUTB(args[3], IDE_SECTOR_REG); | |
905 | hwif->OUTB(args[4], IDE_LCYL_REG); | |
906 | hwif->OUTB(args[5], IDE_HCYL_REG); | |
907 | sel = (args[6] & ~0x10); | |
908 | if (drive->select.b.unit) | |
909 | sel |= 0x10; | |
910 | hwif->OUTB(sel, IDE_SELECT_REG); | |
911 | ide_cmd(drive, args[0], args[2], &drive_cmd_intr); | |
912 | return ide_started; | |
4aff5e23 | 913 | } else if (rq->cmd_type == REQ_TYPE_ATA_CMD) { |
1da177e4 LT |
914 | u8 *args = rq->buffer; |
915 | ||
916 | if (!args) | |
917 | goto done; | |
918 | #ifdef DEBUG | |
919 | printk("%s: DRIVE_CMD ", drive->name); | |
920 | printk("cmd=0x%02x ", args[0]); | |
921 | printk("sc=0x%02x ", args[1]); | |
922 | printk("fr=0x%02x ", args[2]); | |
923 | printk("xx=0x%02x\n", args[3]); | |
924 | #endif | |
925 | if (args[0] == WIN_SMART) { | |
926 | hwif->OUTB(0x4f, IDE_LCYL_REG); | |
927 | hwif->OUTB(0xc2, IDE_HCYL_REG); | |
928 | hwif->OUTB(args[2],IDE_FEATURE_REG); | |
929 | hwif->OUTB(args[1],IDE_SECTOR_REG); | |
930 | ide_cmd(drive, args[0], args[3], &drive_cmd_intr); | |
931 | return ide_started; | |
932 | } | |
933 | hwif->OUTB(args[2],IDE_FEATURE_REG); | |
934 | ide_cmd(drive, args[0], args[1], &drive_cmd_intr); | |
935 | return ide_started; | |
936 | } | |
937 | ||
938 | done: | |
939 | /* | |
940 | * NULL is actually a valid way of waiting for | |
941 | * all current requests to be flushed from the queue. | |
942 | */ | |
943 | #ifdef DEBUG | |
944 | printk("%s: DRIVE_CMD (null)\n", drive->name); | |
945 | #endif | |
946 | ide_end_drive_cmd(drive, | |
947 | hwif->INB(IDE_STATUS_REG), | |
948 | hwif->INB(IDE_ERROR_REG)); | |
949 | return ide_stopped; | |
950 | } | |
951 | ||
ad3cadda JA |
952 | static void ide_check_pm_state(ide_drive_t *drive, struct request *rq) |
953 | { | |
c00895ab | 954 | struct request_pm_state *pm = rq->data; |
ad3cadda JA |
955 | |
956 | if (blk_pm_suspend_request(rq) && | |
957 | pm->pm_step == ide_pm_state_start_suspend) | |
958 | /* Mark drive blocked when starting the suspend sequence. */ | |
959 | drive->blocked = 1; | |
960 | else if (blk_pm_resume_request(rq) && | |
961 | pm->pm_step == ide_pm_state_start_resume) { | |
962 | /* | |
963 | * The first thing we do on wakeup is to wait for BSY bit to | |
964 | * go away (with a looong timeout) as a drive on this hwif may | |
965 | * just be POSTing itself. | |
966 | * We do that before even selecting as the "other" device on | |
967 | * the bus may be broken enough to walk on our toes at this | |
968 | * point. | |
969 | */ | |
970 | int rc; | |
971 | #ifdef DEBUG_PM | |
972 | printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name); | |
973 | #endif | |
974 | rc = ide_wait_not_busy(HWIF(drive), 35000); | |
975 | if (rc) | |
976 | printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name); | |
977 | SELECT_DRIVE(drive); | |
978 | HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]); | |
178184b6 | 979 | rc = ide_wait_not_busy(HWIF(drive), 100000); |
ad3cadda JA |
980 | if (rc) |
981 | printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name); | |
982 | } | |
983 | } | |
984 | ||
1da177e4 LT |
985 | /** |
986 | * start_request - start of I/O and command issuing for IDE | |
987 | * | |
988 | * start_request() initiates handling of a new I/O request. It | |
989 | * accepts commands and I/O (read/write) requests. It also does | |
990 | * the final remapping for weird stuff like EZDrive. Once | |
991 | * device mapper can work sector level the EZDrive stuff can go away | |
992 | * | |
993 | * FIXME: this function needs a rename | |
994 | */ | |
995 | ||
996 | static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) | |
997 | { | |
998 | ide_startstop_t startstop; | |
999 | sector_t block; | |
1000 | ||
4aff5e23 | 1001 | BUG_ON(!blk_rq_started(rq)); |
1da177e4 LT |
1002 | |
1003 | #ifdef DEBUG | |
1004 | printk("%s: start_request: current=0x%08lx\n", | |
1005 | HWIF(drive)->name, (unsigned long) rq); | |
1006 | #endif | |
1007 | ||
1008 | /* bail early if we've exceeded max_failures */ | |
1009 | if (drive->max_failures && (drive->failures > drive->max_failures)) { | |
1010 | goto kill_rq; | |
1011 | } | |
1012 | ||
1013 | block = rq->sector; | |
1014 | if (blk_fs_request(rq) && | |
1015 | (drive->media == ide_disk || drive->media == ide_floppy)) { | |
1016 | block += drive->sect0; | |
1017 | } | |
1018 | /* Yecch - this will shift the entire interval, | |
1019 | possibly killing some innocent following sector */ | |
1020 | if (block == 0 && drive->remap_0_to_1 == 1) | |
1021 | block = 1; /* redirect MBR access to EZ-Drive partn table */ | |
1022 | ||
ad3cadda JA |
1023 | if (blk_pm_request(rq)) |
1024 | ide_check_pm_state(drive, rq); | |
1da177e4 LT |
1025 | |
1026 | SELECT_DRIVE(drive); | |
1027 | if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) { | |
1028 | printk(KERN_ERR "%s: drive not ready for command\n", drive->name); | |
1029 | return startstop; | |
1030 | } | |
1031 | if (!drive->special.all) { | |
1032 | ide_driver_t *drv; | |
1033 | ||
513daadd SS |
1034 | /* |
1035 | * We reset the drive so we need to issue a SETFEATURES. | |
1036 | * Do it _after_ do_special() restored device parameters. | |
1037 | */ | |
1038 | if (drive->current_speed == 0xff) | |
1039 | ide_config_drive_speed(drive, drive->desired_speed); | |
1040 | ||
4aff5e23 JA |
1041 | if (rq->cmd_type == REQ_TYPE_ATA_CMD || |
1042 | rq->cmd_type == REQ_TYPE_ATA_TASK || | |
1043 | rq->cmd_type == REQ_TYPE_ATA_TASKFILE) | |
1da177e4 LT |
1044 | return execute_drive_cmd(drive, rq); |
1045 | else if (blk_pm_request(rq)) { | |
c00895ab | 1046 | struct request_pm_state *pm = rq->data; |
1da177e4 LT |
1047 | #ifdef DEBUG_PM |
1048 | printk("%s: start_power_step(step: %d)\n", | |
1049 | drive->name, rq->pm->pm_step); | |
1050 | #endif | |
1051 | startstop = ide_start_power_step(drive, rq); | |
1052 | if (startstop == ide_stopped && | |
ad3cadda | 1053 | pm->pm_step == ide_pm_state_completed) |
1da177e4 LT |
1054 | ide_complete_pm_request(drive, rq); |
1055 | return startstop; | |
1056 | } | |
1057 | ||
1058 | drv = *(ide_driver_t **)rq->rq_disk->private_data; | |
1059 | return drv->do_request(drive, rq, block); | |
1060 | } | |
1061 | return do_special(drive); | |
1062 | kill_rq: | |
1063 | ide_kill_rq(drive, rq); | |
1064 | return ide_stopped; | |
1065 | } | |
1066 | ||
1067 | /** | |
1068 | * ide_stall_queue - pause an IDE device | |
1069 | * @drive: drive to stall | |
1070 | * @timeout: time to stall for (jiffies) | |
1071 | * | |
1072 | * ide_stall_queue() can be used by a drive to give excess bandwidth back | |
1073 | * to the hwgroup by sleeping for timeout jiffies. | |
1074 | */ | |
1075 | ||
1076 | void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) | |
1077 | { | |
1078 | if (timeout > WAIT_WORSTCASE) | |
1079 | timeout = WAIT_WORSTCASE; | |
1080 | drive->sleep = timeout + jiffies; | |
1081 | drive->sleeping = 1; | |
1082 | } | |
1083 | ||
1084 | EXPORT_SYMBOL(ide_stall_queue); | |
1085 | ||
1086 | #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time) | |
1087 | ||
1088 | /** | |
1089 | * choose_drive - select a drive to service | |
1090 | * @hwgroup: hardware group to select on | |
1091 | * | |
1092 | * choose_drive() selects the next drive which will be serviced. | |
1093 | * This is necessary because the IDE layer can't issue commands | |
1094 | * to both drives on the same cable, unlike SCSI. | |
1095 | */ | |
1096 | ||
1097 | static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup) | |
1098 | { | |
1099 | ide_drive_t *drive, *best; | |
1100 | ||
1101 | repeat: | |
1102 | best = NULL; | |
1103 | drive = hwgroup->drive; | |
1104 | ||
1105 | /* | |
1106 | * drive is doing pre-flush, ordered write, post-flush sequence. even | |
1107 | * though that is 3 requests, it must be seen as a single transaction. | |
1108 | * we must not preempt this drive until that is complete | |
1109 | */ | |
1110 | if (blk_queue_flushing(drive->queue)) { | |
1111 | /* | |
1112 | * small race where queue could get replugged during | |
1113 | * the 3-request flush cycle, just yank the plug since | |
1114 | * we want it to finish asap | |
1115 | */ | |
1116 | blk_remove_plug(drive->queue); | |
1117 | return drive; | |
1118 | } | |
1119 | ||
1120 | do { | |
1121 | if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep)) | |
1122 | && !elv_queue_empty(drive->queue)) { | |
1123 | if (!best | |
1124 | || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep))) | |
1125 | || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best)))) | |
1126 | { | |
1127 | if (!blk_queue_plugged(drive->queue)) | |
1128 | best = drive; | |
1129 | } | |
1130 | } | |
1131 | } while ((drive = drive->next) != hwgroup->drive); | |
1132 | if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) { | |
1133 | long t = (signed long)(WAKEUP(best) - jiffies); | |
1134 | if (t >= WAIT_MIN_SLEEP) { | |
1135 | /* | |
1136 | * We *may* have some time to spare, but first let's see if | |
1137 | * someone can potentially benefit from our nice mood today.. | |
1138 | */ | |
1139 | drive = best->next; | |
1140 | do { | |
1141 | if (!drive->sleeping | |
1142 | && time_before(jiffies - best->service_time, WAKEUP(drive)) | |
1143 | && time_before(WAKEUP(drive), jiffies + t)) | |
1144 | { | |
1145 | ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP)); | |
1146 | goto repeat; | |
1147 | } | |
1148 | } while ((drive = drive->next) != best); | |
1149 | } | |
1150 | } | |
1151 | return best; | |
1152 | } | |
1153 | ||
1154 | /* | |
1155 | * Issue a new request to a drive from hwgroup | |
1156 | * Caller must have already done spin_lock_irqsave(&ide_lock, ..); | |
1157 | * | |
1158 | * A hwgroup is a serialized group of IDE interfaces. Usually there is | |
1159 | * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640) | |
1160 | * may have both interfaces in a single hwgroup to "serialize" access. | |
1161 | * Or possibly multiple ISA interfaces can share a common IRQ by being grouped | |
1162 | * together into one hwgroup for serialized access. | |
1163 | * | |
1164 | * Note also that several hwgroups can end up sharing a single IRQ, | |
1165 | * possibly along with many other devices. This is especially common in | |
1166 | * PCI-based systems with off-board IDE controller cards. | |
1167 | * | |
1168 | * The IDE driver uses the single global ide_lock spinlock to protect | |
1169 | * access to the request queues, and to protect the hwgroup->busy flag. | |
1170 | * | |
1171 | * The first thread into the driver for a particular hwgroup sets the | |
1172 | * hwgroup->busy flag to indicate that this hwgroup is now active, | |
1173 | * and then initiates processing of the top request from the request queue. | |
1174 | * | |
1175 | * Other threads attempting entry notice the busy setting, and will simply | |
1176 | * queue their new requests and exit immediately. Note that hwgroup->busy | |
1177 | * remains set even when the driver is merely awaiting the next interrupt. | |
1178 | * Thus, the meaning is "this hwgroup is busy processing a request". | |
1179 | * | |
1180 | * When processing of a request completes, the completing thread or IRQ-handler | |
1181 | * will start the next request from the queue. If no more work remains, | |
1182 | * the driver will clear the hwgroup->busy flag and exit. | |
1183 | * | |
1184 | * The ide_lock (spinlock) is used to protect all access to the | |
1185 | * hwgroup->busy flag, but is otherwise not needed for most processing in | |
1186 | * the driver. This makes the driver much more friendlier to shared IRQs | |
1187 | * than previous designs, while remaining 100% (?) SMP safe and capable. | |
1188 | */ | |
1189 | static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq) | |
1190 | { | |
1191 | ide_drive_t *drive; | |
1192 | ide_hwif_t *hwif; | |
1193 | struct request *rq; | |
1194 | ide_startstop_t startstop; | |
867f8b4e | 1195 | int loops = 0; |
1da177e4 LT |
1196 | |
1197 | /* for atari only: POSSIBLY BROKEN HERE(?) */ | |
1198 | ide_get_lock(ide_intr, hwgroup); | |
1199 | ||
1200 | /* caller must own ide_lock */ | |
1201 | BUG_ON(!irqs_disabled()); | |
1202 | ||
1203 | while (!hwgroup->busy) { | |
1204 | hwgroup->busy = 1; | |
1205 | drive = choose_drive(hwgroup); | |
1206 | if (drive == NULL) { | |
1207 | int sleeping = 0; | |
1208 | unsigned long sleep = 0; /* shut up, gcc */ | |
1209 | hwgroup->rq = NULL; | |
1210 | drive = hwgroup->drive; | |
1211 | do { | |
1212 | if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) { | |
1213 | sleeping = 1; | |
1214 | sleep = drive->sleep; | |
1215 | } | |
1216 | } while ((drive = drive->next) != hwgroup->drive); | |
1217 | if (sleeping) { | |
1218 | /* | |
1219 | * Take a short snooze, and then wake up this hwgroup again. | |
1220 | * This gives other hwgroups on the same a chance to | |
1221 | * play fairly with us, just in case there are big differences | |
1222 | * in relative throughputs.. don't want to hog the cpu too much. | |
1223 | */ | |
1224 | if (time_before(sleep, jiffies + WAIT_MIN_SLEEP)) | |
1225 | sleep = jiffies + WAIT_MIN_SLEEP; | |
1226 | #if 1 | |
1227 | if (timer_pending(&hwgroup->timer)) | |
1228 | printk(KERN_CRIT "ide_set_handler: timer already active\n"); | |
1229 | #endif | |
1230 | /* so that ide_timer_expiry knows what to do */ | |
1231 | hwgroup->sleeping = 1; | |
23450319 | 1232 | hwgroup->req_gen_timer = hwgroup->req_gen; |
1da177e4 LT |
1233 | mod_timer(&hwgroup->timer, sleep); |
1234 | /* we purposely leave hwgroup->busy==1 | |
1235 | * while sleeping */ | |
1236 | } else { | |
1237 | /* Ugly, but how can we sleep for the lock | |
1238 | * otherwise? perhaps from tq_disk? | |
1239 | */ | |
1240 | ||
1241 | /* for atari only */ | |
1242 | ide_release_lock(); | |
1243 | hwgroup->busy = 0; | |
1244 | } | |
1245 | ||
1246 | /* no more work for this hwgroup (for now) */ | |
1247 | return; | |
1248 | } | |
867f8b4e | 1249 | again: |
1da177e4 LT |
1250 | hwif = HWIF(drive); |
1251 | if (hwgroup->hwif->sharing_irq && | |
1252 | hwif != hwgroup->hwif && | |
1253 | hwif->io_ports[IDE_CONTROL_OFFSET]) { | |
1254 | /* set nIEN for previous hwif */ | |
1255 | SELECT_INTERRUPT(drive); | |
1256 | } | |
1257 | hwgroup->hwif = hwif; | |
1258 | hwgroup->drive = drive; | |
1259 | drive->sleeping = 0; | |
1260 | drive->service_start = jiffies; | |
1261 | ||
1262 | if (blk_queue_plugged(drive->queue)) { | |
1263 | printk(KERN_ERR "ide: huh? queue was plugged!\n"); | |
1264 | break; | |
1265 | } | |
1266 | ||
1267 | /* | |
1268 | * we know that the queue isn't empty, but this can happen | |
1269 | * if the q->prep_rq_fn() decides to kill a request | |
1270 | */ | |
1271 | rq = elv_next_request(drive->queue); | |
1272 | if (!rq) { | |
1273 | hwgroup->busy = 0; | |
1274 | break; | |
1275 | } | |
1276 | ||
1277 | /* | |
1278 | * Sanity: don't accept a request that isn't a PM request | |
1279 | * if we are currently power managed. This is very important as | |
1280 | * blk_stop_queue() doesn't prevent the elv_next_request() | |
1281 | * above to return us whatever is in the queue. Since we call | |
1282 | * ide_do_request() ourselves, we end up taking requests while | |
1283 | * the queue is blocked... | |
1284 | * | |
1285 | * We let requests forced at head of queue with ide-preempt | |
1286 | * though. I hope that doesn't happen too much, hopefully not | |
1287 | * unless the subdriver triggers such a thing in its own PM | |
1288 | * state machine. | |
867f8b4e BH |
1289 | * |
1290 | * We count how many times we loop here to make sure we service | |
1291 | * all drives in the hwgroup without looping for ever | |
1da177e4 | 1292 | */ |
4aff5e23 | 1293 | if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) { |
867f8b4e BH |
1294 | drive = drive->next ? drive->next : hwgroup->drive; |
1295 | if (loops++ < 4 && !blk_queue_plugged(drive->queue)) | |
1296 | goto again; | |
1da177e4 LT |
1297 | /* We clear busy, there should be no pending ATA command at this point. */ |
1298 | hwgroup->busy = 0; | |
1299 | break; | |
1300 | } | |
1301 | ||
1302 | hwgroup->rq = rq; | |
1303 | ||
1304 | /* | |
1305 | * Some systems have trouble with IDE IRQs arriving while | |
1306 | * the driver is still setting things up. So, here we disable | |
1307 | * the IRQ used by this interface while the request is being started. | |
1308 | * This may look bad at first, but pretty much the same thing | |
1309 | * happens anyway when any interrupt comes in, IDE or otherwise | |
1310 | * -- the kernel masks the IRQ while it is being handled. | |
1311 | */ | |
1312 | if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) | |
1313 | disable_irq_nosync(hwif->irq); | |
1314 | spin_unlock(&ide_lock); | |
366c7f55 | 1315 | local_irq_enable_in_hardirq(); |
1da177e4 LT |
1316 | /* allow other IRQs while we start this request */ |
1317 | startstop = start_request(drive, rq); | |
1318 | spin_lock_irq(&ide_lock); | |
1319 | if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) | |
1320 | enable_irq(hwif->irq); | |
1321 | if (startstop == ide_stopped) | |
1322 | hwgroup->busy = 0; | |
1323 | } | |
1324 | } | |
1325 | ||
1326 | /* | |
1327 | * Passes the stuff to ide_do_request | |
1328 | */ | |
1329 | void do_ide_request(request_queue_t *q) | |
1330 | { | |
1331 | ide_drive_t *drive = q->queuedata; | |
1332 | ||
1333 | ide_do_request(HWGROUP(drive), IDE_NO_IRQ); | |
1334 | } | |
1335 | ||
1336 | /* | |
1337 | * un-busy the hwgroup etc, and clear any pending DMA status. we want to | |
1338 | * retry the current request in pio mode instead of risking tossing it | |
1339 | * all away | |
1340 | */ | |
1341 | static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error) | |
1342 | { | |
1343 | ide_hwif_t *hwif = HWIF(drive); | |
1344 | struct request *rq; | |
1345 | ide_startstop_t ret = ide_stopped; | |
1346 | ||
1347 | /* | |
1348 | * end current dma transaction | |
1349 | */ | |
1350 | ||
1351 | if (error < 0) { | |
1352 | printk(KERN_WARNING "%s: DMA timeout error\n", drive->name); | |
1353 | (void)HWIF(drive)->ide_dma_end(drive); | |
1354 | ret = ide_error(drive, "dma timeout error", | |
1355 | hwif->INB(IDE_STATUS_REG)); | |
1356 | } else { | |
1357 | printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name); | |
c283f5db | 1358 | hwif->dma_timeout(drive); |
1da177e4 LT |
1359 | } |
1360 | ||
1361 | /* | |
1362 | * disable dma for now, but remember that we did so because of | |
1363 | * a timeout -- we'll reenable after we finish this next request | |
1364 | * (or rather the first chunk of it) in pio. | |
1365 | */ | |
1366 | drive->retry_pio++; | |
1367 | drive->state = DMA_PIO_RETRY; | |
7469aaf6 | 1368 | hwif->dma_off_quietly(drive); |
1da177e4 LT |
1369 | |
1370 | /* | |
1371 | * un-busy drive etc (hwgroup->busy is cleared on return) and | |
1372 | * make sure request is sane | |
1373 | */ | |
1374 | rq = HWGROUP(drive)->rq; | |
ce42f191 HZ |
1375 | |
1376 | if (!rq) | |
1377 | goto out; | |
1378 | ||
1da177e4 LT |
1379 | HWGROUP(drive)->rq = NULL; |
1380 | ||
1381 | rq->errors = 0; | |
1382 | ||
1383 | if (!rq->bio) | |
1384 | goto out; | |
1385 | ||
1386 | rq->sector = rq->bio->bi_sector; | |
1387 | rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; | |
1388 | rq->hard_cur_sectors = rq->current_nr_sectors; | |
1389 | rq->buffer = bio_data(rq->bio); | |
1390 | out: | |
1391 | return ret; | |
1392 | } | |
1393 | ||
1394 | /** | |
1395 | * ide_timer_expiry - handle lack of an IDE interrupt | |
1396 | * @data: timer callback magic (hwgroup) | |
1397 | * | |
1398 | * An IDE command has timed out before the expected drive return | |
1399 | * occurred. At this point we attempt to clean up the current | |
1400 | * mess. If the current handler includes an expiry handler then | |
1401 | * we invoke the expiry handler, and providing it is happy the | |
1402 | * work is done. If that fails we apply generic recovery rules | |
1403 | * invoking the handler and checking the drive DMA status. We | |
1404 | * have an excessively incestuous relationship with the DMA | |
1405 | * logic that wants cleaning up. | |
1406 | */ | |
1407 | ||
1408 | void ide_timer_expiry (unsigned long data) | |
1409 | { | |
1410 | ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data; | |
1411 | ide_handler_t *handler; | |
1412 | ide_expiry_t *expiry; | |
1413 | unsigned long flags; | |
1414 | unsigned long wait = -1; | |
1415 | ||
1416 | spin_lock_irqsave(&ide_lock, flags); | |
1417 | ||
23450319 SS |
1418 | if (((handler = hwgroup->handler) == NULL) || |
1419 | (hwgroup->req_gen != hwgroup->req_gen_timer)) { | |
1da177e4 LT |
1420 | /* |
1421 | * Either a marginal timeout occurred | |
1422 | * (got the interrupt just as timer expired), | |
1423 | * or we were "sleeping" to give other devices a chance. | |
1424 | * Either way, we don't really want to complain about anything. | |
1425 | */ | |
1426 | if (hwgroup->sleeping) { | |
1427 | hwgroup->sleeping = 0; | |
1428 | hwgroup->busy = 0; | |
1429 | } | |
1430 | } else { | |
1431 | ide_drive_t *drive = hwgroup->drive; | |
1432 | if (!drive) { | |
1433 | printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n"); | |
1434 | hwgroup->handler = NULL; | |
1435 | } else { | |
1436 | ide_hwif_t *hwif; | |
1437 | ide_startstop_t startstop = ide_stopped; | |
1438 | if (!hwgroup->busy) { | |
1439 | hwgroup->busy = 1; /* paranoia */ | |
1440 | printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name); | |
1441 | } | |
1442 | if ((expiry = hwgroup->expiry) != NULL) { | |
1443 | /* continue */ | |
1444 | if ((wait = expiry(drive)) > 0) { | |
1445 | /* reset timer */ | |
1446 | hwgroup->timer.expires = jiffies + wait; | |
23450319 | 1447 | hwgroup->req_gen_timer = hwgroup->req_gen; |
1da177e4 LT |
1448 | add_timer(&hwgroup->timer); |
1449 | spin_unlock_irqrestore(&ide_lock, flags); | |
1450 | return; | |
1451 | } | |
1452 | } | |
1453 | hwgroup->handler = NULL; | |
1454 | /* | |
1455 | * We need to simulate a real interrupt when invoking | |
1456 | * the handler() function, which means we need to | |
1457 | * globally mask the specific IRQ: | |
1458 | */ | |
1459 | spin_unlock(&ide_lock); | |
1460 | hwif = HWIF(drive); | |
1461 | #if DISABLE_IRQ_NOSYNC | |
1462 | disable_irq_nosync(hwif->irq); | |
1463 | #else | |
1464 | /* disable_irq_nosync ?? */ | |
1465 | disable_irq(hwif->irq); | |
1466 | #endif /* DISABLE_IRQ_NOSYNC */ | |
1467 | /* local CPU only, | |
1468 | * as if we were handling an interrupt */ | |
1469 | local_irq_disable(); | |
1470 | if (hwgroup->polling) { | |
1471 | startstop = handler(drive); | |
1472 | } else if (drive_is_ready(drive)) { | |
1473 | if (drive->waiting_for_dma) | |
841d2a9b | 1474 | hwgroup->hwif->dma_lost_irq(drive); |
1da177e4 LT |
1475 | (void)ide_ack_intr(hwif); |
1476 | printk(KERN_WARNING "%s: lost interrupt\n", drive->name); | |
1477 | startstop = handler(drive); | |
1478 | } else { | |
1479 | if (drive->waiting_for_dma) { | |
1480 | startstop = ide_dma_timeout_retry(drive, wait); | |
1481 | } else | |
1482 | startstop = | |
1483 | ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG)); | |
1484 | } | |
1485 | drive->service_time = jiffies - drive->service_start; | |
1486 | spin_lock_irq(&ide_lock); | |
1487 | enable_irq(hwif->irq); | |
1488 | if (startstop == ide_stopped) | |
1489 | hwgroup->busy = 0; | |
1490 | } | |
1491 | } | |
1492 | ide_do_request(hwgroup, IDE_NO_IRQ); | |
1493 | spin_unlock_irqrestore(&ide_lock, flags); | |
1494 | } | |
1495 | ||
1496 | /** | |
1497 | * unexpected_intr - handle an unexpected IDE interrupt | |
1498 | * @irq: interrupt line | |
1499 | * @hwgroup: hwgroup being processed | |
1500 | * | |
1501 | * There's nothing really useful we can do with an unexpected interrupt, | |
1502 | * other than reading the status register (to clear it), and logging it. | |
1503 | * There should be no way that an irq can happen before we're ready for it, | |
1504 | * so we needn't worry much about losing an "important" interrupt here. | |
1505 | * | |
1506 | * On laptops (and "green" PCs), an unexpected interrupt occurs whenever | |
1507 | * the drive enters "idle", "standby", or "sleep" mode, so if the status | |
1508 | * looks "good", we just ignore the interrupt completely. | |
1509 | * | |
1510 | * This routine assumes __cli() is in effect when called. | |
1511 | * | |
1512 | * If an unexpected interrupt happens on irq15 while we are handling irq14 | |
1513 | * and if the two interfaces are "serialized" (CMD640), then it looks like | |
1514 | * we could screw up by interfering with a new request being set up for | |
1515 | * irq15. | |
1516 | * | |
1517 | * In reality, this is a non-issue. The new command is not sent unless | |
1518 | * the drive is ready to accept one, in which case we know the drive is | |
1519 | * not trying to interrupt us. And ide_set_handler() is always invoked | |
1520 | * before completing the issuance of any new drive command, so we will not | |
1521 | * be accidentally invoked as a result of any valid command completion | |
1522 | * interrupt. | |
1523 | * | |
1524 | * Note that we must walk the entire hwgroup here. We know which hwif | |
1525 | * is doing the current command, but we don't know which hwif burped | |
1526 | * mysteriously. | |
1527 | */ | |
1528 | ||
1529 | static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup) | |
1530 | { | |
1531 | u8 stat; | |
1532 | ide_hwif_t *hwif = hwgroup->hwif; | |
1533 | ||
1534 | /* | |
1535 | * handle the unexpected interrupt | |
1536 | */ | |
1537 | do { | |
1538 | if (hwif->irq == irq) { | |
1539 | stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); | |
1540 | if (!OK_STAT(stat, READY_STAT, BAD_STAT)) { | |
1541 | /* Try to not flood the console with msgs */ | |
1542 | static unsigned long last_msgtime, count; | |
1543 | ++count; | |
1544 | if (time_after(jiffies, last_msgtime + HZ)) { | |
1545 | last_msgtime = jiffies; | |
1546 | printk(KERN_ERR "%s%s: unexpected interrupt, " | |
1547 | "status=0x%02x, count=%ld\n", | |
1548 | hwif->name, | |
1549 | (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count); | |
1550 | } | |
1551 | } | |
1552 | } | |
1553 | } while ((hwif = hwif->next) != hwgroup->hwif); | |
1554 | } | |
1555 | ||
1556 | /** | |
1557 | * ide_intr - default IDE interrupt handler | |
1558 | * @irq: interrupt number | |
1559 | * @dev_id: hwif group | |
1560 | * @regs: unused weirdness from the kernel irq layer | |
1561 | * | |
1562 | * This is the default IRQ handler for the IDE layer. You should | |
1563 | * not need to override it. If you do be aware it is subtle in | |
1564 | * places | |
1565 | * | |
1566 | * hwgroup->hwif is the interface in the group currently performing | |
1567 | * a command. hwgroup->drive is the drive and hwgroup->handler is | |
1568 | * the IRQ handler to call. As we issue a command the handlers | |
1569 | * step through multiple states, reassigning the handler to the | |
1570 | * next step in the process. Unlike a smart SCSI controller IDE | |
1571 | * expects the main processor to sequence the various transfer | |
1572 | * stages. We also manage a poll timer to catch up with most | |
1573 | * timeout situations. There are still a few where the handlers | |
1574 | * don't ever decide to give up. | |
1575 | * | |
1576 | * The handler eventually returns ide_stopped to indicate the | |
1577 | * request completed. At this point we issue the next request | |
1578 | * on the hwgroup and the process begins again. | |
1579 | */ | |
1580 | ||
7d12e780 | 1581 | irqreturn_t ide_intr (int irq, void *dev_id) |
1da177e4 LT |
1582 | { |
1583 | unsigned long flags; | |
1584 | ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id; | |
1585 | ide_hwif_t *hwif; | |
1586 | ide_drive_t *drive; | |
1587 | ide_handler_t *handler; | |
1588 | ide_startstop_t startstop; | |
1589 | ||
1590 | spin_lock_irqsave(&ide_lock, flags); | |
1591 | hwif = hwgroup->hwif; | |
1592 | ||
1593 | if (!ide_ack_intr(hwif)) { | |
1594 | spin_unlock_irqrestore(&ide_lock, flags); | |
1595 | return IRQ_NONE; | |
1596 | } | |
1597 | ||
1598 | if ((handler = hwgroup->handler) == NULL || hwgroup->polling) { | |
1599 | /* | |
1600 | * Not expecting an interrupt from this drive. | |
1601 | * That means this could be: | |
1602 | * (1) an interrupt from another PCI device | |
1603 | * sharing the same PCI INT# as us. | |
1604 | * or (2) a drive just entered sleep or standby mode, | |
1605 | * and is interrupting to let us know. | |
1606 | * or (3) a spurious interrupt of unknown origin. | |
1607 | * | |
1608 | * For PCI, we cannot tell the difference, | |
1609 | * so in that case we just ignore it and hope it goes away. | |
1610 | * | |
1611 | * FIXME: unexpected_intr should be hwif-> then we can | |
1612 | * remove all the ifdef PCI crap | |
1613 | */ | |
1614 | #ifdef CONFIG_BLK_DEV_IDEPCI | |
1615 | if (hwif->pci_dev && !hwif->pci_dev->vendor) | |
1616 | #endif /* CONFIG_BLK_DEV_IDEPCI */ | |
1617 | { | |
1618 | /* | |
1619 | * Probably not a shared PCI interrupt, | |
1620 | * so we can safely try to do something about it: | |
1621 | */ | |
1622 | unexpected_intr(irq, hwgroup); | |
1623 | #ifdef CONFIG_BLK_DEV_IDEPCI | |
1624 | } else { | |
1625 | /* | |
1626 | * Whack the status register, just in case | |
1627 | * we have a leftover pending IRQ. | |
1628 | */ | |
1629 | (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); | |
1630 | #endif /* CONFIG_BLK_DEV_IDEPCI */ | |
1631 | } | |
1632 | spin_unlock_irqrestore(&ide_lock, flags); | |
1633 | return IRQ_NONE; | |
1634 | } | |
1635 | drive = hwgroup->drive; | |
1636 | if (!drive) { | |
1637 | /* | |
1638 | * This should NEVER happen, and there isn't much | |
1639 | * we could do about it here. | |
1640 | * | |
1641 | * [Note - this can occur if the drive is hot unplugged] | |
1642 | */ | |
1643 | spin_unlock_irqrestore(&ide_lock, flags); | |
1644 | return IRQ_HANDLED; | |
1645 | } | |
1646 | if (!drive_is_ready(drive)) { | |
1647 | /* | |
1648 | * This happens regularly when we share a PCI IRQ with | |
1649 | * another device. Unfortunately, it can also happen | |
1650 | * with some buggy drives that trigger the IRQ before | |
1651 | * their status register is up to date. Hopefully we have | |
1652 | * enough advance overhead that the latter isn't a problem. | |
1653 | */ | |
1654 | spin_unlock_irqrestore(&ide_lock, flags); | |
1655 | return IRQ_NONE; | |
1656 | } | |
1657 | if (!hwgroup->busy) { | |
1658 | hwgroup->busy = 1; /* paranoia */ | |
1659 | printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name); | |
1660 | } | |
1661 | hwgroup->handler = NULL; | |
23450319 | 1662 | hwgroup->req_gen++; |
1da177e4 LT |
1663 | del_timer(&hwgroup->timer); |
1664 | spin_unlock(&ide_lock); | |
1665 | ||
f0dd8712 AL |
1666 | /* Some controllers might set DMA INTR no matter DMA or PIO; |
1667 | * bmdma status might need to be cleared even for | |
1668 | * PIO interrupts to prevent spurious/lost irq. | |
1669 | */ | |
1670 | if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma)) | |
1671 | /* ide_dma_end() needs bmdma status for error checking. | |
1672 | * So, skip clearing bmdma status here and leave it | |
1673 | * to ide_dma_end() if this is dma interrupt. | |
1674 | */ | |
1675 | hwif->ide_dma_clear_irq(drive); | |
1676 | ||
1da177e4 | 1677 | if (drive->unmask) |
366c7f55 | 1678 | local_irq_enable_in_hardirq(); |
1da177e4 LT |
1679 | /* service this interrupt, may set handler for next interrupt */ |
1680 | startstop = handler(drive); | |
1681 | spin_lock_irq(&ide_lock); | |
1682 | ||
1683 | /* | |
1684 | * Note that handler() may have set things up for another | |
1685 | * interrupt to occur soon, but it cannot happen until | |
1686 | * we exit from this routine, because it will be the | |
1687 | * same irq as is currently being serviced here, and Linux | |
1688 | * won't allow another of the same (on any CPU) until we return. | |
1689 | */ | |
1690 | drive->service_time = jiffies - drive->service_start; | |
1691 | if (startstop == ide_stopped) { | |
1692 | if (hwgroup->handler == NULL) { /* paranoia */ | |
1693 | hwgroup->busy = 0; | |
1694 | ide_do_request(hwgroup, hwif->irq); | |
1695 | } else { | |
1696 | printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler " | |
1697 | "on exit\n", drive->name); | |
1698 | } | |
1699 | } | |
1700 | spin_unlock_irqrestore(&ide_lock, flags); | |
1701 | return IRQ_HANDLED; | |
1702 | } | |
1703 | ||
1704 | /** | |
1705 | * ide_init_drive_cmd - initialize a drive command request | |
1706 | * @rq: request object | |
1707 | * | |
1708 | * Initialize a request before we fill it in and send it down to | |
1709 | * ide_do_drive_cmd. Commands must be set up by this function. Right | |
1710 | * now it doesn't do a lot, but if that changes abusers will have a | |
d6e05edc | 1711 | * nasty surprise. |
1da177e4 LT |
1712 | */ |
1713 | ||
1714 | void ide_init_drive_cmd (struct request *rq) | |
1715 | { | |
1716 | memset(rq, 0, sizeof(*rq)); | |
4aff5e23 | 1717 | rq->cmd_type = REQ_TYPE_ATA_CMD; |
1da177e4 LT |
1718 | rq->ref_count = 1; |
1719 | } | |
1720 | ||
1721 | EXPORT_SYMBOL(ide_init_drive_cmd); | |
1722 | ||
1723 | /** | |
1724 | * ide_do_drive_cmd - issue IDE special command | |
1725 | * @drive: device to issue command | |
1726 | * @rq: request to issue | |
1727 | * @action: action for processing | |
1728 | * | |
1729 | * This function issues a special IDE device request | |
1730 | * onto the request queue. | |
1731 | * | |
1732 | * If action is ide_wait, then the rq is queued at the end of the | |
1733 | * request queue, and the function sleeps until it has been processed. | |
1734 | * This is for use when invoked from an ioctl handler. | |
1735 | * | |
1736 | * If action is ide_preempt, then the rq is queued at the head of | |
1737 | * the request queue, displacing the currently-being-processed | |
1738 | * request and this function returns immediately without waiting | |
1739 | * for the new rq to be completed. This is VERY DANGEROUS, and is | |
1740 | * intended for careful use by the ATAPI tape/cdrom driver code. | |
1741 | * | |
1da177e4 LT |
1742 | * If action is ide_end, then the rq is queued at the end of the |
1743 | * request queue, and the function returns immediately without waiting | |
1744 | * for the new rq to be completed. This is again intended for careful | |
1745 | * use by the ATAPI tape/cdrom driver code. | |
1746 | */ | |
1747 | ||
1748 | int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action) | |
1749 | { | |
1750 | unsigned long flags; | |
1751 | ide_hwgroup_t *hwgroup = HWGROUP(drive); | |
60be6b9a | 1752 | DECLARE_COMPLETION_ONSTACK(wait); |
1da177e4 LT |
1753 | int where = ELEVATOR_INSERT_BACK, err; |
1754 | int must_wait = (action == ide_wait || action == ide_head_wait); | |
1755 | ||
1756 | rq->errors = 0; | |
1da177e4 LT |
1757 | |
1758 | /* | |
1759 | * we need to hold an extra reference to request for safe inspection | |
1760 | * after completion | |
1761 | */ | |
1762 | if (must_wait) { | |
1763 | rq->ref_count++; | |
c00895ab | 1764 | rq->end_io_data = &wait; |
1da177e4 LT |
1765 | rq->end_io = blk_end_sync_rq; |
1766 | } | |
1767 | ||
1768 | spin_lock_irqsave(&ide_lock, flags); | |
1769 | if (action == ide_preempt) | |
1770 | hwgroup->rq = NULL; | |
1771 | if (action == ide_preempt || action == ide_head_wait) { | |
1772 | where = ELEVATOR_INSERT_FRONT; | |
4aff5e23 | 1773 | rq->cmd_flags |= REQ_PREEMPT; |
1da177e4 LT |
1774 | } |
1775 | __elv_add_request(drive->queue, rq, where, 0); | |
1776 | ide_do_request(hwgroup, IDE_NO_IRQ); | |
1777 | spin_unlock_irqrestore(&ide_lock, flags); | |
1778 | ||
1779 | err = 0; | |
1780 | if (must_wait) { | |
1781 | wait_for_completion(&wait); | |
1da177e4 LT |
1782 | if (rq->errors) |
1783 | err = -EIO; | |
1784 | ||
1785 | blk_put_request(rq); | |
1786 | } | |
1787 | ||
1788 | return err; | |
1789 | } | |
1790 | ||
1791 | EXPORT_SYMBOL(ide_do_drive_cmd); |