]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/ide/ide-io.c
ide: remove ide_cmd() helper
[mirror_ubuntu-bionic-kernel.git] / drivers / ide / ide-io.c
CommitLineData
1da177e4
LT
1/*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
1da177e4
LT
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
1977f032 50#include <linux/bitops.h>
1da177e4
LT
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
1da177e4 56
a7ff7d41 57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
bbc615b1 58 int uptodate, unsigned int nr_bytes, int dequeue)
1da177e4
LT
59{
60 int ret = 1;
61
1da177e4
LT
62 /*
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
65 */
66 if (blk_noretry_request(rq) && end_io_error(uptodate))
41e9d344 67 nr_bytes = rq->hard_nr_sectors << 9;
1da177e4
LT
68
69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70 rq->errors = -EIO;
71
72 /*
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
75 */
76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77 drive->state = 0;
78 HWGROUP(drive)->hwif->ide_dma_on(drive);
79 }
80
41e9d344 81 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
ba027def 82 add_disk_randomness(rq->rq_disk);
bbc615b1
BZ
83 if (dequeue) {
84 if (!list_empty(&rq->queuelist))
85 blkdev_dequeue_request(rq);
86 HWGROUP(drive)->rq = NULL;
87 }
ba027def 88 end_that_request_last(rq, uptodate);
1da177e4
LT
89 ret = 0;
90 }
8672d571 91
1da177e4
LT
92 return ret;
93}
1da177e4
LT
94
95/**
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
98 * @uptodate:
99 * @nr_sectors: number of sectors completed
100 *
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
41e9d344 108 unsigned int nr_bytes = nr_sectors << 9;
1da177e4
LT
109 struct request *rq;
110 unsigned long flags;
111 int ret = 1;
112
8672d571
JA
113 /*
114 * room for locking improvements here, the calls below don't
115 * need the queue lock held at all
116 */
1da177e4
LT
117 spin_lock_irqsave(&ide_lock, flags);
118 rq = HWGROUP(drive)->rq;
119
41e9d344
JA
120 if (!nr_bytes) {
121 if (blk_pc_request(rq))
122 nr_bytes = rq->data_len;
123 else
124 nr_bytes = rq->hard_cur_sectors << 9;
125 }
1da177e4 126
bbc615b1 127 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
1da177e4
LT
128
129 spin_unlock_irqrestore(&ide_lock, flags);
130 return ret;
131}
132EXPORT_SYMBOL(ide_end_request);
133
134/*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140enum {
141 ide_pm_flush_cache = ide_pm_state_start_suspend,
142 idedisk_pm_standby,
143
8c2c0118
JL
144 idedisk_pm_restore_pio = ide_pm_state_start_resume,
145 idedisk_pm_idle,
1da177e4
LT
146 ide_pm_restore_dma,
147};
148
149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150{
c00895ab 151 struct request_pm_state *pm = rq->data;
ad3cadda 152
1da177e4
LT
153 if (drive->media != ide_disk)
154 return;
155
ad3cadda 156 switch (pm->pm_step) {
1da177e4 157 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
ad3cadda
JA
158 if (pm->pm_state == PM_EVENT_FREEZE)
159 pm->pm_step = ide_pm_state_completed;
1da177e4 160 else
ad3cadda 161 pm->pm_step = idedisk_pm_standby;
1da177e4
LT
162 break;
163 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
ad3cadda 164 pm->pm_step = ide_pm_state_completed;
1da177e4 165 break;
8c2c0118
JL
166 case idedisk_pm_restore_pio: /* Resume step 1 complete */
167 pm->pm_step = idedisk_pm_idle;
168 break;
169 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
ad3cadda 170 pm->pm_step = ide_pm_restore_dma;
1da177e4
LT
171 break;
172 }
173}
174
175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176{
c00895ab 177 struct request_pm_state *pm = rq->data;
1da177e4
LT
178 ide_task_t *args = rq->special;
179
180 memset(args, 0, sizeof(*args));
181
ad3cadda 182 switch (pm->pm_step) {
1da177e4
LT
183 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
184 if (drive->media != ide_disk)
185 break;
186 /* Not supported? Switch to next step now. */
187 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188 ide_complete_power_step(drive, rq, 0, 0);
189 return ide_stopped;
190 }
191 if (ide_id_has_flush_cache_ext(drive->id))
650d841d 192 args->tf.command = WIN_FLUSH_CACHE_EXT;
1da177e4 193 else
650d841d 194 args->tf.command = WIN_FLUSH_CACHE;
74095a91 195 goto out_do_tf;
1da177e4
LT
196
197 case idedisk_pm_standby: /* Suspend step 2 (standby) */
650d841d 198 args->tf.command = WIN_STANDBYNOW1;
74095a91 199 goto out_do_tf;
1da177e4 200
8c2c0118 201 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
26bcb879 202 ide_set_max_pio(drive);
317a46a2
BZ
203 /*
204 * skip idedisk_pm_idle for ATAPI devices
205 */
206 if (drive->media != ide_disk)
207 pm->pm_step = ide_pm_restore_dma;
208 else
209 ide_complete_power_step(drive, rq, 0, 0);
8c2c0118
JL
210 return ide_stopped;
211
212 case idedisk_pm_idle: /* Resume step 2 (idle) */
650d841d 213 args->tf.command = WIN_IDLEIMMEDIATE;
74095a91 214 goto out_do_tf;
1da177e4 215
8c2c0118 216 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
1da177e4 217 /*
0ae2e178 218 * Right now, all we do is call ide_set_dma(drive),
1da177e4
LT
219 * we could be smarter and check for current xfer_speed
220 * in struct drive etc...
221 */
0ae2e178 222 if (drive->hwif->ide_dma_on == NULL)
1da177e4 223 break;
793a9722 224 drive->hwif->dma_off_quietly(drive);
8987d21b
BZ
225 /*
226 * TODO: respect ->using_dma setting
227 */
3608b5d7 228 ide_set_dma(drive);
1da177e4
LT
229 break;
230 }
ad3cadda 231 pm->pm_step = ide_pm_state_completed;
1da177e4 232 return ide_stopped;
74095a91
BZ
233
234out_do_tf:
235 args->tf_flags = IDE_TFLAG_OUT_TF;
236 if (drive->addressing == 1)
237 args->tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB);
238 args->command_type = IDE_DRIVE_TASK_NO_DATA;
239 args->handler = task_no_data_intr;
240 return do_rw_taskfile(drive, args);
1da177e4
LT
241}
242
dbe217af
AC
243/**
244 * ide_end_dequeued_request - complete an IDE I/O
245 * @drive: IDE device for the I/O
246 * @uptodate:
247 * @nr_sectors: number of sectors completed
248 *
249 * Complete an I/O that is no longer on the request queue. This
250 * typically occurs when we pull the request and issue a REQUEST_SENSE.
251 * We must still finish the old request but we must not tamper with the
252 * queue in the meantime.
253 *
254 * NOTE: This path does not handle barrier, but barrier is not supported
255 * on ide-cd anyway.
256 */
257
258int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
259 int uptodate, int nr_sectors)
260{
261 unsigned long flags;
bbc615b1 262 int ret;
dbe217af
AC
263
264 spin_lock_irqsave(&ide_lock, flags);
4aff5e23 265 BUG_ON(!blk_rq_started(rq));
bbc615b1 266 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
dbe217af 267 spin_unlock_irqrestore(&ide_lock, flags);
bbc615b1 268
dbe217af
AC
269 return ret;
270}
271EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
272
273
1da177e4
LT
274/**
275 * ide_complete_pm_request - end the current Power Management request
276 * @drive: target drive
277 * @rq: request
278 *
279 * This function cleans up the current PM request and stops the queue
280 * if necessary.
281 */
282static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
283{
284 unsigned long flags;
285
286#ifdef DEBUG_PM
287 printk("%s: completing PM request, %s\n", drive->name,
288 blk_pm_suspend_request(rq) ? "suspend" : "resume");
289#endif
290 spin_lock_irqsave(&ide_lock, flags);
291 if (blk_pm_suspend_request(rq)) {
292 blk_stop_queue(drive->queue);
293 } else {
294 drive->blocked = 0;
295 blk_start_queue(drive->queue);
296 }
297 blkdev_dequeue_request(rq);
298 HWGROUP(drive)->rq = NULL;
8ffdc655 299 end_that_request_last(rq, 1);
1da177e4
LT
300 spin_unlock_irqrestore(&ide_lock, flags);
301}
302
1da177e4
LT
303/**
304 * ide_end_drive_cmd - end an explicit drive command
305 * @drive: command
306 * @stat: status bits
307 * @err: error bits
308 *
309 * Clean up after success/failure of an explicit drive command.
310 * These get thrown onto the queue so they are synchronized with
311 * real I/O operations on the drive.
312 *
313 * In LBA48 mode we have to read the register set twice to get
314 * all the extra information out.
315 */
316
317void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
318{
319 ide_hwif_t *hwif = HWIF(drive);
320 unsigned long flags;
321 struct request *rq;
322
323 spin_lock_irqsave(&ide_lock, flags);
324 rq = HWGROUP(drive)->rq;
325 spin_unlock_irqrestore(&ide_lock, flags);
326
4aff5e23 327 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
1da177e4
LT
328 u8 *args = (u8 *) rq->buffer;
329 if (rq->errors == 0)
330 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
331
332 if (args) {
333 args[0] = stat;
334 args[1] = err;
335 args[2] = hwif->INB(IDE_NSECTOR_REG);
336 }
4aff5e23 337 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
1da177e4
LT
338 u8 *args = (u8 *) rq->buffer;
339 if (rq->errors == 0)
340 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
341
342 if (args) {
343 args[0] = stat;
344 args[1] = err;
1c11d241
BZ
345 /* be sure we're looking at the low order bits */
346 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
1da177e4
LT
347 args[2] = hwif->INB(IDE_NSECTOR_REG);
348 args[3] = hwif->INB(IDE_SECTOR_REG);
349 args[4] = hwif->INB(IDE_LCYL_REG);
350 args[5] = hwif->INB(IDE_HCYL_REG);
351 args[6] = hwif->INB(IDE_SELECT_REG);
352 }
4aff5e23 353 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
354 ide_task_t *args = (ide_task_t *) rq->special;
355 if (rq->errors == 0)
356 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
357
358 if (args) {
650d841d
BZ
359 struct ide_taskfile *tf = &args->tf;
360
1da177e4 361 if (args->tf_in_flags.b.data) {
650d841d
BZ
362 u16 data = hwif->INW(IDE_DATA_REG);
363
364 tf->data = data & 0xff;
365 tf->hob_data = (data >> 8) & 0xff;
1da177e4 366 }
650d841d 367 tf->error = err;
1da177e4
LT
368 /* be sure we're looking at the low order bits */
369 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
650d841d
BZ
370 tf->nsect = hwif->INB(IDE_NSECTOR_REG);
371 tf->lbal = hwif->INB(IDE_SECTOR_REG);
372 tf->lbam = hwif->INB(IDE_LCYL_REG);
373 tf->lbah = hwif->INB(IDE_HCYL_REG);
374 tf->device = hwif->INB(IDE_SELECT_REG);
375 tf->status = stat;
1da177e4
LT
376
377 if (drive->addressing == 1) {
378 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
650d841d
BZ
379 tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
380 tf->hob_nsect = hwif->INB(IDE_NSECTOR_REG);
381 tf->hob_lbal = hwif->INB(IDE_SECTOR_REG);
382 tf->hob_lbam = hwif->INB(IDE_LCYL_REG);
383 tf->hob_lbah = hwif->INB(IDE_HCYL_REG);
1da177e4
LT
384 }
385 }
386 } else if (blk_pm_request(rq)) {
c00895ab 387 struct request_pm_state *pm = rq->data;
1da177e4
LT
388#ifdef DEBUG_PM
389 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
390 drive->name, rq->pm->pm_step, stat, err);
391#endif
392 ide_complete_power_step(drive, rq, stat, err);
ad3cadda 393 if (pm->pm_step == ide_pm_state_completed)
1da177e4
LT
394 ide_complete_pm_request(drive, rq);
395 return;
396 }
397
398 spin_lock_irqsave(&ide_lock, flags);
399 blkdev_dequeue_request(rq);
400 HWGROUP(drive)->rq = NULL;
401 rq->errors = err;
8ffdc655 402 end_that_request_last(rq, !rq->errors);
1da177e4
LT
403 spin_unlock_irqrestore(&ide_lock, flags);
404}
405
406EXPORT_SYMBOL(ide_end_drive_cmd);
407
408/**
409 * try_to_flush_leftover_data - flush junk
410 * @drive: drive to flush
411 *
412 * try_to_flush_leftover_data() is invoked in response to a drive
413 * unexpectedly having its DRQ_STAT bit set. As an alternative to
414 * resetting the drive, this routine tries to clear the condition
415 * by read a sector's worth of data from the drive. Of course,
416 * this may not help if the drive is *waiting* for data from *us*.
417 */
418static void try_to_flush_leftover_data (ide_drive_t *drive)
419{
420 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
421
422 if (drive->media != ide_disk)
423 return;
424 while (i > 0) {
425 u32 buffer[16];
426 u32 wcount = (i > 16) ? 16 : i;
427
428 i -= wcount;
429 HWIF(drive)->ata_input_data(drive, buffer, wcount);
430 }
431}
432
433static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
434{
435 if (rq->rq_disk) {
436 ide_driver_t *drv;
437
438 drv = *(ide_driver_t **)rq->rq_disk->private_data;
439 drv->end_request(drive, 0, 0);
440 } else
441 ide_end_request(drive, 0, 0);
442}
443
444static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
445{
446 ide_hwif_t *hwif = drive->hwif;
447
448 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
449 /* other bits are useless when BUSY */
450 rq->errors |= ERROR_RESET;
451 } else if (stat & ERR_STAT) {
452 /* err has different meaning on cdrom and tape */
453 if (err == ABRT_ERR) {
454 if (drive->select.b.lba &&
455 /* some newer drives don't support WIN_SPECIFY */
456 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
457 return ide_stopped;
458 } else if ((err & BAD_CRC) == BAD_CRC) {
459 /* UDMA crc error, just retry the operation */
460 drive->crc_count++;
461 } else if (err & (BBD_ERR | ECC_ERR)) {
462 /* retries won't help these */
463 rq->errors = ERROR_MAX;
464 } else if (err & TRK0_ERR) {
465 /* help it find track zero */
466 rq->errors |= ERROR_RECAL;
467 }
468 }
469
ed67b923
BZ
470 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
471 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
1da177e4
LT
472 try_to_flush_leftover_data(drive);
473
513daadd
SS
474 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
475 ide_kill_rq(drive, rq);
476 return ide_stopped;
477 }
478
1da177e4 479 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
513daadd 480 rq->errors |= ERROR_RESET;
1da177e4 481
513daadd 482 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
1da177e4 483 ++rq->errors;
513daadd 484 return ide_do_reset(drive);
1da177e4 485 }
513daadd
SS
486
487 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
488 drive->special.b.recalibrate = 1;
489
490 ++rq->errors;
491
1da177e4
LT
492 return ide_stopped;
493}
494
495static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
496{
497 ide_hwif_t *hwif = drive->hwif;
498
499 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
500 /* other bits are useless when BUSY */
501 rq->errors |= ERROR_RESET;
502 } else {
503 /* add decoding error stuff */
504 }
505
506 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
507 /* force an abort */
508 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
509
510 if (rq->errors >= ERROR_MAX) {
511 ide_kill_rq(drive, rq);
512 } else {
513 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
514 ++rq->errors;
515 return ide_do_reset(drive);
516 }
517 ++rq->errors;
518 }
519
520 return ide_stopped;
521}
522
523ide_startstop_t
524__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
525{
526 if (drive->media == ide_disk)
527 return ide_ata_error(drive, rq, stat, err);
528 return ide_atapi_error(drive, rq, stat, err);
529}
530
531EXPORT_SYMBOL_GPL(__ide_error);
532
533/**
534 * ide_error - handle an error on the IDE
535 * @drive: drive the error occurred on
536 * @msg: message to report
537 * @stat: status bits
538 *
539 * ide_error() takes action based on the error returned by the drive.
540 * For normal I/O that may well include retries. We deal with
541 * both new-style (taskfile) and old style command handling here.
542 * In the case of taskfile command handling there is work left to
543 * do
544 */
545
546ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
547{
548 struct request *rq;
549 u8 err;
550
551 err = ide_dump_status(drive, msg, stat);
552
553 if ((rq = HWGROUP(drive)->rq) == NULL)
554 return ide_stopped;
555
556 /* retry only "normal" I/O: */
4aff5e23 557 if (!blk_fs_request(rq)) {
1da177e4
LT
558 rq->errors = 1;
559 ide_end_drive_cmd(drive, stat, err);
560 return ide_stopped;
561 }
562
563 if (rq->rq_disk) {
564 ide_driver_t *drv;
565
566 drv = *(ide_driver_t **)rq->rq_disk->private_data;
567 return drv->error(drive, rq, stat, err);
568 } else
569 return __ide_error(drive, rq, stat, err);
570}
571
572EXPORT_SYMBOL_GPL(ide_error);
573
574ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
575{
576 if (drive->media != ide_disk)
577 rq->errors |= ERROR_RESET;
578
579 ide_kill_rq(drive, rq);
580
581 return ide_stopped;
582}
583
584EXPORT_SYMBOL_GPL(__ide_abort);
585
586/**
338cec32 587 * ide_abort - abort pending IDE operations
1da177e4
LT
588 * @drive: drive the error occurred on
589 * @msg: message to report
590 *
591 * ide_abort kills and cleans up when we are about to do a
592 * host initiated reset on active commands. Longer term we
593 * want handlers to have sensible abort handling themselves
594 *
595 * This differs fundamentally from ide_error because in
596 * this case the command is doing just fine when we
597 * blow it away.
598 */
599
600ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
601{
602 struct request *rq;
603
604 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
605 return ide_stopped;
606
607 /* retry only "normal" I/O: */
4aff5e23 608 if (!blk_fs_request(rq)) {
1da177e4
LT
609 rq->errors = 1;
610 ide_end_drive_cmd(drive, BUSY_STAT, 0);
611 return ide_stopped;
612 }
613
614 if (rq->rq_disk) {
615 ide_driver_t *drv;
616
617 drv = *(ide_driver_t **)rq->rq_disk->private_data;
618 return drv->abort(drive, rq);
619 } else
620 return __ide_abort(drive, rq);
621}
622
1da177e4
LT
623/**
624 * drive_cmd_intr - drive command completion interrupt
625 * @drive: drive the completion interrupt occurred on
626 *
627 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
338cec32 628 * We do any necessary data reading and then wait for the drive to
1da177e4
LT
629 * go non busy. At that point we may read the error data and complete
630 * the request
631 */
632
633static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
634{
635 struct request *rq = HWGROUP(drive)->rq;
636 ide_hwif_t *hwif = HWIF(drive);
637 u8 *args = (u8 *) rq->buffer;
638 u8 stat = hwif->INB(IDE_STATUS_REG);
639 int retries = 10;
640
366c7f55 641 local_irq_enable_in_hardirq();
320112bd
BZ
642 if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
643 (stat & DRQ_STAT) && args && args[3]) {
1da177e4
LT
644 u8 io_32bit = drive->io_32bit;
645 drive->io_32bit = 0;
646 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
647 drive->io_32bit = io_32bit;
648 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
649 udelay(100);
650 }
651
652 if (!OK_STAT(stat, READY_STAT, BAD_STAT))
653 return ide_error(drive, "drive_cmd", stat);
654 /* calls ide_end_drive_cmd */
655 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
656 return ide_stopped;
657}
658
659static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
660{
650d841d
BZ
661 task->tf.nsect = drive->sect;
662 task->tf.lbal = drive->sect;
663 task->tf.lbam = drive->cyl;
664 task->tf.lbah = drive->cyl >> 8;
665 task->tf.device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
666 task->tf.command = WIN_SPECIFY;
1da177e4
LT
667
668 task->handler = &set_geometry_intr;
669}
670
671static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
672{
650d841d
BZ
673 task->tf.nsect = drive->sect;
674 task->tf.command = WIN_RESTORE;
1da177e4
LT
675
676 task->handler = &recal_intr;
677}
678
679static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
680{
650d841d
BZ
681 task->tf.nsect = drive->mult_req;
682 task->tf.command = WIN_SETMULT;
1da177e4
LT
683
684 task->handler = &set_multmode_intr;
685}
686
687static ide_startstop_t ide_disk_special(ide_drive_t *drive)
688{
689 special_t *s = &drive->special;
690 ide_task_t args;
691
692 memset(&args, 0, sizeof(ide_task_t));
693 args.command_type = IDE_DRIVE_TASK_NO_DATA;
694
695 if (s->b.set_geometry) {
696 s->b.set_geometry = 0;
697 ide_init_specify_cmd(drive, &args);
698 } else if (s->b.recalibrate) {
699 s->b.recalibrate = 0;
700 ide_init_restore_cmd(drive, &args);
701 } else if (s->b.set_multmode) {
702 s->b.set_multmode = 0;
703 if (drive->mult_req > drive->id->max_multsect)
704 drive->mult_req = drive->id->max_multsect;
705 ide_init_setmult_cmd(drive, &args);
706 } else if (s->all) {
707 int special = s->all;
708 s->all = 0;
709 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
710 return ide_stopped;
711 }
712
74095a91
BZ
713 args.tf_flags = IDE_TFLAG_OUT_TF;
714 if (drive->addressing == 1)
715 args.tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB);
716
1da177e4
LT
717 do_rw_taskfile(drive, &args);
718
719 return ide_started;
720}
721
26bcb879
BZ
722/*
723 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
724 */
725static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
726{
727 switch (req_pio) {
728 case 202:
729 case 201:
730 case 200:
731 case 102:
732 case 101:
733 case 100:
734 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
735 case 9:
736 case 8:
737 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
738 case 7:
739 case 6:
740 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
741 default:
742 return 0;
743 }
744}
745
1da177e4
LT
746/**
747 * do_special - issue some special commands
748 * @drive: drive the command is for
749 *
750 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
751 * commands to a drive. It used to do much more, but has been scaled
752 * back.
753 */
754
755static ide_startstop_t do_special (ide_drive_t *drive)
756{
757 special_t *s = &drive->special;
758
759#ifdef DEBUG
760 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
761#endif
762 if (s->b.set_tune) {
26bcb879
BZ
763 ide_hwif_t *hwif = drive->hwif;
764 u8 req_pio = drive->tune_req;
765
1da177e4 766 s->b.set_tune = 0;
26bcb879
BZ
767
768 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
d393aa03
BZ
769
770 if (hwif->set_pio_mode == NULL)
771 return ide_stopped;
772
773 /*
774 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
775 */
776 if (req_pio == 8 || req_pio == 9) {
777 unsigned long flags;
778
779 spin_lock_irqsave(&ide_lock, flags);
780 hwif->set_pio_mode(drive, req_pio);
781 spin_unlock_irqrestore(&ide_lock, flags);
782 } else
26bcb879 783 hwif->set_pio_mode(drive, req_pio);
aedea591
BZ
784 } else {
785 int keep_dma = drive->using_dma;
786
26bcb879
BZ
787 ide_set_pio(drive, req_pio);
788
aedea591
BZ
789 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
790 if (keep_dma)
791 hwif->ide_dma_on(drive);
792 }
793 }
794
1da177e4
LT
795 return ide_stopped;
796 } else {
797 if (drive->media == ide_disk)
798 return ide_disk_special(drive);
799
800 s->all = 0;
801 drive->mult_req = 0;
802 return ide_stopped;
803 }
804}
805
806void ide_map_sg(ide_drive_t *drive, struct request *rq)
807{
808 ide_hwif_t *hwif = drive->hwif;
809 struct scatterlist *sg = hwif->sg_table;
810
811 if (hwif->sg_mapped) /* needed by ide-scsi */
812 return;
813
4aff5e23 814 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
815 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
816 } else {
817 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
818 hwif->sg_nents = 1;
819 }
820}
821
822EXPORT_SYMBOL_GPL(ide_map_sg);
823
824void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
825{
826 ide_hwif_t *hwif = drive->hwif;
827
828 hwif->nsect = hwif->nleft = rq->nr_sectors;
55c16a70
JA
829 hwif->cursg_ofs = 0;
830 hwif->cursg = NULL;
1da177e4
LT
831}
832
833EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
834
835/**
836 * execute_drive_command - issue special drive command
338cec32 837 * @drive: the drive to issue the command on
1da177e4
LT
838 * @rq: the request structure holding the command
839 *
840 * execute_drive_cmd() issues a special drive command, usually
841 * initiated by ioctl() from the external hdparm program. The
842 * command can be a drive command, drive task or taskfile
843 * operation. Weirdly you can call it with NULL to wait for
844 * all commands to finish. Don't do this as that is due to change
845 */
846
847static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
848 struct request *rq)
849{
850 ide_hwif_t *hwif = HWIF(drive);
21d535c9
BZ
851 u8 *args = rq->buffer;
852
4aff5e23 853 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
21d535c9 854 ide_task_t *task = rq->special;
1da177e4 855
21d535c9 856 if (task == NULL)
1da177e4
LT
857 goto done;
858
21d535c9 859 hwif->data_phase = task->data_phase;
1da177e4
LT
860
861 switch (hwif->data_phase) {
862 case TASKFILE_MULTI_OUT:
863 case TASKFILE_OUT:
864 case TASKFILE_MULTI_IN:
865 case TASKFILE_IN:
866 ide_init_sg_cmd(drive, rq);
867 ide_map_sg(drive, rq);
868 default:
869 break;
870 }
871
21d535c9
BZ
872 if (task->tf_flags & IDE_TFLAG_FLAGGED)
873 return flagged_taskfile(drive, task);
74095a91 874
21d535c9 875 task->tf_flags |= IDE_TFLAG_OUT_TF;
74095a91 876 if (drive->addressing == 1)
21d535c9 877 task->tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB);
74095a91 878
21d535c9
BZ
879 return do_rw_taskfile(drive, task);
880 }
881
882 if (args == NULL)
883 goto done;
884
54688aa3
BZ
885 if (IDE_CONTROL_REG)
886 hwif->OUTB(drive->ctl, IDE_CONTROL_REG); /* clear nIEN */
887
888 SELECT_MASK(drive, 0);
889
21d535c9 890 if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
1da177e4
LT
891#ifdef DEBUG
892 printk("%s: DRIVE_TASK_CMD ", drive->name);
893 printk("cmd=0x%02x ", args[0]);
894 printk("fr=0x%02x ", args[1]);
895 printk("ns=0x%02x ", args[2]);
896 printk("sc=0x%02x ", args[3]);
897 printk("lcyl=0x%02x ", args[4]);
898 printk("hcyl=0x%02x ", args[5]);
899 printk("sel=0x%02x\n", args[6]);
900#endif
901 hwif->OUTB(args[1], IDE_FEATURE_REG);
6dd87233 902 hwif->OUTB(args[2], IDE_NSECTOR_REG);
1da177e4
LT
903 hwif->OUTB(args[3], IDE_SECTOR_REG);
904 hwif->OUTB(args[4], IDE_LCYL_REG);
905 hwif->OUTB(args[5], IDE_HCYL_REG);
c1f50cbb 906 hwif->OUTB((args[6] & 0xEF)|drive->select.all, IDE_SELECT_REG);
21d535c9 907 } else { /* rq->cmd_type == REQ_TYPE_ATA_CMD */
1da177e4
LT
908#ifdef DEBUG
909 printk("%s: DRIVE_CMD ", drive->name);
910 printk("cmd=0x%02x ", args[0]);
911 printk("sc=0x%02x ", args[1]);
912 printk("fr=0x%02x ", args[2]);
913 printk("xx=0x%02x\n", args[3]);
914#endif
6dd87233 915 hwif->OUTB(args[2], IDE_FEATURE_REG);
1da177e4 916 if (args[0] == WIN_SMART) {
6dd87233 917 hwif->OUTB(args[3],IDE_NSECTOR_REG);
1da177e4 918 hwif->OUTB(args[1],IDE_SECTOR_REG);
46f26c36
BZ
919 hwif->OUTB(0x4f, IDE_LCYL_REG);
920 hwif->OUTB(0xc2, IDE_HCYL_REG);
6dd87233
BZ
921 } else
922 hwif->OUTB(args[1], IDE_NSECTOR_REG);
1da177e4
LT
923 }
924
54688aa3 925 ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_CMD, NULL);
21d535c9
BZ
926 return ide_started;
927
1da177e4
LT
928done:
929 /*
930 * NULL is actually a valid way of waiting for
931 * all current requests to be flushed from the queue.
932 */
933#ifdef DEBUG
934 printk("%s: DRIVE_CMD (null)\n", drive->name);
935#endif
936 ide_end_drive_cmd(drive,
937 hwif->INB(IDE_STATUS_REG),
938 hwif->INB(IDE_ERROR_REG));
939 return ide_stopped;
940}
941
ad3cadda
JA
942static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
943{
c00895ab 944 struct request_pm_state *pm = rq->data;
ad3cadda
JA
945
946 if (blk_pm_suspend_request(rq) &&
947 pm->pm_step == ide_pm_state_start_suspend)
948 /* Mark drive blocked when starting the suspend sequence. */
949 drive->blocked = 1;
950 else if (blk_pm_resume_request(rq) &&
951 pm->pm_step == ide_pm_state_start_resume) {
952 /*
953 * The first thing we do on wakeup is to wait for BSY bit to
954 * go away (with a looong timeout) as a drive on this hwif may
955 * just be POSTing itself.
956 * We do that before even selecting as the "other" device on
957 * the bus may be broken enough to walk on our toes at this
958 * point.
959 */
960 int rc;
961#ifdef DEBUG_PM
962 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
963#endif
964 rc = ide_wait_not_busy(HWIF(drive), 35000);
965 if (rc)
966 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
967 SELECT_DRIVE(drive);
ad0e74d3
BZ
968 if (IDE_CONTROL_REG)
969 HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
178184b6 970 rc = ide_wait_not_busy(HWIF(drive), 100000);
ad3cadda
JA
971 if (rc)
972 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
973 }
974}
975
1da177e4
LT
976/**
977 * start_request - start of I/O and command issuing for IDE
978 *
979 * start_request() initiates handling of a new I/O request. It
980 * accepts commands and I/O (read/write) requests. It also does
981 * the final remapping for weird stuff like EZDrive. Once
982 * device mapper can work sector level the EZDrive stuff can go away
983 *
984 * FIXME: this function needs a rename
985 */
986
987static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
988{
989 ide_startstop_t startstop;
990 sector_t block;
991
4aff5e23 992 BUG_ON(!blk_rq_started(rq));
1da177e4
LT
993
994#ifdef DEBUG
995 printk("%s: start_request: current=0x%08lx\n",
996 HWIF(drive)->name, (unsigned long) rq);
997#endif
998
999 /* bail early if we've exceeded max_failures */
1000 if (drive->max_failures && (drive->failures > drive->max_failures)) {
b5e1a4e2 1001 rq->cmd_flags |= REQ_FAILED;
1da177e4
LT
1002 goto kill_rq;
1003 }
1004
1005 block = rq->sector;
1006 if (blk_fs_request(rq) &&
1007 (drive->media == ide_disk || drive->media == ide_floppy)) {
1008 block += drive->sect0;
1009 }
1010 /* Yecch - this will shift the entire interval,
1011 possibly killing some innocent following sector */
1012 if (block == 0 && drive->remap_0_to_1 == 1)
1013 block = 1; /* redirect MBR access to EZ-Drive partn table */
1014
ad3cadda
JA
1015 if (blk_pm_request(rq))
1016 ide_check_pm_state(drive, rq);
1da177e4
LT
1017
1018 SELECT_DRIVE(drive);
1019 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1020 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1021 return startstop;
1022 }
1023 if (!drive->special.all) {
1024 ide_driver_t *drv;
1025
513daadd
SS
1026 /*
1027 * We reset the drive so we need to issue a SETFEATURES.
1028 * Do it _after_ do_special() restored device parameters.
1029 */
1030 if (drive->current_speed == 0xff)
1031 ide_config_drive_speed(drive, drive->desired_speed);
1032
4aff5e23
JA
1033 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1034 rq->cmd_type == REQ_TYPE_ATA_TASK ||
1035 rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1da177e4
LT
1036 return execute_drive_cmd(drive, rq);
1037 else if (blk_pm_request(rq)) {
c00895ab 1038 struct request_pm_state *pm = rq->data;
1da177e4
LT
1039#ifdef DEBUG_PM
1040 printk("%s: start_power_step(step: %d)\n",
1041 drive->name, rq->pm->pm_step);
1042#endif
1043 startstop = ide_start_power_step(drive, rq);
1044 if (startstop == ide_stopped &&
ad3cadda 1045 pm->pm_step == ide_pm_state_completed)
1da177e4
LT
1046 ide_complete_pm_request(drive, rq);
1047 return startstop;
1048 }
1049
1050 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1051 return drv->do_request(drive, rq, block);
1052 }
1053 return do_special(drive);
1054kill_rq:
1055 ide_kill_rq(drive, rq);
1056 return ide_stopped;
1057}
1058
1059/**
1060 * ide_stall_queue - pause an IDE device
1061 * @drive: drive to stall
1062 * @timeout: time to stall for (jiffies)
1063 *
1064 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1065 * to the hwgroup by sleeping for timeout jiffies.
1066 */
1067
1068void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1069{
1070 if (timeout > WAIT_WORSTCASE)
1071 timeout = WAIT_WORSTCASE;
1072 drive->sleep = timeout + jiffies;
1073 drive->sleeping = 1;
1074}
1075
1076EXPORT_SYMBOL(ide_stall_queue);
1077
1078#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1079
1080/**
1081 * choose_drive - select a drive to service
1082 * @hwgroup: hardware group to select on
1083 *
1084 * choose_drive() selects the next drive which will be serviced.
1085 * This is necessary because the IDE layer can't issue commands
1086 * to both drives on the same cable, unlike SCSI.
1087 */
1088
1089static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1090{
1091 ide_drive_t *drive, *best;
1092
1093repeat:
1094 best = NULL;
1095 drive = hwgroup->drive;
1096
1097 /*
1098 * drive is doing pre-flush, ordered write, post-flush sequence. even
1099 * though that is 3 requests, it must be seen as a single transaction.
1100 * we must not preempt this drive until that is complete
1101 */
1102 if (blk_queue_flushing(drive->queue)) {
1103 /*
1104 * small race where queue could get replugged during
1105 * the 3-request flush cycle, just yank the plug since
1106 * we want it to finish asap
1107 */
1108 blk_remove_plug(drive->queue);
1109 return drive;
1110 }
1111
1112 do {
1113 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1114 && !elv_queue_empty(drive->queue)) {
1115 if (!best
1116 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1117 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1118 {
1119 if (!blk_queue_plugged(drive->queue))
1120 best = drive;
1121 }
1122 }
1123 } while ((drive = drive->next) != hwgroup->drive);
1124 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1125 long t = (signed long)(WAKEUP(best) - jiffies);
1126 if (t >= WAIT_MIN_SLEEP) {
1127 /*
1128 * We *may* have some time to spare, but first let's see if
1129 * someone can potentially benefit from our nice mood today..
1130 */
1131 drive = best->next;
1132 do {
1133 if (!drive->sleeping
1134 && time_before(jiffies - best->service_time, WAKEUP(drive))
1135 && time_before(WAKEUP(drive), jiffies + t))
1136 {
1137 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1138 goto repeat;
1139 }
1140 } while ((drive = drive->next) != best);
1141 }
1142 }
1143 return best;
1144}
1145
1146/*
1147 * Issue a new request to a drive from hwgroup
1148 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1149 *
1150 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1151 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1152 * may have both interfaces in a single hwgroup to "serialize" access.
1153 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1154 * together into one hwgroup for serialized access.
1155 *
1156 * Note also that several hwgroups can end up sharing a single IRQ,
1157 * possibly along with many other devices. This is especially common in
1158 * PCI-based systems with off-board IDE controller cards.
1159 *
1160 * The IDE driver uses the single global ide_lock spinlock to protect
1161 * access to the request queues, and to protect the hwgroup->busy flag.
1162 *
1163 * The first thread into the driver for a particular hwgroup sets the
1164 * hwgroup->busy flag to indicate that this hwgroup is now active,
1165 * and then initiates processing of the top request from the request queue.
1166 *
1167 * Other threads attempting entry notice the busy setting, and will simply
1168 * queue their new requests and exit immediately. Note that hwgroup->busy
1169 * remains set even when the driver is merely awaiting the next interrupt.
1170 * Thus, the meaning is "this hwgroup is busy processing a request".
1171 *
1172 * When processing of a request completes, the completing thread or IRQ-handler
1173 * will start the next request from the queue. If no more work remains,
1174 * the driver will clear the hwgroup->busy flag and exit.
1175 *
1176 * The ide_lock (spinlock) is used to protect all access to the
1177 * hwgroup->busy flag, but is otherwise not needed for most processing in
1178 * the driver. This makes the driver much more friendlier to shared IRQs
1179 * than previous designs, while remaining 100% (?) SMP safe and capable.
1180 */
1181static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1182{
1183 ide_drive_t *drive;
1184 ide_hwif_t *hwif;
1185 struct request *rq;
1186 ide_startstop_t startstop;
867f8b4e 1187 int loops = 0;
1da177e4
LT
1188
1189 /* for atari only: POSSIBLY BROKEN HERE(?) */
1190 ide_get_lock(ide_intr, hwgroup);
1191
1192 /* caller must own ide_lock */
1193 BUG_ON(!irqs_disabled());
1194
1195 while (!hwgroup->busy) {
1196 hwgroup->busy = 1;
1197 drive = choose_drive(hwgroup);
1198 if (drive == NULL) {
1199 int sleeping = 0;
1200 unsigned long sleep = 0; /* shut up, gcc */
1201 hwgroup->rq = NULL;
1202 drive = hwgroup->drive;
1203 do {
1204 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1205 sleeping = 1;
1206 sleep = drive->sleep;
1207 }
1208 } while ((drive = drive->next) != hwgroup->drive);
1209 if (sleeping) {
1210 /*
1211 * Take a short snooze, and then wake up this hwgroup again.
1212 * This gives other hwgroups on the same a chance to
1213 * play fairly with us, just in case there are big differences
1214 * in relative throughputs.. don't want to hog the cpu too much.
1215 */
1216 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1217 sleep = jiffies + WAIT_MIN_SLEEP;
1218#if 1
1219 if (timer_pending(&hwgroup->timer))
1220 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1221#endif
1222 /* so that ide_timer_expiry knows what to do */
1223 hwgroup->sleeping = 1;
23450319 1224 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
1225 mod_timer(&hwgroup->timer, sleep);
1226 /* we purposely leave hwgroup->busy==1
1227 * while sleeping */
1228 } else {
1229 /* Ugly, but how can we sleep for the lock
1230 * otherwise? perhaps from tq_disk?
1231 */
1232
1233 /* for atari only */
1234 ide_release_lock();
1235 hwgroup->busy = 0;
1236 }
1237
1238 /* no more work for this hwgroup (for now) */
1239 return;
1240 }
867f8b4e 1241 again:
1da177e4
LT
1242 hwif = HWIF(drive);
1243 if (hwgroup->hwif->sharing_irq &&
1244 hwif != hwgroup->hwif &&
1245 hwif->io_ports[IDE_CONTROL_OFFSET]) {
1246 /* set nIEN for previous hwif */
1247 SELECT_INTERRUPT(drive);
1248 }
1249 hwgroup->hwif = hwif;
1250 hwgroup->drive = drive;
1251 drive->sleeping = 0;
1252 drive->service_start = jiffies;
1253
1254 if (blk_queue_plugged(drive->queue)) {
1255 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1256 break;
1257 }
1258
1259 /*
1260 * we know that the queue isn't empty, but this can happen
1261 * if the q->prep_rq_fn() decides to kill a request
1262 */
1263 rq = elv_next_request(drive->queue);
1264 if (!rq) {
1265 hwgroup->busy = 0;
1266 break;
1267 }
1268
1269 /*
1270 * Sanity: don't accept a request that isn't a PM request
1271 * if we are currently power managed. This is very important as
1272 * blk_stop_queue() doesn't prevent the elv_next_request()
1273 * above to return us whatever is in the queue. Since we call
1274 * ide_do_request() ourselves, we end up taking requests while
1275 * the queue is blocked...
1276 *
1277 * We let requests forced at head of queue with ide-preempt
1278 * though. I hope that doesn't happen too much, hopefully not
1279 * unless the subdriver triggers such a thing in its own PM
1280 * state machine.
867f8b4e
BH
1281 *
1282 * We count how many times we loop here to make sure we service
1283 * all drives in the hwgroup without looping for ever
1da177e4 1284 */
4aff5e23 1285 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
867f8b4e
BH
1286 drive = drive->next ? drive->next : hwgroup->drive;
1287 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1288 goto again;
1da177e4
LT
1289 /* We clear busy, there should be no pending ATA command at this point. */
1290 hwgroup->busy = 0;
1291 break;
1292 }
1293
1294 hwgroup->rq = rq;
1295
1296 /*
1297 * Some systems have trouble with IDE IRQs arriving while
1298 * the driver is still setting things up. So, here we disable
1299 * the IRQ used by this interface while the request is being started.
1300 * This may look bad at first, but pretty much the same thing
1301 * happens anyway when any interrupt comes in, IDE or otherwise
1302 * -- the kernel masks the IRQ while it is being handled.
1303 */
1304 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1305 disable_irq_nosync(hwif->irq);
1306 spin_unlock(&ide_lock);
366c7f55 1307 local_irq_enable_in_hardirq();
1da177e4
LT
1308 /* allow other IRQs while we start this request */
1309 startstop = start_request(drive, rq);
1310 spin_lock_irq(&ide_lock);
1311 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1312 enable_irq(hwif->irq);
1313 if (startstop == ide_stopped)
1314 hwgroup->busy = 0;
1315 }
1316}
1317
1318/*
1319 * Passes the stuff to ide_do_request
1320 */
165125e1 1321void do_ide_request(struct request_queue *q)
1da177e4
LT
1322{
1323 ide_drive_t *drive = q->queuedata;
1324
1325 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1326}
1327
1328/*
1329 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1330 * retry the current request in pio mode instead of risking tossing it
1331 * all away
1332 */
1333static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1334{
1335 ide_hwif_t *hwif = HWIF(drive);
1336 struct request *rq;
1337 ide_startstop_t ret = ide_stopped;
1338
1339 /*
1340 * end current dma transaction
1341 */
1342
1343 if (error < 0) {
1344 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1345 (void)HWIF(drive)->ide_dma_end(drive);
1346 ret = ide_error(drive, "dma timeout error",
1347 hwif->INB(IDE_STATUS_REG));
1348 } else {
1349 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
c283f5db 1350 hwif->dma_timeout(drive);
1da177e4
LT
1351 }
1352
1353 /*
1354 * disable dma for now, but remember that we did so because of
1355 * a timeout -- we'll reenable after we finish this next request
1356 * (or rather the first chunk of it) in pio.
1357 */
1358 drive->retry_pio++;
1359 drive->state = DMA_PIO_RETRY;
7469aaf6 1360 hwif->dma_off_quietly(drive);
1da177e4
LT
1361
1362 /*
1363 * un-busy drive etc (hwgroup->busy is cleared on return) and
1364 * make sure request is sane
1365 */
1366 rq = HWGROUP(drive)->rq;
ce42f191
HZ
1367
1368 if (!rq)
1369 goto out;
1370
1da177e4
LT
1371 HWGROUP(drive)->rq = NULL;
1372
1373 rq->errors = 0;
1374
1375 if (!rq->bio)
1376 goto out;
1377
1378 rq->sector = rq->bio->bi_sector;
1379 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1380 rq->hard_cur_sectors = rq->current_nr_sectors;
1381 rq->buffer = bio_data(rq->bio);
1382out:
1383 return ret;
1384}
1385
1386/**
1387 * ide_timer_expiry - handle lack of an IDE interrupt
1388 * @data: timer callback magic (hwgroup)
1389 *
1390 * An IDE command has timed out before the expected drive return
1391 * occurred. At this point we attempt to clean up the current
1392 * mess. If the current handler includes an expiry handler then
1393 * we invoke the expiry handler, and providing it is happy the
1394 * work is done. If that fails we apply generic recovery rules
1395 * invoking the handler and checking the drive DMA status. We
1396 * have an excessively incestuous relationship with the DMA
1397 * logic that wants cleaning up.
1398 */
1399
1400void ide_timer_expiry (unsigned long data)
1401{
1402 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1403 ide_handler_t *handler;
1404 ide_expiry_t *expiry;
1405 unsigned long flags;
1406 unsigned long wait = -1;
1407
1408 spin_lock_irqsave(&ide_lock, flags);
1409
23450319
SS
1410 if (((handler = hwgroup->handler) == NULL) ||
1411 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1da177e4
LT
1412 /*
1413 * Either a marginal timeout occurred
1414 * (got the interrupt just as timer expired),
1415 * or we were "sleeping" to give other devices a chance.
1416 * Either way, we don't really want to complain about anything.
1417 */
1418 if (hwgroup->sleeping) {
1419 hwgroup->sleeping = 0;
1420 hwgroup->busy = 0;
1421 }
1422 } else {
1423 ide_drive_t *drive = hwgroup->drive;
1424 if (!drive) {
1425 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1426 hwgroup->handler = NULL;
1427 } else {
1428 ide_hwif_t *hwif;
1429 ide_startstop_t startstop = ide_stopped;
1430 if (!hwgroup->busy) {
1431 hwgroup->busy = 1; /* paranoia */
1432 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1433 }
1434 if ((expiry = hwgroup->expiry) != NULL) {
1435 /* continue */
1436 if ((wait = expiry(drive)) > 0) {
1437 /* reset timer */
1438 hwgroup->timer.expires = jiffies + wait;
23450319 1439 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
1440 add_timer(&hwgroup->timer);
1441 spin_unlock_irqrestore(&ide_lock, flags);
1442 return;
1443 }
1444 }
1445 hwgroup->handler = NULL;
1446 /*
1447 * We need to simulate a real interrupt when invoking
1448 * the handler() function, which means we need to
1449 * globally mask the specific IRQ:
1450 */
1451 spin_unlock(&ide_lock);
1452 hwif = HWIF(drive);
1da177e4
LT
1453 /* disable_irq_nosync ?? */
1454 disable_irq(hwif->irq);
1da177e4
LT
1455 /* local CPU only,
1456 * as if we were handling an interrupt */
1457 local_irq_disable();
1458 if (hwgroup->polling) {
1459 startstop = handler(drive);
1460 } else if (drive_is_ready(drive)) {
1461 if (drive->waiting_for_dma)
841d2a9b 1462 hwgroup->hwif->dma_lost_irq(drive);
1da177e4
LT
1463 (void)ide_ack_intr(hwif);
1464 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1465 startstop = handler(drive);
1466 } else {
1467 if (drive->waiting_for_dma) {
1468 startstop = ide_dma_timeout_retry(drive, wait);
1469 } else
1470 startstop =
1471 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1472 }
1473 drive->service_time = jiffies - drive->service_start;
1474 spin_lock_irq(&ide_lock);
1475 enable_irq(hwif->irq);
1476 if (startstop == ide_stopped)
1477 hwgroup->busy = 0;
1478 }
1479 }
1480 ide_do_request(hwgroup, IDE_NO_IRQ);
1481 spin_unlock_irqrestore(&ide_lock, flags);
1482}
1483
1484/**
1485 * unexpected_intr - handle an unexpected IDE interrupt
1486 * @irq: interrupt line
1487 * @hwgroup: hwgroup being processed
1488 *
1489 * There's nothing really useful we can do with an unexpected interrupt,
1490 * other than reading the status register (to clear it), and logging it.
1491 * There should be no way that an irq can happen before we're ready for it,
1492 * so we needn't worry much about losing an "important" interrupt here.
1493 *
1494 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1495 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1496 * looks "good", we just ignore the interrupt completely.
1497 *
1498 * This routine assumes __cli() is in effect when called.
1499 *
1500 * If an unexpected interrupt happens on irq15 while we are handling irq14
1501 * and if the two interfaces are "serialized" (CMD640), then it looks like
1502 * we could screw up by interfering with a new request being set up for
1503 * irq15.
1504 *
1505 * In reality, this is a non-issue. The new command is not sent unless
1506 * the drive is ready to accept one, in which case we know the drive is
1507 * not trying to interrupt us. And ide_set_handler() is always invoked
1508 * before completing the issuance of any new drive command, so we will not
1509 * be accidentally invoked as a result of any valid command completion
1510 * interrupt.
1511 *
1512 * Note that we must walk the entire hwgroup here. We know which hwif
1513 * is doing the current command, but we don't know which hwif burped
1514 * mysteriously.
1515 */
1516
1517static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1518{
1519 u8 stat;
1520 ide_hwif_t *hwif = hwgroup->hwif;
1521
1522 /*
1523 * handle the unexpected interrupt
1524 */
1525 do {
1526 if (hwif->irq == irq) {
1527 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1528 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1529 /* Try to not flood the console with msgs */
1530 static unsigned long last_msgtime, count;
1531 ++count;
1532 if (time_after(jiffies, last_msgtime + HZ)) {
1533 last_msgtime = jiffies;
1534 printk(KERN_ERR "%s%s: unexpected interrupt, "
1535 "status=0x%02x, count=%ld\n",
1536 hwif->name,
1537 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1538 }
1539 }
1540 }
1541 } while ((hwif = hwif->next) != hwgroup->hwif);
1542}
1543
1544/**
1545 * ide_intr - default IDE interrupt handler
1546 * @irq: interrupt number
1547 * @dev_id: hwif group
1548 * @regs: unused weirdness from the kernel irq layer
1549 *
1550 * This is the default IRQ handler for the IDE layer. You should
1551 * not need to override it. If you do be aware it is subtle in
1552 * places
1553 *
1554 * hwgroup->hwif is the interface in the group currently performing
1555 * a command. hwgroup->drive is the drive and hwgroup->handler is
1556 * the IRQ handler to call. As we issue a command the handlers
1557 * step through multiple states, reassigning the handler to the
1558 * next step in the process. Unlike a smart SCSI controller IDE
1559 * expects the main processor to sequence the various transfer
1560 * stages. We also manage a poll timer to catch up with most
1561 * timeout situations. There are still a few where the handlers
1562 * don't ever decide to give up.
1563 *
1564 * The handler eventually returns ide_stopped to indicate the
1565 * request completed. At this point we issue the next request
1566 * on the hwgroup and the process begins again.
1567 */
1568
7d12e780 1569irqreturn_t ide_intr (int irq, void *dev_id)
1da177e4
LT
1570{
1571 unsigned long flags;
1572 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1573 ide_hwif_t *hwif;
1574 ide_drive_t *drive;
1575 ide_handler_t *handler;
1576 ide_startstop_t startstop;
1577
1578 spin_lock_irqsave(&ide_lock, flags);
1579 hwif = hwgroup->hwif;
1580
1581 if (!ide_ack_intr(hwif)) {
1582 spin_unlock_irqrestore(&ide_lock, flags);
1583 return IRQ_NONE;
1584 }
1585
1586 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1587 /*
1588 * Not expecting an interrupt from this drive.
1589 * That means this could be:
1590 * (1) an interrupt from another PCI device
1591 * sharing the same PCI INT# as us.
1592 * or (2) a drive just entered sleep or standby mode,
1593 * and is interrupting to let us know.
1594 * or (3) a spurious interrupt of unknown origin.
1595 *
1596 * For PCI, we cannot tell the difference,
1597 * so in that case we just ignore it and hope it goes away.
1598 *
1599 * FIXME: unexpected_intr should be hwif-> then we can
1600 * remove all the ifdef PCI crap
1601 */
1602#ifdef CONFIG_BLK_DEV_IDEPCI
1603 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1604#endif /* CONFIG_BLK_DEV_IDEPCI */
1605 {
1606 /*
1607 * Probably not a shared PCI interrupt,
1608 * so we can safely try to do something about it:
1609 */
1610 unexpected_intr(irq, hwgroup);
1611#ifdef CONFIG_BLK_DEV_IDEPCI
1612 } else {
1613 /*
1614 * Whack the status register, just in case
1615 * we have a leftover pending IRQ.
1616 */
1617 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1618#endif /* CONFIG_BLK_DEV_IDEPCI */
1619 }
1620 spin_unlock_irqrestore(&ide_lock, flags);
1621 return IRQ_NONE;
1622 }
1623 drive = hwgroup->drive;
1624 if (!drive) {
1625 /*
1626 * This should NEVER happen, and there isn't much
1627 * we could do about it here.
1628 *
1629 * [Note - this can occur if the drive is hot unplugged]
1630 */
1631 spin_unlock_irqrestore(&ide_lock, flags);
1632 return IRQ_HANDLED;
1633 }
1634 if (!drive_is_ready(drive)) {
1635 /*
1636 * This happens regularly when we share a PCI IRQ with
1637 * another device. Unfortunately, it can also happen
1638 * with some buggy drives that trigger the IRQ before
1639 * their status register is up to date. Hopefully we have
1640 * enough advance overhead that the latter isn't a problem.
1641 */
1642 spin_unlock_irqrestore(&ide_lock, flags);
1643 return IRQ_NONE;
1644 }
1645 if (!hwgroup->busy) {
1646 hwgroup->busy = 1; /* paranoia */
1647 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1648 }
1649 hwgroup->handler = NULL;
23450319 1650 hwgroup->req_gen++;
1da177e4
LT
1651 del_timer(&hwgroup->timer);
1652 spin_unlock(&ide_lock);
1653
f0dd8712
AL
1654 /* Some controllers might set DMA INTR no matter DMA or PIO;
1655 * bmdma status might need to be cleared even for
1656 * PIO interrupts to prevent spurious/lost irq.
1657 */
1658 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1659 /* ide_dma_end() needs bmdma status for error checking.
1660 * So, skip clearing bmdma status here and leave it
1661 * to ide_dma_end() if this is dma interrupt.
1662 */
1663 hwif->ide_dma_clear_irq(drive);
1664
1da177e4 1665 if (drive->unmask)
366c7f55 1666 local_irq_enable_in_hardirq();
1da177e4
LT
1667 /* service this interrupt, may set handler for next interrupt */
1668 startstop = handler(drive);
1669 spin_lock_irq(&ide_lock);
1670
1671 /*
1672 * Note that handler() may have set things up for another
1673 * interrupt to occur soon, but it cannot happen until
1674 * we exit from this routine, because it will be the
1675 * same irq as is currently being serviced here, and Linux
1676 * won't allow another of the same (on any CPU) until we return.
1677 */
1678 drive->service_time = jiffies - drive->service_start;
1679 if (startstop == ide_stopped) {
1680 if (hwgroup->handler == NULL) { /* paranoia */
1681 hwgroup->busy = 0;
1682 ide_do_request(hwgroup, hwif->irq);
1683 } else {
1684 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1685 "on exit\n", drive->name);
1686 }
1687 }
1688 spin_unlock_irqrestore(&ide_lock, flags);
1689 return IRQ_HANDLED;
1690}
1691
1692/**
1693 * ide_init_drive_cmd - initialize a drive command request
1694 * @rq: request object
1695 *
1696 * Initialize a request before we fill it in and send it down to
1697 * ide_do_drive_cmd. Commands must be set up by this function. Right
1698 * now it doesn't do a lot, but if that changes abusers will have a
d6e05edc 1699 * nasty surprise.
1da177e4
LT
1700 */
1701
1702void ide_init_drive_cmd (struct request *rq)
1703{
1704 memset(rq, 0, sizeof(*rq));
4aff5e23 1705 rq->cmd_type = REQ_TYPE_ATA_CMD;
1da177e4
LT
1706 rq->ref_count = 1;
1707}
1708
1709EXPORT_SYMBOL(ide_init_drive_cmd);
1710
1711/**
1712 * ide_do_drive_cmd - issue IDE special command
1713 * @drive: device to issue command
1714 * @rq: request to issue
1715 * @action: action for processing
1716 *
1717 * This function issues a special IDE device request
1718 * onto the request queue.
1719 *
1720 * If action is ide_wait, then the rq is queued at the end of the
1721 * request queue, and the function sleeps until it has been processed.
1722 * This is for use when invoked from an ioctl handler.
1723 *
1724 * If action is ide_preempt, then the rq is queued at the head of
1725 * the request queue, displacing the currently-being-processed
1726 * request and this function returns immediately without waiting
1727 * for the new rq to be completed. This is VERY DANGEROUS, and is
1728 * intended for careful use by the ATAPI tape/cdrom driver code.
1729 *
1da177e4
LT
1730 * If action is ide_end, then the rq is queued at the end of the
1731 * request queue, and the function returns immediately without waiting
1732 * for the new rq to be completed. This is again intended for careful
1733 * use by the ATAPI tape/cdrom driver code.
1734 */
1735
1736int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1737{
1738 unsigned long flags;
1739 ide_hwgroup_t *hwgroup = HWGROUP(drive);
60be6b9a 1740 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
1741 int where = ELEVATOR_INSERT_BACK, err;
1742 int must_wait = (action == ide_wait || action == ide_head_wait);
1743
1744 rq->errors = 0;
1da177e4
LT
1745
1746 /*
1747 * we need to hold an extra reference to request for safe inspection
1748 * after completion
1749 */
1750 if (must_wait) {
1751 rq->ref_count++;
c00895ab 1752 rq->end_io_data = &wait;
1da177e4
LT
1753 rq->end_io = blk_end_sync_rq;
1754 }
1755
1756 spin_lock_irqsave(&ide_lock, flags);
1757 if (action == ide_preempt)
1758 hwgroup->rq = NULL;
1759 if (action == ide_preempt || action == ide_head_wait) {
1760 where = ELEVATOR_INSERT_FRONT;
4aff5e23 1761 rq->cmd_flags |= REQ_PREEMPT;
1da177e4
LT
1762 }
1763 __elv_add_request(drive->queue, rq, where, 0);
1764 ide_do_request(hwgroup, IDE_NO_IRQ);
1765 spin_unlock_irqrestore(&ide_lock, flags);
1766
1767 err = 0;
1768 if (must_wait) {
1769 wait_for_completion(&wait);
1da177e4
LT
1770 if (rq->errors)
1771 err = -EIO;
1772
1773 blk_put_request(rq);
1774 }
1775
1776 return err;
1777}
1778
1779EXPORT_SYMBOL(ide_do_drive_cmd);