]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/ide/ide-iops.c
ide: factor out debugging code from ide_tf_load()
[mirror_ubuntu-bionic-kernel.git] / drivers / ide / ide-iops.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat <alan@redhat.com>
4 *
5 */
6
1da177e4
LT
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/string.h>
10#include <linux/kernel.h>
11#include <linux/timer.h>
12#include <linux/mm.h>
13#include <linux/interrupt.h>
14#include <linux/major.h>
15#include <linux/errno.h>
16#include <linux/genhd.h>
17#include <linux/blkpg.h>
18#include <linux/slab.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hdreg.h>
22#include <linux/ide.h>
23#include <linux/bitops.h>
1e86240f 24#include <linux/nmi.h>
1da177e4
LT
25
26#include <asm/byteorder.h>
27#include <asm/irq.h>
28#include <asm/uaccess.h>
29#include <asm/io.h>
30
31/*
32 * Conventional PIO operations for ATA devices
33 */
34
35static u8 ide_inb (unsigned long port)
36{
37 return (u8) inb(port);
38}
39
40static u16 ide_inw (unsigned long port)
41{
42 return (u16) inw(port);
43}
44
1da177e4
LT
45static void ide_outb (u8 val, unsigned long port)
46{
47 outb(val, port);
48}
49
50static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
51{
52 outb(addr, port);
53}
54
55static void ide_outw (u16 val, unsigned long port)
56{
57 outw(val, port);
58}
59
1da177e4
LT
60void default_hwif_iops (ide_hwif_t *hwif)
61{
62 hwif->OUTB = ide_outb;
63 hwif->OUTBSYNC = ide_outbsync;
64 hwif->OUTW = ide_outw;
1da177e4
LT
65 hwif->INB = ide_inb;
66 hwif->INW = ide_inw;
1da177e4
LT
67}
68
1da177e4
LT
69/*
70 * MMIO operations, typically used for SATA controllers
71 */
72
73static u8 ide_mm_inb (unsigned long port)
74{
75 return (u8) readb((void __iomem *) port);
76}
77
78static u16 ide_mm_inw (unsigned long port)
79{
80 return (u16) readw((void __iomem *) port);
81}
82
1da177e4
LT
83static void ide_mm_outb (u8 value, unsigned long port)
84{
85 writeb(value, (void __iomem *) port);
86}
87
88static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
89{
90 writeb(value, (void __iomem *) port);
91}
92
93static void ide_mm_outw (u16 value, unsigned long port)
94{
95 writew(value, (void __iomem *) port);
96}
97
1da177e4
LT
98void default_hwif_mmiops (ide_hwif_t *hwif)
99{
100 hwif->OUTB = ide_mm_outb;
101 /* Most systems will need to override OUTBSYNC, alas however
102 this one is controller specific! */
103 hwif->OUTBSYNC = ide_mm_outbsync;
104 hwif->OUTW = ide_mm_outw;
1da177e4
LT
105 hwif->INB = ide_mm_inb;
106 hwif->INW = ide_mm_inw;
1da177e4
LT
107}
108
109EXPORT_SYMBOL(default_hwif_mmiops);
110
1da177e4
LT
111void SELECT_DRIVE (ide_drive_t *drive)
112{
23579a2a 113 ide_hwif_t *hwif = drive->hwif;
ac95beed 114 const struct ide_port_ops *port_ops = hwif->port_ops;
23579a2a 115
ac95beed
BZ
116 if (port_ops && port_ops->selectproc)
117 port_ops->selectproc(drive);
23579a2a 118
4c3032d8 119 hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
1da177e4
LT
120}
121
1da177e4
LT
122void SELECT_MASK (ide_drive_t *drive, int mask)
123{
ac95beed
BZ
124 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
125
126 if (port_ops && port_ops->maskproc)
127 port_ops->maskproc(drive, mask);
1da177e4
LT
128}
129
1da177e4
LT
130/*
131 * Some localbus EIDE interfaces require a special access sequence
132 * when using 32-bit I/O instructions to transfer data. We call this
133 * the "vlb_sync" sequence, which consists of three successive reads
134 * of the sector count register location, with interrupts disabled
135 * to ensure that the reads all happen together.
136 */
137static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
138{
139 (void) HWIF(drive)->INB(port);
140 (void) HWIF(drive)->INB(port);
141 (void) HWIF(drive)->INB(port);
142}
143
144/*
145 * This is used for most PIO data transfers *from* the IDE interface
9567b349
BZ
146 *
147 * These routines will round up any request for an odd number of bytes,
148 * so if an odd len is specified, be sure that there's at least one
149 * extra byte allocated for the buffer.
1da177e4 150 */
92d3ab27 151static void ata_input_data(ide_drive_t *drive, struct request *rq,
9567b349 152 void *buf, unsigned int len)
1da177e4 153{
4c3032d8
BZ
154 ide_hwif_t *hwif = drive->hwif;
155 struct ide_io_ports *io_ports = &hwif->io_ports;
9567b349 156 unsigned long data_addr = io_ports->data_addr;
4c3032d8 157 u8 io_32bit = drive->io_32bit;
16bb69c1 158 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
1da177e4 159
9567b349
BZ
160 len++;
161
1da177e4 162 if (io_32bit) {
16bb69c1 163 unsigned long uninitialized_var(flags);
23579a2a 164
16bb69c1 165 if (io_32bit & 2) {
1da177e4 166 local_irq_save(flags);
4c3032d8 167 ata_vlb_sync(drive, io_ports->nsect_addr);
16bb69c1
BZ
168 }
169
170 if (mmio)
171 __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
172 else
173 insl(data_addr, buf, len / 4);
174
175 if (io_32bit & 2)
1da177e4 176 local_irq_restore(flags);
9567b349 177
16bb69c1
BZ
178 if ((len & 3) >= 2) {
179 if (mmio)
180 __ide_mm_insw((void __iomem *)data_addr,
181 (u8 *)buf + (len & ~3), 1);
182 else
183 insw(data_addr, (u8 *)buf + (len & ~3), 1);
184 }
185 } else {
186 if (mmio)
187 __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
188 else
189 insw(data_addr, buf, len / 2);
190 }
1da177e4
LT
191}
192
193/*
194 * This is used for most PIO data transfers *to* the IDE interface
195 */
92d3ab27 196static void ata_output_data(ide_drive_t *drive, struct request *rq,
9567b349 197 void *buf, unsigned int len)
1da177e4 198{
4c3032d8
BZ
199 ide_hwif_t *hwif = drive->hwif;
200 struct ide_io_ports *io_ports = &hwif->io_ports;
9567b349 201 unsigned long data_addr = io_ports->data_addr;
4c3032d8 202 u8 io_32bit = drive->io_32bit;
16bb69c1 203 u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
1da177e4
LT
204
205 if (io_32bit) {
16bb69c1 206 unsigned long uninitialized_var(flags);
23579a2a 207
16bb69c1 208 if (io_32bit & 2) {
1da177e4 209 local_irq_save(flags);
4c3032d8 210 ata_vlb_sync(drive, io_ports->nsect_addr);
16bb69c1
BZ
211 }
212
213 if (mmio)
214 __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
215 else
216 outsl(data_addr, buf, len / 4);
217
218 if (io_32bit & 2)
1da177e4 219 local_irq_restore(flags);
1da177e4 220
16bb69c1
BZ
221 if ((len & 3) >= 2) {
222 if (mmio)
223 __ide_mm_outsw((void __iomem *)data_addr,
224 (u8 *)buf + (len & ~3), 1);
225 else
226 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
227 }
228 } else {
229 if (mmio)
230 __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
231 else
232 outsw(data_addr, buf, len / 2);
233 }
1da177e4
LT
234}
235
236void default_hwif_transport(ide_hwif_t *hwif)
237{
9567b349
BZ
238 hwif->input_data = ata_input_data;
239 hwif->output_data = ata_output_data;
1da177e4
LT
240}
241
1da177e4
LT
242void ide_fix_driveid (struct hd_driveid *id)
243{
244#ifndef __LITTLE_ENDIAN
245# ifdef __BIG_ENDIAN
246 int i;
247 u16 *stringcast;
248
249 id->config = __le16_to_cpu(id->config);
250 id->cyls = __le16_to_cpu(id->cyls);
251 id->reserved2 = __le16_to_cpu(id->reserved2);
252 id->heads = __le16_to_cpu(id->heads);
253 id->track_bytes = __le16_to_cpu(id->track_bytes);
254 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
255 id->sectors = __le16_to_cpu(id->sectors);
256 id->vendor0 = __le16_to_cpu(id->vendor0);
257 id->vendor1 = __le16_to_cpu(id->vendor1);
258 id->vendor2 = __le16_to_cpu(id->vendor2);
259 stringcast = (u16 *)&id->serial_no[0];
260 for (i = 0; i < (20/2); i++)
261 stringcast[i] = __le16_to_cpu(stringcast[i]);
262 id->buf_type = __le16_to_cpu(id->buf_type);
263 id->buf_size = __le16_to_cpu(id->buf_size);
264 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
265 stringcast = (u16 *)&id->fw_rev[0];
266 for (i = 0; i < (8/2); i++)
267 stringcast[i] = __le16_to_cpu(stringcast[i]);
268 stringcast = (u16 *)&id->model[0];
269 for (i = 0; i < (40/2); i++)
270 stringcast[i] = __le16_to_cpu(stringcast[i]);
271 id->dword_io = __le16_to_cpu(id->dword_io);
272 id->reserved50 = __le16_to_cpu(id->reserved50);
273 id->field_valid = __le16_to_cpu(id->field_valid);
274 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
275 id->cur_heads = __le16_to_cpu(id->cur_heads);
276 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
277 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
278 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
279 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
280 id->dma_1word = __le16_to_cpu(id->dma_1word);
281 id->dma_mword = __le16_to_cpu(id->dma_mword);
282 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
283 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
284 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
285 id->eide_pio = __le16_to_cpu(id->eide_pio);
286 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
287 for (i = 0; i < 2; ++i)
288 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
289 for (i = 0; i < 4; ++i)
290 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
291 id->queue_depth = __le16_to_cpu(id->queue_depth);
292 for (i = 0; i < 4; ++i)
293 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
294 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
295 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
296 id->command_set_1 = __le16_to_cpu(id->command_set_1);
297 id->command_set_2 = __le16_to_cpu(id->command_set_2);
298 id->cfsse = __le16_to_cpu(id->cfsse);
299 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
300 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
301 id->csf_default = __le16_to_cpu(id->csf_default);
302 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
303 id->trseuc = __le16_to_cpu(id->trseuc);
304 id->trsEuc = __le16_to_cpu(id->trsEuc);
305 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
306 id->mprc = __le16_to_cpu(id->mprc);
307 id->hw_config = __le16_to_cpu(id->hw_config);
308 id->acoustic = __le16_to_cpu(id->acoustic);
309 id->msrqs = __le16_to_cpu(id->msrqs);
310 id->sxfert = __le16_to_cpu(id->sxfert);
311 id->sal = __le16_to_cpu(id->sal);
312 id->spg = __le32_to_cpu(id->spg);
313 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
314 for (i = 0; i < 22; i++)
315 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
316 id->last_lun = __le16_to_cpu(id->last_lun);
317 id->word127 = __le16_to_cpu(id->word127);
318 id->dlf = __le16_to_cpu(id->dlf);
319 id->csfo = __le16_to_cpu(id->csfo);
320 for (i = 0; i < 26; i++)
321 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
322 id->word156 = __le16_to_cpu(id->word156);
323 for (i = 0; i < 3; i++)
324 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
325 id->cfa_power = __le16_to_cpu(id->cfa_power);
326 for (i = 0; i < 14; i++)
327 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
328 for (i = 0; i < 31; i++)
329 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
330 for (i = 0; i < 48; i++)
331 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
332 id->integrity_word = __le16_to_cpu(id->integrity_word);
333# else
334# error "Please fix <asm/byteorder.h>"
335# endif
336#endif
337}
338
01745112
BZ
339/*
340 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
341 * removing leading/trailing blanks and compressing internal blanks.
342 * It is primarily used to tidy up the model name/number fields as
343 * returned by the WIN_[P]IDENTIFY commands.
344 */
345
1da177e4
LT
346void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
347{
348 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
349
350 if (byteswap) {
351 /* convert from big-endian to host byte order */
352 for (p = end ; p != s;) {
353 unsigned short *pp = (unsigned short *) (p -= 2);
354 *pp = ntohs(*pp);
355 }
356 }
357 /* strip leading blanks */
358 while (s != end && *s == ' ')
359 ++s;
360 /* compress internal blanks and strip trailing blanks */
361 while (s != end && *s) {
362 if (*s++ != ' ' || (s != end && *s && *s != ' '))
363 *p++ = *(s-1);
364 }
365 /* wipe out trailing garbage */
366 while (p != end)
367 *p++ = '\0';
368}
369
370EXPORT_SYMBOL(ide_fixstring);
371
372/*
373 * Needed for PCI irq sharing
374 */
375int drive_is_ready (ide_drive_t *drive)
376{
377 ide_hwif_t *hwif = HWIF(drive);
378 u8 stat = 0;
379
380 if (drive->waiting_for_dma)
5e37bdc0 381 return hwif->dma_ops->dma_test_irq(drive);
1da177e4
LT
382
383#if 0
384 /* need to guarantee 400ns since last command was issued */
385 udelay(1);
386#endif
387
1da177e4
LT
388 /*
389 * We do a passive status test under shared PCI interrupts on
390 * cards that truly share the ATA side interrupt, but may also share
391 * an interrupt with another pci card/device. We make no assumptions
392 * about possible isa-pnp and pci-pnp issues yet.
393 */
4c3032d8 394 if (hwif->io_ports.ctl_addr)
c47137a9 395 stat = ide_read_altstatus(drive);
1da177e4 396 else
1da177e4 397 /* Note: this may clear a pending IRQ!! */
c47137a9 398 stat = ide_read_status(drive);
1da177e4
LT
399
400 if (stat & BUSY_STAT)
401 /* drive busy: definitely not interrupting */
402 return 0;
403
404 /* drive ready: *might* be interrupting */
405 return 1;
406}
407
408EXPORT_SYMBOL(drive_is_ready);
409
1da177e4
LT
410/*
411 * This routine busy-waits for the drive status to be not "busy".
412 * It then checks the status for all of the "good" bits and none
413 * of the "bad" bits, and if all is okay it returns 0. All other
74af21cf 414 * cases return error -- caller may then invoke ide_error().
1da177e4
LT
415 *
416 * This routine should get fixed to not hog the cpu during extra long waits..
417 * That could be done by busy-waiting for the first jiffy or two, and then
418 * setting a timer to wake up at half second intervals thereafter,
419 * until timeout is achieved, before timing out.
420 */
aedea591 421static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
1da177e4 422{
1da177e4 423 unsigned long flags;
74af21cf
BZ
424 int i;
425 u8 stat;
1da177e4
LT
426
427 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
c47137a9
BZ
428 stat = ide_read_status(drive);
429
430 if (stat & BUSY_STAT) {
1da177e4
LT
431 local_irq_set(flags);
432 timeout += jiffies;
c47137a9 433 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
1da177e4
LT
434 if (time_after(jiffies, timeout)) {
435 /*
436 * One last read after the timeout in case
437 * heavy interrupt load made us not make any
438 * progress during the timeout..
439 */
c47137a9 440 stat = ide_read_status(drive);
1da177e4
LT
441 if (!(stat & BUSY_STAT))
442 break;
443
444 local_irq_restore(flags);
74af21cf
BZ
445 *rstat = stat;
446 return -EBUSY;
1da177e4
LT
447 }
448 }
449 local_irq_restore(flags);
450 }
451 /*
452 * Allow status to settle, then read it again.
453 * A few rare drives vastly violate the 400ns spec here,
454 * so we'll wait up to 10usec for a "good" status
455 * rather than expensively fail things immediately.
456 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
457 */
458 for (i = 0; i < 10; i++) {
459 udelay(1);
c47137a9
BZ
460 stat = ide_read_status(drive);
461
462 if (OK_STAT(stat, good, bad)) {
74af21cf 463 *rstat = stat;
1da177e4 464 return 0;
74af21cf 465 }
1da177e4 466 }
74af21cf
BZ
467 *rstat = stat;
468 return -EFAULT;
469}
470
471/*
472 * In case of error returns error value after doing "*startstop = ide_error()".
473 * The caller should return the updated value of "startstop" in this case,
474 * "startstop" is unchanged when the function returns 0.
475 */
476int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
477{
478 int err;
479 u8 stat;
480
481 /* bail early if we've exceeded max_failures */
482 if (drive->max_failures && (drive->failures > drive->max_failures)) {
483 *startstop = ide_stopped;
484 return 1;
485 }
486
487 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
488
489 if (err) {
490 char *s = (err == -EBUSY) ? "status timeout" : "status error";
491 *startstop = ide_error(drive, s, stat);
492 }
493
494 return err;
1da177e4
LT
495}
496
497EXPORT_SYMBOL(ide_wait_stat);
498
a5b7e70d
BZ
499/**
500 * ide_in_drive_list - look for drive in black/white list
501 * @id: drive identifier
502 * @drive_table: list to inspect
503 *
504 * Look for a drive in the blacklist and the whitelist tables
505 * Returns 1 if the drive is found in the table.
506 */
507
508int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
509{
510 for ( ; drive_table->id_model; drive_table++)
511 if ((!strcmp(drive_table->id_model, id->model)) &&
512 (!drive_table->id_firmware ||
513 strstr(id->fw_rev, drive_table->id_firmware)))
514 return 1;
515 return 0;
516}
517
b0244a00
BZ
518EXPORT_SYMBOL_GPL(ide_in_drive_list);
519
a5b7e70d
BZ
520/*
521 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
522 * We list them here and depend on the device side cable detection for them.
8588a2b7
BZ
523 *
524 * Some optical devices with the buggy firmwares have the same problem.
a5b7e70d
BZ
525 */
526static const struct drive_list_entry ivb_list[] = {
527 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
8588a2b7 528 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
e97564f3
PM
529 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
530 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
531 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
a5b7e70d
BZ
532 { NULL , NULL }
533};
534
1da177e4
LT
535/*
536 * All hosts that use the 80c ribbon must use!
537 * The name is derived from upper byte of word 93 and the 80c ribbon.
538 */
539u8 eighty_ninty_three (ide_drive_t *drive)
540{
7f8f48af
BZ
541 ide_hwif_t *hwif = drive->hwif;
542 struct hd_driveid *id = drive->id;
a5b7e70d 543 int ivb = ide_in_drive_list(id, ivb_list);
7f8f48af 544
49521f97
BZ
545 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
546 return 1;
547
a5b7e70d
BZ
548 if (ivb)
549 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
550 drive->name);
551
b98f8803
GK
552 if (ide_dev_is_sata(id) && !ivb)
553 return 1;
554
a5b7e70d 555 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
7f8f48af 556 goto no_80w;
1a1276e7 557
f68d9320
BZ
558 /*
559 * FIXME:
f367bed0 560 * - change master/slave IDENTIFY order
a5b7e70d 561 * - force bit13 (80c cable present) check also for !ivb devices
f68d9320
BZ
562 * (unless the slave device is pre-ATA3)
563 */
a5b7e70d 564 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
7f8f48af
BZ
565 return 1;
566
567no_80w:
568 if (drive->udma33_warned == 1)
569 return 0;
570
571 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
572 "limiting max speed to UDMA33\n",
49521f97
BZ
573 drive->name,
574 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
7f8f48af
BZ
575
576 drive->udma33_warned = 1;
577
578 return 0;
1da177e4
LT
579}
580
8a455134 581int ide_driveid_update(ide_drive_t *drive)
1da177e4 582{
8a455134 583 ide_hwif_t *hwif = drive->hwif;
1da177e4 584 struct hd_driveid *id;
8a455134 585 unsigned long timeout, flags;
c47137a9 586 u8 stat;
1da177e4 587
1da177e4
LT
588 /*
589 * Re-read drive->id for possible DMA mode
590 * change (copied from ide-probe.c)
591 */
1da177e4
LT
592
593 SELECT_MASK(drive, 1);
81ca6919 594 ide_set_irq(drive, 1);
1da177e4 595 msleep(50);
32b3fe4f 596 hwif->OUTBSYNC(drive, WIN_IDENTIFY, hwif->io_ports.command_addr);
1da177e4
LT
597 timeout = jiffies + WAIT_WORSTCASE;
598 do {
599 if (time_after(jiffies, timeout)) {
600 SELECT_MASK(drive, 0);
601 return 0; /* drive timed-out */
602 }
c47137a9 603
1da177e4 604 msleep(50); /* give drive a breather */
c47137a9
BZ
605 stat = ide_read_altstatus(drive);
606 } while (stat & BUSY_STAT);
607
1da177e4 608 msleep(50); /* wait for IRQ and DRQ_STAT */
c47137a9
BZ
609 stat = ide_read_status(drive);
610
611 if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
1da177e4
LT
612 SELECT_MASK(drive, 0);
613 printk("%s: CHECK for good STATUS\n", drive->name);
614 return 0;
615 }
616 local_irq_save(flags);
617 SELECT_MASK(drive, 0);
618 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
619 if (!id) {
620 local_irq_restore(flags);
621 return 0;
622 }
9567b349 623 hwif->input_data(drive, NULL, id, SECTOR_SIZE);
c47137a9 624 (void)ide_read_status(drive); /* clear drive IRQ */
1da177e4
LT
625 local_irq_enable();
626 local_irq_restore(flags);
627 ide_fix_driveid(id);
628 if (id) {
629 drive->id->dma_ultra = id->dma_ultra;
630 drive->id->dma_mword = id->dma_mword;
631 drive->id->dma_1word = id->dma_1word;
632 /* anything more ? */
633 kfree(id);
3ab7efe8
BZ
634
635 if (drive->using_dma && ide_id_dma_bug(drive))
636 ide_dma_off(drive);
1da177e4
LT
637 }
638
639 return 1;
1da177e4
LT
640}
641
74af21cf 642int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
1da177e4 643{
74af21cf 644 ide_hwif_t *hwif = drive->hwif;
4c3032d8 645 struct ide_io_ports *io_ports = &hwif->io_ports;
89613e66 646 int error = 0;
1da177e4
LT
647 u8 stat;
648
649// while (HWGROUP(drive)->busy)
650// msleep(50);
651
652#ifdef CONFIG_BLK_DEV_IDEDMA
5e37bdc0
BZ
653 if (hwif->dma_ops) /* check if host supports DMA */
654 hwif->dma_ops->dma_host_set(drive, 0);
1da177e4
LT
655#endif
656
89613e66
SS
657 /* Skip setting PIO flow-control modes on pre-EIDE drives */
658 if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
659 goto skip;
660
1da177e4
LT
661 /*
662 * Don't use ide_wait_cmd here - it will
663 * attempt to set_geometry and recalibrate,
664 * but for some reason these don't work at
665 * this point (lost interrupt).
666 */
667 /*
668 * Select the drive, and issue the SETFEATURES command
669 */
670 disable_irq_nosync(hwif->irq);
671
672 /*
673 * FIXME: we race against the running IRQ here if
674 * this is called from non IRQ context. If we use
675 * disable_irq() we hang on the error path. Work
676 * is needed.
677 */
678
679 udelay(1);
680 SELECT_DRIVE(drive);
681 SELECT_MASK(drive, 0);
682 udelay(1);
81ca6919 683 ide_set_irq(drive, 0);
4c3032d8
BZ
684 hwif->OUTB(speed, io_ports->nsect_addr);
685 hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
686 hwif->OUTBSYNC(drive, WIN_SETFEATURES, io_ports->command_addr);
81ca6919
BZ
687 if (drive->quirk_list == 2)
688 ide_set_irq(drive, 1);
1da177e4 689
74af21cf
BZ
690 error = __ide_wait_stat(drive, drive->ready_stat,
691 BUSY_STAT|DRQ_STAT|ERR_STAT,
692 WAIT_CMD, &stat);
1da177e4
LT
693
694 SELECT_MASK(drive, 0);
695
696 enable_irq(hwif->irq);
697
698 if (error) {
699 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
700 return error;
701 }
702
703 drive->id->dma_ultra &= ~0xFF00;
704 drive->id->dma_mword &= ~0x0F00;
705 drive->id->dma_1word &= ~0x0F00;
706
89613e66 707 skip:
1da177e4 708#ifdef CONFIG_BLK_DEV_IDEDMA
f37aaf9e
BZ
709 if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
710 drive->using_dma)
5e37bdc0
BZ
711 hwif->dma_ops->dma_host_set(drive, 1);
712 else if (hwif->dma_ops) /* check if host supports DMA */
4a546e04 713 ide_dma_off_quietly(drive);
1da177e4
LT
714#endif
715
716 switch(speed) {
717 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
718 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
719 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
720 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
721 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
722 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
723 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
724 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
725 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
726 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
727 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
728 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
729 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
730 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
731 default: break;
732 }
733 if (!drive->init_speed)
734 drive->init_speed = speed;
735 drive->current_speed = speed;
736 return error;
737}
738
1da177e4
LT
739/*
740 * This should get invoked any time we exit the driver to
741 * wait for an interrupt response from a drive. handler() points
742 * at the appropriate code to handle the next interrupt, and a
743 * timer is started to prevent us from waiting forever in case
744 * something goes wrong (see the ide_timer_expiry() handler later on).
745 *
746 * See also ide_execute_command
747 */
748static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
749 unsigned int timeout, ide_expiry_t *expiry)
750{
751 ide_hwgroup_t *hwgroup = HWGROUP(drive);
752
d30a426d 753 BUG_ON(hwgroup->handler);
1da177e4
LT
754 hwgroup->handler = handler;
755 hwgroup->expiry = expiry;
756 hwgroup->timer.expires = jiffies + timeout;
d30a426d 757 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
758 add_timer(&hwgroup->timer);
759}
760
761void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
762 unsigned int timeout, ide_expiry_t *expiry)
763{
764 unsigned long flags;
765 spin_lock_irqsave(&ide_lock, flags);
766 __ide_set_handler(drive, handler, timeout, expiry);
767 spin_unlock_irqrestore(&ide_lock, flags);
768}
769
770EXPORT_SYMBOL(ide_set_handler);
771
772/**
773 * ide_execute_command - execute an IDE command
774 * @drive: IDE drive to issue the command against
775 * @command: command byte to write
776 * @handler: handler for next phase
777 * @timeout: timeout for command
778 * @expiry: handler to run on timeout
779 *
780 * Helper function to issue an IDE command. This handles the
781 * atomicity requirements, command timing and ensures that the
782 * handler and IRQ setup do not race. All IDE command kick off
783 * should go via this function or do equivalent locking.
784 */
cd2a2d96
BZ
785
786void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
787 unsigned timeout, ide_expiry_t *expiry)
1da177e4
LT
788{
789 unsigned long flags;
1da177e4 790 ide_hwif_t *hwif = HWIF(drive);
629f944b 791
1da177e4 792 spin_lock_irqsave(&ide_lock, flags);
629f944b 793 __ide_set_handler(drive, handler, timeout, expiry);
4c3032d8 794 hwif->OUTBSYNC(drive, cmd, hwif->io_ports.command_addr);
629f944b
BZ
795 /*
796 * Drive takes 400nS to respond, we must avoid the IRQ being
797 * serviced before that.
798 *
799 * FIXME: we could skip this delay with care on non shared devices
800 */
1da177e4
LT
801 ndelay(400);
802 spin_unlock_irqrestore(&ide_lock, flags);
803}
1da177e4
LT
804EXPORT_SYMBOL(ide_execute_command);
805
1fc14258
BZ
806void ide_execute_pkt_cmd(ide_drive_t *drive)
807{
808 ide_hwif_t *hwif = drive->hwif;
809 unsigned long flags;
810
811 spin_lock_irqsave(&ide_lock, flags);
812 hwif->OUTBSYNC(drive, WIN_PACKETCMD, hwif->io_ports.command_addr);
813 ndelay(400);
814 spin_unlock_irqrestore(&ide_lock, flags);
815}
816EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
1da177e4
LT
817
818/* needed below */
819static ide_startstop_t do_reset1 (ide_drive_t *, int);
820
821/*
822 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
823 * during an atapi drive reset operation. If the drive has not yet responded,
824 * and we have not yet hit our maximum waiting time, then the timer is restarted
825 * for another 50ms.
826 */
827static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
828{
829 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1da177e4
LT
830 u8 stat;
831
832 SELECT_DRIVE(drive);
833 udelay (10);
c47137a9 834 stat = ide_read_status(drive);
1da177e4 835
c47137a9 836 if (OK_STAT(stat, 0, BUSY_STAT))
1da177e4 837 printk("%s: ATAPI reset complete\n", drive->name);
c47137a9 838 else {
1da177e4 839 if (time_before(jiffies, hwgroup->poll_timeout)) {
1da177e4
LT
840 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
841 /* continue polling */
842 return ide_started;
843 }
844 /* end of polling */
845 hwgroup->polling = 0;
846 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
847 drive->name, stat);
848 /* do it the old fashioned way */
849 return do_reset1(drive, 1);
850 }
851 /* done polling */
852 hwgroup->polling = 0;
913759ac 853 hwgroup->resetting = 0;
1da177e4
LT
854 return ide_stopped;
855}
856
857/*
858 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
859 * during an ide reset operation. If the drives have not yet responded,
860 * and we have not yet hit our maximum waiting time, then the timer is restarted
861 * for another 50ms.
862 */
863static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
864{
865 ide_hwgroup_t *hwgroup = HWGROUP(drive);
866 ide_hwif_t *hwif = HWIF(drive);
ac95beed 867 const struct ide_port_ops *port_ops = hwif->port_ops;
1da177e4
LT
868 u8 tmp;
869
ac95beed
BZ
870 if (port_ops && port_ops->reset_poll) {
871 if (port_ops->reset_poll(drive)) {
1da177e4
LT
872 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
873 hwif->name, drive->name);
874 return ide_stopped;
875 }
876 }
877
c47137a9
BZ
878 tmp = ide_read_status(drive);
879
880 if (!OK_STAT(tmp, 0, BUSY_STAT)) {
1da177e4 881 if (time_before(jiffies, hwgroup->poll_timeout)) {
1da177e4
LT
882 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
883 /* continue polling */
884 return ide_started;
885 }
886 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
887 drive->failures++;
888 } else {
889 printk("%s: reset: ", hwif->name);
64a57fe4
BZ
890 tmp = ide_read_error(drive);
891
892 if (tmp == 1) {
1da177e4
LT
893 printk("success\n");
894 drive->failures = 0;
895 } else {
896 drive->failures++;
897 printk("master: ");
898 switch (tmp & 0x7f) {
899 case 1: printk("passed");
900 break;
901 case 2: printk("formatter device error");
902 break;
903 case 3: printk("sector buffer error");
904 break;
905 case 4: printk("ECC circuitry error");
906 break;
907 case 5: printk("controlling MPU error");
908 break;
909 default:printk("error (0x%02x?)", tmp);
910 }
911 if (tmp & 0x80)
912 printk("; slave: failed");
913 printk("\n");
914 }
915 }
916 hwgroup->polling = 0; /* done polling */
913759ac 917 hwgroup->resetting = 0; /* done reset attempt */
1da177e4
LT
918 return ide_stopped;
919}
920
1da177e4
LT
921static void ide_disk_pre_reset(ide_drive_t *drive)
922{
923 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
924
925 drive->special.all = 0;
926 drive->special.b.set_geometry = legacy;
927 drive->special.b.recalibrate = legacy;
4ee06b7e 928 drive->mult_count = 0;
1da177e4
LT
929 if (!drive->keep_settings && !drive->using_dma)
930 drive->mult_req = 0;
931 if (drive->mult_req != drive->mult_count)
932 drive->special.b.set_multmode = 1;
933}
934
935static void pre_reset(ide_drive_t *drive)
936{
ac95beed
BZ
937 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
938
1da177e4
LT
939 if (drive->media == ide_disk)
940 ide_disk_pre_reset(drive);
941 else
942 drive->post_reset = 1;
943
99ffbe0e
BZ
944 if (drive->using_dma) {
945 if (drive->crc_count)
578cfa0d 946 ide_check_dma_crc(drive);
99ffbe0e
BZ
947 else
948 ide_dma_off(drive);
949 }
950
951 if (!drive->keep_settings) {
952 if (!drive->using_dma) {
1da177e4
LT
953 drive->unmask = 0;
954 drive->io_32bit = 0;
955 }
956 return;
957 }
1da177e4 958
ac95beed
BZ
959 if (port_ops && port_ops->pre_reset)
960 port_ops->pre_reset(drive);
1da177e4 961
513daadd
SS
962 if (drive->current_speed != 0xff)
963 drive->desired_speed = drive->current_speed;
964 drive->current_speed = 0xff;
1da177e4
LT
965}
966
967/*
968 * do_reset1() attempts to recover a confused drive by resetting it.
969 * Unfortunately, resetting a disk drive actually resets all devices on
970 * the same interface, so it can really be thought of as resetting the
971 * interface rather than resetting the drive.
972 *
973 * ATAPI devices have their own reset mechanism which allows them to be
974 * individually reset without clobbering other devices on the same interface.
975 *
976 * Unfortunately, the IDE interface does not generate an interrupt to let
977 * us know when the reset operation has finished, so we must poll for this.
978 * Equally poor, though, is the fact that this may a very long time to complete,
979 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
980 * we set a timer to poll at 50ms intervals.
981 */
982static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
983{
984 unsigned int unit;
985 unsigned long flags;
986 ide_hwif_t *hwif;
987 ide_hwgroup_t *hwgroup;
4c3032d8 988 struct ide_io_ports *io_ports;
ac95beed 989 const struct ide_port_ops *port_ops;
23579a2a
BZ
990 u8 ctl;
991
1da177e4
LT
992 spin_lock_irqsave(&ide_lock, flags);
993 hwif = HWIF(drive);
994 hwgroup = HWGROUP(drive);
995
4c3032d8
BZ
996 io_ports = &hwif->io_ports;
997
1da177e4 998 /* We must not reset with running handlers */
125e1874 999 BUG_ON(hwgroup->handler != NULL);
1da177e4
LT
1000
1001 /* For an ATAPI device, first try an ATAPI SRST. */
1002 if (drive->media != ide_disk && !do_not_try_atapi) {
913759ac 1003 hwgroup->resetting = 1;
1da177e4
LT
1004 pre_reset(drive);
1005 SELECT_DRIVE(drive);
1006 udelay (20);
4c3032d8 1007 hwif->OUTBSYNC(drive, WIN_SRST, io_ports->command_addr);
68ad9910 1008 ndelay(400);
1da177e4
LT
1009 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1010 hwgroup->polling = 1;
1011 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1012 spin_unlock_irqrestore(&ide_lock, flags);
1013 return ide_started;
1014 }
1015
1016 /*
1017 * First, reset any device state data we were maintaining
1018 * for any of the drives on this interface.
1019 */
1020 for (unit = 0; unit < MAX_DRIVES; ++unit)
1021 pre_reset(&hwif->drives[unit]);
1022
4c3032d8 1023 if (io_ports->ctl_addr == 0) {
1da177e4
LT
1024 spin_unlock_irqrestore(&ide_lock, flags);
1025 return ide_stopped;
1026 }
1027
913759ac 1028 hwgroup->resetting = 1;
1da177e4
LT
1029 /*
1030 * Note that we also set nIEN while resetting the device,
1031 * to mask unwanted interrupts from the interface during the reset.
1032 * However, due to the design of PC hardware, this will cause an
1033 * immediate interrupt due to the edge transition it produces.
1034 * This single interrupt gives us a "fast poll" for drives that
1035 * recover from reset very quickly, saving us the first 50ms wait time.
1036 */
1037 /* set SRST and nIEN */
4c3032d8 1038 hwif->OUTBSYNC(drive, drive->ctl|6, io_ports->ctl_addr);
1da177e4
LT
1039 /* more than enough time */
1040 udelay(10);
23579a2a
BZ
1041 if (drive->quirk_list == 2)
1042 ctl = drive->ctl; /* clear SRST and nIEN */
1043 else
1044 ctl = drive->ctl | 2; /* clear SRST, leave nIEN */
4c3032d8 1045 hwif->OUTBSYNC(drive, ctl, io_ports->ctl_addr);
1da177e4
LT
1046 /* more than enough time */
1047 udelay(10);
1048 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1049 hwgroup->polling = 1;
1050 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1051
1052 /*
1053 * Some weird controller like resetting themselves to a strange
1054 * state when the disks are reset this way. At least, the Winbond
1055 * 553 documentation says that
1056 */
ac95beed
BZ
1057 port_ops = hwif->port_ops;
1058 if (port_ops && port_ops->resetproc)
1059 port_ops->resetproc(drive);
1da177e4
LT
1060
1061 spin_unlock_irqrestore(&ide_lock, flags);
1062 return ide_started;
1063}
1064
1065/*
1066 * ide_do_reset() is the entry point to the drive/interface reset code.
1067 */
1068
1069ide_startstop_t ide_do_reset (ide_drive_t *drive)
1070{
1071 return do_reset1(drive, 0);
1072}
1073
1074EXPORT_SYMBOL(ide_do_reset);
1075
1076/*
1077 * ide_wait_not_busy() waits for the currently selected device on the hwif
9d501529 1078 * to report a non-busy status, see comments in ide_probe_port().
1da177e4
LT
1079 */
1080int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1081{
1082 u8 stat = 0;
1083
1084 while(timeout--) {
1085 /*
1086 * Turn this into a schedule() sleep once I'm sure
1087 * about locking issues (2.5 work ?).
1088 */
1089 mdelay(1);
4c3032d8 1090 stat = hwif->INB(hwif->io_ports.status_addr);
1da177e4
LT
1091 if ((stat & BUSY_STAT) == 0)
1092 return 0;
1093 /*
1094 * Assume a value of 0xff means nothing is connected to
1095 * the interface and it doesn't implement the pull-down
1096 * resistor on D7.
1097 */
1098 if (stat == 0xff)
1099 return -ENODEV;
6842f8c8 1100 touch_softlockup_watchdog();
1e86240f 1101 touch_nmi_watchdog();
1da177e4
LT
1102 }
1103 return -EBUSY;
1104}
1105
1106EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1107