]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/ide/ide-iops.c
ide: add struct ide_port_ops (take 2)
[mirror_ubuntu-zesty-kernel.git] / drivers / ide / ide-iops.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat <alan@redhat.com>
4 *
5 */
6
1da177e4
LT
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/string.h>
10#include <linux/kernel.h>
11#include <linux/timer.h>
12#include <linux/mm.h>
13#include <linux/interrupt.h>
14#include <linux/major.h>
15#include <linux/errno.h>
16#include <linux/genhd.h>
17#include <linux/blkpg.h>
18#include <linux/slab.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hdreg.h>
22#include <linux/ide.h>
23#include <linux/bitops.h>
1e86240f 24#include <linux/nmi.h>
1da177e4
LT
25
26#include <asm/byteorder.h>
27#include <asm/irq.h>
28#include <asm/uaccess.h>
29#include <asm/io.h>
30
31/*
32 * Conventional PIO operations for ATA devices
33 */
34
35static u8 ide_inb (unsigned long port)
36{
37 return (u8) inb(port);
38}
39
40static u16 ide_inw (unsigned long port)
41{
42 return (u16) inw(port);
43}
44
45static void ide_insw (unsigned long port, void *addr, u32 count)
46{
47 insw(port, addr, count);
48}
49
1da177e4
LT
50static void ide_insl (unsigned long port, void *addr, u32 count)
51{
52 insl(port, addr, count);
53}
54
55static void ide_outb (u8 val, unsigned long port)
56{
57 outb(val, port);
58}
59
60static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
61{
62 outb(addr, port);
63}
64
65static void ide_outw (u16 val, unsigned long port)
66{
67 outw(val, port);
68}
69
70static void ide_outsw (unsigned long port, void *addr, u32 count)
71{
72 outsw(port, addr, count);
73}
74
1da177e4
LT
75static void ide_outsl (unsigned long port, void *addr, u32 count)
76{
77 outsl(port, addr, count);
78}
79
80void default_hwif_iops (ide_hwif_t *hwif)
81{
82 hwif->OUTB = ide_outb;
83 hwif->OUTBSYNC = ide_outbsync;
84 hwif->OUTW = ide_outw;
1da177e4
LT
85 hwif->OUTSW = ide_outsw;
86 hwif->OUTSL = ide_outsl;
87 hwif->INB = ide_inb;
88 hwif->INW = ide_inw;
1da177e4
LT
89 hwif->INSW = ide_insw;
90 hwif->INSL = ide_insl;
91}
92
1da177e4
LT
93/*
94 * MMIO operations, typically used for SATA controllers
95 */
96
97static u8 ide_mm_inb (unsigned long port)
98{
99 return (u8) readb((void __iomem *) port);
100}
101
102static u16 ide_mm_inw (unsigned long port)
103{
104 return (u16) readw((void __iomem *) port);
105}
106
107static void ide_mm_insw (unsigned long port, void *addr, u32 count)
108{
109 __ide_mm_insw((void __iomem *) port, addr, count);
110}
111
1da177e4
LT
112static void ide_mm_insl (unsigned long port, void *addr, u32 count)
113{
114 __ide_mm_insl((void __iomem *) port, addr, count);
115}
116
117static void ide_mm_outb (u8 value, unsigned long port)
118{
119 writeb(value, (void __iomem *) port);
120}
121
122static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
123{
124 writeb(value, (void __iomem *) port);
125}
126
127static void ide_mm_outw (u16 value, unsigned long port)
128{
129 writew(value, (void __iomem *) port);
130}
131
132static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
133{
134 __ide_mm_outsw((void __iomem *) port, addr, count);
135}
136
1da177e4
LT
137static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
138{
139 __ide_mm_outsl((void __iomem *) port, addr, count);
140}
141
142void default_hwif_mmiops (ide_hwif_t *hwif)
143{
144 hwif->OUTB = ide_mm_outb;
145 /* Most systems will need to override OUTBSYNC, alas however
146 this one is controller specific! */
147 hwif->OUTBSYNC = ide_mm_outbsync;
148 hwif->OUTW = ide_mm_outw;
1da177e4
LT
149 hwif->OUTSW = ide_mm_outsw;
150 hwif->OUTSL = ide_mm_outsl;
151 hwif->INB = ide_mm_inb;
152 hwif->INW = ide_mm_inw;
1da177e4
LT
153 hwif->INSW = ide_mm_insw;
154 hwif->INSL = ide_mm_insl;
155}
156
157EXPORT_SYMBOL(default_hwif_mmiops);
158
1da177e4
LT
159void SELECT_DRIVE (ide_drive_t *drive)
160{
23579a2a 161 ide_hwif_t *hwif = drive->hwif;
ac95beed 162 const struct ide_port_ops *port_ops = hwif->port_ops;
23579a2a 163
ac95beed
BZ
164 if (port_ops && port_ops->selectproc)
165 port_ops->selectproc(drive);
23579a2a
BZ
166
167 hwif->OUTB(drive->select.all, hwif->io_ports[IDE_SELECT_OFFSET]);
1da177e4
LT
168}
169
1da177e4
LT
170void SELECT_MASK (ide_drive_t *drive, int mask)
171{
ac95beed
BZ
172 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
173
174 if (port_ops && port_ops->maskproc)
175 port_ops->maskproc(drive, mask);
1da177e4
LT
176}
177
1da177e4
LT
178/*
179 * Some localbus EIDE interfaces require a special access sequence
180 * when using 32-bit I/O instructions to transfer data. We call this
181 * the "vlb_sync" sequence, which consists of three successive reads
182 * of the sector count register location, with interrupts disabled
183 * to ensure that the reads all happen together.
184 */
185static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
186{
187 (void) HWIF(drive)->INB(port);
188 (void) HWIF(drive)->INB(port);
189 (void) HWIF(drive)->INB(port);
190}
191
192/*
193 * This is used for most PIO data transfers *from* the IDE interface
194 */
195static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
196{
197 ide_hwif_t *hwif = HWIF(drive);
198 u8 io_32bit = drive->io_32bit;
199
200 if (io_32bit) {
201 if (io_32bit & 2) {
202 unsigned long flags;
23579a2a 203
1da177e4 204 local_irq_save(flags);
23579a2a
BZ
205 ata_vlb_sync(drive, hwif->io_ports[IDE_NSECTOR_OFFSET]);
206 hwif->INSL(hwif->io_ports[IDE_DATA_OFFSET], buffer,
207 wcount);
1da177e4
LT
208 local_irq_restore(flags);
209 } else
23579a2a
BZ
210 hwif->INSL(hwif->io_ports[IDE_DATA_OFFSET], buffer,
211 wcount);
212 } else
213 hwif->INSW(hwif->io_ports[IDE_DATA_OFFSET], buffer,
214 wcount << 1);
1da177e4
LT
215}
216
217/*
218 * This is used for most PIO data transfers *to* the IDE interface
219 */
220static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
221{
222 ide_hwif_t *hwif = HWIF(drive);
223 u8 io_32bit = drive->io_32bit;
224
225 if (io_32bit) {
226 if (io_32bit & 2) {
227 unsigned long flags;
23579a2a 228
1da177e4 229 local_irq_save(flags);
23579a2a
BZ
230 ata_vlb_sync(drive, hwif->io_ports[IDE_NSECTOR_OFFSET]);
231 hwif->OUTSL(hwif->io_ports[IDE_DATA_OFFSET], buffer,
232 wcount);
1da177e4
LT
233 local_irq_restore(flags);
234 } else
23579a2a
BZ
235 hwif->OUTSL(hwif->io_ports[IDE_DATA_OFFSET], buffer,
236 wcount);
237 } else
238 hwif->OUTSW(hwif->io_ports[IDE_DATA_OFFSET], buffer,
239 wcount << 1);
1da177e4
LT
240}
241
242/*
243 * The following routines are mainly used by the ATAPI drivers.
244 *
245 * These routines will round up any request for an odd number of bytes,
246 * so if an odd bytecount is specified, be sure that there's at least one
247 * extra byte allocated for the buffer.
248 */
249
250static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
251{
252 ide_hwif_t *hwif = HWIF(drive);
253
254 ++bytecount;
255#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
256 if (MACH_IS_ATARI || MACH_IS_Q40) {
257 /* Atari has a byte-swapped IDE interface */
23579a2a
BZ
258 insw_swapw(hwif->io_ports[IDE_DATA_OFFSET], buffer,
259 bytecount / 2);
1da177e4
LT
260 return;
261 }
262#endif /* CONFIG_ATARI || CONFIG_Q40 */
263 hwif->ata_input_data(drive, buffer, bytecount / 4);
264 if ((bytecount & 0x03) >= 2)
23579a2a
BZ
265 hwif->INSW(hwif->io_ports[IDE_DATA_OFFSET],
266 (u8 *)buffer + (bytecount & ~0x03), 1);
1da177e4
LT
267}
268
269static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
270{
271 ide_hwif_t *hwif = HWIF(drive);
272
273 ++bytecount;
274#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
275 if (MACH_IS_ATARI || MACH_IS_Q40) {
276 /* Atari has a byte-swapped IDE interface */
23579a2a
BZ
277 outsw_swapw(hwif->io_ports[IDE_DATA_OFFSET], buffer,
278 bytecount / 2);
1da177e4
LT
279 return;
280 }
281#endif /* CONFIG_ATARI || CONFIG_Q40 */
282 hwif->ata_output_data(drive, buffer, bytecount / 4);
283 if ((bytecount & 0x03) >= 2)
23579a2a
BZ
284 hwif->OUTSW(hwif->io_ports[IDE_DATA_OFFSET],
285 (u8 *)buffer + (bytecount & ~0x03), 1);
1da177e4
LT
286}
287
288void default_hwif_transport(ide_hwif_t *hwif)
289{
290 hwif->ata_input_data = ata_input_data;
291 hwif->ata_output_data = ata_output_data;
292 hwif->atapi_input_bytes = atapi_input_bytes;
293 hwif->atapi_output_bytes = atapi_output_bytes;
294}
295
1da177e4
LT
296void ide_fix_driveid (struct hd_driveid *id)
297{
298#ifndef __LITTLE_ENDIAN
299# ifdef __BIG_ENDIAN
300 int i;
301 u16 *stringcast;
302
303 id->config = __le16_to_cpu(id->config);
304 id->cyls = __le16_to_cpu(id->cyls);
305 id->reserved2 = __le16_to_cpu(id->reserved2);
306 id->heads = __le16_to_cpu(id->heads);
307 id->track_bytes = __le16_to_cpu(id->track_bytes);
308 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
309 id->sectors = __le16_to_cpu(id->sectors);
310 id->vendor0 = __le16_to_cpu(id->vendor0);
311 id->vendor1 = __le16_to_cpu(id->vendor1);
312 id->vendor2 = __le16_to_cpu(id->vendor2);
313 stringcast = (u16 *)&id->serial_no[0];
314 for (i = 0; i < (20/2); i++)
315 stringcast[i] = __le16_to_cpu(stringcast[i]);
316 id->buf_type = __le16_to_cpu(id->buf_type);
317 id->buf_size = __le16_to_cpu(id->buf_size);
318 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
319 stringcast = (u16 *)&id->fw_rev[0];
320 for (i = 0; i < (8/2); i++)
321 stringcast[i] = __le16_to_cpu(stringcast[i]);
322 stringcast = (u16 *)&id->model[0];
323 for (i = 0; i < (40/2); i++)
324 stringcast[i] = __le16_to_cpu(stringcast[i]);
325 id->dword_io = __le16_to_cpu(id->dword_io);
326 id->reserved50 = __le16_to_cpu(id->reserved50);
327 id->field_valid = __le16_to_cpu(id->field_valid);
328 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
329 id->cur_heads = __le16_to_cpu(id->cur_heads);
330 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
331 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
332 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
333 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
334 id->dma_1word = __le16_to_cpu(id->dma_1word);
335 id->dma_mword = __le16_to_cpu(id->dma_mword);
336 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
337 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
338 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
339 id->eide_pio = __le16_to_cpu(id->eide_pio);
340 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
341 for (i = 0; i < 2; ++i)
342 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
343 for (i = 0; i < 4; ++i)
344 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
345 id->queue_depth = __le16_to_cpu(id->queue_depth);
346 for (i = 0; i < 4; ++i)
347 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
348 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
349 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
350 id->command_set_1 = __le16_to_cpu(id->command_set_1);
351 id->command_set_2 = __le16_to_cpu(id->command_set_2);
352 id->cfsse = __le16_to_cpu(id->cfsse);
353 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
354 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
355 id->csf_default = __le16_to_cpu(id->csf_default);
356 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
357 id->trseuc = __le16_to_cpu(id->trseuc);
358 id->trsEuc = __le16_to_cpu(id->trsEuc);
359 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
360 id->mprc = __le16_to_cpu(id->mprc);
361 id->hw_config = __le16_to_cpu(id->hw_config);
362 id->acoustic = __le16_to_cpu(id->acoustic);
363 id->msrqs = __le16_to_cpu(id->msrqs);
364 id->sxfert = __le16_to_cpu(id->sxfert);
365 id->sal = __le16_to_cpu(id->sal);
366 id->spg = __le32_to_cpu(id->spg);
367 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
368 for (i = 0; i < 22; i++)
369 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
370 id->last_lun = __le16_to_cpu(id->last_lun);
371 id->word127 = __le16_to_cpu(id->word127);
372 id->dlf = __le16_to_cpu(id->dlf);
373 id->csfo = __le16_to_cpu(id->csfo);
374 for (i = 0; i < 26; i++)
375 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
376 id->word156 = __le16_to_cpu(id->word156);
377 for (i = 0; i < 3; i++)
378 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
379 id->cfa_power = __le16_to_cpu(id->cfa_power);
380 for (i = 0; i < 14; i++)
381 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
382 for (i = 0; i < 31; i++)
383 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
384 for (i = 0; i < 48; i++)
385 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
386 id->integrity_word = __le16_to_cpu(id->integrity_word);
387# else
388# error "Please fix <asm/byteorder.h>"
389# endif
390#endif
391}
392
01745112
BZ
393/*
394 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
395 * removing leading/trailing blanks and compressing internal blanks.
396 * It is primarily used to tidy up the model name/number fields as
397 * returned by the WIN_[P]IDENTIFY commands.
398 */
399
1da177e4
LT
400void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
401{
402 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
403
404 if (byteswap) {
405 /* convert from big-endian to host byte order */
406 for (p = end ; p != s;) {
407 unsigned short *pp = (unsigned short *) (p -= 2);
408 *pp = ntohs(*pp);
409 }
410 }
411 /* strip leading blanks */
412 while (s != end && *s == ' ')
413 ++s;
414 /* compress internal blanks and strip trailing blanks */
415 while (s != end && *s) {
416 if (*s++ != ' ' || (s != end && *s && *s != ' '))
417 *p++ = *(s-1);
418 }
419 /* wipe out trailing garbage */
420 while (p != end)
421 *p++ = '\0';
422}
423
424EXPORT_SYMBOL(ide_fixstring);
425
426/*
427 * Needed for PCI irq sharing
428 */
429int drive_is_ready (ide_drive_t *drive)
430{
431 ide_hwif_t *hwif = HWIF(drive);
432 u8 stat = 0;
433
434 if (drive->waiting_for_dma)
435 return hwif->ide_dma_test_irq(drive);
436
437#if 0
438 /* need to guarantee 400ns since last command was issued */
439 udelay(1);
440#endif
441
1da177e4
LT
442 /*
443 * We do a passive status test under shared PCI interrupts on
444 * cards that truly share the ATA side interrupt, but may also share
445 * an interrupt with another pci card/device. We make no assumptions
446 * about possible isa-pnp and pci-pnp issues yet.
447 */
23579a2a 448 if (hwif->io_ports[IDE_CONTROL_OFFSET])
c47137a9 449 stat = ide_read_altstatus(drive);
1da177e4 450 else
1da177e4 451 /* Note: this may clear a pending IRQ!! */
c47137a9 452 stat = ide_read_status(drive);
1da177e4
LT
453
454 if (stat & BUSY_STAT)
455 /* drive busy: definitely not interrupting */
456 return 0;
457
458 /* drive ready: *might* be interrupting */
459 return 1;
460}
461
462EXPORT_SYMBOL(drive_is_ready);
463
1da177e4
LT
464/*
465 * This routine busy-waits for the drive status to be not "busy".
466 * It then checks the status for all of the "good" bits and none
467 * of the "bad" bits, and if all is okay it returns 0. All other
74af21cf 468 * cases return error -- caller may then invoke ide_error().
1da177e4
LT
469 *
470 * This routine should get fixed to not hog the cpu during extra long waits..
471 * That could be done by busy-waiting for the first jiffy or two, and then
472 * setting a timer to wake up at half second intervals thereafter,
473 * until timeout is achieved, before timing out.
474 */
aedea591 475static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
1da177e4 476{
1da177e4 477 unsigned long flags;
74af21cf
BZ
478 int i;
479 u8 stat;
1da177e4
LT
480
481 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
c47137a9
BZ
482 stat = ide_read_status(drive);
483
484 if (stat & BUSY_STAT) {
1da177e4
LT
485 local_irq_set(flags);
486 timeout += jiffies;
c47137a9 487 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
1da177e4
LT
488 if (time_after(jiffies, timeout)) {
489 /*
490 * One last read after the timeout in case
491 * heavy interrupt load made us not make any
492 * progress during the timeout..
493 */
c47137a9 494 stat = ide_read_status(drive);
1da177e4
LT
495 if (!(stat & BUSY_STAT))
496 break;
497
498 local_irq_restore(flags);
74af21cf
BZ
499 *rstat = stat;
500 return -EBUSY;
1da177e4
LT
501 }
502 }
503 local_irq_restore(flags);
504 }
505 /*
506 * Allow status to settle, then read it again.
507 * A few rare drives vastly violate the 400ns spec here,
508 * so we'll wait up to 10usec for a "good" status
509 * rather than expensively fail things immediately.
510 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
511 */
512 for (i = 0; i < 10; i++) {
513 udelay(1);
c47137a9
BZ
514 stat = ide_read_status(drive);
515
516 if (OK_STAT(stat, good, bad)) {
74af21cf 517 *rstat = stat;
1da177e4 518 return 0;
74af21cf 519 }
1da177e4 520 }
74af21cf
BZ
521 *rstat = stat;
522 return -EFAULT;
523}
524
525/*
526 * In case of error returns error value after doing "*startstop = ide_error()".
527 * The caller should return the updated value of "startstop" in this case,
528 * "startstop" is unchanged when the function returns 0.
529 */
530int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
531{
532 int err;
533 u8 stat;
534
535 /* bail early if we've exceeded max_failures */
536 if (drive->max_failures && (drive->failures > drive->max_failures)) {
537 *startstop = ide_stopped;
538 return 1;
539 }
540
541 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
542
543 if (err) {
544 char *s = (err == -EBUSY) ? "status timeout" : "status error";
545 *startstop = ide_error(drive, s, stat);
546 }
547
548 return err;
1da177e4
LT
549}
550
551EXPORT_SYMBOL(ide_wait_stat);
552
a5b7e70d
BZ
553/**
554 * ide_in_drive_list - look for drive in black/white list
555 * @id: drive identifier
556 * @drive_table: list to inspect
557 *
558 * Look for a drive in the blacklist and the whitelist tables
559 * Returns 1 if the drive is found in the table.
560 */
561
562int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
563{
564 for ( ; drive_table->id_model; drive_table++)
565 if ((!strcmp(drive_table->id_model, id->model)) &&
566 (!drive_table->id_firmware ||
567 strstr(id->fw_rev, drive_table->id_firmware)))
568 return 1;
569 return 0;
570}
571
b0244a00
BZ
572EXPORT_SYMBOL_GPL(ide_in_drive_list);
573
a5b7e70d
BZ
574/*
575 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
576 * We list them here and depend on the device side cable detection for them.
8588a2b7
BZ
577 *
578 * Some optical devices with the buggy firmwares have the same problem.
a5b7e70d
BZ
579 */
580static const struct drive_list_entry ivb_list[] = {
581 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
8588a2b7 582 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
e97564f3
PM
583 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
584 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
585 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
a5b7e70d
BZ
586 { NULL , NULL }
587};
588
1da177e4
LT
589/*
590 * All hosts that use the 80c ribbon must use!
591 * The name is derived from upper byte of word 93 and the 80c ribbon.
592 */
593u8 eighty_ninty_three (ide_drive_t *drive)
594{
7f8f48af
BZ
595 ide_hwif_t *hwif = drive->hwif;
596 struct hd_driveid *id = drive->id;
a5b7e70d 597 int ivb = ide_in_drive_list(id, ivb_list);
7f8f48af 598
49521f97
BZ
599 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
600 return 1;
601
a5b7e70d
BZ
602 if (ivb)
603 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
604 drive->name);
605
b98f8803
GK
606 if (ide_dev_is_sata(id) && !ivb)
607 return 1;
608
a5b7e70d 609 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
7f8f48af 610 goto no_80w;
1a1276e7 611
f68d9320
BZ
612 /*
613 * FIXME:
f367bed0 614 * - change master/slave IDENTIFY order
a5b7e70d 615 * - force bit13 (80c cable present) check also for !ivb devices
f68d9320
BZ
616 * (unless the slave device is pre-ATA3)
617 */
a5b7e70d 618 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
7f8f48af
BZ
619 return 1;
620
621no_80w:
622 if (drive->udma33_warned == 1)
623 return 0;
624
625 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
626 "limiting max speed to UDMA33\n",
49521f97
BZ
627 drive->name,
628 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
7f8f48af
BZ
629
630 drive->udma33_warned = 1;
631
632 return 0;
1da177e4
LT
633}
634
8a455134 635int ide_driveid_update(ide_drive_t *drive)
1da177e4 636{
8a455134 637 ide_hwif_t *hwif = drive->hwif;
1da177e4 638 struct hd_driveid *id;
8a455134 639 unsigned long timeout, flags;
c47137a9 640 u8 stat;
1da177e4 641
1da177e4
LT
642 /*
643 * Re-read drive->id for possible DMA mode
644 * change (copied from ide-probe.c)
645 */
1da177e4
LT
646
647 SELECT_MASK(drive, 1);
81ca6919 648 ide_set_irq(drive, 1);
1da177e4 649 msleep(50);
23579a2a 650 hwif->OUTB(WIN_IDENTIFY, hwif->io_ports[IDE_COMMAND_OFFSET]);
1da177e4
LT
651 timeout = jiffies + WAIT_WORSTCASE;
652 do {
653 if (time_after(jiffies, timeout)) {
654 SELECT_MASK(drive, 0);
655 return 0; /* drive timed-out */
656 }
c47137a9 657
1da177e4 658 msleep(50); /* give drive a breather */
c47137a9
BZ
659 stat = ide_read_altstatus(drive);
660 } while (stat & BUSY_STAT);
661
1da177e4 662 msleep(50); /* wait for IRQ and DRQ_STAT */
c47137a9
BZ
663 stat = ide_read_status(drive);
664
665 if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
1da177e4
LT
666 SELECT_MASK(drive, 0);
667 printk("%s: CHECK for good STATUS\n", drive->name);
668 return 0;
669 }
670 local_irq_save(flags);
671 SELECT_MASK(drive, 0);
672 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
673 if (!id) {
674 local_irq_restore(flags);
675 return 0;
676 }
7e777185 677 hwif->ata_input_data(drive, id, SECTOR_WORDS);
c47137a9 678 (void)ide_read_status(drive); /* clear drive IRQ */
1da177e4
LT
679 local_irq_enable();
680 local_irq_restore(flags);
681 ide_fix_driveid(id);
682 if (id) {
683 drive->id->dma_ultra = id->dma_ultra;
684 drive->id->dma_mword = id->dma_mword;
685 drive->id->dma_1word = id->dma_1word;
686 /* anything more ? */
687 kfree(id);
3ab7efe8
BZ
688
689 if (drive->using_dma && ide_id_dma_bug(drive))
690 ide_dma_off(drive);
1da177e4
LT
691 }
692
693 return 1;
1da177e4
LT
694}
695
74af21cf 696int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
1da177e4 697{
74af21cf 698 ide_hwif_t *hwif = drive->hwif;
89613e66 699 int error = 0;
1da177e4
LT
700 u8 stat;
701
702// while (HWGROUP(drive)->busy)
703// msleep(50);
704
705#ifdef CONFIG_BLK_DEV_IDEDMA
15ce926a
BZ
706 if (hwif->dma_host_set) /* check if host supports DMA */
707 hwif->dma_host_set(drive, 0);
1da177e4
LT
708#endif
709
89613e66
SS
710 /* Skip setting PIO flow-control modes on pre-EIDE drives */
711 if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
712 goto skip;
713
1da177e4
LT
714 /*
715 * Don't use ide_wait_cmd here - it will
716 * attempt to set_geometry and recalibrate,
717 * but for some reason these don't work at
718 * this point (lost interrupt).
719 */
720 /*
721 * Select the drive, and issue the SETFEATURES command
722 */
723 disable_irq_nosync(hwif->irq);
724
725 /*
726 * FIXME: we race against the running IRQ here if
727 * this is called from non IRQ context. If we use
728 * disable_irq() we hang on the error path. Work
729 * is needed.
730 */
731
732 udelay(1);
733 SELECT_DRIVE(drive);
734 SELECT_MASK(drive, 0);
735 udelay(1);
81ca6919 736 ide_set_irq(drive, 0);
23579a2a
BZ
737 hwif->OUTB(speed, hwif->io_ports[IDE_NSECTOR_OFFSET]);
738 hwif->OUTB(SETFEATURES_XFER, hwif->io_ports[IDE_FEATURE_OFFSET]);
739 hwif->OUTBSYNC(drive, WIN_SETFEATURES,
740 hwif->io_ports[IDE_COMMAND_OFFSET]);
81ca6919
BZ
741 if (drive->quirk_list == 2)
742 ide_set_irq(drive, 1);
1da177e4 743
74af21cf
BZ
744 error = __ide_wait_stat(drive, drive->ready_stat,
745 BUSY_STAT|DRQ_STAT|ERR_STAT,
746 WAIT_CMD, &stat);
1da177e4
LT
747
748 SELECT_MASK(drive, 0);
749
750 enable_irq(hwif->irq);
751
752 if (error) {
753 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
754 return error;
755 }
756
757 drive->id->dma_ultra &= ~0xFF00;
758 drive->id->dma_mword &= ~0x0F00;
759 drive->id->dma_1word &= ~0x0F00;
760
89613e66 761 skip:
1da177e4 762#ifdef CONFIG_BLK_DEV_IDEDMA
f37aaf9e
BZ
763 if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
764 drive->using_dma)
15ce926a
BZ
765 hwif->dma_host_set(drive, 1);
766 else if (hwif->dma_host_set) /* check if host supports DMA */
4a546e04 767 ide_dma_off_quietly(drive);
1da177e4
LT
768#endif
769
770 switch(speed) {
771 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
772 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
773 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
774 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
775 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
776 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
777 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
778 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
779 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
780 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
781 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
782 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
783 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
784 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
785 default: break;
786 }
787 if (!drive->init_speed)
788 drive->init_speed = speed;
789 drive->current_speed = speed;
790 return error;
791}
792
1da177e4
LT
793/*
794 * This should get invoked any time we exit the driver to
795 * wait for an interrupt response from a drive. handler() points
796 * at the appropriate code to handle the next interrupt, and a
797 * timer is started to prevent us from waiting forever in case
798 * something goes wrong (see the ide_timer_expiry() handler later on).
799 *
800 * See also ide_execute_command
801 */
802static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
803 unsigned int timeout, ide_expiry_t *expiry)
804{
805 ide_hwgroup_t *hwgroup = HWGROUP(drive);
806
d30a426d 807 BUG_ON(hwgroup->handler);
1da177e4
LT
808 hwgroup->handler = handler;
809 hwgroup->expiry = expiry;
810 hwgroup->timer.expires = jiffies + timeout;
d30a426d 811 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
812 add_timer(&hwgroup->timer);
813}
814
815void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
816 unsigned int timeout, ide_expiry_t *expiry)
817{
818 unsigned long flags;
819 spin_lock_irqsave(&ide_lock, flags);
820 __ide_set_handler(drive, handler, timeout, expiry);
821 spin_unlock_irqrestore(&ide_lock, flags);
822}
823
824EXPORT_SYMBOL(ide_set_handler);
825
826/**
827 * ide_execute_command - execute an IDE command
828 * @drive: IDE drive to issue the command against
829 * @command: command byte to write
830 * @handler: handler for next phase
831 * @timeout: timeout for command
832 * @expiry: handler to run on timeout
833 *
834 * Helper function to issue an IDE command. This handles the
835 * atomicity requirements, command timing and ensures that the
836 * handler and IRQ setup do not race. All IDE command kick off
837 * should go via this function or do equivalent locking.
838 */
cd2a2d96
BZ
839
840void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
841 unsigned timeout, ide_expiry_t *expiry)
1da177e4
LT
842{
843 unsigned long flags;
1da177e4 844 ide_hwif_t *hwif = HWIF(drive);
629f944b 845
1da177e4 846 spin_lock_irqsave(&ide_lock, flags);
629f944b 847 __ide_set_handler(drive, handler, timeout, expiry);
23579a2a 848 hwif->OUTBSYNC(drive, cmd, hwif->io_ports[IDE_COMMAND_OFFSET]);
629f944b
BZ
849 /*
850 * Drive takes 400nS to respond, we must avoid the IRQ being
851 * serviced before that.
852 *
853 * FIXME: we could skip this delay with care on non shared devices
854 */
1da177e4
LT
855 ndelay(400);
856 spin_unlock_irqrestore(&ide_lock, flags);
857}
858
859EXPORT_SYMBOL(ide_execute_command);
860
861
862/* needed below */
863static ide_startstop_t do_reset1 (ide_drive_t *, int);
864
865/*
866 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
867 * during an atapi drive reset operation. If the drive has not yet responded,
868 * and we have not yet hit our maximum waiting time, then the timer is restarted
869 * for another 50ms.
870 */
871static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
872{
873 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1da177e4
LT
874 u8 stat;
875
876 SELECT_DRIVE(drive);
877 udelay (10);
c47137a9 878 stat = ide_read_status(drive);
1da177e4 879
c47137a9 880 if (OK_STAT(stat, 0, BUSY_STAT))
1da177e4 881 printk("%s: ATAPI reset complete\n", drive->name);
c47137a9 882 else {
1da177e4 883 if (time_before(jiffies, hwgroup->poll_timeout)) {
1da177e4
LT
884 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
885 /* continue polling */
886 return ide_started;
887 }
888 /* end of polling */
889 hwgroup->polling = 0;
890 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
891 drive->name, stat);
892 /* do it the old fashioned way */
893 return do_reset1(drive, 1);
894 }
895 /* done polling */
896 hwgroup->polling = 0;
913759ac 897 hwgroup->resetting = 0;
1da177e4
LT
898 return ide_stopped;
899}
900
901/*
902 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
903 * during an ide reset operation. If the drives have not yet responded,
904 * and we have not yet hit our maximum waiting time, then the timer is restarted
905 * for another 50ms.
906 */
907static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
908{
909 ide_hwgroup_t *hwgroup = HWGROUP(drive);
910 ide_hwif_t *hwif = HWIF(drive);
ac95beed 911 const struct ide_port_ops *port_ops = hwif->port_ops;
1da177e4
LT
912 u8 tmp;
913
ac95beed
BZ
914 if (port_ops && port_ops->reset_poll) {
915 if (port_ops->reset_poll(drive)) {
1da177e4
LT
916 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
917 hwif->name, drive->name);
918 return ide_stopped;
919 }
920 }
921
c47137a9
BZ
922 tmp = ide_read_status(drive);
923
924 if (!OK_STAT(tmp, 0, BUSY_STAT)) {
1da177e4 925 if (time_before(jiffies, hwgroup->poll_timeout)) {
1da177e4
LT
926 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
927 /* continue polling */
928 return ide_started;
929 }
930 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
931 drive->failures++;
932 } else {
933 printk("%s: reset: ", hwif->name);
64a57fe4
BZ
934 tmp = ide_read_error(drive);
935
936 if (tmp == 1) {
1da177e4
LT
937 printk("success\n");
938 drive->failures = 0;
939 } else {
940 drive->failures++;
941 printk("master: ");
942 switch (tmp & 0x7f) {
943 case 1: printk("passed");
944 break;
945 case 2: printk("formatter device error");
946 break;
947 case 3: printk("sector buffer error");
948 break;
949 case 4: printk("ECC circuitry error");
950 break;
951 case 5: printk("controlling MPU error");
952 break;
953 default:printk("error (0x%02x?)", tmp);
954 }
955 if (tmp & 0x80)
956 printk("; slave: failed");
957 printk("\n");
958 }
959 }
960 hwgroup->polling = 0; /* done polling */
913759ac 961 hwgroup->resetting = 0; /* done reset attempt */
1da177e4
LT
962 return ide_stopped;
963}
964
1da177e4
LT
965static void ide_disk_pre_reset(ide_drive_t *drive)
966{
967 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
968
969 drive->special.all = 0;
970 drive->special.b.set_geometry = legacy;
971 drive->special.b.recalibrate = legacy;
4ee06b7e 972 drive->mult_count = 0;
1da177e4
LT
973 if (!drive->keep_settings && !drive->using_dma)
974 drive->mult_req = 0;
975 if (drive->mult_req != drive->mult_count)
976 drive->special.b.set_multmode = 1;
977}
978
979static void pre_reset(ide_drive_t *drive)
980{
ac95beed
BZ
981 const struct ide_port_ops *port_ops = drive->hwif->port_ops;
982
1da177e4
LT
983 if (drive->media == ide_disk)
984 ide_disk_pre_reset(drive);
985 else
986 drive->post_reset = 1;
987
99ffbe0e
BZ
988 if (drive->using_dma) {
989 if (drive->crc_count)
578cfa0d 990 ide_check_dma_crc(drive);
99ffbe0e
BZ
991 else
992 ide_dma_off(drive);
993 }
994
995 if (!drive->keep_settings) {
996 if (!drive->using_dma) {
1da177e4
LT
997 drive->unmask = 0;
998 drive->io_32bit = 0;
999 }
1000 return;
1001 }
1da177e4 1002
ac95beed
BZ
1003 if (port_ops && port_ops->pre_reset)
1004 port_ops->pre_reset(drive);
1da177e4 1005
513daadd
SS
1006 if (drive->current_speed != 0xff)
1007 drive->desired_speed = drive->current_speed;
1008 drive->current_speed = 0xff;
1da177e4
LT
1009}
1010
1011/*
1012 * do_reset1() attempts to recover a confused drive by resetting it.
1013 * Unfortunately, resetting a disk drive actually resets all devices on
1014 * the same interface, so it can really be thought of as resetting the
1015 * interface rather than resetting the drive.
1016 *
1017 * ATAPI devices have their own reset mechanism which allows them to be
1018 * individually reset without clobbering other devices on the same interface.
1019 *
1020 * Unfortunately, the IDE interface does not generate an interrupt to let
1021 * us know when the reset operation has finished, so we must poll for this.
1022 * Equally poor, though, is the fact that this may a very long time to complete,
1023 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1024 * we set a timer to poll at 50ms intervals.
1025 */
1026static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1027{
1028 unsigned int unit;
1029 unsigned long flags;
1030 ide_hwif_t *hwif;
1031 ide_hwgroup_t *hwgroup;
ac95beed 1032 const struct ide_port_ops *port_ops;
23579a2a
BZ
1033 u8 ctl;
1034
1da177e4
LT
1035 spin_lock_irqsave(&ide_lock, flags);
1036 hwif = HWIF(drive);
1037 hwgroup = HWGROUP(drive);
1038
1039 /* We must not reset with running handlers */
125e1874 1040 BUG_ON(hwgroup->handler != NULL);
1da177e4
LT
1041
1042 /* For an ATAPI device, first try an ATAPI SRST. */
1043 if (drive->media != ide_disk && !do_not_try_atapi) {
913759ac 1044 hwgroup->resetting = 1;
1da177e4
LT
1045 pre_reset(drive);
1046 SELECT_DRIVE(drive);
1047 udelay (20);
23579a2a
BZ
1048 hwif->OUTBSYNC(drive, WIN_SRST,
1049 hwif->io_ports[IDE_COMMAND_OFFSET]);
68ad9910 1050 ndelay(400);
1da177e4
LT
1051 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1052 hwgroup->polling = 1;
1053 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1054 spin_unlock_irqrestore(&ide_lock, flags);
1055 return ide_started;
1056 }
1057
1058 /*
1059 * First, reset any device state data we were maintaining
1060 * for any of the drives on this interface.
1061 */
1062 for (unit = 0; unit < MAX_DRIVES; ++unit)
1063 pre_reset(&hwif->drives[unit]);
1064
23579a2a 1065 if (hwif->io_ports[IDE_CONTROL_OFFSET] == 0) {
1da177e4
LT
1066 spin_unlock_irqrestore(&ide_lock, flags);
1067 return ide_stopped;
1068 }
1069
913759ac 1070 hwgroup->resetting = 1;
1da177e4
LT
1071 /*
1072 * Note that we also set nIEN while resetting the device,
1073 * to mask unwanted interrupts from the interface during the reset.
1074 * However, due to the design of PC hardware, this will cause an
1075 * immediate interrupt due to the edge transition it produces.
1076 * This single interrupt gives us a "fast poll" for drives that
1077 * recover from reset very quickly, saving us the first 50ms wait time.
1078 */
1079 /* set SRST and nIEN */
23579a2a 1080 hwif->OUTBSYNC(drive, drive->ctl|6, hwif->io_ports[IDE_CONTROL_OFFSET]);
1da177e4
LT
1081 /* more than enough time */
1082 udelay(10);
23579a2a
BZ
1083 if (drive->quirk_list == 2)
1084 ctl = drive->ctl; /* clear SRST and nIEN */
1085 else
1086 ctl = drive->ctl | 2; /* clear SRST, leave nIEN */
1087 hwif->OUTBSYNC(drive, ctl, hwif->io_ports[IDE_CONTROL_OFFSET]);
1da177e4
LT
1088 /* more than enough time */
1089 udelay(10);
1090 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1091 hwgroup->polling = 1;
1092 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1093
1094 /*
1095 * Some weird controller like resetting themselves to a strange
1096 * state when the disks are reset this way. At least, the Winbond
1097 * 553 documentation says that
1098 */
ac95beed
BZ
1099 port_ops = hwif->port_ops;
1100 if (port_ops && port_ops->resetproc)
1101 port_ops->resetproc(drive);
1da177e4
LT
1102
1103 spin_unlock_irqrestore(&ide_lock, flags);
1104 return ide_started;
1105}
1106
1107/*
1108 * ide_do_reset() is the entry point to the drive/interface reset code.
1109 */
1110
1111ide_startstop_t ide_do_reset (ide_drive_t *drive)
1112{
1113 return do_reset1(drive, 0);
1114}
1115
1116EXPORT_SYMBOL(ide_do_reset);
1117
1118/*
1119 * ide_wait_not_busy() waits for the currently selected device on the hwif
9d501529 1120 * to report a non-busy status, see comments in ide_probe_port().
1da177e4
LT
1121 */
1122int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1123{
1124 u8 stat = 0;
1125
1126 while(timeout--) {
1127 /*
1128 * Turn this into a schedule() sleep once I'm sure
1129 * about locking issues (2.5 work ?).
1130 */
1131 mdelay(1);
1132 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1133 if ((stat & BUSY_STAT) == 0)
1134 return 0;
1135 /*
1136 * Assume a value of 0xff means nothing is connected to
1137 * the interface and it doesn't implement the pull-down
1138 * resistor on D7.
1139 */
1140 if (stat == 0xff)
1141 return -ENODEV;
6842f8c8 1142 touch_softlockup_watchdog();
1e86240f 1143 touch_nmi_watchdog();
1da177e4
LT
1144 }
1145 return -EBUSY;
1146}
1147
1148EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1149